WorldWideScience

Sample records for surface enhanced resonance

  1. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  2. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  3. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  4. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  5. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.

    Science.gov (United States)

    Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet

    2013-05-21

    Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.

  6. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance

    Science.gov (United States)

    Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek

    2018-05-01

    Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

  7. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  8. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wang, Xianbin

    2013-01-01

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  9. Nanoantennas for surface enhanced infrared spectroscopy: Effects of interaction and higher order resonant excitations

    Directory of Open Access Journals (Sweden)

    J. Aizpurua

    2011-09-01

    Full Text Available The sensitivity in surface enhanced infrared spectroscopy (SEIRS strongly depends on where the resonant excitation is spectrally located compared to the molecular vibration that is to be enhanced. In this contribution, we study the effect of coupling in the electromagnetic properties of 2D gold nanorod arrays in the IR. We also study the SEIRS activity of higher order resonant excitations in long nanoantennas to identify polaritonic signals of a supporting SiO2 layer with nanometer thickness (3 nm on a silicon substrate.

  10. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.

    Science.gov (United States)

    Manera, Maria Grazia; Ferreiro-Vila, Elías; Garcia-Martin, José Miguel; Garcia-Martin, Antonio; Rella, Roberto

    2014-08-15

    A comparison between sensing performance of traditional SPR (Surface Plasmon Resonance) and magneto-optic SPR (MOSPR) transducing techniques is presented in this work. MOSPR comes from an evolution of traditional SPR platform aiming at modulating Surface Plasmon wave by the application of an external magnetic field in transverse configuration. Previous work demonstrated that, when the Plasmon resonance is excited in these structures, the external magnetic field induces a modification of the coupling of the incident light with the Surface Plasmon Polaritons (SPP). Besides, these structures can lead to an enhancement in the magneto-optical (MO) activity when the SPP is excited. This phenomenon is exploited in this work to demonstrate the possibility to use the enhanced MO signal as proper transducer signal for investigating biomolecular interactions in liquid phase. To this purpose, the transducer surface was functionalized by thiol chemistry and used for recording the binding between Bovine Serum Albumin molecules immobilized onto the surface and its complementary target. Higher sensing performance in terms of sensitivity and lower limit of detection of the MOSPR biosensor with respect to traditional SPR sensors is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Ae; Jang, Sung Min; Kim, Sung June [School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742 (Korea, Republic of); Byun, Kyung Min [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Kyujung; Kim, Donghyun [Program of Nanomedical Science and Technology, Yonsei University, Seoul 120-749 (Korea, Republic of); Ma, Kyungjae; Oh, Youngjin [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Sung Guk [College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 (United States); Shuler, Michael L, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2010-09-03

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  12. Enhanced photochemistry on metal surfaces

    International Nuclear Information System (INIS)

    Goncher, G.M.; Parsons, C.A.; Harris, C.B.

    1984-01-01

    Due to the fast relaxation of molecular excited states in the vicinity of a metal or semiconductor surface, few observations of surface photochemistry have been reported. The following work concerns the surface-enhanced photo-reactions of a variety of physisorbed molecules on roughened Ag surfaces. In summary, photodecomposition leads to a graphitic surface carbon product which is monitored via surface-enhanced Raman scattering. In most cases an initial two-photon molecular absorption step followed by further absorption and fragmentation is thought to occur. Enhancement of the incident fields occurs through roughness-mediated surface plasmon resonances. This mechanism provides the amplified electromagnetic surface fields responsible for the observed photodecomposition. The photodecomposition experiments are performed under ultra-high vacuum. Surface characterization of the roughened surfaces was done by Scanning Electron Microscopy (SEM), and electron-stimulated emission. The SEM revealed morphology on the order of 300-400 A. This size of roughness feature, when modelled as isolated spheres should exhibit the well-known Mie resonances for light of the correct wavelengths. For protrusions existing on a surface these Mie resonances can be thought of as a coupling of the light with the surface plasmon. Experimental verification of these resonances was provided by the electron-stimulated light emission results. These showed that a polished Ag surface emitted only the expected transition radiation at the frequency of the Ag bulk plasmon. Upon roughening, however, a broad range of lower frequencies extending well into the visible are seen from electron irradiation of the surface. Large enhancements are expected for those frequencies which are able to couple into the surface modes

  13. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA

    Directory of Open Access Journals (Sweden)

    Jiajia Wang

    2018-02-01

    Full Text Available A porous silicon microcavity (PSiMC with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA. Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  14. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong

    2018-02-23

    A porous silicon microcavity (PSiMC) with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs)/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA). Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR) of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  15. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  16. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles

    International Nuclear Information System (INIS)

    Chu, Viet Ha; Nghiem, Thi Ha Lien; Tran, Hong Nhung; Fort, Emmanuel

    2011-01-01

    Due to the energy transfer from surface plasmons, the fluorescence of fluorophores near metallic nanostructures can be enhanced. This effect has been intensively studied recently for biosensor applications. This work reports on the luminescence enhancement of 100 nm Cy3 dye-doped polystyrene nanoparticles by energy transfer from surface plasmons of gold colloidal nanoparticles with sizes of 20 and 100 nm. Optimal luminescence enhancement of the fluorophores has been observed in the mixture with 20 nm gold nanoparticles. This can be attributed to the resonance energy transfer from gold nanoparticles to the fluorophore beads. The interaction between the fluorophores and gold particles is attributed to far-field interaction

  17. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS).

    Science.gov (United States)

    Nicolson, Fay; Jamieson, Lauren E; Mabbott, Samuel; Plakas, Konstantinos; Shand, Neil C; Detty, Michael R; Graham, Duncan; Faulds, Karen

    2018-04-21

    In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.

  18. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  19. Cavity-enhanced surface-plasmon resonance sensing: modeling and performance

    International Nuclear Information System (INIS)

    Giorgini, A; Avino, S; Malara, P; Zullo, R; Gagliardi, G; Homola, J; De Natale, P

    2014-01-01

    We investigate the performance of a surface-plasmon-resonance refractive-index (RI) sensor based on an optical resonator. The resonator transforms RI changes of liquid samples, interacting with the surface plasmon excited by near-infrared light, into a variation of the intra-cavity optical loss. Cavity ring-down measurements are provided as a proof of concept of RI sensing on calibrated mixtures. A characterization of the overall sensor response and noise features as well as a discussion on possible improvements is carried out. A reproducibility analysis shows that a resolution of 10 −7 –10 −8  RIU is within reach over observation times of 1–30 s. The ultimate resolution is set only by intrinsic noise features of the cavity-based method, pointing to a potential limit below 10 −10  RIU/√Hz. (paper)

  20. Resonantly scattering crystals and surfaces

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Mahon, P.J.

    1990-12-01

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  1. Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan

    2006-01-01

    Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

  2. Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes

    International Nuclear Information System (INIS)

    Lu Liu; Xu Xiaoliang; Shi Chaoshu; Ming Hai

    2010-01-01

    Localized surface plasmon resonance (LSPR) enhanced photoluminescences (PL) from CdSe quantum dots (QDs) on worm-like or quasi-spherical silver colloids have been investigated. The shape of silver colloid film is controlled by annealing temperature (200 o C∼350 o C). Strong PL enhancements of CdSe QDs on both as-grown and annealed silver colloid films are observed. The results show that the PL enhancement factor of CdSe QDs on worm-like silver colloid film reaches as high as 15-fold. Moreover, the enhancement factor is 5 times larger than that obtained from the quasi-spherical silver colloids. The superiority of worm-like silver nanostructure on LSPR enhanced photoluminescence is attributed to its larger size, hot spots and multiple dipole resonance modes coupling, which are induced by aggregation effect.

  3. Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)

    Science.gov (United States)

    Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer

    2009-02-01

    Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.

  4. Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle

    Science.gov (United States)

    Dasri, Thananchai; Chingsungnoen, Artit

    2018-06-01

    Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.

  5. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  6. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Linfang; Wang, Dan; Ye, Yuqian; Qian, Jun; He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Zuo, Lijian; Chen, Hongzheng [Department of Polymer Science and Engineering, State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2011-03-15

    We use gold nanospheres (Au NSs) to improve the performance of polymer organic solar cells. Au NSs with a diameter of about 5 nm or 15 nm were doped into the buffer layer of organic solar cells. We attribute the efficiency improvement to the size-dependent localized surface plasmon resonance (LSPR) effect of Au NSs, which can enhance the light harvest ability of active layer around the Au NSs, and increase the probability of the exciton generation and dissociation. Our results show that solar cells doped with 15 nm-diameter Au NSs exhibit significant improvement of the efficiency (from 1.99% to 2.36%), while solar cells doped with only 5 nm-diameter Au NSs did not give obvious improvement of the performance. (author)

  7. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  8. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  9. Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bianco, Giuseppe V.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy)

    2009-10-15

    Au nanoparticles (NPs)/(n-type)a-Si:H/(p-type)c-Si heterojunctions have been deposited combining plasma-enhanced chemical-vapour deposition (PECVD) with Au sputtering. We demonstrate that a density of {proportional_to}1.3 x 10{sup 11} cm{sup -2} of Au nanoparticles with an approximately 20 nm diameter deposited onto (n-type)a-Si:H/(p-type)c-Si heterojunctions enhance performance exploiting the improved absorption of light by the surface plasmon resonance of Au NPs. In particular, Au NPs/(n-type)a-Si:H/(p-type)c-Si show an enhancement of 20% in the short-circuit current, J{sub SC}, 25% in the power output, P{sub max} and 3% in the fill factor, FF, compared to heterojunctions without Au NPs. Structures have been characterized by spectroscopic ellipsometry, atomic force microscopy and current-voltage (I-V) measurements to correlate the plasmon resonance-induced enhanced absorption of light with photovoltaic performance. (author)

  10. Enhanced photothermal lens using a photonic crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Liu, Longju [Department of Electrical and Computer Engineering, 2128 Coover Hall, Iowa State University, Ames,Iowa 50011 (United States); Zhao, Xiangwei [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,Southeast University, Nanjing, Jiangsu 211189 (China); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, 2128 Coover Hall, Iowa State University, Ames,Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2016-08-15

    A photonic crystal (PC)-enhanced photothermal lens (PTL) is demonstrated for the detection of optically thin light absorption materials. The PC-enhanced PTL system is based on a pump-probe scheme consisting of a PC surface, pump laser beam, and probe laser beam. Heated by the pump beam, light absorption materials on the PC surface generate the PTL and cause a substantial change to the guided-mode resonance supported by the PC structure. The change of the PC resonance is detected using the probe laser beam by measuring its reflectivity from the PC surface. When applied to analyze dye molecules deposited on the PC substrate, the developed system is capable of enhancing the PTL signal by 10-fold and reducing the lowest distinguishable concentration by 8-fold, in comparison to measuring without utilizing the PC resonance. The PC-enhanced PTL was also used to detect gold nanoparticles on the PC surface and exhibited a 20-fold improvement of the lowest distinguishable concentration. The PC-enhanced PTL technology offers a potential tool to obtain the absorption signatures of thin films in a broad spectral range with high sensitivity and inexpensive instrumentation. As a result, this technology will enable a broad range of applications of photothermal spectroscopy in chemical analysis and biomolecule sensing.

  11. Surface plasmon resonance optical cavity enhanced refractive index sensing

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, Pavel; Chadt, Karel; Homola, Jiří; De Natale, P.

    2013-01-01

    Roč. 38, č. 11 (2013), s. 1951-1953 ISSN 0146-9592 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Resonators * Surface plasmons * Optical sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  12. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    Science.gov (United States)

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-11-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics.

  13. Resonant and kinematical enhancement of He scattering from LiF(001) surface and pseudosurface vibrational normal modes

    International Nuclear Information System (INIS)

    Nichols, W.L.; Weare, J.H.

    1986-01-01

    One-phonon cross sections calculated from sagittally polarized vibrational normal modes account for most salient inelastic-scattering intensities seen in He-LiF(001) and measurements published by Brusdeylins, Doak, and Toennies. We have found that most inelastic intensities which cannot be attributed to potential resonances can be explained as kinematically enhanced scattering from both surface and pseudosurface bulk modes

  14. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings

    Science.gov (United States)

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.

    2018-04-01

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  15. Quantitative monitoring of two simultaneously binding species using Label-Enhanced surface plasmon resonance.

    Science.gov (United States)

    Eng, Lars; Garcia, Brandon L; Geisbrecht, Brian V; Hanning, Anders

    2018-02-26

    Surface plasmon resonance (SPR) is a well-established method for biomolecular interaction studies. SPR monitors the binding of molecules to a solid surface, embodied as refractive index changes close to the surface. One limitation of conventional SPR is the universal nature of the detection that results in an inability to qualitatively discriminate between different binding species. Furthermore, it is impossible to directly discriminate two species simultaneously binding to different sites on a protein, which limits the utility of SPR, for example, in the study of allosteric binders or bi-specific molecules. It is also impossible in principle to discriminate protein conformation changes from actual binding events. Here we demonstrate how Label-Enhanced SPR can be utilized to discriminate and quantitatively monitor the simultaneous binding of two different species - one dye-labeled and one unlabeled - on a standard, single-wavelength SPR instrument. This new technique increases the versatility of SPR technology by opening up application areas where the usefulness of the approach has previously been limited. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film

    International Nuclear Information System (INIS)

    Uchida, H.; Masuda, Y.; Fujikawa, R.; Baryshev, A.V.; Inoue, M.

    2009-01-01

    A large enhancement of the Faraday rotation, which is associated with localized surface plasmon resonance (LSPR), was obtained in a sample with Au nanoparticles embedded in a Bi-substituted yttrium iron garnet (Bi:YIG) film. On a quartz substrate, Au nanoparticles were formed by heating an Au thin film, and a Bi:YIG film was then deposited on them. A sample containing the Au nanoparticles produced by 1000 deg. C heating showed a resonant attenuation with narrower bandwidth in the transmission spectrum than nanoparticles of other samples formed by low-temperature heating. The sharp resonant Faraday rotation angle was 4.4 times larger than the estimated intrinsic Bi:YIG film at the LSPR wavelength; the angular difference was 0.14 deg. A discrepancy in the bandwidth between the transmission attenuation and the resonant Faraday rotation is discussed

  17. Label-Enhanced Surface Plasmon Resonance: A New Concept for Improved Performance in Optical Biosensor Analysis

    Directory of Open Access Journals (Sweden)

    Niko Granqvist

    2013-11-01

    Full Text Available Surface plasmon resonance (SPR is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations.

  18. Label-Enhanced Surface Plasmon Resonance: A New Concept for Improved Performance in Optical Biosensor Analysis

    Science.gov (United States)

    Granqvist, Niko; Hanning, Anders; Eng, Lars; Tuppurainen, Jussi; Viitala, Tapani

    2013-01-01

    Surface plasmon resonance (SPR) is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations. PMID:24217357

  19. Resonant enhancement in leptogenesis

    Science.gov (United States)

    Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.

    2018-02-01

    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

  20. Resonant cavity enhanced multi-analyte sensing

    Science.gov (United States)

    Bergstein, David Alan

    Biological research and medicine increasingly depend on interrogating binding interactions among small segments of DNA, RNA, protein, and bio-specific small molecules. Microarray technology, which senses the affinity for target molecules in solution for a multiplicity of capturing agents fixed to a surface, has been used in biological research for gene expression profiling and in medicine for molecular biomarker detection. Label-free affinity sensing is preferable as it avoids fluorescent labeling of the target molecules, reducing test cost and variability. The Resonant Cavity Imaging Biosensor (RCIB) is a label-free optical inference based technique introduced that scales readily to high throughput and employs an optical resonant cavity to enhance sensitivity by a factor of 100 or more. Near-infrared light centered at 1512.5 nm couples resonantly through a cavity constructed from Si/SiO2 Bragg reflectors, one of which serves as the binding surface. As the wavelength is swept 5 nm, an Indium-Gallium-Arsenide digital camera monitors cavity transmittance at each pixel with resolution 128 x 128. A wavelength shift in the local resonant response of the optical cavity indicates binding. Positioning the sensing surface with respect to the standing wave pattern of the electric field within the cavity, one can control the sensitivity of the measurement to the presence of bound molecules thereby enhancing or suppressing sensitivity where appropriate. Transmitted intensity at thousands of pixel locations are recorded simultaneously in a 10 s, 5 nm scan. An initial proof-of-principle setup was constructed. A sample was fabricated with 25, 100 mum wide square regions, each with a different density of 1 mum square depressions etched 12 nm into the S1O 2 surface. The average depth of each etched region was found with 0.05 nm RMS precision when the sample remains loaded in the setup and 0.3 nm RMS precision when the sample is removed and replaced. Selective binding of the protein

  1. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    International Nuclear Information System (INIS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-01-01

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field

  2. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano; Bochterle, Jö rg; Toma, Andrea; Huck, Christian W.; Neubrech, Frank; Messina, Elena; Fazio, Barbara; Maragó , Onofrio M.; Di Fabrizio, Enzo M.; Lamy De La Chapelle, Marc L.; Gucciardi, Pietro Giuseppe; Pucci, Annemarie

    2013-01-01

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna's surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  3. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  4. Detection of Biomolecular Binding Through Enhancement of Localized Surface Plasmon Resonance (LSPR by Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Min-Gon Kim

    2009-03-01

    Full Text Available To amplify the difference in localized surface plasmon resonance (LSPR spectra of gold nano-islands due to intermolecular binding events, gold nanoparticles were used. LSPR-based optical biosensors consisting of gold nano-islands were readily made on glass substrates using evaporation and heat treatment. Streptavidin (STA and biotinylated bovine serum albumin (Bio-BSA were chosen as the model receptor and the model analyte, respectively, to demonstrate the effectiveness of this detection method. Using this model system, we were able to enhance the sensitivity in monitoring the binding of Bio-BSA to gold nano-island surfaces functionalized with STA through the addition of gold nanoparticle-STA conjugates. In addition, SU-8 well chips with gold nano-island surfaces were fabricated through a conventional UV patterning method and were then utilized for image detection using the attenuated total reflection mode. These results suggest that the gold nano-island well chip may have the potential to be used for multiple and simultaneous detection of various bio-substances.

  5. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano

    2013-04-23

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna\\'s surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  6. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance

    Science.gov (United States)

    Sadeghi, S.; Hamidi, S. M.

    2018-04-01

    Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.

  7. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  8. Application of silver nanoparticles in the detection of SYBR Green I by surface enhanced Raman and surface-enhanced fluorescence

    Science.gov (United States)

    Guo, Wei; Wu, Jian; Wang, Chunyan; Zhang, Tian; Chen, Tao

    2018-05-01

    Silver nanomaterials have remarkable application in biomedical detection due to their unique surface plasmon resonance (SPR) characteristics. It can be used for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Current research elaborates a technique for improvement of SYBR Green I detection obtained from surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) by silver nanoparticles with the average size about 70 nm. Primarily, SYBR Green I is an important fluorescent dye used in polymerase chain reaction (PCR). It is found that both Raman and fluorescence can be used for detection of this dye. Furthermore, the enhanced efficiency of the Raman and fluorescence by SERS and SEF is observed in this study, the enhancement factor for Raman signals is 3.2 × 103, and the fluorescence intensity bincreased two times by SEF. The quantitative detection of SYBR Green I by SERS and SEF can be achieved. The present work can be used to improve the detection of SYBR Green I by SERS and SEF. It would also be employed for high-sensitive detection of other materials in the future.

  9. Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Chao, Bo-Kai; Lin, Shih-Che; Nien, Li-Wei; Hsueh, Chun-Hway; Li, Jia-Han

    2015-01-01

    Corner radius is a concept to approximate the fabrication limitation due to the effective beam broadening at the corner in using electron-beam lithography. The purpose of the present study is to investigate the effects of corner radius on the electromagnetic field enhancement and resonance wavelength for three periodic polygon dimers of bowtie, twin square, and twin pentagon. The enhancement factor of surface-enhanced Raman spectroscopy due to the localized surface plasmon resonances in fabricated gold bowtie nanostructures was investigated using both Raman spectroscopy and finite-difference time-domain simulations. The simulated enhancement factor versus corner radius relation was in agreement with measurements and it could be fitted by a power-law relation. In addition, the resonance wavelength showed blue shift with the increasing corner radius because of the distribution of concentrated charges in a larger area. For different polygons, the corner radius instead of the tip angle is the dominant factor of the electromagnetic field enhancement because the surface charges tend to localize at the corner. Greater enhancements can be obtained by having both the smaller gap and sharper corner although the corner radius effect on intensity enhancement is less than the gap size effect. (paper)

  10. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  11. Spectra of resonance surface photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G. [Budker Nuclear Physics Institute, Novosibirsk (Russian Federation)

    1995-09-01

    The theory of nonactivated electron transfer between atoms interacting reasonantly with coherent radiation and a metal surface is developed. The spectral resonances in photoabsorption and surface photoionization are found to be related to nonlinear interference effects in the interaction between discrete atomic levels and the continuum formed by the quasi-continuous electron spectrum of a normal metal. The asymmetry in the resonance surface photoionization spectrum is shown to have a shape typical of the Fano autoionization resonances. 18 refs.

  12. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  13. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  14. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  15. Nanopolyaniline as immobilization template for signal enhancement of surface plasmon resonance biosensor - A preliminary study

    Science.gov (United States)

    Kamarun, Dzaraini; Abdul Azem, Nor Hazirah Kamel; Sarijo, Siti Halimah; Mohd, Ahmad Faiza; Abdullah @ Mohd Noor, Mashita

    2012-07-01

    A technique for the enhancement of Surface Plasmon Resonance (SPR) signal for sensing biomolecular interactions is described. Polyaniline (PANI) of particle size in the range of 1 to 15 nm was synthesized and used as the template for the immobilization of protein molecules. Biomolecular interactions of unbound and PANI-bound proteins with antibody molecules were SPR-monitored using a model system comprising of Bovine Serum Albumin (BSA) and anti BSA. A 7-fold increased in the signal was recorded from interactions of the PANI-bound BSA with anti BSA compared to the interactions of its unbound counterpart. This preliminary observation provides new avenue in immunosensor technology for improving the detection sensitivity of SPR biosensor; and thereby increasing the lower detection limit of biomolecules.

  16. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Cui, Jin [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Li, Junpeng [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); Cao, Kun; Yuan, Shuai [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Cheng, Yibing [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Wang, Mingkui, E-mail: mingkui.wang@mail.hust.edu.cn [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China)

    2015-09-15

    Highlights: • SPR effect from Au-nanostructures was first investigated in NiO-based solar cells. • Enhanced photocurrent generation was observed in p-DSC and perovskite solar cell. • Au-nanorods SPR effect induced charge kinetics were investigated. - Abstract: Surface plasma resonance (SPR) effect has been demonstrated to improve solar cell performance. This work reports on the SPR effect from Au nanorod@SiO{sub 2} on p-type dye-sensitized solar cells. Au nanorod@SiO{sub 2} works as an antenna to transform photons with long wavelength into electric field followed by an enhanced excitation of dye. The devices using the NiO electrode containing Au nanorod@SiO{sub 2} shows overall power conversion efficiencies of about 0.2% in combination with I{sup −}/I{sub 3}{sup −} electrolyte, and 0.29% with T{sup −}/T{sub 2} electrolyte, which are superior to those without adding Au nanorods. Detailed investigation including spectroscopy and transient photovoltage decay measurements reveals that plasma effect of Au nanorod@SiO{sub 2} contribute to charge injection efficiency, and thus on the photocurrent. The effect of Au NRs can be further extended to the inverted planar perovskite solar cells, showing obviously improvement in photocurrent.

  17. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  18. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    International Nuclear Information System (INIS)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-01-01

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL"−"1, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  19. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail: songdq@jlu.edu.cn

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  20. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    Science.gov (United States)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  1. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Guddala, Sriram; Narayana Rao, D.; Dwivedi, Vindesh K.; Vijaya Prakash, G.

    2013-01-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm −1 ) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  2. Coherent enhancement of resonance-mediated multiphoton absorption

    International Nuclear Information System (INIS)

    Zhang, Shian; Zhang, Hui; Jia, Tianqing; Wang, Zugeng; Sun, Zhenrong

    2010-01-01

    In this paper, we theoretically investigate the coherent enhancement of resonance-mediated (2+2) four-photon absorption. It is found that by shaping the spectral phase with a π phase step, the resonance-mediated (2+2) four-photon transition probability can be enhanced. Furthermore, the coherent enhancement dependences on the detuning between the two two-photon absorptions, laser spectral bandwidth and laser centre frequency are explicitly discussed and analysed. We believe these theoretical results may play an important role in enhancing more complex resonance-mediated multiphoton absorption processes.

