WorldWideScience

Sample records for surface exchange coefficients

  1. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  2. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides.

    Science.gov (United States)

    De Souza, R A

    2006-02-21

    The isotope surface exchange coefficient k* determined in an 18O/16O exchange experiment characterises the exchange flux of the dynamic equilibrium between oxygen in the gas phase and oxygen in a solid oxide. At present there is no atomistic expression that relates measured exchange coefficients to materials' parameters. In this study an empirical, atomistic expression is developed that describes the exchange kinetics of gaseous oxygen with diverse acceptor-doped perovskite and fluorite oxides at temperatures above T approximately 900 K. The expression is used to explain the observed correlations between surface exchange coefficients k* and oxygen tracer diffusion coefficients D* and to identify compounds that exhibit high surface exchange coefficients.

  3. The effect of surface roughness on the heat exchange and pressure-drop coefficients

    International Nuclear Information System (INIS)

    Malherbe, J.M.

    1963-02-01

    The effect of various types of roughness on the wall of an axial tube in an annular space of 15-25 mm cooled by an air-flow has been studied in the case of steady turbulence. Roughness of the type 'disrupter of the boundary layer' was set up using triangular threads of 0.2 to 0.4 mm thickness machined in the tube itself, or brass or glass wire wound on a smooth tube. Tests were also carried out using the roughness provided by regularly spaced pyramids 0.4 mm high. The results obtained showed that the heat exchange increased because of the presence of this roughness. A maximum in the heat exchange and pressure-drop coefficients was observed when the pitch equals about eight times the height of the thread. An analytical method has been developed and experiments have been carried out in which the two walls of the annular space were heated in such a way as to transmit unequal heat flows. The region considered is limited to Reynolds's numbers of between 5 X 10 3 and 5 x 10 4 and wall temperatures of under 250 deg C. (author) [fr

  4. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  5. Scraped surface heat exchangers.

    Science.gov (United States)

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  6. On separation of exchange term from the coefficient of the ...

    Indian Academy of Sciences (India)

    Abstract. The purpose of this analysis is to introduce the separated exchange coefficient and to graphically investigate it. This coefficient, depending on the electromagnetic constant plus two coefficients of the electromechanical and magnetomechanical couplings, form the coefficient of magnetoelectromechanical coupling ...

  7. Transfer coefficients in elliptical tubes and plate fin heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.

    1979-09-01

    Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.) [pt

  8. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable ...

  9. Transfer coefficients for plate fin and elliptical tube heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.; Saboya, F.E.M.

    1981-01-01

    In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author) [pt

  10. Modeling of cesium sorption on biotite using cation exchange selectivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kylloenen, Jarkko; Hakanen, Martti; Harjula, Risto; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry; Lindberg, Antero [Geological Survey of Finland, Espoo (Finland); Vehkamaeki, Marko [Helsinki Univ. (Finland). Lab. of Inorganic Chemistry

    2014-07-01

    For the modeling of cesium sorption on biotite, samples of natural biotite separated from gneissic rocks were converted into monoionic potassium, sodium, and calcium forms, and sorption isotherms for Cs/K, Cs/Na and Cs/Ca exchange were determined at pH 6 and 8 in 10{sup -4}-10{sup -8} M Cs solutions. Selectivity coefficients for Cs/K, Cs/Na, and Cs/Ca ion exchange reactions were calculated from the isotherm data, using the Gaines-Thomas convention. At Cs loadings below 1% of the total ion exchange capacity, the overall selectivity coefficient for Cs/Ca exchange was approximately five and seven orders of magnitude higher than those for Cs/Na and Cs/K exchange, respectively. Based on the selectivity coefficients, the ion exchange isotherms were modeled with the U.S. Geological Survey PhreeqC program, assuming three different types of ion exchange site: sites on the basal planes on biotite crystal surfaces with 95% site abundance, probable interlayer sites on crystal edges [frayed edge sites (FESs)] (0.02%) and third-type sites (5%), the physical background of which is unclear. Of these three types, the FES sites were superior in Cs selectivity, while the planar sites exhibited the lowest selectivity, and the third-type sites had selectivity between these two. The functionality of the model was successfully verified by modeling the Cs sorption isotherms on crushed mica gneiss rock in saline groundwater. Determination of the exchangeable ions K, Na, Ca, and Cs on the basal plane and edge surfaces by scanning electron microscopy-energy-dispersive x-ray spectroscopy (SEM-EDX) supports the results of modeling: edge sites highly prefer Cs ions and also Ca and Na ions but not K ions.

  11. Trends in Effective Diffusion Coefficients for Ion-Exchange Strengthening of Soda-Lime-Silicate Glasses

    Directory of Open Access Journals (Sweden)

    Stefan Karlsson

    2017-04-01

    Full Text Available Monovalent cations enable efficient ion-exchange processes due to their high mobility in silicate glasses. Numerous properties can be modified in this way, e.g., mechanical, optical, electrical, or chemical performance. In particular, alkali cation exchange has received significant attention, primarily with respect to introducing compressive stress into the surface region of a glass, which increases mechanical durability. However, most of the present applications rely on specifically tailored matrix compositions in which the cation mobility is enhanced. This largely excludes the major area of soda-lime-silicates (SLS such as are commodity in almost all large-scale applications of glasses. Basic understanding of the relations between structural parameters and the effective diffusion coefficients may help to improve ion-exchanged SLS glass products, on the one hand in terms of obtainable strength and on the other in terms of cost. In the present paper, we discuss the trends in the effective diffusion coefficients when exchanging Na+ for various monovalent cations (K+, Cu+, Ag+, Rb+, and Cs+ by drawing relations to physicochemical properties. Correlations of effective diffusion coefficients were found for the bond dissociation energy and the electronic cation polarizability, indicating that localization and rupture of bonds are of importance for the ion-exchange rate.

  12. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  13. Measurement of capacity coefficient of inclined liquid phase catalytic exchange column for tritiated water processing

    International Nuclear Information System (INIS)

    Yamai, Hideki; Konishi, Satoshi; Yamanishi, Toshihiko; Okuno, Kenji

    1994-01-01

    Liquid phase catalytic exchange (LPCE) is effective method for enrichment and removal of tritium from tritiated water. Capacity coefficients of operating LPCE column that are essential to evaluate column performance were measured. Experiments were performed with short catalyst packed columns and effect of inclination was studied. Method for evaluation of capacity coefficients was established from measurement of isotope concentration of liquid, vapor, gas phases at the two ends of the column. The capacity coefficients were measured under various superficial gas velocities. Feasibility study of helical columns with roughened inner surface was performed with short inclined columns. The column performance was not strongly affected by the inclination. The result indicates technological feasibility of helical LPCE column, that is expected to have operation stability and reduced height

  14. On separation of exchange term from the coefficient of the ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6 ... plus two coefficients of the electromechanical and magnetomechanical couplings, form the coefficient of magnetoelectromechanical coupling (CMEMC), a very important characteristic used for analysingmagnetoelectroelastic smart (composite) materials.

  15. On separation of exchange term from the coefficient of the ...

    Indian Academy of Sciences (India)

    coefficients of the electromechanical and magnetomechanical couplings, form the coefficient of magnetoelectromechanical coupling (CMEMC), a very important characteristic used for analysing magnetoelectroelastic smart (composite) materials. It was analytically and graphically demon- strated that the CMEMC can have a ...

  16. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... relatered to rainfall-runo events. By combining geochemical, geophysical and hydrogeological models with numerical modeling, groundwater flow paths to a stream were investigated in a wetland. By combining the dierent tracers, condence in the paramters of the numerical model could be established...

  17. Measurement of Dynamic Friction Coefficient on the Irregular Free Surface

    International Nuclear Information System (INIS)

    Yeom, S. H.; Seo, K. S.; Lee, J. H.; Lee, K. H.

    2007-01-01

    A spent fuel storage cask must be estimated for a structural integrity when an earthquake occurs because it freely stands on ground surface without a restriction condition. Usually the integrity estimation for a seismic load is performed by a FEM analysis, the friction coefficient for a standing surface is an important parameter in seismic analysis when a sliding happens. When a storage cask is placed on an irregular ground surface, measuring a friction coefficient of an irregular surface is very difficult because the friction coefficient is affected by the surface condition. In this research, dynamic friction coefficients on the irregular surfaces between a concrete cylinder block and a flat concrete slab are measured with two methods by one direction actuator

  18. Systematic Risk on Istanbul Stock Exchange: Traditional Beta Coefficient Versus Downside Beta Coefficient

    Directory of Open Access Journals (Sweden)

    Gülfen TUNA

    2013-03-01

    Full Text Available The aim of this study is to test the validity of Downside Capital Asset Pricing Model (D-CAPM on the ISE. At the same time, the explanatory power of CAPM's traditional beta and D-CAPM's downside beta on the changes in the average return values are examined comparatively. In this context, the monthly data for seventy three stocks that are continuously traded on the ISE for the period 1991-2009 is used. Regression analysis is applied in this study. The research results have shown that D-CAPM is valid on the ISE. In addition, it is obtained that the power of downside beta coefficient is higher than traditional beta coefficient on explaining the return changes. Therefore, it can be said that the downside beta is superior to traditional beta in the ISE for chosen period.

  19. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  20. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  1. Retrieving complex surface impedances from statistical absorption coefficients

    DEFF Research Database (Denmark)

    Mondet, Boris Jean-Francois; Brunskog, Jonas; Jeong, Cheol-Ho

    2017-01-01

    coefficients, prior information about the absorber of interest can be used as constraints, which is shown to help determine the correct impedance from absorption coefficient. Further stability and sensitivity investigations indicate that the method presented constitutes an efficient solution to convert sound......In room acoustic simulations the surface materials are commonly represented with energy parameters, such as the absorption and scattering coefficients, which do not carry phase information. This paper presents a method to transform statistical absorption coefficients into complex surface impedances...... that the impedance found has a physical meaning and respects causality in the time domain. Known material models, such as Miki’s and Maa’s models, are taken as references to assess the validity of the suggested model. Due to the non-uniqueness of retrieving complex-valued impedances from real-valued absorption...

  2. The heat transfer coefficients of the heating surface of 300 MWe CFB boiler

    Science.gov (United States)

    Wu, Haibo; Zhang, Man; Lu, Qinggang; Sun, Yunkai

    2012-08-01

    A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The heat transfer coefficients of the platen heating surface, the external heat exchanger (EHE) and cyclone separator were calculated according to the relative operation data at different boiler loads. Moreover, the heat transfer coefficient of the waterwall was calculated by heat balance of the hot circuit of the CFB boiler. With the boiler capacity increasing, the heat transfer coefficients of these heating surface increases, and the heat transfer coefficient of the water wall is higher than that of the platen heating surface. The heat transfer coefficient of the EHE is the highest in high boiler load, the heat transfer coefficient of the cyclone separator is the lowest. Because the fired coal is different from the design coal in No.1 boiler, the ash content of the fired coal is much lower than that of the design coal. The heat transfer coefficients which calculated with the operation data are lower than the previous design value and that is the reason why the bed temperature is rather high during the boiler operation in No.1 boiler.

  3. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  4. On the mobility of exchangeable cations on clay surfaces

    International Nuclear Information System (INIS)

    Gimmi, T.; Kosakowski, G.; Glaus, M.A.

    2010-01-01

    Document available in extended abstract form only. The diffusive mobility of radionuclides in buffer materials and potential host rocks is an important topic in the safety analysis for underground waste repositories. Many of the radionuclides are cations. Accordingly, the diffusion and retention of cations in compacted clay minerals and clay rocks is of central interest. The retention properties of the clay minerals originate from their negative surface charges. These are compensated by un-specifically sorbed cations that are located on planar surfaces or in interlayers (exchangeable cations) and by cations that are more specifically sorbed for instance to edge sites. In general, sorbed cations are considered as immobile with respect to diffusive transport. Whereas this may be correct for specifically sorbed cations, this is probably not the case for un-specifically sorbed exchangeable cations. They can easily exchange with cations in the pore solution, even if they are located- at low hydration states-in very narrow interlayers. For such exchange a certain mobility in the sorbed state is required. This is in line with the observations that many experimentally derived cation diffusion coefficients are larger than expected when compared with those of water tracers. This and the dependence of effective diffusion coefficients on the external salt concentration can be explained with so-called surface diffusion, that is, a movement of sorbed cations. Unfortunately, no direct proof of this phenomenon is available, and parameters like surface diffusion coefficients or surface mobilities are largely unknown. We compiled a large number of published cation diffusion coefficients for various clay minerals and clay rocks. We showed that by an appropriate scaling of the cation diffusion coefficients, it is possible to estimate the average surface mobility of the cation in each experiment. We define the surface mobility as the surface diffusion coefficient of a cation on a flat

  5. Determining the surface roughness coefficient by 3D Scanner

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  6. A study on relationship between earnings response coefficient and earnings management: Evidence from Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Fatemeh Khaksarian

    2013-10-01

    Full Text Available This paper presents a study to find the relationship between earnings response coefficient and earnings management on some selected firms listed in Tehran Stock Exchange (TSE. The study uses Johns’s model to investigate the behavior of earnings management [Jones, J. J. (1991. Earnings management during import relief investigations. Journal of accounting research, 29(2, 193-228]. In addition, the proposed study uses Ohlson’s model [Ohlson, J. A. (1995. Earnings, book values, and dividends in equity valuation. Contemporary accounting research, 11(2, 661-687] to estimate earnings response coefficient. The study gathers the necessary information from 250 firms from TSE market over the period 2006-2012. The result of our survey indicates that there was a negative and meaningful relationship between earnings response coefficient and earnings management.

  7. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    Science.gov (United States)

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the

  8. Frequency Dependencies of the Exchange Spin Wave Reflection Coefficient on a One-Dimensional Magnon Crystal with Complex Interfaces

    Directory of Open Access Journals (Sweden)

    Serhii O. Reshetniak

    2017-09-01

    Conclusions. It is shown that the frequency dependencies are periodic, points of full transmission and areas, full of reflection. Decreasing exchange parameter value in interface causes the increase of reflectance coefficient. Changing the material parameters we get the necessary intensity value of the reflection coefficient depending on the frequency at a constant value of the external magnetic field.

  9. Temperature coefficient for modeling denitrification in surface water sediments using the mass transfer coefficient

    Science.gov (United States)

    T.W. Appelboom; G.M. Chescheir; F. Birgand; R.W. Skaggs; J.W. Gilliam; D. Amatya

    2010-01-01

    Watershed modeling has become an important tool for researchers. Modeling nitrate transport within drainage networks requires quantifying the denitrification within the sediments in canals and streams. In a previous study, several of the authors developed an equation using a term called a mass transfer coefficient to mathematically describe sediment denitrification....

  10. Temperature Coefficient for Modeling Denitrification in Surface Water Sediments Using the Mass Transfer Coefficient

    Science.gov (United States)

    T. W. Appelboom; G. M. Chescheir; R. W. Skaggs; J. W. Gilliam; Devendra M. Amatya

    2006-01-01

    Watershed modeling has become an important tool for researchers with the high costs of water quality monitoring. When modeling nitrate transport within drainage networks, denitrification within the sediments needs to be accounted for. Birgand et. al. developed an equation using a term called a mass transfer coefficient to mathematically describe sediment...

  11. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  12. [A mathematical model of heat exchange between astronaut and environmental medium on the Lunar surface].

    Science.gov (United States)

    Wu, Q

    1997-12-01

    To maintain thermal balance of astronaut, and avoid injuries by heats of the solar radiation and radiation from the Moon, a detailed analysis of heat exchange between the astronaut and the environment medium was made and a mathematical model was established. It indicates that the Lunar surface temperature and the thermal current transmitted to the astronaut change with the incident angle of the solar radiation. The thermal balance of the astronaut is affected by absorption coefficient, radiation coefficient and thermal resistance.

  13. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the

  14. Oxygen surface exchange and oxidative dehydrogenation on oxide ion conductors

    NARCIS (Netherlands)

    Song, C.

    2012-01-01

    The research described in this thesis mainly aims at investigation of the rate of oxygen exchange at the surface of oxide ion conductors. The introduction is given in Chapter 1. A fast and simple method, referred to as pulse 18O-16O isotopic exchange (PIE), for measurement of the rate of surface

  15. Local heat transfer coefficients during the evaporation of 1,1,1,2-tetrafluoroethane (R-134a in a plate heat exchanger

    Directory of Open Access Journals (Sweden)

    EMILA ŽIVKOVIĆ

    2009-04-01

    Full Text Available The evaporation heat transfer coefficient of the refrigerant R-134a in a vertical plate heat exchanger was investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, the local value of the heat transfer coefficient was calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux, heat flux, pressure of system and the flow configuration on the heat transfer coefficient were also taken into account and a comparison with literature data was performed.

  16. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    Science.gov (United States)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  17. Oxygen surface exchange kinetics of erbia-stabilized bismuth oxide

    NARCIS (Netherlands)

    Yoo, C.-Y.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.

    2011-01-01

    The surface oxygen exchange kinetics of bismuth oxide stabilized with 25 mol% erbia (BE25) has been studied in the temperature and pO2 ranges 773–1,023 K and 0.1– 0.95 atm, respectively, using pulse-response 18O–16O isotope exchange measurements. The results indicate that BE25 exhibits a

  18. Project Caesium - An ion exchange model for the prediction of distribution coefficients of caesium in bentonite

    International Nuclear Information System (INIS)

    Wanner, H.; Wieland, E.; Albinsson, Y.

    1994-06-01

    A surface chemical model is established to thermodynamically describe caesium sorption on bentonite. Caesium sorption is studied on Wyoming bentonite MX-80 in solutions of NaCl, KCl, MgCl 2 , CaCl 2 , NaNO 3 and Ca(NO 3 ) 2 of concentrations varying between 0.025M and 1M, as well as in the weakly saline Allard groundwater and the strongly saline Aespoe groundwater. Based on these experiments it is shown that the sorption behaviour of caesium on bentonite can be described, within the experimental and model uncertainties, in terms of a one-site ion exchange model. The ion exchange constant for the replacement of Na + on montmorillonite by Cs + is logK ex degrees = 1.6. The model predictions compare well with sorption data published in the open literature on both Wyoming bentonite MX-80 and other types of bentonite. For the analysis of diffusion experiments in compacted bentonite, the apparent diffusivity of tritiated water, HTO, is used as an analogue to estimate the pore diffusivity of Cs + . Since insufficient information is available at present to estimate the porosity actually available for diffusion in compacted bentonite, it is assumed that the diffusion porosity can be approximated by using the value of the bulk porosity. Under these circumstances, the cation ex change capacity (CEC) found to be available for the diffusing species in compacted bentonite corresponds to about 12% of the total CEC of bentonite. It is recognised that the errors made in the estimation of the pore diffusivity and of the diffusion porosity are contained in the reduction factor of the CEC. A discussion of the factors affecting the diffusivities of radionuclides and the problem of establishing consistent sets of diffusivity data is given in the Appendix. 33 refs, 7 figs, 12 tabs

  19. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.

    Science.gov (United States)

    Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto

    2014-04-05

    The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.

  20. Surface oxygen exchange properties of bismuth oxide-based solid electrolytes and electrode materials

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Vinke, I.C.; de Vries, K.J.; Burggraaf, A.J.

    1989-01-01

    The surface oxygen exchange coefficient, ks, has been measured for the solid solution (Bi2O3)0.75(Er2O3)0.25 and (Bi2O3)0.6(Tb2O3)0.4 (abbreviated BE25 and BT40), using gas-phase 18O exchange techniques. The activation enth alpy of ks amounts to ΔE=110 kJ/molforBT40 andΔE=130 kJ/molforBE25. The

  1. Experimental Study on the Tensile Strength and Linear Expansion Coefficient of Air Tunnel Terrazzo Surface

    Directory of Open Access Journals (Sweden)

    Boping Li

    2015-01-01

    Full Text Available At present, studies on the surface tension of air tunnel terrazzo under wind load and how regularly it is affected by temperature are relatively less, and the measured results of the thermal expansion coefficient of terrazzo have not yet been given. In this paper, based on the top terrazzo surface structure of the inner wall of the wind tunnel, the tensile performance tests of terrazzo surface layer are conducted, while the thermal expansion coefficient of the six terrazzo test blocks were tested. The tests and analysis show that the construction of terrazzo surface, based on the proposed construction process, can effectively guarantee the reliable cement performance for the binding layer between mortar and concrete base layer, terrazzo surface layer and the cement mortar layer. And the thermal expansion coefficient of terrazzo can be valued at 1.06e-5/ºC.

  2. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    Science.gov (United States)

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  3. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  4. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    Science.gov (United States)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  5. Experimental heat transfer coefficients between a surface and fixed and fluidized beds with PCM

    OpenAIRE

    Izquierdo-Barrientos, María Asunción; Sobrino, Celia; Almendros-Ibáñez, José Antonio

    2015-01-01

    This work presents an experimental study to determine the capacity of a phase change material (PCM) in granular form to be used in fixed and bubbling fluidized beds for thermal energy storage. The experimental measurements are focused on determination of the heat transfer coefficient between a heated surface immersed in the bed and the granular PCM. The flow rate is varied to quantify its influence on the heat transfer coefficient. The PCM used is Rubitherm GR50 with a phase change tem...

  6. Sustained frictional instabilities on nanodomed surfaces: Stick-slip amplitude coefficient

    DEFF Research Database (Denmark)

    Quignon, Benoit; Pilkington, Georgia A.; Thormann, Esben

    2013-01-01

    properties and their measured friction coefficients was identified. Furthermore, all the nanodomed textures exhibited pronounced oscillations in the shear traces, similar to the classic stick-slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led...... to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick-slip oscillations, σf, was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope...... of this linear plot as the stick-slip amplitude coefficient (SSAC). We suggest that such stick-slip behaviors are characteristics of surfaces with nanotextures and that such local frictional instabilities have important implications to surface damage and wear. We thus propose that the shear characteristics...

  7. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Directory of Open Access Journals (Sweden)

    Andrzejczyk Rafał

    2016-12-01

    Full Text Available The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  8. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  9. Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas//Experimental heat transfer coefficients for the liquor cooling in plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Enrique Torres‐Tamayo

    2014-01-01

    Full Text Available La pérdida de eficiencia del proceso de enfriamiento del licor amoniacal, mediante el uso de intercambiadores de calor de placas, está asociada a imprecisiones en la estimación de los coeficientes de transferencia de calor y la acumulación de incrustaciones en la superficie de intercambio. El objetivo de la investigación es determinar los coeficientes de transferencia de calor y la influencia de lasincrustaciones en la pérdida de eficiencia de la instalación. Mediante un procedimiento iterativo se estableció la ecuación del número de Nusselt y su relación con el número de Reynolds y Prandtl. Se utilizó un diseño experimental multifactorial. Los resultados predicen el conocimiento de los coeficientespara el cálculo del número de Nusselt en ambos fluidos. Los valores de los coeficientes del licor amoniacal son inferiores, ello se debe a la presencia de componentes gaseosos. La ecuación obtenida muestra correspondencia con el modelo de Buonapane, el error comparativo es del 3,55 %.Palabras claves: intercambiador de calor de placas, coeficientes de transferencia de calor, eficiencia térmica.______________________________________________________________________________AbstractThe loss of efficiency of the ammonia liquor cooling process, by means of the plate heat exchanger, is associated to the incorrect estimate of the heat transfer coefficients and the accumulation of inlays in the exchange surface. The objective of the investigation is to determine the transfer coefficients and the influence of the inlays in the efficiency loss of the installation. By means of an iterative procedure was obtained the Nusselt number equation and the relationship with the Reynolds and Prandtl number, for it was used it a design experimental multifactorial. The results predict the knowledge of the coefficients forthe calculation of the Nusselt number for both fluids. The ammonia liquor coefficients values are inferior, due to the presence of gassy

  10. Influence of surface modification on friction coefficient of the titanium-elastomer couple.

    Science.gov (United States)

    Chladek, Wiesław; Hadasik, Eugeniusz; Chladek, Grzegorz

    2007-01-01

    This paper presents the results of a study of the friction coefficient of titanium-elastomer couple. The study was carried out with a view to potential future utilization of its results for constructing retentive elements of implanted prostheses. Changes in the friction force were recorded while removing titanium specimens placed between two silicone counter specimens made of Ufi Gel. The influence of the titanium specimen movement speed in relation that of to the counter specimens and the influence of clamping force on the friction force were assessed. Additionally, the surface roughness of titanium specimens differed; in one case, titanium was coated with polyethylene. The effect of introducing artificial saliva between the cooperating surfaces on the friction force and friction coefficient was analyzed as well. Based on the characteristics recorded, the possibilities of shaping the friction coefficient have been assessed, since it is the friction coefficient that determines effective operation of a friction couple through increasing the titanium specimen roughness. The artificial saliva being introduced between the specimens reduces considerably the friction coefficient through a change of the phenomenon model. An increase in the pressure force for the specimens of high roughness entails a reduction of the friction coefficient. The study carried out allows us to identify the roughness parameters, which in turn will enable obtaining the prescribed retention force for friction/membrane couplings.

  11. Surface gas-exchange processes of snow algae

    OpenAIRE

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, becaus...

  12. Estimation of the friction coefficient between wheel and rail surface using traction motor behaviour

    International Nuclear Information System (INIS)

    Zhao, Y; Liang, B; Iwnicki, S

    2012-01-01

    The friction coefficient between a railway wheel and rail surface is a crucial factor in maintaining high acceleration and braking performance of railway vehicles thus monitoring this friction coefficient is important. Restricted by the difficulty in directly measuring the friction coefficient, the creep force or creepage, indirect methods using state observers are used more frequently. This paper presents an approach using a Kalman filter to estimate the creep force and creepage between the wheel and rail and then to identify the friction coefficient using the estimated creep force-creepage relationship. A mathematic model including an AC motor, wheel and roller is built to simulate the driving system. The parameters are based on a test rig at Manchester Metropolitan University. The Kalman filter is designed to estimate the friction coefficient based on the measurements of the simulation model. Series of residuals are calculated through the comparison between the estimated creep force and theoretical values of different friction coefficient. Root mean square values of the residuals are used in the friction coefficient identification.

  13. Experimental rig to estimate the coefficient of friction between tire and surface in airplane touchdown simulations.

    Science.gov (United States)

    Li, Chengwei; Zhan, Liwei

    2015-08-01

    To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.

  14. STIR: Improved Electrolyte Surface Exchange via Atomically Strained Surfaces

    Science.gov (United States)

    2015-09-03

    PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Delaware 210 Hullihen Hall Newark, DE 19716 -0099 9-Jan-2015 ABSTRACT Number of Papers... Planck system modified to include reaction terms was built in COMSOL Multiphysics to describe the mass and charge fluxes related to electrons and both...include that the adsorption rate constant controls the behavior of platinum electrodes on YSZ surfaces much more than the reaction rate constant for

  15. Measurement of Turbulent Skin Friction Drag Coefficients Produced by Distributed Surface Roughness of Pristine Marine Coatings

    DEFF Research Database (Denmark)

    Zafiryadis, Frederik; Meyer, Knud Erik; Gökhan Ergin, F.

    Skin friction drag coefficients are determined for marine antifouling coatings in pristine condition by use of Constant Temperature Anemometry (CTA) with uni-directionalhot-wires. Mean flow behaviour for varying surface roughness is analysed in zero pressure gradient, flat plate, turbulentboundary...... drag coefficients as well as roughness Reynolds numbers for the various marine coatings across the range of Rex by fitting of the van Driest profile. The results demonstrate sound agreement with the present ITTC method for determining skin friction coefficients for practically smooth surfaces at low...... layers for Reynolds numbers from Rex =1:91x105 to Rex = 9:54x105. The measurements were conducted at the Technical University of Denmark in a closed-loop wind tunnel redesigned for investigations as this. Ensemble averages of the boundary layer velocity profiles allowed for determination of skin friction...

  16. Quality-factor and reflection-coefficient estimation using reflected surface waves

    NARCIS (Netherlands)

    Draganov, D.S.; Ruigrok, E.N.; Ghose, R.; Mikesell, D.; Van Wijk, K.

    2014-01-01

    We propose a method for estimating the reflection coefficient of a subvertical boundary and the the quality factor of the medium between a receiver and the subvertical boundary. The method uses surface waves from transient deterministic sources and is inspired by the occurrence of non-physical

  17. Effects of bridge cable surface roughness and cross-sectional distortion on aerodynamic force coefficients

    DEFF Research Database (Denmark)

    Matteoni, G.; Georgakis, C.T.

    2012-01-01

    of their inherent surface roughness and shape, which might present a significant disturbance for the surrounding wind flow. The present study focuses on the experimental determination, based on static wind tunnel tests, of the aerodynamic coefficients of full-scale bridge cable section models both perpendicular...

  18. Impact of overall and particle surface heat transfer coefficients on thermal process optimization in rotary retorts.

    Science.gov (United States)

    Simpson, R; Abakarov, A; Almonacid, S; Teixeira, A

    2008-10-01

    This study attempts to examine the significance of recent research that has focused on efforts to estimate values for global and surface heat transfer coefficients under forced convection heating induced by end-over-end rotation in retorting of canned peas in brine. The study confirms the accuracy of regression analysis used to predict values for heat transfer coefficients as a function of rotating speed and headspace, and uses them to predict values over a range of process conditions, which make up the search domain for process optimization. These coefficients were used in a convective heat transfer model to establish a range of lethality-equivalent retort temperature-time processes for various conditions of retort temperature, rotating speed, and headspace. Then, they were coupled with quality factor kinetics to predict the final volume average and surface quality retention resulting from each process and to find the optimal thermal process conditions for canned fresh green peas. Results showed that maximum quality retention (surface and volume average retention) was achieved with the shortest possible process time (made possible with highest retort temperature), and reached the similar level in all cases with small difference between surface and volume average quality retention. The highest heat transfer coefficients (associated with maximum rotating speed and headspace) showed a 10% reduction in process time over that required with minimum rotating speed and headspace. The study concludes with a discussion of the significance of these findings and degree to which they were expected.

  19. Self-affine roughness influence on the friction coefficient for rubbers onto solid surfaces

    NARCIS (Netherlands)

    Palasantzas, G

    2004-01-01

    In this paper we investigate the influence of self-affine roughness on the friction coefficient mu(f) of a rubber body under incomplete contact onto a solid surface. The roughness is characterized by the rms amplitude w, the correlation length xi, and the roughness exponent H. It is shown that with

  20. A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors

    NARCIS (Netherlands)

    Bouwmeester, Henricus J.M.; Song, Chunlin; Song, C.; Zhu, J.J.; van Sint Annaland, M.; Yi, Jianxin; Boukamp, Bernard A.

    2009-01-01

    We demonstrate the use of a novel pulse 18O–16O isotopic exchange technique for the rapid determination of the oxygen surface exchange rate of oxide ion conductors while simultaneously providing insight into the mechanism of the oxygen exchange reaction, which contributes to the efficient

  1. Mean heat transfer coefficients during the evaporation of 1,1,1,2-tetrafluoroethane (R-134a in a plate heat exchanger

    Directory of Open Access Journals (Sweden)

    EMILA DJORDJEVIC

    2007-08-01

    Full Text Available In this study the transfer coefficient of evaporation heat of the refrigerant 1,1,1,2-tetrafluoroethane (R-134a in a vertical plate heat exchanger was experimentally investigated. The results are presented as the dependancy of the mean heat transfer coefficient for the whole heat exchanger on the mean vapor quality. The influences of mass flux, heat flux and flow configuration on the heat transfer coefficient were also taken into account and a comparison with previously published experimental data and literature correlations was made.

  2. Determination of the potential energy surfaces of refrigerant mixtures and their gas transport coefficients

    Directory of Open Access Journals (Sweden)

    Song Bo

    2017-01-01

    Full Text Available In this work, the inversion scheme was used to determine the potential energy surfaces of five polar refrigerant mixtures. The systems studied here are R123-R134a, R123-R142b, R123-R152a, R142b-R134a, and R142b-R152a. The low density transport coefficients of the refrigerant mixtures were calculated from the new invert potentials by the classical kinetic theory. The viscosity coefficient, binary diffusion coefficient, and thermal diffusion factor were computed for the temperature range from 313.15-973.15 K. The agreement with the NIST viscosity data demonstrates that the present calculated values are accurate enough to supplement experimental data over an extended temperature range. Correlations of the transport properties were also provided for the refrigerant mixtures at equimolar ratios.

  3. Energy Exchange between Weakly Ionized Gas and a Metal Surface

    Science.gov (United States)

    Polikarpov, A. Ph.; Polikarpov, Ph. J.; Borisov, S. F.

    2008-12-01

    An attempt to describe heat exchange of low ionized gas with a metal surface has been made with the use of DSMC approach and kinetic Monte-Carlo method. Modeling is adhered to concrete experimental conditions at which thin tungsten wire is placed in plasma and dependence of a heat flow on wire surface temperature, gas pressure, gas nature and a degree of ionization is investigated. As a result of simulation temperature profiles near the wire surface for nitrogen and argon as well as dependence of relative heat flow in a gas/surface system on temperature and degree of ionization with consideration of energy accommodation have been obtained. In the case of nitrogen the chemical charge-transfer reaction is taken into account.

  4. NON-EQUILIBRIUM H{sub 2} FORMATION IN THE EARLY UNIVERSE: ENERGY EXCHANGES, RATE COEFFICIENTS, AND SPECTRAL DISTORTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, C. M.; Longo, S. [Dipartimento di Chimica, Universita degli Studi di Bari, Via Orabona 4, I-70126 Bari (Italy); D' Introno, R. [Dipartimento di Fisica, Universita degli Studi di Bari, Via Amendola 173, I-70126 Bari (Italy); Galli, D. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Tennyson, J., E-mail: carla.coppola@chimica.uniba.it [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2012-03-01

    Energy exchange processes play a crucial role in the early universe, affecting the thermal balance and the dynamical evolution of the primordial gas. In the present work we focus on the consequences of a non-thermal distribution of the level populations of H{sub 2}: first, we determine the excitation temperatures of vibrational transitions and the non-equilibrium heat transfer; second, we compare the modifications to chemical reaction rate coefficients with respect to the values obtained assuming local thermodynamic equilibrium; and third, we compute the spectral distortions to the cosmic background radiation generated by the formation of H{sub 2} in vibrationally excited levels. We conclude that non-equilibrium processes cannot be ignored in cosmological simulations of the evolution of baryons, although their observational signatures remain below current limits of detection. New fits to the equilibrium and non-equilibrium heat transfer functions are provided.

  5. Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients

    Science.gov (United States)

    Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.

    2016-01-01

    We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.

  6. The surface diffusion coefficient for an arbitrarily curved fluidfluid interface.(II). Coefficient for plane-parallel diffusion

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2001-01-01

    In this paper we developed an expression for the coefficient for plane-parallel diffusion for an arbitrarily curved fluid–fluid interface. The expression is valid for ordinary diffusion in binary mixtures, with isotropic bulk phases and an interfacial region that is isotropic in the plane parallel

  7. Dependence of the coefficient of environmental thermal losses of radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid from their average operating and ambient temperatures

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    The approximation formula is derived for calculating the normalized coefficient of thermal losses of flat solar collectors (FSCs) for heating heat-transfer fluid (HTF). These are used in hot water supply systems in the warmer part of the year, depending on the average working surface temperature of their radiation-absorbing thermal exchange panels (RATEPs) (t - wsr ) and the ambient temperature (t amb ) in their realistic variation range. (author)

  8. Some experimental data on accommodation coefficients for the noble ions on metal surfaces

    International Nuclear Information System (INIS)

    Gusev, K.I.; Rijov, Y.A.; Shkarban, I.I.

    1974-01-01

    Methods and results of experimental measurements of energy accommodation for Ar + , Kr + , and Xe + ions with initial energy E 0 - 100-500eV bombarding Cu, Mo, Ag and other (including Mo - monocrystal) foil target are presented. The angular dependencies for the energy accommodation coefficient are obtained within the range of angle phi=0+70 deg (phi is the angle between the target surface normal and the beam direction)

  9. The stochastic distribution of available coefficient of friction for human locomotion of five different floor surfaces.

    Science.gov (United States)

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2014-05-01

    The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  11. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2017-11-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  12. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  13. Empirical mapping of the convective heat transfer coefficients with local hot spots on highly conductive surfaces

    Directory of Open Access Journals (Sweden)

    Tekelioğlu Murat

    2017-01-01

    Full Text Available An experimental method was proposed to assess the natural and forced convective heat transfer coefficients on highly conductive bodies. Experiments were performed at air velocities of 0m/s, 4.0m/s, and 5.4m/s, and comparisons were made between the current results and available literature. These experiments were extended to arbitrary-shape bodies. External flow conditions were maintained throughout. In the proposed method, in determination of the surface convective heat transfer coefficients, flow condition is immaterial, i.e., either laminar or turbulent. With the present method, it was aimed to acquire the local heat transfer coefficients on any arbitrary conductive shape. This method was intended to be implemented by the heat transfer engineer to identify the local heat transfer rates with local hot spots. Finally, after analyzing the proposed experimental results, appropriate decisions can be made to control the amount of the convective heat transfer off the surface. Limited mass transport was quantified on the cooled plate.

