WorldWideScience

Sample records for surface exchange reactions

  1. A Monte Carlo simulation of the exchange reaction between gaseous molecules and the atoms on a heterogeneous solid surface

    International Nuclear Information System (INIS)

    Imai, Hisao

    1980-01-01

    A method of the Monte Carlo simulation of the isotopic exchange reaction between gaseous molecules and the atoms on an arbitrarily heterogeneous solid surface is described by employing hydrogen as an example. (author)

  2. Rate of Isotope Exchange Reaction Between Tritiated Water in a Gas Phase and Water on the Surface of Piping Materials

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Yamaguchi, Junya; Kobayashi, Ryusuke; Nishikawa, Masabumi

    2001-01-01

    The system effect of tritium arises from the interaction of tritium in the gas phase with water on the surface of piping materials. It has been reported that the system effect can be quantified by applying the serial reactor model to the piping system and that adsorption and isotope exchange reactions play the main roles in the trapping of tritium. The isotope exchange reaction that occurs when the chemical form of tritium in the gas phase is in the molecular form, i.e., HT or T 2 , has been named isotope exchange reaction 1, and that which occurs when tritium in the gas phase is in water form, i.e., HTO or T 2 O, has been named isotope exchange reaction 2.The rate of isotope exchange reaction 2 is experimentally quantified, and the rate is observed to be about one-third of the rate of adsorption. The trapping and release behavior of tritium from the piping surface due to isotope exchange reaction 2 is also discussed. It is certified that swamping of water vapor to process gas is effective to release tritium from the surface contaminated with tritium

  3. Exchange reaction between hydrogen and deuterium. I. Importance of surface reactions in the steady-state mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, C; Gaillard-Cusin, F; James, H [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures

    1978-05-01

    Investigation of heterogeneous initiation process of gas phase linear chain reactions is carried out through the study of H/sub 2/-D/sub 2/ exchange reaction. Experimental data under study concern mainly the stationary rate of HD formation and the prestationary proceeding. Steady-state method accounts for the first one of these data; it allows to clearly compare the wall process part to the part played by the homogeneous chain reaction towards HD formation. Activation energy of exchange elementary step between chemisorbed hydrogen (on silica) and gaseous deuterium has been evaluated: Esub(e1)=52+-1 Kcal/mole.

  4. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  5. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  6. Isotope exchange reaction on solid breeder materials

    International Nuclear Information System (INIS)

    Baba, A.; Nishikawa, M.; Eguchi, T.; Kawagoe, T.

    2000-01-01

    Lithium ceramic materials such as Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 2 TiO 3 and Li 4 SiO 4 are considered to be as candidate for the tritium breeding material in a deuterium-tritium (D-T) fusion reactor. In the recent blanket designs, helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas to reduce tritium inventory and promote tritium release from the breeding material. In addition, the rate of isotope exchange reaction between hydrogen isotopes in the purge gas and tritium on the surface of the breeding material is necessary to analyze the tritium release behavior from the breeding materials. However, the rate of isotope exchange reactions between hydrogen isotopes in the purge gas and tritium on the surface of those materials has not been quantified until recently. Recently, the present authors quantified the rate of isotope exchange reaction on Li 2 O and Li 2 ZrO 3 . The overall mass transfer coefficients representing the isotope exchange reaction between H 2 and D 2 O on breeding materials or the same between D 2 and H 2 O are experimentally obtained in this study. Comparison to isotope exchange reaction rates on various breeding materials is also performed in this study. Discussions about the effects of temperature, concentration of hydrogen in the purge gas or flow rate of the purge gas on the conversion of tritiated water to tritium gas are also performed

  7. Exchange Reactions. Proceedings of the Symposium on Exchange Reactions

    International Nuclear Information System (INIS)

    1965-01-01

    The mechanisms and kinetics of chemical reactions are of great interest to chemists. The study of exchange reactions in particular helps to shed light on the dynamics of chemical change, providing an insight into the structures and the reactivities of the chemical species involved. The main theme of this meeting was the subject of oxidation-reduction reactions in which the net result is the transfer of one or more electrons between the different oxidation states of the same element. Other studies reported included the transfer of protons, atoms, complex ligands or organic radicals between molecules. Heterogeneous exchange, which is of importance in many cases of catalytic action, was also considered. For a long time isotopic tracers have formed the most convenient means of studying exchange reactions and today a considerable amount of work continues to be done with their aid. Consequently, several papers presented at this Symposium reported on work carried out by purely radiochemical tracer methods. In recognition, however, of the important role which nuclear magnetic resonance and electron spin resonance play in this field, in particular in the study of fast reactions, a number of reports on investigations in which these techniques had been used was included in the programme. By kind invitation of the United States Government the Symposium on Exchange Reactions was held from 31 May to 4 June at the Brookhaven National Laboratory, Upton, Long Island, N.Y., USA. It was attended by 46 participants from nine countries and one inter-governmental organization. The publication of these Proceedings makes the contents of the papers and the discussion available to a wider audience

  8. Isotopic exchange reaction between barium ion and tri barium phosphate

    International Nuclear Information System (INIS)

    Bilgin, G.B.; Cetin, I.

    1982-01-01

    Heterogeneous exchange reaction of tri barium phosphate in barium chloride solution has been studied using 133 Ba as a tracer. The results show that the exchange fraction increases as barium chloride concentration increases for different mole ratio of the exchange ion on the solid surface and in the solution. The phenomenon was studied with respect to the previous treatment of the precipitate leading to different crystal sizes and the effect of reaction time. (author)

  9. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  10. Kinetics of hydrogen isotope exchange reactions

    International Nuclear Information System (INIS)

    Gold, V.; McAdam, M.E.

    1975-01-01

    Under the influence of tritium β-radiation, 1,4-dioxan undergoes hydrogen exchange with the solvent water. The inhibition of the reaction by known electron scavengers (Ag + , Cu 2+ , Ni 2+ , Co 2+ , Zn 2+ , H 3 + O) and also by species with high reactivity towards hydroxyl radicals but negligible reactivity towards solvated electrons (N 3 - , Br - , SCN - ) has been examined in detail. γ-irradiation similarly induces hydrogen exchange. The action of scavengers is interpreted as requiring the involvement of two separately scavengeable primary radiolysis products in the sequence of reactions leading to exchange. The presence of electron scavengers, even at high concentration, does not totally inhibit the exchange, and a secondary exchange route, involving a low vacancy state of inhibitor cations, is considered responsible for the 'unscavengeable' portion of the reaction, by providing an alternative exchange route. Analogies are drawn between the exchange reaction and other radiation-induced reactions that are thought to involve spur processes. Some implication of radiation-chemical studies in water-alcohol mixtures are indicated. (author)

  11. Determination of kinetic parameters of heterogeneous isotopic exchange reaction

    International Nuclear Information System (INIS)

    Huang, Ting-Chia; Tsai, Fuan-Nan

    1977-01-01

    A mathematical model has been proposed for a heterogeneous isotopic exchange reaction which involves film diffusion, surface chemical reaction and intraparticle diffusion. The exchange equation to predict the exchange fraction as a function of time for the spherical particles immersed in a solution of finite volume has been derived. The relations between the exchange fraction and dimensionless time are plotted with xi(=ak sub(f)/KD sub(e)), xi 1 (=K 1 a 2 /D sub(e)) and final fractional uptake as parameters. From the values of the kinetic parameters xi and xi 1 , the relative importance of each limiting step is discussed. Experimental results of the isotopic exchange reaction of calcium ion in both system CaCO 3 (s)/Ca 2+ (aq) and system calcium type resin Dowex 50W-X8/Ca 2+ (aq) are coincident with the theoretical equation proposed in this study. (auth.)

  12. Samarium ion exchanged montmorillonite for high temperature cumene cracking reaction

    International Nuclear Information System (INIS)

    Binitha, N.N.

    2009-01-01

    Full text: Nano material Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using TPD of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Bronsted acidity is confirmed from high selectivity to benzene. (author)

  13. Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    McNab, Walt W.; Singleton, Michael J.; Moran, Jean E.; Esser, Bradley K.

    2009-01-01

    Stable isotope data, a dissolved gas tracer study, groundwater age dating, and geochemical modeling were used to identify and characterize the effects of introducing low-TDS recharge water in a shallow aerobic aquifer affected by a managed aquifer recharge project in California's San Joaquin Valley. The data all consistently point to a substantial degree of mixing of recharge water from surface ponds with ambient groundwater in a number of nearby wells screened at depths above 60 m below ground surface. Groundwater age data indicate that the wells near the recharge ponds sample recently recharged water, as delineated by stable O and C isotope data as well as total dissolved solids, in addition to much older groundwater in various mixing proportions. Where the recharge water signature is present, the specific geochemical interactions between the recharge water and the aquifer material appear to include ion exchange reactions (comparative enrichment of affected groundwater with Na and K at the expense of Ca and Mg) and the desorption of oxyanion-forming trace elements (As, V, and Mo), possibly in response to the elevated pH of the recharge water

  14. Experimental test of exchange degeneracy in hypercharge exchange reactions

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1978-10-01

    Two pairs of line-reversed reactions π + P → K + Σ + , K - p → π - Σ + and π + p → K + Y* + (1385), K - p → π - Y* + (1385) provide an experimental test of exchange degeneracy in hypercharge exchange reactions. From their study it is concluded that in contrast to the lower energy data, the 11.5 results for the two pairs of reactions are consistent with exchange degeneracy predictions for both helicity-flip and nonflip amplitudes. The Y(1385) decay angular distributions indicate that the quark model and Stodolsky--Sakurai predictions are in agreement with the main features of the data. However, small violations are observed at small momentum transfer. While the Y(1385) vertex is helicity-flip dominated, the nonvanishing of T/sub 3/2 - 1/2/ and T/sub -3/2 1/2/ suggests some finite helicity nonflip contribution in the forward direction. 23 references

  15. Exchange effects in direct reactions

    International Nuclear Information System (INIS)

    LeMere, M.; Kanellopoulos, E.J.; Suenkel, W.; Tang, Y.C.

    1979-01-01

    The effect of antisymmetrization in direct reactions is examined by studying the properties of the coupling-normalization kernel function occurring in a resonating-group formulation. From this study, one obtains useful information concerning the general behavior of direct-reactiion processes and some justification for the use of three-body models in phenomenological analyses

  16. Charge-exchange reactions on 36 S

    International Nuclear Information System (INIS)

    Fifield, L.K.; Catford, W.N.; Orr, N.A.; Ophel, T.R.; Etchegoyen, A.; Etchegoyen, M.C.

    1992-11-01

    A series of charge-exchange reactions on 36 S targets have been investigated at beam energies ∼7 MeV/A. Pronounced selectivities to different final states in 36 P are observed which depend on the projectile employed. An interpretation of the data in terms of one- and two-step pictures of the reaction mechanism is presented. At least two, and probably all, of the reactions have a significant 1-step contribution to the reaction mechanism at these energies. 22 refs., 5 tabs., 5 figs

  17. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    International Nuclear Information System (INIS)

    Outka, D.A.; Foltz, G.W.

    1991-01-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor

  18. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  19. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  20. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    Science.gov (United States)

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  1. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  2. Kinetics of the high temperature oxygen exchange reaction on 238PuO2 powder

    International Nuclear Information System (INIS)

    Whiting, Christofer E.; Du, Miting; Felker, L. Kevin; Wham, Robert M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2015-01-01

    Oxygen exchange reactions performed on PuO 2 suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO 2 . Previous CeO 2 surrogate studies exhibit similar behavior, confirming that CeO 2 is a good qualitative surrogate for PuO 2 , in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO 2 oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO 2 Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  3. Enhancement of isotope exchange reactions over ceramic breeder material by deposition of catalyst metal

    International Nuclear Information System (INIS)

    Narisato, Y.; Munakata, K.; Koga, A.; Yokoyama, Y.; Takata, T.; Okabe, H.

    2004-01-01

    The deposition of catalyst metals in ceramic breeders could enhance the release rate of tritium due to the promotion of isotope exchange reactions taking place at the interface of the breeder surface and the sweep gas. In this work, the authors examined the effects of catalytic active metal deposited on lithium titanate on the isotope exchange reactions. With respect to the virgin lithium titanate, it was found that the rate of the isotope exchange reactions taking place on the surface is quite low. However, the deposition of palladium greatly increased the exchange reaction rate. The effect of the amounts of deposited palladium on the isotope exchange reaction rate was also investigated. The results indicate that the exchange reactions are still enhanced even if the amounts of deposited palladium are as low as 0.04%

  4. Asymmetric H-D exchange reactions of fluorinated aromatic ketones

    KAUST Repository

    Zhao, Yujun

    2012-01-01

    Chiral bicyclic guanidine catalyzes the asymmetric H-D exchange reactions. Up to 30% ee was achieved. DFT calculations were employed to elucidate and explain the origin of the reaction\\'s stereoselectivity. © 2012 The Royal Society of Chemistry.

  5. Tensor exchange amplitudes in K +- N charge exchange reactions

    International Nuclear Information System (INIS)

    Svec, M.

    1979-01-01

    Tensor (A 2 ) exchange amplitudes in K +- N charge exchange (CEX) are constructed from the K +- N CEX data supplemented by information on the vector (rho) exchange amplitudes from πN sca tering. We observed new features in the t-structure of A 2 exchange amplitudes which contradict the t-de pendence anticipated by most of the Regge models. The results also provide evidence for violation of weak exchange degeneracy

  6. Asymmetric H-D exchange reactions of fluorinated aromatic ketones

    KAUST Repository

    Zhao, Yujun; Lim, XiaoZhi; Pan, Yuanhang; Zong, Lili; Feng, Wei; Tan, Choonhong; Huang, Kuo-Wei

    2012-01-01

    Chiral bicyclic guanidine catalyzes the asymmetric H-D exchange reactions. Up to 30% ee was achieved. DFT calculations were employed to elucidate and explain the origin of the reaction's stereoselectivity. © 2012 The Royal Society of Chemistry.

  7. Separation of uranium isotopes by accelerated isotope exchange reactions

    International Nuclear Information System (INIS)

    Seko, M.; Miyake, T.; Inada, K.; Ochi, K.; Sakamoto, T.

    1977-01-01

    A novel catalyst for isotope exchange reaction between uranium(IV) and uranium(VI) compounds enables acceleration of the reaction rate as much as 3000 times to make industrial separation of uranium isotopes economically possible

  8. Isotope exchange reaction of tritium on precious metal catalyst based on cation-exchanged mordenite for blanket tritium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Precious metal catalyst based on cation-exchanged mordenite was prepared. • Isotope exchange reaction between H{sub 2} and HTO on the catalyst was investigated. • The order of entire reaction is not clear, but it is the first-order reaction as for HTO. • Effect of exchanged cation may appear as the difference of the surface area of catalyst. - Abstract: It is known that the chemical forms of tritium released from a ceramic breeder blanket are hydrogen form and water form. To recover tritiated water vapor, adoption of dryer that is packed column of synthetic zeolite has been proposed. On the other hand, synthetic zeolite is often used as a support of precious metal catalyst. Such catalysts usually have a capability of hydrogen isotope exchange between gas and water vapor. If this catalyst is used to dryer, the dryer may obtain a preferable function for tritium recovery by isotopic exchange reaction. To assess such functions, reaction rate should be estimated. The results of water adsorption experiment on cation-exchanged mordenite-type zeolite suggested the possibility that state of adsorbed water varied by exchanged cation. So, in this work, precious metal catalyst based on cation-exchanged mordenite was prepared, and the reaction rate of chemical exchange between hydrogen and tritiated water was investigated under temperature range between 30 °C and 80 °C by the steady-state approximation. In the case of platinum on Na-mordenite, the reaction between gaseous hydrogen and tritiated water vapor was almost expressed as first-order reaction concerning tritiated water vapor concentration.

  9. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Al-Shareef, Reem A.; Harb, Moussab; Saih, Youssef; Ould-Chikh, Samy; Roldan, Manuel A.; Anjum, Dalaver H.; Guyonnet, Elodie Bile; Candy, Jean-Pierre; Jan, Deng-Yang; Abdo, Suheil F.; Aguilar-Tapia, Antonio; Proux, Olivier; Hazemann, Jean-Louis; Basset, Jean-Marie

    2018-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  10. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Alshareef, Reem Abdul aziz Hamed

    2018-04-25

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  11. Excitation of giant resonances via charge exchange reactions

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1979-01-01

    Charge-exchange reactions can be useful for identifying isovector resonances. At present the most promising use of charge-exchange reactions with respect to giant resonances is to locate and study Gamow-Teller (GT) resonances. Detailed comparisons between GT and M1 strengths can yield further structure information. 7 figures

  12. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    Science.gov (United States)

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  13. Ion exchange and hydrolysis reactions in zeolites

    International Nuclear Information System (INIS)

    Harjula, Risto.

    1993-09-01

    Among other uses, zeolites are efficient cation exchangers for aquatic pollution control. At present they they are mainly used in nuclear waste effluent treatment and in detergency. In the thesis, several ion exchange equilibria, important in these main fields of zeolite applications, were studied, with special emphasis on the formulation and calculation of the equilibria. The main interest was the development of thermodynamic formulations for the calculation of zeolite ion exchange equilibria in solutions of low or very low (trace) ion concentration, which are relevant for the removal of trace pollutants, such as radionuclides, from waste waters. Two groups of zeolite-cation systems were studied. First, binary Ca 2+ /Na + exchange in zeolites X and Y, which are of interest for detergency applications. Second, binary Cs + /Na + and Cs + /K + exchanges, and ternary Cs + /Na + /K + exchange in mordenite, which are important in nuclear waste effluent treatment. The thesis is based on five previous publications by author. (100 refs., 7 figs.)

  14. Thermoneutral isotope exchange reactions of cations in the gas phase

    International Nuclear Information System (INIS)

    Ausloos, P.; Lias, S.G.

    1981-01-01

    Rate constants have been measured for reactions of the type AD 2 + + MH → MD + ADH + , where AD 2 + is CD 3 CND + , CD 3 CDOD + , (CD 3 COCD 3 )D + , or (C 2 D 5 ) 2 OD + and the MH molecules are alcohols, acids, mercaptans, H 2 S, AsH 3 , PH 3 , or aromatic molecules. Rate constants are also presented for the reactions Ar/sub H/D + + D 2 O → Ar/sub d/D + + HDO, where Ar/sub H/D + is a deuteronated aromatic molecule and Ar/sub D/D + is the same species with a D atom incorporated on the ring. In all but two cases, the competing deuteron transfer is sufficiently endothermic that it cannot be observed under the conditions of the ICR experiments at 320 to 420 K. The efficiencies of the isotope exchange reactions are interpreted in terms of estimated potential surface cross sections for the reactions AD 2 + + MH → [AD 2 + MH] → [ADMHD + ] → [ADH + MD] → ADH + + MD. When the formation of the [ADMHD + ] complex is estimated to be thermoneutral or slightly endothermic, the isotope exchange process is inefficient (probability of a reactive collision 2 + MH] → [ADMHD + ] is exothermic. For most of the systems, trends in reaction efficiency appear to be related to factors such as dipole moments of reactant species (or for aromatic compounds, the electron-donating or -withdrawing properties of ring substituents) which influence the relative orientation of the two reactant species in the complex

  15. Isotope exchange reactions in hydrogen mixtures

    International Nuclear Information System (INIS)

    Czaplinski, W.; Gula, A.; Kravtsov, A.; Mikhailov, A.; Popov, N.

    1990-12-01

    The rates of isotopic exchange for the excited states of muonic hydrogen are calculated as functions of collision energy. Ground state population q 1s for different collision energies, target densities and isotope concentrations is obtained. It is shown that for principal quantum numbers n > 5 the isotopic exchange still considerably influences the value of q 1s . (author)

  16. Isotope exchange reaction in Li2ZrO3 packed bed

    International Nuclear Information System (INIS)

    Kawamura, Y.; Enoeda, M.; Okuno, K.

    1998-01-01

    To understand the release behavior of bred tritium in a solid breeder blanket, the tritium transfer rate and tritium inventory for various mass transfer processes should be investigated. The contribution of the surface reactions (adsorption, desorption and two kinds of isotope exchange reactions) to the release process cannot be ignored. It is believed that two kinds of isotope exchange reactions (gaseous hydrogen-tritiated water and water vapor-tritiated water) occur on the surface of the solid breeder materials when hydrogen is added to the sweep gas to enhance the tritium release rate. The isotope exchange reaction study in H-D systems was carried out using a Li 2 ZrO 3 packed bed. The exchange reaction between gaseous hydrogen and water was the rate controlling step among the two kinds of exchange reactions. The reaction rate constants were quantified, and experimental equations were proposed. The equilibrium constant of the isotope exchange reaction in the H-D system was obtained from experimental data and was found to be 1.17. (orig.)

  17. Study of isotopic exchange reactions of azidothymidine with tritium

    International Nuclear Information System (INIS)

    Sidorov, G.V.; Zverkov, Yu.B.; Myasoedov, N.F.

    2003-01-01

    Different reactions of isotopic exchange of azidothymidine (3 - azido-3 - desoxythymidine) with tritium, such as solid- and liquid-phase catalytic isotopic exchange with gaseous tritium and isotopic exchange in solution with tritium water, are investigated. It is determined that catalytic reactions of azidothymidine with gaseous tritium in solution lead to practically full reduction of azido group up to amino group. In reactions of solid-phase catalytic hydrogenation this process takes place too and 3 - azido-3 - desoxythymidine yield is from 20 to 70 %. Molar radioactivity of labelled with tritium azidothymidine prepared in reactions of solid-phase catalytic isotopic exchange with gaseous tritium and so by isotopic exchange in solution with tritium water does not exceed 0.5 Cu/mmol [ru

  18. Isotope exchange reaction in uranous-uranyl-sulphuric acid system

    International Nuclear Information System (INIS)

    Ling Daren; Yue Tingsheng; Mu Dehai; Wang Yani

    1990-01-01

    The kinetics of the isotope exchange reaction between U(IV) and U(VI) has been studied in low concentrations of sulphuric acid. A minimum exchange rate appears at 0.25 M H 2 SO 4 . From the rates at different temperatures ranging from 20deg to 35deg C, an apparent activation energy of 86 kcal/mole was calculated. The exchange rate was found to be accelerated by the addition of ferrous ions, and a half-life of less than 1 s, was obtained. Probable mechanisms for the acceleration of the uranium isotope exchange reactions by acidity and ferrous ions are proposed. (orig.)

  19. Kinetics of the high temperature oxygen exchange reaction on {sup 238}PuO{sub 2} powder

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Christofer E., E-mail: chris.whiting@udri.udayton.edu [University of Dayton – Research Institute, 300 College Park, Dayton, OH 45469-0172 (United States); Du, Miting; Felker, L. Kevin; Wham, Robert M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barklay, Chadwick D.; Kramer, Daniel P. [University of Dayton – Research Institute, 300 College Park, Dayton, OH 45469-0172 (United States)

    2015-12-15

    Oxygen exchange reactions performed on PuO{sub 2} suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO{sub 2}. Previous CeO{sub 2} surrogate studies exhibit similar behavior, confirming that CeO{sub 2} is a good qualitative surrogate for PuO{sub 2}, in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO{sub 2} oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO{sub 2} Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  20. The dynamics of the Hg + Br2 reaction: elucidation of the reaction mechanism for the Br exchange reaction.

    Science.gov (United States)

    Jambrina, P G; Menéndez, M; Aoiz, F J

    2017-06-28

    In spite of its importance in the Hg atmospheric chemistry, the dynamics of the Hg + Br 2 → HgBr + Br reaction is poorly understood. In this article, we have carried out a comprehensive study of the reaction mechanism of this reaction by means of quasiclassical trajectories (QCTs) on an existing ab initio potential energy surface (PES). The reaction has a non trivial dynamics, as a consequence of its large endothermicity, the presence of a deep potential well, and the competition between the Br exchange and the collision induced dissociation processes. Our calculations demonstrate that insertion is only relevant at energies just above the reaction threshold and that, at energies above 2.3 eV, HgBr formation typically takes place via a sort of frustrated dissociation. In order to compare directly with the results obtained in extensive cross molecular beam experiments for the homologous reaction with I 2 , angular distributions in the laboratory frame for Hg + Br 2 have been simulated under similar experimental conditions. The lack of agreement at the highest energies considered suggests that either the two reactions have substantially different mechanisms or that calculations on a single PES cannot account for the dynamics at those energies.

  1. Using reactive artificial muscles to determine water exchange during reactions

    International Nuclear Information System (INIS)

    Otero, T F; Martínez, J G; Zaifoglu, B

    2013-01-01

    Artificial muscles based on films of conducting polymers translate film volume variations, driven by electrochemical reactions (Faradaic motors), into macroscopic movements with generation of mechanical energy. The reaction promotes exchange of counterions (anions here) and solvent molecules with the electrolyte. Attributing here both the film volume variation and the movement originated by these exchanges of ions and solvent, the described angles can be used to quantify the exchanged solvent. Different angles described by bending muscles consuming equal driving charges in electrolytes having the same cation and different anions were measured. The number of exchanged counterions is given by the consumed charge and the ion valence: this is a Faradaic reaction. The described angle fraction due to the exchanged anions is given by the number of anions and the crystallographic radius. Taking as reference the anion giving the shorter angle, whatever the consumed charge, the relative number of solvent molecules exchanged by the polymeric membrane during a reversible reaction was determined. Actuators and artificial muscles can be used as useful tools for, at least, an initial study of the solvent exchange during reactions in reactive gels. (paper)

  2. Forward pion-nucleon charge exchange reaction and Regge constraints

    International Nuclear Information System (INIS)

    Huang Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meibner, U.-G.

    2009-01-01

    We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude. (authors)

  3. Exchange of deuterium with hydrogen of zeolite catalyst surface

    International Nuclear Information System (INIS)

    Minachev, Kh.M.; Dmitriev, R.V.; Penchev, V.; Kanazirev, V.; Minchev, Kh.; Kasimov, Ch.K.; Bylgarska Akademiya na Naukite, Sofia. Inst. za Obshta i Organichna Khimiya; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1981-01-01

    Isotope heteromolecular exchange of hydrogen on the reduced nickel-containing zeolites takes places at the temperatures above 100 deg and it is controlled by activated hydrogen transfer from metal particles on the substrate surface. High-temperature redox treatment of nickel-containing zeolites results in the formation of large nickel crystallites on zeolite external faces. The rest part of nickel remains in zeolite pores and conditions a high promoting effect in the exchange reaction. Catalytic activity of reduced zeolites NiCaNaY in toluene disproportionation increases considerably only in the cases when nickel is introduced into zeolite by means of ion exchange. Close spatial location of nickel particles and OH groups promotes the procedure of both isotope exchange and disproportionation of toluene [ru

  4. On the treatment of exchange effects in direct reactions

    International Nuclear Information System (INIS)

    Bencze, G.; Chandler, C.; Argonne National Lab., IL; New Mexico Univ., Albuquerque

    1985-01-01

    Exchange effects in direct reactions are investigated in the framework of the general algebraic theory of identical particle scattering. It is shown that effects due to the permutation symmetry of the system can be separated from the treatment of reaction dynamics. Dynamical aspects of the problem are investigated within the framework of the channel coupling class of N-body theories. (orig.)

  5. Development and Application of Ligand-Exchange Reaction Method ...

    African Journals Online (AJOL)

    Purpose: This paper presents an improved kinetic-spectrophotometric procedure for determining clonazepam (CZP) in pharmaceutical formulations and human serum. Methods: The method is based on ligand-exchange reaction. The reaction was followed spectrophotometrically by measuring the rate of change of ...

  6. Nucleon charge-exchange reactions at intermediate energy

    International Nuclear Information System (INIS)

    Alford, W.P.; Spicer, B.M.

    1997-01-01

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the 14 C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given

  7. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  8. Studies of nuclear structure in antinucleon charge-exchange reactions

    International Nuclear Information System (INIS)

    Auerbach, N.

    1986-01-01

    The antinucleon-nucleus charge exchange reaction is discussed an its use as a probe of isovector excitations in nuclei is described. Attention is drawn to the fact that the (anti p,anti n) reaction will predominantly excite ''pionic'' (i.e., longitudinal spin) modes in nuclei. Comparison between (anti p,anti n) and (n,p) reactions is made. Plans for (anti p,anti n) experiments in the near future are mentioned. 21 refs., 3 figs

  9. Photocatalytic surface reactions on indoor wall paint.

    Science.gov (United States)

    Salthammer, T; Fuhrmann, F

    2007-09-15

    The reduction of indoor air pollutants by air cleaning systems has received considerable interest, and a number of techniques are now available. So far, the method of photocatalysis was mainly applied by use of titanium dioxide (TiO2) in flow reactors under UV light of high intensity. Nowadays, indoor wall paints are equipped with modified TiO2 to work as a catalyst under indoor daylight or artificial light. In chamber experiments carried out under indoor related conditions itwas shown thatthe method works for nitrogen dioxide with air exchange and for formaldehyde without air exchange at high concentrations. In further experiments with volatile organic compounds (VOCs), a small effect was found for terpenoids with high kOH rate constants. For other VOCs and carbon monoxide there was no degradation at all or the surface acted as a reversible sink. Secondary emissions from the reaction of paint constituents were observed on exposure to light. From the results it is concluded that recipes of photocatalytic wall paints need to be optimized for better efficiency under indoor conditions.

  10. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Itsuo, Iida; Junko, Kato; Kenzi, Tamuru

    1977-01-01

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.) [de

  11. Electron exchange reaction in anion exchangers as observed in uranium isotope separation

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Takeda, Kunihiko; Seko, Maomi

    1991-01-01

    The mechanism of electron exchange in an ion exchanger, as occurring between U 4+ and UO 2 2+ in uranium isotope separation, was investigated. The height of the separation unit (H q ) in the presence of metal ion catalysts, as obtained from the separation experiments, was found to be almost coincident with the theoretical value of H q as calculated on the basis of the intrasolution acceleration mechanism of the metal ion, suggesting that the electron exchange mechanism in the ion-exchanger is essentially the same as that in the solution when metal ion catalysts are present. Separation experiments with no metal ion catalyst, on the other hand, showed the electron exchange reaction in the ion exchanger to be substantially higher than that in the solution, suggesting an acceleration of the electron exchange reaction by the ion-exchanger which is due to the close existence of higher order Cl - complexes of UO 2 2+ and U 4+ in the vicinity of the ion-exchange group. (author)

  12. On the mesonic-exchange currents in the photomesic reactions

    International Nuclear Information System (INIS)

    Lazard, C.; Maric, Z.; Zivanovic, D.

    1979-02-01

    The γd→π 0 d reaction is analysed in the framework of the relativistic many-body theory with mesonic degrees of freedom explicitly present. It is shown that the mesonic correlations can be grouped into transition operators containing vertices of some elementary reactions between photon, nucleons and pions. The wave function corrections due to meson exchange currents are included in the transition operators and the S-matrix is obtained with the non relativistic deuteron wave function

  13. Bond-selective control of a gas-surface reaction

    Science.gov (United States)

    Killelea, Daniel R.

    The prospect of using light to selectively control chemical reactions has tantalized chemists since the development of the laser. Unfortunately, the realization of laser-directed chemistry is frequently thwarted by the randomization of energy within the molecule through intramolecular vibrational energy distribution (IVR). However, recent results showing vibrational mode-specific reactivity on metal surfaces suggest that IVR may not always be complete for gas-surface reactions. Here, we combine molecular beam techniques and direct laser excitation to characterize the bond-specific reactivity of trideuteromethane on a Ni(111) surface. Our results reveal important details about how vibrational energy is distributed in the reactive molecule. We use a molecular beam to direct state-selected trideuteromethane (CHD 3) molecules onto a nickel single crystal sample and use the results we obtain to describe the flow of vibrational energy in the methane-surface reaction complex. We show that CHD3 molecules initially excited to v=1, J=2, K=0 of the v 1 symmetric C-H stretching mode will dissociate exclusively via C-H cleavage on Ni(111). This result highlights the localization of vibrational energy in the reaction complex, despite the presence of many energy exchange channels with the high state-density surface. We demonstrate, for the first time, highly parallel bond-selective control of a heterogeneously catalyzed reaction. We place our results in the context of recent experiments investigating IVR for molecules in both the gas phase and liquid solutions. If IVR is fast on the reaction timescale, vibrational energy would be randomly distributed throughout the nascent methane-surface reaction complex and vibrational mode-specific behavior would not occur. The short timescale of a direct gas-surface collision may explain how the exchange of energy via IVR is limited to only a small subset of the energetic configurations available to the reaction complex. This framework

  14. Hydrogen/Chlorine exchange reactions of gaseous carbanions.

    Science.gov (United States)

    Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N

    2005-12-01

    Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.

  15. Surface-Activated Coupling Reactions Confined on a Surface.

    Science.gov (United States)

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density

  16. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  17. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  18. Exchange reaction between tritiated hydrogen and water vapor

    International Nuclear Information System (INIS)

    Yamada, Koichi; Takano, Kenichi; Watanabe, Tamaki.

    1979-01-01

    Exchange reaction of tritiated hydrogen to water vapor under the condition of tritium gas concentration between 1 μCi/l and 1 mCi/l was studied. Tritium gas with hydrogen gas of 5 Torr and water of 20 mg were enclosed in a Pyrex glass ampule with volume of about 100 ml. The mixed gas with water vapor was heated with electric furnace. The heating time was between 2 and 100 hr, and the temperature was 776, 725, 675, 621, and 570.5 0 K. After heating, tritiated water was trapped with liquid nitrogen, and counted with a liquid scintillation counter. The radioactive concentration of initial tritiated hydrogen was measured with a calibrated ionization chamber. The main results obtained are as follows; 1) the concentration of produced tritiated water is well proportioned to that of initial tritiated hydrogen, 2) the activation energy of exchange reaction from tritiated hydrogen to tritiated water is 26.2 kcal/mol and that of inverse reaction is 27.4 kcal/mol, 3) the reaction rate at room temperature which calculated with activation energy is 1.04 x 10 -13 day -1 , and then exchange reaction at room temperature is negligible. (author)

  19. Comparative study on bromide and iodide ion-isotopic exchange reactions using strongly basic anion exchange resin Duolite A-113

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Dole, M.H.; Singare, P.U.

    2006-01-01

    Kinetics of ion-isotopic exchange reaction was studied using industrial grade ion exchange resin Duolite A-113. The radioactive isotopes 131 I and 82 Br were used to trace the ion-isotopic exchange reaction. The experiments were performed in the temperature range of 26.0degC to 43.0degC and the concentration of external ionic solution varying from 0.005 M to 0.100 M. For bromide ion-isotopic exchange reaction, the calculated values of specific reaction rate, initial rate of bromide ion exchange, and amount of bromide ions exchanged were obtained higher than that for iodide ion-isotopic exchange reaction under identical experimental conditions. The observed variation in the results for two ion-isotopic exchange reactions was due to the difference in the ionic size of bromide and iodide ions. (author)

  20. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  1. Nucleon charge-exchange reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Alford, W.P. [Western Ontario Univ., London, ON (Canada). Dept. of Physics]|[TRIUMF, Vancouver, BC (Canada); Spicer, B.M. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the {sup 14}C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given. 226 refs., 19 figs.

  2. Charge exchange reactions and the efficiency of solar neutrino detectors

    International Nuclear Information System (INIS)

    Austin, S.M.; Anantaraman, N.; Love, W.G.

    1994-01-01

    The efficiencies of solar neutrino detectors are often based in part on weak interaction strengths determined by (p,n) and other charge exchange reactions. Although the (p,n) determinations are surprisingly good, it is shown that they may be inaccurate for important Gamow-Teller transitions whose strengths are a small fraction of the sum rule limit. This emphasizes the importance of direct calibration with ν sources for detectors such as 127 I and 115 In where direct β-decay information cannot be obtained. It may also bear on recent attempts to compare charge exchange and beta decay in the mass-37 system

  3. Investor Reaction to Mandatory Offers on the Warsaw Stock Exchange

    Directory of Open Access Journals (Sweden)

    Szymon Okoń

    2012-06-01

    Full Text Available The following paper aims to assess investor reaction to mandatory offers on the Warsaw Stock Exchange, which is important because knowledge about these reactions can be used to make better investment decisions. This paper highlights the importance of procedure in making a mandatory offer and its grounds in the Polish legal system. Additionally, it presents empirical research on the reactions of investors to mandatory offers on the Warsaw Stock Exchange. It has been provided that mandatory offers have a significant impact on the price of a company’s shares listed on the Warsaw Stock Exchange. Knowledge about the reactions of investors to a mandatory offer may be used when selecting securities for an investment portfolio. The findings may provide guidance in deciding whether to begin or end investment in the company, both for individual and institutional investors. The event study methodology approach used in the paper is regarded as valuable and can be the basis for further research in other areas of the capital market research, especially in the context of information efficiency.

  4. Chemical Reactions at Surfaces. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Hans-Joachim [Max-Planck-Gesellschaft, Berlin (Germany). Fritz-Haber-Inst.

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  5. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by

  6. On the treatment of exchange effects in direct reactions

    International Nuclear Information System (INIS)

    Bencze, Gy.