  3. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance

    Science.gov (United States)

    Hashemi Zadeh, Sakineh; Rashidi-Huyeh, Majid; Palpant, Bruno

    2017-10-01

    Owing to their remarkable optical properties, noble metals' nanoparticles are proposed for many applications. Controlling the temperature dependence of these properties may then appear to be of great relevance. In this paper, we investigate the thermo-optical properties of silver nanoparticles. Different silver nanocolloids were prepared with different surface plasmon resonance modes. The thermo-extinction spectra of the colloidal solutions were then evaluated by measuring the extinction spectra at different temperatures. This reveals a typical peak-valley profile around each surface plasmon resonance mode. Mie theory was used to study theoretically the impact of nanoparticle size on the thermo-optical properties. The results allow us to interpret properly the experimental findings.

  4. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    Science.gov (United States)

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  5. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Science.gov (United States)

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  6. Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Fermilab; Grassellino, Anna [Fermilab; Martinello, Martina [IIT, Chicago; Posen, Sam [Fermilab; Romanenko, Alexander [Fermilab; Zasadzinski, John [IIT, Chicago (main)

    2017-05-01

    The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.

  7. Surface plasmon-enhanced two-photon excited whispering-gallery modes ultraviolet laser from Zno microwire

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2017-11-01

    Full Text Available The two-photon excited UV laser with narrow line width and high Q value was obtained. The total internal reflection from the four side surfaces of the quadrilateral-ZnO microwire offered the whispering gallery mode (WGM resonant cavity. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail for this special type of micro-cavity. In addition, in order to enhance the power of the two-photon excited UV laser, the surface plasmon enhancement by the Au nanoparticles was also performed and explained well by the theory of the localized surface plasmon.

  8. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Jans, Hilde [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Lodewijks, Kristof [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Van Dorpe, Pol; Lagae, Liesbet [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Kawamura, Tatsuro [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2014-06-16

    With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in water experimentally.

  9. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  10. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  11. Surface-enhanced Raman scattering from silver electrodes

    International Nuclear Information System (INIS)

    Trott, G.R.

    1982-01-01

    The chemical and physical origins of the anomalously large enhancement of the Raman scattering cross section for molecules adsorbed on silver electrodes in an electrochemical cell were investigated. The effect of the chemical reactions which occur during the anodization/activation procedure were studied using the Ag-CN system. It was shown that the function of the anodization process is to roughen the electrode surface and create an activated site for bonding to the cyanide. A new nonelectrochemical technique for activating the silver surface, along with a study of the enhanced cyanide Raman scattering in different background electrolytes, showed that the Raman active entity on the surface must be a silver-cyanide complex. In order to study the physical mechanism of the enhancement, the angular dependence of the scattered radiation was measured from pyridine adsorbed on an evaporated silver electrode. Both polycrystalline and single crystalline silver films were used. The angular dependence of the scattered radiation from these films showed that the metal surface was controlling the directional properties of the scattered radiation, and not the polarizability tensor of the adsorbate. Based on these experimental results, it was concluded that for weakly roughened silver electrodes the source of the anomalous enhancement is due to a resonant Raman scattering process

  12. Surface enhanced Raman spectroscopy on a flat graphene surface

    Science.gov (United States)

    Xu, Weigao; Ling, Xi; Xiao, Jiaqi; Dresselhaus, Mildred S.; Kong, Jing; Xu, Hongxing; Liu, Zhongfan; Zhang, Jin

    2012-01-01

    Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic “hot” spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible “G-SERS tape” (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates. PMID:22623525

  13. Prediction and Migration of Surface-related Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Surface-related resonant multiples can be migrated to achieve better resolution than migrating primary reflections. We now derive the formula for migrating surface-related resonant multiples, and show its super-resolution characteristics. Moreover, a method is proposed to predict surface-related resonant multiples with zero-offset primary reflections. The prediction can be used to indentify and extract the true resonant multiple from other events. Both synthetic and field data are used to validate this prediction.

  14. Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe.

    Science.gov (United States)

    Fen, Yap Wing; Yunus, W Mahmood Mat; Talib, Zainal Abidin; Yusof, Nor Azah

    2015-01-05

    In this study, novel active nanolayers in combination with surface plasmon resonance (SPR) system for zinc ion (Zn(2+)) detection has been developed. The gold surface used for the SPR system was modified with the novel developed active nanolayers, i.e. chitosan and chitosan-tetrabutyl thiuram disulfide (chitosan-TBTDS). Both chitosan and chitosan-TBTDS active layers were fabricated on the gold surface by spin coating technique. The system was used to monitor SPR signal for Zn(2+) in aqueous media with and without sensitivity enhancement by TBTDS. For both active nanolayers, the shift of resonance angle is directly proportional to the concentration of Zn(2+) in aqueous media. The higher shift of resonance angle was obtained for chitosan-TBTDS active nanolayer due to a specific binding of TBTDS with Zn(2+). The chitosan-TBTDS active nanolayer enhanced the sensitivity of detection down to 0.1 mg/l and also induced a selective detection towards Zn(2+). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  16. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  17. Finite Element Method Simulations of the Near-Field Enhancement at the Vicinity of Fractal Rough Metallic Surfaces

    International Nuclear Information System (INIS)

    Micic, Miodrag; Klymyshyn, Nicholas A.; Lu, H Peter

    2004-01-01

    Near-field optical enhancement at metal surfaces and methods such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescent quenching and enhancement, and various near-field scanning microscopies (NSOM) all depend on a metals surface properties, mainly on its morphology and SPR resonant frequency. We report on simulations of the influence of different surface morphologies on electromagnetic field enhancements at the rough surfaces of noble metals and also evaluate the optimal conditions for the generation of a surface-enhanced Raman signal of absorbed species on a metallic substrate. All simulations were performed with a classical electrodynamics approach using the full set of Maxwells equations, which were solved with the three-dimensional finite element method (FEM). Two different classes of surfaces where modeled using fractals, representing diffusion limited aggregation growth dendritic structures, such as one on the surface of electrodes, and second one representing the sponge-like structure used to model surfaces of particles with high porosity, such as metal coated catalyst supports. The simulations depict the high inhomogeneity of an enhanced electromagnetic field as both a field enhancement and field attenuation near the surface. While the diffusion limited aggregation dendritical fractals enhanced the near-field electromagnetic field, the sponge fractals significantly reduced the local electromagnetic field intensity. Moreover, the fractal orders of the fractal objects did not significantly alter the total enhancement, and the distribution of a near-field enhancement was essentially invariant to the changes in the angle of an incoming laser beam

  18. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Uskov, Alexander

    2014-01-01

    We propose to use collective lattice resonances in plasmonic nanoparticle arrays to enhance and tailor photoelectron emission in Schottky barrier photodetectors and solar cells. We show that the interaction between narrow-band lattice resonances (the Rayleigh anomaly) and broader-band individual-particle...... excitations (localized surface plasmon resonances) leads to stronger local field enhancement. In turn, this causes a significant increase of the photocurrent compared to the case when only individual-particle excitations are present. The results can be used to design new photodetectors with highly selective......, tunable spectral response, which are able to detect photons with the energy below the semiconductor bandgap. The findings can also be used to develop solar cells with increased efficiency....

  19. New applications of surface plasmon resonance technology

    International Nuclear Information System (INIS)

    Zhang Tianhao; Yin Meirong; Fang Zheyu; Yang Haidong; Yang Jia; Yang Huizhan; Kang Huizhen; Yang Dapeng; Lu Yanzhen

    2005-01-01

    Surface plasmon resonance technology is reviewed and its new applications in various fields are described. These fields include surface plasmon resonance sensors, near-field scanning optical microscopy, thin film optics and thickness measurement, holography, precise measurement of angles, and Q switching. (authors)

  20. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.

    Science.gov (United States)

    Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse

    2016-12-13

    Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.

  1. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    Science.gov (United States)

    Fast, Alexander

    extended samples' surfaces can be visualized with a nanoscale axial resolution providing topographic information. Finally, a platform for coherently interrogating single molecules is presented. Single-molecule limit SE-CARS on non-resonant molecules is achieved by means of 3D local field confinement in the nanojunctions between two spherical gold nanoparticles. Localized plasmon resonance of the dimer nanostructure confines the probe volume down to 1 nm3 and provides the local field enhancement necessary to reach single-molecule detection limit. Nonlinear excitation of Raman vibrations in SE-CARS microspectroscopy allows for higher image acquisition rates than in conventionally used single-molecule surface enhanced Raman spectroscopy (SERS). Therefore, data throughput is significantly improved while preserving spectral information despite the presence of the metal. Data simultaneously acquired from hundreds of nanoantennas allows to establish the peak enhancement factor from the observed count rates and define the maximum allowed local-field that preserves the integrity of the antenna. These results are paramount for the future design of time resolved single-molecule studies with multiple pulsed laser excitations, required for single-molecule coherence manipulation and quantum computing.

  2. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    Science.gov (United States)

    Zhang, Z.; Li, R.; To, H.; Andonian, G.; Pirez, E.; Meade, D.; Maxson, J.; Musumeci, P.

    2017-09-01

    Nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  3. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    Science.gov (United States)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  4. Prediction and Migration of Surface-related Resonant Multiples

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.; Huang, Yunsong

    2015-01-01

    Surface-related resonant multiples can be migrated to achieve better resolution than migrating primary reflections. We now derive the formula for migrating surface-related resonant multiples, and show its super-resolution characteristics. Moreover

  5. Plasmon resonance-induced photoluminescence enhancement of CdTe/Cds quantum dots thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wu, Yangqing; Xu, Jun; Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2016-11-30

    Highlights: • CdTe/CdS quantum dots/Au nano-rods nano-composite films were fabricated. • PL intensity of the quantum dots films was enhanced due to Au nanorods. • Internal quantum efficiency increased due to localized surface plasmon resonance. • The lifetimes of quantum dots films decreased after interaction with Au nano-rods. - Abstract: CdTe/CdS quantum dots/Au nano-rods nano-composite films were fabricated on planar Si substrates. The optical properties of all samples were investigated and the corresponding simulations were studied. It was found that the photoluminescence intensity of the CdTe/CdS quantum dots films was enhanced about 9-fold after the incorporation of Au nano-rods, the internal quantum efficiency increased from 24.3% to 35.2% due to the localized surface plasmon resonance. The time-resolved luminescence decay curves showed that the lifetimes of CdTe/CdS quantum dots films decreased to 2.8 ns after interaction with Au nano-rods. The results of finite-difference time-domain simulation indicated that Au nano-rods induced the localization of electric field, which enhanced the PL intensity of quantum dots films in the vicinity of Au nano-rods.

  6. Gold Nanostructures for Surface-Enhanced Raman Spectroscopy, Prepared by Electrodeposition in Porous Silicon

    Directory of Open Access Journals (Sweden)

    Yukio H. Ogata

    2011-04-01

    Full Text Available Electrodeposition of gold into porous silicon was investigated. In the present study, porous silicon with ~100 nm in pore diameter, so-called medium-sized pores, was used as template electrode for gold electrodeposition. The growth behavior of gold deposits was studied by scanning electron microscope observation of the gold deposited porous silicon. Gold nanorod arrays with different rod lengths were prepared, and their surface-enhanced Raman scattering properties were investigated. We found that the absorption peak due to the surface plasmon resonance can be tuned by changing the length of the nanorods. The optimum length of the gold nanorods was ~600 nm for surface-enhanced Raman spectroscopy using a He-Ne laser. The reason why the optimum length of the gold nanorods was 600 nm was discussed by considering the relationship between the absorption peak of surface plasmon resonance and the wavelength of the incident laser for Raman scattering.

  7. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors.

    Science.gov (United States)

    Lombardi, John R

    2017-12-04

    We present an expression for the lowest order nonzero contribution to the surface-enhanced Raman spectrum obtained from a system of a molecule adsorbed on a semiconductor nanoparticle. Herzberg-Teller vibronic coupling of the zero-order Born-Oppenheimer states results in an expression which may be regarded as an extension of the Albrecht A-, B-, and C-terms to SERS substrates. We show that the SERS enhancement is caused by combinations of several types of resonances in the combined system, namely, surface, exciton, charge-transfer, and molecular resonances. These resonances are coupled by terms in the numerator, which provide selection rules that enable various tests of the theory and predict the relative intensities of the Raman lines. Furthermore, by considering interactions of the various contributions to the SERS enhancement, we are able to develop ways to optimize the enhancement factor by tailoring the semiconductor nanostructure, thereby adjusting the locations of the various contributing resonances. This provides a procedure by which molecular sensors can be constructed and optimized. We provide several experimental examples on substrates such as monolayer MoS 2 and GaN nanorods.

  8. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  9. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  10. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    Science.gov (United States)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  11. Surface enhanced infrared spectroscopy using interacting gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Neubrech, Frank; Weber, Daniel; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Shen, Hong [Universite Troyes, Troyes (France); Lamy de la Chapelle, Marc [Universite Paris 13, Bobigny (France)

    2009-07-01

    We performed surface enhanced infrared spectroscopy (SEIRS) of molecules adsorbed on gold nanowires using synchrotron light of the ANKA IR-beamline at the Forschungszentrum Karlsruhe (Germany). Arrays of gold nanowires with interparticle spacings down to 30nm were prepared by electron beam lithography. The interparticle distance was reduced further by wet-chemically increasing the size of the gold nanowires. The growth of the wires was proofed using IR spectroscopy as well as scanning electron microscopy. After this preparation step, appropriate arrays of nanowires with an interparticle distance down to a few nanometers were selected to demonstrate the surface enhanced infrared spectroscopy of one monolayer octadecanthiol (ODT). As know from SEIRS studies using single gold nanowires, the spectral position of the antenna-like resonance in relation to the absorption bands of ODT (2850cm-1 and 2919cm-1) is crucial for both, the lineshape of the molecular vibration and the signal enhancement. In contrast to single nanowires studies, a further increase of the enhanced signals is expected due to the interaction of the electromagnetic fields of the close-by nanowires.

  12. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    International Nuclear Information System (INIS)

    Verma, Shweta; Rao, B. Tirumala; Bhartiya, S.; Sathe, V.; Kukreja, L.M.

    2015-01-01

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength

  13. Double resonance capacitance spectroscopy (DORCAS): A new experimental technique for assignment of X-ray absorption peaks to surface sites of semiconductor

    CERN Document Server

    Ishii, M

    2003-01-01

    As a new microspectroscopy for semiconductor surface analysis using an X-ray beam, double resonance capacitance spectroscopy (DORCAS) is proposed. For a microscopic X-ray absorption measurement, a local capacitance change owing to X-ray induced emission of localized electrons is detected by a microprobe. The applied bias voltage V sub b dependence of the capacitance also provides information on the surface density of state. The resonance of the Fermi energy with a surface level by V sub b control makes possible the selection of the observable surface site in the X-ray absorption measurements, i.e. site-specific spectroscopy. The double resonance of the surface site selection (V sub b resonance) and the resonant X-ray absorption of the selected site (photon energy h nu resonance) enhances the capacitance signal. The DORCAS measurement of the GaAs surface shows correlation peaks at h nu=10.402 keV and V sub b =-0.4 V and h nu=10.429 keV and V sub b =+0.1 V, indicating that these resonant X-ray absorption peaks ...

  14. [INVITED] Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures

    Science.gov (United States)

    Gupta, Banshi D.; Kant, Ravi

    2018-05-01

    Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.

  15. Enhanced energy storage in chaotic optical resonators

    KAUST Repository

    Liu, Changxu; Di Falco, Andrea; Molinari, Diego P.; Khan, Yasser; Ooi, Boon S.; Krauss, Thomas F.; Fratalocchi, Andrea

    2013-01-01

    Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.

  16. Enhanced energy storage in chaotic optical resonators

    KAUST Repository

    Liu, Changxu

    2013-05-05

    Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.

  17. Plasmonic resonance-enhanced local photothermal energy deposition by aluminum nanoparticles

    International Nuclear Information System (INIS)

    Chong Xinyuan; Jiang Naibo; Zhang Zhili; Roy, Sukesh; Gord, James R.

    2013-01-01

    Local energy deposition of aluminum nanoparticles (Al NPs) by localized surface plasmon resonance-enhanced photothermal effects is demonstrated. Low-power light stimuli are efficiently and locally concentrated to trigger the oxidation reactions of Al NPs because of the large ohmic absorption and high reactivity of the Al. Numerical simulations show that both ultraviolet and visible light are more efficient than infrared light for photothermal energy coupling. The natural oxidation layer of alumina is found to have minimum impact on the energy deposition because of its negligible dielectric losses. The near-field distributions of the electric field indicate that slight aggregation induces much higher local enhancement, especially at the interface region of multiple contacting nanoparticles.

  18. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  19. Multiplexed infrared plasmonic surface lattice resonances

    Science.gov (United States)

    Gutha, Rithvik R.; Sadeghi, Seyed M.; Sharp, Christina; Wing, Waylin J.

    2018-01-01

    We demonstrate that arrays of flat gold nanodisks with rectangular lattices can support a tunable hybrid frequency gap formed by the surface lattice resonances in the substrate ((+1, 0)sub) and the superstrate ((-1, 0)sup). For a certain polarization, rotation of the arrays reduces this gap, forming a band crossing (degenerate state) wherein both surface lattice resonances happen around a single wavelength (˜1300 nm). This highlights a situation wherein hybridization of the Rayleigh anomaly with localized surface plasmon resonances with different multipolar natures happens around the same wavelength. We demonstrate that for a different polarization of the incident light the arrays support the formation of a photonic-plasmonic state at about 1650 nm. Our results show that as the projection of the wave vector of the incident light on the planes of the nanodisk arrays increases, within a given wavelength range, the (+1, 0) mode of this state becomes amplified. Under this condition, this mode can undergo a significant blue shift without broadening, while its amplitude increases.

  20. Enhanced THz extinction in arrays of resonant semiconductor particles.

    Science.gov (United States)

    Schaafsma, Martijn C; Georgiou, Giorgos; Rivas, Jaime Gómez

    2015-09-21

    We demonstrate experimentally the enhanced THz extinction by periodic arrays of resonant semiconductor particles. This phenomenon is explained in terms of the radiative coupling of localized resonances with diffractive orders in the plane of the array (Rayleigh anomalies). The experimental results are described by numerical calculations using a coupled dipole model and by Finite-Difference in Time-Domain simulations. An optimum particle size for enhancing the extinction efficiency of the array is found. This optimum is determined by the frequency detuning between the localized resonances in the individual particles and the Rayleigh anomaly. The extinction calculations and measurements are also compared to near-field simulations illustrating the optimum particle size for the enhancement of the near-field.

  1. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  2. Photocurrent enhancement of graphene photodetectors by photon tunneling of light into surface plasmons

    Science.gov (United States)

    Maleki, Alireza; Cumming, Benjamin P.; Gu, Min; Downes, James E.; Coutts, David W.; Dawes, Judith M.

    2017-10-01

    We demonstrate that surface plasmon resonances excited by photon tunneling through an adjacent dielectric medium enhance the photocurrent detected by a graphene photodetector. The device is created by overlaying a graphene sheet over an etched gap in a gold film deposited on glass. The detected photocurrents are compared for five different excitation wavelengths, ranging from {λ }0=570 {{nm}} to {λ }0=730 {{nm}}. Although the device is not optimized, the photocurrent excited with incident p-polarized light (which excites resonant surface plasmons) is significantly amplified in comparison with that for s-polarized light (without surface plasmon resonances). We observe that the photocurrent is greater for shorter wavelengths (for both s- and p-polarizations) with increased photothermal current. Position-dependent Raman spectroscopic analysis of the optically-excited graphene photodetector indicates the presence of charge carriers in the graphene near the metallic edge. In addition, we show that the polarity of the photocurrent reverses across the gap as the incident light spot moves across the gap. Graphene-based photodetectors offer a simple architecture which can be fabricated on dielectric waveguides to exploit the plasmonic photocurrent enhancement of the evanescent field. Applications for these devices include photodetection, optical sensing and direct plasmonic detection.

  3. Surface-enhanced FAST CARS: en route to quantum nano-biophotonics

    Science.gov (United States)

    Voronine, Dmitri V.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.

    2018-02-01

    Quantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS) and surface-enhanced Raman scattering (SERS) spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS) were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS) and tip-enhanced coherent anti-Stokes Raman scattering (TECARS) and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.

  4. Surface-enhanced FAST CARS: en route to quantum nano-biophotonics

    Directory of Open Access Journals (Sweden)

    Voronine Dmitri V.

    2018-02-01

    Full Text Available Quantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS and surface-enhanced Raman scattering (SERS spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS and tip-enhanced coherent anti-Stokes Raman scattering (TECARS and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.

  5. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR and Surface Enhanced Raman Spectroscopy (SERS Detection of Adsorbed (Biomolecules

    Directory of Open Access Journals (Sweden)

    Rodica Elena Ionescu

    2017-01-01

    Full Text Available Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography or inexpensive (e.g., thermal synthesis approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C. The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS optical responses and where used for the detection of low concentrations of two model (biochemical molecules, namely the human cytochrome b5 (Cyt-b5 and trans-1,2-bis(4-pyridylethylene (BPE.

  6. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw, Htet Htet [Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123 (Oman); Boonruang, Sakoolkan, E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Photonics Technology Laboratory, National Electronics and Computer Technology Center (NECTEC), 112 Thailand Science Park, PathumThani 12120 (Thailand); Mohammed, Waleed S., E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control Systems (BUCROCCS), School of Engineering, Bangkok University, PathumThani 12120 (Thailand); Dutta, Joydeep [Functional Materials Division, School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista, Stockholm (Sweden)

    2015-10-15

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd{sup 2+}) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  7. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    Science.gov (United States)

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  8. Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat

    Science.gov (United States)

    A rapid, sensitive and multiplexed imaging surface plasmon resonance (iSPR) biosensor assay was developed and validated for three Fusarium toxins, deoxynivalenol (DON), zearalenone (ZEA) and T-2 toxin. The iSPR assay was based on a competitive inhibition format with secondary antibodies (Ab2) conjug...

  9. Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime

    International Nuclear Information System (INIS)

    Cao, Tun; Zhang, Lei; Xiao, Zai-peng; Huang, Hui

    2013-01-01

    Fano resonance (FR) is routinely observed in three-dimensional symmetric metamaterials (MMs) consisting of elliptical nanoholes array (ENA) embedding through metal–dielectric–metal (MDM) multilayers. It is shown theoretically that a square periodic ENA perforating through MDM layers produces an FR response in the near infrared regime. This FR response is attributed to the interplay between the bright modes and dark modes, where the bright modes originate from the electric resonance (localized surface plasmon resonance) caused by the ENA and the dark modes are due to the magnetic resonance (inductive–capacitive resonance) induced by the MDM multilayers. Notably, one can achieve a narrower FR when the elliptical nanoholes occupy the sites of a rectangular lattice, owing to the interaction of the magnetic resonances with the enhanced electric resonances. Moreover, a higher varying degree of the lattice constant along the horizontal direction allows for an FR with a higher value of the quality factor and the tuning of the amplitude and the resonant frequency of the transparency window. Such an FR created by the interference among the magnetic and electric dipolar resonances opens up an alternative way of forming a sharp FR in the symmetric multilayer MMs, and could be exploited for sensing. (paper)

  10. Threshold enhancement of diphoton resonances

    CERN Document Server

    Bharucha, Aoife; Goudelis, Andreas

    2016-10-10

    The data collected by the LHC collaborations at an energy of 13 TeV indicates the presence of an excess in the diphoton spectrum that would correspond to a resonance of a 750 GeV mass. The apparently large production cross section is nevertheless very difficult to explain in minimal models. We consider the possibility that the resonance is a pseudoscalar boson $A$ with a two--photon decay mediated by a charged and uncolored fermion having a mass at the $\\frac12 M_A$ threshold and a very small decay width, $\\ll 1$ MeV; one can then generate a large enhancement of the $A\\gamma\\gamma$ amplitude which explains the excess without invoking a large multiplicity of particles propagating in the loop, large electric charges and/or very strong Yukawa couplings. The implications of such a threshold enhancement are discussed in two explicit scenarios: i) the Minimal Supersymmetric Standard Model in which the $A$ state is produced via the top quark mediated gluon fusion process and decays into photons predominantly through...