  14. Analysis and optimization of the heat transfer coefficient of a finned heat exchanger submitted to natural convection; Analise e otimizacao do coeficiente de transferencia de calor de um trocador aletado submetido a conveccao natural

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Alan Carlos Bueno da

    1997-07-01

    A heat transfer (condenser) of a domestic freezer was tested in a vertical channel in order to study the influence of the chimney effect in the optimization of the heat transfer coefficient. The variation of the opening of the channel, position and the heating power of the heat exchanger in the heat transfer coefficient was considered. The influence of the surface emissivity on the heat transfer by thermal radiation was studied with the heat exchanger testes without paint and with black paint. The air velocity entering the channel was measured with a hot wire anemometer. In order to evaluate the chimney effect, the heat exchanger was testes in a open ambient. This situation simulates its operational conditions when installed on the freezer system. The variables collected in the experimental procedures was gathered in the form of dimensionless parameters as Nusselt, Rayleigh, Grashof and Prandtl numbers, and dimensional parameters of the convection. The results showed that the highest heat transfer value occurred when both a specific position and a specific channel opening were used. The experiments pointed out that the radiation contribution must be considered in heat transfer calculations. The conclusions showed that different channel openings can improve the heat transfer coefficient in this heat transfer exchanger. (author)

  15. Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A. Paul

    2008-12-02

    Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, and XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.

  16. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  17. Measurement of thermal accommodation coefficients of inert gas mixtures on a surface of stainless steel

    Science.gov (United States)

    Jun, Byung Soon

    Heat transfer in the fuel-clad gap in a nuclear reactor impacts the overall temperature distribution, stored energy and the mechanical properties of a nuclear fuel rod. Therefore, an accurate estimation of the gap conductance between the UO2 fuel and the clad is critically important for reactor design and operations. To obtain the requisite accuracy in the gap conductance estimation, the thermal accommodation coefficients of the various gases present on the fuel outer surface and the cladding inner surface are very important. In present work, we studied the stainless steel that is the most favored cladding material for advanced gas-cooled reactors. Our goal was to obtain the thermal accommodation coefficients of select inert gases and mixtures of the same on this stainless steel. It has been found for pure helium, pure argon and select He-Ar mixtures that the thermal accommodation coefficient values with stainless steel are very close to constant over the range of pressures studied. The values obtained in this work are in good agreement with similar values reported previously in the literature. As far as we aware, these measurements are the first made of the thermal accommodation coefficients of inert gas mixtures on stainless steel. To aid in the verification of the kinetic theory, additional experiments were done using a two-sphere system and were analyzed using the equivalent sphere approximation. It is found that this theory can be applicable to spherical geometry problems and can be used for a wide range of values of the Knudsen number (Kn). Some sensitivity studies were performed to delineate some key parameter effect in terms of cooling rate, DeltaT difference, and Knudsen number.

  18. Reconstruction of Financial Performance to Manage Gapbetween Value Added Intellectual Coefficient (VAICTM) andValue of Company in Banking Company Listed in IndonesiaStock Exchange

    OpenAIRE

    Ermawati, Yana; Noch, Muhamad Yamin; Zakaria, -; Ikhsan, Arfan; Khaddafi, Muammar

    2017-01-01

    This study aims to analyze the effect of Value Added Intellectual Coefficient (VAIC™) on value of company (MtBV) and financial performance (ROA) as mediating variable. This study used Value Added Intellectual Coefficient (VAIC™) to measure the efficiency of three components i.e. Value Added Capital Employed (VACA), Value Added Human Capital (VAHU), and Structural Capital Value Added (STVA). This study is a quantitative research using 20 banking companies listed in Indonesia Stock Exchange (BE...

  19. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    Science.gov (United States)

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  20. Low-order aberration coefficients applied to design of telescopes with freeform surfaces

    Science.gov (United States)

    Stone, Bryan D.; Howard, Joseph M.

    2017-09-01

    As the number of smallsats and cubesats continues to increase [1], so does the interest in the space optics community to miniaturize reflective optical instrumentation for these smaller platforms. Applications of smallsats are typically for the Earth observing community, but recently opportunities for them are being made available for planetary science, heliophysics and astrophysics concepts [2]. With the smaller satellite platforms come reduced instrument sizes that they accommodate, but the specifications such as field of view and working f/# imposed on the smaller optical systems are often the same, or even more challenging. To meet them, and to "fit in the box", it is necessary to employ additional degrees of freedom to the optical design. An effective strategy to reduce package size is to remove rotational symmetry constraints on the system layout, allowing it to minimize the unused volume by applying rigid body tilts and decenters to mirrors. Requirements for faster systems and wider fields of view can be addressed by allowing optical surfaces to become "freeform" in shape, essentially removing rotational symmetry constraints on the mirrors themselves. This dual approach not only can reduce package size, but also can allow for increased fields of view with improved image quality. Tools were developed in the 1990s to compute low-order coefficients of the imaging properties of asymmetric tilted and decentered systems [3][4]. That approach was then applied to reflective systems with plane symmetry, where the coefficients were used to create closed-form constraints to reduce the number of degrees of freedom of the design space confronting the designer [5][6]. In this paper we describe the geometric interpretation of these coefficients for systems with a plane of symmetry, and discuss some insights that follow for the design of systems without closed-form constraints. We use a common three-mirror design form example to help illustrate these concepts, and

  1. Changes in the surface roughness and friction coefficient of orthodontic bracket slots before and after treatment.

    Science.gov (United States)

    Liu, Xiaomo; Lin, Jiuxiang; Ding, Peng

    2013-01-01

    In this study, we tested the surface roughness of bracket slots and the friction coefficient between the bracket and the stainless steel archwire before and after orthodontic treatment. There were four experimental groups: groups 1 and 2 were 3M new and retrieved brackets, respectively, and groups 3 and 4 were BioQuick new and retrieved brackets, respectively. All retrieved brackets were taken from patients with the first premolar extraction and using sliding mechanics to close the extraction space. The surface roughness of specimens was evaluated using an optical interferometry profilometer, which is faster and nondestructive compared with a stylus profilometer, and provided a larger field, needing no sample preparation, compared with atomic force microscopy. Orthodontic treatment resulted in significant increases in surface roughness and coefficient of friction for both brands of brackets. However, there was no significant difference by brand for new or retrieved brackets. These retrieval analysis results highlight the necessity of reevaluating the properties and clinical behavior of brackets during treatment to make appropriate treatment decisions. © Wiley Periodicals, Inc.

  2. Roles of Surface and Interface Spins in Exchange Coupled Nanostructures

    Science.gov (United States)

    Phan, Manh-Huong

    Exchange bias (EB) in magnetic nanostructures has remained a topic of global interest because of its potential use in spin valves, MRAM circuits, magnetic tunnel junctions, and spintronic devices. The exploration of EB on the nanoscale provides a novel approach to overcoming the superparamagnetic limit and increasing the thermoremanence of magnetic nanoparticles, a critical bottleneck for magnetic data storage applications. Recent advances in chemical synthesis have given us a unique opportunity to explore the EB in a variety of nanoparticle systems ranging from core/shell nanoparticles of Fe/γFe2O3, Co/CoO,and FeO/Fe3O4 to hollow nanoparticles of γFe2O3 and hybrid composite nanoparticles of Au/Fe3O4. Our studies have addressed the following fundamental and important questions: (i) Can one decouple collective contributions of the interface and surface spins to the EB in a core/shell nanoparticle system? (ii) Can the dynamic and static response of the core and shell be identified separately? (iii) Can one tune ``minor loop'' to ``exchange bias'' effects in magnetic hollow nanoparticles by varying the number of surface spins? (iv) Can one decouple collective contributions of the inner and outer surface spins to the EB in a hollow nanoparticle system? (v) Can EB be induced in a magnetic nanoparticle by forming its interface with a non-magnetic metal? Such knowledge is essential to tailor EB in magnetic nanostructures for spintronics applications. In this talk, we will discuss the aforementioned findings in terms of our experimental and atomistic Monte Carlo studies. The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438.

  3. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  4. EPMA-EDS surface measurements of interdiffusion coefficients between miscible metals in thin films

    International Nuclear Information System (INIS)

    Christien, F.; Pierson, J.F.; Hassini, A.; Capon, F.; Le Gall, R.; Brousse, T.

    2010-01-01

    A new technique is developed to study interdiffusion between two miscible metals. The technique is applied to the Ni-Pd system. It consists in measuring the change of apparent surface composition of a Pd substrate coated with an 800 nm Ni thin film during annealing at a given temperature. The measurement is carried out in-situ inside the chamber of a SEM (scanning electron microscope) by EPMA-EDS (electron probe microanalysis-energy dispersive X-ray spectroscopy). The experimental data are processed using a model that mixes the Fick's diffusion equations and the electron probe microanalysis equation. This process allows the determination of the mean interdiffusion coefficient at a given annealing temperature. The main advantages of the technique are the possible determination of interdiffusion coefficients in thin films and at very low temperature (down to 430 deg. C, i.e. ∼0.4 T m ), which is not achievable with other techniques conventionally used for the study of interdiffusion. The Ni-Pd mean interdiffusion coefficient is shown to follow an Arrhenius law (D-tilde c =6.32x10 -3 exp((178.8kJmol -1 )/(RT) )cm 2 s -1 ) between 430 deg. C and 900 deg. C, in relatively good agreement with previous interdiffusion measurements made on the Ni-Pd system at higher temperature.

  5. The hydrodynamics of surface tidal flow exchange in saltmarshes

    Science.gov (United States)

    Young, David L.; Bruder, Brittany L.; Haas, Kevin A.; Webster, Donald R.

    2016-04-01

    Modeling studies of estuary circulation show great sensitivity to the water exchange into and out of adjacent marshes, yet there is significant uncertainty in resolving the processes governing marsh surface flow. The objective of this study is to measure the estuary channel-to-saltmarsh pressure gradient and to guide parameterization for how it affects the surface flow in the high marsh. Current meters and high-resolution pressure transducers were deployed along a transect perpendicular to the nearby Little Ogeechee River in a saltmarsh adjacent to Rose Dhu Island near Savannah, Georgia, USA. The vertical elevations of the transducers were surveyed with static GPS to yield high accuracy water surface elevation data. It is found that water level differences between the Little Ogeechee River and neighboring saltmarsh are up to 15 cm and pressure gradients are up to 0.0017 m of water surface elevation change per m of linear distance during rising and falling tides. The resulting Little-Ogeechee-River-to-saltmarsh pressure gradient substantially affects tidal velocities at all current meter locations. At the velocity measurement station located closest to the Little Ogeechee River bank, the tidal velocity is nearly perpendicular to the bank. At this location, surface flow is effectively modeled as a balance between the pressure gradient force and the drag force due to marsh vegetation and bottom stress using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow. The study thus provides a direct connection between the pressure gradient and surface flow velocity in the high marsh, thereby overcoming a long-standing barrier in directly relating flow-through-saltmarsh studies to flow-through-vegetation studies in the open channel flow literature.

  6. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage.

    Science.gov (United States)

    Grad, S; Loparic, M; Peter, R; Stolz, M; Aebi, U; Alini, M

    2012-04-01

    Functional cartilage tissue engineering aims to generate grafts with a functional surface, similar to that of authentic cartilage. Bioreactors that stimulate cell-scaffold constructs by simulating natural joint movements hold great potential to generate cartilage with adequate surface properties. In this study two methods based on atomic force microscopy (AFM) were applied to obtain information about the quality of engineered graft surfaces. For better understanding of the molecule-function relationships, AFM was complemented with immunohistochemistry. Bovine chondrocytes were seeded into polyurethane scaffolds and subjected to dynamic compression, applied by a ceramic ball, for 1h daily [loading group 1 (LG1)]. In loading group 2 (LG2), the ball additionally oscillated over the scaffold, generating sliding surface motion. After 3 weeks, the surfaces of the engineered constructs were analyzed by friction force and indentation-type AFM (IT-AFM). Results were complemented and compared to immunohistochemical analyses. The loading type significantly influenced the mechanical and histological outcomes. Constructs of LG2 exhibited lowest friction coefficient and highest micro- and nanostiffness. Collagen type II and aggrecan staining were readily observed in all constructs and appeared to reach deeper areas in loaded (LG1, LG2) compared to unloaded scaffolds. Lubricin was specifically detected at the top surface of LG2. This study proposes a quantitative AFM-based functional analysis at the micrometer- and nanometer scale to evaluate the quality of cartilage surfaces. Mechanical testing (load-bearing) combined with friction analysis (gliding) can provide important information. Notably, sliding-type biomechanical stimuli may favor (re-)generation and maintenance of functional articular surfaces and support the development of mechanically competent engineered cartilage. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights

  7. Analytical expressions of the imaging and aberration coefficients of a general form surface.

    Science.gov (United States)

    Yang, Liu; Qi, Jin Wei; Bin, Zhu

    2017-12-01

    A theoretical development is presented in this paper for describing and understanding the imaging and aberrations of a general form surface. The development is based on the Taylor expansion of an arbitrary ray trace from the object reference plane to the image reference plane, which is called the base mapping of the general form surface in this paper. The base mapping is expressed as two Taylor series of the object and pupil coordinates and the imaging and aberration coefficients in the third-order scope are derived and presented as analytical expressions relevant to the optic parameters, invoking no approximations. The situation with tilted object and observing plane is also considered, and the mapping from a tilted object to a tilted observing plane is derived via simple mathematical manipulations based on the base mapping.

  8. Slip safety risk analysis of surface properties using the coefficients of friction of rocks.

    Science.gov (United States)

    Çoşkun, Gültekin; Sarıışık, Gencay; Sarıışık, Ali

    2017-12-19

    This study was conducted to determine the most appropriate surface processing techniques (SPT), environmental conditions (EC) and surface roughness (SR) to minimize the risk of slipping when pedestrians walk on a floor covering of rocks barefoot and with shoes. Coefficients of friction (COFs) and values of SR were found using five different types of rocks, four SPT and two (ramp and pendulum) tests. Results indicate that the parameters which affect the COF values of rocks include SR, EC and SPT. Simple linear regression was performed to examine the relationship between the values of the COF and the SR. The value of the COF was identified as R 2  ≥ 0.864. Statistical results, which are based on experimental measurements, show that rocks are classified according to their safe use areas depending on their COF and SR values.

  9. Study on the turbulence model sensitivity for various cross-corrugated surfaces applied to matrix type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Myung; Ha, Man Yeong; Son, Chang Min; Doo, Jeong Hoon; Min, June Kee [Pusan National University, Busan (Korea, Republic of)

    2016-03-15

    Diverse cross-corrugated surface geometries were considered to estimate the sensitivity of four variants of k-ε turbulence models (Low Reynolds, standard, RNG and realizable models). The cross-corrugated surfaces considered in this study are a conventional sinusoidal shape and two different asymmetric shapes. The numerical simulations using the steady incompressible Reynolds-averaged Navier Stokes (RANS) equations were carried out to obtain the steady solutions of the flow and thermal fields in the unitary cell of the heat exchanger matrix. In addition, the experimental test for the measurement of local convective heat transfer coefficients on the heat transfer surfaces was performed by means of the Transient liquid crystal (TLC) technique in order to compare the numerical results with the measured data. The features on detailed flow structure and corresponding heat transfer in the unitary cell of the matrix type heat exchanger are compared and analyzed against four different turbulence models considered in this study.

  10. Heat flux and global and partial heat transfer coefficient in an exchanger with helicoidal graphite fins; Flux thermique et coefficients de transfert global et partiel d'un echangeur a ailettes spiralees en graphite

    Energy Technology Data Exchange (ETDEWEB)

    Meddeb, Z.; Razak Jeday, M. [Ecole Nationale d' Ingenieurs de Gabes, Lab. d' Energetique et d' Ingenierie (Tunisia); Harmand, S. [Universite de Valenciennes et de Hainaut Cambresis, Lab. de Mecanique et d' Energetique, 59 - Valenciennes (France)

    2004-10-01

    A new evaporation technique consists of letting a stream of liquid flow along spiral fins. The fins are rolled in spirals around a heated vertical tube through which a hot fluid is circulated. The tube and fins are manufactured from one bloc of impregnated graphite. Because of the great complexity of the geometry of this exchanger and the flow on its fins, the determination of the thermal transfer coefficient by external convection is difficult to obtain by a direct calculation. It is indirectly determined here by Wilson's method which is based on two stages: one is experimental and the other is theoretical. In this article, we determine the quantity of exchanged heat and the global coefficient of the thermal transfer of this exchanger/evaporator during the heating, also, we determine the different partial resistances during the heating, as well as the coefficient of convection between the external wall of the fin and the solution to heat. The procedure, proposed in this work, has allowed to validate the equation proposed by Wilson. (authors)

  11. Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3-δ

    NARCIS (Netherlands)

    Berenov, A.; Atkinson, A.; Kilner, J.; Ananyev, M.; Eremin, V.; Porotnikova, N.; Farlenkov, A.; Kurumchin, E.; Bouwmeester, Henricus J.M.; Bucher, E.; Sitte, W.

    2014-01-01

    The oxygen tracer diffusion coefficient, Db⁎, and the oxygen tracer surface exchange coefficient, k, were measured in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ (BSCF5582) over the temperature range of 310–800 °C and the oxygen partial pressure range of 1.3 × 10−3–0.21 bar. Several measurement techniques were used:

  12. Ion Exchange Distribution Coefficient Tests and Computer Modeling at High Ionic Strength Supporting Technetium Removal Resin Maturation

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, Frank G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-19

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and poured into canisters for disposition. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the water solubility properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important to the overall success of the Hanford River Protection Project mission. To achieve the full target WTP throughput, additional LAW immobilization capacity is needed, and options are being explored to immobilize the supplemental LAW portion of the tank waste. Removal of 99Tc, followed by off-site disposal, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. To enable an informed decision regarding the viability of technetium removal, further maturation of available technologies is being performed. This report contains results of experimental ion exchange distribution coefficient testing and computer modeling using the resin SuperLig® 639a to selectively remove perrhenate from high ionic strength simulated LAW. It is advantageous to operate at higher concentration in order to treat the waste

  13. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    Science.gov (United States)

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.

  14. Effects of self-affine surface roughness on the friction coefficient of rubbers in the presence of a liquid interlayer

    NARCIS (Netherlands)

    Palasantzas, G; De Hosson, JTM

    2004-01-01

    In this article, we investigate how the friction coefficient is affected by the presence of a liquid layer in between a self-affine rough surface and a sliding rubber surface. The liquid layer will reduce energy dissipation from the small surface asperities and cavities of lateral sizes smaller than

  15. Uptake Coefficients of NO3 Radicals on Solid Surfaces of Sea-Salts

    Science.gov (United States)

    Gratpanche, F.; Sawerysyn, J.-P.

    1999-02-01

    Uptake coefficients of nitrate radicals (γ NO_3) have been measured by a technique involving a coated-wall flow tube with radical detection by E.P.R. spectrometry. The variation of NO3 concentration in the gas phase was followed indirectly by monitoring OH radicals produced by the titration reaction H + NO_3. The mean initial value of γ NO3 measured on solid NaCl surfaces was (1.7± 1.2)× 10-2) in the temperature range 258-301 K, while for solid NaBr surfaces the value was (0.11 ± 0.06) at 293 K. In each case, errors limits correspond to one standard deviation. For NaBr, a slight negative temperature dependence was observed over the investigated range, 243-293 K, which can be represented by γ_NO_3^NaBr = 1.6 ≤ft(begin{array}{l}+1.8 -0.9) × 10-3exp [(1210± 200)/T]. An analysis of the results shows that under some conditions the heterogeneous loss of nitrate radicals on sea-salt aerosol particles at ambient temperature could be competitive with their loss by homogeneous reaction in the marine troposphere at night. Les coefficients de capture des radicaux nitrate (γ NO_3) sur des surfaces de sels marins (NaCl et NaBr) ont été mesurés aux températures troposphériques en utilisant la technique du réacteur à écoulement à paroi recouverte couplée à un spectromètre de résonance paramagnétique électronique (R.P.E). La variation de la concentration en phase gazeuse des radicaux nitrate en présence des surfaces étudiées est suivie en mesurant le signal R.P.E des radicaux OH produits par la réaction de titrage H + NO3. Pour des températures comprises entre 258 et 301 K, la valeur moyenne du coefficient de capture initial (γ NO_3) sur des surfaces solides de NaCl est égal à (1.7± 1.2)× 10-2). Sur des surfaces solides de NaBr, (γ NO_3) est égal à (0.11 ± 0.06) à 293 K. L'incertitude correspond à une déviation standard. Par ailleurs, pour ce type de surfaces, une légère dépendance négative avec la température est observée dans la

  16. Effect of various refining processes for Kenaf Bast non-wood pulp fibers suspensions on heat transfer coefficient in circular pipe heat exchanger

    Science.gov (United States)

    Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan

    2018-03-01

    Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.

  17. Coefficient of Friction Between Carboxymethylated Hyaluronic Acid-Based Polymer Films and the Ocular Surface.

    Science.gov (United States)

    Colter, Jourdan; Wirostko, Barbara; Coats, Brittany

    2017-12-01

    Hyaluronic acid-based polymer films are emerging as drug-delivery vehicles for local and continuous drug administration to the eye. The highly lubricating hyaluronic acid increases comfort, but displaces films from the eye, reducing drug exposure and efficacy. Previous studies have shown that careful control of the surface interaction of the film with the eye is critical for improved retention. In this study, the frictional interaction of a carboxymethylated, hyaluronic acid-based polymer (CMHA-S) with and without methylcellulose was quantified against ovine and human sclera at three axial loads (0.3, 0.5, and 0.7 N) and four sliding velocities (0.3, 1.0, 10, and 30 mm/s). Static coefficients of friction significantly increased with rate (P Friction became more rate-dependent when methylcellulose was added to CMHA-S. Kinetic coefficient of friction was not affected by rate, and averaged 0.15 ± 0.1. Methylcellulose increased CMHA-S static and kinetic friction by 60% and 80%, respectively, but was also prone to wear during testing. These data suggest that methylcellulose can be used to create a friction differential on the film, but a potentially increased degradation rate with the methylcellulose must be considered in the design.

  18. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    Science.gov (United States)

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  20. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer

    International Nuclear Information System (INIS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-01-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests. (paper)

  1. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    Science.gov (United States)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the

  2. Spatio-temporal surface-subsurface water exchanges: from the local to the watershed scale

    Science.gov (United States)

    Rivière, Agnès; Flipo, Nicolas; Mouhri, Amer; Ansart, Patrick; Baudin, Aurélien; Berrhouma, Asma; Bodet, Ludovic; Cocher, Emmanuel; Cucchi, Karina; Durand, Véronique; Flageul, Sébastien; de Fouquet, Chantal; Goblet, Patrick; Hovhannissian, Gaghik; Jost, Anne; Pasquet, Sylvain; Rejiba, Fayçal; Rubin, Yoram; Tallec, Gaëlle; Mouchel, Jean-Marie

    2016-04-01

    ), corresponding to four components of the terrestrial water cycle. The surface parameters are calibrated by the method of Labarthe et al., (2014). The transmissivities values of the aquifers are estimated by the adjoin inversion method using a piezometric map corresponding to low flow regime. The storage and drainance coefficients are optimized based on the comparison between simulated and observed piezometric data. The hydrogeological parameters obtained by the 2D local model are used to evaluate the conductance along the stream-network. Eventually the water budget is calculated as well as the spatial distribution of stream-aquifer water exchanges along the stream network. References : Flipo, N., Mouhri, A., Labarthe, B., Biancamaria, S., Rivière, A., and Weill, P.: Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces, Hydrol. Earth Syst. Sci., 18, 3121-3149, doi:10.5194/hess-18-3121-2014, 2014. Labarthe, B.; Abasq, L.; Flipo, N.; de Fouquet, C. D. : Automatic Multi-Scale Calibration Procedure for Nested Hydrological-Hydrogeological Regional Models, AGU Fall Meeting, 2014.

  3. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  4. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  5. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    OpenAIRE

    Lloveras Montserrat, Vega; Badetti, Elena; Veciana Miró, Jaume; Vidal-Gancedo, José

    2016-01-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution,...

  6. The condensation of steam on the external surfaces of the shells of HIFAR heavy water heat exchangers during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Chapman, A.G.

    1987-03-01

    A study of steam condensation rates on the HIFAR heavy water heat exchangers was undertaken to predict thermohydraulic conditions in the HIFAR containment during a postulated loss-of-coolant accident (LOCA). The process of surface condensation from a mixture of air and steam, and methods for calculating the rate of condensation, are briefly reviewed. Suitable experimental data are used to estimate coefficients of condensation heat transfer to cool surfaces in a reactor containment during a LOCA. The relevance of the available data to a LOCA in the HIFAR materials testing reactor is examined, and two sets of data are compared. The differences between air/H 2 O and air/D 2 O mixtures are discussed. Formulae are derived for the estimation of the coefficient of heat transfer from the heat exchanger shells to the cooling water, and a method of calculating the rate of condensation per unit area of surface is developed

  7. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.

  8. Sensitivity Analysis of the Surface Runoff Coefficient of HiPIMS in Simulating Flood Processes in a Large Basin

    Directory of Open Access Journals (Sweden)

    Yueling Wang

    2018-03-01

    Full Text Available To simulate flood processes at the basin level, the GPU-based High-Performance Integrated Hydrodynamic Modelling System (HiPIMS is gaining interest as computational capability increases. However, the difficulty of coping with rainfall input to HiPIMS reduces the possibility of acquiring a satisfactory simulation accuracy. The objective of this study is to test the sensitivity of the surface runoff coefficient in the HiPIMS source term in the Misai basin with an area of 797 km2 in south China. To achieve this, the basin was divided into 909,824 grid cells, to each of which a Manning coefficient was assigned based on its land use type interpreted from remote sensing data. A sensitivity analysis was conducted for three typical flood processes under four types of surface runoff coefficients, assumed a priori, upon three error functions. The results demonstrate the crucial role of the surface runoff coefficient in achieving better simulation accuracy and reveal that this coefficient varies with flood scale and is unevenly distributed over the basin.

  9. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  10. The collective diffusion coefficient as a shape detector of the surface energy landscape

    Science.gov (United States)

    Mińkowski, Marcin; Załuska–Kotur, Magdalena A.

    2018-01-01

    The general expression for the diffusion coefficient for a dense, interacting particle system moving through a one-dimensional non-homogeneous energy potential is derived. Based on this expression, it is shown that the diffusion coefficient as a function of density depends to a great extent on the shape of the energy landscape. The presence of other particles affects the diffusion coefficient in another way as they pass through the same energy barriers, but set in a different order. The obtained result comes from a variational approach to diffusion and the interactions are taken into account using the transfer-matrix method. Interactions impact on the dynamics of the system, both by changing the equilibrium probabilities of the occupied states and by changing the barriers for the particle jumps. Several examples of diffusion in different energy potentials are presented and the dependence of the diffusion coefficient on potential and interactions is discussed.

  11. Polysulfide ligand exchange on zinc sulfide nanocrystal surfaces for improved film formation

    Science.gov (United States)

    Herron, Steven M.; Lawal, Qudus O.; Bent, Stacey F.

    2015-12-01

    The physical and chemical properties of nanocrystals can be modified by changing the ligands attached at their surfaces. A ligand exchange procedure with ammonium polysulfides has been developed to replace the native ligands on cubic zinc sulfide nanocrystals. Several mixtures of polysulfides in formamide and other solvents were prepared with different average chain lengths and used to achieve high yield ligand exchange, as confirmed by UV-vis spectroscopy, infrared spectroscopy and X-ray photoelectron spectroscopy. The results show that polysulfide content can be increased with longer surface ligands and that the exchange process yields compositionally pure surfaces before and after high temperature anneals. X-ray diffraction and scanning electron microscopy show that, when annealed in nitrogen at 525 °C, polysulfide ligands lead to average crystal sizes 2-3 times larger than in the un-exchanged control sample. The ligand exchange procedure itself does not alter nanocrystal size. Nanocrystal inks prepared from the exchanged samples form thin films that exhibit superior grain growth, morphology, mass retention, and composition compared to the un-exchanged material. Overall, polysulfide species are demonstrated as alternative ligands for the surfaces of metal chalcogenide nanocrystals which, when incorporated in an efficient ligand-exchange procedure, can improve the quality of ZnS nanocrystal inks.

  12. Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Eriksen, E. H.; Midtgaard, J. M.

    2016-01-01

    One-dimensional multi-component Fermi or Bose systems with strong zero-range interactions can be described in terms of local exchange coefficients and mapping the problem into a spin model is thus possible. For arbitrary external confining potentials the local exchanges are given by highly non...... to the computational complexity of the high-dimensional integrals involved. An approach using the local density approximation would therefore be a most welcome approximation due to its simplicity. Here we assess the accuracy of the local density approximation by going beyond the simple harmonic oscillator that has...... been the focus of previous studies and consider some double-wells of current experimental interest. We find that the local density approximation works quite well as long as the potentials resemble harmonic wells but break down for larger barriers. In order to explore the consequences of applying...

  13. Influence of deuterium on kinetics of methane isotope exchange with surface deuteroxy groups of Pt/SiO2 catalysts

    International Nuclear Information System (INIS)

    Musoyan, L.M.; Aliev, R.K.

    1990-01-01

    Reaction of isotope methane exchange with surface deuteroxy groups of 2 % Pt/SiO 2 catalyst was studied. It is shown that preliminarily chemisorbed deuterium does not decelerate the exchange reaction, but changes its mechanism. Activation energy of exchange on clean surface is equal to 25 kJ/mol; it grows in the presence of deuterium on the surface

  14. Polysulfide ligand exchange on zinc sulfide nanocrystal surfaces for improved film formation

    Energy Technology Data Exchange (ETDEWEB)

    Herron, Steven M. [Department of Chemistry, Stanford University, Stanford, CA 94305 (United States); Lawal, Qudus O. [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States); Bent, Stacey F., E-mail: sbent@stanford.edu [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2015-12-30

    Graphical abstract: - Highlights: • Ammonium polysulfides are prepared in aprotic solvents. • Native ligands on surfaces of colloidal ZnS nanocrystals are efficiently exchanged with polysulfides. • Ligand exchange improves crystallinity and composition in annealed ZnS thin films. • Polysulfide nanocrystal inks increase mass retention from 62% to 88%. - Abstract: The physical and chemical properties of nanocrystals can be modified by changing the ligands attached at their surfaces. A ligand exchange procedure with ammonium polysulfides has been developed to replace the native ligands on cubic zinc sulfide nanocrystals. Several mixtures of polysulfides in formamide and other solvents were prepared with different average chain lengths and used to achieve high yield ligand exchange, as confirmed by UV–vis spectroscopy, infrared spectroscopy and X-ray photoelectron spectroscopy. The results show that polysulfide content can be increased with longer surface ligands and that the exchange process yields compositionally pure surfaces before and after high temperature anneals. X-ray diffraction and scanning electron microscopy show that, when annealed in nitrogen at 525 °C, polysulfide ligands lead to average crystal sizes 2–3 times larger than in the un-exchanged control sample. The ligand exchange procedure itself does not alter nanocrystal size. Nanocrystal inks prepared from the exchanged samples form thin films that exhibit superior grain growth, morphology, mass retention, and composition compared to the un-exchanged material. Overall, polysulfide species are demonstrated as alternative ligands for the surfaces of metal chalcogenide nanocrystals which, when incorporated in an efficient ligand-exchange procedure, can improve the quality of ZnS nanocrystal inks.

  15. Diffusion coefficients-surface and interfacial tensions - Particular study of some lauryl compounds

    International Nuclear Information System (INIS)

    Morel, Jean-Emile

    1969-01-01

    Two important results of the double lipophilic and hydrophilic character of some heavy organic compounds with a polar group at the end of the chain, were studied: - In a first part, molecular diffusion coefficients were measured in order to prove the micellar aggregation of tri-laurylammonium nitrate in some organic solutions; - In a second part, the tensioactivity of some lauryl compounds (lauric acid, lauric alcohol, mono-laurylamine, etc.), was studied. (author) [fr

  16. Octanol Water Partition Coefficients of Surface and Ground Water Contaminants Found at Military Installations

    Science.gov (United States)

    1989-11-01

    34 method. Environ. Toxicol. Chem. 8(6):499-512. 23. Geyer, H., G. Politzki, and Freitag, D. 1984. Prediction of ecotoxicological behavior of chemicals...relationship between N-octanol/water partition coefficient and bloaccunulation of organic chemicals by Alga Chlorella. Chemosphere 13(2):269-284. 24...Branch Preventive Medicine Division (HSHA-IPM) * Fort Sam Houston, TX 78234-5000 17 .1 *1 - I Iii L - U.S. Army Engineers Division, Huntsville 106 Wynn

  17. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Directory of Open Access Journals (Sweden)

    A. D. Elvidge

    2016-02-01

    Full Text Available Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol–Cloud Coupling And Climate Interactions in the Arctic (ACCACIA project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10 from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85  ×  10−3. CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012 tailored for sea-ice drag over the MIZ in which the two constituent components of drag – skin and form drag – are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012 scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values – especially at the higher ice fractions – than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on

  18. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2016-02-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012) tailored for sea-ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on surface roughness is recognised, and

  19. Observations of surface momentum exchange over the marginal-ice-zone and recommendations for its parameterization

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2015-10-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parameterization of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parameterization scheme (Lüpkes et al., 2012) tailored for sea ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parameterization schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement is found to hold for subsets of the data from different locations despite differences in sea ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea ice morphology and floe size on surface roughness is

  20. CFD simulation of direct contact condensation with ANSYS CFX using surface renewal theory based heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2013-07-01

    Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)

  1. Formation and properties of proton-exchanged and annealed $LiNbO_{3}$ waveguides for surface acoustic wave

    CERN Document Server

    Chien Chuan Cheng; Ying Chung Chen

    2001-01-01

    The proton-exchanged (PE) and annealed PE (APE) z-cut LiNbO/sub 3/ waveguides were fabricated using H/sub 4/P/sub 2/O/sub 7/. The positive strain, c-axis lattice constant change ( Delta c/c), was calculated to be about +0.43%, which was almost independent of the exchanged conditions. The penetration depth of H measured by secondary ion mass spectrometry (SIMS) exhibited a step-like profile, which was assumed to be equal to the waveguide depth (d). The surface acoustic wave (SAW) properties of PE and APE z-cut LiNbO/sub 3/ samples were investigated. The phase velocity (V/sub p/) and electromechanical coupling coefficient (K/sup 2/) of PE samples were significantly decreased by the increase of kd, where k was the wavenumber (2 pi / lambda ). The insertion loss (IL) of PE samples was increased by the increase of kd and became nearly constant at kd >0.064. The temperature coefficient of frequency (TCF) of PE samples allowed an apparent increase with kd, reaching a maximum at kd=0.292, then slightly decreased at h...

  2. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  3. The fabrication of a process heat exchanger for a SO3 decomposer using surface-modified hastelloy X materials

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim Yong Wan

    2008-01-01

    This study investigates the surface modification of a Hastelloy X plate and diffusion bonding in the assembly of surface modified plates. These types of plates are involved in the key processes in the fabrication of a Process Heat Exchanger (PHE) for a SO 3 decomposer. Strong adhesion of a SiC film deposited onto Hastelloy X can be achieved by a thin SiC film deposition and a subsequent N ion beam bombardment followed by an additional deposition of a thicker film that prevents the Hastelloy X surface from becoming exposed to a corrosive environment through the pores. This process not only produces higher corrosion resistance as proved by electrolytic etching but also exhibits higher endurance against thermal stress above 900 .deg. C. A process for a good bonding between Hastelloy X sheets, which is essential for a good heat exchanger, was developed by diffusion bonding. The diffusion bonding was done by mechanically clamping the sheets under a heat treatment at 900 .deg. C. When the clamping jig consisted of materials with a thermal expansion coefficient that was equal to or less than that of the Hastelloy X, sound bonding was achieved

  4. Investigation of Liquid Metal Heat Exchanger Designs for Fission Surface Power

    Science.gov (United States)

    Dyson, Rodger W.; Penswick, Barry; Robbie, Malcolm; Geng, Steven M.

    2009-01-01

    Fission surface power is an option for future Moon and Mars surface missions. High power nuclear reactor heated Stirling convertors are an option to provide reliable power for long duration outpost operations. This report investigates various design approaches for the liquid metal to acceptor heat exchange and clarifies the details used in the analysis.