    1984-11-01

    In the theoretical description of direct nuclear reactions the dynamic effects are combined with 'kinematical' effects due to the quantum mechanical exchange interaction caused by the Pauli principle governing the mechanics of identical particles. In the present paper it is shown that in the frame of general algebraic theory of identical particle scattering the effects of the permutational symmetry of nucleons can be separated on an exact way from the treatment of reaction dynamics. Dynamical approximations may be used only after the separation of permutational effects. (D.Gy.)

  7. The gecko visual pigment: the chromophore dark exchange reaction.

    Science.gov (United States)

    Crescitelli, F

    1988-02-01

    This study confirms the occurrence of a dark-exchange reaction in the extracted 521-pigment of the Tokay gecko (G. gekko). The present study involved the exchange, in the dark, of the natural 11-cis-chromophore by the 9-cis-10-F-retinal analog. This analog is able to combine with the 521-opsin to regenerate a photopigment at 492 nm. In addition to this shift in absorbance from 521 to 492 nm, the analog photopigment has a photosensitivity some 2.4% that of the native 521-system in the chloride-sufficient state. These two properties of the regenerated analog pigment have simplified the demonstration of a dark exchange of chromophores. At 15 degrees C the 9-cis-10-F-analog replaces the 11-cis-chromophore by at least 30% (density-wise) in about 15 hr. This exchange occurs with the system in the chloride-deficient state. The presence of chloride during the period in the dark significantly reduces the magnitude of the exchange. Apparently, the protein has a more open structure at the chromophoric binding site, allowing this interchange of chromophores. The addition of chloride induces a conformational change at this site, 'burying' the Schiff base and reducing the exchange reaction. The biological implication of this mobile property of the gecko opsin is that it is similar to the behavior of the cone pigment iodopsin but is unlike that of rhodopsins. This supports the idea that the gecko visual cells, despite their appearance as rods, are phylogenetically related to ancestral photopic receptors.

  8. EXFOR Systems Manual Nuclear reaction Data Exchange Format

    International Nuclear Information System (INIS)

    McLane, V.

    2000-01-01

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format

  9. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    Energy Technology Data Exchange (ETDEWEB)

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  10. Momentum transfer in relativistic heavy ion charge-exchange reactions

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  11. Charge exchange reactions and solar neutrino detection in 81Br

    International Nuclear Information System (INIS)

    Liu, K.F.; Gabbard, F.

    1983-01-01

    The feasibility of 81 Br as the detector of the solar neutrino flux hinges upon the knowledge of the Gamow-Teller matrix element from the ground state of 81 Br to the (5/2) - state at 0.457 MeV in 81 Kr. The possibility of obtaining this matrix element is discussed in terms of the (p,n) and ( 3 He, t) charge exchange reactions. .ID CR2009 .PG 98 112

  12. Specifications for surface reaction analysis apparatus

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-03-01

    A surface reaction analysis apparatus was installed at the JAERI soft x-ray beamline in the SPring-8 as an experimental end-station for the study of surface chemistry. The apparatus is devoted to the study concerning the influence of translational kinetic energy of incident molecules to chemical reactions on solid surfaces with gas molecules. In order to achieve the research purpose, reactive molecular scattering experiments and photoemission spectroscopic measurements using synchrotron radiation are performed in that apparatus via a supersonic molecular beam generator, an electron energy analyzer and a quadrupole mass analyzer. The detail specifications for the apparatus are described in this report. (author)

  13. Comparative study on ion-isotopic exchange reaction kinetics by application of tracer technique

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    2007-01-01

    The radioactive isotopes 131 I and 82 Br were used to trace the ion-isotopic exchange reactions using industrial grade ion exchange resins Amberlite IRA-400. The experiments were performed to understand the effect of temperature and concentration of ionic solution on kinetics of exchange reactions. Both the exchange reactions were greatly influenced by rise in temperature, which result in higher percentage of ions exchanged. For bromide ion-isotopic exchange reactions, the calculated values of specific reaction rate/min -1 , and amount of ions exchanged/mmol were obtained higher than that for iodide ion-isotopic exchange reactions under identical experimental conditions. The observed variation in the results for two ion-isotopic exchange reactions was due to the difference in the ionic size of bromide and iodide ions. (orig.)

  14. Selenocysteine in thiol/disulfide-like exchange reactions.

    Science.gov (United States)

    Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N

    2013-05-01

    Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.

  15. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  16. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  17. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  18. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  19. Synthesis of layered sodium lanthanum selenide through ion exchange reactions

    International Nuclear Information System (INIS)

    Butts, Laura J.; Strickland, Nicholas; Martin, Benjamin R.

    2009-01-01

    Layered hexagonal KLaSe2 (α-NaFeO 2 -type) was synthesized using the reactive flux method and analyzed by powder XRD to determine its lattice constants (space group R-3m, a = 4.40508(5) A, c = 22.7838(5) A). NaLaSe 2 , which normally crystallizes as a disordered rock salt structure with mixed Na+/La + 3 sites, was synthesized through a solid state ion exchange reaction at 585 deg. C from a 1:3 molar ratio mixture of KLaSe 2 :NaI. The product of this reaction was hexagonally layered NaLaSe 2 (space group R-3m, a = 4.3497(3) A, c = 20.808(2) A) isostructural to KLaSe 2 . This product was analyzed by comparison with members of the set of solid solutions Na (1-x) K (x) LaSe 2 to confirm that the extent ion exchange in this reaction was complete. Cubic (disordered) NaLaSe 2 was also reacted with KI to yield the poorly crystalline hexagonally layered product with the approximate formula Na 0.79 K 0.21 LaSe 2

  20. EXFOR systems manual: Nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.

    1996-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. In addition to storing the data and its bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine)

  1. Exchange reaction of acetylene-d2 with hydrogen chloride

    International Nuclear Information System (INIS)

    Bopp, A.F.; Kern, R.D.

    1975-01-01

    A mixture containing 3 percent each of the reactants C 2 D 2 and HCl in an Ne--Ar diluent was studied over the temperature range 1650 to 2600 0 K utilizing a shock tube coupled to a time-of-flight mass spectrometer. Plots of the mole fractions f of the exchange products, DCl and C 2 HD, revealed two distinct regions of growth: (a) an initial low conversion region characterized by an induction period t/sub i/; and (b) a region of accelerated exchange during which exchange products were formed with a quadratic dependence of the reaction time. These two regions labeled a and b were combined using two empirical equations, 1 - f/sub a//f/sub eq,a/ = exp [-k/sub a/[M]t], where t less than or equal to t/sub i/, and 1 - f/sub b//f/sub eq,b/ = exp [-k/sub b/[M](t - t/sub i/) 2 ], in order to represent the entire reaction profile at any given temperature within the interval investigated. The Arrhenius parameters for k/sub a/ and k/sub b/ were determined to be 10 11 . 15+-0 . 30 exp (-19990 +- 2850/RT) and 10 16 . 40+-0 . 41 exp (-31480 +- 4200/RT), respectively, for DCl and 10 11 . 69+-0 . 29 exp (-19150 +- 2740/RT) and 10 15 . 24+-0 . 34 exp (-17620 +- 3480/RT) for C 2 HD. The units for k/sub a/ are cm 3 mol -1 sec -1 and cm 3 mol -1 sec -2 for k/sub b/. Activation energies are reported in cal mol -1 . Comparison with the profiles obtained for acetylene pyrolysis strongly suggests that the mechanism for the exchange is atomic. Furthermore, the exchange experiments indicate that the initial step in the pyrolysis of acetylene is the disproportionation reaction, 2C 2 H 2 → C 2 H + C 2 H 3

  2. Reactivity of the functional groups in functional polymers. Use of T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, Hiroshi; Hasegawa, Shinobu.

    1997-01-01

    In order to reveal the reactivity of several functional polymers, the following two experiments were carried out: observing the hydrogen-isotope exchange reaction (T-for-H exchange reaction) between one of T-labeled functional polymers and 0.500 mol·l -1 aniline dissolved in p-xylene, observing the degree of the T dispersed from the surface area of the polymer under the several conditions. Consequently, the following six matters have been quantitatively obtained. The T-for-H exchange reaction occurred between each T-labeled polymer and aniline, and is more predominant than other chemical reactions within the range of 50-90degC. The reactivity of the polymers are strongly affected by their matrix structures. The degree of the T dispersed from the surface area of each T-labeled polymer is hardly affected by humidity. The higher the temperature is, the larger is the degree of the T dispersed from the surface area. At the same temperature, the degree of the T dispersed from the surface area of each polymer is strongly affected by the physical form of the polymer even if the polymer has the same functional group as the others, and the T existing in the surface area of a T-labeled glassy polymer is less dispersed than that of a porous one. The degree of the T dispersed from the surface area of a T-labeled polymer is small when the degree of the polymerization of the polymer is high. (author)

  3. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  4. The reactivity of anion-exchange resins by applying OT-for-OH exchange reaction in the equilibrium state

    International Nuclear Information System (INIS)

    Kano, Naoki; Nihei, Makoto; Imaizumi, Hiroshi

    1996-01-01

    In order to reveal the behavior of hydroxyl group in isotope exchange reaction, OT-for-OH exchange reaction between each anion-exchange resin (OH - form) and tritiated water (abbreviated as HTO water below) was observed at 80degC under the equilibrium. Anion-exchange resins used were Amberlite IRA-400, IRA-410 (both strongly basic), and IRA-94S (weakly basic). It can be thought that an HTO molecule dissociates into H + +OT - (or T + +OH - ). The activity of each resin based on OT-for-OH exchange reaction was measured with a liquid scintillation counter. From the above-mentioned, the following five were found. Isotope exchange reaction as 'atomic group' occurred between the OH group in each anion-exchange resin and the OT group in HTO water. The reactivity of strongly basic anion-exchange resin is larger than that of weakly basic one. The ratio of the reactivity of these resins can roughly be expressed as follows: (IRA-410): (IRA-400): (IRA-94S)=42: 7: 1. The degree of OT-for-OH exchange reaction may be smaller than that of T-for-H exchange reaction. The method used and results obtained in this work may be helpful to obtain the data for the prevention of T-contamination, especially to obtain the data from certain atomic groups including T. (author)

  5. Surface - atmosphere exchange of ammonia over grazed pasture

    NARCIS (Netherlands)

    Plantaz, M.A.H.G.

    1998-01-01

    This thesis deals with the exchange of ammonia between the atmosphere and grazed pasture in an area of intensive livestock breeding. The term exchange is used because gaseous ammonia can be taken up (dry deposition) as well as released (emission) by this type of surface.
    Ammonia exchange

  6. Development of styrene divinyl benzene catalyst in isotopic exchange reaction of water and hydrogen

    International Nuclear Information System (INIS)

    Morishita, Teizo; Noda, Shigeyuki; Tan, Tsutomu; Noguchi, Hiroshi

    1982-01-01

    Styrene divinyl benzene copolymer (SDBC) is hydrophobic, and porous with large specific surface area. Utilizing these properties, the SDBC was used for the carrier of catalyst in water-hydrogen exchange reaction process, and the hydrophobic platinum catalyst with very high performance was able to be developed. However, the SDBC is usually fine particles smaller than 1 mm, and is not suitable as the filling catalyst for exchange reaction towers. Therefore, in this study, using only platinum as a catalyst metal, the improvement of the property of carriers was emphatically examined, and platinum bearing was proved with an optical or electron microscope. As the result, it was found that the SDBC catalyst showed high activity practically usable as the hydrophobic catalyst for heavy water or tritium exchange reaction. The characteristics of SDBC are explained. The manufacturing processes of the catalyst by making SDBC carriers with fine particles and letting them bear platinum are described. The results of the trial manufacture of spherical, extrusion-formed and honeycomb carrier catalysts are reported. Platinum must be dispersed over the large specific surface area of SDBC carriers. (Kako, I.)

  7. On quark model relations for hypercharge-exchange reactions

    International Nuclear Information System (INIS)

    Kluyver, J.C.; Blokzijl, R.; Massaro, G.G.G.; Wolters, G.F.; Grossmann, P.; Lamb, P.R.; Wells, J.

    1978-01-01

    Peripheral two-body reactions of the type K - p → M 0 + Λ, Σ 0 or Σ 0 (1385) are considered. Predictions based on the additive quark model and SU(6) baryon wave functions are tested against data on cross sections and polarisations for given momentum transfer. Data obtained in a high statistics experiment at 4.2 GeV/c K - momentum, as well as data from a large variety of other experiments are used. Highly significant violations of these predictions are observed in the data. These violations are shown to occur in a systematic fashion, according to which SU(6) must be relaxed, but the amplitude structure implied by additivity would remain valid. As an application an amplitude analysis for natural parity exchange reactions with M 0 = π, phi and rho respectively is performed, which determines a relative phase, which cannot be obtained in model-independent analysis. Also reactions with M 0 = delta or B are considered, and some implications for coupling constants are discussed. (Auth.)

  8. Isotope exchange reactions on ceramic breeder materials and their effect on tritium inventory

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M; Baba, A [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Kawamura, Y; Nishi, M

    1998-03-01

    Though lithium ceramic materials such as Li{sub 2}O, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4} are considered as breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood. The isotope exchange reaction rate between hydrogen isotopes in the purge gas and tritium on the surface of breeding materials have not been quantified yet, although helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas in the recent blanket designs. The mass transfer coefficient representing the isotope exchange reaction between H{sub 2} and D{sub 2}O or that between D{sub 2} and H{sub 2}O in the ceramic breeding materials bed is experimentally obtained in this study. Effects of isotope exchange reactions on the tritium inventory in the bleeding blanket is discussed based on data obtained in this study where effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions are considered. The way to estimate the tritium inventory in a Li{sub 2}ZrO{sub 3} blanket used in this study shows a good agreement with data obtained in such in-situ experiments as MOZART, EXOTIC-5, 6 and TRINE experiments. (author)

  9. Ozone-surface reactions in five homes: surface reaction probabilities, aldehyde yields, and trends.

    Science.gov (United States)

    Wang, H; Morrison, G

    2010-06-01

    Field experiments were conducted in five homes during three seasons (summer 2005, summer 2006 and winter 2007) to quantify ozone-initiated secondary aldehyde yields, surface reaction probabilities, and trends any temporal over a 1.5-year interval. Surfaces examined include living room carpets, bedroom carpets, kitchen floors, kitchen counters, and living room walls. Reaction probabilities for all surfaces for all seasons ranged from 9.4 x 10(-8) to 1.0 x 10(-4). There were no significant temporal trends in reaction probabilities for any surfaces from summer 2005 to summer 2006, nor over the entire 1.5-year period, indicating that it may take significantly longer than this period for surfaces to exhibit any 'ozone aging' or lowering of ozone-surface reactivity. However, all surfaces in three houses exhibited a significant decrease in reaction probabilities from summer 2006 to winter 2007. The total yield of aldehydes for the summer of 2005 were nearly identical to that for summer of 2006, but were significantly higher than for winter 2007. We also observed that older carpets were consistently less reactive than in newer carpets, but that countertops remained consistently reactive, probably because of occupant activities such as cooking and cleaning. Ozone reactions taking place at indoor surfaces significantly influence personal exposure to ozone and volatile reaction products. These field studies show that indoor surfaces only slowly lose their ability to react with ozone over several year time frames, and that this is probably because of a combination of large reservoirs of reactive coatings and periodic additions of reactive coatings in the form of cooking, cleaning, and skin-oil residues. When considering exposure to ozone and its reaction products and in the absence of dramatic changes in occupancy, activities or furnishings, indoor surface reactivity is expected to change very slowly.

  10. Double Charge Exchange Reactions and Double Beta Decay

    Science.gov (United States)

    Auerbach, N.

    2018-05-01

    The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.

  11. Catalytic isotope exchange reaction between deuterium gas and water pre-adsorbed on platinum/alumina

    International Nuclear Information System (INIS)

    Iida, Itsuo; Kato, Junko; Tamaru, Kenzi.

    1976-01-01

    The catalytic isotope exchange reaction between deuterium gas and the water pre-adsorbed on Pt/Al 2 O 3 was studied. At reaction temperatures above 273 K, the exchange rate was proportional to the deuterium pressure and independent of the amount of adsorbed water, which suggests that the rate determining step is the supply of deuterium from the gas phase. Its apparent activation energy was 38 kJ mol -1 . Below freezing point of water, the kinetic behaviour was different from that above freezing point. At higher deuterium pressures the rate dropped abruptly at 273 K. Below the temperature the apparent activation energy was 54 kJ mol -1 and the exchange rate depended not on the deuterium pressure but on the amount of the pre-adsorbed water. At lower pressures, however, the kinetic behaviour was the same as the above 273 K, till the rate of the supply of deuterium from the gas phase exceeded the supply of hydrogen from adsorbed water to platinum surface. These results suggest that below 273 K the supply of hydrogen is markedly retarded, the state of the adsorbed water differing from that above 273 K. It was also demonstrated that when the adsorbed water is in the state of capillary condensation, the exchange rate becomes very small. (auth.)

  12. Method of relative comparison of the thermohydraulic efficiency of heat exchange intensification in channels of heat-exchange surfaces

    International Nuclear Information System (INIS)

    Dubrovskij, E.V.; Vasil'ev, V.Ya.

    2002-01-01

    One introduces a technique to compare relatively thermohydraulic efficiency of heat transfer intensification in channels of heat exchange surfaces of any design types. It is shown that one should compare thermohydraulic efficiency of heat exchange intensification as to the thermal power of heat exchangers and pressure losses in channels with turbulators and in polished channels of heat exchange surfaces on the basis of dimensions of heat exchangers, their heat exchange surfaces and at similar (as to Re numbers) modes of coolant flow [ru

  13. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  14. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan

    2015-01-01

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  15. Neutrino and antineutrino charge-exchange reactions on 12C

    International Nuclear Information System (INIS)

    Samana, A. R.; Krmpotic, F.; Paar, N.; Bertulani, C. A.

    2011-01-01

    We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture. Explicit violation of the conserved vector current hypothesis by the Coulomb field, as well as development of a sum-rule approach for inclusive cross sections, has been worked out. We have done a thorough study of exclusive (ground-state) properties of 12 B and 12 N within the projected quasiparticle random phase approximation (PQRPA). Good agreement with experimental data achieved in this way put into evidence the limitations of the standard RPA and QRPA models, which come from the inability of the RPA to open the p 3/2 shell and from the nonconservation of the number of particles in the QRPA. The inclusive neutrino/antineutrino (ν/ν-tilde) reactions 12 C(ν,e - ) 12 N and 12 C(ν-tilde,e + ) 12 B are calculated within both the PQRPA and the relativistic QRPA. It is found that (i) the magnitudes of the resulting cross sections are close to the sum-rule limit at low energy, but significantly smaller than this limit at high energies, for both ν and ν-tilde; (ii) they increase steadily when the size of the configuration space is augmented, particularly for ν/ν-tilde energies >200 MeV; and (iii) they converge for sufficiently large configuration space and final-state spin. The quasi-elastic 12 C(ν,μ - ) 12 N cross section recently measured in the MiniBooNE experiment is briefly discussed. We study the decomposition of the inclusive cross section based on the degree of forbiddenness of different multipoles. A few words are dedicated to the ν/ν-tilde- 12 C charge-exchange reactions related to astrophysical applications.

  16. Theoretical study on platinum-catalyzed isotope exchange reaction mechanism of hydrogen and liquid water

    International Nuclear Information System (INIS)

    Hu Sheng; Wang Heyi; Luo Shunzhong

    2009-04-01

    Based on electron and vibration approximate means and the density function theory B3LYP, the ΔG degree and equilibrium pressures of adsorption and dissociation reactions of H 2 and water vapor on Pt surface have been calculated. The adsorption, dissociation and coadsorption actions of H 2 and water were analyzed. According to the ΔG degree, hydrogen molecule combines with metal atoms in single atom, and water vapor molecule has no tendency to dissociate on Pt surface. The dissociation of hydrogen molecule would hold back the direct adsorption of water vapor molecules on Pt surface. The structures of Pt-H (OH 2 ) n + (n=1, 2, 3) hydroniums were optimized. According to the mulliken overlap populations, Pt-H (OH 2 ) + is not stable or produced. Hydrogen isotope exchange occurs between hydration layer and D atoms which adsorb on Pt surface via intermediates (H 2 O) n D + (ads) (n≥2). (authors)

  17. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  18. Kinetics of isotope exchange reactions involving intra- and intermolecular reactions: 1. Rate law for a system with two chemical compounds and three exchangeable atoms

    International Nuclear Information System (INIS)

    Xuelei Chu; Ohmoto, Hiroshi

    1991-01-01

    For an isotopic exchange reaction between two compounds (X and AB) in a homogeneous system, such as a gaseous or aqueous system, where one (AB) of them possesses two exchangeable atoms in non-equivalent positions and where one intramolecular isotope exchange (A ↔ B) and two intermolecular isotope exchange reactions (X ↔ A and X ↔ B) may occur, its rate law no longer obeys a pseudo-first order rate equation described for simple two-component systems by many previous investigators. The change with time of the δ value of each of the three components (X, A, and B) in a closed and homogeneous system is a complicated function of the initial δ values of the three components, the chemical concentrations of the two compounds, and the overall rate constants of the forward and reverse reactions involving the two intermolecular and one intramolecular reactions of isotope exchanges. Also, for some one of the three components, the change of its δ value with time may not be monotonic, and the relationship of 1n (1 - F) with time may be non-linear in a plot of 1n (1 - F) vs. t. In addition, the rate law of the isotope exchange reaction in this system also provides a quantitative method to estimate the overall rate constants for the one-intra-and two intermolecular isotope exchanges and the equilibrium isotopic fractionation factors among the three components

  19. Mass-independent isotope effects in chemical exchange reaction

    International Nuclear Information System (INIS)

    Nishizawa, Kazushige

    2000-01-01

    Isotope effects of some elements in chemical exchange reaction were investigated by use of liquid-liquid extraction, liquid membrane or chromatographic separation. Cyclic polyether was used for every method. All polyethers used in a series of the studies were made clear that they distinguished the isotopes not only by their nuclear masses but also by their nuclear sizes and shapes. Chromium isotopes, for example, were recognized to have enrichment factors being proportional to δ 2 > which is a parameter to show field shift or the nuclear size and shape of the isotope. It follows that the chromium isotopes are separated not by their masses but by their field shift effects. Nuclear spin also played a great role to separate odd mass number isotopes from even mass number isotopes in even atomic number elements. Contribution of the nuclear spin (I=3/2) of 53 Cr to total enrichment factor, ε 53/52 = -0.00028, for 53 Cr to 52 Cr was observed to be, ε spin = -0.0025. (author)

  20. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    Energy Technology Data Exchange (ETDEWEB)

    Byrn, Marianne; Calvin, Melvin

    1965-12-01

    Using infra-red spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and {beta}-ketoesters reacting with oxygen 18 enriched water. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophylls a and b and chlorophyll derivatives.

  1. Theoretical investigation of exchange and recombination reactions in O(3P)+NO(2Π) collisions

    International Nuclear Information System (INIS)

    Ivanov, M. V.; Zhu, H.; Schinke, R.

    2007-01-01

    We present a detailed dynamical study of the kinetics of O( 3 P)+NO( 2 Π) collisions including O atom exchange reactions and the recombination of NO 2 . The classical trajectory calculations are performed on the lowest 2 A ' and 2 A '' potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, k ex , is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2k ex , overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, k r , is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, k r ∝T -1.5 , of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, Δ ZPE , into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO 2 , which is in accord with the overall T -1.4 dependence of the measured recombination rate even in the low temperature range

  2. Evaporation rates and surface profiles on heterogeneous surfaces with mass transfer and surface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flytzani-Stephanopoulos, M; Schmidt, L D

    1979-01-01

    Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.

  3. Exchange reaction between hydrogen and deuterium. II - Proposal for an heterogeneous initiation mechanism of gaseous phase reactions

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, Chantal; Gaillard-Cusin, Francoise; James, Henri [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures

    1978-05-01

    Investigation of experimental data related to evolution period exhibited by H/sub 2/-D/sub 2/ exchange process requires to take into account the variation against time of every atomic species -adsorbed or not- implied in the reaction mechanism. The formation of first chain carriers involves: - chemisorption of either gaseous reactant on the surface active centres (..sigma..), e.g.: ..sigma.. + 1/2 H/sub 2/ reversible ..sigma..H; - consecutive generation of atomic species through hetero-homogeneous transfer between chemisorbed species (..sigma..H) and gaseous molecules: ..sigma..H+H/sub 2/..--> sigma..+H/sub 2/+H/sup 0/, ..sigma..H+D/sub 2/..--> sigma..+HD+D/sup 0/. Therefore, it can be shown that the heterogeneous initiation process of a gas phase reaction identifies to a chain linear mechanism. Such an heterogeneous sequence conditions the further proceeding of the homogeneous chain reaction; both evolutions being kinematically connected. Rate constant of hydrogen adsorption on silica glass: ksub(a1) approximately 10/sup 14/ exp(-47/RT)Isup(0,5).molesup(-0,5).S/sup -1/ has been evaluated.

  4. Kinetic study on ligand exchange reaction between EC and 99mTc-GH

    International Nuclear Information System (INIS)

    Wu Chunying; Luo Shineng; Fang Ping; Huang Heyun; Xie Minhao; Meng Hong

    1995-01-01

    The ligand exchange reaction between EC and 99m Tc-GH and its influence factors such as concentrations of EC and pH were described. The concentration of EC has no influence on the exchange reaction rate constant, while pH is the most important influence factor. The rate constants of ligand exchange reaction at different pH values were determined. The results showed that in order to make the labelling yield of 99m Tc-EC higher than 90%, pH of the reaction must be higher than 8

  5. Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres.

    Science.gov (United States)

    Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A

    2017-05-17

    A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.

  6. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    Science.gov (United States)

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  7. Novel exchange mechanisms in the surface diffusion of oxides

    International Nuclear Information System (INIS)

    Harris, Duncan J; Lavrentiev, Mikhail Yu; Harding, John H; Allan, Neil L; Purton, John A

    2004-01-01

    We use temperature-accelerated dynamics to show the importance of exchange mechanisms in surface diffusion and growth of simple oxides. Such mechanisms can dominate transport processes both on terraces and steps for both homoepitaxial and heteroepitaxial growth. We suggest that the mixing inevitable when an exchange mechanism is present must be considered when attempts are made to grow sharp interfaces in oxide nanostructures. (letter to the editor)

  8. Exchange reactions in the systems of alkali metal, silver and thallium, sulfates, niobates and tantalates

    International Nuclear Information System (INIS)

    Belyaev, I.N.; Lupejko, T.G.; Nalbandyan, V.B.; Abanina, E.V.

    1978-01-01

    Investigated are exchange interactions in diagonal cross sections of twenty triple mutual systems with A and A' cations and SO 4 and MO 3 anions where A and A'-Li, Na, K, Ag, Tl, M-Nb, Ta using the methods of X-ray phase, chemical and differential thermal analyses. Exchange reaction between crystal complex oxide and melted salt are effective synthesis method. These reactions in particular permitted to obtain pure AgNbO 3 , AgTaO 3 and their solid solutions at temperatures hundreds degrees lower than in displacement reactions. Equilibrium samples of AMO 3 -A'MO 3 systems, continuous or discontinuous solid solutions, compounds (except NaMO 3 -KMO 3 , and also LiTaO 3 -KTaO 3 ) are formed in exchange reactions when there is sulfate shortage. Thus, exchange reactions can be applied for solid solution synthesis, and also for phase diagram study

  9. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  10. Relative mobility of 1-H atoms of carbohydrates in heterogeneous isotope exchange reactions

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kayumov, V.G.; Kaminskii, Yu.L.

    1988-01-01

    The method of competitive reactions was used to determine the relative mobilities of the 1-H atoms of carbohydrates in reactions of heterogeneous isotope exchange, using various reference standards, catalysts, and buffer systems. On the basis of the results obtained, the investigated carbohydrates are ranged in a series of decreasing mobility of the hydrogen atoms exchanged in heterogeneous isotope exchange reactions. It was demonstrated that the mobility of the 1-H atoms is related to the concentration of the acyclic forms of the carbohydrates

  11. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  12. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  13. Theoretical study of the Cs isotope exchange reaction of CsI + Cs' → Cs + ICs' (Contract research)

    International Nuclear Information System (INIS)

    Kobayashi, Takanori; Hashimoto, Masashi; Yokoyama, Keiichi

    2015-12-01

    To discuss the exchange reaction of Cs isotope by CsI + Cs' → Cs + ICs', the structure and chemical properties of Cs 2 I intermediate and potential energy surface of the entrance reaction are calculated using M06/def2-TZVPPD density functional calculation. The calculation shows that the reaction to the intermediate has no barrier and the two Cs-I bonds of Cs 2 I are chemically equivalent. These results suggest that the rate of the Cs exchange reaction of CsI + Cs' → Cs + ICs' is as high as the collision rate. (author)

  14. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump.

    Science.gov (United States)

    Dong, Liang; Xie, Yun; Du, Liang; Li, Weiyi; Tan, Zhaoyi

    2015-04-28

    The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. STIR: Improved Electrolyte Surface Exchange via Atomically Strained Surfaces

    Science.gov (United States)

    2015-09-03

    at the University of Delaware. Concomitant with the experimental work, we also conducted numerical simulations of the experiments. A Poisson- Nernst ...oxygen ion lattice site results in a reaction volume and an associated Vex·ΔP term in the Arrhenius rate equation . In addition, tensile strain (i.e...simulations of the experiments. In recent work at the University of Delaware [9-13], we used finite element solution of generalized Poisson- Nernst -Planck

  16. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Xie, Yun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Du, Liang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); School of Radiation Medicine and Protection (SRMP), School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou 215000 (China); Li, Weiyi [School of Physics and Chemistry, Xihua University, Chengdu 610065 (China); Tan, Zhaoyi, E-mail: zhyitan@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-04-28

    Highlights: • This is the first theoretical investigation about T–H exchange in vacuum oil. • T–H isotope exchange is accomplished through two different change mechanisms. • Isotope exchange is selective, molecules with −OH and −COOH exchange more easily. • The methyl and methylene radicals in waste oil were observed by {sup 1}HNMR. - Abstract: The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium–hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T–H exchange mechanism and the hyrogenation–dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation–dehydrogenation exchange mechanism, the T–H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with −OH and −COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T–H isotope exchange can be determined by the hydrogenation of T{sub 2} or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.

  17. On surface reactions of iron tungstate with ethane

    International Nuclear Information System (INIS)

    Obrubov, V.A.; Shchukin, V.P.; Averbukh, A.Ya.

    1980-01-01

    Results of investigation of ethane oxidation reaction upon iron tungstate are presented. It is shown that catalytic oxidation of ethane is accompanied by the surface reaction of the catalyst reduction. Maximum reduction of surface depends upon temperature and considerably affects the direction of ethane oxidation process. Activation energies of ethane oxidation reactions and surface reaction of iron tungstate reduction depend on the surface actual state and at its reduction up to 5% from monolayer change in the limits 36.0-46.0 and 53.0-66.0 kcal/mol respectively

  18. Reaction of ethane with deuterium over platinum(111) single-crystal surfaces

    International Nuclear Information System (INIS)

    Zaera, F.; Somorhai, G.A.

    1985-01-01

    Deuterium exchange and hydrogenolysis of ethane were studied over (111) platinum surfaces under atmospheric pressures and a temperature range of 475-625 K. Activation energies of 19 kcal/mol for exchange and 34 kcal/mol for hydrogenolysis were obtained. The exchange reaction rates displayed kinetic orders with respect to deuterium and ethane partial pressures of -0.55 and 1.2, respectively. The exchange production distribution was U-shaped, peaking at one and six deuterium atoms per ethane molecule, similar to results reported for other forms of platinum, e.g., supported, films, and foils. The pressure of ethylidyne moieties on the surface was inferred from low-energy electron diffraction and thermal desorption spectroscopy. A mechanism is proposed to explain the experimental results, in which ethylidyne constitutes an intermediate in one of two competitive pathways. 31 references, 9 figures, 3 tables

  19. Hydrogen isotopic exchange reaction in a trickle-bed

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk

    2005-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water

  20. Hydrogen isotopic exchange reaction in a trickle-bed

    Energy Technology Data Exchange (ETDEWEB)

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water.

  1. Gamow Teller strength from charge exchange reactions at intermediate energies

    International Nuclear Information System (INIS)

    Haeusser, O.

    1989-07-01

    Detailed studies of the spin-isospin structure of nuclear excitations are possible at TRIUMF's medium resolution spectrometer using the (n,p), ( p → , p →/ ) and (p,n) reactions. We discuss here results on isospin symmetry of inelastic nucleon scattering reactions populating isospin triads in A=6 and A=12 nuclei. The β + Gamow Teller strength function from (n,p) reactions on (sd) and (fp) shell targets is found to be substantially quenched compared to current nuclear structure models using the free-nucleon axial-vector coupling constant. (Author) 22 refs., 3 figs

  2. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  3. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  4. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wang, J.G. [Department of Physics and Astronomy, University of Georgia, Athens (United States)

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C{sub x}H{sub y} charge exchange reactions from thermal energies up to several hundreds keV for all C{sub x}H{sub y} molecules with x=1, 2, 3 and 1 {<=} y {<=} 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  5. CHEMICAL REACTIONS ON ADSORBING SURFACE: KINETIC LEVEL OF DESCRIPTION

    Directory of Open Access Journals (Sweden)

    P.P.Kostrobii

    2003-01-01

    Full Text Available Based on the effective Hubbard model we suggest a statistical description of reaction-diffusion processes for bimolecular chemical reactions of gas particles adsorbed on the metallic surface. The system of transport equations for description of particles diffusion as well as reactions is obtained. We carry out the analysis of the contributions of all physical processes to the formation of diffusion coefficients and chemical reactions constants.

  6. Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system

    International Nuclear Information System (INIS)

    Asakura, Yamato; Uchida, Shunsuke

    1984-01-01

    A proposed dual temperature hydrogen isotopic exchange reaction system between water and hydrogen gas is evaluated experimentally. The proposed system is composed of low temperature co-current reactors for reaction between water mists and hydrogen gas and high temperature co-current reactors for reaction between water vapor and hydrogen gas. Thus, operation is possible under atmospheric pressure with high reaction efficiency. Using the pilot test system which is composed of ten low temperature (30 0 C) reaction units and ten high temperature (200 0 C) reaction units, an experimental separation of deuterium from light water is carried out. The enrichment factor under steady state conditions, its dependency on operating time, and the reaction period necessary to obtain the steady state enrichment factor are determined experimentally and compared with calculations. It is shown that separation ability in a multistage reaction system can be estimated by numerical calculation using actual reaction efficiency in a unit reactor. (author)

  7. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-01-01

    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  8. Quantum theory of exchange reactions: Use of nonorthogonal bases and coordinates

    International Nuclear Information System (INIS)

    Stechel, E.B.; Schmalz, T.G.; Light, J.C.

    1979-01-01

    A general approach to quantum scattering theory of exchange reactions utilizing nonorthogonal (''over-complete'') basis sets and nonorthogonal coordinates is presented. The method is shown to resolve many of the formal and practical difficulties attending earlier theories. Although the inspiration came from the early and accurate work on the collinear H+H 2 reaction by Diestler possible applications include electron transfer processes as well as chemical exchange reactions. The mathematics is formulated in detail and the solution is presented in terms of the R-matrix propagation method preserving all the symmetries of the physical process, i.e., conservation of flux and microscopic reversibility

  9. Solution Exchange Lithography: A Versatile Tool for Sequential Surface Engineering

    Science.gov (United States)

    Pester, Christian; Mattson, Kaila; Bothman, David; Klinger, Daniel; Lee, Kenneth; Discekici, Emre; Narupai, Benjaporn; Hawker, Craig

    The covalent attachment of polymers has emerged as a viable strategy for the preparation of multi-functional surfaces. Patterned, surface-grafted polymer brushes provide spatial control over wetting, mechanical, biological or electronic properties, and allow fabrication of `intelligent' substrates which selectively adapt to their environment. However, the route towards patterned polymer brush surfaces often remains challenging, creating a demand for more efficient and less complicated fabrication strategies. We describe the design and application of a novel experimental setup to combine light-mediated and flow chemistry for the fabrication of hierarchical surface-grafted polymer brushes. Using light-mediated, surface initiated controlled radical polymerization and post-functionalization via well-established, and highly efficient chemistries, polymer brush films of previously unimaginable complexity are now shown to be accessible. This methodology allows full flexibility to exchange both lithographic photomasks and chemical environments in-situ, readily affording multidimensional thin film architectures, all from uniformly functionalized substrates.

  10. Why Seemingly Trivial Events Sometimes Evoke Strong Emotional Reactions: The Role of Social Exchange Rule Violations.