  11. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    Science.gov (United States)

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. (c) 2009 Optical Society of America

  12. Histological examination of the gadolinium-enhanced dura mater around meningiomas on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sakai, Keiichi; Tada, Tsuyoshi; Fukasaku, Kazuaki; Kyoshima, Kazuhiko; Kobayashi, Shigeaki

    1993-01-01

    Magnetic resonance imaging often demonstrates gadolinium (Gd) enhancement of the dura mater around meningiomas. The Gd-enhanced dura mater was histologically investigated to detect meningioma cells. Gd enhancement of the dura mater occurred in 11 (79%) of the 14 meningiomas studied, and extended as far as 35 mm from the tumor. Histological examination revealed generation of vascular-rich loose connective tissue at the surface of the dura in all five tumors examined. Some clusters of meningothelial cells were distributed in the loose connective tissue in three of the five specimens, and one cluster was obviously neoplastic. These observations suggest that clusters of meningioma cells occur in the Gd-enhanced dura mater around meningiomas. (author)

  13. Histological examination of the gadolinium-enhanced dura mater around meningiomas on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Keiichi; Tada, Tsuyoshi; Fukasaku, Kazuaki; Kyoshima, Kazuhiko; Kobayashi, Shigeaki [Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Medicine

    1993-07-01

    Magnetic resonance imaging often demonstrates gadolinium (Gd) enhancement of the dura mater around meningiomas. The Gd-enhanced dura mater was histologically investigated to detect meningioma cells. Gd enhancement of the dura mater occurred in 11 (79%) of the 14 meningiomas studied, and extended as far as 35 mm from the tumor. Histological examination revealed generation of vascular-rich loose connective tissue at the surface of the dura in all five tumors examined. Some clusters of meningothelial cells were distributed in the loose connective tissue in three of the five specimens, and one cluster was obviously neoplastic. These observations suggest that clusters of meningioma cells occur in the Gd-enhanced dura mater around meningiomas. (author).

  14. Trampoline metamaterial: Local resonance enhancement by springboards

    Science.gov (United States)

    Bilal, Osama R.; Hussein, Mahmoud I.

    2013-09-01

    We investigate the dispersion characteristics of locally resonant elastic metamaterials formed by the erection of pillars on the solid regions in a plate patterned by a periodic array of holes. We show that these solid regions effectively act as springboards leading to an enhanced resonance behavior by the pillars when compared to the nominal case of pillars with no holes. This local resonance amplification phenomenon, which we define as the trampoline effect, is shown to cause subwavelength bandgaps to increase in size by up to a factor of 4. This outcome facilitates the utilization of subwavelength metamaterial properties over exceedingly broad frequency ranges.

  15. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng; Zhu, Yihan; Liu, Changxu; Zhao, Yunfeng; Liu, Zhaohui; Hedhili, Mohamed N.; Fratalocchi, Andrea; Han, Yu

    2015-01-01

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here

  16. Studied Localized Surface Plasmon Resonance Effects of Au Nanoparticles on TiO2 by FDTD Simulations

    Directory of Open Access Journals (Sweden)

    Guo-Ying Yao

    2018-06-01

    Full Text Available Localized surface plasmon resonance (LSPR plays a significant role in the fields of photocatalysis and solar cells. It can not only broaden the spectral response range of materials, but also improve the separation probability of photo-generated electron-hole pairs through local field enhancement or hot electron injection. In this article, the LSPR effects of Au/TiO2 composite photocatalyst, with different sizes and shapes, have been simulated by the finite difference time domain (FDTD method. The variation tendency of the resonance-absorption peaks and the intensity of enhanced local enhanced electric field were systematically compared and emphasized. When the location of Au nanosphere is gradually immersed into the TiO2 substrate, the local enhanced electric field of the boundary is gradually enhanced. When Au nanoshperes are covered by TiO2 at 100 nm depths, the local enhanced electric field intensities reach the maximum value. However, when Au nanorods are loaded on the surface of the TiO2 substrate, the intensity of the corresponding enhanced local enhanced electric field is the maximum. Au nanospheres produce two strong absorption peaks in the visible light region, which are induced by the LSPR effect and interband transitions between Au nanoparticles and the TiO2 substrate. For the LSPR resonance-absorption peaks, the corresponding position is red-shifted by about 100 nm, as the location of Au nanospheres are gradually immersed into the TiO2 substrate. On the other hand, the size change of the Au nanorods do not lead to a similar variation of the LSPR resonance-absorption peaks, except to change the length-diameter ratio. Meanwhile, the LSPR effects are obviously interfered with by the interband transitions between the Au nanorods and TiO2 substrate. At the end of this article, three photo-generated carrier separation mechanisms are proposed. Among them, the existence of direct electron transfer between Au nanoparticles and the TiO2

  17. Comparison of Surface-enhanced Raman Scattering Spectra of Two Kinds of Silver Nanoplate Films

    Institute of Scientific and Technical Information of China (English)

    TAO Jin-long; TANG Bin; XU Shu-ping; PAN Ling-yun; XU Wei-qing

    2012-01-01

    Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared.Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out.The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped.In this model,the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.

  18. Threshold enhancement of diphoton resonances

    Directory of Open Access Journals (Sweden)

    Aoife Bharucha

    2016-10-01

    Full Text Available We revisit a mechanism to enhance the decay width of (pseudo-scalar resonances to photon pairs when the process is mediated by loops of charged fermions produced near threshold. Motivated by the recent LHC data, indicating the presence of an excess in the diphoton spectrum at approximately 750 GeV, we illustrate this threshold enhancement mechanism in the case of a 750 GeV pseudoscalar boson A with a two-photon decay mediated by a charged and uncolored fermion having a mass at the 12MA threshold and a small decay width, <1 MeV. The implications of such a threshold enhancement are discussed in two explicit scenarios: i the Minimal Supersymmetric Standard Model in which the A state is produced via the top quark mediated gluon fusion process and decays into photons predominantly through loops of charginos with masses close to 12MA and ii a two Higgs doublet model in which A is again produced by gluon fusion but decays into photons through loops of vector-like charged heavy leptons. In both these scenarios, while the mass of the charged fermion has to be adjusted to be extremely close to half of the A resonance mass, the small total widths are naturally obtained if only suppressed three-body decay channels occur. Finally, the implications of some of these scenarios for dark matter are discussed.

  19. Giant Enhancement of Small Photoluminescent Signals on Glass Surfaces Covered by Self-Assembled Silver Nanorings.

    Science.gov (United States)

    Sousanis, A; Poulopoulos, P; Karoutsos, V; Trachylis, D; Politis, C

    2017-02-01

    Self-assembled nanostructures with the shape of nanospheres or nanorings were formed after annealing of ultrathin Ag films grown on glass, in a furnace with air at 460 °C. Intense localized surface plasmon resonances were recorded for these nanostructures with maxima at the green-blue light. The surface became functional in terms of enhancing the weak photoluminescence of glass between 2–400 times. This system provides an easy way of enhancing the photoluminescence emission of initially low performance materials.

  20. Resonantly enhanced collisional ionization measurements of radionuclides

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1986-01-01

    The authors developed a new laser technique to analyze for radionuclides at extremely low levels. The technique, called resonantly enhanced collisional ionization (RECI), uses two nitrogen-laser pumped dye lasers to excite the target isotope to a high-energy Rydberg state. Atoms in these Rydberg states (within a few hundred wavenumbers in energy from the ionization threshold) efficiently ionize upon colliding with an inert gas and the ions can be detected by conventional means. The principal advantage of resonantly-enhanced collisional ionization is the extreme sensitivity coupled with its relative simplicity and low cost. Actinides typically have an ionization potential of about 6eV (uranium I.P. = 6.2 eV, plutonium I.P. = 5.7 eV). Two-step laser excitation to a state just below threshold requires wavelengths in the blue region of the visible spectrum. They showed that when both steps in the excitation process are resonant steps, relatively low-power lasers can populate the Rydberg state with almost unit efficiency. This is because the resonant excitations have much larger cross-sections than do photoionization processes. They also demonstrated that a few torr of a buffer gas will cause most of the excited-state atoms to be ionized

  1. Non-resonant terahertz field enhancement in periodically arranged nanoslits

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Ivinskaya, Aliaksandra; Zalkovskij, Maksim

    2012-01-01

    We analyze ultra strong non-resonant field enhancement of THz field in periodic arrays of nanoslits cut in ultrathin metal films. The main feature of our approach is that the slit size and metal film thickness are several orders of magnitude smaller than the wavelength λ of the impinging radiatio...... by the microscopic Drude-Lorentz model taking into account retardation processes in the metal film and validated by the finite difference frequency domain method. We expect sensor and modulation applications of the predicted giant broadband field enhancement.......We analyze ultra strong non-resonant field enhancement of THz field in periodic arrays of nanoslits cut in ultrathin metal films. The main feature of our approach is that the slit size and metal film thickness are several orders of magnitude smaller than the wavelength λ of the impinging radiation...... approaches the THz wavelength but before entering the Raleigh-Wood anomaly, the field enhancement in nanoslit stays close to that in a single isolated slit, i.e., the well-known inversefrequency dependence. Both regimes are non-resonant and thus extremely broadband for P

  2. Resonance-enhanced electron-impact excitation of Cu-like gold

    Science.gov (United States)

    Xia, L.; Zhang, C. Y.; Si, R.; Guo, X. L.; Chen, Z. B.; Yan, J.; Li, S.; Chen, C. Y.; Wang, K.

    2017-09-01

    Employing the independent-process and isolated-resonance approximations using distorted-waves (IPIRDW), we have performed a series of calculations of the resonance-enhanced electron-impact excitations (EIE) among 27 singly excited levels from the n ≤ 6 configurations of Cu-like gold (Au, Z = 79). Resonance excitation (RE) contributions from both the n = 4 → 4 - 7 and n = 3 → 4 core excitations have been considered. Our results demonstrate that RE contributions are significant and enhance the effective collision strengths (ϒ) of certain excitations by up to an order of magnitude at low temperature (106.1 K), and are still important at relatively high temperature (107.5 K). Results from test calculations of the resonance-enhanced EIE processes among 16 levels from the n ≤ 5 configurations using both the Dirac R-matrix (DRM) and IPIRDW approaches agree very well with each other. This means that the close-coupling effects are not important for this ion, and thus warrants the reliability of present resonance-enhanced EIE data among the 27 levels. The results from the collisional-radiative model (CRM) show that, at 3000 eV, near where Cu-like Au is most abundant, RE contributions have important effects (up to 25%) on the density diagnostic line intensity ratios, which are sensitive near 1020 cm-3. The present work is the first EIE research including RE contributions for Cu-like Au. Our EIE data are more accurate than previous results due to our consideration of RE contributions, and the data should be helpful for modeling and diagnosing a variety of plasmas.

  3. Enhanced THz extinction in arrays of resonant semiconductor particles

    NARCIS (Netherlands)

    Schaafsma, M. C.; Georgiou, G.; J. Gomez Rivas,

    2015-01-01

    We demonstrate experimentally the enhanced THz extinction by periodic arrays of resonant semiconductor particles. This phenomenon is explained in terms of the radiative coupling of localized resonances with diffractive orders in the plane of the array (Rayleigh anomalies). The experimental results

  4. Phase modification and surface plasmon resonance of Au/WO{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, R. Jolly; Kavitha, V.S. [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India); Sudarsanakumar, C. [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686560, Kerala (India); Pillai, V.P. Mahadevan, E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India)

    2016-08-30

    Highlights: • We have investigated the role of gold as catalyst and nucleation centers, for the crystallization and phase modification of tungsten oxide, in Au/WO{sub 3} matrix. • The phase change from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} is found to enhance with gold incorporation. • The surface plasmon resonance is observed in gold/tungsten oxide system with the appearance of an absorption band near the wavelength 604 nm. - Abstract: We report the action of gold as catalyst for the modification of phase from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} and nucleation centre for the formation of W{sub 18}O{sub 49} phase, in gold incorporated tungsten oxide films prepared by RF magnetron sputtering technique. A new band is observed near 925 cm{sup −1} in the Raman spectra of gold incorporated tungsten oxide films which is not observed in the pure tungsten oxide film. The intensity of this band enhances with gold content. A localized surface plasmon resonance (LSPR) band is observed near the wavelength 604 nm in gold incorporated tungsten oxide films. The integrated intensities of LSPR band and Raman band (∼925 cm{sup −1}) can be used for sensing the quantity of gold in the Au/WO{sub 3} matrix.

  5. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (CW diode lasers.

    Science.gov (United States)

    Aggarwal, Roshan L; Farrar, Lewis W; Greeneltch, Nathan G; Van Duyne, Richard P; Polla, Dennis L

    2013-02-01

    The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm(-1) SERS mode. A value of 9.6 ± 1.7×10(-14) W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3×10(-14) W using the measured value of 8.7 ± 0.5 cm(-1) for the SERS linewidth Γ (full width at half-maximum) and the value of 5.7 ± 1.4×10(-7) for the product of the Raman cross section σSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3 χxxxx((3)R)| for the 1574 cm(-1) SERS mode has been determined to be 4.3 ± 1.1×10(-5) cm·g(-1)·s(2). The SERS enhancement factor for the 1574 cm(-1) mode was determined to be 3.6 ± 0.9×10(7) using the value of 1.8×10(15) molecules/cm(2) for Ns.

  6. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  7. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  8. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    Science.gov (United States)

    Jang, Gyoung Gug

    The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under

  9. Technical aspects of contrast-enhanced magnetic resonance imaging of the breast: literature review

    International Nuclear Information System (INIS)

    Leopoldino, Denise de Deus; Gracio, Tatiana Schiller; D'Ippolito, Giuseppe; Bezerra, Alexandre Sergio de Araujo; Gracio, Tatiana Schiller

    2005-01-01

    With the advances in surface coil technology and the development of new imaging protocols in addition to the increase of the use of contrast agents, contrast enhanced magnetic resonance imaging (MRI) has emerged as a promising modality for detection, diagnosis and staging of breast cancer. Despite these advances, there are some unresolved issues, including no defined standard technique for contrast-enhanced breast MRI and no standard criteria of interpretation for the evaluation of such studies. In this article, we review the literature and discuss the general requirements and recommendations for contrast agent-enhanced breast MRI, including image interpretation criteria, MR equipment, dedicated radiofrequency coils, use of paramagnetic contrast agents, fat-suppression techniques, planes of acquisition, pulse sequence specifications and artifact sources. (author)

  10. Cavity-enhanced surface-plasmon resonance sensing: Modeling and performance

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Zullo, R.; Gaglio, G.; Homola, Jiří; De Natale, P.

    2014-01-01

    Roč. 25, č. 1 (2014), 015205 ISSN 0957-0233 Institutional support: RVO:67985882 Keywords : optical resonators * optical sensors * cavity ring-down spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.433, year: 2014

  11. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.; Tuccio, S.; Prato, M.; De Donato, F.; Perucchi, A.; Di Pietro, P.; Marras, S.; Liberale, Carlo; Zaccaria, R. Proietti; De Angelis, F.; Manna, L.; Lupi, S.; Di Fabrizio, Enzo M.; Razzari, L.

    2015-01-01

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number

  12. Resonance Raman and surface-enhanced resonance Raman spectra of LH2 antenna complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. excited in the Qx and Qy transitions.

    Science.gov (United States)

    Chumanov, G; Picorel, R; Ortiz de Zarate, I; Cotton, T M; Seibert, M

    2000-05-01

    Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.

  13. Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chiu

    2013-12-01

    Full Text Available We report a novel design wherein high-refractive-index zinc oxide (ZnO intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR devices to enhance signal quality and improve the full width at half maximum (FWHM of the SPR reflectivity curve. The surface plasmon (SP modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002 crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr and indium tin oxide (ITO intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au, (Cr/Au, and (ITO/Au devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement.

  14. Surface vibrational modes in disk-shaped resonators.

    Science.gov (United States)

    Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P

    2014-03-01

    The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Magnetic resonance image enhancement using V-filter

    International Nuclear Information System (INIS)

    Yamamoto, H.; Sugita, K.; Kanzaki, N.; Johja, I.; Hiraki, Y.

    1990-01-01

    The purpose of this study is to present a method of boundary enhancement algorithms for magnetic resonance images using a V-filter. The boundary of the brain tumor was precisely extracted by the region segmentation techniques

  16. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.

    2015-11-12

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  17. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering.

    Science.gov (United States)

    Zhang, Yuanyuan; Yu, Wansong; Pei, Lu; Lai, Keqiang; Rasco, Barbara A; Huang, Yiqun

    2015-02-15

    Surface-enhanced resonance Raman scattering (SERRS) coupled with gold nanospheres was applied for rapid analysis of the hazardous substances malachite green (MG) and leucomalachite green (LMG) in fish muscle tissues. The lowest concentration of MG that could be detected was 0.5ngmL(-1) with high linear correlation (R(2)=0.970-0.998) between MG concentration and intensities of characteristic Raman peaks. A simplified sample preparation method taking less than 1h for recovering MG and LMG in fish fillets was developed for SERRS analysis, and 4-8 samples could be handled in parallel. MG and LMG could be detected in extracts of tilapia fish fillets at as low as 2ngg(-1) with SERRS and a simple principle component analysis method. For six other fish species, the lowest detectable concentration of MG ranged from 1ngg(-1) to 10ngg(-1). This study provides a new sensitive approach for the detection of trace amounts of the prohibited drugs MG and LMG in muscle food, which has the potential for rapidly screening a large number of samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering.

    Science.gov (United States)

    Leona, Marco

    2009-09-01

    Scientific studies of works of art are usually limited by severe sampling restrictions. The identification of organic colorants, a class of compounds relevant for attribution and provenance studies, is further complicated by the low concentrations at which these compounds are used and by the interference of the protein-, gum-, or oil-binding media present in pigment and glaze samples. Surface-enhanced resonance Raman scattering (SERRS) was successfully used to identify natural organic colorants in archaeological objects, polychrome sculptures, and paintings from samples smaller than 25 microm in diameter. The key factors in achieving the necessary sensitivity were a highly active stabilized silver colloid, obtained by the reproducible microwave-supported reduction of silver sulfate with glucose and sodium citrate, and a non-extractive hydrolysis sample treatment procedure that maximizes dye adsorption on the colloid. Among the examples presented are the earliest so far found occurrence of madder lake (in a 4,000 years old Egyptian object dating to the Middle Kingdom period), and the earliest known occurrence in Europe of the South Asian dyestuff lac (in the Morgan Madonna, a 12th century polychrome sculpture from Auvergne, France).

  19. Resonances and surface waves in bounded plasmas

    International Nuclear Information System (INIS)

    Bowers, K.J.; Qui, D.W.; Smith, H.B.; Birdsall, C.K.

    1999-01-01

    Surface waves provide a promising means of creating large, area plasmas. These waves can uniformly distribute the excitation energy and while presenting a small resistance and zero reactance to the driving source. Experimentally and in the simulations, the electron temperature is low (like 1--3 eV) as is the plasma potential (like 10 Te). The use of surface waves experimentally, and now industrially, to sustain large area plasma sources with device size is comparable to free space wavelength have motivated the authors to refine the theories of [1] and [2] to be fully electromagnetic. The wave dispersion predicted by the electromagnetic theory differs from the predictions of the prior theories and the results illuminate limitations of the electrostatic model. The use of surface waves have also motivated them to explore the mechanisms by which surface waves heat the plasma. In the 1d electrostatic simulations high velocity electron bunches are formed in the sheaths and are alternatively accelerated from each sheath into the bulk plasma each RF cycle. They speculate similar mechanisms provide the ionization in surface wave discharges. They also see in these simulations the plasma makes an abrupt transition from capacitively coupled to resistively coupled and the series resonance locks onto the drive frequency; these abrupt transitions resemble mode-jumping seen experimentally in large area sources. Furthermore, the density profile of the plasma tracks the drive frequency while in the resonant mode giving a new mechanism by which the plasma parameters can be controlled. They are currently investigating the effect of the driving electrode shape has on these resonances and conducting 2d simulations of a large area surface wave source to explore the ignition of surface wave devices and how the plasma fills in the device

  20. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  1. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  2. Biopharmaceutical production: Applications of surface plasmon resonance biosensors.

    Science.gov (United States)

    Thillaivinayagalingam, Pranavan; Gommeaux, Julien; McLoughlin, Michael; Collins, David; Newcombe, Anthony R

    2010-01-15

    Surface plasmon resonance (SPR) permits the quantitative analysis of therapeutic antibody concentrations and impurities including bacteria, Protein A, Protein G and small molecule ligands leached from chromatography media. The use of surface plasmon resonance has gained popularity within the biopharmaceutical industry due to the automated, label free, real time interaction that may be exploited when using this method. The application areas to assess protein interactions and develop analytical methods for biopharmaceutical downstream process development, quality control, and in-process monitoring are reviewed. 2009 Elsevier B.V. All rights reserved.

  3. Stimulated resonant scattering at stressed fused silica surface

    International Nuclear Information System (INIS)

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  4. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening.

    Science.gov (United States)

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-07-03

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.

  5. Scattering-Type Surface-Plasmon-Resonance Biosensors

    Science.gov (United States)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  6. Surface plasmon enhanced organic light emitting diodes by gold nanoparticles with different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-11-30

    Highlights: • Different varieties, sizes, and shapes for nanoparticles will generate different surface plasmon resonance effects in the devices. • The red-shift phenomenon for absorption peaks is because of an increasing contribution of higher-order plasmon modes for the larger gold nanoparticles. • The mobility of electrons in the electron-transport layer of organic light-emitting diodes is a few orders of magnitude lower than that of holes in the hole-transport layer of organic light-emitting diodes. - Abstract: The influence of gold nanoparticles (GNPs) with different sizes doped into (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) (PEDOT:PSS) on the performance of organic light-emitting diodes is investigated in this study. The current efficiency of the device, at a current density of 145 mA/cm, with PEDOT:PSS doped with GNPs of 8 nm is about 1.57 times higher than that of the device with prime PEDOT:PSS because the absorption peak of GNPs is closest to the photoluminescence peak of the emission layer, resulting in maximum surface plasmon resonance effect in the device. In addition, the surface-enhanced Raman scattering spectroscopy also reveals the maximum surface plasmon resonance effect in the device when the mean particle size of GNPs is 8 nm.

  7. Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-02-01

    We observed resonantly-enhanced terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF6 molecules [PPy(PF6)]. The "anomalous transmission" spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the `anomalous transmission' peaks are broader in the exotic metallic PPy (PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, showing that the surface plasmon polaritons on the PPy (PF6) film surfaces have higher attenuation.

  8. Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Tuncay; Soganci, Ibrahim Murat; Nizamoglu, Sedat; Huyal, Ilkem Ozge; Mutlugun, Evren; Demir, Hilmi Volkan [Department of Physics, Department of Electrical and Electronics Engineering, Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander [Physical Chemistry/Electrochemistry Group, Technische Universitaet Dresden, Bergstr. 66b, Dresden 01062 (Germany)], E-mail: volkan@bilkent.edu.tr

    2008-08-15

    We propose and demonstrate the controlled modification and selective enhancement of surface-state emission in white-luminophor CdS nanocrystals (NCs) by plasmon-coupling them with proximal metal nanostructures. By carefully designing nano-Ag films to match their localized plasmon resonance spectrally with the surface-state emission peak of CdS NCs, we experimentally show that the surface-state emission is substantially enhanced in the visible wavelength, while the interband (band-edge) transition at the shorter wavelength far away from the plasmon resonance is simultaneously significantly suppressed. With such plasmon tuning and consequent strong plasmon coupling specifically for the surface-state transitions, the surface-state emission is made stronger than the band-edge emission. This corresponds to an enhancement factor of 12.7-fold in the ratio of the surface-state peak emission to the band-edge peak emission of the plasmon-coupled film sample compared with that in solution. Such a plasmonic engineering of surface-state emission in trap-rich CdS white nanoluminophors holds great promise for future solid-state lighting.

  9. Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling

    International Nuclear Information System (INIS)

    Ozel, Tuncay; Soganci, Ibrahim Murat; Nizamoglu, Sedat; Huyal, Ilkem Ozge; Mutlugun, Evren; Demir, Hilmi Volkan; Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander

    2008-01-01

    We propose and demonstrate the controlled modification and selective enhancement of surface-state emission in white-luminophor CdS nanocrystals (NCs) by plasmon-coupling them with proximal metal nanostructures. By carefully designing nano-Ag films to match their localized plasmon resonance spectrally with the surface-state emission peak of CdS NCs, we experimentally show that the surface-state emission is substantially enhanced in the visible wavelength, while the interband (band-edge) transition at the shorter wavelength far away from the plasmon resonance is simultaneously significantly suppressed. With such plasmon tuning and consequent strong plasmon coupling specifically for the surface-state transitions, the surface-state emission is made stronger than the band-edge emission. This corresponds to an enhancement factor of 12.7-fold in the ratio of the surface-state peak emission to the band-edge peak emission of the plasmon-coupled film sample compared with that in solution. Such a plasmonic engineering of surface-state emission in trap-rich CdS white nanoluminophors holds great promise for future solid-state lighting

  10. Surface Acoustic Wave (SAW-Enhanced Chemical Functionalization of Gold Films

    Directory of Open Access Journals (Sweden)

    Gina Greco

    2017-10-01

    Full Text Available Surface chemical and biochemical functionalization is a fundamental process that is widely applied in many fields to add new functions, features, or capabilities to a material’s surface. Here, we demonstrate that surface acoustic waves (SAWs can enhance the chemical functionalization of gold films. This is shown by using an integrated biochip composed by a microfluidic channel coupled to a surface plasmon resonance (SPR readout system and by monitoring the adhesion of biotin-thiol on the gold SPR areas in different conditions. In the case of SAW-induced streaming, the functionalization efficiency is improved ≈ 5 times with respect to the case without SAWs. The technology here proposed can be easily applied to a wide variety of biological systems (e.g., proteins, nucleic acids and devices (e.g., sensors, devices for cell cultures.