  5. Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    General mathematical relations are presented for the specular exchange factors, F S , of diffuse radiation exchange between the inner surfaces of a rectangular enclosure. Three of these surfaces are specular reflectors, diffuse emitters and the fourth surface is a diffuse reflector, diffuse emitter. This enclosure can be used as a transplant production unit with artificial lighting for electric energy saving purposes. An image system and the crossed string method are used to derive these relations. The resulting expressions are conceptually simple and similar to the commonly known expressions of the exchange factors between diffuse surfaces, F. The accuracy of the presented F S relations was examined for different numbers of multiple reflections, N, on the specular surfaces and for different aspect ratios (ratio of the width, w to the height, h). The results proved that the relations are accurate and strongly satisfy the well-known relation of the radiation exchange between enclosure surfaces and satisfy the reciprocity relation. For any aspect ratio, considering N of 150 between highly reflective surfaces (ρ = 0.99) is sufficient to estimate the F S factors without any possible error. Using specular reflecting surfaces in such cases significantly reduces the electric energy consumption used for lighting

  6. Deuterium isotopic exchange reaction on the surface of promoted nickel catalysts+

    International Nuclear Information System (INIS)

    Abou EL-Nour, F.; Abdel-Badei, M.M.; Belacy, N.

    1987-01-01

    Nickel catalysts promoted with different metal oxides proved to be efficient for the isotopic exchange of deuterium between hydrogen and water in the vapour phase. Estimation of the surface properties of this type of catalysts led to the correlation of the specific catalytic activity with their surface characteristics. The particle size of nickel content of the catalysts under investigation was determined from the surface area measurements. The equation used for particle size determination is a corrected one. The correction is based on the probability of sharing the 6-faces of cubic nickel crystals, present in the promoted catalyst, in the isotopic exchange process. It may be also due to the increased porosity of the components of the catalyst mixture. The results demonstrate the probability of migration of nickel crystals during the isotopic exchange reaction of deuterium between hydrogen and water in the vapour state on the surface of nickel catalysis promoted with different metal oxides

  7. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  8. Stochastic reconstruction and a scaling method to determine effective transport coefficients of a proton exchange membrane fuel cell catalyst layer

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, R. [Centro de Investigacion en Energia, UNAM, Privada Xochicalco S/N, 62580 Temixco (Mexico); Andaverde, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca (Mexico); Escobar, B. [Instituto Tecnologico de Cancun, Av. Kabah 3, 77515 Cancun (Mexico); Cano, U. [Instituto de Investigaciones Electricas, Av. Reforma 113, col. Palmira, 62490 Cuernavaca (Mexico)

    2011-02-01

    This work uses a method for the stochastic reconstruction of catalyst layers (CLs) proposing a scaling method to determine effective transport properties in proton exchange membrane fuel cell (PEMFC). The algorithm that generates the numerical grid makes use of available information before and after manufacturing the CL. The structures so generated are characterized statistically by two-point correlation functions and by the resultant pore size distribution. As an example of this method, the continuity equation for charge transport is solved directly on the three-dimensional grid of finite control volumes (FCVs), to determine effective electrical and proton conductivities of different structures. The stochastic reconstruction and the electrical and proton conductivity of a 45 {mu}m side size cubic sample of a CL, represented by more than 3.3 x 10{sup 12} FVCs were realized in a much shorter time compared with non-scaling methods. Variables studied in an example of CL structure were: (i) volume fraction of dispersed electrolyte, (ii) total CL porosity and (iii) pore size distribution. Results for the conduction efficiency for this example are also presented. (author)

  9. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  10. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Lee, Y. T.

    1978-05-01

    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  11. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  12. The impact of surface and geometry on coefficient of friction of artificial hip joints.

    Science.gov (United States)

    Choudhury, Dipankar; Vrbka, Martin; Mamat, Azuddin Bin; Stavness, Ian; Roy, Chanchal K; Mootanah, Rajshree; Krupka, Ivan

    2017-08-01

    Coefficient of friction (COF) tests were conducted on 28-mm and 36-mm-diameter hip joint prostheses for four different material combinations, with or without the presence of Ultra High Molecular Weight Polyethylene (UHMWPE) particles using a novel pendulum hip simulator. The effects of three micro dimpled arrays on femoral head against a polyethylene and a metallic cup were also investigated. Clearance played a vital role in the COF of ceramic on polyethylene and ceramic on ceramic artificial hip joints. Micro dimpled metallic femoral heads yielded higher COF against a polyethylene cup; however, with metal on metal prostheses the dimpled arrays significantly reduced the COF. In situ images revealed evidence that the dimple arrays enhanced film formation, which was the main mechanism that contributed to reduced friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A characteristic function to estimate the longitudinal dispersion coefficient in surface water flows over porous media

    Science.gov (United States)

    Nofuentes, M.; Polo, M. J.

    2012-04-01

    One-dimensional modelling of solute transport in shallow water flows relies on an accurate approximation of the longitudinal dispersion coefficient, E, especially under transient conditions of the water flow during the solute residence time. Previous approaches have used expressions (e.g., the Rutherford equation) that allow the inclusion of spatiotemporal variability of E during the transport process, but their accuracy is reduced in marked transient regimes since the data were obtained from experimental work in rivers. This work proposes a different approach from experimental work with slow, shallow flows over porous media in fertigation essays, and provides us with a simple, parametric sigmoid function to estimate a priori effective values of E from simple measurements of flow characteristics and variables. The results have been successfully validated and compared to the Rutherford equation approach. Furthermore, the methodology to develop this characteristic function can be easily adapted for application in other practical cases.

  14. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. The topological molecule: Its finite fluxes, exchange stability and minimal surfaces

    Science.gov (United States)

    Thomas, Gerald F.

    2016-03-01

    Molecules have at least one nontrivial topological property in common: their minimal surfaces of finite flux. This is why they are stable aggregates of atoms mutually engaged to varying degrees via Coulombic and exchange interactions in fealty to quantum mechanics on otherwise passive nuclear scaffolds. Isolated atoms do not have minimal surfaces but they do undergo exchange interactions. All surfaces implicitly defined by a molecule’s charge density are shown to have zero mean curvature and are consequently minimal surfaces. This finding extends to any potential of a molecule. The minimal surface is of importance in that it is indicative of a vanishing mean curvature whose measurement serves as a way of gauging the charge density or electrostatic potential’s local reliability, a quality assurance protocol absent in conventional crystallography but available to scanning force microscopy. The smaller the mean curvature of an atom, the more bonded is that atom in a molecule. The basis for this discovery is that implicit surfaces admit finite flux to cross them regardless of atomic affiliation, thus engendering exchange, correlation, and chemical bonding between the atoms in the underlying nuclear framework of a molecule. Finite flux in the charge density is a necessary condition for chemical bonding and the stability of molecules and is what makes the electron localization function (ELF) and the exchange-correlation functional (BLYP) useful.

  16. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    Science.gov (United States)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  17. The effect of surface tension on the contraction coefficient of a jet

    International Nuclear Information System (INIS)

    Gasmi, A; Mekias, H

    2003-01-01

    Two-dimensional free surface potential flow issued from an opening of a container is considered. The flow is assumed to be inviscid and incompressible. The mathematical problem, which is characterized by the nonlinear boundary condition on the free surface of an unknown equation, is solved via a series truncation. We computed solutions for all Weber numbers. Our problem is an extension of the work done by Ackerberg and Liu (1987 Phys. Fluids 30 289-96), the results confirm and extend their results

  18. Incorporation of velocity-dependent restitution coefficient and particle surface friction into kinetic theory for modeling granular flow cooling.

    Science.gov (United States)

    Duan, Yifei; Feng, Zhi-Gang

    2017-12-01

    Kinetic theory (KT) has been successfully used to model rapid granular flows in which particle interactions are frictionless and near elastic. However, it fails when particle interactions become frictional and inelastic. For example, the KT is not able to accurately predict the free cooling process of a vibrated granular medium that consists of inelastic frictional particles under microgravity. The main reason that the classical KT fails to model these flows is due to its inability to account for the particle surface friction and its inelastic behavior, which are the two most important factors that need be considered in modeling collisional granular flows. In this study, we have modified the KT model that is able to incorporate these two factors. The inelasticity of a particle is considered by establishing a velocity-dependent expression for the restitution coefficient based on many experimental studies found in the literature, and the particle friction effect is included by using a tangential restitution coefficient that is related to the particle friction coefficient. Theoretical predictions of the free cooling process by the classical KT and the improved KT are compared with the experimental results from a study conducted on an airplane undergoing parabolic flights without the influence of gravity [Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007 (2009)10.1209/0295-5075/86/60007]. Our results show that both the velocity-dependent restitution coefficient and the particle surface friction are important in predicting the free cooling process of granular flows; the modified KT model that integrates these two factors is able to improve the simulation results and leads to better agreement with the experimental results.

  19. Incorporation of velocity-dependent restitution coefficient and particle surface friction into kinetic theory for modeling granular flow cooling

    Science.gov (United States)

    Duan, Yifei; Feng, Zhi-Gang

    2017-12-01

    Kinetic theory (KT) has been successfully used to model rapid granular flows in which particle interactions are frictionless and near elastic. However, it fails when particle interactions become frictional and inelastic. For example, the KT is not able to accurately predict the free cooling process of a vibrated granular medium that consists of inelastic frictional particles under microgravity. The main reason that the classical KT fails to model these flows is due to its inability to account for the particle surface friction and its inelastic behavior, which are the two most important factors that need be considered in modeling collisional granular flows. In this study, we have modified the KT model that is able to incorporate these two factors. The inelasticity of a particle is considered by establishing a velocity-dependent expression for the restitution coefficient based on many experimental studies found in the literature, and the particle friction effect is included by using a tangential restitution coefficient that is related to the particle friction coefficient. Theoretical predictions of the free cooling process by the classical KT and the improved KT are compared with the experimental results from a study conducted on an airplane undergoing parabolic flights without the influence of gravity [Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007 (2009), 10.1209/0295-5075/86/60007]. Our results show that both the velocity-dependent restitution coefficient and the particle surface friction are important in predicting the free cooling process of granular flows; the modified KT model that integrates these two factors is able to improve the simulation results and leads to better agreement with the experimental results.

  20. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  1. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement. These ...

  2. The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces

    Science.gov (United States)

    Supulver, Kimberley D.; Bridges, Frank G.; Lin, D. N. C.

    1995-01-01

    Both Saturn's rings and planetesimal disks are made up of particles in Keplerian orbits. Inelastic collisions between these particles regulate their dynamical evolution and possible aggregation. We present an experiment to simulate glancing collisions in Saturn's rings and in planetesimal disks and thus measure contributions to the energy loss for both normal and tangential velocity components. In this experiment, a spherical iceball mounted on a long-period, two dimensional pendulum is made to impact a flat ice surface in a low-temperature environment. This paper describes the experimental apparatus in detail and presents results for smooth unfrosted surfaces. The energy loss for tangential motion is suprisingly low, indicating that very little friction is present at low impact speeds for relatively smooth ice surfaces and temperatures near 100 K. We have also investigated room-temperature collisions of a rubber ball on a rough surface to understand the energy loss in situations where the tangential friction force is not small. In this analogous case, the energy loss is maximum for impact angles in the range 45 deg-60 deg.

  3. Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface.

    Science.gov (United States)

    Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo

    2016-03-21

    In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect.

  4. Effect of surface tension and coefficient of thermal expansion in 30 nm scale nanoimprinting with two flexible polymer molds

    International Nuclear Information System (INIS)

    Kim, Jae Kwan; Cho, Hye Sung; Jung, Ho-Sup; Suh, Kahp-Yang; Lim, Kipil; Kim, Ki-Bum; Choi, Dae-Geun; Jeong, Jun-Ho

    2012-01-01

    We report on nanoimprinting of polymer thin films at 30 nm scale resolution using two types of ultraviolet (UV)-curable, flexible polymer molds: perfluoropolyether (PFPE) and polyurethane acrylate (PUA). It was found that the quality of nanopatterning at the 30 nm scale is largely determined by the combined effects of surface tension and the coefficient of thermal expansion of the polymer mold. In particular, the polar component of surface tension may play a critical role in clean release of the mold, as evidenced by much reduced delamination or broken structures for the less polarized PFPE mold when patterning a relatively hydrophilic PMMA film. In contrast, such problems were not notably observed with a relatively hydrophobic PS film for both polymer molds. In addition, the demolding characteristic was also influenced by the coefficient of thermal expansion so that no delamination or uniformity problems were observed when patterning a UV-curable polymer film at room temperature. These results suggest that a proper polymeric mold material needs to be chosen for patterning polymer films under different surface properties and processing conditions, providing insights into how a clean demolding characteristic can be obtained at 30 nm scale nanopatterning. (paper)

  5. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.

    1999-09-01

    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  6. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study

    Science.gov (United States)

    Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.

    2018-01-01

    Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391

  7. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe 3+ > Al 3+ > Cu 2+ >> Ca 2+ > K + > Na + , which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na + -smectite and K + -smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe 3+ , Al 3+ , and Cu 2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O 2 − · , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  8. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  9. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  10. Radiatel thermal exchange measurements between surfaces at 800K and above ambiant temperature

    International Nuclear Information System (INIS)

    Gauthier, A.

    1984-01-01

    The influence of surface treatments on the thermal power exchanged by radiation between two stainless steel coaxial cylinders was measured in an experimental device. In this device one of the cylinders was kept at 80K, the temperature of the other varying between 300 and 500K [fr

  11. Parameterization of atmosphere–surface exchange of CO2 over sea ice

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Jensen, Bjarne; Glud, Ronnie

    2014-01-01

    of the atmosphere and sea ice surface that can be measured or calculated on a routine basis. Parameters, which can be used in the conceptual model, are analysed based on data sampled from a seasonal fast-ice area, and the different variables influencing the exchange of CO2 between the atmosphere and ice...

  12. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    Science.gov (United States)

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  13. Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR

    DEFF Research Database (Denmark)

    Abrams, Billie; Vesborg, Peter Christian Kjærgaard; Bonde, Jacob Lindner

    2009-01-01

    Cyclic voltammetric analysis of the Pt-on-Au system for hydrogen evolution and oxidation reactions (HER/HOR) indicates that dynamic surface exchange reactions occur between Pt and Au. HER/HOR activities depend on the dominant surface species present, which is controllable by the potential applied...... to the system. Bulk Au is not very active for HER/HOR; however, when Pt is deposited onto the Au surface, the system becomes active. The Pt-on-Au system can subsequently be deactivated by cycling to potentials cathodic of the OH-adsorption and Pt-dissolution potentials (~+1.18 V vs normal hydrogen electrode...... reaction is attributed to the lower surface energy of Au relative to Pt causing Au to migrate to the surface. When the system is deactivated, Au is present at the surface. However, Pt migrates back to the surface at higher positive potentials, where PtOx/PtOHx is formed, leading to adsorbate...

  14. Determination of octanol-air partition coefficients of organochlorine pesticides (OCPs) as a function of temperature: application to air-soil exchange.

    Science.gov (United States)

    Odabasi, Mustafa; Cetin, Banu

    2012-12-30

    Octanol-air partition coefficients (K(OA)) for 7 organochlorine pesticides (OCPs) were determined as a function of temperature using the GC retention time method. Log K(OA) values at 25 °C ranged over two orders of magnitude, between 8.32 (chlorpyrifos) and 10.48 (methoxychlor). The determined K(OA) values were within a factor of 0.5 (endosulfan sulfate) to 7.9 (endrin aldehyde) for values calculated as the ratio of octanol-water partition coefficient to dimensionless Henry's law constant. The internal energies of phase transfer between octanol and air (ΔU(OA)) ranged between 71.8 and 95.4 kJ mol(-1) and they were within the reported range for OCPs (55.8-105 kJ mol(-1)). Atmospheric and soil OCP concentrations were also measured in Izmir, Turkey, and data used to investigate the soil-air gas exchange. Net soil-air gas exchange fluxes of OCPs ranged from -0.01 (volatilization, cis-nonachlor) to 56.4 ng m(-2) day(-1) (deposition, chlorpyrifos) in winter, while in summer they ranged from -0.03 (trans-nonachlor) to 329 ng m(-2) day(-1) (endosulfan I). In both sampling periods, endosulfan I and II, trans-nonachlor, p,p'-DDD and p,p'-DDT were generally deposited to the soil while γ-HCH and heptachlor epoxide mostly volatilized. Fluxes of other OCPs were variable (volatilization or absorption) due to their largely fluctuating ambient air concentrations. Calculated dry deposition and recently measured wet deposition fluxes were used to estimate the relative importance of different mechanisms (i.e., dry deposition, wet deposition, gas absorption, and volatilization) to the local soil pollutant inventory. Generally, all mechanisms contributed significantly to the soil OCP inventory. Volatilization fluxes were generally much lower than the sum of input fluxes (dry deposition, wet deposition and gas absorption) for most of the OCPs indicating a net deposition to the soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    Science.gov (United States)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  16. Np(V) and Pu(v) ion exchange and surface-mediated reduction mechanisms on montmorillonite.

    Science.gov (United States)

    Zavarin, Mavrik; Powell, Brian A; Bourbin, Mathilde; Zhao, Pihong; Kersting, Annie B

    2012-03-06

    Due to their ubiquity and chemical reactivity, aluminosilicate clays play an important role in actinide retardation and colloid-facilitated transport in the environment. In this work, Pu(V) and Np(V) sorption to Na-montmorillonite was examined as a function of ionic strength, pH, and time. Np(V) sorption equilibrium was reached within 2 h. Sorption was relatively weak and showed a pH and ionic strength dependence. An approximate NpO(2)(+) → Na(+) Vanselow ion exchange coefficient (Kv) was determined on the basis of Np(V) sorption in 0.01 and 1.0 M NaCl solutions at pH colloid-facilitated transport under alkaline conditions, results from this study suggest that Pu(V) ion exchange and surface-mediated reduction to Pu(IV) can immobilize Pu or enhance its colloid-facilitated transport in the environment at neutral to mildly acidic pHs.

  17. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    Science.gov (United States)

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  18. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    Science.gov (United States)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  19. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  20. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi [Department of Information Science and Electronic Engineering, Zhejiang University and Cyrus Tang Centre for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027 (China); Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich [Institute of Sensor and Actuator Systems, Vienna University of Technology, Floragasse, 7/2/366-MST, A-1040 Vienna (Austria); Luo, J. K., E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk [Institute of Renewable Energy Environmental Technology, University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Department of Information Science and Electronic Engineering, Zhejiang University and Cyrus Tang Centre for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027 (China)

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  1. Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options

    Directory of Open Access Journals (Sweden)

    Antonie Kotzé

    2015-01-01

    Full Text Available Certain exotic options cannot be valued using closed-form solutions or even by numerical methods assuming constant volatility. Many exotics are priced in a local volatility framework. Pricing under local volatility has become a field of extensive research in finance, and various models are proposed in order to overcome the shortcomings of the Black-Scholes model that assumes a constant volatility. The Johannesburg Stock Exchange (JSE lists exotic options on its Can-Do platform. Most exotic options listed on the JSE’s derivative exchanges are valued by local volatility models. These models needs a local volatility surface. Dupire derived a mapping from implied volatilities to local volatilities. The JSE uses this mapping in generating the relevant local volatility surfaces and further uses Monte Carlo and Finite Difference methods when pricing exotic options. In this document we discuss various practical issues that influence the successful construction of implied and local volatility surfaces such that pricing engines can be implemented successfully. We focus on arbitrage-free conditions and the choice of calibrating functionals. We illustrate our methodologies by studying the implied and local volatility surfaces of South African equity index and foreign exchange options.

  2. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  3. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    Science.gov (United States)

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  4. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  5. Impulse exchange at the surface of the ocean and the fractal dimension of drifter trajectories

    Directory of Open Access Journals (Sweden)

    D. M. Summers

    2002-01-01

    Full Text Available An impulse-based model is developed to represent a coupling between turbulent flow in the atmosphere and turbulent flow in the ocean. In particular, it is argued that the atmosphere flowing horizontally over the ocean surface generates a velocity fluctuation field in the latter's near-surface flow. The mechanism for this can be understood kinematically in terms of an exchange of tangentially-oriented fluid impulse at the air-sea interface. We represent this exchange numerically through the creation of Lagrangian elements of impulse density. An indication of the efficacy of such a model would lie in its ability to predict the observed fractal dimension of lateral trajectories of submerged floats set adrift in the ocean. To this end, we examine the geometry of lateral tracer-paths determined from the present model.

  6. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    Directory of Open Access Journals (Sweden)

    X. Wang

    2016-09-01

    Full Text Available Mercury (Hg emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0 from natural surfaces in China. The development implements recent advancements in the understanding of air–soil and air–foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr−1, including 565.5 Mg yr−1 from soil surfaces, 9.0 Mg yr−1 from water bodies, and −100.4 Mg yr−1 from vegetation. The air–surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air–surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake during April–October (rice planting to a net source when the farmland is not flooded (November–March. Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %, followed by spring (28 %, autumn (13 %, and winter (8 %. Model verification is accomplished using observational data of air–soil/air–water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008 that reported large emission from

  7. Tuning the metal-insulator transition in manganite films through surface exchange coupling with magnetic nanodots.

    Science.gov (United States)

    Ward, T Z; Gai, Z; Xu, X Y; Guo, H W; Yin, L F; Shen, J

    2011-04-15

    In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots.

  8. Effect of {gamma}-irradiation on the temperature coefficient of surface resistivity of two-dimensional island platinum films

    Energy Technology Data Exchange (ETDEWEB)

    Bishay, A.G. [Engineering Mathematics and Physics Department, Faculty of Engineering, Ain Shams University, Cairo (Egypt); El-Gamal, S., E-mail: samyelgamal@gmail.co [Physics Department, Faculty of Education, Ain Shams University, Cairo (Egypt)

    2011-05-15

    Three sets (A, B and C) of two-dimensional island platinum films (2D-I(Pt)Fs) were prepared via the thermal evaporation technique, where the substrates are corning 7059 glass slides. The mass thickness (d{sub m}) of the films of different sets is 5, 10 and 20 A, respectively. The Pt films were exposed to {gamma}-rays from {sup 137}Cs (0.662 MeV) radiation source of dose rate 0.5 Gy/min. and the different doses are 100, 200, 300, 500 and 700 Gy. The dependence of the surface resistivity ({rho}) on temperature over the range of 100-300 K was undertaken at different d{sub m} and doses then the temperature coefficient of surface resistivity ({alpha}) was deduced. It was found that; (i) for particular d{sub m} and T, the absolute value of {alpha} decreases as the dose increases (ii) for particular dose and T, the absolute value of {alpha} decreases as d{sub m} increases (iii) for particular dose and d{sub m}, the absolute value of {alpha} decreases as T increases. Qualitative interpretation for the results was offered on the ground that the electrons transfer among islands takes place by the activated tunneling mechanism and the {gamma}-irradiation has changed the shape of islands from spherical to prolate spheroid.

  9. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)

    2016-06-29

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  10. Application of a new point measurement to estimate goundwater-surface water exchange

    DEFF Research Database (Denmark)

    Cremeans, Mackenzie; Devlin, J.F.; McKnight, Ursula S.

    The StreamBed Point Velocity Probe (SBPVP), a new point measurement device, measures in situ groundwater velocities at the groundwater-surface water interface (GWSWI, based on a mini-tracer test on the probe surface. This device yields velocities without reliance on estimations of hydraulic...... of concentrations and velocities. Given these localized hot spots, detailed information about flow at the GWSWI could be vital to understanding solute, and, by extension, nutrient, movement in ecosystems affected by exchange. Such information could be crucial to effective remediation design....

  11. A review of measurement and modelling results of particle atmosphere-surface exchange

    DEFF Research Database (Denmark)

    Pryor, Sara; Gallagher, M.; Sievering, H.

    2008-01-01

    Atmosphere-surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (upsilon(d)) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima...... approaches and innovations in experimental approaches, and synthesize common conclusions of experimental and modelling studies. We end by proposing a number of research avenues that should be pursued in to facilitate further insights and development of improved numerical models of atmospheric particles....

  12. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    Science.gov (United States)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  13. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  14. Characterization of photosynthetic gas exchange in leaves under simulated adaxial and abaxial surfaces alternant irradiation.

    Science.gov (United States)

    Zhang, Zi-Shan; Li, Yu-Ting; Gao, Hui-Yuan; Yang, Cheng; Meng, Qing-Wei

    2016-07-05

    Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight. To simulate adaxial and abaxial surfaces alternant irradiation (ad-ab-alt irradiation), the adaxial or abaxial surface of leaves were exposed to light regimes that fluctuated between 100 and 1,000 μmol m(-2) s(-1). Compared with constant adaxial irradiation, simulated ad-ab-alt irradiation suppressed net photosynthetic rate (Pn) and transpiration (E) but not water use efficiency. These suppressions were aggravated by an increase in alternant frequency of the light intensity. When leaves were transferred from constant light to simulated ad-ab-alt irradiation, the maximum Pn and E during the high light period decreased, but the rate of photosynthetic induction during this period remained constant. The sensitivity of photosynthetic gas exchange to simulated ad-ab-alt irradiation was lower on abaxial surface than adaxial surface. Under simulated ad-ab-alt irradiation, higher Pn and E were measured on abaxial surface compared with adaxial surface. Therefore, bifacial leaves can fix more carbon than leaves with two "sun-leaf-like" surfaces under ad-ab-alt irradiation. Photosynthetic research should be conducted under dynamic conditions that better mimic nature.

  15. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes.

    Science.gov (United States)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T; Clark, Kyle; Weber, Adam Z; Kostecki, Robert

    2011-10-13

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using direct-current voltammetry and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion membrane was examined.

  16. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  17. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  18. Kinetics of the homogeneous exchange of alpha-lactalbumin adsorbed on titanium oxide surface.

    Science.gov (United States)

    Bentaleb, A; Haïkel, Y; Voegel, J C; Schaaf, P

    1998-06-05

    The homogeneous exchange process whereby alpha-lactalbumine molecules adsorbed on hydrophilic titanium oxide particles are replaced by alpha-lactalbumine molecules in solution has been investigated by means of a 125I radio-labeling technique, alpha-lactalbumine is a compact and highly negatively charged protein, making this study complementary to previous work devoted to the general understanding of the exchange mechanisms of adsorbed proteins on solid surfaces. The isotherm of alpha-lactalbumine exhibits bimodal adsorption shape, and the exchange process whereby adsorbed proteins are replaced by new incoming ones from the bulk solution has been studied at both the upper and the lower plateau of the isotherm. In the upper plateau the exchange process was found to be of first order with respect to the bulk molecules, and the release rate constant was equal to 0.914 L. mol-1.s-1. This behavior is identical to what has been observed with other proteinic systems. In the lower plateau domain, in contrast, the protein release process is independent of the concentration of proteins in the bulk, but the release rates are higher than the pure desorption rates. This constitutes, to our knowledge, a behavior that never before has been observed and that remains to be explained.

  19. Deuterium exchange with the surface hydrogen of zeolite catalysts. 7. Nickel-containing zeolites

    International Nuclear Information System (INIS)

    Minachev, Kh.M.; Dmitriev, R.V.; Penchev, V.; Kanazirev, V.; Minchev, Kh.; Kasimov, Ch.K.

    1982-01-01

    An in-depth study of heteromolecular isotopic hydrogen exchange (HIHE) in Ni zeolites was undertaken with a view to measuring surface OH group concentrations and determining effectiveness of Ni, on the one hand, and Pd and Pt, on the other, in promoting chemical reactions. Here the degree of metal dispersion in the Ni zeolite was characterized through H 2 chemisorption and thermosorption data. A study was made of the action of these zeolites in catalyzing the disproportionation of toluene. The data obtained here have given an understanding of the effect of the metal, the OH-group concentration, and the mutual arrangement of OH groups and Ni atoms on catalyzed toluene reactions. Results indicated that HIHE occurs on reduced nickel-containing zeolite catalysts at temperatures in excess of 100 0 C, and is limited by the rate of transport of activated hydrogen from the metal particles on the support surface. High-temperature oxidation-reduction of the nickel-containing zeolite-leads to the formation of coarse nickel crystals on the external zeolite crystal faces. Also, the reduced NiCaNaY zeolites show high catalytic activity in the toluene disproportionation only when the nickel has been introduced through ion exchange. Both isotopic exchange and toluene disproportionation are promoted when the nickel particles and OH groups are in close proximity

  20. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Faculty of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-03-15

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  1. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    electrons useful for driving chemical reactions at surfaces. Using the binary collision approximation and a nonadiabatic model that takes into account the time-varying nature of the ion–surface interaction, the energy loss of the ions is reproduced. The energy loss for Na + ions incident on the devices......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...... shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange....

  2. Beneficial Effect of Surface Decorations on the Surface Exchange of Lanthanum Strontium Ferrite and Dual Phase Composites

    DEFF Research Database (Denmark)

    Ovtar, Simona; Søgaard, Martin; Song, Jia

    2016-01-01

    . These perovskites possess a mixed ionic and electronic conductivity (MIEC), which can be highly beneficial for the processes on oxygen electrode surfaces. The oxygen transport through a MIEC is determined by the rate of the oxygen exchange over the gas-solid interface and the diffusivity of oxide ions and electrons...... (or holes) in the bulk. The oxygen exchange process over the surface in general involves several reaction steps, O2 adsorption, dissociation, charge transfer and incorporation of ionic species. The Co-free end member of the material class; LSF (e.g. (La0.6Sr0.4FeO3-δ) is fairly low cost and chemically...... stable in both mildly reducing and oxidizing atmosphere. The electronic conductivity is excellent (283 S/cm at 800 °C) but the ionic conductivity especially at low temperature is limited (0.014 S/cm, 800 °C). Due to these properties the material is a candidate for use in composite membranes...

  3. Characterization of structure of flaws in silicate glass surfaces by ion-exchange in lithium salt melts

    International Nuclear Information System (INIS)

    Kolitsch, A.; Richter, E.

    1978-03-01

    A method for characterization of flaws structure in silicate glass surfaces by ion-exchange in lithium salt melts is demonstrated. The possibilities and limits of the method are shown and several applications are discussed. (author)

  4. Fingerprints of surface magnetism in Cr2O3 based exchange bias heterostructures

    Science.gov (United States)

    He, Xi; Wang, Yi; Binek, Ch.

    2009-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic (AF) compounds like Cr2O3 (max. αzz 4ps/m) and also cross-coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. In exchange bias systems the bias field depends critically on the AF interface magnetization. Hence, a strong relation between the latter and the surface magnetization of the free Cr2O3 pinning layer can be expected. Our recent research indicates that there are surface magnetic phase transitions in free Cr2O3 (111) films accompanying surface structural phase transitions. Well defined AF interface magnetization is initialized through ME annealing to T=20K. Subsequently, the interface magnetization is thermally driven through phase transitions at T=120 and 210K. Their effects on the exchange bias are studied in Cr2O3 (111)/CoPt films with the help of polar Kerr and SQUID magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh et al. 2007 Nature Materials 6 21. Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.

  5. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface

    International Nuclear Information System (INIS)

    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.

    2009-01-01

    In the present work, the effect of the use of a nanofluid in a miniature plate heat exchanger (PHE) with modulated surface has been studied both experimentally and numerically. First, the thermophysical properties (i.e., thermal conductivity, heat capacity, viscosity, density and surface tension) of a typical nanofluid (CuO in water, 4% v/v) were systematically measured. The effect of surface modulation on heat transfer augmentation and friction losses was then investigated by simulating the existing miniature PHE as well as a notional similar PHE with flat plate using a CFD code. Finally, the effect of the nanofluid on the PHE performance was studied and compared to that of a conventional cooling fluid (i.e., water). The results suggest that, for a given heat duty, the nanofluid volumetric flow rate required is lower than that of water causing lower pressure drop. As a result, smaller equipment and less pumping power are required. In conclusion, the use of the nanofluids seems to be a promising solution towards designing efficient heat exchanging systems, especially when the total volume of the equipment is the main issue. The only drawbacks so far are the high price and the possible instability of the nanoparticle suspensions.

  6. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-01-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U VI to U IV

  7. Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH4 → H2O + CH3 on an ab Initio-Based Potential Energy Surface.

    Science.gov (United States)

    Li, Jun; Guo, Hua

    2018-03-15

    Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.

  8. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  9. 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange

    Science.gov (United States)

    Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.

    2014-01-01

    A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.

  10. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan

    2014-01-01

    We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed....... Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals...

  11. The ground surface energy balance in modelling horizontal ground heat exchangers

    Science.gov (United States)

    Bortoloni, M.; Bottarelli, M.; Su, Y.

    2017-01-01

    The performance of horizontal ground heat exchangers (HGHEs) is strongly dependent on climatic conditions, due to the low installation depth. In numerical modelling of HGHEs, the estimation of shallow soil temperature distribution is a key issue, therefore the boundary condition (BC) at the ground surface should be assigned carefully. With this in mind, a model of the energy balance at the ground surface (GSEB), based on weather variables, was developed. The model was tested as the 3rd kind BC at ground surface in modelling HGHEs by means of the FEM code Comsol Multiphysics, solving the unsteady heat transfer problem in a 2D domain. The GSEB model was calibrated and validated with the observed soil temperature at different depths. In addition, the effect on numerical solutions of different BCs, when assigned at the ground surface, was analysed. Three different simulations were carried out applying the GSEB model, the equivalent surface heat flux and temperature as boundary conditions of the 1st, 2nd and 3rd kind, respectively. The results of this study indicate that the use of the GSEB model is a preferable approach to the problem and that the use of the equivalent surface temperature can be considered as a reasonable simplification.

  12. Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Hiser, Diana E; O'Connell, John P; Fernandez, Erik J

    2014-08-15

    Recent studies with proteins indicate that conformational changes and aggregation can occur during ion exchange chromatography (IEC). Such behavior is not usually expected, but could lead to decreased yield and product degradation from both IEC and multi mode chromatography (MMC) that has ligands of both hydrophobic and charged functionalities. In this study, we used hydrogen exchange mass spectrometry to investigate unfolding of the model protein BSA on IEC and MMC surfaces under different solution conditions at 25°C. Increased solvent exposure, indicating greater unfolding relative to that in solution, was found for protein adsorbed on cationic IEC and MMC surfaces in the pH range of 3.0 to 4.5, where BSA has decreased stability in solution. There was no effect of anionic surfaces at pH values in the range from 6.0 to 9.0. Differences of solvent exposure of whole molecules when adsorbed and in solution suggest that adsorbed BSA unfolds at lower pH values and may show aggregation, depending upon pH and the surface type. Measurements on digested peptides showed that classifications of stability can be made for various regions; these are generally retained as pH is changed. When salt was added to MMC systems, where electrostatic interactions would be minimized, less solvent exposure was seen, implying that it is the cationic moieties, rather than the hydrophobic ligands, which cause greater surface unfolding at low salt concentrations. These results suggest that proteins of lower stability may exhibit unfolding and aggregation during IEC and MMC separations, as they can with hydrophobic interaction chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of water content and specific surface on exchange capacity of cellulose anionite

    Energy Technology Data Exchange (ETDEWEB)

    Asaulova, T.A.; Lutysyk, R.V.; Morin, B.P.; Ennan, A.A.

    1985-07-01

    The specific features of fibrous anion exchange cellulose materials make them suitable for sanitary gas purification, especially as individual respirators to protect the wearer from acidic gases and vapors. In the USSR, highly basic cellulose anionite TSM-A2ND used for this purpose is prepared in nonwoven form from TsM-A2 fiber, which is obtained by graft polymerization of cellulose (viscose staple fiber) to 2-methyl-5-vinylpyridine followed by alkylation with epichlorohydrin. Gas adsorption is known to increase with rising water content and a study was made of the effects of pore structure and type of water bond with TsM-A2 fiber on its exchange capacity. Fiber samples containing 15-63% grafted polymethyl-vinylpyridine were used. The study shows that although TsM-A2 has a high water capacity and a highly developed surface, its exchange capacity is relatively low. Evidently, the effectiveness of similar adsorbents may be increased by changing their physical structure and thereby increasing access to ionogenic groups. 11 references, 3 figures.

  14. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    Science.gov (United States)

    Lloveras, V.; Badetti, E.; Veciana, J.; Vidal-Gancedo, J.