    Science.gov (United States)

    Leary, Mark R; Diebels, Kate J; Jongman-Sereno, Katrina P; Fernandez, Xuan Duong

    2015-01-01

    People sometimes display strong emotional reactions to events that appear disproportionate to the tangible magnitude of the event. Although previous work has addressed the role that perceived disrespect and unfairness have on such reactions, this study examined the role of perceived social exchange rule violations more broadly. Participants (N = 179) rated the effects of another person's behavior on important personal outcomes, the degree to which the other person had violated fundamental rules of social exchange, and their reactions to the event. Results showed that perceptions of social exchange rule violations accounted for more variance in participants' reactions than the tangible consequences of the event. The findings support the hypothesis that responses that appear disproportionate to the seriousness of the eliciting event are often fueled by perceived rule violations that may not be obvious to others.

  11. Catalytic activity in reactions of isotopic exchange of carbon monoxide and adsorption properties of catalysts on zinc oxide base

    International Nuclear Information System (INIS)

    Mikheeva, T.M.; Kasatkina, L.A.; Volynkina, A.Ya.

    1987-01-01

    Activity of different zinc oxide samples in reaction of CO homomolecular isotopic exchnge (HMIE) ( 13 C 18 O+ 12 C 16 O= 13 C 16 O+ 12 C 18 O), CO adsorption on ZnO and isotopic exchange between adsorbed and gaseous CO are investigated. The most active is ZnO sample prepared from ZnCO 3 . Quantitative ratio between different with respect to surface strength molecules of adsorbed CO are experimentally determined. It is shown that by increase of ZnO time contact with CO the quantity of adsorbed CO(N σ/0 ), capable of fast exchange with a gaseous phase, is reduced and the quantity of slowly exchanged adsorbed CO is increased. Correlation between decrease of N σ/0 and decrease of CO HMIE with the catalyst holding time in CO medium is stated

  12. Determination of the energetics of the UDP-glucose pyrophosphorylase reaction by positional isotope exchange inhibition

    International Nuclear Information System (INIS)

    Hester, L.S.; Raushel, F.M.

    1987-01-01

    A method has been developed for obtaining qualitative information about enzyme-catalyzed reactions by measuring the inhibitory effects of added substrates on positional isotope exchange rates. It has been demonstrated for ordered kinetic mechanisms that an increase in the concentration of the second substrate to add to the enzyme will result in a linear increase in the ratio of the chemical and positional isotope exchange rates. The slopes and intercepts from these plots can be used to determine the partitioning ratios of binary and ternary enzyme complexes. The method has been applied to the reaction catalyzed by UDP-glucose pyrophosphorylase. A positional isotope exchange reaction was measured within oxygen-18-labeled UTP as a function of variable glucose 1-phosphate concentration in the forward reaction. In the reverse reaction, a positional isotope exchange reaction was measured within oxygen-18-labeled UDP-glucose as a function of increasing pyrophosphate concentration. The results have been interpreted to indicate that the interconversion of the ternary central complexes is fast relative to product dissociation in either direction. In the forward direction, the release of UDP-glucose is slower than the release of pyrophosphate. The release of glucose 1-phosphate is slower than the release of UTP in the reverse reaction

  13. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    Science.gov (United States)

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  14. Examining the reaction of monetary policy to exchange rate changes: A nonlinear ARDL approach

    Science.gov (United States)

    Manogaran, Lavaneesvari; Sek, Siok Kun

    2017-04-01

    Previous studies showed the exchange rate changes can have significant impacts on macroeconomic performance. Over fluctuation of exchange rate may lead to economic instability. Hence, monetary policy rule tends to react to exchange rate changes. Especially, in emerging economies where the policy-maker tends to limit the exchange rate movement through interventions. In this study, we seek to investigate how the monetary policy rule reacts to exchange rate changes. The nonlinear autoregressive distributed lag (NARDL) model is applied to capture the asymmetric effect of exchange rate changes on monetary policy reaction function (interest rate). We focus the study in ASEAN5 countries (Indonesia, Malaysia, Philippines, Thailand and Singapore). The results indicated the existence of asymmetric effect of exchange rates changes on the monetary reaction function for all ASEAN5 countries in the long-run. Where, in majority of the cases the monetary policy is reacting to the appreciation and depreciation of exchange rate by raising the policy rate. This affirms the intervention of policymakers with the `fear of floating' behavior.

  15. Reaction mechanisms for on-surface synthesis of covalent nanostructures

    International Nuclear Information System (INIS)

    Björk, J

    2016-01-01

    In recent years, on-surface synthesis has become an increasingly popular strategy to form covalent nanostructures. The approach has great prospects for facilitating the manufacture of a range of fascinating materials with atomic precision. However, the on-surface reactions are enigmatic to control, currently restricting its bright perspectives and there is a great need to explore how the reactions are governed. The objective of this topical review is to summarize theoretical work that has focused on comprehending on-surface synthesis protocols through studies of reaction mechanisms. (topical review)

  16. Hydrogen isotope exchange reaction rates in tritium, hydrogen and deuterium mixed gases

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko

    1992-01-01

    Hydrogen isotope exchange reaction rates in H 2 +T 2 , D 2 +T 2 and H 2 +D 2 +T 2 mixed gases, as induced by tritium decay and beta radiation, were experimentally measured by laser Raman spectrometry. Initially a glass cell was filled with T 2 gas to a pressure of 30-40 kPa, and an equivalent partial pressure of H 2 and/or D 2 was added. The first-order hydrogen isotope exchange reaction rates were 5.54x10 -2 h -1 for H 2 +T 2 mixed gas and 4.76x10 -2 h -1 for D 2 +T 2 . The actual HT producing rate was nearly equivalent to the rate of DT, but the reverse reaction rate of HT was faster than that of DT. The exchange reaction rates between H, D and T showed the isotope effect, HD>HT>DT. The hydrogen isotope exchange reaction rates observed were about twenty times larger than ion formation rates by beta radiation. This result suggests that a free radical chain reaction in hydrogen isotopes is occurring. (orig.)

  17. Study of reactions of isotopic exchange of trans-zeatin with tritium

    International Nuclear Information System (INIS)

    Sidorov, G.V.; Myasoedov, N.F.

    2006-01-01

    Reactions of isotopic exchange of trans-zeatin with high-radioactive tritium water, with gaseous tritium in solution and solid-phase catalytic hydrogenation are studied to prepare trans-zeatin and dihydrozeatin labelled with tritium. It is shown that reaction of isotopic exchange of trans-zeatin with gaseous tritium both in solutions and without solvents at 160 Deg C and above leads to practically total hydrogenation of initial compound with formation of dihydrozeatin labelled with tritium. Isotopic exchange with tritium water permits to prepare zeatin labelled with tritium with 67 % yield and specific radioactivity 0.68 PBq/mol. It is determined that in the case of solid-phase isotopic exchange within 150-155 Deg C temperature interval both dihydrozeatin and trans-zeatin labelled with tritium are formed [ru

  18. EXFOR Basics. A short guide to the neutron reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.; NUCLEAR DATA CENTER NETWORK

    2000-01-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969.3 As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: l that is machine-readable (for checking and indicating possible errors); l that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data

  19. Application of tracer isotope in kinetic study of first order ion exchange reaction

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    1998-01-01

    Analysis of first order ion exchange reaction rates at different temperatures (27 deg- 48 degC) and particularly at low concentration of potassium iodide solution (electrolyte) ranging from 0.005 M to 0.040 M is carried out by application of radioactive tracer isotope 131 I. With increase in concentration of electrolyte, amount of iodide ion exchanged in millimoles increases. Specific reaction rates of ion exchange reaction are calculated for different temperatures and for different amount of ion exchange resins. It is observed that with increase in temperature, reaction rate increases but the increase is more pronounced for increase in amount of ion exchange resins. For 0.005 M solution of electrolyte, the reaction rate increases from 0.121 min -1 at 27 degC to 0.178 min -1 at 48 degC. For 0.005 M solution of electrolyte the reaction rate increases from 0.121 min -1 at 27 degC to 0.178 min 1 at 48 degC. For 0.005 M solution of electrolyte at 27 degC the reaction rate increases from 0.121 min -1 for 1.0 g of resin to 0.368 min -1 for 5.0 g of resin. From the reaction rates calculated at different temperatures, energy of activation in kJ/mole is calculated. It is observed that for 0.005 M solution of electrolyte, energy of activation is 4.62 kJ/mole which decreases to 2.87 kJ/mole for increase in concentration of electrolyte to 0.100 M. (author)

  20. Analysis of (3He, t) charge exchange reactions at 140 AMeV

    International Nuclear Information System (INIS)

    Singh, Pardeep; Zegers, R.G.T.; Danielewicz, Pawel; Noji, S.; Kim, B.T.; Sakai, H.

    2014-01-01

    The spin-isospin response in nuclei has been studied widely through ( 3 He, t) and (t, 3 He) charge-exchange reactions wherein a proton (neutron) transforms into a neutron (proton), which in turn changes the isospin, ΔT=1, of the nuclei participating in the reaction, either with or without spin transfer. The Gamow-Teller transitions are used to obtain the weak transition strength in the excitation-energy regions inaccessible through β-decay. The strengths deduced using charge exchange experiments provide stringent tests for nuclear structure calculations and serve as inputs for variety of applications in which weak transition strengths play a role. In this context, we explore here the ( 3 He,t) charge-exchange reaction at 140 MeV/u on 18 O, 26 Mg, 58,60,62, 64 Ni, 90 Zr, 118,120 Sn and 208 Pb targets, within the theoretical framework of distorted wave impulse approximation

  1. Current status of uranium enrichment by way of chemical exchange reactions

    International Nuclear Information System (INIS)

    El Basyouny, A.; Bechthold, H.C.; Knoechel, A.; Vollmer, H.J.

    1985-04-01

    For this report, conference proceedings, patents and other types of literature have been collected to present an account of the current status of uranium enrichment by way of chemical exchange reactions. The report further presents a new concept along with the relevant process strategy developed by the authors. The principal process of the new concept is a chemical exchange process with crown ethers, complexed or free, playing an important part in the reactions. The authors also describe their experiments carried out for establishing suitable chemical systems. (orig./PW) [de

  2. The 10B (7Li, 7Be)10Be charge-exchange reaction

    International Nuclear Information System (INIS)

    Etchegoyen, A.

    1987-01-01

    It is analysed the mechanisms: direct charge-exchange through the two-body residual force (Q opt ∼ 0.2 MeV, which is close to the reaction Q-value of - 1,42 MeV); and single-Nucleon Knock-on exchange (SNKE) due to the intereacting nucleons being undistinguishable. These mechanisms are analysed in detail for producing 10 B ( 7 Li, 7 Be) 10 Be reaction. The experience was carried out at the Tandar Laboratory using conventional electronics. The elastic scattering was simultaneously measured in order to obtain an optical model parameter set. (M.C.K.) [pt

  3. Multifractal scaling analysis of autopoisoning reactions over a rough surface

    International Nuclear Information System (INIS)

    Chaudhari, Ajay; Yan, Ching-Cher Sanders; Lee, S.-L.

    2003-01-01

    Decay type diffusion-limited reactions (DLR) over a rough surface generated by a random deposition model were performed. To study the effect of the decay profile on the reaction probability distribution (RPD), multifractal scaling analysis has been carried out. The dynamics of these autopoisoning reactions are controlled by the two parameters in the decay function, namely, the initial sticking probability (P ini ) of every site and the decay rate (m). The smaller the decay rate, the narrower is the range of α values in the α-f(α) multifractal spectrum. The results are compared with the earlier work of DLR over a surface of diffusion-limited aggregation (DLA). We also considered here the autopoisoning reactions over a smooth surface for comparing our results, which show clearly how the roughness affects the chemical reactions. The q-τ(q) multifractal curves for the smooth surface are linear whereas those for the rough surface are nonlinear. The range of α values in the case of a rough surface is wider than that of the smooth surface

  4. Surface sampling concentration and reaction probe

    Science.gov (United States)

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  5. Nucleophilic radioiodination of 6-bromocholesterol via non-isotopic exchange reaction in molten state

    International Nuclear Information System (INIS)

    El-Shaboury, G.; Farah, K.; El-Tawoosy, M.

    2001-01-01

    A synthetic method for preparing radioiodinated 6-[ 125 I]iodocholesterol [CL-6- 125 I] for adrenal evaluation is described. The radioiodine atom was incorporated onto the cholesterol molecule via non-isotopic exchange between 6-bromocholesterol [CL-6-Br] and radioiodine as iodide ion [ 125 I - ] in a molten state. The different parameters affecting the yield of exchange were investigated using 125 I (T 1/2 ≅ 60 d) to centralize the different physical and chemical reaction conditions and purification of the final product as pure as 6-[ 125 I]iodocholesterol. The method was suitable to either 131 I (T 1/2 ≅ 8 d) nucleophilic radioiodination which facilitates the scanning of the adrenal for a few days after administration or the use of 124 I (T 1/2 ≅ 4.16 d) nucleophilic radioiodination for PET evaluation of the adrenal. TLC as well as HPLC chromatographic analysis is used to determine the efficiency of the exchange reactions under different chemical reaction conditions and to monitor the stability of the final product as pure as CL-6- 125 I with radiochemical purity of ≅99%. This no-carrier-added method improved the speed of the reaction and affords high radiochemical yield of 90% and suitable specific activity due to the use of CL-6-Br rather than CL-6-I as substrate. Kinetic studies revealed second order iodine-bromine exchange reaction. The activation energy for the exchange reaction in ammonium acetate (m.p. 114 deg C) was calculated to be 4.576 kcal/mole. (author)

  6. Surface reactivity and layer analysis of chemisorbed reaction films in ...

    Indian Academy of Sciences (India)

    Administrator

    Surface reactivity and layer analysis of chemisorbed reaction films in ... in the nitrogen environment. Keywords. Surface reactivity ... sium (Na–K) compounds in the coating or core of the ..... Barkshire I R, Pruton M and Smith G C 1995 Appl. Sur.

  7. Investigation of heterogeneous reactions of NO2 on aqueous surfaces

    International Nuclear Information System (INIS)

    Mertes, S.

    1992-01-01

    A microjet apparatus was developed for the purpose of measuring the loss in the gaseous phase and the uptake in the liquid phase of nitrogen on the basis of heterogeneous processes on a liquid surface. The measurements were to provide information on the mass accomodation coefficient α and on assumed surface reactions of NO 2 . (orig./BBR) [de

  8. Supersonic molecular beam experiments on surface chemical reactions.

    Science.gov (United States)

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  10. Study of iodine-iodate isotopic exchange reaction in neutral aqueous solutions by radiotracer technique

    International Nuclear Information System (INIS)

    Tripathi, R.; Ram, K.D.

    1993-01-01

    The isotopic exchange of iodine atoms in neutral aqueous solutions of iodate ions and iodine (in KI) is found to obey the rate law R = k [IO 3 - ] 0.4 [I 2 ] 1.2 at 175 o C. The addition of neutral ionic salts, e.g. KCl and KNO 3 , in the reaction mixture showed a slight catalytic effect on the exchange rate. Further, the kinetic salt effect indicated the involvement of at least one neutral species on the rate-determining step. The activation energy in neutral aqueous solutions of iodate ions and iodine is found to be 86 ± 3 kJ mol -1 , which decreases in the presence of KCl (79 ± 3 kJ mol -1 and KNO 3 (82 + 3 kJ mol -1 ). The activation parameters, viz. free energy of activation, enthalpy of activation and entropy of activation, were also calculated. Based on these results, an association-dissociation type of reaction mechanism is proposed for this exchange reaction in neutral aqueous medium, similar to that proposed earlier for iodide-iodate isotopic exchange reaction in neutral aqueous solutions, nitrate eutectic melts and iodide-iodate melts. (author)

  11. Investigation of ammonia air-surface exchange processes in a ...

    Science.gov (United States)

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  12. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    Science.gov (United States)

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  13. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions.

    Science.gov (United States)

    Hanzon, Drew W; Traugutt, Nicholas A; McBride, Matthew K; Bowman, Christopher N; Yakacki, Christopher M; Yu, Kai

    2018-02-14

    Adaptable liquid crystal elastomers (LCEs) have recently emerged to provide a new and robust method to program monodomain LCE samples. When a constant stress is applied with active bond exchange reactions (BERs), polymer chains and mesogens gradually align in the strain direction. Mesogen alignment is maintained after removing the BER stimulus (e.g. by lowering the temperature) and the programmed LCE samples exhibit free-standing two-way shape switching behavior. Here, a new adaptable main-chain LCE system was developed with thermally induced transesterification BERs. The network combines the conventional properties of LCEs, such as an isotropic phase transition and soft elasticity, with the dynamic features of adaptable network polymers, which are malleable to stress relaxation due to the BERs. Polarized Fourier transform infrared measurements confirmed the alignment of polymer chains and mesogens after strain-induced programming. The influence of the creep stress, temperature, and time on the strain amplitude of two-way shape switching was examined. The LCE network demonstrates an innovative feature of reprogrammability, where the reversible shape-switching memory of programmed LCEs is readily deleted by free-standing heating as random BERs disrupt the mesogen alignment, so LCEs are reprogrammed after returning to the polydomain state. Due to the dynamic nature of the LCE network, it also exhibits a surface welding effect and can be fully dissolved in the organic solvent, which might be utilized for green and sustainable recycling of LCEs.

  14. Studies on ligand exchange reaction of functionalized mercaptothiadiazole compounds onto citrate capped gold nanoparticles

    International Nuclear Information System (INIS)

    Kalimuthu, Palraj; John, S. Abraham

    2010-01-01

    Mercaptothiadiazole ligands functionalized with thiol (2,5-dimercapto-1,3,4-thiadiazole (DMT)) and methyl (5-methyl-2-mercapto-1,3,4-thiadiazole (MMT)) groups capped onto citrate capped gold nanoparticles (C-AuNPs) by ligand exchange reaction was investigated by UV-vis spectroscopy, FT-IR spectroscopy and transmission electron microscopy (TEM) techniques. The surface plasmon resonance band at 522 nm for C-AuNPs was shifted to 530 nm after capping with DMT whereas an additional band was observed at 630 nm due to aggregation in addition to a shift in the band at 522 nm after capping of MMT onto C-AuNPs. Thus, capping of DMT onto C-AuNPs leads to the formation of stable AuNPs while capping of MMT leads to the formation of unstable AuNPs. FT-IR studies show that the citrate ions were completely replaced by both DMT and MMT ligands from the AuNPs. TEM images indicate that the size and shape of the AuNPs remain same after capping of these ligands.

  15. Electron capture rates in stars studied with heavy ion charge exchange reactions

    Science.gov (United States)

    Bertulani, C. A.

    2018-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  16. Self-assembled monolayer exchange reactions as a tool for channel interface engineering in low-voltage organic thin-film transistors.

    Science.gov (United States)

    Lenz, Thomas; Schmaltz, Thomas; Novak, Michael; Halik, Marcus

    2012-10-02

    In this work, we compared the kinetics of monolayer self-assembly long-chained carboxylic acids and phosphonic acids on thin aluminum oxide surfaces and investigated their dielectric properties in capacitors and low-voltage organic thin-film transistors. Phosphonic acid anchor groups tend to substitute carboxylic acid molecules on aluminum oxide surfaces and thus allow the formation of mixed or fully exchanged monolayers. With different alkyl chain substituents (n-alkyl or fluorinated alkyl chains), the exchange reaction can be monitored as a function of time by static contact angle measurements. The threshold voltage in α,α'-dihexyl-sexithiophene thin-film transistors composed of such mixed layer dielectrics correlates with the exchange progress and can be tuned from negative to positive values or vice versa depending on the dipole moment of the alkyl chain substituents. The change in the dipole moment with increasing exchange time also shifts the capacitance of these devices. The rate constants for exchange reactions determined by the time-dependent shift of static contact angle, threshold voltage, and capacitance exhibit virtually the same value thus proving the exchange kinetics to be highly controllable. In general, the exchange approach is a powerful tool in interface engineering, displaying a great potential for tailoring of device characteristics.

  17. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Science.gov (United States)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  18. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    Science.gov (United States)

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  19. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    U. Meyer

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblast-like cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  20. Chemical reactions in the presence of surface modulation and stirring

    OpenAIRE

    Kamhawi, Khalid; Náraigh, Lennon Ó

    2009-01-01

    We study the dynamics of simple reactions where the chemical species are confined on a general, time-modulated surface, and subjected to externally-imposed stirring. The study of these inhomogeneous effects requires a model based on a reaction-advection-diffusion equation, which we derive. We use homogenization methods to show that up to second order in a small scaling parameter, the modulation effects on the concentration field are asymptotically equivalent for systems with or without stirri...

  1. Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange : an RPSCB Peer Exchange

    Science.gov (United States)

    2014-08-01

    This report summarizes the Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange, held in Birmingham, Alabama, sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professi...

  2. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  3. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    2012-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  4. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    Science.gov (United States)

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  5. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    International Nuclear Information System (INIS)

    Emaus, R.; Bieber, L.L.

    1982-01-01

    A rapid method for the preparation of [1- 14 C]acetyl-L-carnitine is described. The method involves exchange of [1- 14 C]acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1 - ) anion exchange resin. One of the procedures used to verify the product [1- 14 C]acetyl-L-carnitine can be used to synthesize (3S)-[5- 14 C]citric acid

  6. On line determination of deuterium in hydrogen water exchange reaction by mass spectrometry. IRP-10

    International Nuclear Information System (INIS)

    Sharma, J.D.; Alphonse, K.P.; Mishra, Sushama; Prabhu, S.A.; Mohan, Sadhana; Tangri, V.K.

    2007-01-01

    The Deuterium (D)/Hydrogen (H) analysis at low Concentration is generally carried out by Mass Spectrometry. Mass Spectrometer is specially designed for the measurement of Mass 2 and 3 ratio. The Deuterium analysis of water and hydrogen in concentration range of a few ppm to about 1% plays an important role in the Heavy Water Production Plants. For the enrichment of the Deuterium concentration in H 2 O by H 2 - H 2 O exchange a catalyst is essential as reaction is relatively slow. Heavy Water Division has developed in house Platinum based catalyst for the isotopic exchange of Hydrogen and Water

  7. Kinetics of H-D exchange in olefins with complicating reactions

    International Nuclear Information System (INIS)

    Trokhimets, A.I.

    1979-01-01

    The kinetics of H-D-exchange is considered for olefins under conditions when simple and complicated exchange occur together with hydrogenation. If hydrogenation takes place in the system, it is theoretically impossible to derive the integrated rate equation for the accumulation of deuterium in the olefin. The variation of the concentration of different deuteroolefins during the process can be calculated numerically. A method is proposed for evaluating the contribution of individual steps to the overall process and determining the rate constants of the most important reactions. (author)

  8. New method for the hydrogen isotope exchange reaction in a hydrophobic catalyst bed

    International Nuclear Information System (INIS)

    Asakura, Y.; Kikuchi, M.; Yusa, H.

    1982-01-01

    To improve the isotope exchange reaction efficiency between water and hydrogen, a new reactor in which water mists and hydrogen gas react cocurrently was studied. To apply this to the enrichment of tritium in heavy water, a dual temperature isotope exchange reactor which is composed of cocurrent low temperature reactors and the usual countercurrent high temperature reactor was proposed and analyzed using a McCabe-Thiele diagram. By utilizing cocurrent reactors, in combination, the necessary catalyst volume can be reduced to one-tenth as compared with the usual countercurrent low temperature reactor. 17 refs

  9. Effects of surface exchange anisotropy in Heisenberg ferromagnetic insulators

    International Nuclear Information System (INIS)

    Selzer, S.; Majlis, N.

    1982-03-01

    We consider an fcc semi-infinite ferromagnetic insulator displaying an anisotropic exchange interaction between spins on the (111) surface plane of the form Jsub(parallel)[Ssub(i)sup(x)Ssub(j)sup(x)+Ssub(i)sup(y)Ssub(j)sup(y )+etaSsub(i)sup(z)Ssub(j)sup(z)], assuming all other interactions isotropic. A self-consistent RPA calculation is performed, with a Green function method valid for any spin S, up to the bulk transition temperature Tsub(c)sup(b), by imposing that the magnetization of the third layer equals the bulk value. For eta sufficiently large, the surface magnetization is non-zero for T>Tsub(c)sup(b), up to a transition temperature Tsub(c)sup(s)(eta) whenever eta>=etasub(c)>1, where Tsub(c)sup(s)(etasub(c))=Tsub(c)sup(b). For T>Tsub(c)sup(b) the system is equivalent to a film of three layers, where the magnetization of the third one is identically zero as a boundary condition. A discontinuity of the derivative in the curve of the magnetization of the first two layers vs. temperature is found at Tsub(c)sup(b). The results show clearly a cross-over from Heisenberg to Ising behaviour at the surface. (author)

  10. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  11. First-Principles Computed Rate Constant for the O + O2 Isotopic Exchange Reaction Now Matches Experiment.

    Science.gov (United States)

    Guillon, Grégoire; Honvault, Pascal; Kochanov, Roman; Tyuterev, Vladimir

    2018-04-19

    We show, by performing exact time-independent quantum molecular scattering calculations, that the quality of the ground electronic state global potential energy surface appears to be of utmost importance in accurately obtaining even as strongly averaged quantities as kinetic rate constants. The oxygen isotope exchange reaction, 18 O + 32 O 2 , motivated by the understanding of a complex long-standing problem of isotopic ozone anomalies in the stratosphere and laboratory experiments, is explored in this context. The thermal rate constant for this key reaction is now in quantitative agreement with all experimental data available to date. A significant recent progress at the frontier of three research domains, advanced electronic structure calculations, ultrasensitive spectroscopy, and quantum scattering calculations, has therefore permitted a breakthrough in the theoretical modeling of this crucial collision process from first principles.

  12. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  13. Thermodynamics of calcium-isotope-exchange reactions. 1. Exchange between isotopic calcium carbonates and aqueous calcium ions

    International Nuclear Information System (INIS)

    Zhang, R.S.; Nash, C.P.; Rock, P.A.

    1988-01-01

    This paper reports the authors results for the direct experimental determination of the equilibrium constant for the calcium-isotope-exchange reaction 40 CaCO 3 (s) + 44 CaCl 2 (aq) reversible 44 CaCO 2 (s) + 40 CaCl 2 (aq). The reaction was studied in electrochemical double cells without liquid junction of the type shown in eq 2. The experimental value of the equilibrium constant at 295 +/- 2 K is K = 1.08 +/- 0.02. The experimental value for K is compared with the values of K calculated for various model reactions according to the statistical thermodynamic theory of isotope effects. The isotopic solid carbonates were modeled according to both the Debye and Kieffer theories. No structured models of solvated isotopic aqueous calcium ions yield calculated equilibrium constants in agreement with their experimental results. This conclusion is in agreement with published molecular dynamics calculations which show that the aqueous solvation of Ca 2 =(aq) is essentially unstructured

  14. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  15. Reactions between monolayer Fe and Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M; Kobayashi, N; Hayashi, N [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1997-03-01

    Reactions between 1.5 monolayer(ML) Fe deposited on Si(001)-2x1 and -dihydride surfaces were studied in situ by reflection high-energy electron diffraction and time-of-flight ion scattering spectrometry with the use of 25 keV H ions. The reactions between Fe and Si which were successively deposited on Si(001)-dihydride surface were also studied. After the room temperature deposition Fe reacted with Si(001)-2x1 substrate resulting in the formation of polycrystalline Fe5Si3. By annealing to 560-650degC composite heteroepitaxial layer of both type A and type B {beta}-FeSi2 was formed. On the dihydride surface polycrystalline Fe was observed after 1.5ML Fe deposition at room temperature, and reaction between Fe and Si(001)-dihydride surface is not likely at room temperature. We observed 3D rough surface when we deposited only Fe layer on the dihydride surface and annealed above 700degC. The hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate below 500degC, however the annealing above 710degC leads to the diffusion. We obtained 2D ordered surface, which showed 3x3 RHEED pattern as referenced to the primitive unreconstructed Si(001) surface net, when we deposited 2.5ML Fe and 5.8ML Si successively onto Si(001)-dihydride surface and annealed to 470degC. (author)

  16. General Tritium Labelling of Gentamicin C by catalytic hydrogen exchange Reaction with Tritiated Water

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz, D.; Paz, D.

    1991-01-01

    Gentamicin C was labelled with tritium by means of a PtO2 catalyzed hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H2O-3H, and 50 mg of prereduced PtO2) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 degree celsius, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accomplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v) . Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95. Main exchange degradation products show biological activity. (Author) 12 refs

  17. General Tritium labelling of gentamicin C by catalytic hydrogen exchange reaction with tritiated water

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz, D.

    1991-01-01

    Gentamicin C was labelled with tritium by means of a PtO 2 catalized hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H 2 O- 3 H, and 50 mg of prereduced PtO 2 ) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 o C, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accoumplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v). Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95 % . Main exchange degradation products show biological activity. (Author). 12 refs

  18. Reaction mechanism and nuclear correlations study by low energy pion double charge exchange

    International Nuclear Information System (INIS)

    Weinfeld, Z.

    1993-06-01

    In pion double-charge-exchange (DCX) reactions, a positive (negative) pion is incident on a nucleus and a negative (positive) pion emerges. These reactions are of fundamental interest since the process must involve at least two nucleons in order to conserve charge. Although two nucleon processes are present in many reactions they are usually masked by the dominant single nucleon processes. DCX is unique in that respect since it is a two nucleon process in lowest order and thus may be sensitive to two-nucleon correlations. Measurements of low energy pion double-charge-exchange reactions to the double-isobaric-analog-state (DIAS) and ground-state (GS) of the residual nucleus provide new means for studying nucleon-nucleon correlations in nuclei. At low energies (T π 7/2 shell at energies ranging from 25 to 65 MeV. Cross sections were measured on 42,44,48 Ca, 46,50 Ti and 54 Fe. The calcium isotopes make a good set of nuclei on which to study the effects of correlations in DCX reactions

  19. Experimental determination of reaction rates of water. Hydrogen exchange of tritium with hydrophobic catalysts

    International Nuclear Information System (INIS)

    Bixel, J.C.; Hartzell, B.W.; Park, W.K.

    1976-01-01

    This study was undertaken to obtain data needed for further development of a process for the enrichment and removal of tritium from the water associated with light-water reactors, fuel-reprocessing plants, and tritium-handling laboratories. The approach is based on the use of antiwetting, hydrophobic catalysts which permit the chemical exchange reactions between liquid water and gaseous hydrogen in direct contact, thus eliminating problems of catalyst deactivation and the complexity of reactor design normally associated with current catalytic-detritiation techniques involving gas-phase catalysis. An apparatus and procedure were developed for measuring reaction rates of water-hydrogen chemical exchange with hydrophobic catalysts. Preliminary economic evaluations of the process were made as it might apply to the AGNS fuel reprocessing plant

  20. 13C(α,n)16O reaction as the knock-out exchange process

    International Nuclear Information System (INIS)

    Kim, G.; Khajdarov, R.R.; Zaparov, Eh.A.

    2000-01-01

    S-factor for the 13 C(α,n) 16 O reaction is studied. In the framework of the simple phenomenological model this reaction is analysed as neutron knocked-out by α-particle exchange process. The analysis demonstrates the importance of taking into account 2p-state in 13 C. The 13 C(α,n) 16 O cross section is considered both as the knock-out exchange process and as it's combination with process through a compound nucleus. It was shown that for E α s value extrapolated to low energies is found to be noticeably larger that of R-matrix analysis. Different ways of improving the proposed model are discussed. (author)

  1. Self-activated, self-limiting reactions on Si surfaces

    DEFF Research Database (Denmark)

    Morgen, Per; Hvam, Jeanette; Bahari, Ali

    The direct thermally activated reactions of oxygen and ammonia with Si surfaces in furnaces have been used for a very long time in the semiconductor industry for the growth of thick oxides and nitride layers respectively. The oxidation mechanism was described in the Deal-Grove model as a diffusion...... mechanism for the direct growth of ultrathin films (0-3 nm) of oxides and nitrides under ultrahigh vacuum conditions. Neutral oxygen and a microwave excited nitrogen plasma interact directly with Si surfaces kept at different temperatures during the reaction. The gas pressures are around 10-6 Torr...... energy of an oxide system, which happened for an ordered structure, at a thickness of 0.7-0.8 nm. Thus this thin oxide structure has definite crystalline features. We have closely monitored the reaction kinetics with normal x-ray induced photoelectron spectroscopies, and also the structure, composition...

  2. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  3. Elastic scattering and charge exchange reaction studies with {sup 6}He, {sup 10,11}Be

    Energy Technology Data Exchange (ETDEWEB)

    Roussel-Chomaz, P; Cortina-Gil, M D; Mittig, W; Casandjian, J M; Chartier, M [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Alamanos, N; Auger, F; Fekou-Youmbi, V [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Barrette, J [McGill Univ., Montreal, PQ (Canada); Blumenfeld, Y [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; and others

    1996-12-31

    The elastic scattering and charge exchange reaction of {sup 6}He, {sup 10,11}Be secondary beams on proton and {sup 12}C targets have been measured. The combined use of SISSI and SPEG allowed to obtain very good quality data in terms of energy and angular resolution. Preliminary analyses of the angular distributions using global parameter set for the optical model potentials, as well as more microscopic approaches are presented. (author). 14 refs.

  4. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H. [KAERI, Taejon (Korea, Republic of)

    2005-11-15

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  5. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    International Nuclear Information System (INIS)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H.

    2005-01-01

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities

  6. EXFOR basics. A short guide to the nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, Victoria

    2000-01-01

    EXFOR is the agreed exchange format for the transmission of experimental nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. This report is intended as a guide to data users. For a complete guide to the EXFOR system see: EXFOR Systems Manual, IAEA-NDS-207 (BNL-NCS-63330-00/04-Rev.) (author)

  7. Moving Towards a State of the Art Charge-Exchange Reaction Code

    Science.gov (United States)

    Poxon-Pearson, Terri; Nunes, Filomena; Potel, Gregory

    2017-09-01

    Charge-exchange reactions have a wide range of applications, including late stellar evolution, constraining the matrix elements for neutrinoless double β-decay, and exploring symmetry energy and other aspects of exotic nuclear matter. Still, much of the reaction theory needed to describe these transitions is underdeveloped and relies on assumptions and simplifications that are often extended outside of their region of validity. In this work, we have begun to move towards a state of the art charge-exchange reaction code. As a first step, we focus on Fermi transitions using a Lane potential in a few body, Distorted Wave Born Approximation (DWBA) framework. We have focused on maintaining a modular structure for the code so we can later incorporate complications such as nonlocality, breakup, and microscopic inputs. Results using this new charge-exchange code will be shown compared to the analysis in for the case of 48Ca(p,n)48Sc. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. DOE Cooperative Agreement No. DE- FG52-08NA2855.

  8. Formation of ZnSe/Bi2Se3 QDs by surface cation exchange and high photothermal conversion

    Directory of Open Access Journals (Sweden)

    Guozhi Jia

    2015-08-01

    Full Text Available Water-dispersed core/shell structure ZnSe/Bi2Se3 quantum dots were synthesized by ultrasonicwave-assisted cation exchange reaction. Only surface Zn ion can be replaced by Bi ion in ZnSe quantum dots, which lead to the ultrathin Bi2Se3 shell layer formed. It is significance to find to change the crystal of QDs due to the acting of ultrasonicwave. Cation exchange mechanism and excellent photothermal conversion properties are discussed in detail.

  9. EXFOR basics: A short guide to the nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.

    1996-07-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear data compilation centers. This format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The exchange format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine). The data presently included in the EXFOR exchange include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle induced reaction data, a selected compilation of photon-induced reaction data

  10. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    Science.gov (United States)

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  11. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande

    2008-04-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  12. Use of deuterium n. m. r. spectroscopy in mechanistic studies of exchange reactions of ethers on supported metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.A.; Kemball, Charles; McDougall, G.S.

    1987-10-01

    Exchange reactions of diethyl ether (DEE) and tetrahydrofuran (THF) with deuterium have been studied over supported nickel, palladium, platinum, and rhodium catalysts. Products from most of the systems were analysed by deuterium n.m.r. spectroscopy (55.28 MHz) which gave quantitative results about the distribution of deuterium in the exchanged ethers. The results confirm earlier conclusions about the mechanism of the exchange of DEE and provide new evidence about the reactions of THF. Some hydrogenolysis occurred simultaneously with exchange of THF over both nickel and platinum.

  13. Addition and spin exchange rate constants by longitudinal field μSR: the Mu + NO reaction

    International Nuclear Information System (INIS)

    Senba, Masayoshi; Gonzalez, A.C.; Kempton, J.R.; Arseneau, D.J.; Pan, J.J.; Tempelmann, A.; Fleming, D.G.

    1991-01-01

    The addition reaction Mu + NO + M → MuNO + M and the spin exchange reaction Mu(↑) + NO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N 2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λ c ) demonstrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined as k 0.Mu =(1.10±0.25)x10 -32 cm 6 molecules -2 s -1 , almost 4 times smaller than the corresponding H atom reaction k 0,H =3.90x10 -32 cm 6 molecules -2 s -1 . The average value of the spin exchange rate constants in the 2.5-58 atm pressure range, k SE = (3.16±0.06)x10 -10 cm 3 molecule -1 s -1 , is in good agreement with previous values obtained by transverse field μSR. (orig.)