  11. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  12. Gd-EOB-DTPA-enhanced magnetic resonance imaging features of hepatic hemangioma compared with enhanced computed tomography

    OpenAIRE

    Tateyama, Akihiro; Fukukura, Yoshihiko; Takumi, Koji; Shindo, Toshikazu; Kumagae, Yuichi; Kamimura, Kiyohisa; Nakajo, Masayuki

    2012-01-01

    AIM: To clarify features of hepatic hemangiomas on gadolinium-ethoxybenzyl-diethylenetriaminpentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) compared with enhanced computed tomography (CT).

  13. Study on the effect of nanoparticle bimetallic coreshell Au-Ag for sensitivity enhancement of biosensor based on surface plasmon resonance

    International Nuclear Information System (INIS)

    Widayanti; Abraha, K

    2016-01-01

    Bimetallic Au-Ag core-shell, a type of composite spherical nanoparticle consisting of a spherical Au core covered by Ag shell, have been used as active material for biomolecular analyte detection based on surface plasmon resonance (SPR) spectroscopy. SPR technology evolved into a key technology for characterization of biomolecular interaction. In this paper, we want to show the influence of nanoparticle bimettalic Au-Ag coreshell for optic respon of LSPR biosensor through attenuated total reflection (ATR) spectrum. The method consist of several steps begin from make a model LSPR system with Kretschmann configuration, dielectric function determination of composite bimetallic coreshell nanoparticle using effective medium theory approximation and the last is reflectivity calculation for size variation of core and shell bimetallic nanoparticle. Our result show that, by varying the radius of core and shell thickness, the peak of the reflectivity (ATR spectrum) shifted to the different angle of incident light and the addition of coreshell in SPR biosensor leads to enhancement the sensitivity. (paper)

  14. The double-resonance enhancement of stimulated low-frequency Raman scattering in silver-capped nanodiamonds

    Science.gov (United States)

    Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.

    2017-09-01

    Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.

  15. Resonance Enhanced Multi-photon Spectroscopy of DNA

    Science.gov (United States)

    Ligare, Marshall Robert

    For over 50 years DNA has been studied to better understand its connection to life and evolution. These past experiments have led to our understanding of its structure and function in the biological environment but the interaction of DNA with UV radiation at the molecular level is still not very well understood. Unique mechanisms in nucleobase chromaphores protect us from adverse chemical reactions after UV absorption. Studying these processes can help develop theories for prebiotic chemistry and the possibility of alternative forms of DNA. Using resonance enhanced multi-photon spectroscopic techniques in the gas phase allow for the structure and dynamics of individual nucleobases to be studied in detail. Experiments studying different levels of structure/complexity with relation to their biological function are presented. Resonant IR multiphoton dissociation spectroscopy in conjunction with molecular mechanics and DFT calculations are used to determine gas phase structures of anionic nucleotide clusters. A comparison of the identified structures with known biological function shows how the hydrogen bonding of the nucleotides and their clusters free of solvent create favorable structures for quick incorporation into enzymes such as DNA polymerase. Resonance enhanced multi-photon ionization (REMPI) spectroscopy techniques such as resonant two photon ionization (R2PI) and IR-UV double resonance are used to further elucidate the structure and excited state dynamics of the bare nucleobases thymine and uracil. Both exhibit long lived excited electronic states that have been implicated in DNA photolesions which can ultimately lead to melanoma and carcinoma. Our experimental data in comparison with many quantum chemical calculations suggest a new picture for the dynamics of thymine and uracil in the gas phase. A high probability of UV absorption from a vibrationally hot ground state to the excited electronic state shows that the stability of thymine and uracil comes from

  16. Electromagnetic study of surface enhanced Raman scattering of plasmonic-biomolecule: An interaction between nanodimer and single biomolecule

    Science.gov (United States)

    Pandey, Gyanendra Krishna; Pathak, Nilesh Kumar; Uma, R.; Sharma, R. P.

    2017-04-01

    In this article we have investigated the electromagnetic surface enhanced Raman scattering (SERS) of single biomolecule adsorbed at the surface of spherical nanodimer. The SERS mechanism has been studied using first principle approach for spherical nanodimer geometry. The coupling of plasmonic concept to biomolecule results the broadband tunable enhancement in Raman gain factor. In this observation the enhancement factor was observed around ≈ 1015. The plasmonic properties of metal nanodimer are analysed in terms of surface plasmon resonances, extinction efficiency and polarisability that have been derived under quasistatic approximation. In this paper, various facets like interdipole separation, molecule distance and size of the plasmonic nanogeometry are taken into account to analyse the Raman gain factor. We also observe that the frequency range expands sufficiently which increases the broad detectability range of the molecule which generates signal even in the outside of Raman range i.e. in between IR to UV region. Lastly, the extinction spectra and electric field profile have been evaluated at resonance wavelength 364 nm. The comparison between electrostatic approach and numerical approach (using DDA) has also been done in terms of extinction spectra.

  17. A Resonant Scanning Dipole-Antenna Probe for Enhanced Nanoscale Imaging

    NARCIS (Netherlands)

    Neumann, L.; van 't Oever, Jan Joannes Frederik; van Hulst, N.F.

    2013-01-01

    We present a scanning antenna probe that provides 35 nm optical hotspots with a 16-fold excitation enhancement. A resonant optical antenna, tuned to operation in the visible, is carved into the aluminum-coated scanning probe. The antenna resonances, field localization, excitation, and polarization

  18. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  19. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  20. Effects of diffusion and surface interactions on the line shape of electron paramagnetic resonances in the presence of a magnetic field gradient

    International Nuclear Information System (INIS)

    Schaden, M.; Zhao, K. F.; Wu, Z.

    2007-01-01

    In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms

  1. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  2. Theory of inelastic effects in resonant atom-surface scattering

    International Nuclear Information System (INIS)

    Evans, D.K.

    1983-01-01

    The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results

  3. Image potential resonances of the aluminum (100) surface; Bildpotentialresonanzen der Aluminium-(100)-Oberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Matthias

    2011-07-08

    Image-potential resonances on the (100) surface of pure Aluminum are investigated experimentally and theoretically. The experiments are conducted both energy- and time-resolved using the method of two-photon photoemission spectroscopy. The main attention of the theoretical examination and extensive numerical calculations is devoted to the interaction between surface and bulk states. Image-potential resonances on Al(100) are a system in which a complete series of discrete Rydberg states strongly couples to a continuum of states. As a simple metal it also provides a good opportunity to test theoretical models of the structure of the potential at metal surfaces. This work represents the first high-resolution investigation of image-potential resonances with such strong resonance character. For the first time, it is demonstrated experimentally that isolated image-potential resonances exist on an Aluminum surface. On the (100) surface of Aluminum the second through fifth image-potential resonance are resolved and both, their energies and lifetimes are measured. The binding energies of the image-potential resonances form a Rydberg series of states {epsilon}{sub n}=-(0,85 eV)/((n+a){sup 2}). Within the accuracy of the measurement it is not necessary to introduce a quantum defect a (a=0.022{+-}0.035). Using angle-resolved two-photon photoemission spectroscopy the effective mass of electrons in the second image-potential resonance is measured to 1.01{+-}0.11 electron masses. The lifetimes of the resonances increase as {tau}{sub n} = (1.0{+-}0.2)fs.n{sup 3} starting from n=2. Calculations using the density matrix formalism show that the experimentally observed lifetimes can be explained well by electrons decaying into the bulk. The effect of resonance trapping leads to extended lifetimes in the process. Contrary to common theoretical models of image-potential states at metal surfaces the first image-potential resonance cannot be observed in two-photon photoemission on Al(100

  4. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Science.gov (United States)

    Barho, Franziska B.; Gonzalez-Posada, Fernando; Milla, Maria-Jose; Bomers, Mario; Cerutti, Laurent; Tournié, Eric; Taliercio, Thierry

    2017-11-01

    Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  5. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Directory of Open Access Journals (Sweden)

    Barho Franziska B.

    2017-11-01

    Full Text Available Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  6. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS{sub 2} hybrid structure with TiO{sub 2}-SiO{sub 2} composite layer

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, J.B.; Prajapati, Y.K. [Motilal Nehru National Institute of Technology, Electronics and Communication Engineering Department, Allahabad, Uttar Pradesh (India); Singh, V. [Banaras Hindu University, Department of Physics, Varanasi, Uttar Pradesh (India); Saini, J.P. [Bundelkhand Institute of Engineering and Technology, Electronics and Communication Engineering Department, Jhansi, Uttar Pradesh (India)

    2015-11-15

    In this paper, surface plasmon resonance (SPR) sensor based on graphene-MoS{sub 2} hybrid structure with composite layer of TiO{sub 2}-SiO{sub 2} is presented. The angular interrogation method is used for the analysis of reflected light from the sensor. For the calculation of the sensitivity, first of all the thicknesses of TiO{sub 2}, SiO{sub 2} and gold layers are optimized for the monolayer graphene and MoS{sub 2}. Thereafter, at these optimum thicknesses the reflectance curves are plotted for different sensor structure and comparison of change in resonance angle is made among these structures. It is observed that the sensitivity of the graphene-MoS{sub 2}-based sensor is enhanced by 9.24 % with respect conventional SPR sensor. The sensitivity is further enhanced by including TiO{sub 2}-SiO{sub 2} composite layer between prism base and metal layer and observed that the enhanced sensitivity for this sensor is 12.82 % with respect to conventional SPR sensor and 3.28 % with respect to graphene-MoS{sub 2}-based SPR sensor. At the end of this paper, the variation of the sensitivity and minimum reflectance is plotted with respect to sensing layer refractive index at the optimum thickness of all the layers and optimum number of MoS{sub 2} and graphene layers. It is also observed that four layers of MoS{sub 2} and monolayer graphene are best selection for the maximum enhancement of the sensitivity. (orig.)

  7. Characterization of the enhancing lesions on dynamic contrast enhanced magnetic resonance imaging in patients with interstitial mammoplasty

    International Nuclear Information System (INIS)

    Kim, Tae Yun; Kim, Sung Hun; Kang, Bong Joo; Kim, Hyeon Sook; Cha, Eun Suk; Kim, Ji Youn; Song, Byung Joo

    2013-01-01

    Purpose: The purpose of this study was to categorize the morphologic and kinetic features of enhancing lesions in breasts with interstitial mammoplasty using dynamic contrast-enhanced magnetic resonance imaging and to assess factors predictive of breast cancer. Materials and methods: We retrospectively reviewed the clinical and radiological data of 21 enhancing lesions in 19 patients with interstitial mammoplasty, who underwent breast magnetic resonance imaging and biopsy or an operation in our hospital from September 2008 to July 2012. These lesions were sorted by morphological and kinetic features and final assessment category according to the BI-RADS lexicon. Results: Nine cases were confirmed to be ductal carcinoma in situ (n = 2) and invasive ductal carcinoma (n = 7), and the remaining 12 cases were fibrocystic disease (n = 2), fibroadenoma (n = 2), fat necrosis (n = 1), foreign body granuloma (n = 3) and silicone mastitis (n = 1). Common features of malignancy included irregular shape (50.0%), spiculated margins (75.0%), heterogeneous enhancement (50.0%) and type III kinetic pattern (87.5%). The correlations of margins and kinetic curve pattern with benignity and malignancy approached statistical significance (p = 0.02, respectively). We found no correlation for shape (p = 0.33) or internal enhancement (p = 0.42) between lesion types. The malignancy rate of enhancing lesions was 42.8% (9/21). The sensitivity and specificity of dynamic contrast-enhanced magnetic resonance imaging were 100% and 16.67%, respectively. The positive predictive value, negative predictive value and accuracy of magnetic resonance imaging were 47.38%, 100% and 52.38%. Overall inter-observer agreement for the kinetic curve pattern was good (κ = 0.67). Moderate agreement was seen in describing the shape, margin, enhancement and assessing the final category (κ = 0.59, 0.46, 0.58 and 0.49, respectively). Conclusion: Dynamic contrast-enhanced magnetic resonance imaging had a high

  8. Characterization of the enhancing lesions on dynamic contrast enhanced magnetic resonance imaging in patients with interstitial mammoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yun [Department of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Kim, Sung Hun, E-mail: rad-ksh@catholic.ac.kr [Department of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Kang, Bong Joo [Department of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Kim, Hyeon Sook [Department of Radiology, St. Paul Hospital, The Catholic University of Korea (Korea, Republic of); Cha, Eun Suk [Department of Radiology, Ewha Womans University, School of Medicine, Mokdong Hospital (Korea, Republic of); Kim, Ji Youn [Department of Radiology, Yeouido St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Song, Byung Joo [Department of Surgery, Seoul St. Mary' s Hospital, The Catholic University of Korea, Seoul (Korea, Republic of)

    2013-12-01

    Purpose: The purpose of this study was to categorize the morphologic and kinetic features of enhancing lesions in breasts with interstitial mammoplasty using dynamic contrast-enhanced magnetic resonance imaging and to assess factors predictive of breast cancer. Materials and methods: We retrospectively reviewed the clinical and radiological data of 21 enhancing lesions in 19 patients with interstitial mammoplasty, who underwent breast magnetic resonance imaging and biopsy or an operation in our hospital from September 2008 to July 2012. These lesions were sorted by morphological and kinetic features and final assessment category according to the BI-RADS lexicon. Results: Nine cases were confirmed to be ductal carcinoma in situ (n = 2) and invasive ductal carcinoma (n = 7), and the remaining 12 cases were fibrocystic disease (n = 2), fibroadenoma (n = 2), fat necrosis (n = 1), foreign body granuloma (n = 3) and silicone mastitis (n = 1). Common features of malignancy included irregular shape (50.0%), spiculated margins (75.0%), heterogeneous enhancement (50.0%) and type III kinetic pattern (87.5%). The correlations of margins and kinetic curve pattern with benignity and malignancy approached statistical significance (p = 0.02, respectively). We found no correlation for shape (p = 0.33) or internal enhancement (p = 0.42) between lesion types. The malignancy rate of enhancing lesions was 42.8% (9/21). The sensitivity and specificity of dynamic contrast-enhanced magnetic resonance imaging were 100% and 16.67%, respectively. The positive predictive value, negative predictive value and accuracy of magnetic resonance imaging were 47.38%, 100% and 52.38%. Overall inter-observer agreement for the kinetic curve pattern was good (κ = 0.67). Moderate agreement was seen in describing the shape, margin, enhancement and assessing the final category (κ = 0.59, 0.46, 0.58 and 0.49, respectively). Conclusion: Dynamic contrast-enhanced magnetic resonance imaging had a high

  9. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  10. Enhancement of four-wave mixing induced by interacting dark resonances

    International Nuclear Information System (INIS)

    Yang Weifeng; Gong Shangqing; Niu Yueping; Jin Shiqi; Xu Zhizhan

    2005-01-01

    We analyse a four-wave mixing (FWM) scheme in a five-level atomic system in which double-dark resonances are present. It is found that the enhancement of FWM in both electromagnetically induced transparency (EIT) windows can be obtained even without the condition of multiphoton resonance. Moreover, the conversion efficiency of FWM in one EIT window can be much larger than that in the other due to the presence of interacting dark resonances

  11. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  12. Enhancing optical response of graphene through stochastic resonance

    Science.gov (United States)

    Ying, Lei; Huang, Liang; Lai, Ying-Cheng

    2018-04-01

    Enhancing the optical response of graphene is a topic of interest with applications in optoelectronics. Subject to light irradiation, graphene can exhibit nontrivial topologically insulating states, effectively turning itself into a Floquet topological insulator due to the time periodicity of the external driving. We find that, when random disorder is present, its interplay with the topologically insulating states can have a dramatic effect on electronic transport through graphene. In particular, we consider the prototypical setting where a graphene nanoribbon is irradiated by circularly polarized light, where the length of the nanoribbon is sufficiently long so that evanescent states have little effect on transport. We uncover a resonance phenomenon in which the conductance is enhanced as the disorder strength is increased from zero, reaches a maximum value for an optimal level of disorder, and decreases as the disorder is strengthened further. With respect to its value at the zero-disorder strength, the maximum conductance value can be as much as 50 % higher. Qualitatively, this can be understood as a result of the dynamical interplay between disorder and Floquet states (channels) generated by light irradiation. Quantitatively, the resonance phenomenon can be explained in the framework of Born theory, where the disorder reorganizes the Floquet Hamiltonian and enhances the effective coupling between the adjacent Floquet conducting channels. That is, disorder is capable of promoting both photon absorption and emission, leading to significant enhancement of nonequilibrium electronic transport. We demonstrate the robustness of the resonance phenomenon by investigating the effects of spatial symmetry breaking on transport and provide an understanding based on analyzing the behavior of the density of states of the Floquet channels.

  13. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    Science.gov (United States)

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  14. Low density lipoprotein sensor based on surface plasmon resonance

    International Nuclear Information System (INIS)

    Matharu, Zimple; Sumana, G.; Pandey, M.K.; Gupta, Vinay; Malhotra, B.D.

    2009-01-01

    Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m o /μM.

  15. Low density lipoprotein sensor based on surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Sumana, G.; Pandey, M.K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

    2009-11-30

    Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m{sup o}/{mu}M.

  16. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sarycheva, Asia [Drexel Univ., Philadelphia, PA (United States); Makaryan, Taron [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Satheeshkumar, Elumalai [National Cheng Kung Univ., Tainan (Taiwan); National Institute of Technology-Trichy, Tamil Nadu (India); Melikyan, Armen [Russian-Armenian (Slavonic) State Univ., Yerevan (Armenia); Minassian, Hayk [A. Alikhanian National Science Lab., Yerevan (Armenia); Yoshimura, Masahiro [National Cheng Kung Univ., Tainan (Taiwan); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-08-22

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti3C2Tx, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factors reaching ~106. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.

  17. High-Performance, Large Format Surfaces for Surface-Enhanced Raman Spectroscopy: Increasing the Accessibility of an Analytical Platform

    Science.gov (United States)

    Kanipe, Katherine Nicole

    Although surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique with unusually high sensitivity and molecular specificity, few practical analytical applications have been implemented that take advantage of its power. Based on what is understood about SERS from the experimental and theoretical research of the past forty years, we developed a few well-defined design principles on the basis of which a reliable and reproducibly manufacturable SERS-active substrate could be fabricated that is highly enhancing, highly uniform, stable, and based on a broad range of metals so that various chemical processes could be probed. Finally, we restricted ourselves to using only readily scalable fabrication techniques. The resulting SERS-active device was a metal over silica, two-dimensional nano-grating that was shown to produce enhancements of ˜107 when compared to a smooth surface of the same metal. This SERS substrate also shows unprecedented signal uniformity over square centimeters, and is fabricated using commonly-available foundry-based approaches exclusively. Initially, we explored the properties of a gold-coated substrates in which a first-order grating resonance due to long-range symmetry is augmented by a local resonance due to the individual core-shell grating elements. The SERS properties of such grating systems were systematically studied as a function of various structural parameters such as the grating pitch, the inter-element gap and the thickness of the metal layer. The most enhancing substrates were found to have a grating parameter with a radiative, rather than evanescent, first-order resonance; a sufficiently small gap between nearest neighbor grating elements to produce near-field interactions; and a gold layer whose thickness was larger than the electronic mean-free-path of the conduction electrons, so as to ensure a high conductivity for the metal layer to sustain strong surface plasmons. We applied these same architectural principles to

  18. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  19. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  20. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths

    International Nuclear Information System (INIS)

    Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Höfling, Sven; Kamp, Martin; Worschech, Lukas

    2014-01-01

    An AlGaAs/GaAs double barrier resonant tunneling diode (RTD) with a nearby lattice-matched GaInNAs absorption layer was integrated into an optical cavity consisting of five and seven GaAs/AlAs layers to demonstrate cavity enhanced photodetection at the telecommunication wavelength 1.3 μm. The samples were grown by molecular beam epitaxy and RTD-mesas with ring-shaped contacts were fabricated. Electrical and optical properties were investigated at room temperature. The detector shows maximum photocurrent for the optical resonance at a wavelength of 1.29 μm. At resonance a high sensitivity of 3.1×10 4 A/W and a response up to several pA per photon at room temperature were found

  1. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-12-01

    Full Text Available We present the results of an investigation of surface-enhanced Raman scattering (SERS by optical phonons in colloidal CdSe nanocrystals (NCs homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm, confirming the formation of SERS “hot spots”.

  2. Possibility of 1-nm level localization of a single molecule with gap-mode surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Choi, Han Kyu; Kim, Zee Hwan

    2015-01-01

    The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces

  3. Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.

    Science.gov (United States)

    Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho

    2018-03-14

    In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.

  4. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles

    Science.gov (United States)

    Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping

    2018-04-01

    Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ˜2348 to ˜7660 cd m-2 (˜226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (˜86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

  5. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  6. Electromagnetic theories of surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Ding, Song-Yuan; You, En-Ming; Tian, Zhong-Qun; Moskovits, Martin

    2017-07-07

    Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical

  7. Gadolinium-DTPA-enhanced magnetic resonance imaging of musculoskeletal infectious processes

    International Nuclear Information System (INIS)

    Hopkins, K.L.; Li, K.C.P.; Bergman, G.

    1995-01-01

    The purpose of this study was to assess whether gadolinium-enhanced magnetic resonance imaging (MRI) provides diagnostic information beyond that given by nonenhanced imaging in the evaluation of musculoskeletal infectious processes and whether it can be used for differentiating infectious from noninfectious inflammatory lesions. Magnetic resonance images performed with and without intravenous gadolinium-DTPA in 34 cases in which musculoskeletal infection had been clinically suspected were reviewed. Infectious lesions-including osteomyelitis, pyarthrosis, abscess, and cellulitis-were confirmed in a total of 22 cases: in 15 by biopsy or drainage and in 7 by clinical course. Our results show that gadolinium-DTPA-enhanced MRI is a highly sensitive technique in diagnosing musculoskeletal infectious lesions. It is especially useful in distinguishing abscesses from surrounding cellulitis/myositis. Lack of contrast enhancement rules out infection with a high degree of certainty. However, contrast enhancement cannot be used to reliably distinguish infectious from noninfectious inflammatory conditions. (orig.)

  8. Gadolinium-DTPA-enhanced magnetic resonance imaging of musculoskeletal infectious processes

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, K.L. [Dept. of Diagnostic Radiology, Stanford Univ. Medical Center, CA (United States); Li, K.C.P. [Dept. of Diagnostic Radiology, Stanford Univ. Medical Center, CA (United States); Bergman, G. [Dept. of Diagnostic Radiology, Stanford Univ. Medical Center, CA (United States)

    1995-07-01

    The purpose of this study was to assess whether gadolinium-enhanced magnetic resonance imaging (MRI) provides diagnostic information beyond that given by nonenhanced imaging in the evaluation of musculoskeletal infectious processes and whether it can be used for differentiating infectious from noninfectious inflammatory lesions. Magnetic resonance images performed with and without intravenous gadolinium-DTPA in 34 cases in which musculoskeletal infection had been clinically suspected were reviewed. Infectious lesions-including osteomyelitis, pyarthrosis, abscess, and cellulitis-were confirmed in a total of 22 cases: in 15 by biopsy or drainage and in 7 by clinical course. Our results show that gadolinium-DTPA-enhanced MRI is a highly sensitive technique in diagnosing musculoskeletal infectious lesions. It is especially useful in distinguishing abscesses from surrounding cellulitis/myositis. Lack of contrast enhancement rules out infection with a high degree of certainty. However, contrast enhancement cannot be used to reliably distinguish infectious from noninfectious inflammatory conditions. (orig.)

  9. Absorption enhancement in graphene with an efficient resonator

    DEFF Research Database (Denmark)

    Xiao, Binggang; Gu, Mingyue; Qin, Kang

    2017-01-01

    Graphene can be utilized in designing tunable terahertz (THz) devices due to its tunability of sheet conductivity, suffering however with weak light-graphene interactions. In this paper, an absorption enhancement in graphene using a Fabry–Perot resonator is presented, and its performance has been...

  10. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy

    Science.gov (United States)

    Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing

    2018-05-01

    Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.

  11. Surface plasmon resonance application for herbicide detection

    Science.gov (United States)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1998-01-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  12. Delayed enhancement of peripheral zone of neurofibromas at magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Y. [Dept. of Radiology, Inst. of Clinical Medicine, Univ. of Tsukuba (Japan); Kuramoto, K. [Dept. of Radiology, Inst. of Clinical Medicine, Univ. of Tsukuba (Japan); Itai, Y. [Dept. of Radiology, Inst. of Clinical Medicine, Univ. of Tsukuba (Japan)

    1996-02-01

    It is well known that bizonal histologic appearance characteristic of neurofibromas are reflected on magnetic resonance (MR) images. We report a case in which a delayed enhanced MR image showed that the entire mass enhanced homogeneously resulting in loss of zonal distinction on early enhanced MR image. (orig.)