    2016-02-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  15. Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-03-01

    Full Text Available Although the temporal changes in aerosol properties have been widely investigated, the majority of studies has focused on average conditions without much emphasis on the extremes. However, the latter can be more important in terms of human health and climate change. This study uses a previously validated, quality-controlled visibility dataset to investigate the long-term trends (expressed in terms of relative changes in extreme surface aerosol extinction coefficient (AEC over China and compares them with the median trends. Two methods are used to independently evaluate the trends, which arrive at consistent results. The signs of extreme and median trends are generally coherent, whereas their magnitudes show distinct spatial and temporal differences. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for northwest China and the North China Plain. In the 1990s, AEC over northeast and northwest China started to decline while the rest of the country still exhibited an increase. The extreme trends continued to dominate in the south while they yielded to the mean trend in the north. After the year 2000, the extreme trend became weaker than the mean trend overall in terms of both the magnitude and significance level. The annual trend can be primarily attributed to winter and fall trends. The results suggest that the decadal changes in pollution in China may be governed by different mechanisms. Synoptic conditions that often result in extreme air quality changes might have dominated in the 1980s, whereas emission increase might have been the main factor for the 2000s.

  16. Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data

    Science.gov (United States)

    Li, Jing; Li, Chengcai; Zhao, Chunsheng

    2018-03-01

    Although the temporal changes in aerosol properties have been widely investigated, the majority of studies has focused on average conditions without much emphasis on the extremes. However, the latter can be more important in terms of human health and climate change. This study uses a previously validated, quality-controlled visibility dataset to investigate the long-term trends (expressed in terms of relative changes) in extreme surface aerosol extinction coefficient (AEC) over China and compares them with the median trends. Two methods are used to independently evaluate the trends, which arrive at consistent results. The signs of extreme and median trends are generally coherent, whereas their magnitudes show distinct spatial and temporal differences. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for northwest China and the North China Plain. In the 1990s, AEC over northeast and northwest China started to decline while the rest of the country still exhibited an increase. The extreme trends continued to dominate in the south while they yielded to the mean trend in the north. After the year 2000, the extreme trend became weaker than the mean trend overall in terms of both the magnitude and significance level. The annual trend can be primarily attributed to winter and fall trends. The results suggest that the decadal changes in pollution in China may be governed by different mechanisms. Synoptic conditions that often result in extreme air quality changes might have dominated in the 1980s, whereas emission increase might have been the main factor for the 2000s.

  17. Methodology to obtain exchange properties of the calcite surface-Application to major and trace elements: Ca(II), HCO3-, and Zn(II)

    International Nuclear Information System (INIS)

    Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.; Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.

    2010-01-01

    Sorption of inorganic elements onto carbonate minerals has been intensively described in the literature by two reaction steps: (1) a first one rapid and completed within a few hours and (2) a second one slower, eventually irreversible, and occurring at a constant rate. The first step is often attributed to an ion-exchange process, but its reversibility is rarely investigated. Consequently, discrimination of the global sorption phenomenon into two different mechanisms is not always justified. In this study, we investigated, by batch experiments, both sorption and desorption of Ca(II), HCO 3 - , and Zn(II), radiolabeled with isotopes 45 Ca(II), H 14 CO 3 - , and 65 Zn(II), respectively, onto synthetic pure calcite. Solutions were pre-equilibrated with atmospheric p(CO 2 ) and saturated with respect to calcite. Therefore, our purpose was to: (1) obtain experimental distribution coefficients of major elements (Ca(II) and HCO 3 - ) and a trace element (Zn(II)) onto calcite from sorption and desorption experiments, (2) test the validity of a first-occurring ion-exchange process generally noted in the literature, by calculating distribution coefficients for the 'sole' exchange process, and (3) quantify the amounts of Ca(II), HCO 3 - , and Zn(II) sorbed on the calcite surface by the sole 'exchange process' and compare them with surface crystallochemical data. Ca(II) or HCO 3 - sorption experimental data suggest that a significant fraction of these two elements was sorbed irreversibly onto or in the calcite. By using a method based on isotopic ratios, the Ca(II) or HCO 3 - concentrations, which are reversibly adsorbed on the calcite, have been quantified. These concentrations are respectively estimated at 4. 0 ± 2. 0 * 10 -4 and 7. 0 ± 1. 5 * 10 -4 mol/kg. The obtained Ca(II) surface concentration value is one order of magnitude lower than the one obtained from isotopic measurement by former authors [Geochim. Cosmochim. Acta 55 (1991) 1549; Geochim. Cosmochim. Acta 51

  18. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    Science.gov (United States)

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  19. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  20. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  1. Regime-Dependent Differences in Surface Freshwater Exchange Estimates Over the Ocean

    Science.gov (United States)

    Wong, Sun; Behrangi, Ali

    2018-01-01

    Differences in gridded precipitation (P), surface evaporation (E), and the resultant surface freshwater exchange (P - E) among different products over the ocean are diagnosed as functions of moisture advection (Qadvt) and moisture tendency by dynamical convergence (Qcnvg). Compared to the GPCP product, the TRMM3B42 product captures higher frequency of precipitation with larger extreme precipitation rates in regimes of deep convection and more light rain detections in regimes of frequent occurrence of boundary layer clouds. Discrepancies in E depend on moisture flux divergence, with the OAFlux product having the largest E in regimes of divergence. Discrepancies in mean P - E in deep convective regimes are highly influenced by differences in precipitation, with the TRMM3B42 product yielding P - E histograms closer to those inferred from the reanalysis moisture flux convergence. In nonconvergent regimes, observation-based P - E histograms skew toward positive values while the inferred reanalysis histograms are symmetric about the means.

  2. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  3. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    Science.gov (United States)

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  4. THE SORPTION EXTRACTION FEATURES OF KARMOAZONATE MERCURY(I COMPLE X BY ANION EXCHANGER AV-17-8 SURFACE

    Directory of Open Access Journals (Sweden)

    Н. M. Guzenko

    2014-11-01

    Full Text Available The dynamic and kinetic curves were analyzed, they were obtained by karmoazonate mercury(I complex extraction by anion exchanger AV-17-8 surface, and also calculated values of sorption process speed factor have allowed to establish the features of the adsorption layers formation on the resin surface.

  5. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... estimation functional with van der Waals correlation (BEEF-vdW), a semilocal approximation with an additional nonlocal correlation term. Furthermore, an ensemble of functionals around BEEF-vdW comes out naturally, offering an estimate of the computational error. An extensive assessment on a range of data...

  6. Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.

    Science.gov (United States)

    Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S

    2017-08-22

    Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.

  7. Nonperturbative effects and indirect exchange interaction between quantum impurities on metallic (111) surfaces

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2017-06-01

    The (111) surface of noble metals is usually treated as an isolated two-dimensional (2D) triangular lattice completely decoupled from the bulk. However, unlike in topological insulators, bulk bands also cross the Fermi level. We here introduce an effective tight-binding model that accurately reproduces results from first-principles calculations, accounting for both surface and bulk states. We numerically solve the many-body problem of two quantum impurities sitting on the surface by means of the density matrix renormalization group. By performing simulations in a star geometry, we are able to study the nonperturbative problem in the thermodynamic limit with machine precision accuracy. We find that there is a nontrivial competition between Kondo and RKKY physics and as a consequence, ferromagnetism is never developed, except at short distances. The bulk introduces a variation in the period of the RKKY interactions, and therefore the problem departs considerably from the simpler 2D case. In addition, screening and the magnitude of the effective indirect exchange are enhanced by the contributions from the bulk states.

  8. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo [Hanyang Univ., Seoul (Korea, Republic of); Kim, Ook Joong [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-07-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer.

  9. Modeling the land surface heat exchange process with the aid of moderate resolution imaging spectroradiomer images

    Science.gov (United States)

    Gao, Zhiqiang; Zhang, Wenjiang; Gao, Wei; Chang, Ni-Bin

    2009-12-01

    Most ecosystems and crops experience water stress in arid and semiarid areas of the Inner Mongolia grassland, Northern China. Yet the lack of long-term in situ monitoring data hinders the managerial capacity of changing water vapor environment, which is tied with sustaining the grassland in the Inner Mongolia. Environmental remote sensing monitoring and modeling may provide synergistic means of observing changes in thermodynamic balance during drought onset at the grassland surface, providing reliable projections accounting for variations and correlations of water vapor and heat fluxes. It is the aim of this paper to present a series of estimates of latent heat, sensible heat, and net radiation using an innovative first-principle, physics-based model (GEOMOD: GEO-model estimated the land surface heat with MODis data) with the aid of integrated satellite remote sensing and in situ eddy covariance data. Based on the energy balance principle and aerodynamics diffusion theory, the GEOMOD model is featured with MODIS (Moderate Resolution Imaging Spectroradiometer) data with 250 m spatial resolution to collectively reflect the spatial heterogeneity of surface properties, supplement missing data with the neighborhood values across both spatial and temporal domains, estimate the surface roughness height and zero-plane displacement with dynamic look-up table, and implement a fast iterative algorithm to calculate sensible heat. Its analytical framework is designed against overreliance on local micro-meteorological parameters. Practical implementation was assessed in the study area, the Xilin Gol River Basin, a typical grassland environment, Northern China. With 179 days of MODIS data in support of modeling, coincident ground-based observations between 2000 and 2006 were selected for model calibration. The findings indicate that GEOMOD performs reasonably well in modeling the land surface heat exchange process, as demonstrated by a case study of Inner Mongolia.

  10. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  11. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  12. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    Science.gov (United States)

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Synthesis, characterization and analytical application of hybrid; Acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Syed A. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)], E-mail: sanabi@rediffmail.com; Shalla, Aabid H. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2009-04-30

    A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na{sup +} ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 deg. C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb{sup 2+} ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb{sup 2+} has been selectively removed from synthetic mixtures containing Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, Zn{sup 2+} and Cu{sup 2+}, Al{sup 3+}, Ni{sup 2+}, Fe{sup 3+}. In order to demonstrate practical utility of the material quantitative separation of the Cu{sup 2+} and Zn{sup 2+} in brass sample has been achieved on its columns.

  14. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    Science.gov (United States)

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method.

  15. Validation of a new device to quantify groundwater-surface water exchange.

    Science.gov (United States)

    Cremeans, Mackenzie M; Devlin, J F

    2017-11-01

    Distributions of flow across the groundwater-surface water interface should be expected to be as complex as the geologic deposits associated with stream or lake beds and their underlying aquifers. In these environments, the conventional Darcy-based method of characterizing flow systems (near streams) has significant limitations, including reliance on parameters with high uncertainties (e.g., hydraulic conductivity), the common use of drilled wells in the case of streambank investigations, and potentially lengthy measurement times for aquifer characterization and water level measurements. Less logistically demanding tools for quantifying exchanges across streambeds have been developed and include drive-point mini-piezometers, seepage meters, and temperature profiling tools. This project adds to that toolbox by introducing the Streambed Point Velocity Probe (SBPVP), a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the interface with high density sampling, which can effectively, rapidly, and accurately complement conventional methods. The SBPVP is a direct push device that measures in situ water velocities at the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic conductivity or gradient information, nor do they require long equilibration times. Laboratory testing indicated that the SBPVP has an average accuracy of ±3% and an average precision of ±2%. Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising agreement between groundwater fluxes determined by conventional methods and those estimated from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool to quantify groundwater-surface water interactions in high definition in sandy streambeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Validation of a new device to quantify groundwater-surface water exchange

    Science.gov (United States)

    Cremeans, Mackenzie M.; Devlin, J. F.

    2017-11-01

    Distributions of flow across the groundwater-surface water interface should be expected to be as complex as the geologic deposits associated with stream or lake beds and their underlying aquifers. In these environments, the conventional Darcy-based method of characterizing flow systems (near streams) has significant limitations, including reliance on parameters with high uncertainties (e.g., hydraulic conductivity), the common use of drilled wells in the case of streambank investigations, and potentially lengthy measurement times for aquifer characterization and water level measurements. Less logistically demanding tools for quantifying exchanges across streambeds have been developed and include drive-point mini-piezometers, seepage meters, and temperature profiling tools. This project adds to that toolbox by introducing the Streambed Point Velocity Probe (SBPVP), a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the interface with high density sampling, which can effectively, rapidly, and accurately complement conventional methods. The SBPVP is a direct push device that measures in situ water velocities at the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic conductivity or gradient information, nor do they require long equilibration times. Laboratory testing indicated that the SBPVP has an average accuracy of ± 3% and an average precision of ± 2%. Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising agreement between groundwater fluxes determined by conventional methods and those estimated from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool to quantify groundwater-surface water interactions in high definition in sandy streambeds.

  17. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  18. Adsorption of naphthalene onto a high-surface-area carbon from waste ion exchange resin.

    Science.gov (United States)

    Shi, Qianqian; Li, Aimin; Zhu, Zhaolian; Liu, Bing

    2013-01-01

    A high-surface-area carbon (KC-1) was prepared from waste polystyrene-based ion exchange resin by KOH activation and used for naphthalene adsorption. The carbon exhibited a good hydrophobic nature with developed porous structure, favoring the adsorption of organic compounds. The Brunauer-Emmett-Teller surface area and total pore volume of KC-1 were 3442.2 and 1.68 cm3/g, respectively, which can be compared with those of KOH-activated carbons prepared from other precursors. Batch experiments were carried out to investigate the adsorption of naphthalene onto KC-1. The equilibrium data were analyzed by the Langmuir, Freundlich, and Polanyi-Manes isotherms and agreed with the Polanyi-Manes Model. The adsorption of naphthalene depended greatly on the porosity of the carbon, and the dispersive interactions between naphthalene and carbon could be relatively weak. The pH variation in aqueous solution had little effect on the adsorption process. The equilibrium time for 0.04 g/L of carbon dose was around 5 hr. Different models were used to evaluate the kinetic data and the pseudo second-order model was suitable to describe the kinetic process of naphthalene adsorption onto KC-1. Regeneration of spent carbon could be carried out effectively by alcohol treatment. The results indicated that KC-1 was a promising adsorbent for the removal of polycyclic aromatic hydrocarbons from aqueous solutions.

  19. Exchange processes from the deep interior to the surface of icy moons

    Science.gov (United States)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and

  20. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  1. Low temperature rate coefficients of the H + CH(+) → C(+) + H2 reaction: New potential energy surface and time-independent quantum scattering.

    Science.gov (United States)

    Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry

    2015-09-21

    The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.

  2. Application of the two-film theory to the determination of mass transfer coefficients for bovine serum albumin on anion-exchange columns

    DEFF Research Database (Denmark)

    Hansen, Ernst; Mollerup, Jørgen

    1999-01-01

    by fitting the two film model to the experimentally determined flux. The two film model is compared with two apparent over-all driving force models: The apparent over-all mobile phase driving force model and the apparent over-all solid phase driving force model. The experiments show that the apparent over......-all driving force models fail to describe the flux correctly and this is substantiated by the theory. Results obtained with BSA on the anion exchange media Q HyperD, Source, and Poros show that the external film resistance is significant for Reynolds numbers less than one. The experimental Sherwood numbers...

  3. Measurements of the speed of sound and the absorption coefficient for ion exchange resin embedded in concrete and bitumen using ultrasonic waves at around 0.1 MHz

    International Nuclear Information System (INIS)

    Sjoeblom, R.

    1981-01-01

    Ultrasonic measurements have been carried out on concrete and bitumen containing ion exchange resin. The speed and absorption of sound was determined for different amounts of resin, different times after preparation of the samples, and for different temperatures. The absorption data indicate that it should be possible to use the technique on full-scale waste products. The data also indicate that the velocity of sound is sensitive to several parameters of interest in radioactive waste treatment and storage. The technique may also be used to gain information on the internal disposition of a waste package. (Auth.)

  4. Sound conversion phenomena at the free surface of liquid helium. I. Calculation of the coefficients of reflection, transmission, and transformation of sound waves incident on the liquid--vapor interface of helium

    International Nuclear Information System (INIS)

    Wiechert, H.; Buchholz, F.I.

    1980-01-01

    On the basis of a set of boundary conditions describing quite generally mass and energy transport processes across the free surface of helium II, the acoustic coefficients of reflection, transmission, and transformation of first sound, second sound, and the sound wave propagating in the vapor are calculated in the case of perpendicular incidence of sound waves against the liquid--vapor phase boundary. Considering rigoroulsy the influences of the Onsager surface coefficients, the isobaric thermal expansion coefficients, and the thermal conductivities of the liquid and the vapor, we derive sets of equations from which the acoustic coefficients are determined numerically. For estimations, simple explicit formulas of the acoustic coefficients are given. It is shown that the evaporation and energy transport processes occurring at the free surface of helium II due to the incidence of sound waves may be connected with appreciable energy dissipation. The surface absorption coefficients of first, second, and gas sound waves are deduced

  5. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  6. Dynamic range of nanoresonators with random rough surfaces in the presence of thermomechanical and momentum exchange noise

    NARCIS (Netherlands)

    Palasantzas, G.

    2007-01-01

    The authors investigate the simultaneous influence of thermomechanical and momentum exchange noise on the linear dynamic range DR of nanoresonators with random rough surfaces. The latter are characterized by the roughness amplitude w, the lateral correlation length xi, and the roughness exponent 0

  7. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiment

    International Nuclear Information System (INIS)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-01-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel, NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CST columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste

  8. The Complete Solution of Fick's Second Law of Diffusion with Time-dependent Diffusion Coefficient and Surface Concentration

    DEFF Research Database (Denmark)

    Mejlbro, Leif

    1996-01-01

    Fick's Second Law of Diffusion with time-dependent diffusioncoefficient and surface concentration is solved. Mimicking the classicalsolution, special time-dependent surface concentration functions areconsidered. These models are used in giving estimates of the lifetimeof the structure, when the c...... the concrete cover is given, as well as estimatesof the thickness of the concrete cover, when the expected lifetime is given.*Note: Book tilte: Durability of Concrete in Saline Environment...

  9. Surface Rheology and Adsorption Kinetics Reveal the Relative Amphiphilicity, Interfacial Activity, and Stability of Human Exchangeable Apolipoproteins☆

    Science.gov (United States)

    Bolanos-Garcia, Victor Martin; Renault, Anne; Beaufils, Sylvie

    2008-01-01

    Exchangeable apolipoproteins are located in the surface of lipoprotein particles and regulate lipid metabolism through direct protein-protein and protein-lipid interactions. These proteins are characterized by the presence of tandem repeats of amphiphatic α-helix segments and a high surface activity in monolayers and lipoprotein surfaces. A noteworthy aspect in the description of the function of exchangeable apolipoproteins is the requirement of a quantitative account of the relation between their physicochemical and structural characteristics and changes in the mesoscopic system parameters such as the maximum surface pressure and relative stability at interfaces. To comply with this demand, we set out to establish the relations among α-helix amphiphilicity, surface concentration, and surface rheology of apolipoproteins ApoA-I, ApoA-II, ApoC-I, ApoC-II, and ApoC-III adsorbed at the air-water interface. Our studies render further insights into the interfacial properties of exchangeable apolipoproteins, including the kinetics of their adsorption and the physical properties of the interfacial layer. PMID:17993480

  10. Surface excess elasticity of gold: Ab initio coefficients and impact on the effective elastic response of nanowires

    International Nuclear Information System (INIS)

    Elsner, B.A.M.; Müller, S.; Bargmann, S.; Weissmüller, J.

    2017-01-01

    Predicting the influence of the surface on the effective elastic properties of nanoscale structures and nanomaterials remains a challenge, which we here address on both levels, continuum and atomic. Density Functional Theory (DFT) computation at the atomic level yields the first reliable surface excess elastic parameters for the (111) and (001) surfaces of gold. At the continuum level, we derive closed-form expressions for the effective elastic behavior that can be combined with the DFT-derived excess elastic parameters to obtain the effective axial, torsion, and bending stiffness of circular nanowires with surface excess elasticity. The two approaches use different reference frames, and we emphasize the need for consistent stress definitions and for conversion between the separate stress measures when transferring results between the approaches. We present excess elastic parameters separately for Cauchy and 2 nd Piola-Kirchhoff stresses, demonstrating that the conversion substantially modifies their numerical value and may even invert their sign. The results afford an assessment of the contribution of the surface excess elastic parameters to the effective elastic response of nanoscale beams or wires. This assessment sheds doubt on earlier suggestions relating experimental observations of an effective stiffening or softening at small size to the excess elasticity of clean surfaces.

  11. Multi-Staged NDVI Dependent Snow-Free Land-Surface Shortwave Albedo Narrowband-to-Broadband (NTB Coefficients and Their Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Shi Peng

    2017-01-01

    Full Text Available Narrowband-to-broadband conversion is a critical procedure for mapping land-surface broadband albedo using multi-spectral narrowband remote-sensing observations. Due to the significant difference in optical characteristics between soil and vegetation, NTB conversion is influenced by the variation in vegetation coverage on different surface types. To reduce this influence, this paper applies an approach that couples NTB coefficient with the NDVI. Multi-staged NDVI dependent NTB coefficient look-up tables (LUT for Moderate Resolution Imaging Spectroradiometer (MODIS, Polarization and Directionality of Earth’s Reflectance (POLDER and Advanced Very High Resolution Radiometer (AVHRR were calculated using 6000 spectra samples collected from two typical spectral databases. Sensitivity analysis shows that NTB conversion is affected more by the NDVI for sensors with fewer band numbers, such as POLDER and AVHRR. Analysis of the validation results based on simulations, in situ measurements and global albedo products indicates that by using the multi-staged NDVI dependent NTB method, the conversion accuracies of these two sensors could be improved by 2%–13% on different NDVI classes compared with the general method. This improvement could be as high as 15%, on average, and 35% on dense vegetative surface compared with the global broadband albedo product of POLDER. This paper shows that it is necessary to consider surface reflectance characteristics associated with the NDVI on albedo-NTB conversion for remote sensors with fewer than five bands.

  12. Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films.

    Science.gov (United States)

    Kumar, Manjeet; Kumar, Akshay; Abhyankar, A C

    2015-02-18

    For the first time, a new facile approach based on simple and inexpensive chemical spray pyrolysis (CSP) technique is used to deposit Tungsten (W) doped nanocrystalline SnO2 thin films. The textural, optical, structural and sensing properties are investigated by GAXRD, UV spectroscopy, FESEM, AFM, and home-built sensing setup. The gas sensing results indicate that, as compared to pure SnO2, 1 wt % W-doping improves sensitivity along with better response (roughness values of 3.82 eV and 3.01 nm, respectively. Reduction in texture coefficient along highly dense (110) planes with concomitant increase along loosely packed (200) planes is found to have prominent effect on gas sensing properties of W-doped films.

  13. Using Diurnal Temperature Signals to Infer Vertical Groundwater-Surface Water Exchange.

    Science.gov (United States)

    Irvine, Dylan J; Briggs, Martin A; Lautz, Laura K; Gordon, Ryan P; McKenzie, Jeffrey M; Cartwright, Ian

    2017-01-01

    Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer. © 2016, National Ground Water Association.

  14. Potential for Small Unmanned Aircraft Systems applications for identifying groundwater-surface water exchange in a meandering river reach

    Science.gov (United States)

    Pai, H.; Malenda, H.; Briggs, Martin A.; Singha, K.; González-Pinzón, R.; Gooseff, M.; Tyler, S.W.; ,

    2017-01-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here, we describe the use of a suite of high spatial-resolution remote-sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index (NDVI) mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW “shortcutting” through meander necks, which was corroborated by temperature data at the riverbed interface.

  15. Formation of ZnSe/Bi2Se3 QDs by surface cation exchange and high photothermal conversion

    Directory of Open Access Journals (Sweden)

    Guozhi Jia

    2015-08-01

    Full Text Available Water-dispersed core/shell structure ZnSe/Bi2Se3 quantum dots were synthesized by ultrasonicwave-assisted cation exchange reaction. Only surface Zn ion can be replaced by Bi ion in ZnSe quantum dots, which lead to the ultrathin Bi2Se3 shell layer formed. It is significance to find to change the crystal of QDs due to the acting of ultrasonicwave. Cation exchange mechanism and excellent photothermal conversion properties are discussed in detail.

  16. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO2 surface: The case of terminal oxygen atom exchange

    Science.gov (United States)

    Kevorkyants, Ruslan; Sboev, Mikhail. N.; Chizhov, Yuri V.

    2017-05-01

    Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between 16O18O and terminal oxygen atom of a defect TiO2 surface, which is modeled by amorphous Ti8O16 nanocluster in excited S1 electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O3- chemisorption species match well EPR data on O2 adsorption on UV-irradiated nanocrystalline TiO2. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction's mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VOx/TiO2 reported earlier.

  17. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  18. Theoretical characterization of the potential energy surface for H + O2 yields HO2(asterisk) yields HO + O. II - The potential for H atom exchange in HO2

    Science.gov (United States)

    Walch, Stephen P.; Rohlfing, Celeste Mcmichael

    1989-01-01

    The results of CASSCF multireference contracted CI calculations with large ANO basis sets are presented for the exchange region of the HO2 potential-energy surface. The saddle point for H atom exchange is about 13 kcal/mol below the energy of H + O2; therefore, this region of the surface should be accessible during H + O2 recombination and methathesis reactions.

  19. Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling

    DEFF Research Database (Denmark)

    Zöll, Undine; Brümmer, Christian; Schrader, Frederik

    2016-01-01

    Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentrations...... at high time resolution and thus to quantify the net exchange between a seminatural peatland ecosystem and the atmosphere based on the eddy-covariance approach. Changing diurnal patterns of both ammonia concentration and fluxes were found during different periods of the campaign. We observed a clear......, and surface wetness were identified to partially regulate ammonia exchange at the site, the seasonal concentration pattern was clearly dominated by agricultural practices in the surrounding area. Comparing the results of a compensation point model with our measurement-based flux estimates showed considerable...

  20. Frost formation on fin-and-tube heat exchangers. Pt. 1. Modeling of frost formation on fin-and-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Seker, D.; Karatas, H. [Arcelik A.S., Istanbul (Turkey); Egrican, N. [Yeditepe University, Istanbul (Turkey)

    2004-06-01

    In this study, the heat and mass transfer characteristics of heat exchangers during frost formation process are analyzed numerically. Unsteady heat and mass transfer coefficients of the air side, heat transfer coefficient of the refrigerant side, air-frost layer interface temperature, the surface efficiency of the heat exchanger and the mass flow rate of the frost accumulated on the heat exchanger surface are calculated. The total conductivity (UA) and pressure drop of the heat exchanger are reported for different air inlet temperature, relative humidity, air mass flow rate and the refrigerant temperature. (author)

  1. Modeling of retention of some fission products and actinides by ion-exchange chromatography with a complexing agent. Application to the determination of selectivity coefficients

    International Nuclear Information System (INIS)

    Gurdale-Tack, K.; Aubert, M.; Chartier, F.

    2000-01-01

    For an accurate determination of the isotopic and elemental composition of americium (Am), curium (Cm), neodymium (Nd) and cesium (Cs) in spent nuclear fuels, performed by Thermal Ionization Mass Spectrometry (TIMS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), it is necessary to separate these elements before analysis. This separation is mandatory because of isobaric interferences between americium and curium, neodymium and samarium (Sm) and between cesium and barium (Ba). This is the reason why Ba and Sm are analyzed with the other four elements. Separation is carried out by cation-exchange chromatography on a silica-based stationary phase in the presence of a complexing eluent. The complexing agent is 2-hydroxy-2-methyl butanoic acid (HMB), a monoprotic acid (HL) with a pK a of 3.6. Cations (M n+ ) interact with it to form ML y (n-y)+ complexes. Optimization of chromatographic separation conditions requires monitoring of the pH and eluent composition. The influence of each parameter on metal ion retention and on selectivity was investigated. The first studies on standard solutions with Sm(III), Nd(III), Cs(I) and Ba(II) showed that four conditions allow efficient separation. However, only one allows good separation with a real solution of spent nuclear fuels. This condition is a chelating agent concentration of 0.1 mol.l -1 and a pH of 4.2. With the other conditions, co-elution is observed for Cs(I) and Am(III). The overall results were used to study the retention mechanisms. The aim of this modeling is a closer knowledge of the form in which (M n+ and/or ML y (n-y)+ ...) each cationic element is extracted into the stationary phase. In fact, while cations can exist in the eluent in various forms depending on the analytical conditions, their forms may be different in the stationary phase. (authors)

  2. Use of variance techniques to measure dry air-surface exchange rates

    Science.gov (United States)

    Wesely, M. L.

    1988-07-01

    The variances of fluctuations of scalar quantities can be measured and interpreted to yield indirect estimates of their vertical fluxes in the atmospheric surface layer. Strong correlations among scalar fluctuations indicate a similarity of transfer mechanisms, which is utilized in some of the variance techniques. The ratios of the standard deviations of two scalar quantities, for example, can be used to estimate the flux of one if the flux of the other is measured, without knowledge of atmospheric stability. This is akin to a modified Bowen ratio approach. Other methods such as the normalized standard-deviation technique and the correlation-coefficient technique can be utilized effectively if atmospheric stability is evaluated and certain semi-empirical functions are known. In these cases, iterative calculations involving measured variances of fluctuations of temperature and vertical wind velocity can be used in place of direct flux measurements. For a chemical sensor whose output is contaminated by non-atmospheric noise, covariances with fluctuations of scalar quantities measured with a very good signal-to-noise ratio can be used to extract the needed standard deviation. Field measurements have shown that many of these approaches are successful for gases such as ozone and sulfur dioxide, as well as for temperature and water vapor, and could be extended to other trace substances. In humid areas, it appears that water vapor fluctuations often have a higher degree of correlation to fluctuations of other trace gases than do temperature fluctuations; this makes water vapor a more reliable companion or “reference” scalar. These techniques provide some reliable research approaches but, for routine or operational measurement, they are limited by the need for fast-response sensors. Also, all variance approaches require some independent means to estimate the direction of the flux.

  3. Simulation of torrential rain as a means for assessment of surface runoff coefficients and calculation of recurrent design events in alpine catchments

    Science.gov (United States)

    Markart, Gerhard; Kohl, Bernhard; Sotier, Bernadette; Klebinder, Klaus; Schauer, Thomas; Bunza, Günther

    2010-05-01

    Simulation of heavy rain is an established method for studying infiltration characteristics, runoff and erosion behaviour in alpine catchments. Accordingly for characterization and differentiation of various runoff producing areas in alpine catchments transportable spray irrigation installations for large plots have been developed at the BFW, Department of Natural Hazards and Alpine Timberline, in Innsbruck, Austria. One installation has been designed for assessment of surface runoff coefficients under convective torrential rain with applicable precipitation intensities between 30 and 120 mm*h-1 and a plot size between 50 and 100 m2. The second device is used for simulation of persistent rain events (rain intensity about 10 mm*h-1, plot size: 400-1200 m2). Very reasonable results have been achieved during the comparison with spray irrigations from other institutions (e.g. Bavarian Environmental Agency in Munich) in the field. Rain simulations at BFW are mostly combined with comprehensive additional investigations on land-use, vegetation cover, soil physical characteristics, soil humidity, hydrogeology and other features of the test-sites. This allows proper interpretation of the achieved runoff data. At the moment results from more than 280 rain simulations are available from about 25 catchments / regions of the Eastern Alps at the BFW. Results show that the surface runoff coefficient, when runoff is constant at the test site (φconst) increases only slightly between rain intensities from 30 to 120 mm*h-1 (increment is 6%). Therefore φconst shall be used for assessment of runoff behaviour of runoff contributing areas, because it is less dependent form system conditions than φtot. BFW-data have been consolidated with results of the LfU (Bavarian Environmental Agency in Munich) in a data base and formed the basis for the development of a simple code of practice for assessment of surface runoff coefficients in torrential rain. The manual is freely available under

  4. Comparison of distributed vortex receptivity coefficients at excitation of 3D TS-waves in presence and absence of surface waviness and pressure gradient

    Science.gov (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Mischenko, D. A.; Fedenkova, A. A.

    2016-10-01

    The paper is devoted to quantitative experimental investigation of effective mechanisms of excitation of 3D TS instability waves due to distributed boundary layer receptivity to free-stream vortices. Experiments carried out in a self-similar boundary layer with Hartree parameter βH = -0.115 and concentrated on studying two receptivity mechanisms connected with distributed scattering of 3D unsteady free-stream vortices both on the natural boundary layer nonuniformity (smooth surface) and on 2D surface nonuniformity (waviness). Obtained quantitative characteristics (distributed receptivity coefficients) are compared directly with those obtained in Blasius boundary layer. It is found that the adverse pressure gradient leads to reduction of efficiency of the vortex-roughness receptivity mechanism.

  5. Charge exchange, surface-induced dissociation and reactions of doubly charged molecular ions SF42+ upon impact on a stainless steel surface: A comparison with surface-induced dissociation of singly charged SF4+ molecular ions

    Czech Academy of Sciences Publication Activity Database

    Feketeová, L.; Grill, V.; Zappa, F.; Endstrasser, N.; Rasul, B.; Herman, Zdeněk; Scheier, P.; Märk, T. D.

    2008-01-01

    Roč. 276, č. 1 (2008), s. 37-42 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z40400503 Keywords : doubly charged ion * surface-induced dissociations * surface-induced reaction * charge exchange Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.445, year: 2008

  6. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  7. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  8. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    Science.gov (United States)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  9. Transfer coefficient models for escherichia coli O157:H7 on contacts between beef tissue and high-density polyethylene surfaces.

    Science.gov (United States)

    Flores, Rolando A; Tamplin, Mark L; Marmer, Benne S; Phillips, John G; Cooke, Peter H

    2006-06-01

    Risk studies have identified cross-contamination during beef fabrication as a knowledge gap, particularly as to how and at what levels Escherichia coli O157:H7 transfers among meat and cutting board (or equipment) surfaces. The objectives of this study were to determine and model transfer coefficients (TCs) between E. coli O157:H7 on beef tissue and high-density polyethylene (HDPE) cutting board surfaces. Four different transfer scenarios were evaluated: (i) HDPE board to agar, (ii) beef tissue to agar, (iii) HDPE board to beef tissue to agar, and (iv) beef tissue to HDPE board to agar. Also, the following factors were studied for each transfer scenario: two HDPE surface roughness levels (rough and smooth), two beef tissues (fat and fascia), and two conditions of the initial beef tissue inoculation with E. coli O157:H7 (wet and dry surfaces), for a total of 24 treatments. The TCs were calculated as a function of the plated inoculum and of the cells recovered from the first contact. When the treatments were compared, all of the variables evaluated interacted significantly in determining the TC. An overall TC-per-treatment model did not adequately represent the reduction of the cells on the original surface after each contact and the interaction of the factors studied. However, an exponential model was developed that explained the experimental data for all treatments and represented the recontamination of the surfaces with E. coli O157:H7. The parameters for the exponential model for cross-contamination with E. coli O157:H7 between beef tissue and HDPE surfaces were determined, allowing for the use of the resulting model in quantitative microbial risk assessment.

  10. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids

    International Nuclear Information System (INIS)

    Teng, K.H.; Amiri, Ahmad; Kazi, S.N.; Bakar, M.A.; Chew, B.T.; Al-Shamma’a, A.; Shaw, A.

    2017-01-01

    Highlights: • Decoration EDTA on MWCNT surface to retard the rate of fouling. • Preparation of DTPA-treated MWCNT/water nanofluid. • Evaluating the mitigation of DTPA-treated MWCNT-based water nanofluids. • Retarding of calcium carbonate crystals by MWCNT-DTPA additives. • The effect of additive on the rate of fouling. - Abstract: Mineral scale deposition on heat exchanging surfaces increases the thermal resistance and reduces the operating service life. The effect is usually intensified at higher temperatures due to the inverse temperature solubility characteristics of some minerals in the cooling water. Scale formation build up when dissolved salt crystallize from solution onto the heated surface, forming an adherent deposit. It is very important for heat transfer applications to cope with the fouling problems in industry. In this present study, a set of fouling experiments was conducted to evaluate the mitigation of calcium carbonate scaling by applying DTPA-treated MWCNT-based water nanofluids on heat exchanger surfaces. Investigation of additive DTPA-treated MWCNT-based water nanofluids (benign to the environment) on fouling rate of deposition was performed. 300 mg L −1 of artificially-hardened calcium carbonate solution was prepared as a fouling solution for deposit analysis. Assessment of the deposition of calcium carbonate on the heat exchanger surface with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution.

  12. Plasma-induced Styrene Grafting onto the Surface of Polytetrafluoroethylene Powder for Proton Exchange Membrane Application

    Science.gov (United States)

    Lan, Yan; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Chen, Longwei; Yang, Guangjie; Nagatsu, M.; Meng, Yuedong

    2011-10-01

    Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluoroethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was sulfonated in chlorosulfonic acid and fabricated into a membrane, which was used as inexpensive PEM material for a proton exchange membrane fuel cell (PEMFC). Fourier transform infrared spectroscopy attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the structure of the sulfonated PTFE powder. The results showed that all the PTFE powders were successfully grafted by nitrogen plasma and then sulfonated under such experimental conditions. A scanning electron microscopy (SEM) image indicated that the fabricated membrane exhibits flat morphology and homogenous structure. The ion exchange capacity (IEC) of this kind of PEM was also investigated.