  14. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.

    Science.gov (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2015-12-17

    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.

  15. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.

    1976-01-01

    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  16. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    KAUST Repository

    Fornander, Louise H; Renodon-Corniè re, Axelle; Kuwabara, Naoyuki; Ito, Kentaro; Tsutsui, Yasuhiro; Shimizu, Toshiyuki; Iwasaki, Hiroshi; Nordé n, Bengt; Takahashi, Masayuki

    2013-01-01

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure

  17. Thermochemical study of deuterium exchange reactions in water-alcohol and alcohol-alcohol systems

    International Nuclear Information System (INIS)

    Khurma, J.R.; Fenby, D.V.

    1979-01-01

    Molar excess enthalpies of water-alcohol systems have been analyzed to give equilibrium constants and enthalpies of the reactions 2ROH + D 2 O = 2ROD + H 2 O (R = CH 3 , C 2 H 5 , n-C 3 H 7 ). The equilibrium constants are significantly greater than the ''random'' value. Molar excess enthalpies of alcohol-alcohol systems have been analyzed to give enthalpies of reactions ROH + R'OD = ROD + R'OH. The enthalpies of water-alcohol and alcohol-alcohol exchange reactions form a self-consistent set and are in good agreement with values from earlier studies. Molar excess enthalpies at 298.15 K are reported for n-C 3 H 7 OH and n-C 3 H 7 OD with H 2 O, D 2 O, CH 3 OH, CH 3 OD, C 2 H 5 OH, and C 2 H 5 OD

  18. Measurement of exclusive hypercharge-exchange reactions at 35 to 140 GeV/c

    International Nuclear Information System (INIS)

    Arenton, M. W.; Ayres, D.S.; Cohen, D.

    1978-07-01

    Data on the reactions π + p → K + Σ + and π + p → K + Y* + were obtained using the Fermilab Single Arm Spectrometer Facility at incident π + momenta of 35, 70, and 140 GeV/c for momentum transfers vertical bar t vertical bar less than or approximately equal to 1 GeV 2 . The line-reversed reactions K - p → π - Σ + and K - p → π - Y* + were also studied at 70 GeV/c with the same apparatus in order to test exchange degeneracy of the K*(890) and K**(1420) trajectories. Preliminary results on the first set of reactions at 70 GeV/c are presented and found to be in qualitative agreement with the model of Navelet and Stevens

  19. Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies.

    Science.gov (United States)

    Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul

    2016-09-21

    Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

  20. Strong Metal Support Interaction of Pt and Ru Nanoparticles Deposited on HOPG Probed by the H-D Exchange Reaction

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta M.; Dahl, Søren; Chorkendorff, Ib

    2012-01-01

    The interaction between metals and support is investigated in the case of 50 Å Pt and 50 Å Ru films deposited on a HOPG substrate. The films are prepared by electron beam physical vapor deposition and annealed in UHV to temperatures up to 700 °C. The equilibrium hydrogen exchange rate between...... adsorbed and gas phase at 1 bar is measured before and after annealing. The rate is measured in the temperature range of 40–200 °C at 1 bar, by utilization of the H-D exchange reaction. Experiments are performed on fresh cleaved and sputtered HOPG, which give similar results. We find that annealing...... the films from 150 up to 700 °C increases the amount of carbon present in the films up to 95%, as derived by surface analysis, indicating the formation of a carbon layer on top of the metal films. The exchange rate decreases dramatically with increasing carbon content on the films for both metals, pointing...

  1. Exchanged cations and water during reactions in polypyrrole macroions from artificial muscles.

    Science.gov (United States)

    Valero, Laura; Otero, Toribio F; Martínez, José G

    2014-02-03

    The movement of the bilayer (polypyrrole-dodecylbenzenesulfonate/tape) during artificial muscle bending under flow of current square waves was studied in aqueous solutions of chloride salts. During current flow, polypyrrole redox reactions result in variations in the volumes of the films and macroscopic bending: swelling by reduction with expulsion of cations and shrinking by oxidation with the insertion of cations. The described angles follow a linear function, different in each of the studied salts, of the consumed charge: they are faradaic polymeric muscles. The linearity indicates that cations are the only exchanged ions in the studied potential range. By flow of the same specific charge in every electrolyte, different angles were described by the muscle. The charge and the angle allow the number and volume of both the exchanged cations and the water molecules (related to a reference) between the film to be determined, in addition to the electrolyte per unit of charge during the driving reaction. The attained apparent solvation numbers for the exchanged cations were: 0.8, 0.7, 0.6, 0.5, 0.5, 0.4, 0.25, and 0.0 for Na(+), Mg(2+), La(3+), Li(+), Ca(2+), K(+), Rb(+), and Cs(+), respectively. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. EXFOR systems manual: Nuclear reaction data exchange format. Revision 97/1

    International Nuclear Information System (INIS)

    McLane, V.

    1997-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Center Network. In addition to storing the data and its' bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility rather than optimization of data processing in order to meet the diverse needs of the nuclear reaction data centers. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine)

  3. Recyclable surfaces for amine conjugation chemistry via redox reaction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Inseong; Yeo, Woon Seok [Dept. of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Bae, Se Won [Green Materials and Process Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2017-02-15

    In this study, we extended this strategy to present a switchable surface that allows surface functionalization and removal of functional groups repeatedly. The substrate presenting a benzoquinone acid group is first used to immobilize with an amine-containing (bio)molecule using well-known conjugation chemistry. The benzoquinone group is then converted to the corresponding hydroquinone by treating with a reducing agent. We have described a strategy for the dynamic control of surface properties with recyclability via a simple reduction/ oxidation reaction. A stimuli-responsive quinone derivative was harnessed for the repeated immobilization and release of (bio)molecules, and thus, for the repeated dynamic change of the surface properties according to the characteristics of the immobilized (bio)molecules.

  4. Complex ion kinetics. Reaction rates on ion-exchange resins compared to those in water

    International Nuclear Information System (INIS)

    Liss, I.B.; Murmann, R.K.

    1975-01-01

    A comparison has been made between the rates in water and on an ion-exchange resin for the aquation of [(NH 3 ) 5 CoOReO 3 ] 2+ and [(H 2 O) 5 CrCl] 2+ and for the 18 O isotopic exchange of water with [(NH 3 ) 5 Co(OH 2 )] 3+ and ReO 4 - . The rate of water exchange on [(NH 3 ) 5 Co(OH 2 )] 3+ was not changed by association with Dowex 50W resins. Aquation of [(NH 3 ) 5 CoOReO 3 ] 2+ and water exchange on ReO 4 - had modified pH dependencies when associated with a resin. With the cobalt complex the rates were faster on the resin in the acidic region and slower on the resin in the basic region. A new term in the rate equation was observed when ReO 4 - was on the resin, first order in H + , while the other terms appear to be unchanged. Aquation of [(H 2 O) 5 CrCl] 2+ was much slower when it was absorbed on the resin. This was related to the known ionic strength effect of the reaction. (auth)

  5. Controlled growth of gold nanoparticles in zeolite L via ion-exchange reactions and thermal reduction processes

    KAUST Repository

    Zeng, Shangjing; Ding, Shuang; Li, Shangyu; Wang, Runwei; Zhang, Zongtao

    2014-01-01

    The growth of gold nanoparticles in zeolite can be controlled using ion-exchange reactions and thermal reduction processes. We produce a number of different sizes of the gold nanoparticles with the particle size increasing with increased temperature

  6. Photochemical exchange reactions of thymine, uracil and their nucleosides with selected amino acids

    International Nuclear Information System (INIS)

    Shetlar, M.D.; Taylor, J.A.; Hom, K.

    1984-01-01

    The photoinduced exchange reactions of thymine with lysine at basic pH, using 254 nm light, have been studied. Three products have been isolated, namely, 6-amino-2-(1-thyminyl)hexanoic acid (Ia), 2-amino-6-(1-thyminyl)hexanoic acid (IIa) and 1-amino-5-(1-thyminyl)pentane (IIIa). Compound IIIa was shown to be a secondary product, produced by photochemical decarboxylation of Ia. Photochemical reaction of thymine with glycine and alanine at basic pH led, respectively, to formation of 2-(1-thyminyl)acetic acid (Ic) and 2-(1-thyminyl)propionic acid (Id). Compounds Ic and Id underwent photolysis to produce the decarboxylated secondary products 1-methylthymine and 1-ethylthymine, respectively. Thymidine reacts photochemically with glycine and alanine to produce the same products. Irradiation of DNA in the presence of lysine at basic pH led to the formation of the same products formed in the thymine-lysine system, namely Ia, IIa and IIIa. Uracil was found to undergo analogous photochemical exchange reactions with lysine to form 6-amino-2-(1-uracilyl)hexanoic acid (Ib), and 2-amino-6-(1-uracilyl)hexanoic acid (IIb). Compound Ib was found to undergo photodecarboxylation to form 1-amino-5-(1-uracilyl)pentane (IIIb), analogous to the secondary photoreaction of Ia. Photoreaction of uracil with 1,5-diaminopentane (cadaverine) likewise led to formation of IIIb. (author)

  7. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  8. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    Science.gov (United States)

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reaction and Aggregation Dynamics of Cell Surface Receptors

    Science.gov (United States)

    Wang, Michelle Dong

    This dissertation is composed of both theoretical and experimental studies of cell surface receptor reaction and aggregation. Project I studies the reaction rate enhancement due to surface diffusion of a bulk dissolved ligand with its membrane embedded target, using numerical calculations. The results show that the reaction rate enhancement is determined by ligand surface adsorption and desorption kinetic rates, surface and bulk diffusion coefficients, and geometry. In particular, we demonstrate that the ligand surface adsorption and desorption kinetic rates, rather than their ratio (the equilibrium constant), are important in rate enhancement. The second and third projects are studies of acetylcholine receptor clusters on cultured rat myotubes using fluorescence techniques after labeling the receptors with tetramethylrhodamine -alpha-bungarotoxin. The second project studies when and where the clusters form by making time-lapse movies. The movies are made from overlay of the pseudocolored total internal reflection fluorescence (TIRF) images of the cluster, and the schlieren images of the cell cultures. These movies are the first movies made using TIRF, and they clearly show the cluster formation from the myoblast fusion, the first appearance of clusters, and the eventual disappearance of clusters. The third project studies the fine structural features of individual clusters observed under TIRF. The features were characterized with six parameters by developing a novel fluorescence technique: spatial fluorescence autocorrelation. These parameters were then used to study the feature variations with age, and with treatments of drugs (oligomycin and carbachol). The results show little variation with age. However, drug treatment induced significant changes in some parameters. These changes were different for oligomycin and carbachol, which indicates that the two drugs may eliminate clusters through different mechanisms.

  10. Nucleon charge exchange reaction and antiproton elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kronenfeld, J.

    1985-02-01

    This work treats the medium energy nuclear (p,n) charge exchange reaction to analog states and the low energy elastic scattering of antiprotons and investigates the central aspects of a microscopic theory based on multiple-scattering series which are pertinent to these reactions. A two-step term of the Distorted Wave Impulse Approximation (DWIA) in treating the (p,n) reaction, was included. For the very absorptive p-bar interaction with nuclei we conjecture that a partial infinite summation, constituing a renormalization of the single scattering term of the optical potential series provides the dominant feature of this interaction. In this work the excitation of analog states is calculated and it was found that the (p,n) reaction is described fairly well by the DWIA. In the first part of the work the (p,n) reaction in the energy range 100-200 MeV was treated. The DWIA calculations were based on eikonalization. In the second part of the work the p-barA interaction with the selfconsistent scheme mentioned above, for scattering energies 30-120 MeV, was examined. (author)

  11. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions

    International Nuclear Information System (INIS)

    Schatz, G.C.; Walch, S.P.; Wagner, A.F.

    1980-01-01

    We present ab initio (GVB--POL--CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH 4 (CD 4 ) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF--SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL--CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL--CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL--CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL--CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH 3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange

  12. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  13. Plasma Deposited Thin Iron Oxide Films as Electrocatalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lukasz JOZWIAK

    2017-02-01

    Full Text Available The possibility of using plasma deposited thin films of iron oxides as electrocatalyst for oxygen reduction reaction (ORR in proton exchange membrane fuel cells (PEMFC was examined. Results of energy-dispersive X-ray spectroscopy (EDX and X-ray photoelectron spectroscopy (XPS analysis indicated that the plasma deposit consisted mainly of FeOX structures with the X parameter close to 1.5. For as deposited material iron atoms are almost exclusively in the Fe3+ oxidation state without annealing in oxygen containing atmosphere. However, the annealing procedure can be used to remove the remains of carbon deposit from surface. The single cell test (SCT was performed to determine the suitability of the produced material for ORR. Preliminary results showed that power density of 0.23 mW/cm2 could be reached in the tested cell.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14406

  14. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  15. Kinetics and mechanism of ligand-exchange reactions of Cd(II) chelates

    Energy Technology Data Exchange (ETDEWEB)

    Nivorozhkin, L.E.; Kalabin, G.A.; Nivorozhkin, A.L.; Valeev, R.B.; Minkin, V.I.

    1987-03-01

    Tetrahedral Cd(II) bis(5-thio(or seleno)pyrazole-4-carboxaldiminates) of types II and III have been synthesized for the first time. The kinetics of the degenerate ligand exchange and enantiomerization of the complexes obtained have been studied by dynamic /sup 111/Cd, /sup 77/Se, and /sup 1/H (s = 1/2) NMR. The rate of intramolecular enantiomerization (k = 1/tau) is more than an order of magnitude greater than the corresponding values for processes of degenerate ligand exchange (a second-order reaction) determined from the dynamics of the averaging of the /sup 111/Cd-/sup 77/Se and /sup 111/Cd-N=CH spin-spin coupling constants. The cleavage and formation processes of the Cd-Se and Cd-N bonds are isoenergetic (..delta.. G/sub 298//sup not equal to/ = 14.4 kcal/mole for chelate II with X = Se and R = CH/sub 2/C/sub 6/H/sub 5/). The free energies of activation of degenerate ligand exchange determined form the dynamics of the averaging of the /sup 111/Cd N=CH spin-spin coupling constant increase from 12.7 to 17.9 kcal/mole along the following series for R: C/sub 2/H/sub 5/ < Ar < CH/sub 2/C/sub 6/H/sub 5/ < t-C/sub 4/H/sub 9/ < cyclo-C/sub 6/H/sub 11/. Replacement of the sulfur atom in the chelate ring by selenium results in increases in the rates of ligand exchange. A mechanism of degenerate ligand exchange has been proposed.

  16. Novel support effects on the mechanism of propene-deuterium: Addition and exchange reactions over dispersed ZrO2

    International Nuclear Information System (INIS)

    Naito, Shuichi; Tanimoto, Mitsutoshi

    1995-01-01

    The effect on the rate and mechanisms of propene-deuterium reactions of dispersing ZrO 2 on various supports such as silica, alumina, and titanium dioxide has been studied by microwave spectroscopic analysis of monodeuteropropene as well as by kinetic investigation. By dispersal of ZrO 2 on these supports, the rate of the C 3 H 6 -D 2 reactions is increased considerbly compared to that over unsupported ZrO 2 , with the decrease of activation energy. Hydrogen exchange in propene proceeds simultaneously with addition via the associative mechanism through n-propyl and s-propyl intermediates. Through XPS analysis of ZrO 2 /SiO 2 , it was found that a monolayer of ZrO 2 is formed over the silica support. The monolayer catalyst exhibits catalytic behavior quite different from that of unsupported ZrO 2 . On the other hand, alumina surfaces modified by ZrO 2 layers may be the main active sites in the case of ZrO 2 /Al 2 O 3 . The marked enhancement of the reaction rate in the lower loading region of ZrO 2 /TiO 2 may be explained by the strong interaction of atomically dispersed zirconium ions with active centers on TiO 2 . 28 refs., 10 figs., 1 tab

  17. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    International Nuclear Information System (INIS)

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional 31 P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K eq , the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process could be realized

  18. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    Science.gov (United States)

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  19. Investigations Of Surface-Catalyzed Reactions In A Mars Mixture

    Science.gov (United States)

    Dougherty, Max; Owens, W.; Meyers, J.; Fletcher, D. G.

    2011-05-01

    In the design of a thermal protection system (TPS) for a planetary entry vehicle, accurate modeling of the trajectory aero-heating poses a significant challenge owing to large uncertainties in chemical processes taking place at the surface. Even for surface-catalyzed reactions, which have been investigated extensively, there is no consensus on how they should be modeled; or, in some cases, on which reactions are likely to occur. Current TPS designs for Mars missions rely on a super-catalytic boundary condition, which assumes that all dissociated species recombine to the free stream composition.While this is recognized to be the the most conservative approach, discrepancies in aero-heating measurements in ground test facilities preclude less conservative design options, resulting in an increased TPS mass at the expense of scientific pay- load.Using two-photon absorption laser induced fluorescence in a 30 kW inductively coupled plasma torch facility, preliminary studies have been performed to obtain spatially-resolved measurements of the dominant species in a plasma boundary layer for a Martian atmosphere mixture over catalytic and non-catalytic surfaces.

  20. Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce; Alivisatos, A. Paul

    2009-07-06

    Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.

  1. Aprotic solvent systems provide mechanistic windows for biomolecular reactions: nucleic acid proton exchange

    International Nuclear Information System (INIS)

    McConnell, B.; Tan, A.

    1986-01-01

    Detection of general acid-base catalysis of proton transfer reactions in aqueous cytidine (or adenosine) is completely obscured by the highly reactive endocyclic protonated species of the nucleobase, whose amino proton lifetime is much shorter than that of the neutral form. In aqueous solution, protonation of the nucleobase always accompanies protonation of the buffer catalyzing exchange. However, in DMSO/water mixtures this is not the case; aqueous protonated acetate or chloroacetate can be added to cytidine in DMSO solutions without further dissociation of the buffer or significant protonation of cytidine N-3. Under these conditions general acid catalysis is observed, which involves an H-bonded complex between cytidine (N-3) and the buffer acid. Increased amino proton exchange in response to H-bond donation to C(N-3) is further suggested by increased 1 H NMR saturation-recovery rates with the formation of G-C base-pairs in DMSO and by the inverse dependence of amino proton exchange on nucleoside concentration

  2. Positional isotope exchange analysis of the uridine-diphosphoglucose pyrophosphorylase reaction

    International Nuclear Information System (INIS)

    Hester, L.; Hilscher, L.; Raushel, F.M.

    1986-01-01

    The enzyme uridine-diphosphoglucose pyrophosphorylase catalyzes the reversible formation of pyrophosphate and UDP-glucose from UTP and glc-1P. The positional isotope exchange reaction was measured using oxygen-18 labelled UTP. The synthesis of [β- 18 O 2 , βγ- 18 O, γ- 18 O 3 ]UTP was accomplished by the coupled activities of carbamate kinase, nucleoside diphosphate kinase, and nucleoside monophosphate kinase. The exchange of an oxygen-18 from a β-nonbridge position of the labelled UTP to the αβ-bridge position was measured with 31 P NMR. The ratio of the rate of net substrate turnover and the positional isotope exchange rate was measured as a function of the initial glc-1P concentration. This ratio was found to increase with an increasing concentration of glc-1P. The intercept at low glc-1P was found to be 1.2 and the slope was 4.5 mM -1 . These results have been interpreted to mean that this enzyme has an ordered addition of substrates. The lower limit for the release of pyrophosphate from E-UDPG-PP/sub i/ relative to V 2 is 1.2. The rate constant for the release of UTP from E-UTP relative to V 1 is 9

  3. Tritons for the study of the charge-exchange reactions with the LHE streamer chamber: status and some possibilities

    International Nuclear Information System (INIS)

    Avramenko, S.A.; Belikov, Yu.A.; Golokhvastov, A.I.; Kirillov, A.D.; Khorozov, S.A.; Komolov, L.N.; Lukstin'sh, Yu.; Rukoyatkin, P.A.

    1997-01-01

    The 6 and 9 GeV/c secondary tritons, produced in the 4 He+A→ 3 H+X reaction, were used to study the charge-exchange reactions using a streamer chamber in magnetic field. The triton formation schemes, the beam parameters achieved as well as a way to reduce the beam momentum spread are given in the paper

  4. The deuterium-exchange reaction between water and hydrogen with the thin-film hydrophobic catalyst

    International Nuclear Information System (INIS)

    Yamashita, Hisao; Mizumoto, Mamoru; Matsuda, Shimpei

    1985-01-01

    The deuterium-exchange reaction between water and hydrogen with a hydrophobic catalyst was studied. The hydrophobic catalyst was composed of platinum as an active component and porous poly(tetrafluoroethylene) (PTFE) as a support. The PTFE support was in two forms, i.e., (a) a pellet and (b) a thin-film with the thickness of 50 μm. The primary purpose of the thin film hydrophobic catalyst was to reduce the platinum usage in the reactor. The activity of the catalyst was measured in a trickle bed reactor at atmospheric pressure and temperature of 20 ∼ 70 deg C. It has been found that the employment of the thin-film catalyst reduced the platinum usage to 1/5 of the reactor in the case of using a conventional catalyst. Platinum particles on the thin-film catalyst work efficiently because the reactants were easily diffused to the active sites. It has also been found that the isotopic exchange rate with the thin-film catalyst increased with the increase in the ratio of liquid/gas and increased with the rise of the reaction temperature. It was found from an endurance test that the activity of the thin-film catalyst decreased gradually due to the condensation of water vapor in the catalyst, but was regenarated by heating the catalyst to remove the condensed water. (author)

  5. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  6. Microanalysis of solid surfaces by nuclear reactions and elastic scattering

    International Nuclear Information System (INIS)

    Agius, B.

    1975-01-01

    The principles involved in the use of monokinetic light ions beams, of about 1MeV, to the study of surface phenomena are presented. Two complementary techniques are described: the use of elastic scattering, which allows the analysis of impurity elements heavier than the substrate components and the use of nuclear reactions specific of light elements. Typical sensitivities are of the order of 10 11 at/cm 2 in good cases. The depth resolution varies, according to the cases, from about a hundred angstroems to a few thousand angstroems [fr

  7. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  8. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  9. Surface polyPEGylation of Eu{sup 3+} doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Heng, Chunning [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Huang, Qiang; Mao, Liucheng; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-03-31

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu{sup 3+} doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu{sup 3+} doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface

  10. Surface polyPEGylation of Eu"3"+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-01-01

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu"3"+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu"3"+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated

  11. Stock Price Reaction to Announcements of Right Issues and Debenture Issues: Evidence from Colombo Stock Exchange

    Directory of Open Access Journals (Sweden)

    Udani Chathurika Edirisinghe

    2015-02-01

    Full Text Available This study investigates the stock market reaction for right issues and debenture issues of Colombo Stock Exchange (CSE during the period of 2005 to 2011 while providing evidence for the research question “how do stock prices react to the debt and equity issue announcements of listed companies in CSE?” In investigating the ex-ante and ex-post market reactions the study employees event study methodology, while predicting abnormal returns, based on three alternative normal/expected returns modeling methods, namely Mean Adjusted Model, Market Adjusted Model, and Capital Asset Pricing Model. When testing the alternative hypothesis, whether stock prices significantly reacts to the announcement of right & debenture issues, results of all models show positive market reaction during the 30 days prior to the announcement and react negatively from 2 days after the announcements for right issues, but for debenture issues market reacted negatively during the period prior to debenture issues and continue to do the same during the post event period. Although the magnitude and significance of abnormal return generated through three alternatives methods differ, the pattern of the CAAR of all models are similar. Thus, as far as the speed of the price adjustment is concerned it seems that the CSE is not efficient.

  12. Study on the surface reaction of LaNi{sub 5} alloy during discharge process in KOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Tan Zuxian [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yang Yifu [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: yang-y-f1@vip.sina.com; Jiang Fengshan [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shao Huixia [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2006-10-05

    A new method for studying surface reaction of LaNi{sub 5} absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi{sub 5} alloy was analyzed by comparing the tip current (I {sub tip}) versus substrate potential (E {sub sub}) curve, which reflects the exchange of H{sup +} or OH{sup -} between the alloy surface and the solution, with the substrate current (I {sub sub}) versus substrate potential (E {sub sub}) curve, which reflects the exchange of electron on the LaNi{sub 5} alloy surface. The results showed that the OH{sup -} adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH{sup -} helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected.

  13. Study on the surface reaction of LaNi{sub 5} alloy during discharge process in KOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zuxian; Yang, Yifu; Jiang, Fengshan; Shao, Huixia [Wuhan University, Wuhan (China). Department of Chemistry

    2006-10-05

    A new method for studying surface reaction of LaNi{sub 5} absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi{sub 5} alloy was analyzed by comparing the tip current (I{sub tip}) versus substrate potential (E{sub sub}) curve, which reflects the exchange of H{sup +} or OH{sup -} between the alloy surface and the solution, with the substrate current (I{sub sub}) versus substrate potential (E{sub sub}) curve, which reflects the exchange of electron on the LaNi{sub 5} alloy surface. The results showed that the OH{sup -} adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH{sup -} helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected. (author)

  14. Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization and H-D exchange reactions.

    Science.gov (United States)

    Polak, Micha; Rubinovich, Leonid

    2011-10-06

    Nanoconfinement entropic effects on chemical equilibrium involving a small number of molecules, which we term NCECE, are revealed by two widely diverse types of reactions. Employing statistical-mechanical principles, we show how the NCECE effect stabilizes nucleotide dimerization observed within self-assembled molecular cages. Furthermore, the effect provides the basis for dimerization even under an aqueous environment inside the nanocage. Likewise, the NCECE effect is pertinent to a longstanding issue in astrochemistry, namely the extra deuteration commonly observed for molecules reacting on interstellar dust grain surfaces. The origin of the NCECE effect is elucidated by means of the probability distributions of the reaction extent and related variations in the reactant-product mixing entropy. Theoretical modelling beyond our previous preliminary work highlights the role of the nanospace size in addition to that of the nanosystem size, namely the limited amount of molecules in the reaction mixture. Furthermore, the NCECE effect can depend also on the reaction mechanism, and on deviations from stoichiometry. The NCECE effect, leading to enhanced, greatly variable equilibrium "constants", constitutes a unique physical-chemical phenomenon, distinguished from the usual thermodynamical properties of macroscopically large systems. Being significant particularly for weakly exothermic reactions, the effects should stabilize products in other closed nanoscale structures, and thus can have notable implications for the growing nanotechnological utilization of chemical syntheses conducted within confined nanoreactors.

  15. Reaction dynamics of small molecules at metal surfaces

    International Nuclear Information System (INIS)

    Samson, P.A.

    1999-09-01

    The dissociation-desorption dynamics of D 2 upon the Sn/Pt(111) surface alloy are dependent on the surface concentration of Sn. The p(2 x 2) Sn/Pt(111) alloy surface (Θ Sn = 0.25 ML), is initially ∼30 times less reactive towards D 2 adsorption than clean Pt(111). On the (√3 x √3) R30 deg Sn/Pt(111) alloy surface (Θ Sn = 0.33 ML), increased inhibition of D 2 adsorption is reported, with S o ∼ 10 -5 at low energy, coinciding with the loss of stable Pt 3 hollow sites and a significant reduction in the D atom binding energy. Sticking on the √3 alloy is activated with an increased energy threshold of ∼280 meV, with no evidence that vibration enhances dissociation. The barrier to dissociation remains in the entrance channel before the D 2 bond begins to stretch. Vibrational excitation is, however, observed in nitrogen desorption from the catalytic reaction of NO + H 2 over Pd(110). For a surface at 600 K, N 2 vibrational state population ratios of P(v=1/v=0) = 0.50 ± 0.05 and P(v=2/v=0) = 0.60 ± 0.20 are reported. Desorption occurs via the N(ad) + N(ad) recombination channel with little energy released into translation and rotation. The translational energy release observed is dependent on the N 2 vibrational state, with translational temperatures of 425 K, 315 K and 180 K reported for the v=0, 1 and 2 states respectively. Sub-thermal energy releases and normally directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d NN responsible for the product vibrational excitation. Although N 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (∼10 -6 to 10 -7 ). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe 4 N. Scanning tunnelling

  16. Poisoning by carbon monoxide in the hydrogen exchange reaction between deuterium gas and water preadsorbed on a platinum--alumina catalyst

    International Nuclear Information System (INIS)

    Iida, I.; Tamaru, K.

    1979-01-01

    Poisoning by carbon monoxide in the exchange reaction between deuterium and the water preadsorbed on a platinum--alumina catalyst was studied, by measuring not only the rate of reaction but also its kinetic behavior and the adsorption of reactants on the catalyst surface. The shape of the poisoning curve is closely associated with the kinetic behavior and exhibited an abrupt change on freezing the adsorbed water below 273 0 K. When the rate is proportional to deuterium pressure and independent of the amount of water adsorbed, the exchange rate dropped sharply by carbon monoxide adsorbed of a few percent coverage without any marked changes in the amount and the rate of hydrogen adsorption on the platinum surface. However, at temperatures lower than 273 0 K and at higher deuterium pressures, the rate depends not on the deuterium pressure but on the amount of water adsorbed. The migration of hydrogen in or through the adsorbed water is seemingly sufficiently suppressed by freezing to control the overall reaction rate. In this case, a small amount of adsorption of carbon monoxide did not show any toxicity, but then a steep poisoning started accompanying a change in the kinetic behavior. It was accordingly demonstrated that the mechanism of the reaction may be better understood by studying poisoning and measuring adsorption, overall rate, and kinetic behavior

  17. Non-coherent contributions in charge-exchange reactions and η-η{sup '} mixing

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasov, M.L. [NRC ' ' Kurchatov Institute' ' , Institute for High Energy Physics, Protvino (Russian Federation)

    2017-05-15

    We analyse K{sup -}p → (η,η{sup '},π{sup 0})Λ on the basis of the fit of data in a wide region of energies, and π{sup -}p → (η,η{sup '})n at the energies of GAMS-4π. We show that disagreements between the data and the predictions of Regge theory may be explained by the mode change of summation of intermediate contributions at increasing energy, from coherent to non-coherent. A method of experimental measurement of the non-coherent contributions is proposed. On the basis of available data on the charge-exchange reactions the η-η{sup '} mixing is estimated. (orig.)

  18. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology

    International Nuclear Information System (INIS)

    Ma, Lingling; Han, Ying; Sun, Kaian; Lu, Jie; Ding, Jincheng

    2015-01-01

    Highlights: • As lipid source, acidified oil are from industrial wastes for renewable energy. • The predicted conversion rate of FFAs was 75.24% under the RSM optimized conditions. • The adsorption system was employed to remove the water produced to shift the equilibrium toward ethyl ester production. • Maximum conversion rate of 98.32% was obtained using adsorption system at optimum process parameters. • Compared with tradition methods, molecular sieve dehydration method improved the conversion rate by 23.08%. - Abstract: The esterification of acidified oil with ethanol catalyzed by sulfonated cation exchange resins (SCER) was optimized using the response surface methodology (RSM). The effects of the molar ratio of ethanol to acidified oil, reaction time and catalyst loading on the conversion rate of free fatty acids (FFAs) were investigated at the temperature of the boiling point of ethanol. Results showed that the highest conversion rate of 75.24% was obtained at the molar ratio of ethanol to acidified oil of 23.2, reaction time of 8.0 h and catalyst loading of 35.0 wt.%. Moreover, the conversion rate of FFAs was increased to 98.32% by using a water adsorption apparatus under the RSM optimized conditions. Scanning electronic microscopic–energy dispersive spectrometric (SEM–EDS), X-ray diffractometric (XRD) and thermogravimetric–derivative thermogravimetric (TG–DTG) analyses confirmed that the morphology of catalysts did not change much and the mechanical and thermal stabilities were still good after the reaction. Furthermore, SCER exhibited a high catalytic activity and stability after being reused for five successive times. The fuel properties of the biodiesel were comparable to that of ASTM, EN and GB biodiesel standard

  19. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.

    1984-01-01

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  20. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  1. Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes.

    Science.gov (United States)

    Téllez, Helena; Druce, John; Kilner, John A; Ishihara, Tatsumi

    2015-01-01

    The surface and near-surface chemical composition of electroceramic materials often shows significant deviations from that of the bulk. In particular, layered materials, such as cation-ordered LnBaCo2O(5+δ) perovskites (Ln = lanthanide), undergo surface and sub-surface restructuring due to the segregation of the divalent alkaline-earth cation. These processes can take place during synthesis and processing steps (e.g. deposition, sintering or annealing), as well as at temperatures relevant for the operation of these materials as air electrodes in solid oxide fuel cells and electrolysers. Furthermore, the surface segregation in these double perovskites shows fast kinetics, starting at temperatures as low as 400 °C over short periods of time and leading to a decrease in the transition metal surface coverage exposed to the gas phase. In this work, we use a combination of stable isotope tracer labeling and surface-sensitive ion beam techniques to study the oxygen transport properties and their relationship with the surface chemistry in ordered LnBaCo2O(5+δ) perovskites. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS) combined with (18)O isotope exchange was used to determine the oxygen tracer diffusion (D*) and surface exchange (k*) coefficients. Furthermore, Low Energy Ion Scattering (LEIS) was used for the analysis of the surface and near surface chemistry as it provides information from the first mono-atomic layer of the materials. In this way, we could relate the compositional modifications (e.g. cation segregation) taking place at the electrochemically-active surface during the exchange at high temperatures and the oxygen transport properties in double perovskite electrode materials to further our understanding of the mechanism of the surface exchange process.

  2. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates

    Science.gov (United States)

    Gao, Bing; Zhang, Linda; Zheng, Qinheng; Zhou, Feng; Klivansky, Liana M.; Lu, Jianmei; Liu, Yi; Dong, Jiajia; Wu, Peng; Sharpless, K. Barry

    2017-11-01

    Polysulfates and polysulfonates possess exceptional mechanical properties making them potentially valuable engineering polymers. However, they have been little explored due to a lack of reliable synthetic access. Here we report bifluoride salts (Q+[FHF]-, where Q+ represents a wide range of cations) as powerful catalysts for the sulfur(VI) fluoride exchange (SuFEx) reaction between aryl silyl ethers and aryl fluorosulfates (or alkyl sulfonyl fluorides). The bifluoride salts are significantly more active in catalysing the SuFEx reaction compared to organosuperbases, therefore enabling much lower catalyst-loading (down to 0.05 mol%). Using this chemistry, we are able to prepare polysulfates and polysulfonates with high molecular weight, narrow polydispersity and excellent functional group tolerance. The process is practical with regard to the reduced cost of catalyst, polymer purification and by-product recycling. We have also observed that the process is not sensitive to scale-up, which is essential for its future translation from laboratory research to industrial applications.

  3. PRICE REACTION TO CORPORATE GOVERNANCE RATING ANNOUNCEMENTS AT THE ISTANBUL STOCK EXCHANGE

    Directory of Open Access Journals (Sweden)

    Aslıhan BOZCUK

    2010-01-01

    Full Text Available The purpose of this paper is to investigate the price reaction to corporate governance rating announcements at the Istanbul Stock Exchange and to identify the factors which could be driving the results. Using an event study analysis framework, the cumulative abnormal returns (AR are calculated for various event windows surrounding the announcement day for each firm. The average AR is 0.5% on announcement day, followed by all positive average cumulative ARs for the next 18 days following the announcement. In the multivariate regression analysis, a number of variables are used to proxy for factors suggested as relevant by the agency theory and the corporate governance literature; such as the size of the Audit Committee, the size of the Board of Directors, Corporate Governance Rating of each firm, number of non-executive members on the board, percentage of firm’s stock traded on the market, number of blockholders, family ownership, the price-earnings ratio, the market-to-book ratio and firm size. Audit committee size (P: 0.012 and board size (P: 0.043 together explained 32% of the variation in announcement day returns (F: 5.215, P: 0.018. Surprisingly, the corporate governance rating per se was not found to be significant. Overall, the price reaction on announcement day tends to be higher for firms with larger boards and smaller audit committees.

  4. Ligand exchange reactions of the heme group in hemoglobin and myoglobin as studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Raap, I.A.

    1978-01-01

    In this thesis, the kinetic aspects of the ligand exchange reactions of hemoglobin are studied using the pulse radiolysis technique, in particular, the reactions of hydrated electrons with methemoglobin. A hitherto unobserved transient state of the heme group is observed which appears immediately after the rapid reduction process. The absorption spectrum of this new species has the characteristics of a ferrous low-spin state and can therefore be ascribed to the formation of a hemochrome non-equilibrium state. The subsequent relaxation of this intermediate structure into a deoxy-conformation is dependent on the amount of proton activity in the solution and on the presence of organic and inorganic phosphate anions. The final absorption spectrum of the heme group is shown to correspond to a ferrous high-spin state in the relaxed quaternary conformation. This is in agreement with the kinetics observen the binding of carbon monoxide and oxygen to partially reduced methemoglobin. At reduction degrees of methemoglobin as well as of valncy 8ybrids where there is an important contribution from species with two reduced subunits, the binding of carbon monoxide to hemoglobin occurs with on-rate constants characteristic for the tensed quaternary conformation. It is argued that this conformational change of hemoglobin (the R-to-T transition) takes place very rapidly, which suggests the participation of an activated relaxed conformation. In addition, it is found that there is a distinct heterogeneity in the binding of oxygen to partially reduced methemoglobin even at low degrees of reduction

  5. Thermal-hydraulic performance of the finned surface of a compact heat exchanger

    International Nuclear Information System (INIS)

    Errasti Cabrera, Michel

    2015-01-01

    In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values ​​of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)

  6. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  8. Unraveling the Reaction Chemistry of Icy Ocean World Surfaces

    Science.gov (United States)

    Hudson, R.; Loeffler, M. J.; Gerakines, P.