  13. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  14. [Surface coils for magnetic-resonance images].

    Science.gov (United States)

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  15. Combining surface plasmonic and light extraction enhancement on InGaN quantum-well light-emitters

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    and internal quantum efficiency enhancement for InGaN/GaN quantum-well light-emitters. By fabricating dielectric nano-rod pattern on the GaN surface, an optical coating that improves the light extraction is obtained, and furthermore has a low refractive index which blue-shifts the plasmonic resonance of Ag NPs......Surface plasmon coupling with light-emitters and surface nano-patterning have widely been used separately to improve low efficiency InGaN light-emitting diodes. We demonstrate a method where dielectric nano-patterning and Ag nanoparticles (NPs) are combined to provide both light extraction...

  16. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  17. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  18. Study of surface plasmon resonance of core-shell nanogeometry under the influence of perovskite dielectric environment: Electrostatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Nilesh Kumar; Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology, Delhi-110016 (India)

    2016-05-23

    We have systematically study the nano-plasmonic coupling to the perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) dielectric media in terms of surface plasmon resonance. The surface plasmon resonances are exhibited by the metal nanoparticles which is the electromagnetic excitation conduction electron when it is irradiated by incident light photon. Tunable behaviour of SPRs can be utilized to enhance the absorption of photon inside the surrounding environment in the wavelength range 300 to 800 nm. We have been selected two different types of nanogeometry such as coated and non-coated metal nanoparticles (radii ranges from 10 to 15 nm) to understand the plasmonic interaction to the dielectric media. Finally, we have observed that the coated nanogeometry is more preferable as compared to non-coated system to analyse the tunability of SPR peaks.

  19. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  20. Oxygen-enhanced magnetic resonance ventilation imaging of lung

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Chen Qun; Hatabu, Hiroto

    2001-01-01

    The oxygen-enhanced magnetic resonance (MR) ventilation imaging is a new technique, and the full extent of its physiological significance has not been elucidated. This review article includes background on (1) respiratory physiology; (2) mechanism and optimization of oxygen-enhanced MR imaging technique; (3) recent applications in animal and human models; and (4) merits and demerits of the technique in comparison with hyperpolarized noble gas MR ventilation imaging. Application of oxygen-enhanced MR ventilation imaging to patients with pulmonary diseases has been very limited. However, we believe that further basic studies, as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR ventilation imaging in the future of pulmonary functional imaging and its usefulness for diagnostic radiology

  1. Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

    International Nuclear Information System (INIS)

    Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W

    2016-01-01

    Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the ( E 1 , A 1 ) longitudinal optical (LO) near 590 cm −1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap ( E g   =  0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer. (paper)

  2. Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

    Science.gov (United States)

    Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W.

    2016-06-01

    Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E 1, A 1) longitudinal optical (LO) near 590 cm-1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (E g  =  0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.

  3. Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection

    Science.gov (United States)

    Wu, Ming-Chung; Lin, Ming-Pin; Lin, Ting-Han; Su, Wei-Fang

    2018-04-01

    In this study, we demonstrated a simple method of fabricating a high-performance surface-enhanced Raman scattering (SERS) substrate. Monodispersive SiO2 colloidal spheres were self-assembled on a silicon wafer, and then a silver layer was coated on it to obtain a Ag/SiO2 SERS substrate. The Ag/SiO2 SERS substrates were used to detect three kinds of plasticizer with different concentrations, namely, including bis(2-ethylhexyl)phthalate (DEHP), benzyl butyl phthalate (BBP), and dibutyl phthalate (DBP). The enhancement of Raman scattering intensity caused by surface plasmon resonance can be observed using the Ag/SiO2 SERS substrates. The Ag/SiO2 SERS substrate with a 150-nm-thick silver layer can detect plasticizers, and it satisfies the detection limit of plasticizers at 100 ppm. The developed highly sensitive Ag/SiO2 SERS substrates show a potential for the design and fabrication of functional sensors to identify the harmful plasticizers that plastic products release in daily life.

  4. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer

    Science.gov (United States)

    Arasu, P. T.; Noor, A. S. M.; Shabaneh, A. A.; Yaacob, M. H.; Lim, H. N.; Mahdi, M. A.

    2016-12-01

    A single mode fiber Bragg grating (FBG) is used to generate Surface Plasmon Resonance (SPR). The uniform gratings of the FBG are used to scatter light from the fiber optic core into the cladding thus enabling the interaction between the light and a thin gold film in order to generate SPR. Applying this technique, the cladding around the FBG is left intact, making this sensor very robust and easy to handle. A thin film of graphene oxide (GO) is deposited over a 45 nm gold film to enhance the sensitivity of the SPR sensor. The gold coated sensor demonstrated high sensitivity of approximately 200 nm/RIU when tested with different concentrations of ethanol in an aqueous medium. A 2.5 times improvement in sensitivity is observed with the GO enhancement compared to the gold coated sensor.

  5. Unexpected enhancements and reductions of rf spin resonance strengths

    Directory of Open Access Journals (Sweden)

    M. A. Leonova

    2006-05-01

    Full Text Available We recently analyzed all available data on spin-flipping stored beams of polarized protons, electrons, and deuterons. Fitting the modified Froissart-Stora equation to the measured polarization data after crossing an rf-induced spin resonance, we found 10–20-fold deviations from the depolarizing resonance strength equations used for many years. The polarization was typically manipulated by linearly sweeping the frequency of an rf dipole or rf solenoid through an rf-induced spin resonance; spin-flip efficiencies of up to 99.9% were obtained. The Lorentz invariance of an rf dipole’s transverse ∫Bdl and the weak energy dependence of its spin resonance strength E together imply that even a small rf dipole should allow efficient spin flipping in 100 GeV or even TeV storage rings; thus, it is important to understand these large deviations. Therefore, we recently studied the resonance strength deviations experimentally by varying the size and vertical betatron tune of a 2.1  GeV/c polarized proton beam stored in COSY. We found no dependence of E on beam size, but we did find almost 100-fold enhancements when the rf spin resonance was near an intrinsic spin resonance.

  6. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    Science.gov (United States)

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  7. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    Science.gov (United States)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  8. Realizing high-performance metamaterial absorber based on the localized surface plasmon resonance in the terahertz regime

    Science.gov (United States)

    Yunfeng, Lin; Xiaoqi, Hu; Lin, Hu

    2018-04-01

    A composite structure design metamaterial absorber is designed and simulated. The proposed composite structure consists of a double-hole sub-structure and a double-metallic particle sub-structure. The damping constant of bulk gold layer is optimized to eliminate the adverse effects of the grain boundary and the surface scattering of thin films on the absorption property. Two absorption peaks (A1 = 58%, A2 = 23%) are achieved based on the localized surface plasmon (LSP) modes resonance. Moreover, the plasmonic hybridization phenomenon between LSP modes is found, which leads to the absorption enhancement between two absorption peaks. The proposed metamaterial absorber holds the property of wide-angle incidence.

  9. On the effect of image states on resonant neutralization of hydrogen anions near metal surfaces

    International Nuclear Information System (INIS)

    Chakraborty, Himadri S.; Niederhausen, Thomas; Thumm, Uwe

    2005-01-01

    We directly assess the role of image state electronic structures on the ion-survival by comparing the resonant charge transfer dynamics of hydrogen anions near Pd(1 1 1), Pd(1 0 0), and Ag(1 1 1) surfaces. Our simulations show that image states that are degenerate with the metal conduction band favor the recapture of electrons by outgoing ions. In sharp contrast, localized image states that occur inside the band gap hinder the recapture process and thus enhance the ion-neutralization probability

  10. Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects

    International Nuclear Information System (INIS)

    Lui, S.L.; Cheung, N.H.

    2003-01-01

    When performing laser-induced plasma spectroscopy for elemental analysis, the sensitivity could be significantly enhanced if the plume was resonantly rekindled by a dye laser pulse. The extent of the enhancement was found to depend on the ambient gas. Air, nitrogen, helium, argon and xenon at pressures ranging from vacuum to 1 bar were investigated. In vacuum, the analyte signal was boosted because of reduced cooling, but it soon decayed as the plume freely expanded. By choosing the right ambient gas at the right pressure, the expanding plume could be confined as well as thermally insulated to maximize the analyte signal. For instance, an ambient of 13 mbar xenon yielded a signal-to-noise ratio of 110. That ratio was 53 when the pellet was ablated in air, and decreased further to 5 if the dye laser was tuned off resonance

  11. In vacuo substrate pretreatments for enhancing nanodiamond formation in electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Teii, Kungen; Kouzuma, Yutaka; Uchino, Kiichiro

    2006-01-01

    Substrate pretreatment conditions at low pressures have been examined for enhancing nanocrystalline diamond formation on silicon in electron cyclotron resonance (ECR) plasma. Three kinds of pretreatments (I) exposure to an ECR H 2 plasma with application of a substrate bias from -100 to +30 V (II) hot-filament heating in H 2 gas, and (III) hot-filament heating in vacuum, were used alone or followed by carburization prior to a two-step process of ion-enhanced nucleation in an ECR plasma and subsequent growth in a hot-filament system. The number density of diamond particles after the final growth step was greatly increased up to the order of 10 7 -10 8 cm -2 when applying pretreatment (I) at the bias of 0 V corresponding to the ion-bombardment energy of around 10 eV. In this treatment, a clean and smooth surface with minimal damage was made by the dominance of anisotropic etching by hydrogen ions over isotropic etching by hydrogen atoms. The number density of diamond particles was still more increased when applying pretreatment (II), but the treated surface was unfavorably contaminated and roughened

  12. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  13. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  14. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    Science.gov (United States)

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  15. Visible wavelength surface-enhanced Raman spectroscopy from In-InP nanopillars for biomolecule detection

    Science.gov (United States)

    Murdoch, B. J.; Portoles, J. F.; Tardio, S.; Barlow, A. J.; Fletcher, I. W.; Cumpson, P. J.

    2016-12-01

    Visible wavelength surface-enhanced Raman spectroscopy (SERS) has been observed from bovine serum albumin (BSA) using In-InP nanopillars synthesised by Ar gas cluster ion beam sputtering of InP wafers. InP provides a high local refractive index for plasmonic In structures, which increases the wavelength of the In surface plasmon resonance. The Raman scattering signal was determined to be up to 285 times higher for BSA deposited onto In-InP nanopillars when compared with Si wafer substrates. These substrates demonstrate the label-free detection of biomolecules by visible wavelength SERS, without the use of noble metal particles.

  16. Development of an X-ray detector using surface plasmon resonance

    International Nuclear Information System (INIS)

    Kunieda, Y.; Nagashima, K.; Hasegawa, N.; Ochi, Y.

    2009-01-01

    A new X-ray detector using surface plasmon resonance (SPR) is proposed. The detector consists of a prism coated with a thin metal film and semiconductor film. Optical laser pulse induces SPR condition on the metal surface, and synchronized X-ray pulse which is absorbed into the semiconductor film can be detected by measuring the change of the resonance condition of the surface plasmon. The expected time and spatial resolution of this detector is better than that of conventional X-ray detectors by combining this SPR measurement with ultra-short laser pulse as the probe beam. Our preliminary investigation using Au and ZnSe coated prism implies this scheme works well as the detector for the ultra-short X-ray pulse.

  17. Production and testing of an s-band resonator with a Nb3Sn surface

    International Nuclear Information System (INIS)

    Peiniger, M.

    1983-01-01

    This report describes the preparation of a niobium s-band resonator with Nb3Sn surface using a special vapor phase deposition method. High-frequency superconductivity tests were performed on this resonator. Measurements of transition temperature, penetration depth, energy gap, and temperature dependence of surface conductivity of Nb3Sn, and resonator behaviour at high electrical field strengths are reported. (GSCH)

  18. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  19. Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces

    DEFF Research Database (Denmark)

    Talian, Ivan; Mogensen, Klaus Bo; Orinak, A.

    2009-01-01

    , effects of Ti and Ti/Pt adhesion layers underneath the gold layers on the analytical signal enhancement were tested. An enhancement factor of 7.6 x 10(7) with the excitation laser 785 nm was achieved for the tested analyte, Rhodamine 6G, and non-resonance SER spectra were recorded in a 5 s acquisition...... mode. Such an enhancement enables to achieve a detection limit down to 2.4 pg of Rhodamine 6G on a black silicon-based nanosurface coated with a 400-nm-thin layer of gold....

  20. Gadolinium-enhanced magnetic resonance imaging in acute myocardial infarction

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van; Wall, E.E. van der; Roos, A. de; Doornbos, J.; Laarse, A. van der; Voorthuisen, A.E. van; Bruschke, A.V.G.; Rossum, A.C. van

    1990-01-01

    To evaluate he usefulness of the paramagnetic contrast agent Gadolinium-DTPA (diethylenetriaminepentaacetic acid) in Magnetic Resonance. Imaging of acute myocardial infarction, we studied a total of 45 patients with a first acute myocardial infarction by ECG-gated magnetic resonance imaging before and after intravenous administration of 0.1 mmol/kg Gadolinium-DTPA. All patients received thrombolytic treatment by intravenous streptokinase. The magnetic resonance imaging studies were preformed after a meam of 88 h (range 15-241) after the acute onset of acute myocardial infarction. Five patients without evidence of cardiac disease served as controls. Spin-echo measurements (TE 30 ms) were made using a Philips Gyroscan (0.5 Tesla) or a Teslacon II (0.6 Tesla). The 45 patients were divided into four groups of patients. In Group I( patients) Gadolinium-DTPA improved the detection of myocardial infarction by Gadolinium-DTPA. In Group II (20 patients) the magnetic resonance imaging procedure was repeated every 10 min for up to 40 min following administration of Gadolinium-DTPA. Optimal contrast enhancement was obtained 20-25 min after Gadolinium-DTPA. In Group III (27 patients) signal intensities were significantly higher in the patients who underwent the magnetic resonance imaging study more than 72 h (mean 120) after the acute event, suggesting increased acculumation of Gadolinium-DTPA in a more advanced stage of the infarction process. In Group IV (45 patients) Gadolinium-DTPA was administered in an attempt to distinguish between reperfused and nonreperfused myocardial areas after thrombolytic treatment for acute myocardial infarction. The signal intensities did not differ, but reperfused areas showed a more homogeneous aspect whereas nonreperfused areas were visualized as a more heterogeneous contrast enhancement. It is concluded that magnetic resonance imaging using the contrast agent Gadolinium-DTPA significantly improves the detection of infarcted myocardial areas

  1. Interaction of magnetic resonators studied by the magnetic field enhancement

    Directory of Open Access Journals (Sweden)

    Yumin Hou

    2013-12-01

    Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  2. Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network

    International Nuclear Information System (INIS)

    Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao

    2014-01-01

    Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR

  3. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    Science.gov (United States)

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  4. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  5. Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms

    International Nuclear Information System (INIS)

    Lui, S.L.; Cheung, N.H.

    2002-01-01

    When performing laser-induced plasma spectroscopy for elemental analysis, the analyte signal-to-noise ratio increased from four to over fifty if the plume was reheated by a dye laser pulse tuned to resonant absorption. Time-resolved studies showed that the enhancement was not due to resonance photoionization. Rather, efficient and controlled rekindling of a larger plume volume was the key mechanism. The signal-to-noise ratio further increased to over a hundred if the atmosphere was replaced by a low-pressure heavy inert gas. The ambient gas helped confine and thermally insulate the expanding vapor

  6. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low residual resistance ratio (RRR) niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR = 190 niobium increased noticeably from the theoretical value if the cooling rate was slower than ∼ 10 K/min. (author)

  7. Nucleic acid detection with surface plasmon resonance using cationic latex

    NARCIS (Netherlands)

    de Vries, E.F.A.; Schasfoort, Richardus B.M.; van der Plas, J.; Greve, Jan

    1994-01-01

    An affinity sensor based on Surface Plasmon Resonance (SPR) was used to detect nucleic acids. SPR is an optical technique that is able to detect small changes in the refractive index of the immediate vicinity of a metal surface. After a specific amplification of DNA, achieved using the polymerase

  8. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shaoheng [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Song, Jie; Wang, Qiliang; Liu, Junsong; Li, Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zhang, Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2015-11-23

    Temperature dependent optical property of diamond has been considered as a very important factor for realizing high performance diamond-based optoelectronic devices. The photoluminescence feature of the zero phonon line of silicon-vacancy (Si-V) centers in Si-doped chemical vapor deposited single crystal diamond (SCD) with localized surface plasmon resonance (LSPR) induced by gold nanoparticles has been studied at temperatures ranging from liquid nitrogen temperature to 473 K, as compared with that of the SCD counterpart in absence of the LSPR. It is found that with LSPR the emission intensities of Si-V centers are significantly enhanced by factors of tens and the magnitudes of the redshift (width) of the emissions become smaller (narrower), in comparison with those of normal emissions without plasmon resonance. More interestingly, these strong Si-V emissions appear remarkably at temperatures up to 473 K, while the spectral feature was not reported in previous studies on the intrinsic Si-doped diamonds when temperatures are higher than room temperature. These findings would lead to reaching high performance diamond-based devices, such as single photon emitter, quantum cryptography, biomarker, and so forth, working under high temperature conditions.

  9. Enhanced resonant second harmonic generation in plasma based on density transition

    Directory of Open Access Journals (Sweden)

    Kant Niti

    2015-06-01

    Full Text Available Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.

  10. SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles

    Science.gov (United States)

    Chen, Lei; Zhang, Fan; Deng, Xin-Yu; Xue, Xiangxin; Wang, Li; Sun, Yantao; Feng, Jing-Dong; Zhang, Yongjun; Wang, Yaxin; Jung, Young Mee

    2018-01-01

    A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56 nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

  11. Electron emission induced by resonant coherent ion-surface interaction at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1992-01-01

    A new spectroscopy based on the resonant coherently induced electron loss to the continuum in ion-surface scattering under grazing incidence is proposed. A series of peaks, corresponding to the energy differences determined by the resonant interaction with the rows of atoms in the surface, is predicted to appear in the energy distribution of electrons emitted from electronic states bound to the probe. Calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with a glancing angle of 0--2 mrad show a total yield close to 1

  12. Array-Enhanced Coherence Resonance: Nontrivial Effects of Heterogeneity and Spatial Independence of Noise

    International Nuclear Information System (INIS)

    Zhou, Changsong; Kurths, Juergen; Hu, Bambi

    2001-01-01

    We demonstrate the effect of coherence resonance in a heterogeneous array of coupled Fitz Hugh--Nagumo neurons. It is shown that coupling of such elements leads to a significantly stronger coherence compared to that of a single element. We report nontrivial effects of parameter heterogeneity and spatial independence of noise on array-enhanced coherence resonance; especially, we find that (i) the coherence increases as spatial correlation of the noise decreases, and (ii) inhomogeneity in the parameters of the array enhances the coherence. Our results have the implication that generic heterogeneity and background noise can play a constructive role to enhance the time precision of firing in neural systems

  13. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system

    Science.gov (United States)

    Kostyukevych, Sergey A.; Kostyukevych, Kateryna V.; Khristosenko, Roman V.; Lysiuk, Viktor O.; Koptyukh, Anastasiya A.; Moscalenko, Nadiya L.

    2017-12-01

    The problems related to the development of a multielement immunosensor device with the prism type of excitation of a surface plasmon resonance in the Kretschmann configuration and with the scanning of the incidence angle of monochromatic light aimed at the reliable determination of the levels of three molecular markers of the system of hemostasis (fibrinogen, soluble fibrin, and D-dimer) are considered. We have analyzed the influence of a technology for the production of a gold coating, modification of its surface, and noise effects on the enhancement of sensitivity and stability of the operation of devices. A means of oriented immobilization of monoclonal antibodies on the surface of gold using a multilayer film of copper aminopentacyanoferrate is developed. For the model proteins of studied markers, the calibrating curves (maximum sensitivity of 0.5 μg/ml) are obtained, and the level of fibrinogen in blood plasma of donors is determined. A four-channel modification of the device with an application of a reference channel for comparing the elimination of the noise of temperature fluctuations has been constructed. This device allows one to execute the express-diagnostics of prethrombotic states and the monitoring of the therapy of diseases of the blood circulation system.

  14. Surface Resonance Bands on (001)W: Experimental Dispersion Relations

    DEFF Research Database (Denmark)

    Willis, R. F.; Feuerbacher, B.; Christensen, N. Egede

    1977-01-01

    A band of unbound surface states (resonances), located in an energy region above the vacuum threshold corresponding to an energy band gap in the electron states of the bulk crystal, has been observed by angle-resolved secondary-electron-emission spectroscopy. The experimental dispersion behavior...... is in agreement with the two-dimensional band structure of a clean (001)W surface recently proposed by Smith and Mittheiss....

  15. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  16. Suppression of two-photon resonantly enhanced nonlinear processes in extended media

    International Nuclear Information System (INIS)

    Garrett, W.R.; Moore, M.A.; Payne, M.G.; Wunderlich, R.K.

    1988-11-01

    On the basis of combined experimental and theoretical studies of nonlinear processes associated with two-photon excitations near 3d and 4d states in Na, we show how resonantly enhanced stimulated hyper-Raman emission, parametric four-wave mixing processes and total resonant two-photon absorption can become severely suppressed through the actions of internally generated fields on the total atomic response in extended media. 7 refs., 3 figs

  17. Surface and temperature effects in isovector giant resonances

    International Nuclear Information System (INIS)

    Lipparini, E.; Stringari, S.

    1988-01-01

    Using the liquid droplet model (LDM) we investigate three different sum rules for the isovector dipole and monopole excitations. Analytical formulae are derived for the excitation energies of these resonances and the predictions are compared with experiments. The role of the surface and the effects of temperature are explicitly discussed. (orig.)

  18. Contrast-enhanced magnetic resonance angiography of persistent fifth aortic arch in children

    International Nuclear Information System (INIS)

    Zhong, Yumin; Zhu, Ming; Sun, Aimin; Li, Yuhua; Jaffe, Richard B.; Gao, Wei

    2007-01-01

    Cine angiography and echocardiography have been utilized to diagnose congenital aortic arch anomalies. However, the visualization of great vessels by echocardiography is limited, while cine angiography requires cardiac catheterization with ionizing radiation. Contrast-enhanced magnetic resonance angiography (MRA) is a noninvasive modality suitable for visualization of congenital aortic arch anomalies. To evaluate the utility of contrast-enhanced MRA in the diagnosis of persistent fifth aortic arch, a rare congenital aortic arch anomaly, and to compare the diagnostic accuracy of MRA with that of echocardiography and cine angiography. In four pediatric patients, contrast-enhanced MRA studies were performed for diagnosing persistent fifth aortic arch. The findings of MRA were compared with echocardiographic findings and confirmed by cine angiography and operation. Transthoracic surface echocardiography noted an aberrant vessel arising from the ascending aorta in two of four patients; the etiology of this vessel was uncertain. In the other two patients a diagnosis of coarctation was made. Of the four patients, only one was diagnosed with interruption of the aortic arch. Contrast-enhanced MRA clarified uncertain echocardiographic findings, enabling the correct diagnosis of persistent fifth aortic arch with fourth aortic arch interruption in all four patients. Contrast-enhanced MRA is a safe, accurate, and fast imaging technique for the evaluation of persistent fifth aortic arch and may obviate the need for conventional cine angiography. Cardiac catheterization may be reserved for some types of complicated congenital heart disease and for obtaining hemodynamic information. (orig.)

  19. Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2

    International Nuclear Information System (INIS)

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-01-01

    Highlights: • Both surface plasmon resonance and band-gap excitation were used for H 2 production. • Au/Gr/TiO 2 composite photocatalyst was synthesized. • Au/Gr/TiO 2 exhibited enhancement of light absorption and charge separation. • H 2 production rate of Au/Gr/TiO 2 was about 2 times as high as that of Au/TiO 2 . - Abstract: H 2 production over Au/Gr/TiO 2 composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO 2 using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO 2 with band-gap excitation. Surface photovoltage and UV–vis absorption measurements revealed that compared with Au/TiO 2 , Au/Gr/TiO 2 displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H 2 production rate of Au/Gr/TiO 2 composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO 2 . This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy

  20. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    Science.gov (United States)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  1. Spectroscopic studies of resonant coupling of silver optical antenna arrays to a near-surface quantum well

    International Nuclear Information System (INIS)

    Gehl, Michael; Zandbergen, Sander; Gibson, Ricky; Nader, Nima; Sears, Jasmine; Keiffer, Patrick; Khitrova, Galina; Béchu, Muriel; Wegener, Martin; Hendrickson, Joshua

    2014-01-01

    The coupling of radiation emitted on semiconductor inter-band transitions to resonant optical-antenna arrays allows for enhanced light–matter interaction via the Purcell effect. Semiconductor optical gain also potentially allows for loss reduction in metamaterials. Here we extend our previous work on optically pumped individual near-surface InGaAs quantum wells coupled to silver split-ring-resonator arrays to wire and square-antenna arrays. By comparing the transient pump-probe experimental results with the predictions of a simple model, we find that the effective coupling is strongest for the split rings, even though the split rings have the weakest dipole moment. The effect of the latter must thus be overcompensated by a smaller effective mode volume of the split rings. Furthermore, we also present a systematic variation of the pump-pulse energy, which was fixed in our previous experiments. (paper)

  2. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  3. Production of narrowband tunable extreme-ultraviolet radiation by noncollinear resonance-enhanced four-wave mixing

    NARCIS (Netherlands)

    Hannemann, S.; Hollenstein, U.; van Duijn, E.J.; Ubachs, W.M.G.