  13. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.

    Science.gov (United States)

    Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D

    2014-05-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.

  14. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa_{2}Cu_{3}O_{y}: Fermi-Surface Reconstruction by Bidirectional Charge Order

    Directory of Open Access Journals (Sweden)

    O. Cyr-Choinière

    2017-09-01

    Full Text Available The Seebeck coefficient S of the cuprate YBa_{2}Cu_{3}O_{y} is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p=0.11 and p=0.12, for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S/T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in S_{b}, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S/T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  15. Numerical analysis of a heat exchanger with differentiated temperatures surface at varying distances from the wall

    Science.gov (United States)

    Orłowska, Magdalena

    2018-02-01

    This article is one of a series of articles by the author. For many years she conducts research on convective heat exchange. The work is mainly concerned on knowing the effect of positioning the heater on the heat output of the device. It turns out that the correct location is very important.

  16. Effects of fin pitch and array of the frost layer growth on extended surface of a heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dong Keun; Lee, Kwan Soo [Hanyang Univ., Seoul (Korea, Republic of)

    2003-07-01

    This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better.

  17. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis.

    Science.gov (United States)

    Haggie, Peter M; Phuan, Puay-Wah; Tan, Joseph-Anthony; Zlock, Lorna; Finkbeiner, Walter E; Verkman, A S

    2016-06-01

    Pendrin (SLC26A4) is a Cl(-)/anion exchanger expressed in the epithelium of inflamed airways where it is thought to facilitate Cl(-) absorption and HCO3 (-) secretion. Studies using pendrin knockout mice and airway epithelial cells from hearing-impaired subjects with pendrin loss of function suggest involvement of pendrin in inflammatory lung diseases, including cystic fibrosis (CF), perhaps by regulation of airway surface liquid (ASL) volume. Here we identified small-molecule pendrin inhibitors and demonstrated their efficacy in increasing ASL volume. A cell-based, functional high-throughput screen of ∼36,000 synthetic small molecules produced 3 chemical classes of inhibitors of human pendrin. After structure-activity studies, tetrahydropyrazolopyridine and pyrazolothiophenesulfonamide compounds reversibly inhibited pendrin-facilitated Cl(-) exchange with SCN(-), I(-), NO3 (-), and HCO3 (-) with drug concentration causing 50% inhibition down to ∼2.5 μM. In well-differentiated primary cultures of human airway epithelial cells from non-CF and CF subjects, treatment with IL-13, which causes inflammation with strong pendrin up-regulation, strongly increased Cl(-)/HCO3 (-) exchange and the increase was blocked by pendrin inhibition. Pendrin inhibition significantly increased ASL depth (by ∼8 μm) in IL-13-treated non-CF and CF cells but not in untreated cells. These studies implicate the involvement of pendrin-facilitated Cl(-)/HCO3 (-) in the regulation of ASL volume and suggest the utility of pendrin inhibitors in inflammatory lung diseases, including CF.-Haggie, P. M., Phuan, P.-W., Tan, J.-A., Zlock, L., Finkbeiner, W. E., Verkman, A. S. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis. © FASEB.

  18. Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies.

    Science.gov (United States)

    Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul

    2016-09-21

    Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

  19. Heat exchange and pressure drop of herring-bone fin surfaces. Experimental cell results at constant wall temperature; Echange de chaleur et perte de charge de surfaces a ailettes en chevrons. Resultats experimentaux en cellule a temperature de paroi constante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    The increase in the specific power of nuclear reactors of the gas-graphite type has necessitated the use of high performance exchange surfaces for canning the fuel (natural uranium). For this, experiments were carried out on cans fitted with herring-bone fins, at constant wall temperature; a flow of water at 100 deg. C passes inside the can which is cooled externally by a flow of CO{sub 2} at 15 bars pressure. This experimental set-up makes it possible to compare the aero-thermal performances of the different cans with an accuracy of 5 per cent. This report presents the results obtained in the form of a friction coefficient f{sub 0} and mean Margoulis number m{sub 0} as a function of the Reynolds number Re{sub 0}, this latter varying from 3 x 10{sup 5} to 9 x 10{sup 5}. (authors) [French] L'augmentation de la puissance specifique des reacteurs nucleaires de la filiere graphite-gaz a necessite l'utilisation de surfaces d'echange a hautes performances pour gainer le combustible (uranium naturel). Dans cette optique, des gaines munies d'ailettes disposees en chevron ont ete experimentees a temperature de paroi constante: un courant d'eau a 100 deg. C circule a l'interieur de la gaine qui est refroidie exterieurement par un ecoulement de CO{sub 2} sous une pression de 15 bars. Cette methode experimentale permet de situer les performances aerothermiques des gaines les unes par rapport aux autres a 5 pour cent pres. Ce rapport presente les resultats obtenus sous la forme d'un coefficient de frottement f{sub 0} et d'un nombre de Margoulis moyen m{sub 0} en fonction du nombre de Reynolds Re{sub 0}, ce dernier pouvant varier de 3. 10{sup 5} a 9. 10{sup 5}. (auteurs)

  20. Comments on "Modified wind chill temperatures determined by a whole body thermoregulation model and human-based convective coefficients" by Ben Shabat, Shitzer and Fiala (2013) and "Facial convective heat exchange coefficients in cold and windy environments estimated from human experiments" by Ben Shabat and Shitzer (2012)

    Science.gov (United States)

    Osczevski, Randall J.

    2014-08-01

    Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) present revised charts for wind chill equivalent temperatures (WCET) and facial skin temperatures (FST) that differ significantly from currently accepted charts. They credit these differences to their more sophisticated calculation model and to the human-based equation that it used for finding the convective heat transfer coefficient (Ben Shabat and Shitzer, Int J Biometeorol 56:639-651, 2012). Because a version of the simple model that was used to create the current charts accurately reproduces their results when it uses the human-based equation, the differences that they found must be entirely due to this equation. In deriving it, Ben Shabat and Shitzer assumed that all of the heat transfer from the surface of their cylindrical model was due to forced convection alone. Because several modes of heat transfer were occurring in the human experiments they were attempting to simulate, notably radiation, their coefficients are actually total external heat transfer coefficients, not purely convective ones, as the calculation models assume. Data from the one human experiment that used heat flux sensors supports this conclusion and exposes the hazard of using a numerical model with several adjustable parameters that cannot be measured. Because the human-based equation is faulty, the values in the proposed charts are not correct. The equation that Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) propose to calculate WCET should not be used.

  1. Studying temporal and spatial variations of groundwater-surface water exchange flux for the Slootbeek (Belgium) using the LPML method

    Science.gov (United States)

    Anibas, Christian; Schneideweind, Uwe; Vandersteen, Gerd; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Knowledge of groundwater-surface water interaction is important for the assessment of water resources and for the investigation of fate and transport of contaminants and nutrients. In streams and rivers exchange fluxes of water are sensitive to local and regional factors such as riverbed hydraulic conductivity and hydraulic gradients. Field monitoring in time and space is therefore indispensible for assessing the variability of groundwater-surface water interaction. Not only the complexity of the examined processes demand novel data processing and characterization tools, the amount of acquired data also urges for new modeling tools. These tools should be easily applicable, allow for a fast computation, and utilize the maximum amount of available data for detailed analysis, including uncertainties. Such analytical tools should be combined with modern field equipment, data processing tools, geographical information systems and geostatistics for best results. A simple and cost effective methodology to estimate groundwater-surface water interaction is the use of temperature as an environmental tracer (ANDERSON, 2005). LPML (VANDERSTEEN et al., 2014) is one of the most advanced analytical 1D coupled water flow and heat transport models, combining a local polynomial method with a maximum likelihood estimator. It is flexible, fast and able to create time series of exchange fluxes, as well as model quality and parameter uncertainty. LPML determines frequency response functions from measured temperature time series and an analytical model, and applies a non-linear optimization technique. With this tool the variability of groundwater-surface water interaction of the Belgian stream Slootbeek was assessed. Multilevel temperature sensors were placed in seven locations to obtain temperature-time series. Located at the streambed top and at six depths below, several months worth of data was collected and analyzed. Results identified a high spatial and temporal variability of

  2. Atmospheric and Surface-Condition Effects on CO2 Exchange in the Liaohe Delta Wetland, China

    Directory of Open Access Journals (Sweden)

    Qingyu Jia

    2017-10-01

    Full Text Available The eddy covariance method was used to study the CO2 budget of the Liaohe Delta reed wetland in northern China during 2012–2015. The changes in environmental factors (including meteorology, vegetation, hydrology, and soil were analyzed simultaneously. The change in the trend of the CO2 concentration in the reed wetland was similar to global changes over the four years. The average annual CO2 accumulation was 2.037 kg·CO2·m−2, ranging from 1.472 to 2.297 kg·CO2·m−2. The seasonal characteristics of the CO2 exchange included high CO2 absorption in June and July, and high emissions in April and from September to October, with the highest emissions in July 2015. The average temperatures from 2013 to 2015 were higher than the 50-year average, largely due to increased temperatures in winter. Precipitation was below the 50-year average, mainly because of low precipitation in summer. The average wind speed was less than the 50-year average, and sunshine duration decreased each year. The CO2 exchange and environmental factors had a degree of correlation or consistency. The contribution of meteorology, vegetation, hydrology, and soil to the CO2 budget was analyzed using the partial least squares method. Water and soil temperature had a greater effect on the CO2 exchange variability. The regression equation of the CO2 budget was calculated using the significant contributing factors, including temperature, precipitation, relative humidity, water-table level, salinity, and biomass. The model fit explained more than 70% of the CO2 exchange, and the simulation results were robust.

  3. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  4. Surface polyPEGylation of Eu{sup 3+} doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Heng, Chunning [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Huang, Qiang; Mao, Liucheng; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-03-31

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu{sup 3+} doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu{sup 3+} doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface

  5. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material samp...... resistances decrease for increasing airflow velocity above the boundary layer of the material surface. The measured resistances are somewhat smaller than the ones esti-mated by use of the Lewis relation....

  6. Sensitivity of coefficients for converting entrance surface dose and kerma-area product to effective dose and energy imparted to the patient

    International Nuclear Information System (INIS)

    Wise, K.N.; Sandborg, M.; Persliden, J.; Alm Carlsson, G.

    1999-01-01

    We investigate the sensitivity of the conversions from entrance surface dose (ESD) or kerma-area product (KAP) to effective dose (E) or to energy imparted to the patient (ε) to the likely variations in tube potential, field size, patient size and sex which occur in clinical work. As part of a factorial design study for chest and lumbar spine examinations, the tube potentials were varied to be ±10% of the typical values for the examinations while field sizes and the positions of the field centres were varied to be representative of values drawn from measurements on patient images. Variation over sex and patient size was based on anthropomorphic phantoms representing males and females of ages 15 years (small adult) and 21 years (reference adult). All the conversion coefficients were estimated using a mathematical phantom programmed with the Monte Carlo code EGS4 for all factor combinations and analysed statistically to derive factor effects. In general, the factors studied behaved independently in the sense that interaction of the physical factors generally gave no more than a 5% variation in a conversion coefficient. Taken together, variation of patient size, sex, field size and field position can lead to significant variation of E/KAP by up to a factor of 2, of E/ESD by up to a factor of 3, of ε/KAP by a factor of 1.3 and of ε/ESD by up to a factor of 2. While KAP is preferred to determine ε, the results show no strong preference of KAP over ESD in determining E. The mean absorbed dose D-bar in the patient obtained by dividing ε (determined using KAP) by the patient's mass was found to be the most robust measure of E. (author)

  7. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    DEFF Research Database (Denmark)

    Charalampidis, C.; Van As, D.; Box, J. E.

    2015-01-01

    negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ∼ 0...... energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface...

  8. Evaluation of passive samplers with neutral or ion-exchange polymer coatings to determine freely dissolved concentrations of the basic surfactant lauryl diethanolamine: Measurements of acid dissociation constant and organic carbon-water sorption coefficient.

    Science.gov (United States)

    Wang, Fang; Chen, Yi; Hermens, Joop L M; Droge, Steven T J

    2013-11-08

    A passive sampler tool (solid-phase microextraction, SPME) was optimized to measure freely dissolved concentrations (Cw,free) of lauryl diethanolamine (C12-DEA). C12-DEA can be protonated and act as a cationic surfactant. From the pH-dependent sorption to neutral SPME coatings (polyacrylate and PDMS), a pKa of 8.7 was calculated, which differs more than two units from the value of 6.4 reported elsewhere. Polyacrylate coated SPME could not adequately sample largely protonated C12-DEA in humic acid solutions of pH 6. A new hydrophobic SPME coating with cation-exchange properties (C18/SCX) sorbed C12-DEA 100 fold stronger than polyacrylate, because it specifically sorbs protonated C12-DEA species. The C18/SCX-SPME fiber showed linear calibration isotherms in a concentration range of acid at pH 6 (ionic strength 0.015 M) were measured over a broad concentration range with a sorption coefficient of 10(5.3). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path

    International Nuclear Information System (INIS)

    Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Juergen

    2011-01-01

    Highlights: → Oxygen exchange kinetics of Pt on YSZ investigated by means of Pt model electrodes. → Two different geometry dependencies of the polarization resistance identified. → At higher temperatures the oxygen exchange reaction proceeds via a Pt surface path. → At lower temperatures a bulk path through the Pt thin film electrode is discussed. - Abstract: The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 deg. C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 deg. C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  10. Analysis of surface structure and hydrogen/deuterium exchange of colloidal silica suspension by contrast-variation small-angle neutron scattering.

    Science.gov (United States)

    Suzuki, Takuya; Endo, Hitoshi; Shibayama, Mitsuhiro

    2008-05-06

    The microscopic surface structure and hydrogen/deuterium exchange effect were investigated by contrast-variation small-angle neutron scattering (CV-SANS) for three different-sized amorphous colloidal silica aqueous suspensions. The results show that the fraction of hydrogen/deuterium exchange per nanoparticle, phiH/D, strongly depends on the size of silica nanoparticles. This finding supports that the hydrogen/deuterium exchange occurs exclusively within a finite surface layer of silica nanoparticles, while the inner component remained unchanged. Detailed analyses of the scattering intensity functions led to the estimation of (1) phiH/D and (2) the thickness of the surface layer as functions of the particle radius. The surface layer thickness was found to increase from 18 to 35 A with decreasing the particle radius from 165 to 71.2 A. The surface area per unit weight of silica estimated with the CV-SANS results are comparable to those reported in the literature.

  11. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange

    Directory of Open Access Journals (Sweden)

    C. M. Steelman

    2017-06-01

    Full Text Available Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater–surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater–surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze–thaw cycle. Surface electromagnetic induction (EMI and electrical resistivity tomography (ERT methods captured conditions beneath the riverbed along a pool–riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle and dominant surficial rock properties (competent versus weathered rock rubble surface. While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river

  12. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    Science.gov (United States)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  13. Deposition of metallic clusters on a metallic surface at zero initial kinetic energy: Evidence for implantation and site exchanges

    Science.gov (United States)

    Nacer, B.; Massobrio, C.; Félix, C.

    1997-10-01

    We have investigated the deposition at zero impact kinetic energy of the Ag atom and clusters (Ag7,Ag19) on the (100) and (111) surfaces of Pd by molecular-dynamics simulations performed within the embedded-atom-method scheme. Our results elucidate the role played by the adsorption energy in determining the final morphology of the cluster/substrate system when ideal nondestructive deposition conditions are implemented. While implantation of the atom is not observed, we find a finite probability of site Ag-Pd exchanges in the case of clusters. Deposition-assisted mixing occurring at the topmost surface layer appears to be correlated to the size of the cluster and the orientation of the substrate, being higher for Ag7/Pd(100) and lower for Ag19/Pd(111). Total-energy calculations, combined with an analysis of the atomic motion, indicate that the structural transformation accompanying the deposition of the cluster provides the needed activation energy to induce the observed Ag-Pd atomic exchanges.

  14. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain.

    Science.gov (United States)

    Brauns, Bentje; Bjerg, Poul L; Song, Xianfang; Jakobsen, Rasmus

    2016-07-01

    Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to: (a) understand pollutant exchange between surface water and groundwater, (b) quantify nutrient loadings, and (c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River (up to 29.8mg/L NH4-N and 6.8mg/L NO3-N), as well as nitrate via vertical transport from the field surface (up to 134.8mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320kg/ha/a. Nevertheless, both nitrogen species were only detected at low concentrations in shallow groundwater, averaging at 3.6mg/L NH4-N and 1.8mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered. Copyright © 2016. Published by Elsevier B.V.

  15. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    Science.gov (United States)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  16. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  17. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency...

  18. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems are anticipated for various planetary surface human base applications with power levels of 30-100+ kWe. The development of high...

  19. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  20. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    Science.gov (United States)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat

  1. Nano-diamonds surface modifications: understanding of electron exchange mechanisms and evidence of a therapeutic effect

    International Nuclear Information System (INIS)

    Petit, Tristan

    2013-01-01

    In this thesis, a therapeutic effect of nano-diamonds (NDs) has been evidenced by investigating the role of NDs surface chemistry on their electronic properties. More precisely, the generation of reactive oxygen species from detonation NDs under ionizing radiation, which could improve current radiotherapy treatments, has been demonstrated. To this end, surface treatments facilitating electron transfer from NDs to their environment, namely hydrogenation and surface graphitization, were developed. Experimental conditions ensuring an efficient hydrogenation by hydrogen plasma were determined under ultrahigh vacuum, before being used to prepare large quantities of NDs in powder phase. A similar procedure was applied to the surface graphitization of NDs, performed by annealing under vacuum at high temperature. The impact of such surface treatments on the electronic interaction properties of NDs has been investigated under ambient air and after dispersion in water. These surface treatments induce a positive Zeta potential to NDs in water, which origin has been discussed. Finally, their interactions with human tumor cells were observed. Radiosensitization of tumor cells using NDs under gamma irradiation was demonstrated, opening new perspectives for NDs in nano-medicine. (author) [fr

  2. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Khalakhan, Ivan; Václavů, Michal [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Kovács, Gábor; Kozlov, Sergey M. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona (Spain); Kúš, Peter; Skála, Tomáš; Tsud, Natalia; Lavková, Jaroslava [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Potin, Valerie [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex (France); and others

    2016-03-01

    Graphical abstract: - Highlights: • Nanostructured Pt-Co thin catalyst films were grown on carbon by magnetron sputtering. • The surface composition of the nanostructured Pt-Co films was investigated by surface analysis techniques. • We carried out modeling of Pt-Co nanoalloys by computational methods. • Both experiment and modeling based on density functional theory showed that the surface of Pt-Co nanoparticles is almost exclusively composed of Pt atoms. - Abstract: Recently we have tested a magnetron sputtered Pt-Co catalyst in a hydrogen-fed proton exchange membrane fuel cell and showed its high catalytic activity for the oxygen reduction reaction. Here we present further investigation of the magnetron sputtered Pt-Co thin film catalyst by both experimental and theoretical methods. Scanning electron microscopy and transmission electron microscopy experiments confirmed the nanostructured character of the catalyst. The surface composition of as-deposited and annealed at 773 K Pt-Co films was investigated by surface analysis techniques, such as synchrotron radiation photoelectron spectroscopy and X-ray photoelectron spectroscopy. Modeling based on density functional theory showed that the surface of 6 nm large 1:1 Pt-Co nanoparticles is almost exclusively composed of Pt atoms (>90%) at typical operation conditions and the Co content does not exceed 20% at 773 K, in agreement with the experimental characterization of such films annealed in vacuum. According to experiment, the density of valence states of surface atoms in Pt-Co nanostructures is shifted by 0.3 eV to higher energies, which can be associated with their higher activity in the oxygen reduction reaction. The changes in electronic structure caused by alloying are also reflected in the measured Pt 4f, Co 3p and Co 2p photoelectron peak binding energies.

  3. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medi

    Directory of Open Access Journals (Sweden)

    NU Rahman

    2011-05-01

    Full Text Available Background and the purpose of the study: Partition coefficients (log D and log P and molecular surface area (PSA are potential predictors of the intestinal permeability of drugs. The aim of this investigation was to evaluate and compare these intestinal permeability indicators.   Methods: Aqueous solubility data were obtained from literature or calculated using ACD/Labs and ALOGPS. Permeability data were predicted based on log P, log D at pH 6.0 (log D6.0, and PSA.  Results: Metoprolol's log P, log D6.0 and a PSA of <65 Å correctly predicted 55.9%, 50.8% and 54.2% of permeability classes, respectively. Labetalol's log P, log D6.0, and PSA correctly predicted 54.2%, 64.4% and 61% of permeability classes, respectively. Log D6.0 correlated well (81% with Caco-2 permeability (Papp. Of the list of national essential medicines, 135 orally administered drugs were classified into biopharmaceutical classification system (BCS. Of these, 57 (42.2%, 28 (20.7%, 44 (32.6%, and 6 (4.4% were class I, II, III and IV respectively. Conclusion: Log D6.0 showed better prediction capability than log P. Metoprolol as permeability internal standard was more conservative than labetalol.

  4. A New Global Potential Energy Surface for the Hydroperoxyl Radical, HO2: Reaction Coefficients for H + O2 and Vibrational Splittings for H Atom Transfer

    Science.gov (United States)

    Dateo, Christopher E.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  5. On heat and moisture exchanges between the sea surface and the atmosphere during the medalpex

    International Nuclear Information System (INIS)

    Colacino, M.; Purini, R.

    1988-01-01

    Data collected by a buoy, moored in the Ligurian Sea about 27 nautical miles off the coast during the period 1 March-31 May, 1982, are analysed. The buoy was equipped by the Institute for Naval Automation (IAN) of the Italian National Research Council (CNR) during the Mediterrenean Alpine Experiment (Medalpex), join program of the Alpine Experiment (Alpex). Exchanges of heat and mass across the air-sea interface are computed from the collected data and comparisons with existing values are made. The resulting agreement confirms the strong interaction between the sea and the atmosphere in some peculiar situation, and lends weight to the oceanographic hypotesis for the statistical occurrence of deeping of orographic cyclones in the Liguro-Provencal basin

  6. Polychlorinated biphenyls in Nepalese surface soils: Spatial distribution, air-soil exchange, and soil-air partitioning.

    Science.gov (United States)

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan

    2017-10-01

    Regardless of the ban on the polychlorinated biphenyls (PCBs) decade ago, significant measures of PCBs are still transmitted from essential sources in cities and are all inclusive ecological contaminants around the world. In this study, the concentrations of PCBs in soil, the air-soil exchange of PCBs, and the soil-air partitioning coefficient (K SA ) of PCBs were investigated in four noteworthy urban areas in Nepal. Overall, the concentrations of ∑ 30 PCBs ranged from 10 to 59.4ng/g dry weight; dw (mean 12.2ng/g ±11.2ng/g dw). The hexa-CBs (22-31%) was most dominant among several PCB-homologues, followed by tetra-CBs (20-29%), hepta-CBs (12-21%), penta-CBs (15-17%) and tri-CBs (9-19%). The sources of elevated level of PCBs discharge in Nepalese soil was identified as emission from transformer oil, lubricants, breaker oil, cutting oil and paints, and cable insulation. Slightly strong correlation of PCBs with TOC than BC demonstrated that amorphous organic matter (AOM) assumes a more critical part in holding of PCBs than BC in Nepalese soil. The fugacity fraction (ff) results indicated the soil being the source of PCB in air through volatilization and net transport from soil to air. The soil-air partitioning coefficient study suggests the absorption by soil organic matter control soil-air partitioning of PCBs. Slightly weak but positive correlation of measured Log K SA with Log K OA (R 2 = 0.483) and Log K BC-A (R 2 = 0.438) suggests that both Log K OA and Log K BC-A can predict soil-air partitioning to lesser extent for PCBs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Impact of aerodynamic resistance formulations used in two-source modeling of energy exchange from the soil and vegetation using land surface temperature

    Science.gov (United States)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  8. Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes

    Directory of Open Access Journals (Sweden)

    J. Joensuu

    2016-06-01

    Full Text Available Biogenic volatile organic compounds (BVOCs produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L. and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry.

  9. Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein.

    Science.gov (United States)

    Tao, Shi-Peng; Wang, Chuan; Sun, Yan

    2014-09-12

    A novel composite cryogel monolith was developed by coating poly(glycidyl methacrylate) nanoparticles (NPs) onto the pore wall surface of poly(acrylamide) cryogel. The NPs-coated column was double-modified with poly(ethylenimine) (PEI) and diethylaminoethyl in sequence. Scanning electron microscopy revealed the dense coating of the NPs on the cryogel surface, but the NPs-coating did not result in distinct changes of the column porosity and permeability. The rough pore wall surface and extended polymer chains offered more binding sites, so the dynamic binding capacity of the composite cryogel bed for bovine serum albumin reached 11.7mg/mL bed volume at a flow rate of 6cm/min, which was 4.2 times higher than that of the cryogel bed modified with PEI without coating NPs (2.8mg/mL). The binding capacity as well as column efficiency decreased only slightly with increasing flow rate from 0.6 to 12cm/min. The results indicated that the strategy of NPs-coating incorporating with double ion-exchanger modifications is promising for enhancing cryogel capacities, and the novel material would be useful for high-speed protein chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Origins of the Exchange-Bias Phenomenology, Coercivity Enhancement, and Asymmetric Hysteretic Shearing in Core-Surface Smart Nanoparticles

    Directory of Open Access Journals (Sweden)

    Rıza Erdem

    2016-01-01

    Full Text Available We have used a spin-1 Ising model Hamiltonian with dipolar (bilinear, J, quadrupolar (biquadratic, K, and dipolar-quadrupolar (odd, L interactions in pair approximation to investigate the exchange-bias (EB, coercive field, and asymmetric hysteretic shearing properties peculiar to core/surface (C/S composite nanoparticles (NPs. Shifted hysteresis loops with an asymmetry and coercivity enhancement are observed only in the presence of the odd interaction term in the Hamiltonian expression and their magnitudes show strong dependence on the value of L. The observed coercivity and EB in C/S NPs originated from nonzero odd coupling energies and their dependence on temperature (T and particle size (R are also discussed in relation to experimental findings.

  11. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  12. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    Science.gov (United States)

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

  13. Understanding the Spatiotemporal Structures in Atmosphere-Land Surface Exchange at the Jülich Observatory for Cloud Evolution

    Science.gov (United States)

    Marke, T.; Crewell, S.; Loehnert, U.; Rascher, U.; Schween, J. H.

    2015-12-01

    This study aims at identifying spatial and temporal patterns of surface-atmosphere exchange parameters from highly-resolved and long-term observations. For this purpose, a combination of continuous ground-based measurements and dedicated aircraft campaigns using state-of-the-art remote sensing instrumentation at the Jülich Observatory for Cloud Evolution (JOYCE) is available. JOYCE provides a constantly growing multi-year data set for detailed insight into boundary layer processes and patterns related to surface conditions since 2011. The JOYCE site is embedded in a rural environment with different crop types. The availability of a scanning microwave radiometer and cloud radar is a unique component of JOYCE. The hemispheric scans of the ground-based radiometer allow the identification and quantification of horizontal gradients in water vapor and liquid water path measurements. How these gradients are connected to near-surface fluxes and the topography depending on the mean wind flow and surface fluxes is investigated by exploring the long-term data set. Additionally, situations with strong coupling to the surface can be identified by observing the atmospheric turbulence and stability within the boundary layer, using different lidar systems. Furthermore, the influence of thin liquid water clouds, which are typical for the boundary layer development, on the radiation field and the interaction with the vegetation is examined. Applying a synergistic statistical retrieval approach, using passive microwave and infrared observations, shows an improvement in retrieving thin liquid cloud microphysical properties. The role of vegetation is assessed by exploiting the time series of the sun-induced chlorophyll fluorescence (SIF) signal measured at the ground level using automated measurements. For selected case studies, a comparison to maps of hyperspectral reflectance and SIF obtained from an airborne high-resolution imaging spectrometer is realized.

  14. Molecular beam study of the mechanism of catalyzed hydrogen--deuterium exchange on platinum single crystal surfaces

    International Nuclear Information System (INIS)

    Bernasek, S.L.; Somorjai, G.A.

    1975-01-01

    The hydrogen--deuterium exchange reaction was studied by molecular beam scattering on low and high Miller index crystal faces of platinum in the surface temperature range of 300--1300degreeK. Under the condition of the experiments which put strict limitation on the residence time of the detected molecules, the reaction product, HD, was readily detectable from the high Miller index, stepped surfaces (integrated reaction probability, defined as total desorbed HD flux divided by D 2 flux, is approx.10/sup -1/) while HD formation was below the limit of detectability on the Pt(111) low Miller index surface (reaction probability 2 beam pressure and half-order in H 2 background pressure. The absence of beam kinetic energy dependence of the rate indicates that the molecular adsorption does not require activation energy. The surface is able to store a sufficiently large concentration of atoms which react with the molecules by a two-branch mechanism. The rate constants for this two-branch mechanism were determined under conditions of constant H atom coverage, reducing the bimolecular reaction to a pseudo-first-order reaction. At lower temperatures ( 1 = (2plus-or-minus1) times10 5 exp(-4.5plus-or-minus0.5 kcal/RT) sec/sup -1/. The rate determining step appears to be the diffusion of the D 2 molecule on the surface to a step site where HD is formed via a three-center (atom--molecule) reaction, or via a two-center (atom--atom) reaction subsequent to D 2 dissociation at the step. At higher temperatures (>600degreeK) the reaction between an adsorbed H atom and an incident D 2 gas molecule competes with the low temperature branch. The rate constant for this branch is k 2 = (1plus-or-minus2) times10 2 exp(-0.6plus-or-minus0.3 kcal/RT) sec/sup -1/

  15. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  16. A top-down approach of surface carbonyl sulfide exchange by a Mediterranean oak forest ecosystem in southern France

    Directory of Open Access Journals (Sweden)

    S. Belviso

    2016-12-01

    Full Text Available The role that soil, foliage, and atmospheric dynamics have on surface carbonyl sulfide (OCS exchange in a Mediterranean forest ecosystem in southern France (the Oak Observatory at the Observatoire de Haute Provence, O3HP was investigated in June of 2012 and 2013 with essentially a top-down approach. Atmospheric data suggest that the site is appropriate for estimating gross primary production (GPP directly from eddy covariance measurements of OCS fluxes, but it is less adequate for scaling net ecosystem exchange (NEE to GPP from observations of vertical gradients of OCS relative to CO2 during the daytime. Firstly, OCS and carbon dioxide (CO2 diurnal variations and vertical gradients show no net exchange of OCS at night when the carbon fluxes are dominated by ecosystem respiration. This contrasts with other oak woodland ecosystems of a Mediterranean climate, where nocturnal uptake of OCS by soil and/or vegetation has been observed. Since temperature, water, and organic carbon content of soil at the O3HP should favor the uptake of OCS, the lack of nocturnal net uptake would indicate that its gross consumption in soil is compensated for by emission processes that remain to be characterized. Secondly, the uptake of OCS during the photosynthetic period was characterized in two different ways. We measured ozone (O3 deposition velocities and estimated the partitioning of O3 deposition between stomatal and non-stomatal pathways before the start of a joint survey of OCS and O3 surface concentrations. We observed an increasing trend in the relative importance of the stomatal pathway during the morning hours and synchronous steep drops of mixing ratios of OCS (amplitude in the range of 60–100 ppt and O3 (amplitude in the range of 15–30 ppb after sunrise and before the break up of the nocturnal boundary layer. The uptake of OCS by plants was also characterized from vertical profiles. However, the time window for calculation of the ecosystem relative

  17. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  18. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  19. Surface energy exchanges over contrasting vegetation types on a subtropical sand island

    Science.gov (United States)

    Gray, Michael; McGowan, Hamish; Lowry, Andrew; Guyot, Adrien

    2017-04-01

    The surface energy balance of subtropical coastal vegetation communities has thus far received little attention. Here we present a multi-year observational data set using the eddy covariance method to quantify for the first time the surface energy balance over three contrasting vegetation types on a subtropical sand island in eastern Australia: a periodically inundated sedge swamp, an exotic pine plantation and a coastal heath. Maximum daily sensible heat flux varied between sites but was typically > 280 Wm-2 in the coastal heath and pine plantation but no more than 250 Wm-2 in the swamp when dry and Bowen ratio (β) 1. The partitioning of energy, as represented by β, is similar to a variety of Australian ecosystems, and a range of coastal vegetation types in other latitudes, but differs from other tropical or subtropical locations which have strongly seasonal rainfall patterns and therefore a switch from β > 1 before rainfall to β < 1 afterwards. The energy fluxes over the three vegetation types responded to seasonal changes in background meteorology with the most important influences being net radiation, absolute humidity, and rainfall. The main factor differentiating the sites was soil water content, with the remnant coastal heath and swamp having ready access to water but the exotic pine plantation having much drier soils. Should the current balance between remnant vegetation and the pine plantation undergo changes there would be a corresponding shift in the surface energy balance of the island as a whole, and altered plant water use may lead to reduced water table depth, important because the groundwater of the local islands is used as part of a regional water grid. A better understanding of the response of coastal vegetation to atmospheric forcing will enable more informed decision making on land use changes, as coastal regions the world over face development pressure.

  20. Long-term Impacts of Hurricane Wilma on Land Surface-Atmosphere Exchanges

    Science.gov (United States)

    Fuentes, J. D.; Dowell, K. K.; Engel, V. C.; Smith, T. J.

    2008-05-01

    In October 2005, Hurricane Wilma made landfall along the mangrove forests of western Everglades National Park, Florida, USA. Damage from the storm varied with distance from landfall and included widespread mortality and extensive defoliation. Large sediment deposition events were recorded in the interior marshes, with erosion taking place along the coastal margins. Wilma made landfall near a 30 m flux tower where eddy-covariance measurements of ecosystem-level carbon and energy fluxes started in 2003. Repairs to the structure were completed in 2006, enabling comparisons of surface fluxes before and after the storm. One year after the hurricane, both the average and daily integrated CO2 fluxes are consistently lower than the pre-storm values. The storm's impact on standing live biomass and the slow recovery of leaf area appear to have resulted in decreased photosynthetic uptake capacity. Nighttime respiratory CO2 fluxes above the canopy are unchanged from pre-storm values. During some periods, daily integrated fluxes show the forest as a net source of CO2 to the atmosphere. Soil CO2 fluxes are not measured directly, but daytime soil temperatures and vertical heat fluxes have shown consistently higher values after the storm. Nighttime soil temperatures values have been slightly lower. These stronger diurnal soil temperature fluctuations indicate enhanced radiative fluxes at the soil surface, possibly as a result of the reduced leaf area. The increases in daytime soil temperatures are presumably leading to higher below-ground respiration rates and, along with the reduced photosynthetic capacity, contributing to the lower net CO2 assimilation rates. This hypothesis is supported by nearby measurements of declining surface elevations of the organic soils which have been correlated with mangrove mortality in impacted areas. Both sensible and latent heat fluxes above the canopy are found to be reduced following the hurricane, and soil heat storage is higher. Together

  1. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å2 and 808 ± 2 Å2. [M - 4H]4- ions were comprised of more compact (Ω = 676 ± 3 Å2) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  2. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue

    Energy Technology Data Exchange (ETDEWEB)

    Anirudhan, T.S., E-mail: tsani@rediffmail.com [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581 (India); Radhakrishnan, P.G. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581 (India)

    2009-02-15

    A new cation exchange resin (PGTFS-COOH) having a carboxylate functional group at the chain end was prepared by grafting poly(hydroxyethylmethacrylate) onto tamarind fruit shell, TFS (a lignocellulosic residue) using potassium peroxydisulphate-sodium thiosulphate redox initiator, and in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinking agent, followed by functionalisation. The adsorbent was characterized with the help of FTIR, XRD, scanning electron micrographs (SEM), and potentiometric titrations. The kinetic and isotherm data, obtained at optimum pH value 6.0 at different temperatures could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. An increase in temperature induces positive effect on the adsorption process. The calculated activation energy of adsorption (E{sub a}, 18.67 kJ/mol) indicates that U(VI) adsorption was largely due to diffusion-controlled process. The values of adsorption enthalpy, Gibbs free energy, and entropy were calculated using thermodynamic function relationships. The decrease in adsorption enthalpy with increasing U(VI) uploading on the adsorbent, reflects the surface energetic heterogeneity of the adsorbent. The isosteric heat of adsorption was quantitatively correlated with the fractional loading for the U(VI) ions adsorption onto PGTFS-COOH. The results showed that the PGTFS-COOH possessed heterogeneous surface with sorption sites having different activities.