    2017-12-01

    The diverse endogenic chemistry of ocean worlds can be divided among interior, surface, and above-surface process, with contributions from exogenic agents such as solar, cosmic, and magnetospheric radiation. Bombardment from micrometeorites to comets also can influence chemistry by both delivering new materials and altering pre-existing ones, and providing energy to drive reactions. Geological processes further complicate the chemistry by transporting materials from one environment to another. In this presentation the focus will be on some of the thermally driven and radiation-induced changes expected from icy materials, primarily covalent and ionic compounds. Low-temperature conversions of a few relatively simple molecules into ions possessing distinct infrared (IR) features will be covered, with an emphasis on such features as might be identified through either orbiting spacecraft or landers. The low-temperature degradation of a few bioorganic molecules, such as DNA nucleobases and some common amino acids, will be used as examples of the more complex, and potentially misleading, chemistry expected for icy moons of the outer solar system. This work was supported by NASA's Emerging Worlds and Outer Planets Research programs, as well as the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  9. Quasiclassical trajectory study of the molecular beam kinetics of the deuterium atom--hydrogen halide exchange reactions

    International Nuclear Information System (INIS)

    Raff, L.M.; Suzukawa, H.H. Jr.; Thompson, D.L.

    1975-01-01

    Unadjusted quasiclassical trajectory computations have been carried out to simulate the molecular beam scattering of thermal D atom beams at 2800 degreeK crossed with beams of HCl and HI at 250 degreeK. Total reaction cross sections, energy partitioning distributions, and differential scattering cross sections have been computed for the exchange reactions D+HCl → DCl+H and D+HI → DI+H while total reaction cross sections are reported for the corresponding abstractions, i.e., D+HCl → HD+Cl and D+HI → HD+I. For the exchange reactions, the computed reaction cross sections are within the range estimated from the crossed beam experiments. The calculated average energy partitioned into relative translational motion of products is in near quantitative agreement with the beam results, and the predicted differential scattering cross sections appear to be in qualitative accord with the beam experiments. The over-all agreement between theory and experiment indicates that previously computed values for the thermal rate coefficients for the exchange reactions are of the right order and that a systematic error exists in the interpretation of photolysis data in the hydrogen--hydrogen halide systems

  10. Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    General mathematical relations are presented for the specular exchange factors, F S , of diffuse radiation exchange between the inner surfaces of a rectangular enclosure. Three of these surfaces are specular reflectors, diffuse emitters and the fourth surface is a diffuse reflector, diffuse emitter. This enclosure can be used as a transplant production unit with artificial lighting for electric energy saving purposes. An image system and the crossed string method are used to derive these relations. The resulting expressions are conceptually simple and similar to the commonly known expressions of the exchange factors between diffuse surfaces, F. The accuracy of the presented F S relations was examined for different numbers of multiple reflections, N, on the specular surfaces and for different aspect ratios (ratio of the width, w to the height, h). The results proved that the relations are accurate and strongly satisfy the well-known relation of the radiation exchange between enclosure surfaces and satisfy the reciprocity relation. For any aspect ratio, considering N of 150 between highly reflective surfaces (ρ = 0.99) is sufficient to estimate the F S factors without any possible error. Using specular reflecting surfaces in such cases significantly reduces the electric energy consumption used for lighting

  11. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  12. Relationship Between Equilibrium Hydrogen Pressure and Exchange Current for the Hydrogen Electrode-Reaction at Mmni(3.9-X)Mn(0.4)A1(X)Co(0.7) Alloy Electrodes

    NARCIS (Netherlands)

    Senoh, H.; Morimoto, K.; Inoue, H.; Iwakura, C.; Notten, P.H.L.

    2000-01-01

    We present a theoretical relationship between equilibrium hydrogen pressure and exchange current for the hydrogen electrode reaction which considers the degree of hydrogen coverage at the electrode surface. Electrochemical measurements at MmNi3.9–xMn0.4AlxCo0.7 (0 x 0.8) electrodes were performed to

  13. Potential energy surfaces for nucleon exchanging in dinuclear systems

    International Nuclear Information System (INIS)

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  14. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  15. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  16. A phenomenological study of the π- p → π0 n charge exchange reaction at high energy

    International Nuclear Information System (INIS)

    Michaud, Y.

    1995-01-01

    The aim of the study was to examine the behaviour of the proton-proton elastic scattering, for mass center energies around 10 GeV, and more especially to study the charge exchange reaction π - p → π 0 n for mass center energies between 3 and 20 GeV. A formalism based on the Glauber model has been used, and a Regge trajectory exchange term was introduced in the model in order to enable the description of the lower energy domain (inferior to 10 GeV) that is characterized by a large contribution of meson exchanges at the scattering amplitude. The Glauber model is then applied to the charge exchange reaction and the differential cross section is analyzed for a center mass energy comprised between 3 and 20 GeV, together with the polarization at 40 GeV/c. The approach is then validated through the study of the π - p → η n reaction. The size of the kernel of proton and pion components implied in the π - p → π 0 n reaction, is also investigated. 90 refs., 48 figs., 4 tabs., 5 appends

  17. Controlled growth of gold nanoparticles in zeolite L via ion-exchange reactions and thermal reduction processes

    KAUST Repository

    Zeng, Shangjing

    2014-09-01

    The growth of gold nanoparticles in zeolite can be controlled using ion-exchange reactions and thermal reduction processes. We produce a number of different sizes of the gold nanoparticles with the particle size increasing with increased temperature of the final heat treatment. © 2014 Elsevier B.V.

  18. Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions

    Science.gov (United States)

    Feng, Qi

    Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.

  19. Presolvated Electron Reaction with Methylacetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-atom Abstraction

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D.

    2015-01-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methylacetoacetate (MAA, CH3-CO-CH2-CO-OCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-CO-OCH3) in the temperature range (77 to ca. 170 K) have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-CO-OCH3. The ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylen protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-CO-OCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-CO-OCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments. PMID:25255751

  20. Pd-catalyzed coupling reaction on the organic monolayer: Sonogashira reaction on the silicon (1 1 1) surfaces

    International Nuclear Information System (INIS)

    Qu Mengnan; Zhang Yuan; He Jinmei; Cao Xiaoping; Zhang Junyan

    2008-01-01

    Iodophenyl-terminated organic monolayers were prepared by thermally induced hydrosilylation on hydrogen-terminated silicon (1 1 1) surfaces. The films were characterized by ellipsometry, contact-angle goniometry, and X-ray photoelectron spectroscopy (XPS). To modify the surface chemistry and the structure of the monolayers, the Sonogashira coupling reaction was performed on the as-prepared monolayers. The iodophenyl groups on the film surfaces reacted with 1-ethynyl-4-fluorobenzene or the 1-chloro-4-ethynylbenzene under the standard Sonogashira reaction conditions for attaching conjugated molecules via the formation of C-C bonds. It is expected that this surface coupling reaction will present a new method to modify the surface chemistry and the structure of monolayers

  1. Kinetics of the radiation-induced exchange reactions of H2, D2, and T2: a review

    International Nuclear Information System (INIS)

    Pyper, J.W.; Briggs, C.K.

    1978-01-01

    Mixtures of H 2 --T 2 or D 2 --T 2 will exchange to produce HT or DT due to catalysis by the tritium β particle. The kinetics of the reaction D 2 + T 2 = 2DT may play an important role in designing liquid or solid targets of D 2 --DT--T 2 for implosion fusion, and distillation schemes for tritium cleanup systems in fusion reactors. Accordingly, we have critically reviewed the literature for information on the kinetics and mechanism of radiation-induced self-exchange reactions among the hydrogens. We found data for the reaction H 2 + T 2 = 2HT in the gas phase and developed a scheme based on these data to predict the halftime to equilibrium for any gaseous H 2 + T 2 mixture at ambient temperature with an accuracy of +-10 percent. The overall order of the H 2 + T 2 = 2HT reaction is 1.6 based on an initial rate treatment of the data. The most probable mechanism for radiation-induced self-exchange reaction is an ion-molecule chain mechanism

  2. New magnetic materials obtained by ion-exchange reactions from non-magnetic layered perovskites

    International Nuclear Information System (INIS)

    Kageyama, H; Viciu, L; Caruntu, G; Ueda, Y; Wiley, J B

    2004-01-01

    New layered magnetic materials (MCl)Ca 2 Ta 3 O 10 (M = Cu, Fe), have been prepared by ion-exchange reactions of non-magnetic perovskite derivatives, ACa 2 Ta 3 O 10 (A = Rb, Li), in corresponding anhydrous molten salts. Powder x-ray diffraction patterns of the products are successfully indexed assuming tetragonal symmetry with cell dimensions a = 3.829 A and c = 15.533 A for Cu, and a = 3.822 A and c = 15.672 A for Fe. Being separated by the Ca 2 Ta 3 O 10 triple-layer perovskite slabs, the transition-metal chloride (MCl) network provides a two-dimensional magnetic lattice. Magnetic susceptibility measurements show that (CuCl)Ca 2 Ta 3 O 10 is in an antiferromagnetic state below 8 K, while (FeCl)Ca 2 Ta 3 O 10 has two anomalies at 91 and 125 K, suggesting successive phase transitions due to geometrical spin frustration

  3. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions.

    Science.gov (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-02-28

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  4. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  6. Beneficial Effect of Surface Decorations on the Surface Exchange of Lanthanum Strontium Ferrite and Dual Phase Composites

    DEFF Research Database (Denmark)

    Ovtar, Simona; Søgaard, Martin; Song, Jia

    2016-01-01

    . These perovskites possess a mixed ionic and electronic conductivity (MIEC), which can be highly beneficial for the processes on oxygen electrode surfaces. The oxygen transport through a MIEC is determined by the rate of the oxygen exchange over the gas-solid interface and the diffusivity of oxide ions and electrons...

  7. SurfKin: an ab initio kinetic code for modeling surface reactions.

    Science.gov (United States)

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.

  8. Experimental Investigation of Gaseous Reaction Products from Na-CO{sub 2} Reaction in Na/CO{sub 2} Heat Exchanger leakage scenario

    Energy Technology Data Exchange (ETDEWEB)

    Go, A-Reum; Jung, Hwa-Young; Kim, Min Seok; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Min, Jaehong; Wi, Myung-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The SFRs have operated with the steam Rankine cycle as a power conversion system. However, the potential sodium-water reaction (SWR) whose chemical reactivity is vigorous and instantaneous has been one of the major issues concerning the safety and integrity of the SFRs. In order to avoid SWR, supercritical CO{sub 2}(S-CO{sub 2}) Brayton cycles have been investigated recently. Compared to conventional steam Rankine cycles, S-CO{sub 2} Brayton cycle features higher thermal efficiency and potential compactness of its required equipment. In spite of the superiority of S-CO{sub 2} Brayton cycle, there is a potential reactive process between sodium and CO{sub 2} if the pressure boundary fails in the sodium-CO{sub 2} heat exchanger. The leakage scenario which could lead to mechanical and thermal problems should be evaluated. Previous studies have reported the following major reaction formulas. Each reaction occurs competitively. In this paper, the experimental setup to observe the pressure variation and CO concentration in Na-CO{sub 2} heat exchanger during the CO{sub 2} leak is explained. Before the experiment is carried out, water-CO{sub 2} mock-up test will be performed. In order to evaluate the leakage scenario in Na-CO{sub 2} heat exchanger more accurately, this study will be important for guaranteeing the system of SFR coupled with S-CO{sub 2} cycle.

  9. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path

    International Nuclear Information System (INIS)

    Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Juergen

    2011-01-01

    Highlights: → Oxygen exchange kinetics of Pt on YSZ investigated by means of Pt model electrodes. → Two different geometry dependencies of the polarization resistance identified. → At higher temperatures the oxygen exchange reaction proceeds via a Pt surface path. → At lower temperatures a bulk path through the Pt thin film electrode is discussed. - Abstract: The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 deg. C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 deg. C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  10. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions. This journal is © the Owner Societies 2011

  11. Reaction of [3H]-taurine maleimide with platelet surface thiols

    International Nuclear Information System (INIS)

    Karl, D.W.; Mills, D.C.B.

    1986-01-01

    Taurine Maleimide (2-maleimidoethanesulfonate, TM) was synthesized from [2- 3 H]-taurine and methoxycarbonylmaleimide (MCM). The yield of a 1 μmol synthesis approached 100% (based on taurine) when MCM was used in 4-fold excess. The product (TM*) was purified by ion exchange chromatography. TM* reacted irreversibly with thiol groups on the surface of washed human platelets, leading to incorporation of radioactivity into platelet pellets. Incorporation was blocked by cysteine, mercuribenzenesulfonate (MBS), dithiobisnitrobenzoate, and N-ethylmaleimide, but not by taurine or by inhibitors of anion transport. Reaction of TM* with platelets showed the dependence on time and concentration characteristics of a bimolecular reaction. The number of reactive sites ranged from 1 to 5 x 10 5 /platelet, and the apparent rate constant from 1 to 3 x 10 3 /(M x min). TM was less effective than MBS as an inhibitor of platelet aggregation induced by several agents. TM had no effect on the uptake of serotonin, taurine, or phosphate by the platelets, processes which are sensitive to MBS. These differences, considered with the similarity in size and charge of TM and MBS, suggest that classes of thiols defined as exofacial by their accessibility to MBS can differ substantially in their reactivity with other impermeant reagents

  12. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  13. Chemical kinetics: on the heterogeneous catalysis processes leading to an exchange between two phases. Example: isotopic exchange reactions; Cinetique chimique: sur les processus de catalyse 'heterogene' conduisant a un echange entre deux phases. Exemple: reactions d'echange isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Dirian, G; Grandcollot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    For an exchange reaction between a gaseous and a liquid phase proceeding by 'heterogeneous' catalysis in the liquid phase, diffusion in the liquid and the chemical reaction are two simultaneous and indivisible processes. We have nevertheless been able to establish criteria making it possible to distinguish between a really homogeneous kinetic process and a pseudo-homogeneous one. (author) [French] Pour une reaction d'echange entre une phase gazeuse et une phase liquide procedant par catalyse 'heterogene' en phase liquide, la diffusion dans le liquide et la reaction chimique sont deux etapes simultanees et indissociables. Nous avons pu neanmoins etablir des criteres permettant de distinguer entre une cinetique homogene vraie et une cinetique pseudo-homogene. (auteur)

  14. Effect of fluoride on ion exchange, remineralization and acid resistance of surface enamel

    Energy Technology Data Exchange (ETDEWEB)

    Aponte-Merced, L A; Feagin, F F [Alabama Univ., Birmingham (USA)

    1979-01-01

    In a system of constant ion activities the rates of F/sup -/ exchange in enamel, under conditions of exchange alone and remineralization, depended on the concentration of F/sup -/ in solutions. Acid resistance of surface minerals resulted from exchange of F/sup -/ for OH/sup -/ in the enamel at pH 7.0 and 4.5. The level of 0.5 mM NaF, compared to 0.05 and 5.0 mM, caused maximum rates of isotopic exchange of /sup 45/Ca and maximum acid resistance of enamel. Similarly low levels of F/sup -/ may be feasible for use in caries prevention in the absence and presence of remineralization.

  15. Kinetic analysis of the reactivity of aromatic amino acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Yoshida, Akira; Imaizumi, Hiroshi; Sato, Takayuki; Kano, Naoki

    2009-01-01

    To quantitatively evaluate the influence of tritium ( 3 H or T) on ecosystem, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between each aromatic amino acid (L-tyrosine, L-phenylalanine, or L-2-phenylglycine) and HTO vapor was observed at 50-70degC in the gas-solid system. Applying the A''-McKay plot method to data (obtained in the exchange reaction), the rate constants (k) of functional groups of each aromatic amino acid in this reaction was obtained. Comparing the rate constants, following six matters have been found in the T-for-H exchange reaction. (1) The reactivity of the functional groups in each amino acid increases with increasing temperature. (2) The reactivity of the functional groups of the amino acids (used) increases in the order of L-tyrosine, L-phenylalanine, and L-2-phenylglycine. (3) As to l-tyrosine, 1) the temperature dependence of each functional group increases in the order of COOH group, OH one, and NH 2 one, 2) the reactivity of OH group is 3.8 times greater than that of NH 2 one, and 3) the reactivity of COOH group is 2.0 times greater than NH 2 one. (4) As to the influence of the substituent, the reactivity of NH 2 group is larger than that of the COOH one. (5) Using the A''-McKay plot method, the reactivity of each functional group in an amino acid can be nondestructively and simultaneously clarified without using masking reagent. (6) The results obtained in this work is useful for preventing T contamination and for evaluating the influence of T on environment. (author)

  16. Chemistry of sustainability-Part I: Carbon dioxide as an organic synthon and Part II: Study of thermodynamics of cation exchange reactions in semiconductor nanocrystals

    Science.gov (United States)

    Sathe, Ajay A.

    chapter introduces the role of nanomaterials in sustainable solar energy conversion and storage. The use of cation exchange reactions in nanocrystals to access novel materials is highlighted. Despite having shown tremendous promise in the synthetic applications, the fundamental measurements of the thermodynamic and kinetic parameters of a cation exchange reaction are largely non-existent. This impedes the future growth of this powerful methodology. The technique of isothermal titration calorimetry is introduced, and its importance to studying the thermochemical changes occurring during cation exchange is outlined. The final chapter presents results obtained from the isothermal titration calorimetry on the prototypical cation exchange reaction between cadmium selenide and silver ions. The role of nanoparticle size, identity of the silver salt, solvent, surface ligands and temperature is studied. Recommendations for future investigations using ITC as well as other characterization techniques for discerning the kinetics of cation exchange are presented. I believe that a more unified mechanistic understanding of the cation exchange process in nanomaterials will aid the development of more efficient and robust materials for applications in a wide variety of fields.

  17. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Khalakhan, Ivan; Václavů, Michal [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Kovács, Gábor; Kozlov, Sergey M. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona (Spain); Kúš, Peter; Skála, Tomáš; Tsud, Natalia; Lavková, Jaroslava [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Potin, Valerie [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex (France); and others

    2016-03-01

    Graphical abstract: - Highlights: • Nanostructured Pt-Co thin catalyst films were grown on carbon by magnetron sputtering. • The surface composition of the nanostructured Pt-Co films was investigated by surface analysis techniques. • We carried out modeling of Pt-Co nanoalloys by computational methods. • Both experiment and modeling based on density functional theory showed that the surface of Pt-Co nanoparticles is almost exclusively composed of Pt atoms. - Abstract: Recently we have tested a magnetron sputtered Pt-Co catalyst in a hydrogen-fed proton exchange membrane fuel cell and showed its high catalytic activity for the oxygen reduction reaction. Here we present further investigation of the magnetron sputtered Pt-Co thin film catalyst by both experimental and theoretical methods. Scanning electron microscopy and transmission electron microscopy experiments confirmed the nanostructured character of the catalyst. The surface composition of as-deposited and annealed at 773 K Pt-Co films was investigated by surface analysis techniques, such as synchrotron radiation photoelectron spectroscopy and X-ray photoelectron spectroscopy. Modeling based on density functional theory showed that the surface of 6 nm large 1:1 Pt-Co nanoparticles is almost exclusively composed of Pt atoms (>90%) at typical operation conditions and the Co content does not exceed 20% at 773 K, in agreement with the experimental characterization of such films annealed in vacuum. According to experiment, the density of valence states of surface atoms in Pt-Co nanostructures is shifted by 0.3 eV to higher energies, which can be associated with their higher activity in the oxygen reduction reaction. The changes in electronic structure caused by alloying are also reflected in the measured Pt 4f, Co 3p and Co 2p photoelectron peak binding energies.

  18. The Exchange Reaction Between Methane Hydrate and Carbon Dioxide: An Oceanic Feasibility Test

    Science.gov (United States)

    Dunk, R. M.; Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Hester, K. C.; Sloan, E. D.

    2006-12-01

    hydrate with a complex guest gas composition immersed in liquid CO2 there are multiple pathways for the reaction to proceed. If the hydrate cage occupancy is 100% then we suspect on thermodynamic grounds that the reaction may proceed slowly; nevertheless if cage occupancy is grain size and porosity (surface area) will have profound effects on reaction rate and extent. We also note that the solubility of CH4 in CO2 is significant, and we may not expect liberation of a free CH4 gas phase until the saturation condition has been met. Given the complexity of this system, the only way to know what will occur is to do the experiment. Indeed, spectra were obtained of a commingled CO2 and CH4 hydrate. The CO2 fermi-diad peaks in the hydrate phase are distinguishable from the liquid, and are shifted to lower wavenumbers by ~~3 cm-1. We also observed the presence of dissolved CH4 within the liquid CO2, and free CH4 gas in a small but visually identifiable bubble layer at the top of the chamber. The initial success of this pilot study bodes well for future investigations both in the laboratory and in ROV based experiments.

  19. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  20. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  1. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  2. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe 3+ > Al 3+ > Cu 2+ >> Ca 2+ > K + > Na + , which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na + -smectite and K + -smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe 3+ , Al 3+ , and Cu 2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O 2 − · , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  3. Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry

    International Nuclear Information System (INIS)

    Oyama, V.I.; Berdahl, B.J.; Carle, G.C.

    1977-01-01

    It is stated that O 2 and CO 2 were evolved from humidified Martian soil in the gas exchange experiment on Viking Lander 1. Small changes in N 2 gas were also recorded. A model of the morphology and a hypothesis of the mechanistics of the Martian surface are proposed. (author)

  4. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    Science.gov (United States)

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  5. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  6. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  7. Quantitative surface analysis using deuteron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Afarideh, Hossein

    1991-01-01

    The nuclear reaction analysis (NRA) technique consists of looking at the energies of the reaction products which uniquely define the particular elements present in the sample and it analysis the yield/energy distribution to reveal depth profiles. A summary of the basic features of the nuclear reaction analysis technique is given, in particular emphasis is placed on quantitative light element determination using (d,p) and (d,alpha) reactions. The experimental apparatus is also described. Finally a set of (d,p) spectra for the elements Z=3 to Z=17 using 2 MeV incident deutrons is included together with example of more applications of the (d,alpha) spectra. (author)

  8. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  9. Bombarding energy dependence of nucleon exchange and energy dissipation in the strongly damped reaction 209Bi + 136Xe

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Birkelund, J.R.; Randrup, J.

    1980-01-01

    Although considerable progress has been achieved in the understanding of strongly damped reactions at energies several MeV/u above the Coulomb barrier, some important experimental results are not yet clearly understood. Among these is the degree of correlation between the nucleon exchange and the large energy losses observed. Experimental evidence suggesting nucleon exchange as described by a one-body model to be the major component of the dissipation mechanism is discussed. It is concluded that the previously unexplained bombarding energy dependence between energy loss and fragment charge dispersion can be understood on the basis of a nucleon exchange model, provided the Pauli exclusion principle is taken into account. No necessity is seen to invoke further energy dissipation mechanisms. 7 figures

  10. Nucleon exchange properties of the E/A=8.5 MeV 74Ge+165Ho reaction

    International Nuclear Information System (INIS)

    Planeta, R.; Kwiatkowski, K.; Zhou, S.H.; Viola, V.E.; Breuer, H.; McMahan, M.A.; Kehoe, W.; Mignerey, A.C.

    1990-01-01

    Mass and charge distributions have been measured for damped projectile-like fragments in the reaction 74 Ge+ 165 Ho at 8.5 MeV per nucleon bombarding energy. Coincidences were measured between Z- and A-identified projectile-like fragments and angle-correlated heavy reaction partners in order to derive the primary mass distribution for projectile-like fragments. Centroids and variances of the primary and post-evaporative Z, N, and A distributions are presented. The evolution of the primary N and Z distributions as a function of energy loss is found to deviate from predictions of the nucleon exchange transport model

  11. A meson-exchange isobar model for the {pi}{sup +}d {r_reversible} pp reaction

    Energy Technology Data Exchange (ETDEWEB)

    Canton, L.; Cattapan, G.; Dortmans, P.J.; Pisent, G. [Istituto Nazionale di Fisica Nucleare, Padua (Italy); Svenne, J.P. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics]|[Winnipeg Inst. for Theoretical Physics, Winnipeg, MB (Canada)

    1994-10-10

    A broad set of observables are calculated for the {pi}{sup +} d {r_reversible} pp reaction with a relatively simple meson-exchange isobar model. The comparison between the calculated results and experimental data (including spin observables), shows that the model gives an overall phenomenologically acceptable description of the reaction around the {Delta} resonance. The effects due to the inclusion of Galilei invariant (pseudovector) recoil term in the {pi}NN vertex, of relativistic corrections to the {rho}-exchange component of the {Delta}N transition potential, and of NN final state interaction in the {pi}{sup +}d {yields} p+p process are also discussed. It is estimated that the model is sufficiently simple to be extended to the case of pion absorption on other light nuclei, in particular {sup 3}He (or tritium). 32 refs., 13 figs.

  12. Coherent production of pions in nuclei with ({sup 3}He,t) charge exchange reaction at 2. GeV

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, L.; Roy-Stephan, M.; Boyard, J.L. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Hennino, T.; Kagarlis, M.; Radvanyi, P. [Laboratoire National Saturne - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Dahl, R.; Ellegaard, C. [Niels Bohr Inst., Copenhagen (Denmark); Augustiniak, W.; Zupranski, P. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)] [and others

    1996-12-31

    The ({sup 3}He,t) charge exchange reaction at 2. GeV incident energy with the new setup SPES IV-{pi} has been realized in order to study the coherent production process of pions. This setup allows to isolate the ground state of the target nucleus, and to sign this process without ambiguity. Some preliminary results in target excitation energy and transferred energy are given. (author). 8 refs.

  13. Synthesis and characterization of an octaimidazolium-based polyhedral oligomeric silsesquioxanes ionic liquid by an ion-exchange reaction.

    Science.gov (United States)

    Tan, Jinglin; Ma, Depeng; Sun, Xingrong; Feng, Shengyu; Zhang, Changqiao

    2013-04-07

    Preparation of POSS-min-DS, an octaimidazolium-based polyhedral oligomeric silsesquioxanes (POSS) room temperature ionic liquid, by an ion-exchange reaction between POSS and sodium dodecyl sulfate was reported. Octaimidazolium-based POSS was synthesized with more than 98% yield within 3 h. POSS-min-DS and octaimidazolium-based POSS were confirmed by (1)H, (13)C, and (29)Si NMR, FT-IR and elemental analysis.

  14. Capability of LEP-type surfaces to describe noncollinear reactions 2 - Polyatomic systems

    CERN Document Server

    Espinosa-Garcia, Joaquin

    2001-01-01

    In this second article of the series, the popular LEP-type surface for collinear reaction paths and a "bent" surface, which involves a saddle point geometry with a nonlinear central angle, were used to examine the capacity of LEP-type surfaces to describe the kinetics and dynamics of noncollinear reaction paths in polyatomic systems. Analyzing the geometries, vibrational frequencies, curvature along the reaction path (to estimate the tunneling effect and the reaction coordinate-bound modes coupling), and the variational transition- state theory thermal rate constants for the NH//3 + O(**3P) reaction, we found that the "collinear" LEP-type and the "bent" surfaces for this polyatomic system show similar behavior, thus allowing a considerable saving in time and computational effort. This agreement is especially encouraging for this polyatomic system because in the Cs symmetry the reaction proceeds via two electronic states of symmetries **3A prime and **3A double prime , which had to be independently calibrated....

  15. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    Science.gov (United States)

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  16. The loss rates of O+ in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    Science.gov (United States)

    Ji, Y.; Shen, C.

    2014-03-01

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O+ (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O+ to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O+ are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  17. The loss rates of O{sup +} in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Y., E-mail: yji@spaceweather.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, C. [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-15

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O{sup +} (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O{sup +} to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O{sup +} are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  18. Rare events via multiple reaction channels sampled by path replica exchange

    NARCIS (Netherlands)

    Bolhuis, P.G.

    2008-01-01

    Transition path sampling (TPS) was developed for studying activated processes in complex systems with unknown reaction coordinate. Transition interface sampling (TIS) allows efficient evaluation of the rate constants. However, when the transition can occur via more than one reaction channel

  19. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    Science.gov (United States)

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  20. Effects of pressure, temperature and atomic exchanges on phase separation dynamics in Au/Ni(111) surface alloy: Kinetic Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Zvejnieks, G. [Institute for Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Ibenskas, A., E-mail: ibenskas@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, Gostauto 11, LT-01108 Vilnius (Lithuania); Tornau, E.E. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, Gostauto 11, LT-01108 Vilnius (Lithuania)

    2015-11-15

    Instability of the Au/Ni(111) surface alloy is studied in different CO gas pressure, p, and temperature limits using kinetic Monte Carlo simulations. We analyze the reaction front dynamics and formation of Au clusters using the model which takes into account surface adatom pair and three-body interactions, CO adsorption and desorption, catalytic carbonyl formation reaction, Au and Ni adatom diffusion and their concerted exchange. Variation of interaction parameters allows us to identify three possible reaction front propagation limits with different pressure dependencies: (i) slow channel-like flow in agreement with experimental data [1] (step flow rate, R, increases with p), (ii) intermediate regime (weak p–dependence), and (iii) fast homogeneous flow (R decreases with p). We find that only Au–Ni exchange, contrary to both Ni–CO and Au–CO exchanges, significantly reduces the number of screened Ni atoms inside the Au clusters and stimulates the occurrence of Ni-free Au clusters. The size of Au islands depends on both pressure and temperature. At a fixed temperature it decreases with pressure due to an increased step flow rate. In the high temperature limit, despite the step flow rate exponential increase with temperature, the cluster size increases due to an enhanced Au mobility. - Highlights: • Kinetic Monte Carlo study of Au–Ni surface alloy instability to CO pressure and temperature. • Three reaction front propagation regimes. • In channel-like regime, the step flow rate increases with CO pressure as in experiment. • Ni-free Au islands are obtained when Au-Ni adatom exchange mechanism is considered. • The size of Au islands decreases with pressure and increases with temperature.

  1. Effects of pressure, temperature and atomic exchanges on phase separation dynamics in Au/Ni(111) surface alloy: Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Zvejnieks, G.; Ibenskas, A.; Tornau, E.E.

    2015-01-01

    Instability of the Au/Ni(111) surface alloy is studied in different CO gas pressure, p, and temperature limits using kinetic Monte Carlo simulations. We analyze the reaction front dynamics and formation of Au clusters using the model which takes into account surface adatom pair and three-body interactions, CO adsorption and desorption, catalytic carbonyl formation reaction, Au and Ni adatom diffusion and their concerted exchange. Variation of interaction parameters allows us to identify three possible reaction front propagation limits with different pressure dependencies: (i) slow channel-like flow in agreement with experimental data [1] (step flow rate, R, increases with p), (ii) intermediate regime (weak p–dependence), and (iii) fast homogeneous flow (R decreases with p). We find that only Au–Ni exchange, contrary to both Ni–CO and Au–CO exchanges, significantly reduces the number of screened Ni atoms inside the Au clusters and stimulates the occurrence of Ni-free Au clusters. The size of Au islands depends on both pressure and temperature. At a fixed temperature it decreases with pressure due to an increased step flow rate. In the high temperature limit, despite the step flow rate exponential increase with temperature, the cluster size increases due to an enhanced Au mobility. - Highlights: • Kinetic Monte Carlo study of Au–Ni surface alloy instability to CO pressure and temperature. • Three reaction front propagation regimes. • In channel-like regime, the step flow rate increases with CO pressure as in experiment. • Ni-free Au islands are obtained when Au-Ni adatom exchange mechanism is considered. • The size of Au islands decreases with pressure and increases with temperature

  2. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    Science.gov (United States)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  3. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  4. The use of deuterium n.m.r. spectroscopy in mechanistic studies of exchange reactions of ethers on supported metal catalysts

    International Nuclear Information System (INIS)

    Campbell, J.A.; Kemball, Charles; McDougall, G.S.

    1987-01-01

    Exchange reactions of diethyl ether (DEE) and tetrahydrofuran (THF) with deuterium have been studied over supported nickel, palladium, platinum, and rhodium catalysts. Products from most of the systems were analysed by deuterium n.m.r. spectroscopy (55.28 MHz) which gave quantitative results about the distribution of deuterium in the exchanged ethers. The results confirm earlier conclusions about the mechanism of the exchange of DEE and provide new evidence about the reactions of THF. Some hydrogenolysis occurred simultaneously with exchange of THF over both nickel and platinum. (author)

  5. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  6. A paradox: The thermal rate coefficient for the H+DCl → HCl+D exchange reaction

    International Nuclear Information System (INIS)

    Thompson, D.L.; Suzukawa, H.H. Jr.; Raff, L.M.

    1975-01-01

    Previously reported photolysis experiments indicate that the frequency factors associated with the hydrogen-exchange reactions H+DCl → HCl+D and D+HCl → DCl+H are on the order of 10 10 cm 3 /molcenter-dotsec. A series of unadjusted, quasiclassical trajectory calculations were been carried out to compute the thermal rate coefficients and activation parameters for a series of 13 thermal processes of the type A+BC → AB+C, where A=H, D, or Cl and BC=H 2 , D 2 , HCl, DCl, or Cl 2 . In addition, hot-atom yield ratios have been computed from the IRP equation for the reactions D*+DCl → D 2 +Cl, D*+Cl 2 → DCl + Cl as a function of the initial D* laboratory energy. The computations yield (1) hot-atom DCl/D 2 yield ratios within a factor of 2 of the experimental values; (2) thermal activation energies in satisfactory agreement with experiment for all processes investigated; and (3) frequency factors in reasonable accord with experiment for all the reactions except the hydrogen exchange reactions

  7. Performing chemical reactions in virtual capillary of surface tension ...

    Indian Academy of Sciences (India)

    The flow paths were fabricated by making parallel lines using permanent marker pen ink or other polymer on glass surfaces. Two mirror image patterned glass plates were then sandwiched one on top of the other, separated by a thin gap - created using a spacer. The aqueous liquid moves between the surfaces by capillary ...

  8. Exploring Reaction Mechanism on Generalized Force Modified Potential Energy Surfaces (G-FMPES) for Diels-Alder Reaction

    Science.gov (United States)

    Jha, Sanjiv; Brown, Katie; Subramanian, Gopinath

    We apply a recent formulation for searching minimum energy reaction path (MERP) and saddle point to atomic systems subjected to an external force. We demonstrate the effect of a loading modality resembling hydrostatic pressure on the trans to cis conformational change of 1,3-butadiene, and the simplest Diels-Alder reaction between ethylene and 1,3-butadiene. The calculated MERP and saddle points on the generalized force modified potential energy surface (G-FMPES) are compared with the corresponding quantities on an unmodified potential energy surface. Our study is performed using electronic structure calculations at the HF/6-31G** level as implemented in the AIMS-MOLPRO code. Our calculations suggest that the added compressive pressure lowers the energy of cis butadiene. The activation energy barrier for the concerted Diels-Alder reaction is found to decrease progressively with increasing compressive pressure.

  9. Deuterium exchange reaction between hydrogen and water in a trickle-bed column packed with novel catalysts

    International Nuclear Information System (INIS)

    Ahn, D. H.; Baek, S. W.; Lee, H. S.; Kim, K. R.; Kang, H. S.; Lee, S. H.; Jeong, H. S.

    1998-01-01

    The activity of a novel catalyst (Pt/SDBC) for deuterium exchange reaction between water and hydrogen streams in a trickle bed was measured. The performance of the catalyst was compared with a commercial catalyst with same metal content. The catalytic activity for the bed of wet-proofed catalyst diluted with hydrophillic packing material also measured. The Pt/SDBC catalyst shows higher activity in the liquid phase reaction than the commercial catalyst as measured in the vapor phase reaction. The performance for 50% dilution of the Pt/SDBC catalyst bed with hydrophillic packing material is better than that of the 100% bed due to more liquid holdup and better water distribution

  10. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    Science.gov (United States)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss

  11. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  12. Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options

    Directory of Open Access Journals (Sweden)

    Antonie Kotzé

    2015-01-01

    Full Text Available Certain exotic options cannot be valued using closed-form solutions or even by numerical methods assuming constant volatility. Many exotics are priced in a local volatility framework. Pricing under local volatility has become a field of extensive research in finance, and various models are proposed in order to overcome the shortcomings of the Black-Scholes model that assumes a constant volatility. The Johannesburg Stock Exchange (JSE lists exotic options on its Can-Do platform. Most exotic options listed on the JSE’s derivative exchanges are valued by local volatility models. These models needs a local volatility surface. Dupire derived a mapping from implied volatilities to local volatilities. The JSE uses this mapping in generating the relevant local volatility surfaces and further uses Monte Carlo and Finite Difference methods when pricing exotic options. In this document we discuss various practical issues that influence the successful construction of implied and local volatility surfaces such that pricing engines can be implemented successfully. We focus on arbitrage-free conditions and the choice of calibrating functionals. We illustrate our methodologies by studying the implied and local volatility surfaces of South African equity index and foreign exchange options.