    2005-01-01

    Fourier-transform-limited extreme-ultraviolet (XUV) radiation (bandwidth ≲300 MHz) tunable around 91 nm is produced by use of two-photon resonance-enhanced four-wave mixing on the Kr resonance at 94 093 cm

  4. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  5. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    Science.gov (United States)

    Smith, Cartney E; Kong, Hyunjoon

    2014-04-08

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.

  6. Replacement of Cetyltrimethylammoniumbromide Bilayer on Gold Nanorod by Alkanethiol Crosslinker for Enhanced Plasmon Resonance Sensitivity

    Science.gov (United States)

    Casas, Justin; Venkataramasubramani, Meenakshi; Wang, Yanyan; Tang, Liang

    2013-01-01

    Surface modification of gold nanorods (GNRs) is often problematic due to tightly packed cetyltrimethylammoniumbromide (CTAB) bilayer. Herein, we performed a double phase transfer ligand exchange to achieve displacement of CTAB on nanorods. During the removal, 11-mercaptoundecanoic acid (MUDA) crosslinker is simultaneously assembled on nanorod surfaces to prevent aggregation. The resulting MUDA-GNRs retain the shape and position of plasmon peaks similar to CTAB-capped GNRs. The introduction of carboxyl groups allows covalent conjugation of biological receptors in a facile fashion to construct a robust, label-free biosensor based on localized surface plasmon resonance (LSPR) transduction of biomolecular interaction. More importantly, smaller MUDA layer on the GNRs reduces the distance of target binding to the plasmonic nanostructure interface, leading to a significant enhancement in LSPR assay sensitivity and specificity. Compared to modification using conventional electropolymer adsorption, MUDA-coated gold nanosensor exhibits five times lower detection limit for cardiac troponin I assay with a high selectivity. PMID:23816849

  7. Surface plasmon resonance sensing of nucleic acids: A review

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Homola, Jiří

    -, č. 773 (2013), s. 9-23 ISSN 0003-2670 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : Surface plasmon resonance * Nucleic acid * Biosensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 4.517, year: 2013

  8. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    Science.gov (United States)

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  9. Quantum trajectories in elastic atom-surface scattering: threshold and selective adsorption resonances.

    Science.gov (United States)

    Sanz, A S; Miret-Artés, S

    2005-01-01

    The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism. (c) 2005 American Institute of Physics.

  10. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    Directory of Open Access Journals (Sweden)

    Hans Zogg

    2008-09-01

    Full Text Available Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA.

  11. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  12. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Cui, B; Clime, L; Li, K; Veres, T

    2008-01-01

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals

  13. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  14. Resonantly Enhanced Axion-Photon Regeneration

    CERN Document Server

    Sikivie, P; Van Bibber, K; Bibber, Karl van

    2007-01-01

    We point out that photon regeneration-experiments that search for the axion, or axion-like particles, may be resonantly enhanced by employing matched Fabry-Perot optical cavities encompassing both the axion production and conversion magnetic field regions. Compared to a simple photon regeneration experiment, which uses the laser in a single-pass geometry, this technique can result in a gain in rate of order ${\\cal F}^2$, where ${\\cal F}$ is the finesse of the cavities. This gain could feasibly be $10^{(10-12)}$, corresponding to an improvement in sensitivity in the axion-photon coupling, $g_{a\\gamma\\gamma}$ , of order ${\\cal F}^{1/2} \\sim 10^{(2.5-3)}$, permitting a practical purely laboratory search to probe axion-photon couplings not previously excluded by stellar evolution limits, or solar axion searches.

  15. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    Science.gov (United States)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  16. Surface plasmon resonance biosensors for highly sensitive detection in real samples

    Science.gov (United States)

    Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.

    2009-08-01

    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.

  17. Resonant surface acoustic wave chemical detector

    Science.gov (United States)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  18. Confident Diagnosis of Bronchobiliary Fistula Using Contrast-Enhanced Magnetic Resonance Cholangiography

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, Nevzat; Cakmak, Vefa; Kiter, Go ksel [Pamukkale University Medical Center, Denizli (Turkmenistan)

    2010-08-15

    We report the utility of contrast-enhanced magnetic resonance cholangiography (MRC) using gadoxetic acid (Gd-EOB-DTPA) in the diagnosis of bronchobiliary fistula associated with liver hydatid cyst. Contrast-enhanced MRC clearly delineated the leakage of contrast agent from the biliary duct and its communication with the bronchial tree. Providing functional information about physiologic or pathologic biliary flow in addition to the display of biliary anatomy, contrast enhanced MRC stands as a robust technique in confidently detecting bronchobiliary fistula and bile leaks

  19. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    International Nuclear Information System (INIS)

    Singh, Vijender; Aghamkar, Praveen

    2014-01-01

    We obtain a large third-order optical nonlinearity (χ (3)  ≈ 10 −10 esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm

  20. Complementary surface charge for enhanced capacitive deionization

    NARCIS (Netherlands)

    Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.

    2016-01-01

    Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI

  1. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    Science.gov (United States)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  2. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR sensor applications

    Directory of Open Access Journals (Sweden)

    Samsuri Nurul Diyanah

    2017-01-01

    Full Text Available Gold nanoparticles (GNPs have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.

  3. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  4. Threshold and Lennard-Jones resonances and elastic lifetimes in the scattering of atoms from crystalline surfaces

    International Nuclear Information System (INIS)

    Garcia, N.

    1978-01-01

    The GR method for solving the scattering equations of atoms from a hard corrugated surface is applied on accelerated particles above a hard corrugated surface and a hard corrugated surface with an attractive well. The solutions are given for the Rayleigh hypothesis that under the range of corrugation presented in this paper leads to the exact ones. Threshold resonances are studied observing that the appearance and disappearance of beams must be for a general theory with vertical tangent. The structure of the Lennard-Jones resonances given for the model mentioned above. For the first time it is stressed that Lennard-Jones resonances are not observed in metal surfaces in general, and, accordingly, they are unobserved in compact metallic surfaces. This is correlated with the fact that diffraction has not been observed. Both facts are due to the very weak corrugation of the gas-metal interaction potential. According to our results, the Lennard-Jones resonances in metals present greater difficulties to be observed experimentally. It is also noted that the absence of diffraction in compact metal surfaces is because they are almost plane and not because of the Debye-Waller effect. Finally, the lifetimes of the atoms at the crystal surfaces are calculated. These are larger, the smaller the incident energy and the larger the corrugation. But the lifetimes are particularly large at resonance conditions (10 -11 s). (Auth.)

  5. Prominent porto-systemic collateral pathways in patients with portal hypertension: demonstration by gadolinium-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Caldana, Rogerio Pedreschi; Bezerra, Alexandre Araujo Sergio; Cecin, Alexnadre Oliveira; Souza, Luis Ronan Marques Ferreira de; Goldman, Susan Menasce; D'Ippolito, Giuseppe; Szejnfeld, Jacob

    2003-01-01

    To demonstrate the usefulness of gadolinium-enhanced magnetic resonance angiography in the evaluation of prominent porto-systemic collateral pathways. We reviewed the images from 40 patients with portal hypertension studied with gadolinium-enhanced magnetic resonance angiography and selected illustrative cases of prominent porto-systemic collateral pathways. The scans were performed using high field equipment (1.5 Tesla) and a 3 D volume technique. Image were obtained after intravenous injection of paramagnetic contrast media using a power injector. Magnetic resonance angiography demonstrated with precision the porto-systemic collateral pathways, particularly when investigating extensive territories or large vessels. The cases presented show the potential of this method in the investigation of patients with portal hypertension. Gadolinium-enhanced magnetic resonance angiography is a useful method for the evaluation of patients with portal hypertension and prominent collateral pathways. (author)

  6. Active resonance tuning of stretchable plasmonic structures

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xiao, Sanshui; Mortensen, N. Asger

    2012-01-01

    Active resonance tuning is highly desired for the applications of plasmonic structures, such as optical switches and surface enhanced Raman substrates. In this paper, we demonstrate the active tunable plasmonic structures, which composed of monolayer arrays of metallic semishells with dielectric...... cores on stretchable elastic substrates. These composite structures support Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of these plasmonic structures can be reconfigured from...... applications of the stretch-tunable plasmonic structures in sensing, switching, and filtering....

  7. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

    DEFF Research Database (Denmark)

    Raza, Søren; Yan, Wei; Stenger, Nicolas

    2013-01-01

    We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 e......V of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive...

  8. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Tian, Yuanyuan; Shuai, Zhenhua; Shen, Jingjing; Zhang, Lei; Chen, Shufen; Song, Chunyuan; Zhao, Baomin; Fan, Quli; Wang, Lianhui

    2018-05-07

    A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  10. Optical Properties of Plasmon Resonances with Ag/SiO2/Ag Multi-Layer Composite Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Li-Hua, Zhang; Zhao-Wang, Wu; Jie, Zhang

    2010-01-01

    Optical properties of plasmon resonance with Ag/SiO 2 /Ag multi-layer nanoparticles are studied by numerical simulation based on Green's function theory. The results show that compared with single-layer Ag nanoparticles, the multi-layer nanoparticles exhibit several distinctive optical properties, e.g. with increasing the numbers of the multi-layer nanoparticles, the scattering efficiency red shifts, and the intensity of scattering enhances accordingly. It is interesting to find out that slicing an Ag-layer into multi-layers leads to stronger scattering intensity and more 'hot spots' or regions of stronger field enhancement. This property of plasmon resonance of surface Raman scattering has greatly broadened the application scope of Raman spectroscopy. The study of metal surface plasmon resonance characteristics is critical to the further understanding of surface enhanced Raman scattering as well as its applications. (fundamental areas of phenomenology (including applications))

  11. The optimization of scan timing for contrast-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Lee, Jong Min; Chang, Yong Min; Ryeom, Hun Kyu; Lee, Sang Kwon; Kim, Yong Sun; Kang, Duk Sik; Tirman, Philip J.

    2000-01-01

    To determine the optimal scan timing for contrast-enhanced magnetic resonance angiography and to evaluate a new timing method based on the arteriovenous circulation time. Eighty-nine contrast-enhanced magnetic resonance angiographic examinations were performed mainly in the extremities. A 1.5T scanner with a 3-D turbo-FLASH sequence was used, and during each study, two consecutive arterial phases and one venous phase were acquired. Scan delay time was calculated from the time-intensity curve by the traditional (n = 48) and/or the new (n = 41) method. This latter was based on arteriovenous circulation time rather than peak arterial enhancement time, as used in the traditional method. The numbers of first-phase images showing a properly enhanced arterial phase were compared between the two methods. Mean scan delay time was 5.4 sec longer with the new method than with the traditional. Properly enhanced first-phase images were found in 65% of cases (31/48) using the traditional timing method, and 95% (39/41) using the new method. When cases in which there was mismatch between the target vessel and the Time-intensity curve acquisition site are excluded, erroneous acquisition occurred in seven cases with the traditional method, but in none with the new method. The calculation of scan delay time on the basis of arteriovenous circulation time provides better timing for arterial phase acquisition than the traditional method

  12. Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    Nina GRIDINA

    2013-02-01

    Full Text Available Performed in this paper is numerical modeling of the angular dependence for light reflectivity R(F in surface plasmon-polariton resonance (SPR realized in Kretschmann geometry when studying the interface gold/suspension of spherical particles (cells in the assumption that the dielectric permittivity of particles suspension is described by the theory of effective medium. It has been shown that availability of suspended particles in solution inevitably results in appearance of an intermediate layer with the ε gradient between gold surface and suspension bulk, as a result of which the SPR angle shifts to lower values. Near the critical angle, the first derivative dR/dF demonstrates a clearly pronounced peak, which allows determining the value for suspension bulk and the gradient in the intermediate layer. Obtained in our experiments were SPR curves for two suspensions of erythrocytes – the dense one (erythrocyte mass after centrifuging and loose solution (whole blood. In the case of erythrocyte mass, fitting the experimental and calculated curves enabled us to quantitatively determine the bulk value for this erythrocyte mass (εb =1.96, thickness of the intermediate layer dm (300…400 nm and gradient in the intermediate layer. On the contrary, the SPR curve for whole blood appeared to be close to that of pure plasma. This fact allows only estimation of the thickness dm~2000...3000 nm as well as minimum ε value in the intermediate layer, which is close to that of plasma (ε = 1.79. Also, discussed is the mechanism of influence of the cell shape near the gold surface on the SPR effect.

  13. Dynamic optical bistability in resonantly enhanced Raman generation

    International Nuclear Information System (INIS)

    Novikova, I.; Phillips, D.F.; Zibrov, A.S.; Andre, A.; Walsworth, R.L.

    2004-01-01

    We report observations of novel dynamic behavior in resonantly enhanced stimulated Raman scattering in Rb vapor. In particular, we demonstrate a dynamic hysteresis of the Raman scattered optical field in response to changes of the drive laser field intensity and/or frequency. This effect may be described as a dynamic form of optical bistability resulting from the formation and decay of atomic coherence. We have applied this phenomenon to the realization of an all-optical switch

  14. Culturing photosynthetic bacteria through surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David [Department of Mechanical and Industrial Engineering and Centre for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  15. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  16. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  17. Phage-based surface plasmon resonance strategies for the detection of pathogens

    Science.gov (United States)

    Tawil, Nancy

    We start by reviewing the basic principles and recent advances in biosensing technologies using optical, electrochemical and acoustic platforms for phage-based diagnostics. Although much notable work has been done, a low cost, specific, sensitive optical method for detecting low concentrations of pathogens, in a few minutes, has not been established. We conclude from the limited body of work on the subject that improving immobilization strategies and finding more suitable phage recognition elements would allow for a more sensitive approach. Our aim was to better describe the attachment process of MRSA specific phages on gold surfaces, and the subsequent biodetection of their bacterial hosts by surface plasmon resonance (SPR). With the knowledge that the adsorption characteristics of thiol-containing molecules are necessary for applications involving the attachment of recognition elements to a functionalized surface, we start by providing comparative details on the kinetics of self-assembly of L-cysteine and 11-mercaptoundecanoic acid (MUA) monolayers on gold using SPR[1]. Our purpose, in carrying out these measurements was to establish each molecule's validity and applicability as a linker element for use in biosensing. We find that monolayer formation, for both L-cysteine and MUA, is described by the Langmuir isotherm at low concentrations only. For L-cysteine, both the amine and thiol groups contribute to the initial attachment of the molecule, followed by the replacement of the amine-gold complexes initially formed with more stable thiol-gold complexes. The reorganization of L-cysteine creates more space on the gold surface, and the zwitterionic form of the molecule permits the physisorption of a second layer through electrostatic interactions. On the other hand, MUA deposits randomly onto the surface of gold as a SAM and slowly reorganizes into a denser, vertical state. Surface plasmon resonance was then used for the real-time monitoring of the attachment of

  18. Flexible, wireless, inductively coupled surface coil resonator for EPR tooth dosimetry

    International Nuclear Information System (INIS)

    Schreiber, Wilson; Petryakov, Sergey V.; Kmiec, Maciej M.; Feldman, Matthew A.; Wood, Victoria A.; Boyle, Holly K.; Flood, Ann Barry; Williams, Benjamin B.; Swartz, Harold M.; Meaney, Paul M.

    2016-01-01

    Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate the amount of ionizing radiation to which an individual has been exposed. In the intended measurement conditions and scenario, it is essential that the measurement process be fast, straightforward and provides meaningful and accurate dose estimations for individuals in the expected measurement conditions. The sensing component of a conventional L-band EPR spectrometer used for tooth dosimetry typically consists of a surface coil resonator that is rigidly, physically attached to the coupler. This design can result in cumbersome operation, limitations in teeth geometries that may be measured and hinder the overall utility of the dosimeter. A novel surface coil resonator has been developed for the currently existing L-band (1.15 GHz) EPR tooth dosimeter for the intended use as a point of care device by minimally trained operators. This resonator development provides further utility to the dosimeter, and increases the usability of the dosimeter by non-expert operators in the intended use scenario. (authors)

  19. Non-contrast enhanced magnetic resonance angiography techniques in candidates for kidney transplantation: A comparative study

    International Nuclear Information System (INIS)

    Blankholm, Anne Dorte; Ginnerup-Pedersen, Bodil; Stausbøl-Grøn, Brian; Haislund, Margit; Laustsen, Sussie; Ringgaard, Steffen

    2013-01-01

    Aim: Detailed knowledge of vessel status in potential candidates for kidney transplantation is essential for the surgeon. Contrast enhanced magnetic resonance angiography has previously been used intensively for assessing this, but the discovery that use of gadolinium based contrast agents in magnetic resonance imaging can cause Nephrogenic Systemic Fibrosis in patients suffering from severe kidney disease has lead to renewed interest in non-contrast enhanced magnetic resonance angiography. The aim of this study was to find a non-contrast enhanced magnetic resonance angiography method for preoperative evaluation of the pelvic vessels prior to kidney transplantation, providing a sufficient image quality. Method: In a prospective study we consecutively included 54 patients undergoing examinations prior to kidney transplantation. The patients were examined with the following magnetic resonance angiography sequences: A 2D Time of flight (n = 54), 3D Time of flight (n = 52) patients, 3D Phase Contrast (n = 54), 3D Balanced Steady State Free Precession (n = 52) and a 2D TRiggered Angiography Non-Contrast Enhanced (TRANCE) (a Spin Echo sequence with subtraction) (n = 48). The sequences were evaluated with respect to contrast, diagnostic performance and artefact burden. Results: Evaluating contrast, 3D Phase Contrast was significantly better than 2D Time of flight (p 0.2). The 2D Time of flight was significantly better than the other sequences (p < 0.001) in all cases. The artefact score was lowest for the Phase Contrast images and significantly superior to the 2D Time of flight (p < 0.005). The 2D Time of flight was significantly better than the three other sequences (p < 0.001) in all cases. Conclusion: Non-contrast enhanced magnetic resonance angiography offers a safe preoperative examination for assessment of vessel status before kidney transplantation. A combination of 2D Time of flight and 3D Phase Contrast acquisitions is recommended and can be performed within a

  20. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    KAUST Repository

    Sergeant, Nicholas P.

    2013-04-24

    Dielectric/metal/dielectric (DMD) electrodes have the potential to significantly increase the absorption efficiency and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband cavity resonance. Silver-based semitransparent DMD electrodes with sheet resistances below 10 ohm/sq. are fabricated on flexible polyethylene terephthalate (PET) substrates in a high-throughput roll-to-roll sputtering tool. We carefully study the effect of the semitransparent DMD electrode (here composed of ZnxSnyOz/Ag/InxSn yOz) on the optical device performance of a copper phthalocyanine (CuPc)/fullerene (C60) bilayer cell and illustrate that a resonant cavity enhanced light trapping effect dominates the optical behavior of the device. © 2013 Optical Society of America.

  1. Resonance studies of H atoms adsorbed on frozen H2 surfaces

    International Nuclear Information System (INIS)

    Crampton, S.B.

    1980-01-01

    Observations are reported of the ground state hyperfine resonance of hydrogen atoms stored in a 5 cm. diameter bottle coated with frozen molecular hydrogen. Dephasing of the hyperfine resonance while the atoms are adsorbed produces frequency shifts which vary by a factor of two over the temperature range 3.7 K to 4.6 K and radiative decay rates which vary by a factor of five over this range. The magnitudes and temperature dependences of the frequency shifts and decay rates are consistent with a non-uniform distribution of surface adsorption energies with mean about 38(8) K, in agreement with theoretical estimates for a smooth surface. Extrapolation of the 30 nanosec. mean adsorption times at 4.2 K predicts very long adsorption times for H on H 2 below 1 K. Studies of level population recovery rates provide evidence for surface electron spin exchange collisions between adsorbed atoms with collision duration long compared to the hyperfine period, suggesting that the atoms are partially mobile on the surface. The lowest rates observed for level population recovery set a lower limit of about 500 atom-surface collisions at 4.2 K without recombination

  2. Gadolinium-DTPA-enhanced magnetic resonance imaging and functional outcome in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Kitamura, Jun; Shimada, Toshio; Murakami, Yo; Ochiai, Koichi; Inoue, Shin-ichi; Ishibashi, Yutaka; Kinoshita, Yoshihisa; Sano, Kazuya; Murakami, Rinji

    1999-01-01

    This study was designed to test the hypothesis that Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA)-enhanced magnetic resonance images (MRI) reflect the severity of ischemic injury during the acute and chronic phases of myocardial infarction (MI). Twenty-nine patients with their first acute MI underwent Gd-DTPA-enhanced MRI in the first week (4.2±0.3 days) and at 1 month after onset. Pairs of left ventriculograms were compared with Gd-DTPA-enhanced magnetic resonance images, classified into 3 pattern groups: hyper-enhancement, with and without a central hypo-enhanced region (P1 and P2, respectively), and non-enhancement (P3). In the acute phase of MI, P1 was found in 10, P2 in 11, and P3 in 8 patients. One month later, the image pattern had changed from P1 to P2 in a single patient, from P2 to P3 in 4 patients, and had remained identical in the others. Patients with P3 showed improvement of anterior wall motion in the 1-month follow-up study, and had higher TIMI flow grades and lower peak creatine kinase values than those without recovery. Thus, Gd-DTPA-enhanced magnetic resonance images, closely reflecting the severity of myocardial injury, are useful in predicting myocardial functional recovery after MI. (author)

  3. Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations

    Science.gov (United States)

    Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-08-01

    TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.

  4. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide

    DEFF Research Database (Denmark)

    Soh, N; Tokuda, T.; Watanabe, T.

    2003-01-01

    A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2,4-dichloroph......A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2...

  5. Resonance effects in Raman scattering of quantum dots formed by the Langmuir-Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A G; Sveshnikova, L L; Duda, T A [Institute of Semiconductor Physics, Lavrentjev av.13, 630090, Novosibirsk (Russian Federation); Surovtsev, N V; Adichtchev, S V [Institute of Automation and Electrometry, Koptyug av.1, 630090, Novosibirsk (Russian Federation); Azhniuk, Yu M [Institute of Electron Physics, Universytetska Str. 21, 88017, Uzhhorod (Ukraine); Himcinschi, C [Institut fuer Theoretische Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596, Freiberg (Germany); Kehr, M; Zahn, D R T, E-mail: milekhin@thermo.isp.nsc.r [Semiconductor Physics, Chemnitz University of Technology, Chemnitz (Germany)

    2010-09-01

    The enhancement of Raman scattering by optical phonon modes in quantum dots was achieved in resonant and surface-enhanced Raman scattering experiments by approaching the laser energy to the energy of either the interband transitions or the localized surface plasmons in silver nanoclusters deposited onto the nanostructures. Resonant Raman scattering by TO, LO, and SO phonons as well as their overtones was observed for PbS, ZnS, and ZnO quantum dots while enhancement for LO and SO modes in CdS quantum dots with a factor of about 700 was measured in surface enhanced Raman scattering experiments. Multiple phonon Raman scattering observed up to 5th and 7th order for CdS and ZnO, respectively, confirms the high crystalline quality of the grown QDs.

  6. Surface-enhanced Raman scattering of the adsorption of pesticide endosulfan on gold nanoparticles.

    Science.gov (United States)

    Hernández-Castillo, M I; Zaca-Morán, O; Zaca-Morán, P; Orduña-Diaz, A; Delgado-Macuil, R; Rojas-López, M

    2015-01-01

    The absorption of pesticide endosulfan on the surface of gold nanoparticles results from the formation of micrometric structures (1-10 μm) with irregular shape because of the aggregation of individual particles. Such aggregation of gold nanoparticles after absorption of pesticide shows a surface-enhanced Raman scattering (SERS) spectrum, whose intensity depends on the concentration of endosulfan. In addition, the discoloration of the colloidal solution and a diminishing of the intensity of the surface plasmon resonance absorption from individual particles were observed by UV-visible spectroscopy. At the same time, a second band between 638 and 700 nm confirms the formation of aggregates of gold nanoparticles as the concentration of endosulfan increases. Finally, we used the SERS intensity of the S-O stretching vibration at 1239 cm(-1) from the SO3 group as a measure of concentration of pesticide endosulfan. This method could be used to estimate the level of pollution in water by endosulfan in a simple and practical form.