  3. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue

    Science.gov (United States)

    Anirudhan, T. S.; Radhakrishnan, P. G.

    2009-02-01

    A new cation exchange resin (PGTFS-COOH) having a carboxylate functional group at the chain end was prepared by grafting poly(hydroxyethylmethacrylate) onto tamarind fruit shell, TFS (a lignocellulosic residue) using potassium peroxydisulphate-sodium thiosulphate redox initiator, and in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinking agent, followed by functionalisation. The adsorbent was characterized with the help of FTIR, XRD, scanning electron micrographs (SEM), and potentiometric titrations. The kinetic and isotherm data, obtained at optimum pH value 6.0 at different temperatures could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. An increase in temperature induces positive effect on the adsorption process. The calculated activation energy of adsorption ( Ea, 18.67 kJ/mol) indicates that U(VI) adsorption was largely due to diffusion-controlled process. The values of adsorption enthalpy, Gibbs free energy, and entropy were calculated using thermodynamic function relationships. The decrease in adsorption enthalpy with increasing U(VI) uploading on the adsorbent, reflects the surface energetic heterogeneity of the adsorbent. The isosteric heat of adsorption was quantitatively correlated with the fractional loading for the U(VI) ions adsorption onto PGTFS-COOH. The results showed that the PGTFS-COOH possessed heterogeneous surface with sorption sites having different activities.

  4. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    Science.gov (United States)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  5. An automated analyzer to measure surface-atmosphere exchange fluxes of water soluble inorganic aerosol compounds and reactive trace gases.

    Science.gov (United States)

    Thomas, Rick M; Trebs, Ivonne; Otjes, René; Jongejan, Piet A C; Ten Brink, Harry; Phillips, Gavin; Kortner, Michael; Meixner, Franz X; Nemitz, Eiko

    2009-03-01

    Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique.

  6. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    G. K. Housley; J.E. O' Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  7. Freshwater exchanges and surface salinity in the Colombian basin, Caribbean Sea.

    Science.gov (United States)

    Beier, Emilio; Bernal, Gladys; Ruiz-Ochoa, Mauricio; Barton, Eric Desmond

    2017-01-01

    Despite the heavy regional rainfall and considerable discharge of many rivers into the Colombian Basin, there have been few detailed studies about the dilution of Caribbean Surface Water and the variability of salinity in the southwestern Caribbean. An analysis of the precipitation, evaporation and runoff in relation to the climate variability demonstrates that although the salt balance in the Colombian Basin overall is in equilibrium, the area south of 12°N is an important dilution sub-basin. In the southwest of the basin, in the region of the Panama-Colombia Gyre, Caribbean Sea Water is diluted by precipitation and runoff year round, while in the northeast, off La Guajira, its salinity increases from December to May by upwelling. At the interannual scale, continental runoff is related to El Niño Southern Oscillation, and precipitation and evaporation south of 12°N are related to the Caribbean Low Level Jet. During El Niño years the maximum salinification occurs in the dry season (December-February) while in La Niña years the maximum dilution (or freshening), reaching La Guajira Coastal Zone, occurs in the wet season (September-November).

  8. Quantifying exchange between groundwater and surface water in rarely measured organic sediments

    Science.gov (United States)

    Rosenberry, D. O.; Cavas, M.; Keith, D.; Gefell, M. J.; Jones, P. M.

    2016-12-01

    Transfer of water and chemicals between poorly competent organic sediments and surface water in low-energy riverine and lentic settings depends on several factors, including rate and direction of flow, redox state, number and type of benthic invertebrates, and chemical gradients at and near the sediment-water interface. In spite of their commonly large areal extent, direct measurements of flow in soft, organic sediments are rarely made and little is known about flux direction, rate, or heterogeneity. Commonly used monitoring wells are difficult to install and suffer from slow response to changing hydraulic head due to the low permeability of these sediments. Seepage meters can directly quantify seepage flux if several challenges can be overcome. Meters are difficult to install and operate where water is deep, visibility is poor, and the position of the sediment-water interface is not readily apparent. Soft, easily eroded sediment can be displaced during meter installation, creating bypass flow beneath the bottom of the seepage cylinder. Poorly competent sediments often cannot support the weight of the meters; they slowly sink into the bed and displace water inside the seepage cylinder, which leads to the interpretation of large upward flow. Decaying organic material within the sediment generates gas that can displace water and corrupt seepage-meter measurements. Several inexpensive modifications to a standard seepage meter, as well as precautions during installation and operation, can minimize these sources of error. Underwater video cameras can be mounted to the meter to remotely observe sediment disturbance during sensor installation and monitor the stability of the meter insertion depth during the period of deployment. Anchor rods can be driven a meter or more into the sediment until refusal, firmly anchoring the seepage meter at a constant sediment insertion depth. Data collected from modified seepage meters installed in Minnesota and New York demonstrate the

  9. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.

    Science.gov (United States)

    García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto

    2016-11-01

    The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.

  10. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  11. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  12. Surface Energy Exchange in a Tropical Montane Cloud Forest Environment: Flux Partitioning, and Seasonal and Land Cover-Related Variations

    Science.gov (United States)

    Holwerda, F.; Alvarado-Barrientos, M. S.; González-Martínez, T.

    2015-12-01

    Relationships between seasonal climate, land cover and surface energy exchange in tropical montane cloud forest (TMCF) environments are poorly understood. Yet, understanding these linkages is essential to evaluating the impacts of land use and climate change on the functioning of these unique ecosystems. In central Veracruz, Mexico, TMCF occurs between 1100 and 2500 m asl. The canopy of this forest consists of a mix of deciduous and broadleaved-evergreen tree species, the former of which shed their leaves for a short period during the dry season. The aim of this study was to quantify the surface energy balance, and seasonal variations therein, for TMCF, as well as for shaded coffee (CO) and sugarcane (SU), two important land uses that have replaced TMCF at lower elevations. Sensible (H) and latent heat (LE) fluxes were measured using eddy covariance and sap flow methods. Other measurements included: micrometeorological variables, soil heat flux, soil moisture and vegetation characteristics. Partitioning of available energy (A) into H and LE showed important seasonal changes as well as differences among land covers. During the wet-season month of July, average midday Bowen ratios for sunny days were lowest and least variable among land covers: 0.5 in TMCF and SU versus 0.7 in CO. However, because of higher A, along with lower Bowen ratio with respect to CO, LE over TMCF was ca. 20% higher compared to CO and SU. During the late dry-season months of March and April, average midday Bowen ratios for sunny days were generally much higher and more variable among land covers. The higher Bowen ratios indicated a reduction of LE under the drier conditions prevailing (low soil moisture and high VPD), something rarely observed in TMCFs. Moreover, because some trees were still partially leafless in March, LE over TMCF was about half that over CO and SU, suggesting an important effect of phenology on energy exchange of this TMCF. Observed differences between seasons and land

  13. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    Absorption coefficients measured in reverberation chambers, Sabine absorption coefficients, suffer from two major problems. Firstly, they sometimes exceed unity. Secondly, the reproducibility of the Sabine absorption coefficients is quite poor, meaning that the Sabine absorption coefficients vary...... resistivity optimization outperforms the surface impedance optimization in terms of the reproducibility....

  14. French chemical exchange process

    International Nuclear Information System (INIS)

    Frejacques, C.; Lerat, J.-M.; Plurien, P.

    1979-01-01

    A new chemical exchange reaction between two forms of uranium compounds with a high elementary separation coefficient and good kinetics has been discovered at the French Energy Commission ten years ago and developed to the industrial stage. We give here some general characteristics of the process and discuss some parameters of the kinetics exchange

  15. On a model for the prediction of the friction coefficient in mixed lubrication based on a load-sharing concapt with measured surface roughness

    NARCIS (Netherlands)

    Akchurin, Aydar; Bosman, Rob; Lugt, Pieter Martin; van Drogen, Mark

    2015-01-01

    A new model was developed for the simulation of the friction coefficient in lubricated sliding line contacts. A half-space-based contact algorithm was linked with a numerical elasto-hydrodynamic lubrication solver using the load-sharing concept. The model was compared with an existing asperity-based

  16. Influence of Non-Perfect Step Input Concentration at the Feed Side of the Membrane Surface on the Diffusion Coefficient Evaluation

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Jiřina; Fialová, Kateřina; Petričkovič, Roman; Kudrna, V.; Uchytil, Petr

    2006-01-01

    Roč. 15, č. 3 (2006), s. 246-251 ISSN 1022-1344 R&D Projects: GA AV ČR(CZ) 1QS401250509; GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : diffusion coefficient * flux * dispersion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.073, year: 2006

  17. High-productivity membrane adsorbers: Polymer surface-modification studies for ion-exchange and affinity bioseparations

    Science.gov (United States)

    Chenette, Heather C. S.

    This dissertation centers on the surface-modification of macroporous membranes to make them selective adsorbers for different proteins, and the analysis of the performance of these membranes relative to existing technology. The common approach used in these studies, which is using membrane technology for chromatographic applications and using atom transfer radical polymerization (ATRP) as a surface modification technique, will be introduced and supported by a brief review in Chapter 1. The specific approaches to address the unique challenges and motivations of each study system are given in the introduction sections of the respective dissertation chapters. Chapter 2 describes my work to develop cation-exchange membranes. I discuss the polymer growth kinetics and characterization of the membrane surface. I also present an analysis of productivity, which measures the mass of protein that can bind to the stationary phase per volume of stationary phase adsorbing material per time. Surprisingly and despite its importance, this performance measure was not described in previous literature. Because of the significantly shorter residence time necessary for binding to occur, the productivity of these cation-exchange membrane adsorbers (300 mg/mL/min) is nearly two orders of magnitude higher than the productivity of a commercial resin product (4 mg/mL/min). My work studying membrane adsorbers for affinity separations was built on the productivity potential of this approach, as articulated in the conclusion of Chapter 2. Chapter 3 focuses on the chemical formulation work to incorporate glycoligands into the backbone of polymer tentacles grown from the surface of the same membrane stationary phase. Emphasis is given to characterizing and testing the working formulation for ligand incorporation, and details about how I arrived at this formulation are given in Appendix B. The plant protein, or lectin, Concanavalin A (conA) was used as the target protein. The carbohydrate affinity

  18. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air–soil exchange

    International Nuclear Information System (INIS)

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2014-01-01

    There are limited data on polycyclic aromatic hydrocarbons (PAHs) in both the atmosphere and soil of the Tibetan Plateau (TP). Concentrations of PAHs were therefore measured in 13 XAD resin-based passive air samplers and 41 surface (0–5 cm) soil samples across the TP. The average concentration of atmospheric PAHs was 5.55 ng/m 3 , which was lower than that reported for other background areas, but higher than the Arctic. Concentrations in the soils fell in a wide range from 5.54 to 389 ng/g, with an average of 59.9 ng/g. Elevation was found to play an important role in determining the spatial distribution of soil PAHs. The air–soil exchange state showed that the soils of the TP will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs. Highlights: • The levels of PAHs in air and soil of the Tibetan Plateau were relatively lower than other background region of world. • The soil PAHs concentration decreased with the increase of elevation. • The Tibetan Plateau will likely remain as a sink for high molecular weight PAHs. • The Tibetan Plateau may become a potential “secondary source” for low molecular weight PAHs. -- The Tibetan soil will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs

  19. Short-term temperature-dependent air-surface exchange and atmospheric concentrations of polychlorinated naphthalenes and organochlorine pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.G.M.; Burnett, V.; Harner, T.; Jones, K.C.

    2000-02-01

    Atmospheric concentrations of five organochlorine (OC) pesticides, some of which have been banned for a number of years, and polychlorinated naphthalenes (PCNs) were measured at a U.K. site over periods of 6 h for 7 days resulting in 28 samples. Mean concentrations of the pesticides were {alpha}-HCH 90 pg m{sup {minus}3}, {gamma}-HCH 500, {rho},{rho}{prime}-DDE 8, dieldrin 63, endrin 22, and HCB 39. PCN mean homologue concentrations were {sub 3}CNs 67 pg m{sup {minus}3}, {sub 4}CNs 78, {sub 5}CNs 5, {sub 6}CNs 0.6, {sub 7}CNs 0.6, and {Sigma}PCNs 152. TEQ concentrations for those PCNs ascribed TEF values ranged between 0.36 and 3.6 fg m{sup {minus}3} which corresponds to {approximately}3.0--30% of the TEQ concentrations of PCDD/Fs at the same site. All the compounds measured, except HCB, exhibited a strong temperature-dependent diurnal cycling. Results from Clausius-Clapeyron plots show that pesticide concentrations were controlled by temperature-driven air-surface recycling throughout the first 5 days when stable atmospheric conditions were dominant, while during the last 2 days advection became more influential as more unstable and cooler weather started to influence the site. PCN concentrations were controlled primarily by a mixture of recycling and advection throughout the first 5 days and then by advection in the final 2 days, suggesting that there are ongoing emissions from diffuse point sources of PCNs into the U.K. atmosphere. This study provides further evidence of the rapid air-surface exchange of semivolatile organic compounds (SOCs) and shows how different factors alone or in combination can produce rapid changes in the atmospheric concentrations of past and present SOCs.

  20. Atmospheric Transference of the Toxic Burden of Atmosphere-Surface Exchangeable Pollutants to the Great Lakes Region

    Science.gov (United States)

    Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.

    2016-12-01

    Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.

  1. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    Science.gov (United States)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  2. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach

    Science.gov (United States)

    Johnes, P. J.

    1996-09-01

    A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley.

  3. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    Science.gov (United States)

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  4. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    Science.gov (United States)

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  6. Surface CO2 Exchange Dynamics across a Climatic Gradient in McKenzie Valley: Effect of Landforms, Climate and Permafrost

    Directory of Open Access Journals (Sweden)

    Natalia Startsev

    2016-11-01

    Full Text Available Northern regions are experiencing considerable climate change affecting the state of permafrost, peat accumulation rates, and the large pool of carbon (C stored in soil, thereby emphasizing the importance of monitoring surface C fluxes in different landform sites along a climate gradient. We studied surface net C exchange (NCE and ecosystem respiration (ER across different landforms (upland, peat plateau, collapse scar in mid-boreal to high subarctic ecoregions in the Mackenzie Valley of northwestern Canada for three years. NCE and ER were measured using automatic CO2 chambers (ADC, Bioscientific LTD., Herts, England, and soil respiration (SR was measured with solid state infrared CO2 sensors (Carbocaps, Vaisala, Vantaa, Finland using the concentration gradient technique. Both NCE and ER were primarily controlled by soil temperature in the upper horizons. In upland forest locations, ER varied from 583 to 214 g C·m−2·year−1 from mid-boreal to high subarctic zones, respectively. For the bog and peat plateau areas, ER was less than half that at the upland locations. Of SR, nearly 75% was generated in the upper 5 cm layer composed of live bryophytes and actively decomposing fibric material. Our results suggest that for the upland and bog locations, ER significantly exceeded NCE. Bryophyte NCE was greatest in continuously waterlogged collapsed areas and was negligible in other locations. Overall, upland forest sites were sources of CO2 (from 64 g·C·m−2·year−1 in the high subarctic to 588 g C·m−2·year−1 in mid-boreal zone; collapsed areas were sinks of C, especially in high subarctic (from 27 g·C·m−2 year−1 in mid-boreal to 86 g·C·m−2·year−1 in high subarctic and peat plateaus were minor sources (from 153 g·C·m−2·year−1 in mid-boreal to 6 g·C·m−2·year−1 in high subarctic. The results are important in understanding how different landforms are responding to climate change and would be useful in modeling the

  7. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  8. Surface spin glass and exchange bias effect in Sm0.5Ca0.5MnO3 manganites nano particles

    Directory of Open Access Journals (Sweden)

    S. K. Giri

    2011-09-01

    Full Text Available In this letter, we report that the charge/orbital order state of bulk antiferromagnetic Sm0.5Ca0.5MnO3 is suppressed and confirms the appearance of weak ferromagnetism below 65 K followed by a low temperature spin glass like transition at 41 K in its nano metric counterpart. Exchange anisotropy effect has been observed in the nano manganites and can be tuned by the strength of the cooling magnetic field (Hcool. The values of exchange fields (HE, coercivity (HC, remanence asymmetry (ME and magnetic coercivity (MC are found to strongly depend on cooling magnetic field and temperature. HE increases with increasing Hcool but for larger Hcool, HE tends to decrease due to the growth of ferromagnetic cluster size. Magnetic training effect has also been observed and it has been analyzed thoroughly using spin relaxation model. A proposed phenomenological core-shell type model is attributed to an exchange coupling between the spin-glass like shell (surrounding and antiferromagnetic core of Sm0.5Ca0.5MnO3 nano manganites mainly on the basis of uncompensated surface spins. Results suggest that the intrinsic phase inhomogeneity due to the surface effects of the nanostructured manganites may cause exchange anisotropy, which is of special interests for potential application in multifunctional spintronic devices.

  9. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain

    DEFF Research Database (Denmark)

    Brauns, Bentje; Bjerg, Poul Løgstrup; Song, Xianfang

    2016-01-01

    -N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future...

  10. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  11. The ion exchange properties and equilibrium constants of Li+, Na+ and K+ on zirconium phosphate highly dispersed on a cellulose acetate fibers surface

    Directory of Open Access Journals (Sweden)

    Borgo Claudemir Adriano

    2004-01-01

    Full Text Available Highly dispersed zirconium phosphate was prepared by reacting celullose acetate/ZrO2 (ZrO2 = 11 wt%, 1.0 mmol g-1 of zirconium atom per gram of the material with phosphoric acid. High power decoupling magic angle spinning (HPDEC-MAS 31P NMR and X-ray photoelectron spectroscopy data indicated that HPO4(2- is the species present on the membrane surface. The specific concentration of acidic centers, determined by ammonia gas adsorption, is 0.60 mmol g-1. The ion exchange capacities for Li+, Na+ and K+ ions were determined from ion exchange isotherms at 298 K and showed the following values (in mmol g-1: Li+= 0.05, Na+= 0.38 and K+= 0.57. Due to the strong cooperative effect, the H+/Na+ and H+/K+ ion exchange is of non ideal nature. These ion exchange equilibria were treated with the use of models of fixed tridentate centers, which consider the surface of the sorbent as polyfunctional sorption centers. Both the observed ion exchange capacities with respect to the alkaline metal ions and the equilibrium constants are discussed by taking into consideration the sequence of the ionic hydration radii for Li+, Na+ and K+. The matrix affinity for the ions decreases with increasing the cations hydration radii from K+ to Li+. The high values of the separation factors S Na+/Li+ and S K+/Li+ (up to several hundreds support the application of this material for the quantitative separation of Na+ and K+ from Li+ from a mixture containing these three ions.

  12. Assessment of surface reactivity of thorium oxide in conditions close to chemical equilibrium by isotope exchange {sup 229}Th/{sup 232}Th method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Muresan, Tomo; Perrigaud, Katy; Vandenborre, Johan; Ribet, Solange; Grambow, Bernd [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Takamasa, Inai [TOKAI Univ., Kanagawa (Japan)

    2017-08-01

    This work aims to assess the solubility and the surface reactivity of crystallized thorium at pH 3.0 in presence of three types of solids: synthesized powder at 1300 C, crushed kernel, and intact kernel. In this study, the kernel is composed by the core solid from high temperature reactors (HTR) sphere particles. The originality of this work consisted in following in a sequential order the kinetic of dissolution, the surface reactivity in presence of isotope tracer {sup 229}Th, and its desorption process. Long time experiments (634 days) allowed to get deeper understanding on the behavior of the surface reactivity in contact with the solution. Solubility values are ranging from 0.3 x 10{sup -7} mol.L{sup -1} to 3 x 10{sup -7} mol.L{sup -1} with a dissolution rate of 10{sup -6}-10{sup -4} g.m{sup -2} day{sup -1}. PHREEQC modeling showed that crystallized ThO{sub 2}(cr, 20 nm) phase controls the equilibrium in solution. Isotope exchange between {sup 229}Th and {sup 232}Th indicated that well-crystallized phase exist as an inert surface regarding to the absence of exchange between surface solid and solution.

  13. Surface exchange kinetics and chemical diffusivities of BaZr{sub 0.2}Ce{sub 0.65}Y{sub 0.15}O{sub 3−δ} by electrical conductivity relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dae-Kwang; Jeon, Sang-Yun; Singh, Bhupendra [Ionics Lab, School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwang-Ju 500-757 (Korea, Republic of); Park, Jun-Young [Department of Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Song, Sun-Ju, E-mail: song@chonnam.ac.kr [Ionics Lab, School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwang-Ju 500-757 (Korea, Republic of)

    2014-10-15

    Highlights: • Electrical conductivity relaxation in BaCe{sub 0.65}Zr{sub 0.2}Y{sub 0.15}O{sub 3−δ} was monitored. • Monotonic relaxation behavior was observed during oxidation/reduction. • Nonmonotonic twofold relaxation behavior was observed during hydration/dehydration. • Surface exchange coefficients and diffusivities of O and H were calculated. - Abstract: Perovskite-type oxide BaCe{sub 0.65}Zr{sub 0.2}Y{sub 0.15}O{sub 3−δ} (BCZY2015) was synthesized by a solid state reaction method. BCZY2015 samples were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The time dependent variation in electrical conductivity of BCZY2015 was monitored during the oxidation/reduction in oxygen partial pressure (pO{sub 2}) range of −2.28 ⩽ log (pO{sub 2}/atm) ⩽ −0.68 at a fixed water vapor pressure (pH{sub 2}O), and during the hydration/dehydration in −3.15 ⩽ log (pH{sub 2}O/atm) ⩽ −2.35 range in air. The electrical conductivity showed a monotonic relaxation behavior by the ambipolar diffusion of V{sub o}{sup ··} and OH{sub o}{sup ·} during the oxidation/reduction and the relaxation process was governed by the diffusivity of oxygen (D-tilde{sub vO}). On the other hand, during the hydration/dehydration process, a non-monotonic twofold relaxation behavior was observed due to the decoupled diffusion of H and O components with the mediation of holes, and the conductivity relaxation process was governed by the diffusivities of both H (D-tilde{sub iH}) and O (D-tlde{sub vH}). The values of surface exchange coefficients and diffusivities of oxygen and hydrogen were calculated from Fick’s second law by the nonlinear least squares fitting of the conductivity data, as proposed by Yoo et al. (2008)

  14. The exchange reaction between hydrogen and deuterium. I. Importance of surface reactions in the steady-state mechanism

    International Nuclear Information System (INIS)

    Marteau, Chantal; Gaillard-Cusin, Francoise; James, H.

    1978-01-01

    Investigation of heterogeneous initiation process of gas phase linear chain reactions is carried out through the study of H 2 -D 2 exchange reaction. Experimental data under study concern mainly the stationary rate of HD formation and the prestationary proceeding. Steady-state method accounts for the first one of these data; it allows to clearly compare the wall process part to the part played by the homogeneous chain reaction towards HD formation. Activation energy of exchange elementary step between chemisorbed hydrogen (on silica) and gaseous deuterium has been evaluated: Esub(e1)=52+-1 Kcal/mole [fr

  15. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    Science.gov (United States)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  16. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  17. Separation of Cr(III) from Cr(VI) by Triton X-100 Cerium (Iv) Phosphate as a Surface Active Ion Exchanger

    International Nuclear Information System (INIS)

    El-Azony, K.M.; Ismail Aydia, M.; El-Mohty, A.A.

    2010-01-01

    A new and simple high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection has been developed for the determination of both Cr (III) and Cr (VI) ions. Chromium species were determined by HPLC using a stationary phase consisting of a reversed phase column (Nucleosil phenyl column; 250 mm x 4.6 mm,5 μm), and a mobile phase consisting of a mixture of methanol: water(70 : 30 v/v), in which the complexing agent di-(2-ethylhexyl) phosphoric acid (DEHPA) was dissolved. The UV detection was carried out at wavelength 650 nm. Separation of Cr (III) from Cr (VI) on Triton X-100 cerium(IV) phosphate(TX-100 CeP) as a surface active ion exchanger was investigated. TX-100 CeP has been synthesized, characterized using IR, X-Ray, TGA/DTA and elemental analysis. The ion exchange capacity and chemical stability in different HCl concentration have been studied

  18. Calculation of illuminance distribution and its coefficient of variation in infinitely long interior with luminous surface ceiling by Monte Carlo simulation. Monte Carlo simulation ni yoru tenjomen kogen wo motsu mugencho shitsunal no shodo bunpu to hendo keisu

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, M. (The University of Tokushima, Tokushima (Japan))

    1991-01-15

    Monte Carlo simulation (MCS) was applied to the estimation of illuminance distribution in infinitely long interiors which had visual obstructions and luminous surface ceilings, and its coefficient of variation (percentage of standard deviation to average value) was studied. The illuminance distributions obtained by MCS were compared with those calculated by theoretical equations hased on teh contour integration method, and the conservation law of photon bundles was also investigated. As a result, it was concluded that MCS results of direct illuminance distributions agree with those obtained by contour integration method in infinitely long concave interiors which have luminous surface ceilings of various shapes and four visual obstructions. The coefficient of variation varies noteworthily when visual obstructions are located in asymmetrical positions. The uniformity in illuminance distributions is improved by transparent visual obstructions. The conservation law of photon bundles holds well in the concave interiors with transparent visual obstructions. Therefore, it seems that MCS technique for illuminance calculation is a very powerful tool in infinite long concave interior spaces. 19 refs., 11 figs.

  19. Processing-property relationship in ion-exchanged ESP (engineered stress profile) glasses

    Science.gov (United States)

    Shen, Junwu

    2003-06-01

    A novel two-step ion exchange process was recently proposed to produce Engineered Stress Profile (ESP) glass. Important characteristics of ESP glass include high strength, relatively low strength variability and high surface damage resistance. It has been found that the mechanical reliability of ESP glass is mainly dependent on the processing conditions. Therefore, the primary objective of the current thesis is to quantitatively study the relationship between the mechanical properties of ESP glasses and the ion exchange processing conditions. Based on this relationship, processing conditions can be determined for any particular requirement of mechanical behavior for ion exchanged glass. To establish a property-processing relationship in ESP glasses, it is necessary to predict the stress profile in ion exchanged glass from the processing conditions. Since the residual stress profile in ion exchanged glass is mainly caused by the K/Na ion exchange and the stress relaxation, the diffusion process and the stress relaxation behavior of glass were studied. The K2O concentration profiles in singe-step and two-step ion exchanged soda lime silicate (SLS) glasses were calculated and found to be in a good agreement with the measured concentration profiles. The uniaxial compressive stress relaxation behavior of the SLS glass in the current thesis at typical ion exchange temperatures was studied. Since the surface composition in ion exchanged glass is significantly different from the composition of untreated glass, this composition difference could cause significant difference in glass properties including viscosity and stress relaxation. Therefore, properties of glasses with different K/Na ratios were studied, and empirical equations were obtained to estimate glass properties from the glass composition. Given the diffusion coefficient, surface concentration, composition-dependent dilation coefficient and stress relaxation data, residual stress profiles in ion-exchanged glasses

  20. Electric-field-modulated exchange coupling within and between magnetic clusters on metal surfaces: Mn dimers on Cu(1 1 1)

    International Nuclear Information System (INIS)

    Juárez-Reyes, L; Pastor, G M; Stepanyuk, V S

    2014-01-01

    The effects of external electric fields (EFs) on the magnetic state and substrate-mediated magnetic coupling between Mn dimers on Cu(1 1 1) have been studied using a first-principles theoretical method. The calculations show that a change in the ground-state magnetic order, from antiferromagnetic (AF) to ferromagnetic (FM), can be induced within an isolated Mn 2 on Cu(1 1 1) by applying a moderately strong EF of about 1 V Å −1 . The magnetic exchange coupling between pairs of dimers displays Ruderman–Kittel–Kasuya–Yosida-like oscillations as a function of the interdimer distance, which depend significantly on the magnetic order within the dimers (FM or AF) and on their relative orientation on the surface. Moreover, it is observed that applying EFs allows modulation of the exchange coupling within and between the clusters as a function of the intercluster distance. At short distances, AF order within the dimers is favoured even in the presence of EFs, while for large distances the EF can induce a FM order. EFs pointing outwards and inwards with respect to the surface favour parallel and antiparallel magnetic alignment between the dimers, resspectively. The dependence of the substrate-mediated interaction on the magnetic state of Mn 2 is qualitatively interpreted in terms of the differences in the scattering of spin-polarized surface electrons. (paper)

  1. Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington

    Science.gov (United States)

    Slater, Lee D.; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Andy; Strickland, Christopher; Johnson, Carole D.; Lane, John W.

    2010-01-01

    We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.

  2. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  3. Measurements of thermal accommodation coefficients.

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  4. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    Science.gov (United States)

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-02

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  5. Effect of different surface treatments on the stability of stainless steels for use as bipolar plates in low and high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.; Schmidt, K. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Wolfsburg (Germany); Tuebke, J.; Cremers, C. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany)

    2010-07-01

    The stability of different stainless steels against corrosion under simulated low and high temperature proton exchange membrane fuel cell (PEMFC) operating conditions was studied. These investigations showed a moderate corrosion resistance for a couple of steels under LT-PEMFC conditions. However, for the HT-PEMFC conditions all specimens except one exhibit visible corrosion traces. With regards to their corrosion resistance after different surface treatments results show a minor improvement in corrosion resistance after the electro polishing process for most of the tested stainless steel samples. (orig.)

  6. Heat exchanger with transpired, highly porous fins

    Science.gov (United States)

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  7. Thermal and hydrodynamic considerations of ice slurry in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Bedecarrats, Jean-Pierre; Strub, Francoise; Peuvrel, Christophe [Laboratoire de Thermique, Energetique et Procedes, Equipe Energetique, Universite de Pau et des Pays de l' Adour, Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France)

    2009-11-15

    This article focuses on the behavior in heat exchangers of an ice slurry composed of fine ice particles inside an ethanol-water solution. The heat transfer and friction characteristics were studied in two double pipe heat exchangers, one with a smooth surface and another with an improved surface. Heat transfer coefficients and pressure drops were experimentally investigated for the slurry flowing in the internal tube with ice mass fractions ranging from 0 to 30% and with flow velocities between 0.3 and 1.9 m s{sup -1}. For some flow velocities, the results showed that an increase in the ice fractions caused a change in the slurry flow structure influencing the evolution of the pressure drops and the heat transfer coefficients. Critical ice fraction values were determined corresponding to a change flow structure from laminar to turbulent motion revealed by the evolution of the friction factor. (author)

  8. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  9. Laser Processed Heat Exchangers

    Science.gov (United States)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  10. Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange

    Science.gov (United States)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chuvakova, M. A.; Dolbilov, M. A.; Zelenovskiy, P. S.; Lobov, A. I.

    2017-03-01

    We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z- one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones.

  11. Exchange transfusion

    Science.gov (United States)

    ... count in a newborn (neonatal polycythemia) Rh-induced hemolytic disease of the newborn Severe disturbances in body chemistry Severe newborn jaundice ... exchange transfusion was performed to treat. Alternative Names Hemolytic disease - exchange transfusion Patient ... Exchange transfusion - series References Costa ...

  12. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.

    Science.gov (United States)

    Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W

    2016-10-12

    Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na + with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh 3 P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.

  13. Developing multi-tracer approaches to constrain the parameterisation of leaf and soil CO2 and H2O exchange in land surface models

    Science.gov (United States)

    Ogée, Jerome; Wehr, Richard; Commane, Roisin; Launois, Thomas; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Zahniser, Mark; Wofsy, Steve; Wingate, Lisa

    2016-04-01

    The net flux of carbon dioxide between the land surface and the atmosphere is dominated by photosynthesis and soil respiration, two of the largest gross CO2 fluxes in the carbon cycle. More robust estimates of these gross fluxes could be obtained from the atmospheric budgets of other valuable tracers, such as carbonyl sulfide (COS) or the carbon and oxygen isotope compositions (δ13C and δ18O) of atmospheric CO2. Over the past decades, the global atmospheric flask network has measured the inter-annual and intra-annual variations in the concentrations of these tracers. However, knowledge gaps and a lack of high-resolution multi-tracer ecosystem-scale measurements have hindered the development of process-based models that can simulate the behaviour of each tracer in response to environmental drivers. We present novel datasets of net ecosystem COS, 13CO2 and CO18O exchange and vertical profile data collected over 3 consecutive growing seasons (2011-2013) at the Harvard forest flux site. We then used the process-based model MuSICA (multi-layer Simulator of the Interactions between vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of each tracer within the forest and exchanged with the atmosphere. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem exchange of each tracer. The model also captured well the dynamic vertical features of tracer behaviour within the canopy. This unique dataset and model sensitivity analysis highlights the benefit in the collection of multi-tracer high-resolution field datasets and the developement of multi-tracer land surface models to provide valuable constraints on photosynthesis and respiration across scales in the near future.

  14. Experimental study of the structure of vapor phase during boiling of R134a on heat exchange surfaces of heat pump

    Science.gov (United States)

    Ustinov, D. A.; Sukhikh, A. A.; Sidenkov, D. V.; Ustinov, V. A.

    2017-10-01

    The heat supply by means of heat pumps is considered now as a rational method of local heating which can lead to economy of primary fuel. At use of low-potential heat, for example, the heat of a ground (5 … 18 °C) or ground waters (8 … 10°C) only small depressing of temperature of these sources (on 3 … 5°C) is possible that demands application of heat exchangers with intensified heatmass transfer surfaces. In thermal laboratory of TOT department the 200 W experimental installation has been developed for research of process of boiling of freon R134a. The principle of action of the installation consists in realisation of reverse thermodynamic cycle and consecutive natural measurement of characteristics of elements of surfaces of heat exchangers of real installations at boiling points of freon from-10°C to +10°C and condensing temperatures from 15°C to 50 °C. The evaporator casing has optical windows for control of process of boiling of freon on ribbed on technology of distorting cut tubes. Temperature measurement in characteristic points of a cycle is provided by copper-constantan thermocouples which by means of ADT are connected to the computer that allows treat results of measurements in a real time mode. The structure of a two-phase flow investigated by means of the optical procedure based on laser technique.

  15. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path.

    Science.gov (United States)

    Opitz, Alexander K; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen

    2011-11-30

    The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded.The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  16. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  17. Effect of system variables involved in packed column SFC of nevirapine as model analyte using response surface methodology: application to retention thermodynamics, solute transfer kinetic study and binary diffusion coefficient determination.

    Science.gov (United States)

    Kaul, Neerej; Agrawal, Himani; Paradkar, A R; Mahadik, K R

    2005-08-31

    A multifactor optimization technique is successfully applied to study the effect of simultaneously varying the system variables on feasibility of nevirapine analysis by packed column supercritical fluid chromatography (PC-SFC). The optimal conditions were determined with the aid of the response surface methodology using 3(3) factorial designs. The method is based on methanol-modified carbon dioxide as the mobile phase at flow rate of 3.0 ml/min with elution through a JASCO Finepak SIL-5, [C18 (5-micron, 25 cm x 4.6 mm, i.d.)] column using photodiode array detection. The method has been successfully used to analyze commercial solid dosage form to assess the chromatographic performance of SFC system. The present work briefs the thermodynamic applications of PC-SFC with an emphasis on the results of nevirapine. The foremost of such applications is the determination of solute diffusion coefficient in supercritical mobile phase by Taylor-Aris peak broadening technique.

  18. The application of rational approximation in the calculation of a temperature field with a non-linear surface heat-transfer coefficient during quenching for 42CrMo steel cylinder

    Science.gov (United States)

    Cheng, Heming; Huang, Xieqing; Fan, Jiang; Wang, Honggang

    1999-10-01

    The calculation of a temperature field has a great influence upon the analysis of thermal stresses and stains during quenching. In this paper, a 42CrMo steel cylinder was used an example for investigation. From the TTT diagram of the 42CrMo steel, the CCT diagram was simulated by mathematical transformation, and the volume fraction of phase constituents was calculated. The thermal physical properties were treated as functions of temperature and the volume fraction of phase constituents. The rational approximation was applied to the finite element method. The temperature field with phase transformation and non-linear surface heat-transfer coefficients was calculated using this technique, which can effectively avoid oscillationin the numerical solution for a small time step. The experimental results of the temperature field calculation coincide with the numerical solutions.