  13. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  14. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....

  15. Surface Defect Passivation and Reaction of c-Si in H2S.

    Science.gov (United States)

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  16. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  17. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... sets validates the applicability of BEEF-vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its Bayesian ensemble error estimate to two intricate surface science problems support this....

  18. Impulse exchange at the surface of the ocean and the fractal dimension of drifter trajectories

    Directory of Open Access Journals (Sweden)

    D. M. Summers

    2002-01-01

    Full Text Available An impulse-based model is developed to represent a coupling between turbulent flow in the atmosphere and turbulent flow in the ocean. In particular, it is argued that the atmosphere flowing horizontally over the ocean surface generates a velocity fluctuation field in the latter's near-surface flow. The mechanism for this can be understood kinematically in terms of an exchange of tangentially-oriented fluid impulse at the air-sea interface. We represent this exchange numerically through the creation of Lagrangian elements of impulse density. An indication of the efficacy of such a model would lie in its ability to predict the observed fractal dimension of lateral trajectories of submerged floats set adrift in the ocean. To this end, we examine the geometry of lateral tracer-paths determined from the present model.

  19. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  20. Reactions and reaction intermediates on iron surfaces--1. Methanol, ethanol, and isopropanol on Fe(100). 2. Hydrocarbons and carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, J.B.; Madix, R.J.

    1980-09-01

    Temperature-programed desorption and ESCA showed that the alcohols formed alkoxy intermediates on Fe(100) surfaces at room temperature, but that the methoxy and ethoxy species were much more stable than the isopropoxy intermediate. The alkoxy species reacted above 400/sup 0/K by decomposing into carbon monoxide and hydrogen, hydrogenation to alcohol, and scission of C-C and C-O bonds with hydrogenation of the hydrocarbon fragments. Ethylene, acetylene, and cis-2-butene formed stable, unidentified surface species. Methyl chloride formed stable surface methyl groups which decomposed into hydrogen and surface carbide at 475/sup 0/K. Formic and acetic acids yielded stable carboxylate intermediates which decomposed above 490/sup 0/K to hydrogen, carbon monoxide, and carbon dioxide. The studies suggested that the alkoxy surface species may be important intermediates in the Fischer-Tropsch reaction on iron.

  1. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  2. Tuning the metal-insulator transition in manganite films through surface exchange coupling with magnetic nanodots.

    Science.gov (United States)

    Ward, T Z; Gai, Z; Xu, X Y; Guo, H W; Yin, L F; Shen, J

    2011-04-15

    In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots.

  3. Analysis of ping-pong reaction mechanisms by positional isotope exchange. Application to galactose-1-phosphate uridyltransferase

    International Nuclear Information System (INIS)

    Hester, L.S.; Raushel, F.M.

    1987-01-01

    A new positional isotope exchange method has been developed that can be used for the analysis of enzyme-catalyzed reactions which have ping-pong kinetic mechanisms. The technique can be used to measure the relative rates of ligand dissociation from enzyme-product complexes. Enzyme is incubated with the labeled substrate and an excess of the corresponding unlabeled product. The partitioning of the enzyme-product complex back toward free enzyme is determined from the rate of positional isotope exchange within the original labeled substrate. The partitioning of the enzyme-product complex forward toward free enzyme is determined from the rate of formation of totally unlabeled substrate. It has been shown that the ratio of the two rates provides a lower limit for the release of product from the enzyme-product complex. The technique has been applied to the reaction catalyzed by galactose-1-phosphate uridyltransferase. The lower limit for the release of glucose 1-phosphate from the uridyl-enzyme relative to the maximal velocity of the reverse reaction was determined to be 3.4 +/- 0.5

  4. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.

    Science.gov (United States)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-04-28

    Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Note on some charge exchange cross sections of inelastic pn and pp reactions in terms of the quark interchange concept

    International Nuclear Information System (INIS)

    Bakken, V.; Jacobsen, T.

    The charge exchange cross sections observed for pN interactions at 19 GeV/c in terms of the quark-quark interchange concept are discussed. If one uu-pair and one dd-pair of sea-quarks are assigned to each initial nucleon in pn and pp inelastic reactions, and if these quarks are assumed to participate on equal footing with the valence quarks in a quark-quark interchange mechanism between the two initial nucleons, the ratios between some observed charge exchange cross sections are well reproduced. This indicates that in this model the sea-quarks contribute significantly to the particle production in low p(subT) hadronic processes. (Auth.)

  6. A computational study of a recreated G protein-GEF reaction intermediate competent for nucleotide exchange: fate of the Mg ion.

    Directory of Open Access Journals (Sweden)

    Mériam Ben Hamida-Rebaï

    Full Text Available Small G-proteins of the superfamily Ras function as molecular switches, interacting with different cellular partners according to their activation state. G-protein activation involves the dissociation of bound GDP and its replacement by GTP, in an exchange reaction that is accelerated and regulated in the cell by guanine-nucleotide exchange factors (GEFs. Large conformational changes accompany the exchange reaction, and our understanding of the mechanism is correspondingly incomplete. However, much knowledge has been derived from structural studies of blocked or inactive mutant GEFs, which presumably closely represent intermediates in the exchange reaction and yet which are by design incompetent for carrying out the nucleotide exchange reaction. In this study we have used comparative modelling to recreate an exchange-competent form of a late, pre-GDP-ejection intermediate species in Arf1, a well-characterized small G-protein. We extensively characterized three distinct models of this intermediate using molecular dynamics simulations, allowing us to address ambiguities related to the mutant structural studies. We observed in particular the unfavorable nature of Mg2+ associated forms of the complex and the establishment of closer Arf1-GEF contacts in its absence. The results of this study shed light on GEF-mediated activation of this small G protein and on predicting the fate of the Mg ion at a critical point in the exchange reaction. The structural models themselves furnish additional targets for interfacial inhibitor design, a promising direction for exploring potentially druggable targets with high biological specificity.

  7. Characterization of photosynthetic gas exchange in leaves under simulated adaxial and abaxial surfaces alternant irradiation.

    Science.gov (United States)

    Zhang, Zi-Shan; Li, Yu-Ting; Gao, Hui-Yuan; Yang, Cheng; Meng, Qing-Wei

    2016-07-05

    Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight. To simulate adaxial and abaxial surfaces alternant irradiation (ad-ab-alt irradiation), the adaxial or abaxial surface of leaves were exposed to light regimes that fluctuated between 100 and 1,000 μmol m(-2) s(-1). Compared with constant adaxial irradiation, simulated ad-ab-alt irradiation suppressed net photosynthetic rate (Pn) and transpiration (E) but not water use efficiency. These suppressions were aggravated by an increase in alternant frequency of the light intensity. When leaves were transferred from constant light to simulated ad-ab-alt irradiation, the maximum Pn and E during the high light period decreased, but the rate of photosynthetic induction during this period remained constant. The sensitivity of photosynthetic gas exchange to simulated ad-ab-alt irradiation was lower on abaxial surface than adaxial surface. Under simulated ad-ab-alt irradiation, higher Pn and E were measured on abaxial surface compared with adaxial surface. Therefore, bifacial leaves can fix more carbon than leaves with two "sun-leaf-like" surfaces under ad-ab-alt irradiation. Photosynthetic research should be conducted under dynamic conditions that better mimic nature.

  8. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  9. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    International Nuclear Information System (INIS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH 2 ) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  10. Deuterium labelling of tryptamine, serotonin and their N-methylated metabolites using solvent exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, M; Kaerkkaeinen, J [Helsinki Univ. (Finland). Dept. of Medical Chemistry

    1979-01-01

    Technically uncomplicated methods based on catalytic isotope exchange in deuterated solvents are described for the deuteration of tryptamine, serotonin and their N-methylated metabolites. Heterogeneous platinum catalysis, homogeneous acid catalysis and their combination have been employed. The properties of the labelled derivatives prepared with each technique as well as their use in mass spectrometric work are discussed.

  11. Deuterium labelling of tryptamine, serotonin and their N-methylated metabolites using solvent exchange reactions

    International Nuclear Information System (INIS)

    Raeisaenen, M.; Kaerkkaeinen, J.

    1979-01-01

    Technically uncomplicated methods based on catalytic isotope exchange in deuterated solvents are described for the deuteration of tryptamine, serotonin and their N-methylated metabolites. Heterogeneous platinum catalysis, homogeneous acid catalysis and their combination have been employed. The properties of the labelled derivatives prepared with each technique as well as their use in mass spectrometric work are discussed. (author)

  12. Synthesis and anion exchange reactions of a layered copper–zinc ...

    Indian Academy of Sciences (India)

    Unknown

    replaced by Zn2+. Keywords. Copper–zinc hydroxides; Cu–Zn hydroxysalts; anion exchange. ... be broadly separated into two structural types, based on the structure of ... thermogravimetry (a lab-built system, heating rate. 5°C per minute) and ...

  13. Working-state Morphologies of Ion Exchange Catalysts and Their Influence on Reaction Kinetics

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Karel; Hanková, Libuše; Holub, Ladislav

    2010-01-01

    Roč. 333, 1-2 (2010), s. 109-113 ISSN 1381-1169 Grant - others:DCH(US) BD20 Institutional research plan: CEZ:AV0Z40720504 Keywords : ion exchanger catalyst * morphology * esterification Subject RIV: CC - Organic Chemistry Impact factor: 2.872, year: 2010

  14. A review of measurement and modelling results of particle atmosphere-surface exchange

    DEFF Research Database (Denmark)

    Pryor, Sara; Gallagher, M.; Sievering, H.

    2008-01-01

    Atmosphere-surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (upsilon(d)) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima...... agreement between models and observations is found over less-rough surfaces though those data also imply substantially higher surface collection efficiencies than were originally proposed and are manifest in current models. We review theorized dependencies for particle fluxes, describe and critique model...... of approximately 0.01 and 0.2 cm s(-1) over grasslands and 0.1-1 cm s(-1) over forests. However, as noted over 20 yr ago, observations over forests generally do not support the pronounced minimum of deposition velocity (upsilon(d)) for particle diameters of 0.1-2 mu m as manifest in theoretical predictions. Closer...

  15. Reaction dynamics of molecular hydrogen on silicon surfaces

    DEFF Research Database (Denmark)

    Bratu, P.; Brenig, W.; Gross, A.

    1996-01-01

    of the preexponential factor by about one order of magnitude per lateral degree of freedom. Molecular vibrations have practically no effect on the adsorption/desorption dynamics itself, but lead to vibrational heating in desorption with a strong isotope effect. Ab initio calculations for the H-2 interaction...... between the two surfaces. These results indicate that tunneling, molecular vibrations, and the structural details of the surface play only a minor role for the adsorption dynamics. Instead, they appear to be governed by the localized H-Si bonding and Si-Si lattice vibrations. Theoretically, an effective......Experimental and theoretical results on the dynamics of dissociative adsorption and recombinative desorption of hydrogen on silicon are presented. Using optical second-harmonic generation, extremely small sticking probabilities in the range 10(-9)-10(-5) could be measured for H-2 and D-2 on Si(111...

  16. Near-surface analysis with nuclear reactions and scattering

    International Nuclear Information System (INIS)

    Dunning, K.L.; Hirvonen, J.K.

    1974-01-01

    Very useful information about the elemental composition of solids in the surface and near-surface regions can be obtained with small accelerators and suitable auxiliary apparatus. Two methods which produce data from which quantitative concentration depth profiles can be constructed and which have been used extensively at this laboratory are: nuclear resonance profiling and Rutherford backscattering. The first method is described in detail. Data are given on profiles of Al and Al + Na films implanted on silicon substrates. Rutherford backscattering spectra for chromium implanted into silicon dioxide are used to illustrate the improved depth sensitivity that can be obtained with a magnetic spectrometer in depth concentration profiles of heavy impurities relative to that obtainable with a conventional semiconductor detector

  17. Electrochemical Characterization of Surface Reactions on Biomedical Titanium alloys

    OpenAIRE

    Alkhateeb, Emad Hashim

    2008-01-01

    Titanium and its alloys are successfully used as implant materials for dental, orthopedic and osteosynthesis applications. The processes that take place at the implant tissue interface are important for the acceptance and integration of the implant. This thesis is divided into two parts: the first part deals with surface modification of titanium to improve the osseointegration, and the second part studies metastable pitting of titanium and its alloys. The weakly attached layer of a bone-like ...

  18. Evidence concerning oxidation as a surface reaction in Baltic amber

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2012-01-01

    , obtained from pressed amber powder, were subjected to accelerated thermal ageing. Cross-sections of the pellets were analyzed by infrared micro-spectroscopy, in order to identify and quantify changes in chemical properties. The experimental results showed strong oxidation exclusively at the exterior part...... of cross-sections from samples subjected to long-term thermal ageing, confirming that oxidation of Baltic amber starts from the surface....

  19. Corrections to the one-pion exchange amplitudes for the reaction np→pΔsub(33)sup(deg)

    International Nuclear Information System (INIS)

    Ferraz De Camargo, A.; Laville, J.L.

    1978-01-01

    A simple modified one-pion exchange model is applied to the analysis of the reaction np→pΔsub(33)sup(deg) from 1.39 to 1.90GeV/c. It is shown that important corrections to the evasive amplitudes can account for the turnover observed in the differential cross-section and rather good fits are obtained. Such corrections do not agree with the prescription known as ''poor man's absorption''. The results for the density matrix elements are briefly discussed

  20. Preparation of Pt-SDB hydrophobic catalyst used in H2-H2O isotope exchange reaction

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Ruan Hao; Dou Qincheng; Han Yande; Hu Shilin

    2001-01-01

    The preparation of Pt-SDB hydrophobic catalyst is studied, in which platinum as active metal and polystyrene divinylbenzene (SDB) as the carrier. Hydrogen isotope exchange reaction is carried out with Pt-SDB catalyst in counter-current in the trickle bed. The effect of preparing condition on the activity of catalyst is discussed. The results show that the excellent catalyst is obtained by reduced at the temperature of 200 degree C over 8 hours. Hydrophobic catalyst is high activity and stability as the amount of platinum content is 3%, the platinum can reach the economic use with the content of (1-2)%

  1. Negative pion topography by observation of γ-quanta after the charge exchange reaction π- p → π0 n

    International Nuclear Information System (INIS)

    Bueche, G.

    It is shown that the gamma quanta from the π 0 decay after the charge exchange reaction π - p → nπ 0 can be used to map the capture region of a π - beam in hydrogen-containing substances. In view of the applications in radiotherapy, the detectors have to be placed laterally from the absorber volume. For such a geometry the probability distribution of γ-γ coincidences were calculated. The results show that the range of the beam and its lateral position can be determined to the order of one millimeter within a time short compared with irradiation times usual in radiotherapy

  2. A high-statistics measurement of the pp→nn charge-exchange reaction at 875 MeV/c

    International Nuclear Information System (INIS)

    Lamanna, M.; Ahmidouch, A.; Birsa, R.; Bradamante, F.; Bressan, A.; Bressani, T.; Dalla Torre-Colautti, S.; Giorgi, M.; Heer, E.; Hess, R.; Kunne, R.A.; Lechanoine-Le Luc, C.; Martin, A.; Mascarini, C.; Masoni, A.; Penzo, A.; Rapin, D.; Schiavon, P.; Tessarotto, F.

    1995-01-01

    A new measurement of the differential cross section and of the analysing power A 0n of the charge-exchange reaction pp→nn at 875 MeV/c is presented. The A 0n data cover the entire angular range and constitute a considerable improvement over previously published data, both in the forward and in the backward hemisphere. The cross-section data cover only the backward region, but are unique at this energy. A careful study of the long-term drifts of the apparatus has allowed to fully exploit the good statistics of the data. ((orig.))

  3. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    Silva, J.B.S.

    1979-01-01

    A method of dynamic elution of recoiled 51 Cr +3 , formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author) [pt

  4. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  5. Gallium sorption on montmorillonite and illite colloids: Experimental study and modelling by ionic exchange and surface complexation

    International Nuclear Information System (INIS)

    Benedicto, Ana; Degueldre, Claude; Missana, Tiziana

    2014-01-01

    Highlights: • Ga sorption onto illite and montmorillonite was studied and modelled for the first time. • The developed sorption model was able to well explain Ga sorption in both clays. • Number of free parameters was reduced applying the linear free energy relationship. • Cationic exchange dominate sorption at pH < 4.5; surface complexation at higher pH. - Abstract: The migration of metals as gallium (Ga) in the environment is highly influenced by their sorption on clay minerals, as montmorillonite and illite. Given the increased usage of gallium in the industry and the medicine, the Ga-associated waste may result in environmental problems. Ga sorption experiments were carried out on montmorillonite and illite colloids in a wide range of pH, ionic strength and Ga concentration. A Ga sorption model was developed combining ionic exchange and surface complexation on the edge sites (silanol and aluminol-like) of the clay sheets. The complexation constants were estimated as far as possible from the Ga hydrolysis constants applying the linear free energy relationship (LFER), which allowed to reduce the number of free parameters in the model. The Ga sorption behaviour was very similar on illite and montmorillonite: decreasing tendency with pH and dependency on ionic strength at very acidic conditions. The experimental data modelling suggests that the Ga sorption reactions avoid the Ga precipitation, which is predicted in absence of clay colloids between pH 3.5 and 5.5. Assuming this hypothesis, clay colloids would affect Ga aqueous speciation, preventing precipitation in favour of sorption. Ga sorption on montmorillonite and illite can be explained on the basis of three main reactions: Ga 3+ exchange at very acidic conditions (pH < ∼3.8); Ga(OH) 4 - complexation on protonated weak sites in acidic-neutral conditions (between pH ∼5.2 and pH ∼7.9); and Ga(OH) 3 complexation on strong sites at basic conditions (pH > ∼7.9)

  6. Intermediate energy charge-exchange reactions induced by polarized 3He

    International Nuclear Information System (INIS)

    Kim, B.T.

    1998-01-01

    Spin polarization transfer is proven to be very useful in obtaining detailed information of the continuum nuclear responses. The data, taken for the (vector p,vector n) reactions, have enabled us to separate the response into the spin longitudinal and transverse components. These partial nuclear responses have been successfully used to make critical tests of nuclear structure models. In the present paper, we first summarize the results of the data and the theoretical analyses made so far. We then discuss information obtainable from the ( 3 vector He,vector t) reaction, emphasizing on the differences and similarities in comparison with the (vector p,vector n) reaction. The results of numerical calculations made for ( 3 vector He,vector t) reactions based on the microscopic distorted wave impulse approximation will also be reported. (orig.)

  7. Thermal performance of a spirally coiled finned tube heat exchanger under wet-surface conditions

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Naphon, Paisarn

    2006-01-01

    This paper is a continuation of the author's previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data

  8. Kinetics of the homogeneous exchange of alpha-lactalbumin adsorbed on titanium oxide surface.

    Science.gov (United States)

    Bentaleb, A; Haïkel, Y; Voegel, J C; Schaaf, P

    1998-06-05

    The homogeneous exchange process whereby alpha-lactalbumine molecules adsorbed on hydrophilic titanium oxide particles are replaced by alpha-lactalbumine molecules in solution has been investigated by means of a 125I radio-labeling technique, alpha-lactalbumine is a compact and highly negatively charged protein, making this study complementary to previous work devoted to the general understanding of the exchange mechanisms of adsorbed proteins on solid surfaces. The isotherm of alpha-lactalbumine exhibits bimodal adsorption shape, and the exchange process whereby adsorbed proteins are replaced by new incoming ones from the bulk solution has been studied at both the upper and the lower plateau of the isotherm. In the upper plateau the exchange process was found to be of first order with respect to the bulk molecules, and the release rate constant was equal to 0.914 L. mol-1.s-1. This behavior is identical to what has been observed with other proteinic systems. In the lower plateau domain, in contrast, the protein release process is independent of the concentration of proteins in the bulk, but the release rates are higher than the pure desorption rates. This constitutes, to our knowledge, a behavior that never before has been observed and that remains to be explained.

  9. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3 He ions, respectively. When the plasma was compressed, the d(d,n) 3 He fusion reaction rate increased a factor of five, and the 3 He(d,p) 4 He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  10. Expansive failure reactions and their prevention in the encapsulation of phenol formaldehyde type ion exchange resins in cement based systems

    Energy Technology Data Exchange (ETDEWEB)

    Constable, M.; Howard, C.G.; Johnson, M.A.; Jolliffe, C.B. (AEA Decommissioning and Waste Management, Winfrith (United Kingdom)); Sellers, R.M. (Nuclear Electric plc, Barnwood (United Kingdom))

    1992-01-01

    Lewatit DN is a phenol formaldehyde based ion exchange resin used to remove radioactive caesium from liquid waste streams such as fuel cooling ponds and effluents. This paper presents the results of a study of the encapsulation of the bead form of the resin in cement with particular reference to the mechanisms of its interaction with the encapsulant. When incorporated in pure ordinary Portland cement (OPC) at loadings in excess of 15 wt % an unstable product results due to expansion of the systems and at higher waste loadings failure results after only a few days. Evidence from differential scanning calorimetry, X-ray diffraction and scanning electron microscopy all indicate the cause of the expansive reaction to be the formation of crystals of calcium salts around and within the resin beads. Addition of BFS and sodium hydroxide prevent the formation of these salts by removal of calcium hydroxide from the system in other reactions. (author).

  11. Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory.

    Science.gov (United States)

    Tiwari, Ambuj; Ensing, Bernd

    2016-12-22

    Outer sphere electron transfer between two ions in aqueous solution is a rare event on the time scale of first principles molecular dynamics simulations. We have used transition path sampling to generate an ensemble of reactive trajectories of the self-exchange reaction between a pair of Ru 2+ and Ru 3+ ions in water. To distinguish between the reactant and product states, we use as an order parameter the position of the maximally localised Wannier center associated with the transferring electron. This allows us to align the trajectories with respect to the moment of barrier crossing and compute statistical averages over the path ensemble. We compare our order parameter with two typical reaction coordinates used in applications of Marcus theory of electron transfer: the vertical gap energy and the solvent electrostatic potential at the ions.

  12. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States); Hammond, Karl D. [Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  13. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tully, John C. [Yale Univ., New Haven, CT (United States)

    2017-06-10

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opens up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.

  14. Time resolved investigations on biogenic trace gases exchanges using proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Karl, T.

    2000-02-01

    concentrations showed a substantial decline, e.g. of about 50 % in the case of pentenol, one of the most prominent VOCs present. The meteorological situation was characterized by strong inversion and very little wind activity. Thus any changes in VOC concentrations observed were solely due to reaction kinetics without significant influence of transport phenomena. Assuming that reaction with OH radicals is the main loss process for pentenol (k = 6 10-11 cm3/s) it was possible to calculate the OH radical density as dependent on time. The concentration increased from zero at 8:00 local time to a maximum density of 1.0 x 106/cm3 at 11:00 and declined thereafter reaching zero level at 15:00. This variation coincided well with the time dependence of solar radiation. 4. During the time span from 9 th till 11 th November 1999, an event of extremely high concentrations of aromatic compounds (1.4 ppbv toluene and 0.8 ppbv benzene) and acetaldehyde (20 ppbv) were observed at the Sonnblick Observatory which coincided with a decline of the ozone concentration from average levels of 50 ppbv before and after the event down to a minimum of 8 ppbv. Back trajectories infer that the air masses observed during this event had been travelling from north westerly directions and close to the surface prior to ascending the Sonnblick, and from the relative concentrations of benzene and toluene the age of the aromatic compounds is estimated to be less than a day. Thus the location of the origin of the air masses is most likely the area of Bavaria. This is also consistent with the high concentrations of acetaldehyde observed, originating from biogenic emissions, which are especially strong for acetaldehyde from dying vegetation in late autumn. The air masses at ground level contain little ozone - thus low concentrations were observed during the event, as there was not enough time for building up of higher ozone concentrations during the transport to the Sonnblick. (author)

  15. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J., E-mail: lwebb@cm.utexas.edu

    2017-02-01

    Highlights: • One-pot synthesis of α-helical-terminated self-assembled monolayers on Au(111). • Synthesis of high density, structured, and covalently bound α-helices on Au(111). • Characterization by surface-averaged and single molecule techniques. • Peptide-terminated surfaces for fabrication of biomaterials and sensors. - Abstract: The Huisgen cycloaddition reaction (“click” chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  16. Quasi-elastic transfer and charge-exchange reactions in collisions of 48Ti on 42Ca and 26Mg

    International Nuclear Information System (INIS)

    Brendel, C.

    1985-01-01

    At the GSI magnetic spectrometer quasi-elastic transfer and charge-exchange reactions of the system 48 Ti + 42 Ca at incident energies E lab = 240, 300, and 385 MeV and additionally at the higher projectile energy the system 48 Ti + 26 Mg were studied each in the excitation energy range up to E x ≅ 80 MeV. The transition strength was for each particle-hole configuration of the final system calculated by means of the DWBA and subsequently folded with a Breit-Wigner distribution. The localization of the strength of the cross section and the specific structure of the energy spectra were at incident energies between 6 and 8 MeV/amu for all angles well reproduced. By an extension of the core-excitation model to many-stage reactions the charge-exchange reaction 48 Ti + 42 Ca → 48 Sc + 42 Sc could be described as sequential two-stage process. In the two-neutron stripping reaction 48 Ti + 42 Ca → 46 Ti + 44 Ca a surprisingly narrow line with a width of the experimental resolution and an excitation energy of E x = 17.8 MeV was measured at angles smaller than the grazing angle. In the 48 Ti + 26 Mg system the corresponding 46 Ti spectra show also under forward angles structures at excitation energies between 8 and 16 MeV. These lines can be explained as two-neutron states with high spin. (orig./HSI) [de

  17. Scaling properties of fracture surfaces on glass strengthened by ionic exchange

    International Nuclear Information System (INIS)

    Garza-Mendez, F.J.; Hinojosa-Rivera, M.; Gomez, I.; Sanchez, E.M.

    2007-01-01

    In this work the results of the statistical topometric analysis of fracture surfaces of soda-lime-silica glass with and without ionic exchange treatment are reported. In this case, the mechanism of substitution is K + -Na + . atomic force microscopy (AFM) was employed to record the topometric data from the fracture surface. The roughness exponent (ζ) and the correlation length (ξ) were calculated by the variable bandwidth method. The analysis for both glasses (subjected and non-subjected to ionic exchange) for ζ shows a value ∼0.8, this value agrees well with that reported in the literature for rapid crack propagation in a variety of materials. The correlation length shows different values for each condition. These results, along with those of microhardness indentations suggest that the self-affine correlation length is influenced by the complex interactions of the stress field of microcracks with that resulting from the collective behavior of the point defects introduced by the strengthening mechanism of ionic exchange

  18. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  19. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    International Nuclear Information System (INIS)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan; Madaeni, Sayed Siavash

    2016-01-01

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  20. Excitation of the Δ resonance in heavy ion charge exchange reactions

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1987-06-01

    Results on the Δ excitation by heavy ion charge exchange are presented. 900 MeV per nucleon 12 C, 16 0, 20 Ne and 1100 MeV per nucleon 12 C have been used. The Δ excitation strength depends on the projectile - ejectile nature and on the incident energy. The role of the target mass is also discussed. The peak for the Δ in nuclei is energy shifted from the free Δ peak

  1. Exchange Rate and Interest Rate in the Monetary Policy Reaction Function

    Directory of Open Access Journals (Sweden)

    Krušković Borivoje D.

    2017-01-01

    Full Text Available In recent years there has been a particular interest in the relation between exchange rates and interest rates both in developed countries and emerging countries. This is understandable given the important role that these variables have in determining the movement of nominal and real economic variables, including the movement of domestic inflation, real output, exports and imports, foreign exchange reserves, etc. To realized the importance of the given instruments selected macroeconomic indicators, data analysis (monthly data relating to Serbia was made on the basis of the Transfer Function Model, a data analysis (annual data relating to emerging countries was done on the basis of the Stepvise Multiple Regression model. In the transfer function model we used the Maximum Likelihood method for assessing unknown coefficients. In the gradual multiple regression model we used the Least Square method for the evaluation of unknown coefficients. All indicator values were used in the original unmodified form, i.e. there was no need for a variety of transformations. Empirical analysis showed that the exchange rate is a more significant transmission mechanism than the interest rate both in emerging markets and Serbia.

  2. Meson exchange calculation of the p-barp→Lambda-barΛ reaction

    International Nuclear Information System (INIS)

    Tabakin, F.; Eisenstein, R.A.

    1985-01-01

    The process p-barp→Lambda-barΛ is studied using a one-boson t-channel strangeness exchange mechanism incorporating pseudoscalar, vector, and tensor mesons. Particular attention is paid to the spin degrees of freedom in the calculation. Initial and final state interactions, including the spin-orbit interaction and absorption, are taken into account using simple phenomenological models. The calculations are performed using density matrix ideas in the helicity basis, and the most important contributing amplitudes are identified. A reasonable fit to existing data can be obtained by allowing a smooth variation of the final state parameters with laboratory momentum. The effect of each of the exchanged mesons, and of the initial- and final-state baryon-baryon interactions on the cross sections and spin observables, is discussed. It is found that the tensor meson exchange plays an essential role even near threshold, which indicates the need for a detailed understanding of the short-range spin dynamics, perhaps as provided by future quark model studies

  3. Variation in surface water-groundwater exchange with land use in an urban stream

    Science.gov (United States)

    Ryan, Robert J.; Welty, Claire; Larson, Philip C.

    2010-10-01

    SummaryA suite of methods is being utilized in the Baltimore metropolitan area to develop an understanding of the interaction between groundwater and surface water at multiple space and time scales. As part of this effort, bromide tracer experiments were conducted over two 10-day periods in August 2007 and May 2008 along two sections (each approximately 900 m long) of Dead Run, a small urban stream located in Baltimore County, Maryland, to investigate the influence of distinct zones of riparian land cover on surface-subsurface exchange and transient storage under low and high baseflow conditions. Riparian land cover varied by reach along a gradient of land use spanning parkland, suburban/residential, commercial, institutional, and transportation, and included wooded, meadow, turf grass, and impervious cover. Under summer low baseflow conditions, surface water-groundwater exchange, defined by gross inflow and gross outflow, was larger and net inflow (gross inflow minus gross outflow) had greater spatial variability, than was observed under spring high baseflow conditions. In addition, the fraction of nominal travel time attributable to transient storage ( Fmed) was lower and was more spatially variable under high baseflow conditions than under low baseflow conditions. The influence of baseflow condition on surface water-ground water exchange and transient storage was most evident in the subreaches with the least riparian forest cover and these effects are attributed to a lack of shading in reaches with little riparian forest cover. We suggest that under summer low baseflow conditions, the lack of shading allowed excess in-channel vegetation growth which acted as a transient storage zone and a conduit for outflow (i.e. uptake and evapotranspiration). Under spring high baseflow conditions the transient storage capacity of the channel was reduced because there was little in-channel vegetation.

  4. Surface chemistry of tribochemical reactions explored in ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Lara-Romero, Javier; Maya-Yescas, Rafael; Rico-Cerda, Jose Luis; Rivera-Rojas, Jose Luis; Castillo, Fernando Chinas; Kaltchev, Matey; Tysoe, Wilfred T.

    2006-01-01

    The thermal decomposition of model extreme-pressure lubricant additives on clean iron was studied in ultrahigh vacuum conditions using molecular beam strategies. Methylene chloride and chloroform react to deposit a solid film consisting of FeCl 2 and carbon, and evolve only hydrogen into the gas phase. No gas-phase products and less carbon on the surface are detected in the case of carbon tetrachloride. Dimethyl and diethyl disulfide react on clean iron to deposit a saturated sulfur plus carbon layer at low temperatures (∼600 K) and an iron sulfide film onto a Fe + C underlayer at higher temperatures (∼950 K). Methane is the only gas-phase product when dimethyl disulfide reacts with iron. Ethylene and hydrogen are detected when diethyl disulfide is used

  5. Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    Science.gov (United States)

    Hu, Jiangping; Ding, Hong

    2012-01-01

    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479

  6. Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates.

    Science.gov (United States)

    Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M

    2018-02-07

    The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.

  7. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  8. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1998-01-01

    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  9. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  10. An alternative preparation method for ion exchanged catalysts: Solid state redox reaction

    DEFF Research Database (Denmark)

    Schneider, E.; Hagen, A.; Grunwaldt, J.-D.

    2004-01-01

    A new method for modifying zeolites with zinc is proposed. The solid state redox reaction between metallic zinc and ZSM-5 zeolites with different Si/Al ratios was investigated by temperature programmed hydrogen evolution (TPHE), X-ray absorption near edge structure (XANES) and diffuse reflectance...... infrared Fourier transform spectroscopy (DRIFTS). The evolution of hydrogen was detected at temperatures above 620 K. The source of hydrogen was the solid state redox reaction of the metal with protons of the support. The samples exhibit catalytic activity in ethane aromatization indicating that zinc...... should be located at the same sites as in catalysts prepared by conventional methods. Combination of XANES and catalytic activity point to zinc being mainly present in tetrahedral geometry under reaction conditions....

  11. Isovector couplings for nucleon charge-exchange reactions at intermediate energies

    International Nuclear Information System (INIS)

    Love, W.G.; Nakayama, K.; Franey, M.A.

    1987-01-01

    The isovector parts of the effective nucleon-nucleon interaction are studied by examination of the reaction /sup 14/C(p,n) at intermediate energies near zero momentum transfer with use of recently developed G-matrix and free--t-matrix interactions. The spin-independent coupling (V/sub tau/) exhibits a strong energy and density dependence which, in the case of the G matrix based on the Bonn potential, significantly improves the agreement between calculated values of chemical bondV/sub σ//sub tau//V/sub tau/chemical bond 2 at q = 0 and those recently extracted from the reaction /sup 14/C

  12. The fractal geometry of nutrient exchange surfaces does not provide an explanation for 3/4-power metabolic scaling

    Directory of Open Access Journals (Sweden)

    Painter Page R

    2005-08-01

    Full Text Available Abstract Background A prominent theoretical explanation for 3/4-power allometric scaling of metabolism proposes that the nutrient exchange surface of capillaries has properties of a space-filling fractal. The theory assumes that nutrient exchange surface area has a fractal dimension equal to or greater than 2 and less than or equal to 3 and that the volume filled by the exchange surface area has a fractal dimension equal to or greater than 3 and less than or equal to 4. Results It is shown that contradicting predictions can be derived from the assumptions of the model. When errors in the model are corrected, it is shown to predict that metabolic rate is proportional to body mass (proportional scaling. Conclusion The presence of space-filling fractal nutrient exchange surfaces does not provide a satisfactory explanation for 3/4-power metabolic rate scaling.

  13. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  14. Monitorizing nitinol alloy surface reactions for biofouling studies

    International Nuclear Information System (INIS)

    Dinu, C.Z.; Dinca, V.C.; Soare, S.; Moldovan, A.; Smarandache, D.; Scarisoareanu, N.; Barbalat, A.; Birjega, R.; Dinescu, M.; DiStefano, V. Ferrari

    2007-01-01

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities

  15. Kinetic analysis of the reactivity of aliphatic cyclic alcohols and carboxylic acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Tamura, Kiyoshi; Imaizumi, Hiroshi; Kano, Naoki

    2007-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 He or T) on various functional groups in environment, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between tritium-labeled poly-(vinyl alcohol) and each aliphatic cyclic alcohol (or carboxylic acid) has been dynamically observed in the range of 50 to 90degC. Consequently, the activities of the aliphatic cyclic alcohol and carboxylic acid increased with increasing reaction time. Applying in A''-McKay plot method to the observed data, the rate constants (k) for these materials were obtained. Using the k, the relation between the number of carbon atoms in the ring in each alcohol and the reactivity of the alcohol was quantitatively compared. Then, to clarify the effect of relative atomic charge of O atom (connected with the H atom in the hydroxy (or carboxy) group in the material) on the reactivity of the material, the MOPAC method was used. From both the above-mentioned and the obtained previously, the following nine items were found as to aliphatic cyclic alcohols (and carboxylic acids) in the T-for-H exchange reaction. (1) The reactivity of aliphatic cyclic alcohols (and carboxylic acids) depends on the temperature. (2) The reactivity of the cyclic materials decreases with increasing number of carbon atoms in the ring. (3) The reactivity of the aliphatic cyclic carboxylic acid seems to be smaller than that of aliphatic cyclic alcohol, and be larger than that of aliphatic cyclic amine. (4) For aliphatic cyclic alcohols, correlation exists between k and relative atomic charges of O atom obtained by the MOPAC method, but the tendency for aliphatic cyclic carboxylic acid is not clear. (5) As to having the same number of carbon atoms in each ring, the reactivity of the aliphatic cyclic carboxylic acid including the side chain is smaller than of the aliphatic cyclic carboxylic acid including no side chain. (6) The reactivity of aliphatic cyclic carboxylic acid is larger than that of

  16. C-13 isotopic studies of the surface catalysed reactions of methane

    International Nuclear Information System (INIS)

    Long, M.A.; He, S.J.X.; Adebajo, M.