  7. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  8. Ferromagnetic nuclear resonance investigation of the surface magnetization in iron sheets

    International Nuclear Information System (INIS)

    Varga, L.; Tompa, K.

    1977-09-01

    The role of the domain structure and domain properties in ferromagnetic nuclear resonance (FNR) experiments is reconsidered. Using the FNR signal intensity as a measure of surface domain wall volume, it is found that the behaviour of the surface magnetization differs from that of the bulk magnetization of iron sheets. Namely, a critical field below which the FNR signal remains unchanqed is observed in the surface magnetization. This lag of surface domain wall annihilation is sensitive to the given surface conditions and in particular to the rolling deformation. Considering the small skin depth, FNR as a surface testing method is discussed. (D.P.)

  9. Chiral surface waves for enhanced circular dichroism

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  10. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    International Nuclear Information System (INIS)

    Son, J R; Kim, G; Kothapalli, A; Morgan, M T; Ess, D

    2007-01-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 10 5 cfu/ml

  11. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender [Department of Applied Science, N.C. College of Engineering, Israna, Panipat 132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.in [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India)

    2014-03-17

    We obtain a large third-order optical nonlinearity (χ{sup (3)} ≈ 10{sup −10}esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm.

  12. Surface-enhanced chiroptical spectroscopy with superchiral surface waves.

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2018-07-01

    We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.

  13. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement

    International Nuclear Information System (INIS)

    Yu Haitao; Li Xinxin; Gan Xiaohua; Liu Yongjing; Liu Xiang; Xu Pengcheng; Li Jungang; Liu Min

    2009-01-01

    With an integrated resonance exciting heater and a self-sensing piezoresistor, resonant micro-cantilever bio/chemical sensors are optimally designed and fabricated by micromachining techniques. This study is emphasized on the optimization of the integrated heating resistor. Previous research has put the heater at either the cantilever clamp end, the midpoint or the free end. Aiming at sufficiently high and stable resonant amplitude, our research indicates that the optimized location of the thermal-electric exciting resistor is the clamp end instead of other positions. By both theoretical analysis and resonance experiments where three heating resistors are placed at the three locations of the fabricated cantilever, it is clarified that the clamp end heating provides the most efficient resonance excitation in terms of resonant amplitude, Q-factor and resonance stability. Besides, the optimized combination of dc bias and ac voltage is determined by both analysis and experimental verification. With the optimized heating excitation, the resonant cantilever is used for biotin–avidin-specific detection, resulting in a ±0.1 Hz ultra-low noise floor of the frequency signal and a 130 fg mass resolution. In addition to resonance excitation, the heater is used to heat up the cantilever for speed-up desorption after detection that helps rapid and repeated sensing to chemical vapor. The clamp end is determined (by simulation) as the optimal heating location for uniform temperature distribution on the cantilever. Using the resonant cantilever, a rapid and repeated sensing experiment on dimethyl methylphosphonate (DMMP) vapor shows that a short-period heating at the detection interval significantly quickens the signal recovery and enhances the sensing repeatability

  14. Field enhancement in plasmonic nanostructures

    Science.gov (United States)

    Piltan, Shiva; Sievenpiper, Dan

    2018-05-01

    Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.

  15. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  16. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kusa, F. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Echternkamp, K. E.; Herink, G.; Ropers, C. [4th Physical Institute – Solids and Nanostructures, University of Göttingen, 37077 Göttingen (Germany); Ashihara, S., E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  17. Monitoring RAYT activity by surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Bocková, Markéta; Špringer, Tomáš; Nečasová, Iva; Nunvář, Jaroslav; Schneider, Bohdan; Homola, Jiří

    2015-01-01

    Roč. 407, č. 14 (2015), s. 3985-3993 ISSN 1618-2642 R&D Projects: GA ČR GAP305/12/1801 Grant - others:GA MŠk(CZ) CZ.1.05/1.1.00/02.0109 Institutional support: RVO:67985882 ; RVO:86652036 Keywords : Surface plasmon resonance * Biosensor * REP-associated tyrosine transposase Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; EB - Genetics ; Molecular Biology (BTO-N) Impact factor: 3.125, year: 2015

  18. Resonance frequencies of AFM cantilevers in contact with a surface

    Energy Technology Data Exchange (ETDEWEB)

    Verbiest, G.J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Rost, M.J., E-mail: Rost@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2016-12-15

    To make the forces in an Atomic Force Microscope that operates in a dynamic mode with one or multiple vibrations applied to the cantilever, quantitative, one needs to relate a change in resonance frequency of the cantilever to a specific tip–sample interaction. Due to the time dependence of the force between the tip and sample caused by the vibrations, this task is not only difficult, but in fact only possible to solve for certain limiting cases, if one follows common theoretical approaches with a Taylor expansion around the deflection point. Here, we present an analytical method for calculating the resonance frequencies of the cantilever that is valid for any tip–sample interaction. Instead of linearizing the tip–sample interaction locally, we calculate an averaged, weighted linearization taking into account all positions of the tip while vibrating. Our method bridges, therefore, the difficult gap between a free oscillating cantilever and a cantilever that is pushed infinitely hard into contact with a surface, which describes a clamped-pinned boundary condition. For a correct description of the cantilever dynamics, we take into account both the tip mass and the tip moment of inertia. Applying our model, we show that it is possible to calculate the modal response of a cantilever as a function of the tip–sample interaction strength. Based on these modal vibration characteristics, we show that the higher resonance frequencies of a cantilever are completely insensitive to the strength of the tip–sample interaction. - Highlights: • A method to calculate the resonances of AFM cantilevers under any force is proposed. • The analytical model is based on Euler-beam theory. • The shift in resonance frequency due to forces decrease with increasing mode number. • The proposed method enables quantitative ultrasound AFM experiments. • Our results explain also the applicability of the higher modes in SubSurface-AFM.

  19. Electrografted diazonium salt layers for antifouling on the surface of surface plasmon resonance biosensors.

    Science.gov (United States)

    Zou, Qiongjing; Kegel, Laurel L; Booksh, Karl S

    2015-02-17

    Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.

  20. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Karasová, L.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    2001-01-01

    Roč. 74, 1/3 (2001), s. 100-105 ISSN 0925-4005 R&D Projects: GA ČR GA102/99/0549; GA AV ČR KSK2055603 Institutional research plan: CEZ:AV0Z4050913 Keywords : optical sensors * surface plasmon resonance * immunosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  1. Surface enhanced Raman scattering in organic thin films covered with silver, indium and magnesium

    International Nuclear Information System (INIS)

    Salvan, Georgeta; Zahn, Dietrich R.T.; Paez, Beynor

    2004-01-01

    In situ resonant Raman spectroscopy was applied for the investigation of the interface formation between silver, indium and magnesium with polycrystalline organic semiconductor layers of 3,4,9,10-perylene tetra-carboxylic dianhydride (PTCDA). The spectral region of internal as well as external vibrational modes was recorded in order to achieve information related to the chemistry and the structure of the interface as well as to morphology of the metal layer. The experiments benefit from a strong enhancement of the internal mode scattering intensities which is induced by the rough morphology of deposited metals leading to surface enhanced Raman scattering (SERS). The external modes, on the other hand, are attenuated at different rates indicating that the diffusion of the metal atoms into the crystalline layers is highest for indium and lowest for magnesium

  2. Active tuning of surface phonon polariton resonances via carrier photoinjection

    Science.gov (United States)

    Dunkelberger, Adam D.; Ellis, Chase T.; Ratchford, Daniel C.; Giles, Alexander J.; Kim, Mijin; Kim, Chul Soo; Spann, Bryan T.; Vurgaftman, Igor; Tischler, Joseph G.; Long, James P.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Caldwell, Joshua D.

    2018-01-01

    Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (electronic and phononic excitations.

  3. Terahertz Magnetoelectric Resonance Enhanced by Mutual Coupling of Electromagnons

    Science.gov (United States)

    Takahashi, Y.; Yamasaki, Y.; Tokura, Y.

    2013-07-01

    Both electric- and magnetic-dipole active spin excitations, i.e., electromagnons, which mediate the dynamical magnetoelectric effect, have been investigated for a multiferroic perovskite of manganite by optical spectroscopy at terahertz frequencies. Upon the magnetoelectric resonance at 1 meV in the multiferroic phase with the bc-plane spin cycloidal order, a gigantic dynamical magnetoelectric effect has been observed as a nonreciprocal directional dichroism or birefringence. The light k-vector-dependent difference (Δκ=κ+-κ-) of the extinction coefficient (κ±) is as large as Δκ˜1 or 2Δκ/(κ++κ-)˜0.7 at the lowest-lying electromagnon energy. We clarified the mutual coupling of the Eω∥a-polarized electromagnons of the different origins, leading to the enhancement of the magnetoelectric resonance.

  4. Enhancement of particle-wave energy exchange by resonance sweeping

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.

    1995-10-01

    It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation

  5. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: gold-decorated CdSe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Das, Gobind; Chakraborty, Ritun; Gopalakrishnan, Anisha [Italian Institute of Technology, Nanostructure Division (Italy); Baranov, Dmitry [University of Colorado at Boulder, Department of Chemistry and Biochemistry (United States); Di Fabrizio, Enzo [King Abdullah University Science and Technology (KAUST), PSE and BESE Divisions (Saudi Arabia); Krahne, Roman, E-mail: roman.krahne@iit.it [Italian Institute of Technology, Nanostructure Division (Italy)

    2013-05-15

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 10{sup 5} with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl{sub 3} concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers.

  6. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  7. Capsule of parotid gland tumor: evaluation by 3.0 T magnetic resonance imaging using surface coils

    International Nuclear Information System (INIS)

    Ishibashi, Mana; Fujii, Shinya; Nishihara, Keisuke; Matsusue, Eiji; Kodani, Kazuhiko; Kaminou, Toshio; Ogawa, Toshihide; Kawamoto, Katsuyuki

    2010-01-01

    Background: Magnetic resonance (MR) imaging of parotid gland tumors has been widely reported, although few reports have evaluated the capsule of parotid gland tumors in detail. Purpose: To evaluate the diagnostic usefulness of 3.0 T MR imaging with surface coils for detection of the parotid gland tumor capsule, and to clarify the characteristics of the capsules. Material and Methods: Seventy-eight patients with parotid gland tumors (63 benign and 15 malignant) were evaluated. Axial and coronal T2-weighted and contrast-enhanced T1-weighted images were obtained using a 3.0 T MR scanner with 70 mm surface coils. It was retrospectively assessed whether each parotid gland tumor was completely surrounded by a capsule. The capsule was classified as regular or irregular in terms of capsular thickness, and as none, mildly, or strongly enhancing in terms of contrast enhancement. Visual interpretations were compared with histopathological findings to evaluate the diagnostic ability of MR imaging to detect parotid gland tumor capsules. Statistical evaluation was conducted concerning the presence of capsules, capsular irregularity, and the difference in contrast enhancement between benign and malignant tumors, and that between pleomorphic adenomas and Warthin's tumors. Results: Capsules completely surrounding the tumor on MR imaging yielded a sensitivity of 87.7% (50/57), specificity of 90.5% (19/21), and accuracy of 88.5% (69/78). Benign tumors had a capsule completely surrounding the tumor significantly more often than malignant tumors (P = 0.009). Concerning capsular irregularity, malignant tumors tended to have more irregular capsules than benign tumors, although there were no significant differences. The capsules of malignant tumors enhanced significantly more strongly than those of benign tumors (P = 0.018). Conclusion: 3.0 T MR imaging using surface coils could correctly depict parotid gland tumor capsules in most cases. Most benign and some malignant tumors had capsules

  8. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages.

    Science.gov (United States)

    Yuan, Jing; Deng, Dawei; Lauren, Denis R; Aguilar, Marie-Isabel; Wu, Yinqiu

    2009-12-10

    Ochratoxins are a group of mycotoxins produced as secondary metabolites by fungi which contaminate a large variety of food and feed commodities. Due to their teratogenic and carcinogenic properties, ochratoxins present a serious hazard to human and animal health. There is an increasing need to establish a simple sensitive method to detect these toxins. Here we report a rapid and highly sensitive surface plasmon resonance (SPR) assay of ochratoxin A (OTA) using Au nanoparticles for signal enhancement on a mixed self-assembled monolayer (mSAM) surface. A competitive immunoassay format was used for the development of the OTA immunoassay, which is based on the immobilization of target OTA through its ovalbumin (OVA) conjugate with a polyethylene glycol (PEG) linker. The new OTA conjugate (OTA-PEG-OVA) showed remarkably enhanced performance characteristics compared with those based on the immobilization of a commercial bovine serum albumin BSA-OTA conjugate without a PEG linker. Although OTA concentrations as low as 1.5 ng mL(-1) could be directly detected on this surface, the limit of detection (LOD) can be dramatically improved to 0.042 ng mL(-1) for OTA by applying large gold nanoparticles (40 nm) for signal enhancement. Various chemical conditions to minimize the influence of the food matrix on assay performance were also investigated. Grain samples were simply extracted with 50% methanol and liquid samples treated with poly(vinylpyrrolidone) (PVP) (3 or 5%), without any sample clean-up or pre-concentration step prior to analysis. The LODs for OTA in oats and corn were 0.3 and 0.5 ng g(-1), respectively, while in wine and other beverages, LODs ranged from 0.058 to 0.4 ng mL(-1). No cross-reactivity was observed with three other common mycotoxins. In addition, the mSAM/OTA-PEG-OVA surface exhibited high stability with over 600 binding/regeneration cycles. This approach with simple sample preparation provides a powerful tool for the rapid and sensitive quantitative

  9. Characterization of micro-resonator based on enhanced metal insulator semiconductor capacitor for glucose recognition.

    Science.gov (United States)

    Dhakal, Rajendra; Kim, E S; Jo, Yong-Hwa; Kim, Sung-Soo; Kim, Nam-Young

    2017-03-01

    We present a concept for the characterization of micro-fabricated based resonator incorporating air-bridge metal-insulator-semiconductor (MIS) capacitor to continuously monitor an individual's state of glucose levels based on frequency variation. The investigation revealed that, the micro-resonator based on MIS capacitor holds considerable promise for implementation and recognition as a glucose sensor for human serum. The discrepancy in complex permittivity as a result of enhanced capacitor was achieved for the detection and determination of random glucose concentration levels using a unique variation of capacitor that indeed results in an adequate variation of the resonance frequency. Moreover, the design and development of micro-resonator with enhanced MIS capacitor generate a resolution of 112.38 × 10 -3 pF/mg/dl, minimum detectable glucose level of 7.45mg/dl, and a limit of quantification of 22.58mg/dl. Additionally, this unique approach offers long-term reliability for mediator-free glucose sensing with a relative standard deviation of less than 0.5%. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. High surface enhanced Raman scattering activity of BN nanosheets–Ag nanoparticles hybrids

    International Nuclear Information System (INIS)

    Yang, Shanshan; Zhang, Zhaochun; Zhao, Jun; Zheng, Houli

    2014-01-01

    Highlights: • Boron nitride–silver nanohybrid was acquired through a liquid-phase reducing route. • The composite shown a high-quality SERS activity. • 2-Mercaptobenzimidazole was chemisorbed on silver surface in vertical orientation. -- Abstract: A facile liquid-phase reducing route was developed to modify boron nitride (BN) nanosheets with silver nanoparticles (AgNPs) in order to fabricate BN–AgNPs hybrids with high surface enhanced Raman scattering (SERS) activity. The layered structure and morphology of BN–AgNPs nanohybrids were characterized by transmission electron microscopy and atomic force microscopy, meanwhile, Fourier transform infrared spectroscopy and ultraviolet–visible were used for studying optical properties and surface plasmon resonance applied to the optical sensor. The SERS of adsorbed 2-mercaptobenzimidazole (MBI) molecule was investigated which shown that the BN–AgNPs substrate exhibited a very strong SERS activity, offering a great potential application in molecular probe sensor. On the basis of the analysis of SERS and the Raman surface selection rules, we could draw a conclusion that the MBI molecule was adsorbed upright on the AgNPs surface through the sulphur and nitrogen atoms. What is more, the cyclic voltammetry experiment indicated the electrochemically irreversible behavior of BN–AgNPs nanohybrids in KCl solution

  11. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  12. Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.

  13. Development of novel series and parallel sensing system based on nanostructured surface enhanced Raman scattering substrate for biomedical application

    Science.gov (United States)

    Chang, Te-Wei

    With the advance of nanofabrication, the capability of nanoscale metallic structure fabrication opens a whole new study in nanoplasmonics, which is defined as the investigation of photon-electron interaction in the vicinity of nanoscale metallic structures. The strong oscillation of free electrons at the interface between metal and surrounding dielectric material caused by propagating surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) enables a variety of new applications in different areas, especially biological sensing techniques. One of the promising biological sensing applications by surface resonance polariton is surface enhanced Raman spectroscopy (SERS), which significantly reinforces the feeble signal of traditional Raman scattering by at least 104 times. It enables highly sensitive and precise molecule identification with the assistance of a SERS substrate. Until now, the design of new SERS substrate fabrication process is still thriving since no dominant design has emerged yet. The ideal process should be able to achieve both a high sensitivity and low cost device in a simple and reliable way. In this thesis two promising approaches for fabricating nanostructured SERS substrate are proposed: thermal dewetting technique and nanoimprint replica technique. These two techniques are demonstrated to show the capability of fabricating high performance SERS substrate in a reliable and cost efficient fashion. In addition, these two techniques have their own unique characteristics and can be integrated with other sensing techniques to build a serial or parallel sensing system. The breakthrough of a combination system with different sensing techniques overcomes the inherent limitations of SERS detection and leverages it to a whole new level of systematic sensing. The development of a sensing platform based on thermal dewetting technique is covered as the first half of this thesis. The process optimization, selection of substrate material

  14. Magnetic resonance imaging of human cerebral infarction: Enhancement with Gd-DTPA

    Energy Technology Data Exchange (ETDEWEB)

    Imakita, S.; Nishimura, T.; Naito, H.; Yamada, N.; Yamamoto, K.; Takamiya, M.; Yamada, Y.; Sakashita, Y.; Minamikawa, J.; Kikuchi, H.

    1987-09-01

    Five patients (1 female and 4 males) with cerebral infarction of 4 h to 27 months duration were studied 9 times with magnetic resonance (MR) using Gd-DTPA. Spinecho (SE) MR images (MRI) were obtained before and after the administration of Gd-DTPA, and correlative CT scans were performed on the same day. In 2 cases, 4 h and 27 months after the ictus, there was no enhancement with Gd-DTPA. There was faint enhancement in 2 cases with cerebral infarction of about 24 h duration and obvious enhancement in all cases in the subacute stage. Compared with enhanced CT, MR using Gd-DTPA demonstrated more obvious enhancement of infarcted areas. MR enhancement using Gd-DTPA showed a gradual increase and the accumulated Gd-DTPA in infarcted areas slowly diffused to the periphery. MR enhancement with Gd-DTPA is similar to that of enhanced CT, but may be more sensitive in the detection of blood brain barrier breakdown.

  15. Right and Left Ventricular Function and Mass in Male Elite Master Athletes: A Controlled Contrast-Enhanced Cardiovascular Magnetic Resonance Study.

    Science.gov (United States)

    Bohm, Philipp; Schneider, Günther; Linneweber, Lutz; Rentzsch, Axel; Krämer, Nadine; Abdul-Khaliq, Hashim; Kindermann, Wilfried; Meyer, Tim; Scharhag, Jürgen

    2016-05-17

    It is under debate whether the cumulative effects of intensive endurance exercise induce chronic cardiac damage, mainly involving the right heart. The aim of this study was to examine the cardiac structure and function in long-term elite master endurance athletes with special focus on the right ventricle by contrast-enhanced cardiovascular magnetic resonance. Thirty-three healthy white competitive elite male master endurance athletes (age range, 30-60 years) with a training history of 29±8 years, and 33 white control subjects pair-matched for age, height, and weight underwent cardiopulmonary exercise testing, echocardiography including tissue-Doppler imaging and speckle tracking, and cardiovascular magnetic resonance. Indexed left ventricular mass and right ventricular mass (left ventricular mass/body surface area, 96±13 and 62±10 g/m(2); Pright ventricular mass/body surface area, 36±7 and 24±5 g/m(2); Pleft ventricular end-diastolic volume and right ventricular end-diastolic volume (left ventricular end-diastolic volume/body surface area, 104±13 and 69±18 mL/m(2); Pright ventricular end-diastolic volume/body surface area, 110±22 and 66±16 mL/m(2); PRight ventricular ejection fraction did not differ between athletes and control subjects (52±8 and 54±6%; P=0.26). Pathological late enhancement was detected in 1 athlete. No correlations were found for left ventricular and right ventricular volumes and ejection fraction with N-terminal pro-brain natriuretic peptide, and high-sensitive troponin was negative in all subjects. Based on our results, chronic right ventricular damage in elite endurance master athletes with lifelong high training volumes seems to be unlikely. Thus, the hypothesis of an exercise-induced arrhythmogenic right ventricular cardiomyopathy has to be questioned. © 2016 American Heart Association, Inc.

  16. Hybrid III-V/SOI resonant cavity enhanced photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated...... as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid RCE...

  17. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    Science.gov (United States)

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  19. A Surface Plasmon Resonance Immunobiosensor for Detection of Phytophthora infestans

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hejgaard, Jørn

    2006-01-01

    In this study we focused on the development of a Surface Plasmon Resonance (SPR) immunosensor for Phytophthora infestans detection. The fungus-like organism is the cause of potato late blight and is a major problem in potato growing regions of the world. Efficient control is dependent on early...

  20. Detection of mycotoxins using imaging surface plasmon resonance (iSPR)

    Science.gov (United States)

    Significant progress has been made in the development of biosensors that can be used to detect mycotoxins. One technology that has been extensively tested is surface plasmon resonance (SPR). In 2003 a multi-toxin method was reported that detected aflatoxin B1 (AFB1), zearalenone (ZEA), fumonisin B1 ...

  1. Transmission Property of Directly Modulated Signals Enhanced by a Micro-ring Resonator

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Seoane, Jorge

    2012-01-01

    A silicon micro-ring resonator is used to enhance the modulation speed of a 10-Gbit/s directly modulated laser to 40 Gbit/s. The generated signal is transmitted error free over 4.5 km SSMF. Dispersion tolerance is also studied....

  2. Nanostructures for Enhanced Light Absorption in Solar Energy Devices

    Directory of Open Access Journals (Sweden)

    Gustav Edman Jonsson

    2011-01-01

    Full Text Available The fascinating optical properties of nanostructured materials find important applications in a number of solar energy utilization schemes and devices. Nanotechnology provides methods for fabrication and use of structures and systems with size corresponding to the wavelength of visible light. This opens a wealth of possibilities to explore the new, often of resonance character, phenomena observed when the object size and the electromagnetic field periodicity (light wavelength λ match. Here we briefly review the effects and concepts of enhanced light absorption in nanostructures and illustrate them with specific examples from recent literature and from our studies. These include enhanced optical absorption of composite photocatalytically active TiO2/graphitic carbon films, systems with enhanced surface plasmon resonance, field-enhanced absorption in nanofabricated carbon structures with geometrical optical resonances and excitation of waveguiding modes in supported nanoparticle assembles. The case of Ag particles plasmon-mediated chemistry of NO on graphite surface is highlighted to illustrate the principle of plasmon-electron coupling in adsorbate systems.

  3. Study of Surface Enhanced Raman Scattering of Alizarin and Crystal Violet Dyes

    Science.gov (United States)

    Gopal, Ram; Swarnkar, Raj Kumar

    2010-06-01

    Surface enhanced Raman scattering (SERS) plays a vital role in analytical chemistry to characterize ultra trace quantity of organic compounds and biological samples. Two mechanisms have been considered to explain the SERS effect. The main contribution arises from a huge enhancement of the local electromagnetic field close to surface roughness of the metal structures, due to the excitation of a localized surface plasmon, while a further enhancement can be observed for molecules adsorbed onto specific sites when resonant charge transfer occurs. SERS signals have been observed from adsorbates on many metallic surfaces like Ag, Au, Ni, Cu etc. Additionally, metal oxide nanoparticles also show SERS signals It has now been established that SERS of analyte material is highly dependent on the type of substrate involved. Many types of nanostructures like nanofilms, nanorods, nanospheres etc. show highly efficient SERS signals. In particular, there are two routes available for the synthesis of these nanomaterials: the chemical route and the physical route. Chemical route involves many types of reducing agents and capping agents which can interfere in origin and measurement of these signals. The physical route avoids these anomalies and therefore it is suitable for the study of SERS phenomenon. Pulsed laser ablation in liquid medium is an excellent top down technique to produce colloidal solution of nanoparticles with desired shape and size having surface free from chemical contamination, which is essential requirement for surface application of nanoparticles. The present work deals with the study of SERS of Crystal violet dye and Alizarin group dye on Cu@ Cu_2O and Ag colloidal nanoparticles synthesized by pulsed laser ablation. M. Fleishchmann, P. J. Hendra, and A. J. McQuillian Chem. Phys. Lett., 26, 163, 1974. U. Wenning, B. Pettinger, and H. Wetzel Chem. Phys. Lett., 70, 49, 1980. S. C. Singh, R. K. Swarnkar, P. Ankit, M. C. Chattopadhyaya, and R. Gopal AIP Conf. Proc

  4. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    Directory of Open Access Journals (Sweden)

    Zeng Youjun

    2017-06-01

    Full Text Available Surface plasmon resonance (SPR biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  5. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    Science.gov (United States)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  6. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  7. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas

    International Nuclear Information System (INIS)

    Fromm, David P.; Sundaramurthy, Arvind; Kinkhabwala, Anika; Schuck, P. James; Kino, Gordon S.; Moerner, W.E.