  19. Hydraulic and thermal behaviour of a corrugated plane canal. Application to plate-based heat exchangers

    International Nuclear Information System (INIS)

    Amblard, Alain

    1986-01-01

    As corrugations are often used in heat exchangers in order to promote heat exchange mechanisms through a reduction of boundary layer thickness, an increase of turbulence within the boundary layer, and an increase of exchange surface, the objectives of this research thesis are, on the one hand, to determine the influence of corrugation geometry on heat exchange and friction laws, and, on the other hand, to develop a computing software to describe the flow and heat exchange in the elementary canal. This study is limited to the case of single-phase forced convection in water. After a bibliographical overview on the hydraulic and thermal behaviour of corrugated surfaces used in heat exchangers, the author presents the different studied geometries, and the experimental installation used to determine the friction and exchange coefficient in a vertical duct formed by two corrugated plates. Experimental results are presented and compared with respect to the shape of exchange surfaces. The author then reports the use of two-dimensional code used to describe the flow in an exchanger duct [fr

  20. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    Science.gov (United States)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  1. Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Mokamati, S.V.; Prasad, R.C.

    2003-01-01

    In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)

  2. Influences of the wavy surface inserted in the middle of a circular tube heat exchanger on thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Jedsadaratanancai, Withada [King Mongkut' s Institute of Technology Ladkrabang, Bangkok (Thailand); Boonloi, Amnart [King Mongkut' s University of Technology North Bangkok, Bangkok (Thailand)

    2015-09-15

    Numerical investigations on flow topology, heat transfer behavior and performance evaluation in a circular tube inserted with various configurations of wavy surfaces, Inclined wavy surface (IWS), V-downstream wavy surface (VDWS), V-Upstream wavy surface (VUWS) are presented. The effects of the flow attack angles; 20 .deg., 30 .deg., 45.deg. and 60.deg. are studied for the Reynolds numbers, Re = 100-2000. The numerical results are compared with the smooth circular tube with no wavy surface and the previous works. It is found that the IWS, VDWS and VUWS can produce longitudinal vortex flow and impinging jet of the fluid flow like inclined baffle, V-downstream baffle and V-Upstream baffle, respectively, but give lower friction loss. The flow phenomena created by the wavy surfaces help to augment the heat transfer rate and thermal performance in the test tube. In the range studied, the order of enhancement for heat transfer rate is around 1.40-3.75, 1.60-6.25 and 1.30-5.80 times higher than the smooth tube for IWS, VDWS and VUWS, respectively. Moreover, the maximum thermal performance, presented in terms of the Thermal enhancement factor (TEF), is found to be about 1.60, 2.40 and 2.10, respectively, for IWS, VUWS and VDWS.

  3. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  4. Na+/H+ exchange regulatory factor 1 is required for ROMK1 K+ channel expression in the surface membrane of cultured M-1 cortical collecting duct cells.

    Science.gov (United States)

    Suzuki, Takashi; Nakamura, Kazuyoshi; Mayanagi, Taira; Sobue, Kenji; Kubokawa, Manabu

    2017-07-22

    The ROMK1 K + channel, a member of the ROMK channel family, is the major candidate for the K + secretion pathway in the renal cortical collecting duct (CCD). ROMK1 possesses a PDZ domain-binding motif at its C-terminus that is considered a modulator of ROMK1 expression via interaction with Na + /H + exchange regulatory factor (NHERF) 1 and NHERF2 scaffold protein. Although NHERF1 is a potential binding partner of the ROMK1 K + channel, the interaction between NHERF1 and K + channel activity remains unclear. Therefore, in this study, we knocked down NHERF1 in cultured M-1 cells derived from mouse CCD and investigated the surface expression and K + channel current in these cells after exogenous transfection with EGFP-ROMK1. NHERF1 knockdown resulted in reduced surface expression of ROMK1 as indicated by a cell biotinylation assay. Using the patch-clamp technique, we further found that the number of active channels per patched membrane and the Ba 2+ -sensitive whole-cell K + current were decreased in the knockdown cells, suggesting that reduced K + current was accompanied by decreased surface expression of ROMK1 in the NHERF1 knockdown cells. Our results provide evidence that NHERF1 mediates K + current activity through acceleration of the surface expression of ROMK1 K + channels in M-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    Science.gov (United States)

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana

    2018-01-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.

  6. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  7. Accurate description of the bonding of C6H6 at noble metal surfaces, using a local exchange-correlation correction scheme

    Science.gov (United States)

    McNellis, Erik; Reuter, Karsten; Scheffler, Matthias

    2008-03-01

    The adsorption of benzene (C6H6) at the Cu(111) surface is a much studied model system for the interaction of larger π-conjugated molecules with solid surfaces. At first glance a simple system, the suspected predominantly van der Waals type bonding at the extended metal surface poses a severe challenge for accurate first-principles calculations. Density-Functional Theory (DFT) with local and semi-local exchange-correlation (xc) functionals is uncertain to properly account for this type of bonding, while the system sizes required to correctly grasp the metallic band structure are computationally untractable with correlated wave function techniques. We overcome these limitations with a recently introduced ``local xc correction'' scheme [1], correcting the adsorption energetics from present-day DFT xc functionals with hybrid functional and Møller-Plesset perturbation theory calculations for small clusters. From the obtained convergence of the xc correction with cluster size we can disentangle short-range and dispersion type contributions to the bonding of the molecule at different heights above the surface. This enables us to qualify the role played by the two contributions in determining the binding energetics and geometry. [1] Q.-M. Hu, K. Reuter, and M. Scheffler, PRL 98, 176103 (2007) and 99, 169903 (2007); C. Tuma and J. Sauer, CPL 387, 388 (2004).

  8. Numerical analysis of three-dimensional flow and thermal behaviour in a scraped-surface heat exchanger; Analyse numerique tridimensionnelle des comportements hydrodynamique et thermique d`un echangeur de chaleur a surface raclee

    Energy Technology Data Exchange (ETDEWEB)

    Baccar, M.; Salah Abid, M. [Ecole Nationale d`ingenieurs de Sfax (Tunisia)

    1997-11-01

    In the present work, heat transfer from a jacketed wall of a scraped-surface heat exchanger (SSHE) is numerically simulated. With the purpose to analyse the hydrodynamic and thermal behaviour under various operating and geometrical conditions, the three-dimensional form of the Navier-Stockes and energy equations are discretized using the controlled-volume method. The hydrodynamic and thermal behaviour can take a variety of possible configurations depending on the number, shape, size of the scrapers and the ratio of rotation to the axial Reynolds numbers. The rate of heat transfer is also numerically determined in order to optimize operating and geometrical conditions. (authors) 20 refs.

  9. Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2004-01-01

    Full Text Available A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd, canopy resistances (Rc and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3 fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+] of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.

  10. ASOS Surface Extinction Coefficient by STI

    Data.gov (United States)

    Washington University St Louis — ASOS_STI represents a 250-station subset of the national ASOS SURF_MET dataset. The unique feature of this data is that the visibility sensor values are available in...

  11. A Remote Sensing Analysis on the Spatiotemporal Variation of Land Surface Albedo and Emissivity in South Florida: An Implication for Surface-Atmosphere Energy and Water Exchange

    Science.gov (United States)

    Kandel, H. P.; Melesse, A. M.

    2016-12-01

    Land use /land cover has wide range of impacts from surface energy budget to radiative forcing of climate change. This study aims to analyze the variation in two radiative properties, albedo and emissivity in South Florida landscape to investigate how radially distinct surfaces lead to a energy and moisture contrast on the near-surface atmosphere and eventually to surface-induced climate. Maps of land surface albedo and emissivity were prepared using algorithms that convert narrow-band spectral reflectance to total short-wave albedo, and vegetation index to emissivity from Landsat -5 TM images of several different summer dates. A comparative analysis was made using the zonal statistics in ArcGIS. Relatively higher albedos were found over cultivated and developed lands (0.17 - 0.21) than in forests and herbaceous wetland (0.09 - 0.16). The emissivities, on the other hand, are lower for developed and drained lands. Average albedo exhibits a slight increase whereas emissivity is found to be decreasing through time. Urban areas showing higher albedos, a unique occurrence in this landscape, store less short-wave radiation, however, their lower emissivities points to increased storage of long-wave radiation. The results imply that the emissivity perhaps play a dominant role in heat island development and initiation of local circulation in urbanized South Florida.

  12. Differences in model sensitivities to ammonia air-surface exchange parameters in unmanaged and agricultural ecosystems in a regional air-quality model coupled to an agro-ecosystem model

    Science.gov (United States)

    Bash, J. O.; Dennis, R. L.; Cooter, E. J.; Pleim, J.; Walker, J. T.

    2011-12-01

    Atmospheric ammonia (NH3) is an important precursor for particulate matter and NHx (NH3 + NH4+) deposition contributes to surface water eutrophication, soil acidification and decline in species biodiversity, yet NH3 emissions are challenging to estimate and concentrations are difficult to measure. As climate change leads to increased variability in meteorology, relying on seasonal averages as the drivers for NH3 emissions estimates adds additional uncertainty to model simulations. It is necessary to capture the dynamic and episodic nature of ammonia emissions, including the influences of meteorology, air-surface exchange, biogeochemistry and human activity to reduce uncertainty in model scenarios of NH3 emissions mitigation strategies, agricultural food production and climate change. The U.S. EPA's Community Multiscale Air-Quality (CMAQ) model with bidirectional NH3 exchange has been coupled with the USDA Environmental Policy Integrated Climate (EPIC) agro-ecosystem model's nitrogen geochemistry algorithms to connect agricultural cropping management practices to the emissions and atmospheric composition of reduced nitrogen and model the biogeochemical feedbacks on NH3 air-surface exchange. The coupled model reduced the annual NHx wet deposition bias on a domain wide basis by ~15% and the annual biases in ambient NH4+ concentrations at background sites by ~10%. Details of the coupled model and the sensitivity of NH3 air-surface exchange and ambient NH3 and aerosol NH4+ concentrations on the soil and vegetation NH4+ content will be presented from continental scale model simulations. NH3 exchange is most sensitive to the parameterization of the vegetation canopy NH3 compensation point and canopy resistances to air-surface exchange in unmanaged ecosystems while soil compensation points and soil resistance parameters are driving the air-surface exchange in agricultural cropping systems. Climate and land use change implication of the model sensitivities and future

  13. Barter exchanges

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    Although barter is often perceived as something that proceeded money, barter is still used. The focus of the paper is on barter exchanges. Barter exchanges are used both in developing countries as well as in developed countries (including the U.S.). They are used by both organizations...... and individuals. They usually allow to exchange good but some include also services. Some exchanges allow only for bi-directional barter, i.e. when only two parties are involved in the exchange. But probably most of the barter exchanges use barter money; this makes it easier to exchange goods and services...

  14. Heat and mass exchanger

    Science.gov (United States)

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  15. A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation

    Directory of Open Access Journals (Sweden)

    J. Y. Tang

    2013-02-01

    Full Text Available We describe a new top boundary condition (TBC for representing the air–soil diffusive exchange of a generic volatile tracer. This new TBC (1 accounts for the multi-phase flow of a generic tracer; (2 accounts for effects of soil temperature, pH, solubility, sorption, and desorption processes; (3 enables a smooth transition between wet and dry soil conditions; (4 is compatible with the conductance formulation for modeling air–water volatile tracer exchange; and (5 is applicable to site, regional, and global land models.

    Based on the new TBC, we developed new formulations for bare-soil resistance and corresponding soil evaporation efficiency. The new soil resistance is predicted as the reciprocal of the harmonic sum of two resistances: (1 gaseous and aqueous molecular diffusion and (2 liquid mass flow resulting from the hydraulic pressure gradient between the soil surface and center of the topsoil control volume. We compared the predicted soil evaporation efficiency with those from several field and laboratory soil evaporation measurements and found good agreement with the typically observed two-stage soil evaporation curves. Comparison with the soil evaporation efficiency equation of Lee and Pielke (1992; hereafter LP92 indicates that their equation can overestimate soil evaporation when the atmospheric resistance is low and underestimate soil evaporation when the soil is dry. Using a synthetic inversion experiment, we demonstrated that using inverted soil resistance data from field measurements to derive empirical soil resistance formulations resulted in large uncertainty because (1 the inverted soil resistance data are always severely impacted by measurement error and (2 the derived empirical equation is very sensitive to the number of data points and the assumed functional form of the resistance.

    We expect the application of our new TBC in land models will provide a consistent representation for the diffusive tracer

  16. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  17. Surface fluorination of poly(fluorenyl ether ketone) ionomers as proton exchange membranes for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.; Xiao, M.; Wang, S.J.; Shen, P.K.; Meng, Y.Z. [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2011-06-15

    A series of sulphonated poly(fluorenyl ether ketone) ionomers were successfully fluorinated by the means of direct surface fluorination. Polymer ionomer samples in two different states (membrane and powder) were treated with F{sub 2} gas which is diluted in N{sub 2} in a special reactor. X-ray photoelectron spectroscopy (XPS) was used to examine the F/C ratios of the fluorinated materials. The results revealed that the fluorination only occurred on the membrane surface and the fluorination degree increased with increasing F{sub 2} concentration in N{sub 2}. The membrane subjected to fluorination shows an obviously enhanced oxidative stability. The endurance in a Fenton's reagent of FSPFEK-P-28 is longer than 180 min which is two times longer than that of un-fluorinated SPFEK. The PEM properties and single fuel cell performances were investigated by comparison of un- and fluorinated polymer ionomers. The fluorinated membranes demonstrated an enhanced hydrophobic surface property, increased proton conductivities and better single fuel cell performances. Surface fluorination provides a convenient and useful approach to prepare highly proton conductive membrane with long life-time PEM fuel cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  19. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    Science.gov (United States)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  20. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  1. Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga.

    Directory of Open Access Journals (Sweden)

    Laurie C Hofmann

    Full Text Available Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA using microsensors. We measured pH, oxygen (O2, and calcium (Ca2+ dynamics and fluxes at the thallus surface under ambient (8.1 and low (7.8 seawater pH (pHSW and across a range of irradiances. Acetazolamide (AZ was used to inhibit extracellular carbonic anhydrase (CAext, which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA.

  2. Separation of Cr(III) from Cr(VI) by Triton X-100 cerium(IV) phosphate as a surface active ion exchanger

    International Nuclear Information System (INIS)

    El-Azony, K.M.; Ismail Aydia, M.; El-Mohty, A.A.

    2011-01-01

    Triton X-100 cerium(IV) phosphate (TX-100CeP) was synthesized and characterized by using IR, X-ray, TGA/DT and the elemental analysis. The chemical stability of TX-100CeP versus the different concentrations of HCl acid was studied before and after its exposure to the radiation dose (30 K Gray). The effect of HCl concentration on separation of Cr(III) from Cr(VI) by using TX-100CeP as surface active ion exchanger was also studied. A novel method was achieved for the quantifying of Cr(III) and Cr(VI) ions by using the high-performance liquid chromatography (HPLC) at wavelength 650 nm, a stationary phase consists of reversed phase column (Nucleosil phenyl column; 250 x 4.6 mm, 5 μm), and a mobile phase consists of 0.001 M di-(2-ethylhexyl) phosphoric acid (DEHPA) in methanol:water (70:30 v/v). The retention times were 7.0 and 8.5 min, for the Cr(III) and Cr(VI), respectively. The exchange capacity of Cr(III) was quantified (2.1 meq/g) onto the TX-100CeP. (author)

  3. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  4. Numerical sensitivity study of the nocturnal low-level jet over a forest canopy and implications for nocturnal surface exchange of carbon dioxide and other trace gases

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, M.Y.; Duarte, H.F.

    2010-01-01

    and are typically intertwined with other contributing factors, they constitute an important cause of jet formation. This mechanism is the only one that can be simulated by one-dimensional atmospheric boundary-layer model. This mechanism is a strong function of the distribution of surface energy properties which...... in the nocturnal boundary layer, several studies demonstrated the role of nocturnal jets in transporting moisture, ozone, and other trace gases between the biosphere and the lower atmosphere (Mathieu et al., 2005; Karipot et al., 2006; 2007; 2008; 2009). This study suggests that SCADIS, because of its simplicity...... and low computational demand, has potential as a research tool regarding surface–atmosphere gaseous exchange in the nocturnal boundary layer, especially if carbon dioxide, water vapor, ozone and other gases are released or deposited inside the forest canopy....

  5. Reflection and absorption coefficients for use in room acoustic simulations

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    Two ideas to improve the boundary conditions for room acoustic simulations are presented. First, all rooms have finite boundary surfaces, thereby a reflection coefficient for finite surfaces should be physically more suitable than that for infinitely large surfaces. Second, absorption coefficients...

  6. Extinction Coefficient of Gold Nanostars.

    Science.gov (United States)

    de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-07-30

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

  7. Assessing the impact of cloud slicing techniques on estimates of surface CO2 exchange using atmospheric inversions

    Science.gov (United States)

    Schuh, A. E.; Kawa, S. R.; Crowell, S.; Browell, E. V.; Abshire, J. B.; Ramanathan, A. K.

    2015-12-01

    Typically more than half of the earth's surface is cloudy at any one point in time. Passive CO2 satellite instruments such as GOSAT and OCO-2 have historically filtered out these scenes, as being too difficult to interpret. However, with the advent of active sensing technologies coupled with ranging capabilities, many of these limitations are being lifted. While, the remote sensing community continues to grapple with the radiative-transfer aspects of the cloud-top CO2 retrieval problem, the carbon cycling community has begun to consider what parts of the carbon cycle might be constrained with this new stream of data. Using cloud data derived from CALIPSO, a simulated carbon cycle, and state of the art atmospheric inversion models, we will investigate the impact of "above cloud" partial-column retrievals of CO2 upon estimates of surface CO2 flux. In particular, we will investigate (1) the general constraint imposed upon surface CO2 fluxes, by retrievals over spatially and time coherent cloud structures around the globe as well as (2) the partitioning of gross primary production and respiration CO2 flux terms by differencing full-column and above-cloud partial column CO2 over scenes with optically thick low clouds.

  8. A corrosive resistant heat exchanger

    Science.gov (United States)

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  9. The roles of protein disulphide isomerase family A, member 3 (ERp57) and surface thiol/disulphide exchange in human spermatozoa-zona pellucida binding.

    Science.gov (United States)

    Wong, Chi-Wai; Lam, Kevin K W; Lee, Cheuk-Lun; Yeung, William S B; Zhao, Wei E; Ho, Pak-Chung; Ou, Jian-Ping; Chiu, Philip C N

    2017-04-01

    expression in vitro stimulated ZP-binding capacity of human spermatozoa. Blocking of ERp57 function by specific antibody or inhibitors against ERp57 reduced the surface thiol content and ZP-binding capacity of human spermatozoa. N/A. The mechanisms by which up-regulation of surface thiol content stimulates spermatozoa-ZP binding have not been depicted. Thiol-disulphide exchange is a crucial event in capacitation. ERp57 modulates the event and the subsequent fertilization process. Modulation of the surface thiol content of the spermatozoa of subfertile men may help to increase fertilization rate in assisted reproduction. This work was supported by The Hong Kong Research Grant Council Grant HKU764611 and HKU764512M to P.C.N.C. The authors have no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  10. Prestarlike functions with negative coefficients

    Directory of Open Access Journals (Sweden)

    H. Silverman

    1979-01-01

    Full Text Available The extreme points for prestarlike functions having negative coefficients are determined. Coefficient, distortion and radii of univalence, starlikeness, and convexity theorems are also obtained.

  11. Multicomponent liquid ion exchange with chabazite zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  12. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  13. Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run.

    Science.gov (United States)

    Jindal, Shivali; Anand, Sanjeev; Metzger, Lloyd; Amamcharla, Jayendra

    2018-04-01

    Flow of milk through the plate heat exchanger (PHE) results in denaturation of proteins, resulting in fouling. This also accelerates bacterial adhesion on the PHE surface, eventually leading to the development of biofilms. During prolonged processing, these biofilms result in shedding of bacteria and cross-contaminate the milk being processed, thereby limiting the duration of production runs. Altering the surface properties of PHE, such as surface energy and hydrophobicity, could be an effective approach to reduce biofouling. This study was conducted to compare the extent of biofouling on native stainless steel (SS) and modified-surface [Ni-P-polytetrafluoroethylene (PTFE)] PHE during the pasteurization of raw milk for an uninterrupted processing run of 17 h. For microbial studies, raw and pasteurized milk samples were aseptically collected from inlets and outlets of both PHE at various time intervals to examine shedding of bacteria in the milk. At the end of the run, 3M quick swabs (3M, St. Paul, MN) and ATP swabs (Charm Sciences Inc., Lawrence, MA) were used to sample plates from different sections of the pasteurizers (regeneration, heating, and cooling) for biofilm screening and to estimate the efficiency of cleaning in place, respectively. The data were tested for ANOVA, and means were compared. Modified PHE experienced lower mesophilic and thermophilic bacterial attachment and biofilm formation (average log 1.0 and 0.99 cfu/cm 2 , respectively) in the regenerative section of the pasteurizer compared with SS PHE (average log 1.49 and 1.47, respectively). Similarly, higher relative light units were observed for SS PHE compared with the modified PHE, illustrating the presence of more organic matter on the surface of SS PHE at the end of the run. In addition, at h 17, milk collected from the outlet of SS PHE showed plate counts of 5.44 cfu/cm 2 , which were significantly higher than those for pasteurized milk collected from modified PHE (4.12 log cfu/cm 2 ). This

  14. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  15. Turbulent heat transfer on a permeable surface in the range of supercritical gas injections

    International Nuclear Information System (INIS)

    Kichatov, B.V.; Polyaev, V.M.

    1997-01-01

    Gas injection in a permeable surface is used as one of the most perspective ways of thermal protection. Forcing back of the boundary layer from the surface takes place by injection, whereby the friction coefficients and heat exchange are decreased. By certain injection parameter, which is called critical, there takes place the complete forcing back of the boundary layer from the surface. However the process of friction and heat exchange degeneration proceeds nonuniformly. This article is devoted to explanation of the above notice. Analysis of the problem is based on the limiting relative law of heat exchange and friction for a turbulent boundary layer

  16. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    Science.gov (United States)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8

  17. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling

    International Nuclear Information System (INIS)

    Wang Xiaoping; Sheng Jiujiang; Gong Ping; Xue Yonggang; Yao Tandong; Jones, Kevin C.

    2012-01-01

    There are limited data on persistent organic pollutants (POPs) in the soils of the Tibetan Plateau. This paper presents data from a survey of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in 40 background surface (0–5 cm) soils of the Tibetan Plateau. Soil concentrations (pg/g, dw) ranged as follows: DDTs, 13-7700; HCHs, 64-847; HCB, 24-564; sum of 15 PCBs, 75-1021; and sum of 9 PBDEs, below detection limit −27. Soil DDT, HCB, PCB and PBDE concentrations were strongly influenced by soil organic carbon content. HCH concentrations were clearly associated with the proximity to source regions in south Asia. The air–soil equilibrium status of POPs suggested the Tibetan soils may be partial “secondary sources” of HCB, low molecular weight PCBs and HCHs and will likely continue to be “sinks” for the less volatile DDE and DDT. - Highlights: ► Soil organic carbon content influence the spatial distribution of persistent organic pollutants. ► The Tibetan soil acts as “secondary sources” for HCB, low molecular weight PCBs and HCHs. ► The Tibetan soil will continue to be “sinks” for DDE and DDT. - Tibetan soils may be potential “secondary sources” of the HCB, low molecular weight PCBs and HCHs that are observed in air.

  18. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    International Nuclear Information System (INIS)

    Kuznetsov, A. P.; Buzinskij, O. I.; Gubsky, K. L.; Nikitina, E. A.; Savchenkov, A. V.; Tarasov, B. A.; Tugarinov, S. N.

    2015-01-01

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxide films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements

  19. Taxa de câmbio e preços de exportação no Brasil: avaliação empírica dos coeficientes de pass-through setoriais Exchange rates and export prices in Brazil: empirical estimates of pass-through coefficients

    Directory of Open Access Journals (Sweden)

    André Luiz Correa

    2012-04-01

    Full Text Available Este trabalho analisa, de forma empírica, no período 1995-2005, os impactos de variações cambiais sobre os preços de exportação no Brasil, desagregados setorialmente, levando em consideração a inserção externa da economia em um contexto de ampliação da internacionalização e reestruturação produtiva. O cálculo dos coeficientes de pass-through é complementado por um exercício de análise fatorial, com o objetivo de verificar se é possível encontrar padrões setoriais definidos. Os resultados indicam maiores repasses em setores produtores de bens de menor conteúdo tecnológico em que o Brasil possui posição comercial relativamente forte, ao passo que parte dos setores produtores de manufaturados apresenta coeficientes de repasse cambial reduzido.This work empirically analyses the impacts that changes in exchange rates had on export prices in Brazil, by sector, from 1995 to 2005. The main theoretical references take into account microeconomic aspects of international trade, such as market structure and the role of transnational corporations. Pass-through coefficients were calculated, and factor analysis techniques were also applied with the aim of finding sector specific patterns. The findings suggest that the exchange rate pass-through to export prices of less complex goods, such as commodities, tends to be higher. Regarding more complex goods, for example, automobiles and machinery, the results indicate reduced pass-through, notwithstanding the high pass-through to prices of electronics and other vehicles.

  20. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA

    Science.gov (United States)

    Smith, Christopher G.; Price, René M.; Swarzenski, Peter W.; Stalker, Jeremy C.

    2016-01-01

    Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these lowhydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows— estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry

  1. Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty

    Science.gov (United States)

    Stocchi, Paolo; Davolio, Silvio

    2017-11-01

    Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense air-sea interactions and it is reasonable to hypothesize that the Adriatic sea surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour fluxes across the Italian coast and atmospheric water budget over the Adriatic Sea have been developed and applied in order to characterize the air mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of air that flows over the Adriatic Sea. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.

  2. The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during BAQS-Met

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2011-01-01

    Full Text Available The Border Air Quality and Meteorology study (BAQS-Met was an intensive field campaign conducted in Southwestern Ontario during the summer of 2007. The focus of BAQS-Met was determining the causes of the formation of ozone and fine particulate matter (PM2.5, and of the regional significance of trans-boundary transport and lake breeze circulations on that formation. Fast (1 Hz measurements of ammonia were acquired using a Quantum Cascade Laser Tunable Infrared Differential Absorption Spectrometer (QC-TILDAS at the Harrow supersite. Measurements of PM2.5 ammonium, sulfate and nitrate were made using an Ambient Ion Monitor Ion Chromatograph (AIM-IC with hourly time resolution. The median mixing ratio of ammonia was 2.5 ppb, with occasional high spikes at night resulting from local emissions. Measurements were used to assess major local emissions of NH3, diurnal profiles and gas-particle partitioning. The measurements were compared with results from A Unified Regional Air-quality Modelling System (AURAMS. While the fraction of total ammonia (NHx≡NH3 + NH4+ observed in the gas phase peaks between 0.1 and 0.8, AURAMS tended to predict fractions of either less than 0.05 or greater than 0.8. The model frequently predicted acidic aerosol, in contrast with observations wherein NHx almost always exceeded the observed equivalents of sulfate. One explanation for our observations is that the net flux of ammonia from the land surface to the atmosphere increases when aerosol sulfate is present, effectively buffering the mixing ratio of gas phase ammonia, a process not included in the model. A simple representation of an offline bi-directional flux parameterization using the ISORROPIA thermodynamic model was successful at reducing the population of zero gas fraction points, but not the higher gas fraction points.

  3. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  4. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  5. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

  6. Coefficient estimates of negative powers and inverse coefficients for ...

    Indian Academy of Sciences (India)

    λ. Using this we shall determine the ... Univalent; starlike; meromorphic functions; subordination; coefficient bounds; inverse ...... [6] FitzGerald C H, Quadratic inequalities and coefficient estimates for Schlicht functions, Arch. Ration. Mech. Anal.

  7. Fe atom exchange between aqueous Fe2+ and magnetite.

    Science.gov (United States)

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  8. Pressure-viscosity coefficient of biobased lubricants

    Science.gov (United States)

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  9. An alternative coefficient for sound absorption

    NARCIS (Netherlands)

    Wijnant, Ysbrand H.; Kuipers, E.R.; de Boer, Andries; Sas, P; Jonckheere, S.; Moens, D.

    2013-01-01

    The acoustic absorption coefficient is a number that indicates which fraction of the incident acoustic power impinging on a surface is being absorbed. The incident acoustic power is obtained by spatial integration of the incident intensity, which is (classically) defined as the time-averaged

  10. Determination of the convective heat transfer coefficient

    NARCIS (Netherlands)

    Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.

    The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions

  11. Evaluation of global continental hydrology as simulated by the Land-surface Processes and eXchanges Dynamic Global Vegetation Model

    Directory of Open Access Journals (Sweden)

    S. J. Murray

    2011-01-01

    Full Text Available Global freshwater resources are sensitive to changes in climate, land cover and population density and distribution. The Land-surface Processes and eXchanges Dynamic Global Vegetation Model is a recent development of the Lund-Potsdam-Jena model with improved representation of fire-vegetation interactions. It allows simultaneous consideration of the effects of changes in climate, CO2 concentration, natural vegetation and fire regime shifts on the continental hydrological cycle. Here the model is assessed for its ability to simulate large-scale spatial and temporal runoff patterns, in order to test its suitability for modelling future global water resources. Comparisons are made against observations of streamflow and a composite dataset of modelled and observed runoff (1986–1995 and are also evaluated against soil moisture data and the Palmer Drought Severity Index. The model captures the main features of the geographical distribution of global runoff, but tends to overestimate runoff in much of the Northern Hemisphere (where this can be somewhat accounted for by freshwater consumption and the unrealistic accumulation of the simulated winter snowpack in permafrost regions and the southern tropics. Interannual variability is represented reasonably well at the large catchment scale, as are seasonal flow timings and monthly high and low flow events. Further improvements to the simulation of intra-annual runoff might be achieved via the addition of river flow routing. Overestimates of runoff in some basins could likely be corrected by the inclusion of transmission losses and direct-channel evaporation.

  12. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    Science.gov (United States)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  13. Application of response surface methodology and artificial neural network: modeling and optimization of Cr(VI) adsorption process using Dowex 1X8 anion exchange resin.

    Science.gov (United States)

    Harbi, Soumaya; Guesmi, Fatma; Tabassi, Dorra; Hannachi, Chiraz; Hamrouni, Bechir

    2016-01-01

    We report the adsorption efficiency of Cr(VI) on a strong anionic resin Dowex 1X8. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of this adsorbent were investigated. Response surface methodology was applied to evaluate the main effects and interactions among initial pH, initial Cr(VI) concentration, adsorbent dose and temperature. Analysis of variance depicted that resin dose and initial pH were the most significant factors. Desirability function (DF) showed that the maximum Cr(VI) removal of 95.96% was obtained at initial pH 5, initial Cr(VI) concentration of 100 mg/L, resin dose of 2 g and temperature of 283 K. Additionally, a simulated industrial wastewater containing 14.95 mg/L of Cr(VI) was treated successfully by Dowex 1X8 at optimum conditions. Same experimental design was employed to develop the artificial neural network. Both models gave a high correlation coefficient (RRSM(2) = 0.932, RANN(2) = 0.996).

  14. Heat exchanger with ceramic elements

    Science.gov (United States)

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  15. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  16. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  17. Dependence of sputtering coefficient on ion dose

    International Nuclear Information System (INIS)

    Colligon, J.S.; Patel, M.H.

    1977-01-01

    The sputtering coefficient of polycrystalline gold bombarded by 10-40 keV Ar + ions had been measured as a function of total ion dose and shown to exhibit oscillations in magnitude between 30 and 100%. Possible experimental errors which would give rise to such an oscillation have been considered, but it is apparent that these factors are unable to explain the measurements. It is proposed that a change in the Sublimation Energy associated with either bulk damage or formation of surface topographical features arising during ion bombardment may be responsible for the observed variations in sputtering coefficient. (author)

  18. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  19. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: Modeling versus measurements

    Science.gov (United States)

    Mezbahuddin, M.; Grant, R. F.; Hirano, T.

    2015-11-01

    Soil carbon stocks in tropical peatlands have declined recently from water table depth (WTD) drawdown caused by increased frequency and intensity of climate extremes like El Niño and by artificial drainage. Restoration of these carbon stocks under these climatic and anthropogenic disturbances requires improved predictive capacity for hydrological feedbacks to ecological processes. Process-based modeling of tropical peatland ecohydrology could provide us with such capacity, but such modeling has thus far been limited. We aimed at using basic processes for water and O2 transport and their effects on ecosystem water, carbon, and nitrogen cycling to model seasonal and interannual variations of WTD and surface energy exchange. We tested these processes in a process-based model ecosys in a drained tropical Indonesian peatland from an El Niño year 2002 to a wetter year 2005. WTD was modeled from hydraulically driven water transfers controlled vertically by precipitation versus evapotranspiration (ET) and laterally by discharge versus recharge to or from an external reference WTD. These transfers caused WTD drawdown and soil drying to be modeled during dry seasons, which reduced ET and increased Bowen ratio by lowering stomatal conductance. More pronounced dry seasons in drier years 2002-2004 versus wetter year 2005 caused deeper WTD, more intense peat drying, and greater plant water stress. These modeled trends were well corroborated by site measurements as apparent in regression statistics of modeled versus observed WTD (R2 > 0.8), latent heat (R2 > 0.8), and sensible heat (R2 > 0.7) fluxes. Insights gained from this modeling would aid in predicting the fate of tropical peatlands under future drier climates.

  20. Hollow-core magnetic colloidal nanocrystal clusters with ligand-exchanged surface modification as delivery vehicles for targeted and stimuli-responsive drug release.

    Science.gov (United States)

    Li, Dian; Tang, Jing; Guo, Jia; Wang, Shilong; Chaudhary, Deeptangshu; Wang, Changchun

    2012-12-14

    The fabrication of hierarchical magnetic nanomaterials with well-defined structure, high magnetic response, excellent colloidal stability, and biocompatibility is highly sought after for drug-delivery systems. Herein, a new kind of hollow-core magnetic colloidal nanocrystal cluster (HMCNC) with porous shell and tunable hollow chamber is synthesized by a one-pot solvothermal process. Its novelty lies in the "tunability" of the hollow chamber and of the pore structure within the shell through controlled feeding of sodium citrate and water, respectively. Furthermore, by using the ligand-exchange method, folate-modified poly(acrylic acid) was immobilized on the surface of HMCNCs to create folate-targeted HMCNCs (folate-HMCNCs), which endowed them with excellent colloidal stability, pH sensitivity, and, more importantly, folate receptor-targeting ability. These assemblages exhibited excellent colloidal stability in plasma solution. Doxorubicin (DOX), as a model anticancer agent, was loaded within the hollow core of these folate-HMCNCs (folate-HMCNCs-DOX), and drug-release experiments proved that the folate-HMCNCs-DOX demonstrated pH-dependent release behavior. The folate-HMCNCs-DOX assemblages also exhibited higher potent cytotoxicity to HeLa cells than free doxorubicin. Moreover, folate-HMCNCs-DOX showed rapid cell uptake apart from the enhanced cytotoxicity to HeLa cells. Experimental results confirmed that the synthesized folate-HMCNCs are smart nanovehicles as a result of their improved folate receptor-targeting abilities and also because of their combined pH- and magnetic-stimuli response for applications in drug delivery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  2. Diffusion-Exchange Weighted Imaging

    Directory of Open Access Journals (Sweden)

    Saadallah Ramadan

    2009-01-01

    Full Text Available A method has been developed whereby diffusion and exchange in micro cellular structures in the human brain are correlated to produce a new type of image contrast leading to determination of water exchange rates in vivo. The diffusion method relies on differential apparent diffusion coefficients as detectable nuclei exchange between adjacent compartments marked with different apparent diffusion coefficient values (e.g. intra- and extra-cellular compartments. A new pulse sequence was developed, and used to calculate water intra/extra mean residence times in brain, and the signal dependence on various experimental parameters was analysed. The method was tested in vivo at 3T field strength and produced 160 ms and 550 ms for extra-cellular and intra-cellular mean residence times, respectively.

  3. Numerical investigation on aluminum foam application in a tubular heat exchanger

    Science.gov (United States)

    Buonomo, Bernardo; di Pasqua, Anna; Ercole, Davide; Manca, Oronzio; Nardini, Sergio

    2018-02-01

    A numerical study has been conducted to examine the thermal and fluiddynamic behaviors of a tubular heat exchanger in aluminum foam. A plate in metal foam with a single array of five circular tubes is the geometrical domain under examination. Darcy-Forchheimer flow model and the thermal non-equilibrium energy model are used to execute two-dimensional simulations on metal foam heat exchanger. The foam is characterized by porosity and (number) pores per inch respectively equal to 0.935 and 20. Different air flow rates are imposed to the entrance of the heat exchanger with an assigned surface tube temperature. The results are provided in terms of local heat transfer coefficient and Nusselt number evaluated on the external surface of the tubes. Furthermore, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes are given. Finally, the Energy Performance Ratio (EPR) is evaluated in order to demonstrate the effectiveness of the metal foam.