    1997-01-01

    The ability of methane to methylate aromatic compounds, which are considered to be models for coal, is being studied. Related to this reaction, but at higher temperatures, is the direct formation of benzene from methane in the presence of these catalysts. Controversy exists in the literature on the former reaction, and 13 C isotope studies are being used to resolve the question. The interest in this reaction arises because the utilisation of methane, in the form of natural gas, in place of hydrogen for direct coal liquefaction would have major economic advantage. For this reason Isotope studies in this area have contributed significantly to an understanding of the methylation reactions. The paper describes experiments utilising methane 13 C, which show that methylation of aromatics such as naphthalene by the methane 13 C is catalysed by microporous, Cu-exchanged SAPO-5, at elevated pressures (6.8 MPa) and temperatures around 400 degree C. The mass spectrometric analysis and n.m.r. study of the isotopic composition of the products of the methylation reaction demonstrate unequivocally that methane provides the additional carbon atom for the methylated products. Thermodynamic calculations predict that the reaction is favourable at high methane pressures under these experimental conditions. The mechanism as suggested by the isotope study is discussed. The catalysts which show activity for the activation of methane for direct methylation of organic compounds, such as naphthalene, toluene, phenol and pyrene, are substituted aluminophosphate molecular sieves, EIAPO-5 (where El=Pb, Cu, Ni and Si) and a number of metal substituted zeolites. Our earlier tritium studies had shown that these catalysts will activate alkanes, at least as far as isotope hydrogen exchange reactions are concerned

  17. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    International Nuclear Information System (INIS)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; Nørskov, Jens K.

    2017-01-01

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.

  18. Fingerprints of surface magnetism in Cr2O3 based exchange bias heterostructures

    Science.gov (United States)

    He, Xi; Wang, Yi; Binek, Ch.

    2009-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic (AF) compounds like Cr2O3 (max. αzz 4ps/m) and also cross-coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. In exchange bias systems the bias field depends critically on the AF interface magnetization. Hence, a strong relation between the latter and the surface magnetization of the free Cr2O3 pinning layer can be expected. Our recent research indicates that there are surface magnetic phase transitions in free Cr2O3 (111) films accompanying surface structural phase transitions. Well defined AF interface magnetization is initialized through ME annealing to T=20K. Subsequently, the interface magnetization is thermally driven through phase transitions at T=120 and 210K. Their effects on the exchange bias are studied in Cr2O3 (111)/CoPt films with the help of polar Kerr and SQUID magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh et al. 2007 Nature Materials 6 21. Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.

  19. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface

    International Nuclear Information System (INIS)

    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.

    2009-01-01

    In the present work, the effect of the use of a nanofluid in a miniature plate heat exchanger (PHE) with modulated surface has been studied both experimentally and numerically. First, the thermophysical properties (i.e., thermal conductivity, heat capacity, viscosity, density and surface tension) of a typical nanofluid (CuO in water, 4% v/v) were systematically measured. The effect of surface modulation on heat transfer augmentation and friction losses was then investigated by simulating the existing miniature PHE as well as a notional similar PHE with flat plate using a CFD code. Finally, the effect of the nanofluid on the PHE performance was studied and compared to that of a conventional cooling fluid (i.e., water). The results suggest that, for a given heat duty, the nanofluid volumetric flow rate required is lower than that of water causing lower pressure drop. As a result, smaller equipment and less pumping power are required. In conclusion, the use of the nanofluids seems to be a promising solution towards designing efficient heat exchanging systems, especially when the total volume of the equipment is the main issue. The only drawbacks so far are the high price and the possible instability of the nanoparticle suspensions.

  20. Influence of exchange reactions in salt melts on cathodic reduction of nitrate ion

    International Nuclear Information System (INIS)

    Prisyazhnyj, V.D.; Chernukhin, S.I.; Kirillov, S.A.; Safronova, I.M.; Zayats, A.D.

    1981-01-01

    Potentiodynamical method has been used to investigate the process of cathodic reduction of nitrate ion in the melts of ternary mutual systems K + , Li + /NO 3- , Dsup(n-) and K + , B 2 + /NO 3 , Dsup(n-) (where B 2 + -Ba 2 + , Sr 2 + , Ca 2 + , and Dsup(n-)-Fsup(-), Cl - , Br - , SO 4- ). The investigations show, that the anion reduction depends on nitrate ion centration of two-charge metals. Influence of the composition of the first and second spheres of the nitrate ion ionic environment on electrode process parameters according to the value of free exchange energy is shown

  1. A new potential of π-nucleus scattering and its application to nuclear structure study using elastic scattering and charge exchange reactions

    International Nuclear Information System (INIS)

    Durand, Gerard.

    1974-01-01

    First the different theories used for studying pion-nucleus scattering and especially Glauber microscopic model and Kisslinger optical model are summarized. From the comparison of these two theories it was concluded that Kisslinger's was better for studying pion-nucleus scattering near the (3/2-3/2) resonance. The potential was developed, with a local corrective term, proposed by this author. This new term arises from taking into account correctly the Lorentz transformation from the pion-nucleon center of mass to the pion nucleus center of mass system. A coupled-channel formalism was developed allowing the study of pion-nucleus elastic scattering and also the study of single and double charge exchange reactions on nucleus with N>Z. The influence of the new term and the shape of nucleon densities on π- 12 C scattering was studied near 200MeV. It was found that at the nucleus surface the neutron density was larger than the proton density. On the other hand, a maximum of sensibility to the different nuclear parameters was found near 180MeV and for elastic scattering angles greater than 100 deg. The calculations of the total cross section for simple and double charge exchange for 13 C and 63 Cu yielded results simular to those of previous theories and showed the same discrepancy between theory and experiment in the resonance region [fr

  2. Fouling of heat exchanger surfaces by dust particles from flue gases of glass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mutsaers, P.L.M.; Beerkens, R.G.C.; Waal, H. de (Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Delft. Inst. of Applied Physics)

    1989-08-01

    Fouling by dust particles generally leads to a reduction of the heat transfer and causes corrosion of secondary heat exchangers. A deposition model, including thermodynamic equilibrium calculations, has been derived and applied to describe the deposition (i.e. fouling) process and the nature of the deposition products in a secondary heat exchanger. The deposition model has been verified by means of laboratory experiments, for the case of flue gases from soda-lime glass furnaces. Corrosion of iron-containing metallic materials, caused by the deposition products, has been briefly investigated with the same equipment. There is a close similarity between the experimental results and model calculations. The largest deposition rates from flue gases on cylindrical tubes in cross-flow configuration, are predicted and measured at the upstream stagnation point. The lowest deposition rates are determined at downstream stagnation point locations. At tube surface temperatures of approximately 520 to 550 K, the fouling rate on the tube reaches a maximum. In this temperature region NaHSO{sub 4} is the most important deposition product. This component is mainly formed at temperatures from 470 up to 540 K. The compound Na{sub 3}H(SO{sub 4}){sub 2} seems to be stable up to 570 K, for even higher temperatures Na{sub 2}SO{sub 4} has been found. These deposition products react with iron, SO{sub 3}, oxygen and water vapour forming the complex corrosion product Na{sub 3}Fe(SO{sub 4}){sub 3}. NaHSO{sub 4}, which is formed at tube surface temperatures below 540 K, causes more severe corrosion of iron-containing materials than Na{sub 2}SO{sub 4}. Maintaining temperatures of the heat exchanger surfaces above 550 to 600 K reduces the fouling tendency and corrosion in case of flue gases from oil-fired soda-lime glass furnaces. (orig.).

  3. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-01-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U VI to U IV

  4. Kinetics and Mechanisms of Oxygen Surface Exchange on La0.6Sr0.4FeO3-delta Thin Films

    DEFF Research Database (Denmark)

    Mosleh, Majid; Søgaard, Martin; Hendriksen, Peter Vang

    2009-01-01

    and oxygen partial pressure [i.e., the incorporation reaction has the same reaction enthalpy (H0=−105 KJ/mol) and entropy (S0=−75.5 J/mol/K) as found for bulk material]. The thin film shows smaller apparent electrical conductivity than reported for bulk. This is due to imperfections in the film, which...... is not totally dense and contains closed porosity. Electrical conductivity relaxation was used to determine the surface exchange coefficient and its dependence on the temperature and oxygen partial pressure. Relaxation curves showed a good fit to a simple exponential decay. The vacancy surface exchange...... coefficient (kV) determined from Kchem shows a slope (log kV vs log PO2) between 0.51 and 0.85. It is further found that kV is proportional to the product of the oxygen partial pressure and the vacancy concentration (kVPO2). Different reaction mechanisms that can account for the observed PO2 and -dependence...

  5. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange.......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...

  6. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  7. Kinetic study on ligand exchange reaction between ethylenedicysteine and 99mTc- glucoheptonate (99mTc-GH)

    International Nuclear Information System (INIS)

    Wu, C.Y.; Ji, S.R.; Lu, C.X.; Ding, S.Y.; Chen, Z.P.; Lin, X.T.

    2002-01-01

    Aim: 99m Tc-L,L-ethylenedicysteine( 99m Tc-EC)is a new type of renal imaging agent. It can be labeled very easily and efficiently at room temperature through direct labeling at pH 12. The need for direct labeling at pH 12 does not compromise the simplicity and ease of preparation of 99m Tc-EC and its practical usefulness in daily routine. On the basis of the labeling experiments, we developed a ligand exchange labeling method, in which the labeling EC with 99m Tc can be performed at pH 8. In order to provide a theoretic basis, a detailed kinetic study of ligand exchange reaction between 99m Tc- glucoheptonate( 99m Tc-GH) and EC was carried out. Materials and Methods: 99m Tc-EC is prepared as follows: 99m Tc-GH + EC → 99m Tc-EC + GH, labeling can be easily performed by adding 99m TcO 4 - (2∼6ml generator elute) to glucoheptonate solution containing SnCl 2 .2H 2 O solution to form 99m Tc-GH, then freshly prepared 99m Tc-GH is transferred to the aqueous solution of different concentrations of EC at different pH value, after being shaken, 99m Tc-EC was formed. Radiolabeling yield(RLY) and radiochemical purity(RCP) of 99m Tc-GH and 99m Tc-EC were measured by Xinhua No.1 paper with developing system of Me 2 CO/H 2 O/con.NH 3 .H 2 O=9/3/1(V/V). 99m Tc-GH(RCP must be over 98%, 80ul, 3.6∼7.4MBq) was added to 1ml of 0.5mol/L phosphate buffer(pH 12) containing different amount of EC(150, 75, 50 and 15ug), the sample was taken out at different time intervals and RCP was determined. The solution of EC(30ul, 5g/L) was added to 1ml of 0.5mol/L phosphate buffer at different pH value(pH11, 10, 9, 8, 7), after completely vortexed, 99m Tc-GH(RCP must be over 98%, 80ul, 3.6∼7.4MBq) was then added, the sample was taken out and RCP was determined as above. The rate constant(k) of ligand exchange reaction at different concentrations of EC and different reaction pH values were calculated out by integrating. Plot ln[1/(1-RLY)] vs t(time) showed a liner relationship, and the rate

  8. Isotopic exchange reactions. Kinetics and efficiency of the reactors using them in isotopic separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1979-11-01

    In the first part, some definitions and the thermodynamic and kinetic isotopic effect concepts are recalled. In the second part the kinetic laws are established, in homogeneous and heterogeneous medium (one component being on occasions present in both phases), without and with isotopic effects. Emphasis is put on application to separation of isotopes, the separation factor α being close to 1, one isotope being in large excess with respect to the other one. Isotopic transfer is then given by: J = Ka (x - y/α) where x and y are the (isotopic) mole fractions in both phases, Ka may be either the rate of exchange or a transfer coefficient which can be considered as the 'same in both ways' if α-1 is small compared to the relative error on the measure of Ka. The third part is devoted to isotopic exchange reactors. Relationships between their efficiency and kinetics are established in some simple cases: plug cocurrent flow reactors, perfectly mixed reactors, countercurrent reactors without axial mixing. We treat only cases where α and the up flow to down flow ratio is close to 1 so that Murphee efficiency approximately overall efficiency (discrete stage contactors). HTU (phase 1) approximately HTU (phase 2) approximately HETP (columns). In a fourth part, an expression of the isotopic separative power of reactors is proposed and discussed [fr

  9. Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Lin, Chien-Hung

    2013-01-01

    Highlights: ► Various degrees of roughness are caused by the sandblasting method. ► An improper surface modification depletes the PEMFC performance severely. ► The AC impedance are used to assess the fuel gas transfer effect. ► The Warburg resistance form in the coarse flow channel surface. - Abstract: Proton exchange membrane fuel cells (PEMFCs) is a promising candidate as energy systems. However, the stability and lifetime of cells are still important issues. The effect of surface roughness on metallic bipolar plate is discussed in this paper. Various roughness on the bulk surface are obtained by the sandblasting method. The grain sizes of sand are selected as 50, 100 and 200 μm. The Ac impedance experiment results show that the bipolar plate roughness and carbon paper porosity are well matched when the surface roughness is within 1–2 μm. Superior condition decreases the contact resistance loss in the fuel cell. The high frequency resistance of the coarse surface was larger than that of the substrate by around 5 mΩ. Furthermore, a new arc was formed at the low frequency region. Hence, the unmatch roughness condition of the bipolar plate significantly increases the contact resistance and mass transfer resistance. This paper develops a sequential approach to study an optimum surface roughness by combining the whole performance (I–V) curve and AC impedance result. It benefits us to quantify the contact and mass transfer resistance exists in the PEMFC. The proposed surface treatment improves the surface effect and promotes the implement of potential metallic bipolar plate in near future

  10. Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products

    Science.gov (United States)

    Kustova, E. V.; Savelev, A. S.; Kunova, O. V.

    2018-05-01

    Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.

  11. Gamow-Teller Strengths from (3He,t) Charge-Exchange Reaction

    International Nuclear Information System (INIS)

    Fujita, Yoshitaka

    2006-01-01

    Gamow-Teller (GT) transition is the most popular nuclear weak process with the nature of spin-isospin excitation. GT transitions in pf-shell nuclei, including those starting from unstable nuclei, are of interest, due to their importance in astrophysical processes. Weak processes, however, gives us rather limited information on the GT response of nuclei. We introduce high-resolution ( 3 He, t) reaction at 0 0 and at an intermediate beam energy as a new spectroscopic tool for studying GT excitations. Owing to the high energy-resolution of the reaction (∼ 30 keV), individual transitions can be observed up to the region of GT giant resonance. Assuming isospin symmetry for the T z = ±1 → 0 isobaric analogous transitions in isobars with mass number A, we present a new method to deduce GT transition strengths starting from proton rich exotic nuclei

  12. Surface confined retro Diels-Alder reaction driven by the swelling of weak polyelectrolytes.

    Science.gov (United States)

    Lyu, Beier; Cha, Wenli; Mao, Tingting; Wu, Yuanzi; Qian, Hujun; Zhou, Yitian; Chen, Xiuli; Zhang, Shen; Liu, Lanying; Yang, Guang; Lu, Zhongyuan; Zhu, Qiang; Ma, Hongwei

    2015-03-25

    Recently, the type of reactions driven by mechanical force has increased significantly; however, the number of methods for activating those mechanochemical reactions stays relatively limited. Furthermore, in situ characterization of a reaction is usually hampered by the inherent properties of conventional methods. In this study, we report a new platform that utilizes mechanical force generated by the swelling of surface tethered weak polyelectrolytes. An initiator with Diels-Alder (DA) adduct structure was applied to prepare the polyelectrolyte-carboxylated poly(OEGMA-r-HEMA), so that the force could trigger the retro DA reaction. The reaction was monitored in real time by quartz crystal microbalance and confirmed with atomic force microscopy and X-ray photoelectron spectroscopy. Compared with the conventional heating method, the swelling-induced retro DA reaction proceeded rapidly with high conversion ratio and selectivity. A 23.61 kcal/mol theoretical energy barrier supported the practicability of this retro DA reaction being triggered mechanically at ambient temperature. During swelling, the tensile force was controllable and persistent. This unique feature imparts this mechanochemical platform the potential to "freeze" an intermediate state of a reaction for in situ spectroscopic observations, such as surface-enhanced Raman spectroscopy and frequency generation spectroscopy.

  13. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    International Nuclear Information System (INIS)

    Seungwoo Paek; Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-01-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  14. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    Energy Technology Data Exchange (ETDEWEB)

    Seungwoo Paek [KAERI (Korea, Republic of); Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-07-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  15. Density functional theory studies on the structures and water-exchange reactions of aqueous Al(III)-oxalate complexes.

    Science.gov (United States)

    Jin, Xiaoyan; Yan, Yu; Shi, Wenjing; Bi, Shuping

    2011-12-01

    The structures and water-exchange reactions of aqueous aluminum-oxalate complexes are investigated using density functional theory. The present work includes (1) The structures of Al(C(2)O(4))(H(2)O)(4)(+) and Al(C(2)O(4))(2)(H(2)O)(2)(-) were optimized at the level of B3LYP/6-311+G(d,p). The geometries obtained suggest that the Al-OH(2) bond lengths trans to C(2)O(4)(2-) ligand in Al(C(2)O(4))(H(2)O)(4)(+) are much longer than the Al-OH(2) bond lengths cis to C(2)O(4)(2-). For Al(C(2)O(4))(2)(H(2)O)(2)(-), the close energies between cis and trans isomers imply the coexistence in aqueous solution. The (27)Al NMR and (13)C NMR chemical shifts computed with the consideration of sufficient solvent effect using HF GIAO method and 6-311+G(d,p) basis set are in agreement with the experimental values available, indicating the appropriateness of the applied models; (2) The water-exchange reactions of Al(III)-oxalate complexes were simulated at the same computational level. The results show that water exchange proceeds via dissociative pathway and the activation energy barriers are sensitive to the solvent effect. The energy barriers obtained indicate that the coordinated H(2)O cis to C(2)O(4)(2-) in Al(C(2)O(4))(H(2)O)(4)(+) is more labile than trans H(2)O. The water-exchange rate constants (k(ex)) of trans- and cis-Al(C(2)O(4))(2)(H(2)O)(2)(-) were estimated by four methods and their respective characteristics were explored; (3) The significance of the study on the aqueous aluminum-oxalate complexes to environmental chemistry is discussed. The influences of ubiquitous organic ligands in environment on aluminum chemistry behavior can be elucidated by extending this study to a series of Al(III)-organic system.

  16. Mass Spectral Investigation of Laboratory Made Tholins and Their Reaction Products: Implications to Tholin Surface Chemistry on Titan

    Science.gov (United States)

    Somogyi, Arpad; Smith, M. A.

    2006-09-01

    The success of the Huygens mission does not overshadow the importance of laboratory simulations of gas-phase and surface reactions that might occur in Titan's atmosphere and surface, respectively. We present here our latest results on chemical reactions (hydrolysis, peroxidation and hydrogenation) of laboratory made tholins obtained by FT-ICR mass spectrometry. The laboratory synthesis of tholins has been described in our earlier papers [1,2]. Overall, we conclude that our laboratory tholins are reactive materials that undergo fast hydrolysis, oxidation and reduction. Thus, if the tholin on Titan's surface resemble our laboratory made tholins, it can be considered as a potential starting material for several synthetic processes that can provide organic compounds of pre-biotic interest. Hydrolysis reactions occur with rate constants of 2-10 hour-1 at room temperature. Formal water addition to several species of CxHyNz has been observed by detecting the formation of CxHy+2NzO species. MS/MS fragmentation of the oxygen containing ions leads to the loss of water, ammonia, HCN, acetonitrile, etc. This suggests that tholin hydrolysis may occur in temporary melted ponds of water/ammonia ice on Titan. Peroxidation, which can be considered as a very harsh oxidation, leads to mono-, and multiple oxygenated compounds within a few minutes. The MS/MS fragmentation of these compounds suggests the presence of organic amides and, presumably, amino acid like compounds. Hydrogenation leads to compounds in which the originally present carbon-carbon or carbon-nitrogen double and triple bonds are saturated. H/D exchange experiments show different kinetics depending on the degree of unsaturation/saturation and the number of N atoms. [1] Sarker, N.; Somogyi, A.; Lunine, J. I.; Smith, M. A. Astrobiology, 2003, 3, 719-726. [2] Somogyi, A.; Oh, C-H.; Lunine, J. I.; Smith, M. A. J. Am. Soc. Mass Spectrom. 2005, 16, 850-859.

  17. Theory of the reaction dynamics of small molecules on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Bret [Univ. of Massachusetts, Amherst, MA (United States)

    2016-09-09

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H2, H2O and CH4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimental data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).

  18. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    Science.gov (United States)

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  19. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  20. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  1. Regime-Dependent Differences in Surface Freshwater Exchange Estimates Over the Ocean

    Science.gov (United States)

    Wong, Sun; Behrangi, Ali

    2018-01-01

    Differences in gridded precipitation (P), surface evaporation (E), and the resultant surface freshwater exchange (P - E) among different products over the ocean are diagnosed as functions of moisture advection (Qadvt) and moisture tendency by dynamical convergence (Qcnvg). Compared to the GPCP product, the TRMM3B42 product captures higher frequency of precipitation with larger extreme precipitation rates in regimes of deep convection and more light rain detections in regimes of frequent occurrence of boundary layer clouds. Discrepancies in E depend on moisture flux divergence, with the OAFlux product having the largest E in regimes of divergence. Discrepancies in mean P - E in deep convective regimes are highly influenced by differences in precipitation, with the TRMM3B42 product yielding P - E histograms closer to those inferred from the reanalysis moisture flux convergence. In nonconvergent regimes, observation-based P - E histograms skew toward positive values while the inferred reanalysis histograms are symmetric about the means.

  2. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation

    International Nuclear Information System (INIS)

    Forster, M.; Augustin, W.; Bohnet, M.

    1999-01-01

    The accumulation of unwanted crystalline deposits (fouling) reduces the efficiency of heat exchangers considerably. In order to decrease the cost of fouling two strategies have been developed. The first fouling mitigation strategy is based on the modification of energy-and-geometry-related characteristics of the heat transfer surface to realize an increased duration of the induction period. By means of a drop-shape-analysis measurement device the interaction at the interface crystal/heat transfer surface is determined. The deployment of the fracture energy model and the interfacial defect model relates wetting characteristics to the adhesion phenomenon. Hence, a first estimation of the optimal choice of surface material is realized. Furthermore, the influence of surface topography on interfacial interactions has been analyzed. The second fouling mitigation strategy is based on the adjustment of the hydrodynamic flow conditions using a pulsation technique. Here, single strokes of higher velocity are superimposed on the stationary flow. These strokes shift the equilibrium of forces to an improved removal process. Fouling experiments have proved that pulsation is a powerful tool to mitigate the built-up of fouling layers on heat transfer surfaces. (author)

  3. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  4. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  5. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  6. Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ

    Science.gov (United States)

    Tropin, E. S.; Ananyev, M. V.; Farlenkov, A. S.; Khodimchuk, A. V.; Berenov, A. V.; Fetisov, A. V.; Eremin, V. A.; Kolchugin, A. A.

    2018-06-01

    Surface oxygen exchange kinetics and diffusion in La2-xCaxNiO4+δ (x = 0; 0.1; 0.3) have been studied by the isotope exchange method with gas phase equilibration in the temperature range of 600-800 °C and oxygen pressure range 0.13-2.5 kPa. Despite an enhanced electrical conductivity of La2-xCaxNiO4+δ theirs oxygen surface exchange (k*) and oxygen tracer diffusion (D*) coefficients were significantly lower in comparison with La2NiO4+δ. The rates of the elementary stages of oxygen exchange have been calculated. Upon Ca doping the change of the rate-determining stage was observed. The surface of the oxides was found to be inhomogeneous towards oxygen exchange process according to the recently developed model. The reasons of such inhomogeneity are discussed as well as Ca influence on the surface defect chemistry and oxygen surface exchange and diffusivity.

  7. Studies of the surface of titanium dioxide. IV. The hydrogen-deuterium equilibration reaction

    International Nuclear Information System (INIS)

    Iwaki, T.; Katsuta, K.; Miura, M.

    1981-01-01

    The interaction of hydrogen with the surface of titanium dioxide has been studied in connection with the hydrogen-reduction mechanism of titanium dioxide, by means of such measurements as weight decrease, magnetic susceptibility, hydrogen uptake, and electrical conductance. It was postulated in the previous study that the rate-determining step of the hydrogen-reduction reaction may be the formation of surface hydroxyl groups, followed by the rapid removal of water molecules from the surface. In this study, the interactions between hydrogen and the surface of titanium dioxide were investigated by measuring the hydrogen-deuterium equilibration reaction, H 2 + D 2 = 2HD, at temperatures above 200 0 C on both surfaces before and after hydrogen reduction to compare the differences in the reactivities

  8. Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors.

    Science.gov (United States)

    Dashper, Stuart G; Mitchell, Helen L; Seers, Christine A; Gladman, Simon L; Seemann, Torsten; Bulach, Dieter M; Chandry, P Scott; Cross, Keith J; Cleal, Steven M; Reynolds, Eric C

    2017-01-01

    Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (Kgp cat I and Kgp cat II) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.

  9. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    Science.gov (United States)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  10. Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes

    Directory of Open Access Journals (Sweden)

    J. Joensuu

    2016-06-01

    Full Text Available Biogenic volatile organic compounds (BVOCs produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L. and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry.

  11. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  12. Solvent effects on the kinetics of the chlorine isotopic exchange reaction between chloride ion and O,O-diphenyl phosphorochloridate or O,O-diphenyl phosphorchloridothioate

    International Nuclear Information System (INIS)

    Mikolajczyk, M.; Slebocka-Tilk, H.; Reimschussel, W.

    1982-01-01

    The effect of solvent on the kinetics of the chlorine isotopic exchange reaction between 36 Cl- ions and O,O-diphenyl phosphorochloridate or O,O-diphenyl phosphorochloridothioate has been investigated in nitromethane, acetonitrile, propylene carbonate, benzonitrile, nitrobenzene, and hexamethyl-phosphoric triamide. The rate constants decrease with increasing electrophilicity of the solvent. A good correlation between the logarithm of the rate constants and acceptor number (AN) of the solvent was obtained with identical slopes for reactions with phosphoryl and thiophosporyl compounds. The slopes for the dependence of ΔH or TΔS vs. AN for chlorine isotopic exchange in (PHO) 2 pace are opposite those for the exchange reaction in (PHO) 2 PSCl, so a constant ratio of k/sub p=O//k/sub p=s/ is observed, resulting from compensation of ΔH by ΔS. The effect of solvent on the initial state (from solubility measurements) and the transition state of the reaction between (PhO) 2 PSCl and the Cl- ion was evaluated. Changes of solvation of (PHO) 2 PSCE have practically no effect on the kinetics of the reactions. Changes of solvation of the chloride ion and of the transition state primarily influence the rate constants and activation parameters of the investigated isotopic-exchange reaction

  13. Quantum-tunneling isotope-exchange reaction H2+D-→HD +H-

    Science.gov (United States)

    Yuen, Chi Hong; Ayouz, Mehdi; Endres, Eric S.; Lakhamanskaya, Olga; Wester, Roland; Kokoouline, Viatcheslav

    2018-02-01

    The tunneling reaction H2+D-→HD +H- was studied in a recent experimental work at low temperatures (10, 19, and 23 K) by Endres et al. [Phys. Rev. A 95, 022706 (2017), 10.1103/PhysRevA.95.022706]. An upper limit of the rate coefficient was found to be about 10-18cm3 /s. In the present study, reaction probabilities are determined using the ABC program developed by Skouteris et al. [Comput. Phys. Commun. 133, 128 (2000), 10.1016/S0010-4655(00)00167-3]. The probabilities for ortho-H2 and para-H2 in their ground rovibrational states are obtained numerically at collision energies above 50 meV with the total angular momentum J =0 -15 and extrapolated below 50 meV using a WKB approach. Thermally averaged rate coefficients for ortho- and para-H2 are obtained; the largest one, for ortho-H2, is about 3.1 ×10-20cm3 /s, which agrees with the experimental results.

  14. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    Science.gov (United States)

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  15. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    Science.gov (United States)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  16. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-12-01

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  17. Two-body hypercharge-exchange reactions in K-p and π+p interactions at 10 and 16 GeV/c

    International Nuclear Information System (INIS)

    Girtler, P.; Otter, G.; Sliwa, K.; Barnham, K.W.J.; Eason, R.M.; Newham, P.; Pollock, B.; Wells, J.; Mandl, F.; Markytan, M.

    1979-01-01

    Cross section values or upper limits are presented for twenty-five two-body hypercharge-exchange reactions in K - p and π + p interactions at 10 and 16 GeV/c. The 16 GeV/c results are compared with some predictions of line-reversal plus exchange-degenerate Regge poles, of SU(3) and of the additive quark model. Agreement is found in all cases. (author)

  18. Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide

    Science.gov (United States)

    Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan

    2006-01-01

    Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.

  19. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    Science.gov (United States)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  20. Kinetics of exchange reaction between neodymium(3) transcyclohexanediaminetetraacetate and europium(3)- and holmium(3) aquo-ions in the H2O and D2O solutions

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.; Spitsyn, V.I.

    1983-01-01

    The exchange reaction between central ions in the NdD - Ln' 3+ systems, where Ln' 3+ is a substituting cation (Eu 3+ and Ho 3+ , D 4 =cyclohexanediaminetetraacetate) is studied and the electrophilic suhstitution mechanism is considered. To study the kinetic isotope effects, the reagents have been solVed in heavy water containing 99.9% D 2 O. The electrophilic substitution in the indicated systems proceeds through the dissociative mechanism catalyzed by protons and via the spontaneous dissociation mechanism. The exchange via the acid-catalyzed mechanism is limited by the intermediate protonated complex decay. The associative mechanism of the electrophilic exchange in the studied systems is not realized

  1. Enhanced bimolecular exchange reaction through programmed coordination of a five-coordinate oxovanadium complex for efficient redox mediation in dye-sensitized solar cells.

    Science.gov (United States)

    Oyaizu, Kenichi; Hayo, Noriko; Sasada, Yoshito; Kato, Fumiaki; Nishide, Hiroyuki

    2013-12-07

    Electrochemical reversibility and fast bimolecular exchange reaction found for VO(salen) gave rise to a highly efficient redox mediation to enhance the photocurrent of a dye-sensitized solar cell, leading to an excellent photovoltaic performance with a conversion efficiency of 5.4%. A heterogeneous electron-transfer rate constant at an electrode (k0) and a second-order rate constant for an electron self-exchange reaction (k(ex)) were proposed as key parameters that dominate the charge transport property, which afforded a novel design concept for the mediators based on their kinetic aspects.

  2. Charge exchange (p,n) reactions to the isobaric analog states of high Z nuclei: 73< or =Z< or =92

    International Nuclear Information System (INIS)

    Hansen, L.F.; Grimes, S.M.; Poppe, C.H.; Wong, C.

    1983-01-01

    Differential cross sections have been measured for the (p,n) reaction to the isobaric analog states of 181 Ta, 197 Au, 209 Bi, 232 Th, and 238 U at an incident energy of 27 MeV. Because of the importance of collective effects in this mass region, coupled-channel calculations have been carried out in the analysis of the data. Optical potentials obtained from the Lane model for the charge exchange reaction have been used in the simultaneous analysis of coupled proton and neutron channels. The sensitivity of the calculations to the different couplings between the levels and to the magnitude of the isovector potentials, V 1 and W 1 , is discussed. The good agreement obtained between the measured and calculated (p,n) angular distributions to the analog state confirms the validity of the Lane formalism for high-Z nuclei (Z> or =50). Elastic neutron differential cross sections inferred from the coupled-channel analysis are compared with measurements available in the literature in the energy range 7--8 MeV. The results of these calculations agree with the measured values as well as the results of calculations made using global neutron optical potential parameters optimized to fit neutron data

  3. Theoretical calculation of reorganization energy for electron self-exchange reaction by constrained density functional theory and constrained equilibrium thermodynamics.

    Science.gov (United States)

    Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan

    2013-08-22

    Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.

  4. Simultaneous heat and mass transfer to air from a compact heat exchanger with water spray precooling and surface deluge cooling

    International Nuclear Information System (INIS)

    Zhang, Feini; Bock, Jessica; Jacobi, Anthony M.; Wu, Hailing

    2014-01-01

    Various methods are available to enhance heat exchanger performance with evaporative cooling. In this study, evaporative mist precooling, deluge cooling, and combined cooling schemes are examined experimentally and compared to model predictions. A flexible model of a compact, finned-tube heat exchanger with a wetted surface is developed by applying the governing conservation and rate equations and invoking the heat and mass transfer analogy. The model is applicable for dry, partially wet, or fully wet surface conditions and capable of predicting local heat/mass transfer, wetness condition, and pressure drop of the heat exchanger. Experimental data are obtained from wind tunnel experiments using a louver-fin flat-tube heat exchanger with single-phase tube-side flow. Total capacity, pressure drop, and water drainage behavior under various water usage rates and air face velocities are analyzed and compared to data for dry-surface conditions. A heat exchanger partitioning method for evaporative cooling is introduced to study partially wet surface conditions, as part of a consistent and general method for interpreting wet-surface performance data. The heat exchanger is partitioned into dry and wet portions by introducing a wet surface factor. For the wet part, the enthalpy potential method is used to determine the air-side sensible heat transfer coefficient. Thermal and hydraulic performance is compared to empirical correlations. Total capacity predictions from the model agree with the experimental results with an average deviation of 12.6%. The model is also exercised for four water augmentation schemes; results support operating under a combined mist precooling and deluge cooling scheme. -- Highlights: • A new spray-cooled heat exchanger model is presented and is validated with data. • Heat duty is shown to be asymptotic with spray flow rate. • Meaningful heat transfer coefficients for partially wet conditions are obtained. • Colburn j wet is lower than j dry

  5. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    KAUST Repository

    Fornander, Louise H

    2013-12-03

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.

  6. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  7. Surface reaction of SnII on goethite (α-FeOOH): surface complexation, redox reaction, reductive dissolution, and phase transformation.

    Science.gov (United States)

    Dulnee, Siriwan; Scheinost, Andreas C

    2014-08-19

    To elucidate the potential risk of (126)Sn migration from nuclear waste repositories, we investigated the surface reactions of Sn(II) on goethite as a function of pH and Sn(II) loading under anoxic condition with O2 level redox state and surface structure were investigated by Sn K edge X-ray absorption spectroscopy (XAS), goethite phase transformations were investigated by high-resolution transmission electron microscopy and selected area electron diffraction. The results demonstrate the rapid and complete oxidation of Sn(II) by goethite and formation of Sn(IV) (1)E and (2)C surface complexes. The contribution of (2)C complexes increases with Sn loading. The Sn(II) oxidation leads to a quantitative release of Fe(II) from goethite at low pH, and to the precipitation of magnetite at higher pH. To predict Sn sorption, we applied surface complexation modeling using the charge distribution multisite complexation approach and the XAS-derived surface complexes. Log K values of 15.5 ± 1.4 for the (1)E complex and 19.2 ± 0.6 for the (2)C complex consistently predict Sn sorption across pH 2-12 and for two different Sn loadings and confirm the strong retention of Sn(II) even under anoxic conditions.

  8. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    Science.gov (United States)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  9. Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Lee, Yeayeon; Jang, Jeongseok; Lee, Jin Goo; Jeon, Ok Sung; Kim, Hyeong Su; Hwang, Ho Jung; Shul, Yong Gun

    2016-01-01

    Highlights: • Pd-Mo-Fe catalysts show high catalytic activity and stability for oxygen-reduction reactions in acid media. • The optimum compositions were 7.5:1.5:1.0 for Pd-Fe-Mo, and the optimum temperatures were 500 °C. • The Pd-Fe-Mo catalysts were successfully applied to the PEMFC cathode, showing ∼500 mA cm −1 at 0.6 V. • The lattice constant was strongly related to the activity and stability of the catalysts for oxygen-reduction reactions. - Abstract: Highly active and durable non-platinum catalysts for oxygen-reduction reaction (ORR) have been developed for energy conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this study, Pd-Fe-Mo catalyst is reported as a non-platinum catalyst for ORR. The atomic ratio and annealing temperatures are controlled on the catalysts to understand interplay between their physical and chemical properties and electrochemical activities. The Pd-Fe-Mo catalyst optimized with 7.5:1.5:1.0 of the atomic ratio and 500 °C of the annealing temperature shows 32.18 mA mg −1 PGM (PGM: platinum group metal) of the kinetic current density at 0.9 V for ORR, which is comparable to that of commercial Pt/C catalyst. The current density is degraded to 6.20 mA mg −1 PGM after 3000 cycling of cyclic voltammetry, but it is greatly enhanced value compared to other non-platinum catalysts. In actual application to PEMFCs, the 20% Pd-Fe-Mo catalyst supported on carbons exhibits a high performance of 506 mA cm −2 at 0.6 V. The results suggest that the Pd-Fe-Mo catalyst can be a good candidate for non-platinum ORR catalysts.

  10. Quantum mechanical study of the proton exchange in the ortho-para H2 conversion reaction at low temperature.

    Science.gov (United States)

    Honvault, P; Jorfi, M; González-Lezana, T; Faure, A; Pagani, L

    2011-11-14

    Ortho-para H(2) conversion reactions mediated by the exchange of a H(+) proton have been investigated at very low energy for the first time by means of a time independent quantum mechanical (TIQM) approach. State-to-state probabilities and cross sections for H(+) + H(2) (v = 0, j = 0,1) processes have been calculated for a collision energy, E(c), ranging between 10(-6) eV and 0.1 eV. Differential cross sections (DCSs) for H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) for very low energies only start to develop a proper global minimum around the sideways scattering direction (θ≈ 90°) at E(c) = 10(-3) eV. Rate coefficients, a crucial information required for astrophysical models, are provided between 10 K and 100 K. The relaxation ortho-para process j = 1 → j' = 0 is found to be more efficient than the j = 0 → j' = 1 conversion at low temperatures, in line with the extremely small ratio between the ortho and para species of molecular hydrogen predicted at the temperature of interstellar cold molecular clouds. The results obtained by means of a statistical quantum mechanical (SQM) model, which has previously proved to provide an adequate description of the dynamics of the title reactions at a higher collision energy regime, have been compared with the TIQM results. A reasonable good agreement has been found with the only exception of the DCSs for the H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) process at very low energy. SQM cross sections are also slightly below the quantum results. Estimates for the rate coefficients, in good accord with the TIQM values, are a clear improvement with respect to pioneering statistical studies on the reaction.

  11. Vibrational Mode-Specific Reaction of Methane on a Nickel Surface

    Science.gov (United States)

    Beck, Rainer D.; Maroni, Plinio; Papageorgopoulos, Dimitrios C.; Dang, Tung T.; Schmid, Mathieu P.; Rizzo, Thomas R.

    2003-10-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.

  12. Research project AUS-10370/CF: electron impact ionization and surface induced reactions of edge plasma constituents

    International Nuclear Information System (INIS)

    Maerk, T.D.

    1999-01-01

    In order to better understand elementary reactions which are taking place at the plasma edge of thermonuclear fusion devices, three areas of research were persuaded: I) Experimental studies about electron ionization of neutrals and ions and electron attachment to molecules, II) Theoretical studies about electron ionisation of neutrals and ions and III) Reactive interaction of molecular ions with surfaces

  13. Integrated assessment of groundwater - surface water exchange in the hillslope - riparian interface of a montane catchment

    Science.gov (United States)

    Scheliga, Bernhard; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Soulsby, Chris

    2016-04-01

    Groundwater-surface water dynamics play an important role in runoff generation and the hydrologic connectivity between hillslopes and streams. Here, we present findings from a suite of integrated, empirical approaches to increase our understanding of groundwater-surface water interlinkages in a 3.2 km ^ 2 experimental catchment in the Scottish Highlands. The montane catchment is mainly underlain by granite and has extensive (70%) cover of glacial drift deposits which are up to 40 m deep and form the main aquifer in the catchment. Flat valley bottom areas fringe the stream channel and are characterised by peaty soils (0.5-4 m deep) which cover about 10% of the catchment and receive drainage from upslope areas. The transition between the hillslopes and riparian zone forms a critical interface for groundwater-surface water interactions that controls both the dynamics of riparian saturation and stream flow generation. We nested observations using wells to assess the groundwater - surface water transition, LiDAR surveys to explore the influence of micro-topography on shallow groundwater efflux and riparian wells to examine the magnitude and flux rates of deeper groundwater sources. We also used electrical resistivity surveys to assess the architecture and storage properties of drift aquifers. Finally, we used isotopic tracers to differentiate recharge sources and associated residence times as well as quantifying how groundwater dynamics affect stream flow. These new data have provided a novel conceptual framework for local groundwater - surface water exchange that is informing the development of new deterministic models for the site.

  14. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  15. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  16. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo; Kim, Ook Joong

    2007-01-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer

  17. Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.

    Science.gov (United States)

    Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S

    2017-08-22

    Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.

  18. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  19. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    Science.gov (United States)

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  1. Influence of growth conditions and surface reaction byproducts on GaN grown via metal organic molecular beam epitaxy: Toward an understanding of surface reaction chemistry

    Science.gov (United States)

    Pritchett, David; Henderson, Walter; Burnham, Shawn D.; Doolittle, W. Alan

    2006-04-01

    The surface reaction byproducts during the growth of GaN films via metal organic molecular beam epitaxy (MOMBE) were investigated as a means to optimize material properties. Ethylene and ethane were identified as the dominant surface reaction hydrocarbon byproducts, averaging 27.63% and 7.15% of the total gas content present during growth. Intense ultraviolet (UV) photoexcitation during growth was found to significantly increase the abundance of ethylene and ethane while reducing the presence of H2 and N2. At 920°C, UV excitation was shown to enhance growth rate and crystalline quality while reducing carbon incorporation. Over a limited growth condition range, a 4.5×1019-3.4×1020 cm-3 variation in carbon incorporation was achieved at constant high vacuum. Coupled with growth rate gains, UV excitation yielded films with ˜58% less integrated carbon content. Structural material property variations are reported for various ammonia flows and growth temperatures. The results suggest that high carbon incorporation can be achieved and regulated during MOMBE growth and that in-situ optimization through hydrocarbon analysis may provide further enhancement in the allowable carbon concentration range.

  2. Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A. [Physical; Favaro, Marco [Advanced; Joint; Chemical; Ross, Philip N. [Materials; Yano, Junko [Joint; Molecular; Liu, Zhi [State; Division; Hussain, Zahid [Advanced; Crumlin, Ethan J. [Advanced; Joint Center

    2017-11-02

    Understanding the surface chemistry of electrocatalysts in operando can bring insight into the reaction mechanism, and ultimately the design of more efficient materials for sustainable energy storage and conversion. Recent progress in synchrotron based X-ray spectroscopies for in operando characterization allows us to probe the solid/liquid interface directly while applying an external potential, applied here to the model system of Pt in alkaline electrolyte for the hydrogen evolution reaction (HER). We employ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the oxidation and reduction of Pt-oxides and hydroxides on the surface as a function of applied potential, and further assess the potential for hydrogen adsorption and absorption (hydride formation) during and after the HER. This new window into the surface chemistry of Pt in alkaline brings insight into the nature of the rate limiting step, the extent of H ad/absorption and it’s persistence at more anodic potentials.

  3. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  4. Production of 13C by chemical exchange reaction between amine carbamate and carbon dioxide in a solvent-carrier system

    International Nuclear Information System (INIS)

    Ghate, M.R.; Taylor, T.I.

    1975-01-01

    The chemical exchange reaction between amine carbamate and CO 2 has been investigated for the purpose of using it as a practical method to concentrate 13 C. The effects of solvent, concentration of amines, catalysts, flow rate, and diameter of the column have been studied for a number of amines. Of the solutions studied, di-n-butylamine (DNBA) in triethylamine (TEA) as a solvent proved to be the most favorable for use in the preparation of highly enriched 13 C. The overall separations obtained as a function of the concentration of DNBA using 2.5 cm i.d. x 100 cm column ranged from 2.05 at 1 M to 1.69 at 2.84 M. For 2 M DNBA the maximum separation was 1.94. At this concentration of DNBA the overall separation as a function of flow rate ranged from 1.94 at 0.845 ml/cm 2 -min to 1.31 at 2.9 ml/cm 2 -min. Neither the rate of exchange nor the overall separations were improved by use of catalysts. Increasing the diameter twofold resulted in little or no loss in overall separations. On the basis of the properties of the system and the data obtained with respect to the above variables, design calculations were made for a six-stage tapered cascade. These calculations were based on a flow of 40 ml/min of 2 M DNBA in TEA, giving a maximum transport of 7.1 x 10 -3 mmole/min or a maximum production rate of 130 mg 13 C/day. The cascade was operated for about 5 months during which period gram quantities of 67 percent 13 C were produced

  5. Validation of a new device to quantify groundwater-surface water exchange

    Science.gov (United States)

    Cremeans, Mackenzie M.; Devlin, J. F.

    2017-11-01

    Distributions of flow across the groundwater-surface water interface should be expected to be as complex as the geologic deposits associated with stream or lake beds and their underlying aquifers. In these environments, the conventional Darcy-based method of characterizing flow systems (near streams) has significant limitations, including reliance on parameters with high uncertainties (e.g., hydraulic conductivity), the common use of drilled wells in the case of streambank investigations, and potentially lengthy measurement times for aquifer characterization and water level measurements. Less logistically demanding tools for quantifying exchanges across streambeds have been developed and include drive-point mini-piezometers, seepage meters, and temperature profiling tools. This project adds to that toolbox by introducing the Streambed Point Velocity Probe (SBPVP), a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the interface with high density sampling, which can effectively, rapidly, and accurately complement conventional methods. The SBPVP is a direct push device that measures in situ water velocities at the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic conductivity or gradient information, nor do they require long equilibration times. Laboratory testing indicated that the SBPVP has an average accuracy of ± 3% and an average precision of ± 2%. Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising agreement between groundwater fluxes determined by conventional methods and those estimated from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool to quantify groundwater-surface water interactions in high definition in sandy streambeds.

  6. Study on reduction reactions of neptunium(V) on magnetite surface

    International Nuclear Information System (INIS)

    Kitamura, Akira; Kamei, Gento; Nakata, Kotaro; Tanaka, Satoru; Tomura, Tsutomu

    2004-01-01

    Redox reactions between neptunium(V) (Np(V)) and magnetite (Fe(II) 1 Fe(III) 2 O 4 ) surface were investigated in N 2 gas atmosphere. A batch method was applied to the experiment. A magnetite sample and a 0.1 M NaCl solution were mixed in a polypropylene tube, and pH, redox potential and concentration of dissolved neptunium were measured as a function of shaking time, temperature and liquid/solid ratio. The concentration of dissolved neptunium was reduced rapidly within a day, due to the reducing reaction of Np(V) to Np(IV) and the precipitation of Np(IV). The rate constant of the redox reaction and the activation energy for the rate constant were preliminarily obtained. On the other hand, redox reactions between Np(V) and aqueous Fe(II) were hardly observed. Considering the number of transferred electrons, it was suggested that the redox reaction was promoted by not only Fe(II) on the magnetite surface, but also Fe(II) inside the magnetite. (author)

  7. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  8. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  9. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  10. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  11. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    Science.gov (United States)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  12. Origin of Power Laws for Reactions at Metal Surfaces Mediated by Hot Electrons

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2009-01-01

    A wide range of experiments have established that certain chemical reactions at metal surfaces can be driven by multiple hot-electron-mediated excitations of adsorbates. A high transient density of hot electrons is obtained by means of femtosecond laser pulses and a characteristic feature of such...... density functional theory and the delta self-consistent field method. With a simplifying assumption, the power law becomes exact and we obtain a simple physical interpretation of the exponent n, which represents the number of adsorbate vibrational states participating in the reaction....

  13. Modeling heat dissipation at the nanoscale: an embedding approach for chemical reaction dynamics on metal surfaces.

    Science.gov (United States)

    Meyer, Jörg; Reuter, Karsten

    2014-04-25

    We present an embedding technique for metallic systems that makes it possible to model energy dissipation into substrate phonons during surface chemical reactions from first principles. The separation of chemical and elastic contributions to the interaction potential provides a quantitative description of both electronic and phononic band structure. Application to the dissociation of O2 at Pd(100) predicts translationally "hot" oxygen adsorbates as a consequence of the released adsorption energy (ca. 2.6 eV). This finding questions the instant thermalization of reaction enthalpies generally assumed in models of heterogeneous catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular resonances, fusion reactions and surface transparency of interaction between heavy ions

    International Nuclear Information System (INIS)

    Abe, Yasuhisa.

    1980-01-01

    A review of the Band Crossing Model is given, including recent results on the 16 O + 16 O system. Surface Transparency is discussed in the light of the recent development in our understanding of the fusion reaction mechanisms and by calculating the number of open channels available to direct reactions. The existence of the Molecular Resonance Region is suggested in several systems by the fact that Band Crossing Region overlaps with the Transparent Region. A systematic study predicts molecular resonances in the 14 C + 14 C and 12 C + 14 C systems as prominent as those observed in the 16 O + 16 O and 12 C + 16 O systems

  15. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  16. Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility

    International Nuclear Information System (INIS)

    Lee, Myung Jin; Kim, Ji Ho; Park, Young Tae

    2010-01-01

    We have carried out the surface modification of photocatalytic TiO 2 with triethoxysilane through dehydrogenation reaction and characterized the modified photocatalyst by spectroscopic methods, such as FT-IR, solid-state 29 Si MAS NMR, XPS, and XRF, etc. We also examined photocatalytic activity of the immobilized photocatalytic titanium dioxide with triethoxysilane by decolorization reaction of dyes such as cong red and methylene blue under visible light. Dispersion test showed that the photocatalytic titanium dioxide immobilized with triethoxysilane group has kept higher dispersibility than titanium dioxide itself. No appreciable precipitation takes place even after standing for 24 h in the 4:6 mixture ratio of ethanol and water

  17. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  18. Fabrication of Cationic Exchange Polystyrene Nanofibers for Drug ...

    African Journals Online (AJOL)

    Purpose: To prepare polystyrene nanofiber ion exchangers (PSNIE) with surface cation exchange functionality using a new method based on electrospinning and also to optimize crosslinking and sulfonation reactions to obtain PSNIE with maximum ion exchange capacity (IEC). Method: The nanofibers were prepared from ...

  19. Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction

    Directory of Open Access Journals (Sweden)

    Alex Petrovici

    2014-09-01

    Full Text Available Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3 at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-COOCH3 in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•OH-CH2-COOCH3. The ESR spectrum of CH3-C(•OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K, CH3-C(•OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT support the radical assignments.

  20. Presolvated electron reactions with methyl acetoacetate: electron localization, proton-deuteron exchange, and H-atom abstraction.

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D

    2014-09-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•--CH2-COOCH3) in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-COOCH3. The ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments.

  1. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    Science.gov (United States)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  2. Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers

    International Nuclear Information System (INIS)

    Haensch, Claudia; Hoeppener, Stephanie; Schubert, Ulrich S

    2008-01-01

    The functionalization of surfaces and the ability to tailor their properties with desired physico-chemical functions is an important field of research with a broad spectrum of applications. These applications range from the modification of wetting properties, over the alteration of optical properties, to the fabrication of molecular electronic devices. In each of these fields, it is of specific importance to be able to control the quality of the layers with high precision. The present study demonstrates an approach that utilizes the 1,3-dipolar cycloaddition of terminal acetylenes to prepare triazole-terminated monolayers on different substrates. The characterization of the precursor monolayers, the optimization of the chemical surface reactions as well as the clicking of a fluorescent dye molecule on such azide-terminated monolayers was carried out. A coumarin 343 derivative was utilized to discuss the aspects of the functionalization approach. Based on this approach, a number of potential surface reactions, facilitated via the acetylene-substituted functional molecules, for a broad range of applications is at hand, thus leading to numerous possibilities where surface modifications are concerned. These modifications can be applied on non-structured surfaces of silicon or glass or can be used on structured surfaces. Various possibilities are discussed

  3. CONVECTIVE HEAT EXCHANGE ON THE LATERAL SURFACE OF A RELATIVELY LONG CYCLONE CHAMBER

    Directory of Open Access Journals (Sweden)

    E. N. Saburov

    2016-01-01

    Full Text Available The high-turbulent swirling flows of heat carrier that are created by a cyclone chamber are used in industry. They make it possible to intensify processes of heat and mass exchange. The results of an experimental study of convective heat transfer on the lateral surface of the active volume of a relatively long cyclone chamber considerably exceeding the length of the chambers that were used in previously performed studies are presented and analyzed in the article. Air supply in the swirler of the chamber was performed tangentially from diametrically opposite sides of the two input channels. The gas outlet was implemented from the opposite end. The heat transfer by convection to the swirling air flow was studied by the method of changing the state of aggregation of a heating agent – condensation of slightly superheated steam. Collecting condensate from the working section was made through a water seal for maintaining a constant pressure calorimeter. The amount of heat transferred during experiment was determined by weight of the collected condensate. The specific features of influence of geometrical characteristics of cyclone chamber on intensity of heat exchange are considered. In the experiments we varied the relative diameter of the outlet port of the chamber dвых and the relative area of the input channels fвх. Segmental construction of the chamber made it possible to move a calorimeter on its length. The local heat transfer coefficient was determined for various values of the dimensionless longitudinal coordinate z coinciding with the axis of the chamber, and counted from the back end of the swirler. The estimated equations of heat transfer obtained during the research are presented and recommended for use in practice of engineering. The considered problem is of an interest from the point of view of further research of aerodynamics and of convective heat transfer in a highly swirling flow cyclone devices, in order to improve the

  4. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-04-20

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  5. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    International Nuclear Information System (INIS)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-01-01

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  6. Two approaches to the clinical dilemma of treating TTP with therapeutic plasma exchange in patients with a history of anaphylactic reactions to plasma.

    Science.gov (United States)

    Sidhu, Davinder; Snyder, Edward L; Tormey, Christopher A

    2017-06-01

    Thrombotic thrombocytopenic purpura (TTP) is a rare but serious disease caused by autoantibody-mediated deficiency in von Willebrand factor (VWF) cleaving protease, ADAMTS-13. The primary acute treatment is therapeutic plasma exchange (TPE). However, some patients can develop allergic/anaphylactic reactions to the replacement (i.e., donor) plasma over time. Two potential treatment strategies for patients with TTP who demonstrate severe allergic reactions to plasma used for exchange were examined. Two patients with TTP exacerbations who developed severe allergic reactions to donor plasma were identified. One patient's TPE was re-initiated with Octaplas, a lot-batched solvent and detergent treated, type-specific, pooled donor plasma product. The other patient was exchanged with primarily albumin, followed by slow incremental exposures to donor plasma to mitigate exposures and allergic risks. Both patients were assessed for anaphylaxis. Both treatment strategies were successful in preventing any further clinically significant allergic/anaphylactic reactions and facilitated both patients' TTP remissions. Based on our experience with two similar patients with TTP exacerbations and history of anaphylactic reactions to plasma during TPE, we have identified two possible treatment protocols to achieve remission in this clinical dilemma. Substituting Octaplas for standard plasma or, alternatively, using albumin with slowly increasing amounts of standard plasma may help to mitigate the risk of further anaphylactic adverse events. J. Clin. Apheresis 32:158-162, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Luan; Tao, Franklin, E-mail: franklin.tao.2011@gmail.com [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045 (United States)

    2016-06-15

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  8. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    International Nuclear Information System (INIS)

    Nguyen, Luan; Tao, Franklin

    2016-01-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  9. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  10. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range

    Science.gov (United States)

    Miller, Matthew P.; McKnight, Diane M.; Cory, R.M.; Williams, Mark W.; Runkel, Robert L.

    2006-01-01

    The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.

  11. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  12. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    Science.gov (United States)

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  13. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    Science.gov (United States)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  14. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-08-01

    Full Text Available Gaseous formaldehyde (HCHO is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs. Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ, we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %, an initial γ of (1.1 ± 0.05  ×  10−4 is determined, which gradually drops to (5.5 ± 0.4  ×  10−5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition at the atmosphere–soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  15. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  16. CCl 4 chemistry on the magnetite selvedge of single-crystal hematite: competitive surface reactions

    Science.gov (United States)

    Adib, K.; Camillone, N., III; Fitts, J. P.; Rim, K. T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M., Jr.

    2002-01-01

    Temperature programmed reaction/desorption (TPR/D) studies were undertaken to characterize the surface chemistry which occurs between CCl 4 and the Fe 3O 4 (1 1 1) selvedge of single crystal α-Fe 2O 3 (0 0 0 1). Six separate desorption events are clearly observed and four desorbing species are identified: CCl 4, OCCl 2, C 2Cl 4 and FeCl 2. It is proposed that OCCl 2, CCl 4 and C 2Cl 4 are produced in reactions involving the same precursor, CCl 2. Three reaction paths compete for the CCl 2 precursor: oxygen atom abstraction (for OCCl 2), molecular recombinative desorption (for CCl 4) and associative desorption (for C 2Cl 4). During the TPR/D temperature ramp, the branching ratio is observed to depend upon temperature and the availability of reactive sites. The data are consistent with a rich site-dependent chemistry.

  17. Correlation and prediction of ion exchange equilibria on weak-acid resins by means of the surface complex formation model

    International Nuclear Information System (INIS)

    Horst, J.

    1988-11-01

    The present work summarizes investigations of the equilibrium of the exchange of protons, copper, zinc, calcium, magnesium and sodium ions on two weak-acid exchange resins in hydrochloric and carbonic acid bearing solutions at 25 0 C. The description of the state of equilibrium between resin and solution is based on the individual chemical equilibria which have to be adjusted simultaneously. The equilibrium in the liquid phase is described by the mass action law and the condition of electroneutrality using activity coefficients calculated according to the theory of Debye and Hueckel. The exchange equilibria are described by means of a surface complex formation model, which was developed by Davis, James and Leckie for activated aluminia and which has been applied to weak-acid resins. The model concept assumes the resin as a plane surface in which the functional groups are distributed uniformly. (orig./RB) [de

  18. XPS study on the surface reaction of uranium metal in H2 and H2-CO atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1996-04-01

    The surface reactions of uranium metal in H 2 and H 2 -CO atmospheres and the effects of temperature and CO on the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between commercial H 2 and uranium metal at 25 degree C leads mainly to the further oxidation of surface layer of metal due to traces of water vapour. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing the exposure of H 2 . Investigation indicates CO inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmospheres. (13 refs., 10 figs.)

  19. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Directory of Open Access Journals (Sweden)

    A. D. Elvidge

    2016-02-01

    Full Text Available Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol–Cloud Coupling And Climate Interactions in the Arctic (ACCACIA project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10 from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85  ×  10−3. CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012 tailored for sea-ice drag over the MIZ in which the two constituent components of drag – skin and form drag – are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012 scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values – especially at the higher ice fractions – than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on

  20. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2016-02-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012) tailored for sea-ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on surface roughness is recognised, and

  1. Observations of surface momentum exchange over the marginal-ice-zone and recommendations for its parameterization

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2015-10-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parameterization of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parameterization scheme (Lüpkes et al., 2012) tailored for sea ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parameterization schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement is found to hold for subsets of the data from different locations despite differences in sea ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea ice morphology and floe size on surface roughness is

  2. Processes of ammonia air–surface exchange in a fertilized Zea mays canopy

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2013-02-01

    Full Text Available Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air–surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process-level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short-term (i.e., post-fertilization and total growing season NH3 fluxes. This study examines the processes of NH3 air–surface exchange in a fertilized corn (Zea mays canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil–canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha−1 surface applied to the soil as urea ammonium nitrate (UAN. During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈ 700 ng N m−2 s−1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈ 125 ng N m−2 s−1. A key finding of the surface chemistry measurements was the observation of high pH (7.0–8.5 in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods

  3. Surface Reaction Kinetics of Ga(1-x)In(x)P Growth During Pulsed Chemical Beam Epitaxy

    National Research Council Canada - National Science Library

    Dietz, N; Beeler, S. C; Schmidt, J. W; Tran, H. T

    2000-01-01

    ... into the surface reaction kinetics during an organometallic deposition process. These insights will allow us to move the control point closer to the point where the growth occurs, which in a chemical been epitaxy process is a surface reaction layer (SRL...

  4. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L S; Kenny, M J; Wieczorek, L [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  5. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J.; Wieczorek, L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  6. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  7. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Science.gov (United States)

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  8. Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (0 0 1) surface

    International Nuclear Information System (INIS)

    Baek, Seung-Bin; Kim, Dae-Hee; Kim, Yeong-Cheol

    2012-01-01

    The adsorption and the surface reaction of bis-diethylaminosilane (SiH 2 [N(C 2 H 5 ) 2 ] 2 , BDEAS) as a Si precursor on an OH-terminated Si (0 0 1) surface were investigated to understand the initial reaction mechanism of the atomic layer deposition (ALD) process using density functional theory. The bond dissociation energies between two atoms in BDEAS increased in the order of Si-H, Si-N, and the rest of the bonds. Therefore, the relatively weak Si-H and Si-N bonds were considered for bond breaking during the surface reaction. Optimum locations of BDEAS for the Si-H and Si-N bond breaking were determined on the surface, and adsorption energies of 0.43 and 0.60 eV, respectively, were obtained. The Si-H bond dissociation energy of the adsorbed BDEAS on the surface did not decrease, so that a high reaction energy barrier of 1.60 eV was required. On the other hand, the Si-N bond dissociation energy did decrease, so that a relatively low reaction energy barrier of 0.52 eV was required. When the surface reaction energy barrier was higher than the adsorption energy, BDEAS would be desorbed from the surface instead of being reacted. Therefore, the Si-N bond breaking would be dominantly involved during the surface reaction, and the result is in good agreement with the experimental data in the literature.

  9. Coupled transport/reaction modelling with ion-exchange: Study of the long-term properties of bentonite buffer in a final repository

    International Nuclear Information System (INIS)

    Liu Jinsong; Neretnieks, I.

    1997-05-01

    Possible transformation of Na-montmorillonite to Ca-montmorillonite, by ion exchange, in the bentonite buffer in a final repository for spent nuclear fuel can lead to a drastic decrease in the swelling capacity and a significant increase in the permeability of the bentonite. The ion exchange mechanism has been studied, by using the coupled transport/reaction model. In most typical sites of the granite bedrock where there are no large fractures, groundwater flow is limited. The results of this study show that the ion-exchange process will be very slow in this case. Only a few percent of the total Na-montmorillonite is exchanged within 1 to 10 thousand years. When the groundwater flow in the bedrock is assumed to be unlimited, an upper bound of the conditions of the water flow, a sharp ion-exchange front can be formed and propagate within the bentonite buffer. When the groundwater is assumed to be the Aespoe water, with a high Ca concentration, the break-through time of the ion-exchange front can be a few thousand years. When the water is assumed to be Allard water with low Ca concentration, the break-through time can be as long as 10 5 to 10 6 years. When a canister has manufacturing defects, both the pyrite oxidation and the ion-exchange processes can occur simultaneously. A redox front and an ion-exchange front develop from both sides of the bentonite buffer. before the two fronts meet, they travel relatively independently in the bentonite. After they have met, they interact only marginally. Even if a large scale ion-exchange happens, the release of the dissolved uranium species from the bentonite to the rock can still be extremely small. The release is mainly controlled by the redox potential of pyrite oxidation

  10. Using diurnal temperature signals to infer vertical groundwater-surface water exchange

    Science.gov (United States)

    Irvine, Dylan J.; Briggs, Martin A.; Lautz, Laura K.; Gordon, Ryan P.; McKenzie, Jeffrey M.; Cartwright, Ian

    2017-01-01

    Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.

  11. Ray effects in the discrete-ordinate solution for surface radiation exchange

    Energy Technology Data Exchange (ETDEWEB)

    Liou, B T [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China); Wu, C Y [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China)

    1997-04-01

    A study of the application of the discrete-ordinate method (DOM) with remedy for the ray effects to the solution of surface radiation exchange is presented in this paper. The remedy for the ray effects is achieved by dividing the radiative intensity into the attenuated incident and the medium emitting components. To demonstrate the application of the technique, this work considers radiative heat transfer in a two-dimensional cylindrical enclosure filled with a nearly transparent medium. The results obtained by the present DOM are in excellent agreement with those by the radiosity/irradiation method. (orig.). With 4 figs., 3 tabs. [Deutsch] In der Arbeit wird ein Weg aufgezeigt, wie die Stoerstrahlungseffekte bei Anwendung der Methode der diskreten Ordinaten auf die Berechnung des Energietausches zwischen Oberflaechenstrahlern vermieden werden koennen. Dies laesst sich durch Aufspaltung der Strahlungsintensitaet in die abgeschwaechte einfallende und die vom Medium emittierte Komponente erreichen. Als Beispiel fuer die Anwendung dieses Verfahrens dient der Waermeaustausch durch Strahlung in einem zweidimensionalen zylindrischen Behaeltnis, das mit einem nahezu transparenten Medium befuellt ist. Die mit der modifizierten Methode erhaltenen Ergebnisse stimmen ausgezeichnet mit jenen nach dem klassischen Brutto-Verfahren ueberein. (orig.)

  12. Methodology to obtain exchange properties of the calcite surface-Application to major and trace elements: Ca(II), HCO3-, and Zn(II)

    International Nuclear Information System (INIS)

    Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.; Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.

    2010-01-01

    Sorption of inorganic elements onto carbonate minerals has been intensively described in the literature by two reaction steps: (1) a first one rapid and completed within a few hours and (2) a second one slower, eventually irreversible, and occurring at a constant rate. The first step is often attributed to an ion-exchange process, but its reversibility is rarely investigated. Consequently, discrimination of the global sorption phenomenon into two different mechanisms is not always justified. In this study, we investigated, by batch experiments, both sorption and desorption of Ca(II), HCO 3 - , and Zn(II), radiolabeled with isotopes 45 Ca(II), H 14 CO 3 - , and 65 Zn(II), respectively, onto synthetic pure calcite. Solutions were pre-equilibrated with atmospheric p(CO 2 ) and saturated with respect to calcite. Therefore, our purpose was to: (1) obtain experimental distribution coefficients of major elements (Ca(II) and HCO 3 - ) and a trace element (Zn(II)) onto calcite from sorption and desorption experiments, (2) test the validity of a first-occurring ion-exchange process generally noted in the literature, by calculating distribution coefficients for the 'sole' exchange process, and (3) quantify the amounts of Ca(II), HCO 3 - , and Zn(II) sorbed on the calcite surface by the sole 'exchange process' and compare them with surface crystallochemical data. Ca(II) or HCO 3 - sorption experimental data suggest that a significant fraction of these two elements was sorbed irreversibly onto or in the calcite. By using a method based on isotopic ratios, the Ca(II) or HCO 3 - concentrations, which are reversibly adsorbed on the calcite, have been quantified. These concentrations are respectively estimated at 4. 0 ± 2. 0 * 10 -4 and 7. 0 ± 1. 5 * 10 -4 mol/kg. The obtained Ca(II) surface concentration value is one order of magnitude lower than the one obtained from isotopic measurement by former authors [Geochim. Cosmochim. Acta 55 (1991) 1549; Geochim. Cosmochim. Acta 51

  13. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  14. Understanding the mechanisms of solid-water reactions through analysis of surface topography.

    Science.gov (United States)

    Bandstra, Joel Z; Brantley, Susan L

    2015-12-01

    The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic

  15. Reactions of BBr(n)(+) (n = 0--2) at fluorinated and hydrocarbon self-assembled monolayer surfaces: observations of chemical selectivity in ion--surface scattering.

    Science.gov (United States)

    Wade, N; Shen, J; Koskinen, J; Cooks, R G

    2001-07-01

    Ion-surface reactions involving BBr(n)(+) (n = 0--2) with a fluorinated self-assembled monolayer (F-SAM) surface were investigated using a multi-sector scattering mass spectrometer. Collisions of the B(+) ion yield BF(2)(+) at threshold energy with the simpler product ion BF(+)* appearing at higher collision energies and remaining of lower abundance than BF(2)(+) at all energies examined. In addition, the reactively sputtered ion CF(+) accompanies the formation of BF(2)(+) at low collision energies. These results stand in contrast with previous data on the ion-surface reactions of atomic ions with the F-SAM surface in that the threshold and most abundant reaction products in those cases involved the abstraction of a single fluorine atom. Gas-phase enthalpy data are consistent with BF(2)(+) being the thermodynamically favored product. The fact that the abundance of BF(2)(+) is relatively low and relatively insensitive to changes in collision energy suggests that this reaction proceeds through an entropically demanding intermediate at the vacuum--surface interface, one which involves interaction of the B(+) ion simultaneously with two fluorine atoms. By contrast with the reaction of B(+), the odd-electron species BBr(+)* reacts with the F-SAM surface to yield an abundant single-fluorine abstraction product, BBrF(+). Corresponding gas-phase ion--molecule experiments involving B(+) and BBr(+)* with C(6)F(14) also yield the products BF(+)* and BF(2)(+), but only in extremely low abundances and with no preference for double fluorine abstraction. Ion--surface reactions were also investigated for BBr(n)(+) (n = 0-2) with a hydrocarbon self-assembled monolayer (H-SAM) surface. Reaction of the B(+) ion and dissociative reactions of BBr(+)* result in the formation of BH(2)(+), while the thermodynamically less favorable product BH(+)* is not observed. Collisions of BBr(2)(+) with the H-SAM surface yield the dissociative ion-surface reaction products, BBrH(+) and BBrCH(3

  16. Effect of Reaction Conditions on the Surface Modification of Cellulose Nanofibrils with Aminopropyl Triethoxysilane

    Directory of Open Access Journals (Sweden)

    Eduardo Robles

    2018-04-01

    Full Text Available Nine different surface modifications of cellulose nanofibrils (CNF with 3-aminopropyl triethoxysilane (ATS by using three different solvent systems (water, ethanol, and a mixture of both were investigated. The effect of reaction conditions, such as silane to cellulose ratio and solvent type were evaluated to determine their contribution to the extent of the silane modification. Nanofibril properties were evaluated by infrared spectroscopy, powder X-ray diffraction, surface free energy, thermogravimetry, 13C and 29Si nuclear magnetic resonance, and electronic microscopy. The influence of the solvent in the solvolysis of the silane was reflected in the presence or absence of ethoxy groups in the silane. On the other hand, whereas the surface modification was increased directly proportionally to silane ratio on the reaction, the aggregation of nanofibrils was also increased, which can play a negative role in certain applications. The increment of silane modification also had substantial repercussions on the crystallinity of the nanofibrils by the addition of amorphous components to the crystalline unit; moreover, silane surface modifications enhanced the hydrophobic character of the nanofibrils.

  17. Computerized infrared spectroscopic study of surface reactions on selected lanthanide oxides

    International Nuclear Information System (INIS)

    Dellisante, G.N.

    1982-01-01

    The natures of adsorption sites on La 2 O 3 , Nd 2 O 3 , and selected praseodymium oxides were investigated by examining surface reactions of probe molecules using computerized transmission ir spectroscopy on unsupported samples. Additionally, the rehydration/dehydration behavior and crystallographic phase transitions of these oxides were examined in pretreatment temperature experiments involving rehydration of the sesquioxides to hydroxides by water exposure. Following rehydration of La 2 O 3 to La(OH) 3 , the effect of increasing vacuum pretreatment temperature (350 to 1000 0 C) is to gradually remove surface hydroxyl and carbonate entities (up to 650 0 C), and increase the degree of A-type crystallinity. Increasing crystallinity causes a concomitant decrease in surface oxide basicity. The removal of hydroxyl and carbonate species, as well as increases in oxide basicity, strongly correlated to increases in certain catalytic activities. The adsorption of NH 3 , CO 2 , mixtures of NH 3 and CO 2 , formic acid, acetic acid, acetaldehyde, and ethanol on the oxides was determined to weakly coordinate in Ln 3 + sites, and the surface reactions are discussed. Heating was found to desorb the adsorbed compounds and/or causes changes of the originally adsorbed form into other compounds. The effects of temperature on both adsorption and desorption are reported

  18. Study on interfacial reaction between lead-free solders and alternative surface finishes

    International Nuclear Information System (INIS)

    Siti Rabiatul Aisha; Ourdjini, A.; Saliza Osman

    2007-01-01

    This study investigates the interfacial reactions occurring during reflow soldering between Sn-Ag-Cu lead-free solder and two surface finishes: electroless nickel/ immersion gold (ENIG) and immersion silver (IAg). The study focuses on interfacial reactions evolution and growth kinetics of intermetallic compounds (IMC) formed during soldering and isothermal ageing at 150 degree Celsius for up to 2000 hours. Optical and scanning electron microscopy were used to measure IMC thickness and examine the morphology of IMC respectively, whereas the IMC phases were identified by energy dispersive X-ray analysis (EDX). The results showed that the IMC formed on ENIG finish is thinner compared to that formed on IAg finish. For IAg surface finish, Cu 6 Sn 5 IMCs with scallop morphology are formed at the solder/ surface finish interface after reflow while a second IMC, Cu 3 Sn was formed between the copper and Cu 6 Sn 5 IMC after the isothermal ageing treatment. For ENIG surface finish both (Cu,Ni) 6 Sn 5 and (Ni,Cu) 3 Sn 4 are formed after soldering. Isothermal aging of the solder joints formed on ENIG finish was found to have a significant effect on the morphology of the intermetallics by transforming to more spherical and denser morphology in addition to increase i their thickness with increased ageing time. (author)

  19. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    Science.gov (United States)

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.