  4. HEAT EXCHANGER

    Science.gov (United States)

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  5. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

  6. Heat exchanger

    International Nuclear Information System (INIS)

    Watabe, Ichiro.

    1996-01-01

    An inner cylinder is disposed coaxially in a vertical vessel, and a plurality of heat transfer pipes are wound spirally on the outer circumference of the inner cylinder. High temperature sodium descends on the outer side of the inner cylinder while exchanging heat with water in the heat transfer pipes and becomes low temperature sodium. The low temperature sodium turns at the lower portion of the vessel, rises in a sodium exit pipe inserted to the inner cylinder and is discharged from the top of the vessel to the outside of the vessel. A portion of a cover gas (an inert gas such as argon) filled to the upper portion of the vessel intrudes into the space between the outer circumference of the sodium exit pipe and the inner circumference of the inner cylinder to form a heat insulation layer of the inert gas. This prevents heat exchange between the high temperature sodium before heat exchange and low temperature sodium after heat exchange. The heat exchanger is used as a secondary heat exchanger for coolants (sodium) of an FBR type reactor. (I.N.)

  7. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  8. Changes in Electrokinetic Coupling Coefficients of Granite under Triaxial Deformation

    Directory of Open Access Journals (Sweden)

    Osamu Kuwano

    2012-01-01

    Full Text Available Electrokinetic phenomena are believed to be the most likely origin of electromagnetic signals preceding or accompanying earthquakes. The intensity of the source current due to the electrokinetic phenomena is determined by the fluid flux and the electrokinetic coupling coefficient called streaming current coefficient; therefore, how the coefficient changes before rupture is essential. Here, we show how the electrokinetic coefficients change during the rock deformation experiment up to failure. The streaming current coefficient did not increase before failure, but continued to decrease up to failure, which is explained in terms of the elastic closure of capillary. On the other hand, the streaming potential coefficient, which is the product of the streaming current coefficient and bulk resistivity of the rock, increased at the onset of dilatancy. It may be due to change in bulk resistivity. Our result indicates that the zeta potential of the newly created surface does not change so much from that of the preexisting fluid rock interface.

  9. Cleaning Schedule Operations in Heat Exchanger Networks

    Directory of Open Access Journals (Sweden)

    Huda Hairul

    2018-01-01

    Full Text Available Heat exchanger networks have been known to be the essential parts in the chemical industries. Unfortunately, since the performance of heat exchanger can be decreasing in transferring the heat from hot stream into cold stream due to fouling, then cleaning the heat exchanger is needed to restore its initial performance periodically. A process of heating crude oil in a refinery plant was used as a case study. As many as eleven heat exchangers were used to heat crude oil before it was heated by a furnace to the temperature required to the crude unit distillation column. The purpose of this study is to determine the cleaning schedule of heat exchanger on the heat exchanger networks due to the decrease of the overall heat transfer coefficient by various percentage of the design value. A close study on the process of heat exchanger cleaning schedule in heat exchanger networks using the method of decreasing overall heat transfer coefficient as target. The result showed that the higher the fouling value the more often the heat exchanger is cleaned because the overall heat transfer coefficient decreases quickly.

  10. Validation of a smooth configuration surface for compact heat exchangers using a numerical method//Validación de la superficie de un intercambiador de calor compacto en configuración lisa utilizando un método numérico

    Directory of Open Access Journals (Sweden)

    José‐L. Leiro‐Garrido

    2014-08-01

    Full Text Available This work determines the thermo hydraulics behavior of smooth configuration surface for a compact heat exchanger by means of numerical simulation. The objective is to use the results as baseline for research in the enhancement of heat transfer and drag reduction, directed to reduce the energy consumption and diminish the environmental impact. The fin tube heat exchanger models described.The constraints used in the implementation of the equation solver are announced. The average heat transfer coefficient and pressure drop obtained from numerical simulation are compare to experimental results presented in literature for models with the same dimensions and configuration. A good agreement between numerical and experimental results is reached. Local mechanisms responsible for the heat transfer and pressure drop are detailed. The study is conducted inside thelaminar regime for frontal velocities ranging between 0.5 and 6 m/s.Key words: compact heat exchanger, heat transfer coefficient, numerical simulation, pressure drop.______________________________________________________________________________ResumenEste trabajo determina el comportamiento termo hidráulico de una superficie perteneciente a un intercambiador de calor compacto en configuración lisa utilizando un método de simulación numérica. El objetivo es caracterizar la superficie para poder utilizarla como una referencia en las comparaciones con superficies de intercambio de calor intensificadas. Los datos obtenidos seutilizaran en la determinación de los valores relativos de intensificación de la transferencia de calor y el arrastre intentando reducir el consumo energético y su impacto ambiental. Se describe el modelo de intercambiador de calor con tubos aletados. Los resultados numéricos obtenidos presentan unbuen ajuste con los valores experimentales. Los resultados del coeficiente de transferencia de calor global y la caída de presión son explicados a partir de las

  11. Adsorption on mixtures of ion exchangers

    International Nuclear Information System (INIS)

    Triolo, R.; Lietzke, M.H.

    1979-01-01

    A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions

  12. Fabrication of Proton-Exchange Waveguide Using Stoichiometric LiTaO3 for Guided Wave Electrooptic Modulators with Polarization-Reversed Structure

    Directory of Open Access Journals (Sweden)

    Hiroshi Murata

    2008-01-01

    Full Text Available Optical waveguides were fabricated on z-cut stoichiometric LiTaO3 (SLT by using the proton-exchange method. The surface index change for the extraordinary ray on the SLT substrate resulting from the proton exchange was 0.017, which coincided well with congruent LiTaO3 substrates. The proton exchange coefficient in the SLT was 0.25×10−12 cm2/s. The application of the SLT waveguide to a quasi-velocity-matched travelling-wave electrooptic modulator with periodically polarization-reversed structure is also reported.

  13. Heat exchanger panel

    Science.gov (United States)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  14. Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule

    International Nuclear Information System (INIS)

    Sanaye, Sepehr; Niroomand, Behzad

    2007-01-01

    Modeling and simulation of heat exchanger networks for estimating the amount of fouling, variations in overall heat transfer coefficient, and variations in outlet temperatures of hot and cold streams has a significant effect on production analysis. In this analysis, parameters such as the exchangers' types and arrangements, their heat transfer surface areas, mass flow rates of hot and cold streams, heat transfer coefficients and variations of fouling with time are required input data. The main goal is to find the variations of the outlet temperatures of the hot and cold streams with time to plan the optimum cleaning schedule of heat exchangers that provides the minimum operational cost or maximum amount of savings. In this paper, the simulation of heat exchanger networks is performed by choosing an asymptotic fouling function. Two main parameters in the asymptotic fouling formation model, i.e. the decay time of fouling formation (τ) and the asymptotic fouling resistance (R f ∼ ) were obtained from empirical data as input parameters to the simulation relations. These data were extracted from the technical history sheets of the Khorasan Petrochemical Plant to guaranty the consistency between our model outputs and the real operating conditions. The output results of the software program developed, including the variations with time of the outlet temperatures of the hot and cold streams, the heat transfer coefficient and the heat transfer rate in the exchangers, are presented for two case studies. Then, an objective function (operational cost) was defined, and the optimal cleaning schedule of the HEN (heat exchanger network) in the Urea and Ammonia units were found by minimizing the objective function using a numerical search method. Based on this minimization procedure, the decision was made whether a heat exchanger should be cleaned or continue to operate. The final result was the most cost effective plan for the HEN cleaning schedule. The corresponding savings by

  15. Continuous atmospheric 222Rn concentration measurements to study surface-air exchange at the station of Gredos and Iruelas, in Central Spain

    Science.gov (United States)

    Grossi, Claudia; Morgui, Josep Anton; Àgueda, Alba; Batet, Oscar; Curcoll, Roger; Arias, Rosa; Arnold, Delia; Ealo, Marina; Nofuentes, Manel; Occhipinti, Paola; Sánchez-Garcíaa, Laura; Vargas, Arturo; Rodó, Xavier

    2013-04-01

    The Gredos and Iruelas station (GIC3) is part of the ClimaDat IC3 network (http://climadat.es/). This station is located in the Gredos Natural Park at a latitude of 40.22° N and a longitude of -5.14° E in the Spanish central plateau. The ClimaDat network is made by 8 stations distributed around Spain and it has been developed with the aim of studying climatic processes and the responses of impacted systems, at different time and space scales. Since November 2012, measurements of CO2, CH4, and of the natural radioactive gas 222Rn are continuously performed at GIC3 station at 20 m agl and at 1100 m asl . Maximum,minimum and average values of meteorological parameters, such as ambient air humidity and temperature, wind speed and direction are also measured at GIC3 station. Particularly, the concentration series of 222Rn measured at GIC3 station are extremely useful to evaluate the exchange of this noble radioactive gas between the soil surface and the lower troposphere in this area, under different weather situations and environmental conditions. The Gredos Natural Park is located in a granitic basement and this type of soil presents a high porosity and permeability. Furthermore, granitic materials have high activity levels of 228U. These factors enable large amount of radon to escape from the deeper soil, giving radon flux values of 90-100 Bq m-2 h-1 . These radon flux values are much higher than the average radon flux over the Earth, which is about 50 Bq m-2 h-1 (Szegvary et al, 2009). On the other hand, this geographical area is frequently affected by snow and rain events which drastically reduce the local radon exhalation. It is also influenced by winds coming from the Atlantic Ocean, which are poor in radon and strong, causing an important mixing. In addition, the cold nights' stability leads to an observed nocturnal radon accumulation. All the aforementioned conditions influence atmospheric radon concentrations measured at the GIC3 station, enlarging the range

  16. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    Thanh, L.D.; Sprik, R.

    2015-01-01

    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients

  17. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  18. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  19. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  20. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  1. Heat exchanger with steam overheating

    International Nuclear Information System (INIS)

    Manek, O.; Motejl, V.; Quitta, R.; Schlinger, S.

    1975-01-01

    A heat exchanger incorporating steam superheating is proposed suitable for nuclear power plants having heat transfer surfaces housed in the pressure vessel. The heat exchanger is characterized by the fact that on the primary side the steam overheating surface is parallel to the afterheating and evaporating surfaces. The parallel heat transfer surfaces, afterheating and evaporating surfaces are connected to a common tube plate. The superheated steam outlet is formed by the central tube, the saturated steam by-pass channel is formed by a concentric tube. The steam superheating surface is formed by a cluster of U-tubes. Spatial U-tubes form the afterheating and the evaporating surfaces outside of the superheating surface. (Oy)

  2. Coefficient of performance of Stirling refrigerators

    Science.gov (United States)

    E Mungan, Carl

    2017-09-01

    Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.

  3. Heat exchangers

    International Nuclear Information System (INIS)

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  4. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  5. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, F.

    2007-01-01

    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  6. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  7. Kuznetsov equation with variable coefficients

    Indian Academy of Sciences (India)

    like solutions of the PDE in (2+1) dimension with variable coefficients. ... Shivamoggi [12] gives only four polynomial conservation laws of the ZK equation ..... [3] P J Olver, Application of Lie group to differential equation (Springer, New York,.

  8. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  9. Application of optimization for improvement of the efficiency of louvered-fin compact heat exchangers

    Directory of Open Access Journals (Sweden)

    Diego Amorim Caetano Souza

    Full Text Available Abstract A few decades ago, the product development process was just based on a trial and error procedure, and the designer's experience. The need for a new way to design and manufacture more economical and sustainable products corroborates increasingly to a new vision of how to create new products for the benefit of society. Modern numerical tools allow greater knowledge about the physical phenomena involved in engineering problems and enable cost reduction with trials and time of manufacture and projection. Among the equipment that can be mentioned where numerical simulation is used, can be found heat exchangers, which are capable of accomplishing the heat transfer between two fluid medias with different temperatures. Within the range of existing exchangers, this work will address a compact model with louvered fins, widely used in the automotive and aerospace industries, mainly due to their high thermal exchange surface vs occupied volume ratio. The heat exchanger surface is analised using computational fluid dynamics tecniques disposable in the commercial code ANSYS CFX14® to reproduce the flow at service condition. Genetic optimization routines are used to increase the performance of heat exchanger. As a result, a heat transfer surface is obtained with about a 25% better performance according to the selected objective function. The dimensionless factor of the convective heat transfer coefficient (Colburn factor, j and the friction factor (Fanning factor, f used in (Wang et al.,1998, are employed for simulation. Experimental data are also used for validation.

  10. Leaching studies on ion exchange resins immobilized in bitument matrix

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.; Villalobos, J.P.

    1987-01-01

    To study radionuclide leaching from bitumen waste forms, many samples of bitumen mixed with ion-exchange resin labelled with 134 Cs were prepared. The resins used in the tests were nuclear grade mixed cationic/anionic bead resins. Different bittumen types were assayed: two destilled and to oxidized bitumens. Laboratory to scale samples, with surface/volume ratio (S/V) = 1, were molded to 5 cm diameter and 10 cm height. The composition of the mixtures were: 30, 40, 50 and 60% by weight of dried resin with bitumen. The leachant was deionized water with a leachant volume to sample surface rario of about 8 cm. Leached fractions were collected according to the recommendation of ISO method, with complete exchange of leachant beckers after each sampling. The volume collected for analysis was one liter. Marinelli were used for counting in a Ge(Li) detector. Up to now, results of 250 days have been accumulated. Samples prepared with distilled bitumen have shown a diffusion coefficient of the order of 10 -14 cm 2 /sec and those prepared with oxidized bitumen yielded a diffusion coefficient of the order of 10 -12 cm 2 /sec. Mathematical models of transport phenomena applied to cylindrical geometry were employed to fit experimental data. (Author) [pt

  11. Reversible binding of the HPLC6 isoform of type I antifreeze proteins to ice surfaces and the antifreeze mechanism studied by multiple quantum filtering-spin exchange NMR experiment.

    Science.gov (United States)

    Ba, Yong; Wongskhaluang, Jeff; Li, Jiabo

    2003-01-15

    Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.

  12. Clustering Coefficients for Correlation Networks

    Directory of Open Access Journals (Sweden)

    Naoki Masuda

    2018-03-01

    Full Text Available Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients

  13. A novel dynamic kinetic model of oxygen isotopic exchange on a supported metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Galdikas, Arvaidas; Duprez, Daniel; Descorme, Claude

    2004-09-15

    A time-resolved kinetic analysis has been developed for modeling experimental results of {sup 18}O/{sup 16}O isotopic exchange over oxide-supported metal catalysts. Model is based on two very important points: (1) the parallel calculation of surface and bulk diffusion and (2) the implication of certain O species such as superoxides. The model includes adsorption-desorption processes on metal clusters and oxygen spillover from the metal to the surface of support and vice versa. Different mechanisms of exchange were also taken into account via mononuclear (O atoms, O{sup -}, OH) or binuclear (superoxides) oxygen species. A refined model taking into account surface diffusion, direct exchange on surface of support by binuclear oxygen species and bulk diffusion was also developed. Kinetic (reaction rates and diffusion coefficients) as well as thermodynamic parameters (activation energies) were derived by fitting theoretical and experimental curves of {sup 18}O{sub 2}, {sup 18}O{sup 16}O and {sup 16}O{sub 2} gas phase concentrations versus time. The experimental results of Pt/CeZrO{sub 2} catalyst samples obtained in the 200-450 deg. C range of temperatures are examined. The refined model provides a very good fitting of the kinetic curves recorded with ceria-zirconia-supported catalysts. Moreover, values of diffusion coefficients and activation energies are in good agreement with already published values found by other methods. For a better understanding of all the steps of exchange, the kinetics of {sup 18}O and {sup 16}O distribution on the surface of metal clusters and on the surface of support are calculated and analyzed. On the basis of this model, a computer code is developed for analysis and calculations of kinetic and thermodynamic parameters of automotive catalysts.

  14. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  15. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  16. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  17. Non-constant retardation coefficient

    International Nuclear Information System (INIS)

    Wang Zhiming; Gu Zhijie; Yang Yue'e; Li Shushen

    2004-12-01

    Retardation coefficient is one of the important parameters used in transport models describing radionuclide migration in geological media and usually regarded as a constant in the models. The objectives of the work are to understand: (1) Whether the retardation coefficient, R d , is a constant? (2) How much effect is R d on calculated consequence if R d is not constant? (3) Is the retardation coefficient derived from distribution coefficient, k d , according to conventional equation suitable for safety assessment? The objectives are achieved through test and analysis of the test results on radionuclide migration in unsaturated loess. It can be seen from the results that retardation coefficient, R d , of 85 Sr is not constant and increases with water content, θ, under unsaturated condition. R d , of 85 Sr derived from k d according to conventional equation can not be used for safety assessment. R d , used for safety assessment should be directly measured, rather than derived from k d . It is shown from calculation that the effect of R d on calculated consequence is very considerable. (authors)

  18. Kinetics and Mechanisms of Oxygen Surface Exchange on La0.6Sr0.4FeO3-delta Thin Films

    DEFF Research Database (Denmark)

    Mosleh, Majid; Søgaard, Martin; Hendriksen, Peter Vang

    2009-01-01

    coefficient (kV) determined from Kchem shows a slope (log kV vs log PO2) between 0.51 and 0.85. It is further found that kV is proportional to the product of the oxygen partial pressure and the vacancy concentration (kVPO2). Different reaction mechanisms that can account for the observed PO2 and -dependence...

  19. A new model for predicting performance of fin-and-tube heat exchanger under frost condition

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J. [Key Lab. of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Li, W.Z., E-mail: wzhongli@dlut.edu.c [Key Lab. of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Liu, Y.; Zhao, Y.S. [Key Lab. of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024 (China)

    2011-02-15

    Accurate prediction of frost characteristics has crucial influence on designing effective heat exchangers. In this paper, a new CFD (Computational Fluid Dynamics) model has been proposed to predict the frost behaviour. The initial period of frost formation can be predicted and the influence of surface structure can be considered. The numerical simulations have been carried out to investigate the performance of fin-and-tube heat exchanger under frost condition. The results have been validated by comparison of simulations with the data computed by empirical formulas. The transient local frost formation has been obtained. The average frost thickness, heat exchanger coefficient and pressure drop on air side has been analysed as well. In addition, the influence factors have also been discussed, such as fin pitch, relative humidity, air flow rate and evaporating temperature of refrigerant.

  20. Coefficient estimates of negative powers and inverse coefficients for ...

    Indian Academy of Sciences (India)

    1 an(−λ, f )zn for z ∈ D. (1.4). One of the well-known extremal problems in the theory of univalent functions is to esti- mate the modulus of the Taylor coefficients an(−λ, f ) given by (1.4). This problem has been extensively studied in the literature ...

  1. A fundamentally new approach to air-cooled heat exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this

  2. Harmonic functions with varying coefficients

    Directory of Open Access Journals (Sweden)

    Jacek Dziok

    2016-05-01

    Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.

  3. Influence of roughness parameters on coefficient of friction under ...

    Indian Academy of Sciences (India)

    Fourier Transform Infrared spectroscopy technique. For a given surface texture, the ... Figure 3 shows the results of the correlation analysis between surface roughness parameters and coefficient of friction under ... ious roughness parameters the plowing component is controlled by the roughness parameter,. Del a. Table 2.

  4. Determination of the Static Friction Coefficient from Circular Motion

    Science.gov (United States)

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-01-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s[superscript-1], and the…

  5. Exchanging information

    International Nuclear Information System (INIS)

    1971-01-01

    The Agency has a statutory mandate to foster 'the exchange of scientific and technical information on the peaceful uses of atomic energy'. The prime responsibility for this work within the Agency lies with the Division of Scientific and Technical Information, a part of the Department of Technical Operations. The Division accomplishes its task by holding conferences and symposia (Scientific Conferences Section), through the Agency Library, by publishing scientific journals, and through the International Nuclear Information System (INIS). The Computer Section of the Division, which offers services to the Agency as a whole, provides resources for the automation of data storage and retrieval. (author)

  6. Kinetics and Mechanisms of Oxygen Surface Exchange on La0.6Sr0.4FeO3-delta Thin Films

    OpenAIRE

    Mosleh, Majid; Søgaard, Martin; Hendriksen, Peter Vang

    2009-01-01

    The thermodynamic properties as well as oxygen exchange kinetics were examined on mixed ionic and electronic conducting (La0.6Sr0.4)0.99FeO3− (LSF64) thin films deposited on MgO single crystals. It is found that thin films and bulk material have the same oxygen stoichiometry for a given temperature and oxygen partial pressure [i.e., the incorporation reaction has the same reaction enthalpy (H0=−105 KJ/mol) and entropy (S0=−75.5 J/mol/K) as found for bulk material]. The thin film shows smaller...

  7. Ca/Na selectivity coefficients from the Poisson-Boltzmann theory

    International Nuclear Information System (INIS)

    Hedstroem, Magnus; Karnland, Ola

    2010-01-01

    Document available in extended abstract form only. A possible scenario in the post-glacial evolution of the bentonite buffer used in a KBS-3 repository for spent nuclear fuel is that parts of the buffer may erode due to sol formation caused by the extensive swelling of, in particular, Na-montmorillonite in water of low ionic strength. Presence of calcium in the interlayer has been shown to promote gel formation even in electrolytes with ionic strengths in the vicinity of those in glacial melt waters. In order to estimate the amount of calcium in the clay at the onset of glaciation one needs information of the selectivity coefficient for Ca/Na exchange. Hitherto, most experimental data for evaluating the Gaines-Thomas selectivity coefficient, K GT have been obtained in batch experiments, i.e. at high water-to-solid ratios. The conditions in highly compacted bentonite are, however, radically different in many respects, e.g. the interlayer space is on the nanometre scale and the concentration of counterions is in molar range. Therefore we would like to theoretically investigate the transferability of the selectivity coefficients, determined in batch experiments, to compacted conditions. We solve the Poisson-Boltzmann (PB) equation for two parallel charged surfaces in equilibrium with an external NaCl/CaCl 2 mixed solution. Integration of the ion concentration profiles obtained from the PB equation gives the occupancy of Na + and Ca 2+ in the clay. That information together with the composition of the external electrolyte is all that is needed for the calculation of K GT . With a surface layer-charge density of one charge per 145 A 2 , which is close to the value for Wyoming montmorillonite, we find a variation of the selectivity coefficient from about 4 M in batch to 8 M for compacted montmorillonite with dry density 1700 kg/m 3 . The significance as well as the physics behind these results will be presented in detail. The predictions, based on the PB theory, will

  8. Application of a surface complexation model to the interactions of Pu and Am with Esk Estuary sediments

    International Nuclear Information System (INIS)

    Turner, D.R.; Knox, S.; Titley, J.G.; Hamilton-Taylor, J.; Kelly, M.; Williams, G.

    1990-10-01

    Previous work has shown that Pu is remobilised from Esk sediments at low salinities of overlying water. A constant capacitance surface complexation model has been developed in order to understand and model the chemical processes occurring. The model is based on detailed chemical characterisation of sediment samples from the estuary. The following measurements were carried out to provide input parameters for the model: specific surface area; total surface sites (tritium exchange); proton and major ion exchange (potentiometric titration); and actinide (Pu and Am) partition coefficient as a function of pH and salinity at sediment and actinide concentrations typical of the Esk. (author)

  9. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  10. Integer Solutions of Binomial Coefficients

    Science.gov (United States)

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  11. Effective Viscosity Coefficient of Nanosuspensions

    Science.gov (United States)

    Rudyak, V. Ya.; Belkin, A. A.; Egorov, V. V.

    2008-12-01

    Systematic calculations of the effective viscosity coefficient of nanosuspensions have been performed using the molecular dynamics method. It is established that the viscosity of a nanosuspension depends not only on the volume concentration of the nanoparticles but also on their mass and diameter. Differences from Einstein's relation are found even for nanosuspensions with a low particle concentration.

  12. Irrational "Coefficients" in Renaissance Algebra.

    Science.gov (United States)

    Oaks, Jeffrey A

    2017-06-01

    Argument From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply by x, for instance, the result was expressed as the rhetorical equivalent of . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or "number," of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, "cossic" algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.

  13. Hybrid Heat Exchangers

    Science.gov (United States)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  14. Earning on Response Coefficient in Automobile and Go Public Companies

    Directory of Open Access Journals (Sweden)

    Lisdawati Arifin

    2017-09-01

    Full Text Available This study aims to analyze factors that influence earnings response coefficients (ERC, simultaneously and partially, composed of leverage, the systematic risk (beta, growth opportunities (market to book value ratio, and the size of the firm (firm size, selection of the sample in this study the author take 12 automakers and components that meet the criteria of completeness of the data from the year 2008 to 2012, entirely based on consideration of the following criteria: (1 the company's automotive and components are listed on the stock exchange, (2 have the financial statements years 2008-2012 (3 has a return data (closing price the first day after the date of issuance of the financial statements. This study uses secondary data applying multiple linear regression models to analyze and test the effect of independent variables on the dependent variable partially (t-test, simultaneous (f-test, and the goodness of fit (R-square on a research model. The result shows that leverage, beta, growth opportunities (market to book value ratio and size along with (simultaneously the effect on the dependent variable (dependent variable earnings response coefficients. Partially leverage negatively affect earnings response coefficients, partially beta negatively correlated earnings response coefficients, partially growth opportunities (market to book value ratio significant effect on earnings response coefficients, partially sized companies (firm size significantly influence earnings response coefficients.

  15. Matchmaker Exchange.

    Science.gov (United States)

    Sobreira, Nara L M; Arachchi, Harindra; Buske, Orion J; Chong, Jessica X; Hutton, Ben; Foreman, Julia; Schiettecatte, François; Groza, Tudor; Jacobsen, Julius O B; Haendel, Melissa A; Boycott, Kym M; Hamosh, Ada; Rehm, Heidi L

    2017-10-18

    In well over half of the individuals with rare disease who undergo clinical or research next-generation sequencing, the responsible gene cannot be determined. Some reasons for this relatively low yield include unappreciated phenotypic heterogeneity; locus heterogeneity; somatic and germline mosaicism; variants of uncertain functional significance; technically inaccessible areas of the genome; incorrect mode of inheritance investigated; and inadequate communication between clinicians and basic scientists with knowledge of particular genes, proteins, or biological systems. To facilitate such communication and improve the search for patients or model organisms with similar phenotypes and variants in specific candidate genes, we have developed the Matchmaker Exchange (MME). MME was created to establish a federated network connecting databases of genomic and phenotypic data using a common application programming interface (API). To date, seven databases can exchange data using the API (GeneMatcher, PhenomeCentral, DECIPHER, MyGene2, matchbox, Australian Genomics Health Alliance Patient Archive, and Monarch Initiative; the latter included for model organism matching). This article guides usage of the MME for rare disease gene discovery. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  16. Continuous measurement of air–water gas exchange by underwater eddy covariance

    Directory of Open Access Journals (Sweden)

    P. Berg

    2017-12-01

    Full Text Available Exchange of gases, such as O2, CO2, and CH4, over the air–water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique – originally developed for benthic O2 flux measurements – right below the air–water interface (∼ 4 cm to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2–temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz. By combining these data, concurrent vertical fluxes of O2 and heat across the air–water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600 in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air–water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air–water heat fluxes and not by biological activity (primary production and respiration. This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds – two main drivers of lotic gas exchange – but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature–density gradients in the surface water driven by the heat flux into or

  17. Continuous measurement of air-water gas exchange by underwater eddy covariance

    Science.gov (United States)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent

  18. The viscous slip coefficient for a binary gas mixture

    International Nuclear Information System (INIS)

    Knackfuss, Rosenei F.

    2009-01-01

    For a moderately small rarefaction, the Navier-Stokes equations are associated with of the slip boundary condition, i e the velocity of the gas on the surface is different from zero at the surface, but its tangential component, depends on the profile distribution of velocity and temperature near the surface. The slip for the velocity profile near the surface is determined by the viscous slip coefficient. The viscous slip coefficient can be determined solving the equation of the Boltzmann or the kinetic equations which are simplified forms of Boltzmann equation with respect to the operator of collision. For this reason, in this work is presented the derivation of the solution of the viscous-slip problem for the mixtures of two noble gases, based on the McCormack model that is developed in terms of an analytical version of the discrete ordinates method has been applied with excellent results, to derive solutions to several problems in rarefied gas dynamics. To complete the problem, include the gas-surface interaction, based on the model of Cercignani-Lampis, which, unlike the model of Maxwell, has two accommodation coefficients: the coefficient of accommodation of tangential moment and the energy accommodation coefficient kinetics due to normal component of velocity. (author)

  19. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  20. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  1. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  2. Oxygen Exchange and Transport in (La0.6Sr0.4)0.98FeO3-d – Ce0.9Gd0.1O1.95 Dual-Phase Composites

    DEFF Research Database (Denmark)

    Ovtar, Simona; Søgaard, Martin; Norrman, Kion

    2018-01-01

    The chemical diffusion coefficient and the effective surface exchange coefficient (kex) of dual-phase (La0.6Sr0.4)0.98FeO3-d (LSF) − Ce0.9Gd0.1O1.95 (CGO) composites containing between 30 and 70 vol.% of CGO were determined by electrical conductivity relaxation (ECR) at high oxygen partial pressu...

  3. The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation

    Science.gov (United States)

    Stiegler, Christian; Meijide, Ana; June, Tania; Knohl, Alexander

    2017-04-01

    The 2015-2016 El Niño-Southern Oscillation (ENSO) event was one of the strongest observed in the last 20 years. Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia but despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as ENSO on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event and severe forest fires on greenhouse gas exchange and surface energy budget. Continuous measurements are in operation since July 2013 and we assess turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. In the beginning of the ENSO event, the area experienced a strong drought with decreasing soil moisture, increasing air and surface temperatures, and strong atmospheric vapour pressure deficit. During the peak of the drought from August to October 2015, hundreds of forest fires in the area resulted in strong smoke production, decreasing incoming solar radiation by 35% compared to pre-ENSO values and diffuse radiation became almost the sole shortwave radiation flux. During the beginning of the drought, carbon uptake of the oil palm plantation was around 2.1 gC m-2 d-1 and initially increased by 50% due to clear-sky conditions and high incoming photosynthetically active radiation (PAR) but increasing density of smoke turned the oil palm plantation into a source of carbon. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the midday Bowen-ratio from 0.17 to 0.40. Strong smoke

  4. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    Science.gov (United States)

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  6. Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation

    International Nuclear Information System (INIS)

    Dubau, L.; Maillard, F.; Chatenet, M.; Andre, J.; Rossinot, E.

    2010-01-01

    This study bridges the structure/composition of Pt-Co/C nanoparticles with their surface reactivity and their electrocatalytic activity. We show that Pt 3 Co/C nanoparticles are not stable during PEMFC operation (H 2 /air; j = 0.6 A cm -2 , T = 70 o C) but suffer compositional changes at the nanoscale. In the first hours of operation, the dissolution of Co atoms at their surface yields to the formation of a Pt-enriched shell covering a Pt-Co alloy core ('Pt-skeleton') and increases the affinity of the surface to oxygenated and hydrogenated species. This structure does not ensure stability in PEMFC conditions but is rather a first step towards the formation of 'Pt-shell/Pt-Co alloy core' structures with depleted Co content. In these operating conditions, the Pt-Co/C specific activity for the ORR varies linearly with the fraction of Co alloyed to Pt present in the core and is severely depreciated (ca. -50%) after 1124 h of operation. This is attributed to: (i) the decrease of both the strain and the ligand effect of Co atoms contained in the core (ii) the changes in the surface structure of the electrocatalyst (formation of a multilayer-thick Pt shell) and (iii) the relaxation of the Pt surface atoms.

  7. Design of heat exchangers by numerical methods

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1981-01-01

    Differential equations describing the heat tranfer in shell - and tube heat exchangers are derived and solved numerically. The method of ΔT sub(lm) is compared with the proposed method in cases where the specific heat at constant pressure, Cp and the overall heat transfer coefficient, U, vary with temperature. The error of the method of ΔT sub (lm) for the computation of the exchanger lenght is less than + 10%. However, the numerical method, being more accurate and at the same time easy to use and economical, is recommended for the design of shell-and-tube heat exchangers. (Author) [pt

  8. An experimental assembly for precise measurement of thermal accommodation coefficients

    Science.gov (United States)

    Trott, Wayne M.; Castañeda, Jaime N.; Torczynski, John R.; Gallis, Michael A.; Rader, Daniel J.

    2011-03-01

    An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ˜0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations.

  9. An experimental assembly for precise measurement of thermal accommodation coefficients.

    Science.gov (United States)

    Trott, Wayne M; Castañeda, Jaime N; Torczynski, John R; Gallis, Michael A; Rader, Daniel J

    2011-03-01

    An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ∼0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations.

  10. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  11. Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS Simulations with Aircraft and Tower Observations

    Directory of Open Access Journals (Sweden)

    Meelis Mölder

    2012-10-01

    Full Text Available Simulation of atmospheric and surface processes with an atmospheric model (RAMS during a period of ten days in August 2001 over a boreal area in Sweden were compared to tower measurements and aircraft measurements of vertical profiles as well as surface fluxes from low altitude flights. The shape of the vertical profiles was simulated reasonably well by the model although there were significant biases in absolute values. Surface fluxes were less well simulated and the model showed considerable sensitivity to initial soil moisture conditions. The simulations were performed using two different land cover databases, the original one supplied with the RAMS model and the more detailed CORINE database. The two different land cover data bases resulted in relatively large fine scale differences in the simulated values. The conclusion of this study is that RAMS has the potential to be used as a tool to estimate boundary layer conditions and surface fluxes and meteorology over a boreal area but also that further improvement is needed.

  12. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    Science.gov (United States)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  13. Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Yeqing Tao

    Full Text Available Aminoacyl-tRNA synthetases-interacting multifunctional protein3 (AIMP3/p18 is involved in the macromolecular tRNA synthetase complex via its interaction with several aminoacyl-tRNA synthetases. Recent reports reveal a novel function of AIMP3 as a tumor suppressor by accelerating cellular senescence and causing defects in nuclear morphology. AIMP3 specifically mediates degradation of mature Lamin A (LmnA, a major component of the nuclear envelope matrix; however, the mechanism of how AIMP3 interacts with LmnA is unclear. Here we report solution-phase hydrogen/deuterium exchange (HDX for AIMP3, LmnA, and AIMP3 in association with the LmnA C-terminus. Reversed-phase LC coupled with LTQ 14.5 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS results in high mass accuracy and resolving power for comparing the D-uptake profiles for AIMP3, LmnA, and their complex. The results show that the AIMP3-LmnA interaction involves one of the two putative binding sites and an adjacent novel interface on AIMP3. LmnA binds AIMP3 via its extreme C-terminus. Together these findings provide a structural insight for understanding the interaction between AIMP3 and LmnA in AIMP3 degradation.

  14. Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry.

    Science.gov (United States)

    Tao, Yeqing; Fang, Pengfei; Kim, Sunghoon; Guo, Min; Young, Nicolas L; Marshall, Alan G

    2017-01-01

    Aminoacyl-tRNA synthetases-interacting multifunctional protein3 (AIMP3/p18) is involved in the macromolecular tRNA synthetase complex via its interaction with several aminoacyl-tRNA synthetases. Recent reports reveal a novel function of AIMP3 as a tumor suppressor by accelerating cellular senescence and causing defects in nuclear morphology. AIMP3 specifically mediates degradation of mature Lamin A (LmnA), a major component of the nuclear envelope matrix; however, the mechanism of how AIMP3 interacts with LmnA is unclear. Here we report solution-phase hydrogen/deuterium exchange (HDX) for AIMP3, LmnA, and AIMP3 in association with the LmnA C-terminus. Reversed-phase LC coupled with LTQ 14.5 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results in high mass accuracy and resolving power for comparing the D-uptake profiles for AIMP3, LmnA, and their complex. The results show that the AIMP3-LmnA interaction involves one of the two putative binding sites and an adjacent novel interface on AIMP3. LmnA binds AIMP3 via its extreme C-terminus. Together these findings provide a structural insight for understanding the interaction between AIMP3 and LmnA in AIMP3 degradation.

  15. Study of transport coefficients of nanodiamond nanofluids

    Science.gov (United States)

    Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.

    2017-09-01

    Experimental data on the thermal conductivity coefficient and viscosity coefficient of nanodiamond nanofluids are presented. Distilled water and ethylene glycol were used as the base fluid. Dependences of transport coefficients on concentration are obtained. It was shown that the thermal conductivity coefficient increases with increasing nanodiamonds concentration. It was shown that base fluids properties and nanodiamonds concentration affect on the rheology of nanofluids.

  16. Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.; Zhong, Y.; Hrnjak, P.S.; Jacobi, A.M. [Department of Mechanical and Industrial Engineering, University of Illinois, 1206 West Gr