    2006-01-01

    Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10 7 , much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules

  8. Surface plasmon resonance phenomenon of the insulating state polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Umiati, Ngurah Ayu Ketut, E-mail: ngurahayuketutumiati@gmail.com [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia); Jurusan Fisika FMIPA Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang Semarang 50275 (Indonesia); Triyana, Kuwat; Kamsul [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia)

    2015-04-16

    Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism. SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.

  9. Effect of surface density silver nanoplate films toward surface-enhanced Raman scattering enhancement for bisphenol A detection

    Science.gov (United States)

    Bakar, N. A.; Salleh, M. M.; Umar, A. A.; Shapter, J. G.

    2018-03-01

    This paper reports a study on surface-enhanced Raman scattering (SERS) phenomenon of triangular silver nanoplate (NP) films towards bisphenol A (BPA) detection. The NP films were prepared using self-assembly technique with four different immersion times; 1 hour, 2 hours, 5 hours, and 8 hours. The SERS measurement was studied by observing the changes in Raman spectra of BPA after BPA absorbed on the NP films. It was found that the Raman intensity of BPA peaks was enhanced by using the prepared SERS substrates. This is clearly indicated that these SERS silver substrates are suitable to sense industrial chemical and potentially used as SERS detector. However, the rate of SERS enhancement is depended on the distribution of NP on the substrate surface.

  10. Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A, a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography

    Directory of Open Access Journals (Sweden)

    Rongzuo Xu

    2010-09-01

    Full Text Available Rongzuo Xu1, Todd Lyle Kaneshiro1, Eun-Kee Jeong2, Dennis L Parker2, Zheng-Rong Lu31Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; 2Department of Radiology, University of Utah, Salt Lake City, UT, USA; 3Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USAAbstract: Dynamic contrast-enhanced magnetic resonance imaging has been recently shown to be effective for diagnostic urography. High-resolution urographic images can be acquired with T1 contrast agents for the kidney and urinary tract with minimal noise in the abdomen. Currently, clinical contrast agents are low molecular weight agents and can rapidly extravasate from blood circulation, leading to slow contrast agent elimination through kidney and consequently providing limited contrast enhancement in urinary tract. In this study, a new biodegradable macromolecular contrast agent, nanoglobule-G4-cystamine-(Gd-DO3A, was prepared by conjugating Gd-DO3A chelates on the surface of a generation 4 nanoglobule, poly-l-lysine octa(3-aminopropylsilsesquioxane dendrimer, via a disulfide spacer, where the carrier had a precisely defined nanosize that is far smaller than the renal filtration threshold. The in vivo contrast enhancement and dynamic imaging of the urinary tract of the agent was evaluated in nude mice using a low molecular weight agent Gd(DTPA-BMA as a control. The agent eliminated rapidly from blood circulation and accumulated more abundantly in urinary tract than Gd(DTPA-BMA. The fast elimination kinetics is ideal for functional evaluation of the kidneys. The morphology of the kidneys and urinary tract was better visualized by the biodegradable nanoglobular contrast agent than Gd(DTPA-BMA. The agent also resulted in low liver contrast enhancement, indicating low nonspecific tissue deposition. These features render the G4 nanoglobule-cystamine-(Gd-DO3A conjugate a promising contrast agent for magnetic

  11. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind

    2013-04-13

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  12. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind; Chakraborty, Ritun; Gopalakrishnan, Anisha; Baranov, Dmitry; Di Fabrizio, Enzo M.; Krahne, Roman

    2013-01-01

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  13. Quantitative assessment of synovial inflammation by dynamic gadolinium-enhanced magnetic resonance imaging. A study of the effect of intra-articular methylprednisolone on the rate of early synovial enhancement

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Stoltenberg, M; Henriksen, O

    1996-01-01

    The effect of temporary inflammatory suppression on synovial membrane enhancement, as determined by dynamic and static gadolinium-DTPA enhanced magnetic resonance imaging (MRI), was studied. MRI of 18 arthritic knees was performed before and 1, 7, 30 and 180 days after intra-articular methylpredn......The effect of temporary inflammatory suppression on synovial membrane enhancement, as determined by dynamic and static gadolinium-DTPA enhanced magnetic resonance imaging (MRI), was studied. MRI of 18 arthritic knees was performed before and 1, 7, 30 and 180 days after intra...

  14. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber.

    Science.gov (United States)

    Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo

    2018-05-18

    Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30⁻50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration.

  15. Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Jing, Yuting; Wang, Huanwen; Zhao, Jie; Yi, Huan; Wang, Xuefeng

    2015-01-01

    Highlights: • Silver nanoparticles (NPs) were deposited on Ti(OH) 4 nanobelt by pulsed laser deposition (PLD). • The highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18. • Ag 2 O play important role for the high sensitivity Raman phenomenon. • Charge transfer from Ag NPs is also responsible for the enhancement ability. - Abstract: Surface-enhanced Raman scattering (SERS) substrate of Ti(OH) 4 nanobelt arrays (NBAs) was synthesized by a hydrothermal reaction, on which silver nanoparticles (NPs) were deposited by pulsed laser deposition (PLD). Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed the effective high specific surface area with silver NPs decorated on three-dimensional NBAs. Using rhodamine 6G (R6G) as an analyte molecule, the highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18 were obtained. It has been found that the specific morphology of these composite nanobelt arrays and the formation of Ag 2 O play important role for the high sensitivity Raman phenomenon. In addition, the surface plasmon resonance wavelength of Ag decorated Ti(OH) 4 NBAs and the charge transfer from Ag NPs are also responsible for the enhancement ability. For comparison SERS was investigated with silver particles decorated on TiO 2 NBAs, which is much less active

  16. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of p-chlorofluorobenzene

    Science.gov (United States)

    Tuttle, William D.; Gardner, Adrian M.; Wright, Timothy G.

    2017-09-01

    The S1 ← S0 (A˜1 B2 ← X˜1 A1) electronic transition of para-chlorofluorobenzene has been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy. Assignment of the vibrational structure has been achieved by comparison with corresponding spectra of related molecules, via quantum chemical calculations, and via shifts in bands between the spectra of the 35Cl and 37Cl isotopologues. In addition, we have also partially reassigned a previously-published spectrum of para-dichlorobenzene.

  17. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    Science.gov (United States)

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  18. Surface Plasmon Resonance biosensor analysis as a useful tool in FBDD

    NARCIS (Netherlands)

    Retra, K.; Irth, H.; van Muijlwijk- Koezen, J.E.

    2010-01-01

    SPR (Surface Plasmon Resonance) biosensor instruments are more and more equipped to sensitively measure the binding characteristics of small molecules to their target. Via SPR biosensor measurements, not only the affinity of compounds but also other features such as the kinetics and thermodynamics

  19. Free Surface Waves And Interacting Bouncing Droplets: A Parametric Resonance Case Study

    KAUST Repository

    Borja, Francisco J.

    2013-01-01

    Parametric resonance is a particular type of resonance in which a parameter in a system changes with time. A particularly interesting case is when the parameter changes in a periodic way, which can lead to very intricate behavior. This di↵ers from periodic forcing in that solutions are not necessarily periodic. A system in which parametric resonance is realized is when a fluid bath is shaken periodically, which leads to an e↵ective time dependent gravitational force. This system will be used to study the onset of surface waves in a bath with non-uniform topography. A linear model for the surface waves is derived from the Euler equations in the limit of shallow waves, which includes the geometry of the bottom and surface tension. Experiments are performed to compare with the proposed model and good qualitative agreement is found. Another experiment which relies on a shaking fluid bath is that of bouncing fluid droplets. In the case of two droplets the shaking allows for a larger bouncing droplet to attract a smaller moving droplet in a way that creates a bound system. This bound system is studied and shows some analogous properties to quantum systems, so a quantum mechanical model for a two dimensional atom is studied, as well as a proposed model for the droplet-wave system in terms of equations of fluid mechanics.

  20. Free Surface Waves And Interacting Bouncing Droplets: A Parametric Resonance Case Study

    KAUST Repository

    Borja, Francisco J.

    2013-07-01

    Parametric resonance is a particular type of resonance in which a parameter in a system changes with time. A particularly interesting case is when the parameter changes in a periodic way, which can lead to very intricate behavior. This di↵ers from periodic forcing in that solutions are not necessarily periodic. A system in which parametric resonance is realized is when a fluid bath is shaken periodically, which leads to an e↵ective time dependent gravitational force. This system will be used to study the onset of surface waves in a bath with non-uniform topography. A linear model for the surface waves is derived from the Euler equations in the limit of shallow waves, which includes the geometry of the bottom and surface tension. Experiments are performed to compare with the proposed model and good qualitative agreement is found. Another experiment which relies on a shaking fluid bath is that of bouncing fluid droplets. In the case of two droplets the shaking allows for a larger bouncing droplet to attract a smaller moving droplet in a way that creates a bound system. This bound system is studied and shows some analogous properties to quantum systems, so a quantum mechanical model for a two dimensional atom is studied, as well as a proposed model for the droplet-wave system in terms of equations of fluid mechanics.

  1. Gd-EOB-DTPA-enhanced magnetic resonance imaging for bile duct intraductal papillary mucinous neoplasms

    OpenAIRE

    Ying, Shi-Hong; Teng, Xiao-Dong; Wang, Zhao-Ming; Wang, Qi-Dong; Zhao, Yi-Lei; Chen, Feng; Xiao, Wen-Bo

    2015-01-01

    AIM: To investigate gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) of intraductal papillary mucinous neoplasms of the bile duct (IPMN-B).

  2. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low RRR niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR=190 niobium increased noticeably from the theoretical value if the cooling rate was slower than∼10 K/min. Fast-cooled plates subsequently warmed to 130 K, and the recooled, showed a larger increase in R s than plates warmed to either 100 K or 160 K. Both chemically polished, and electropolished RRR=190 plates showed the effects of the 'Q-virus'. A heat treatment of 200 deg C made the RRR=190 plates less susceptible to the 'Q-virus'. RRR=30 niobium plates did not show any increase in R s , regardless of treatment. (author)

  3. Multi-dimensional Inversion Modeling of Surface Nuclear Magnetic Resonance (SNMR Data for Groundwater Exploration

    Directory of Open Access Journals (Sweden)

    Warsa

    2014-07-01

    Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.

  4. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  5. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Krasová, B.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    B74, 1/3 (2001), s. 100-105 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * surface plasmon resonance * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  6. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  7. Computer screen photo-excited surface plasmon resonance imaging.

    Science.gov (United States)

    Filippini, Daniel; Winquist, Fredrik; Lundström, Ingemar

    2008-09-12

    Angle and spectra resolved surface plasmon resonance (SPR) images of gold and silver thin films with protein deposits is demonstrated using a regular computer screen as light source and a web camera as detector. The screen provides multiple-angle illumination, p-polarized light and controlled spectral radiances to excite surface plasmons in a Kretchmann configuration. A model of the SPR reflectances incorporating the particularities of the source and detector explain the observed signals and the generation of distinctive SPR landscapes is demonstrated. The sensitivity and resolution of the method, determined in air and solution, are 0.145 nm pixel(-1), 0.523 nm, 5.13x10(-3) RIU degree(-1) and 6.014x10(-4) RIU, respectively, encouraging results at this proof of concept stage and considering the ubiquity of the instrumentation.

  8. Gold Nanoparticles with Externally Controlled, Reversible Shifts of Local Surface Plasmon Resonance Bands

    Science.gov (United States)

    Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.

    2010-01-01

    We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619

  9. Effect of the size of silver nanoparticles on SERS signal enhancement

    Science.gov (United States)

    He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.

    2017-08-01

    The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.

  10. Tunable Resonant-Cavity-Enhanced Photodetector with Double High-Index-Contrast Grating Mirrors

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Yvind, Kresten; Chung, Il-Sug

    2013-01-01

    In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists....... Furthermore, the fact that it can be fabricated on a silicon platform offers us a possibility of integration with electronics.......In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists...... of a top InP HCG mirror, a p-i-n photodiode embedding multiple quantum wells, and a Si HCG mirror formed in the Si layer of a silicon-on-insulator wafer. The detection wavelength can be changed by moving the top InP HCG mirror suspended in the air. High reflectivity and small penetration length of HCGs...

  11. 31P nuclear magnetic resonance surface coil study of ischemic preconditioned isolated perfused rat heart

    International Nuclear Information System (INIS)

    Yan Yongbin; Luo Xuechun; Zhang Riqing; Wang Xiaoyin; Zuo Lin; Liu Wei

    2000-01-01

    ischemic preconditioning (IPC) will protect the heart from the damage caused by a subsequent long ischemia period. 31 P spectra of isolated perfused rat heart measured by the nuclear magnetic resonance (NMR) surface coil technique can be used to continually, dynamically and noninvasively obtain metabolism information. This paper explores the IPC mechanisms by NMR. This study shows that IPC has no effect on enhancing the ATP and PCr levels during reperfusion but makes significantly slows and smooths the changes of intracellular pH and ATP during ischemia periods. The ATP and PCr recovery rate of the IPC group after ischemia is significantly higher than that of the control group. In conclusion, the above results support that IPC can protect the rat heart by reducing damage during the ischemia period

  12. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    Science.gov (United States)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  13. Terahertz modulation based on surface plasmon resonance by self-gated graphene

    Science.gov (United States)

    Qian, Zhenhai; Yang, Dongxiao; Wang, Wei

    2018-05-01

    We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.

  14. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    Science.gov (United States)

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize

  15. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    International Nuclear Information System (INIS)

    Osman, Bilgen; Uzun, Lokman; Beşirli, Necati; Denizli, Adil

    2013-01-01

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases

  16. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A fast and accurate surface plasmon resonance system

    Science.gov (United States)

    Espinosa Sánchez, Y. M.; Luna Moreno, D.; Noé Arias, E.; Garnica Campos, G.

    2012-10-01

    In this work we propose a Surface Plasmon Resonance (SPR) system driven by Labview software which produces a fast, simple and accuracy measurements of samples. The system takes 2000 data in a range of 20 degrees in 20 seconds and 0.01 degrees of resolution. All the information is sent from the computer to the microcontroller as an array of bytes in hexadecimal format to be analyzed. Besides to using the system in SPR measurement is possible to make measurement of the critic angle, and Brewster angle using the Abeles method.

  18. Resonance reactions and enhancement of weak interactions in collisions of cold molecules

    International Nuclear Information System (INIS)

    Flambaum, V. V.; Ginges, J. S. M.

    2006-01-01

    With the creation of ultracold atoms and molecules, a new type of chemistry - 'resonance' chemistry - emerges: chemical reactions can occur when the energy of colliding atoms and molecules matches a bound state of the combined molecule (Feshbach resonance). This chemistry is rather similar to reactions that take place in nuclei at low energies. In this paper we suggest some problems for future experimental and theoretical work related to the resonance chemistry of ultracold molecules. Molecular Bose-Einstein condensates are particularly interesting because in this system collisions and chemical reactions are extremely sensitive to weak fields; also, a preferred reaction channel may be enhanced due to a finite number of final states. The sensitivity to weak fields arises due to the high density of narrow compound resonances and the macroscopic number of molecules with kinetic energy E=0 (in the ground state of a mean-field potential). The high sensitivity to the magnetic field may be used to measure the distribution of energy intervals, widths, and magnetic moments of compound resonances and study the onset of quantum chaos. A difference in the production rate of right-handed and left-handed chiral molecules may be produced by external electric E and magnetic B fields and the finite width Γ of the resonance (correlation ΓE·B). The same effect may be produced by the parity-violating energy difference in chiral molecules

  19. Ferumoxytol-enhanced magnetic resonance angiography for the assessment of potential kidney transplant recipients

    Energy Technology Data Exchange (ETDEWEB)

    Stoumpos, Sokratis; Mark, Patrick B. [Queen Elizabeth University Hospital, Renal and Transplant Unit, Glasgow (United Kingdom); University of Glasgow, Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, Glasgow (United Kingdom); Hennessy, Martin; Kasthuri, Ram; Roditi, Giles [Queen Elizabeth University Hospital, Department of Radiology, Glasgow (United Kingdom); Vesey, Alex T.; Kingsmore, David B. [Queen Elizabeth University Hospital, Renal and Transplant Unit, Glasgow (United Kingdom); Radjenovic, Aleksandra [University of Glasgow, Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, Glasgow (United Kingdom)

    2018-01-15

    Traditional contrast-enhanced methods for scanning blood vessels using magnetic resonance imaging (MRI) or CT carry potential risks for patients with advanced kidney disease. Ferumoxytol is a superparamagnetic iron oxide nanoparticle preparation that has potential as an MRI contrast agent in assessing the vasculature. Twenty patients with advanced kidney disease requiring aorto-iliac vascular imaging as part of pre-operative kidney transplant candidacy assessment underwent ferumoxytol-enhanced magnetic resonance angiography (FeMRA) between December 2015 and August 2016. All scans were performed for clinical indications where standard imaging techniques were deemed potentially harmful or inconclusive. Image quality was evaluated for both arterial and venous compartments. First-pass and steady-state FeMRA using incremental doses of up to 4 mg/kg body weight of ferumoxytol as intravenous contrast agent for vascular enhancement was performed. Good arterial and venous enhancements were achieved, and FeMRA was not limited by calcification in assessing the arterial lumen. The scans were diagnostic and all patients completed their studies without adverse events. Our preliminary experience supports the feasibility and utility of FeMRA for vascular imaging in patients with advanced kidney disease due for transplant listing, which has the advantages of obtaining both arteriography and venography using a single test without nephrotoxicity. (orig.)

  20. Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers

    International Nuclear Information System (INIS)

    Schneider, T.; Jahr, N.; Jatschka, J.; Csaki, A.; Stranik, O.; Fritzsche, W.

    2013-01-01

    The effect of DNA–DNA interaction on the localized surface plasmon resonance of single 80 nm gold nanoparticles is studied. Therefore, both the attachment of the capture DNA strands at the particle surface and the sequence-specific DNA binding (hybridization) of analyte DNA to the immobilized capture DNA is subject of investigations. The influence of substrate attachment chemistry, the packing density of DNA as controlled by an assisting layer of smaller molecules, and the distance as increased by a linker on the LSPR efficiency is investigated. The resulting changes in signal can be related to a higher hybridization efficiency of the analyte DNA to the immobilized capture DNA. The subsequent attachment of additional DNA strands to this system is studied, which allows for a multiple step detection of binding and an elucidation of the resulting resonance shifts. The detection limit was determined for the utilized DNA system by incubation with various concentration of analyte DNA. Although the method allows for a marker-free detection, we show that additional markers such as 20 nm gold particle labels increase the signal and thereby the sensitivity significantly. The study of resonance shift for various DNA lengths revealed that the resonance shift per base is stronger for shorter DNA molecules (20 bases) as compared to longer ones (46 bases).

  1. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy

    DEFF Research Database (Denmark)

    Hak, Sjoerd; Cebulla, Jana; Huuse, Else Marie

    2014-01-01

    In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only...... because angiogenesis plays an important role in various pathologies, but also since endothelial cell surface receptors are directly accessible for relatively large circulating nanoparticles. Typically, nanoparticle targeting towards these receptors is studied by analyzing the contrast distribution...... kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging...

  2. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  3. Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism

    Science.gov (United States)

    Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.

    2010-08-01

    Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.

  4. Magnetic Fe{sub 3}O{sub 4}-Au core-shell nanostructures for surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.A.; Adams, S.A.; Zhang, J.Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Lopez-Luke, T. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Cento de Investigaciones en Optica, A.P. 1-948 Leon, Gto. 37150 (Mexico); Torres-Castro, A. [Universidad Autonoma de Nuevo Leon, A.P. 126-F, Monterrey, NL, 66450 (Mexico)

    2012-11-15

    The synthesis, structural and optical characterization, and application of superparamagnetic and water-dispersed Fe{sub 3}O{sub 4}-Au core-shell nanoparticles for surface enhanced Raman scattering (SERS) is reported. The structure of the nanoparticles was determined by scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). STEM images of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles reveal an average diameter of 120 nm and a high degree of surface roughness. The nanoparticles, which display superparamagnetic properties due to the core Fe{sub 3}O{sub 4} material, exhibit a visible surface plasmon resonance (SPR) peaked at 580 nm due to the outer gold shell. The nanoparticles are used as a substrate for surface enhanced Raman scattering (SERS) with rhodamine 6G (R6G) as a Raman reporter molecule. The SERS enhancement factor is estimated to be on the order of 10{sup 6}, which is {proportional_to} 2 times larger than that of conventional gold nanoparticles (AuNPs) under similar conditions. Significantly, magnetically-induced aggregation of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles substantially enhanced SERS activity compared to non-magnetically-aggregated Fe{sub 3}O{sub 4}-Au nanoparticles. This is attributed to both increased scattering from the aggregates as well as ''hot spots'' due to more junction sites in the magnetically-induced aggregates. The magnetic properties of the Fe{sub 3}O{sub 4} core, coupled with the optical properties of the Au shell, make the Fe{sub 3}O{sub 4}-Au nanoparticles unique for various potential applications including biological sensing and therapy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Singular equivariant spectral asymptotics of Schroedinger operators in Rn and resonances of Schottky surfaces

    International Nuclear Information System (INIS)

    Weich, Tobias

    2014-01-01

    This work consists of four self-containedly presented parts. In the first part we prove equivariant spectral asymptotics for h-pseudo-differential operators for compact orthogonal group actions generalizing results of El-Houakmi and Helffer (1991) and Cassanas (2006). Using recent results for certain oscillatory integrals with singular critical sets (Ramacher 2010) we can deduce a weak equivariant Weyl law. Furthermore, we can prove a complete asymptotic expansion for the Gutzwiller trace formula without any additional condition on the group action by a suitable generalization of the dynamical assumptions on the Hamilton flow. In the second and third part we study resonance chains which have been observed in many different physical and mathematical scattering problems. In the second part we present a mathematical rigorous study of the resonance chains on three funneled Schottky surfaces. We prove the analyticity of the generalized zeta function which provide the central mathematical tool for understanding the resonance chains. Furthermore we prove for a fixed ratio between the funnel lengths and in the limit of large lengths that after a suitable rescaling the resonances in a bounded domain align equidistantly along certain lines. The position of these lines is given by the zeros of an explicit polynomial which only depends on the ratio of the funnel lengths. In the third part we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for 3-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is

  6. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-01-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy–Bessel–Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light–matter interaction and optical sensing performance. (paper)

  7. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    Science.gov (United States)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-07-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy-Bessel-Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light-matter interaction and optical sensing performance.

  8. Localised surface plasmon-like resonance generated by microwave electromagnetic waves in pipe defects

    Science.gov (United States)

    Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric

    2018-01-01

    Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.

  9. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hlubina, P.; Kadulová, M.; Ciprian, D.; Sobota, Jaroslav

    2014-01-01

    Roč. 9, August 19 (2014), 14033:1-5 ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1212 Keywords : surface plasmon resonance * fibre-optic sensor * spectral interrogation technique * aqueous solutions of ethanol * refractive index Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.231, year: 2014

  10. Development of resonance ionization spectroscopy system for fusion material surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Satoh, Yasushi; Nakazawa, Masaharu

    1996-10-01

    A Resonance Ionization Spectroscopy (RIS) system is now under development aiming at in-situ observation and analysis neutral particles emitted from fusion material surfaces under irradiation of charged particles and neutrons. The basic performance of the RIS system was checked through a preliminary experiment on Xe atom detection. (author)

  11. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection

    Energy Technology Data Exchange (ETDEWEB)

    Yılmaz, Erkut [Department of Chemistry, Aksaray University, 68100 Aksaray (Turkey); Özgür, Erdoğan; Bereli, Nilay; Türkmen, Deniz [Department of Chemistry, Hacettepe University, 06800 Ankara (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Hacettepe University, 06800 Ankara (Turkey)

    2017-04-01

    This study reports a surface plasmon resonance (SPR) based affinity sensor system with the use of molecular imprinted nanoparticles (plastic antibodies) to enhance the pesticide detection. Molecular imprinting based affinity sensor is prepared by the attachment of atrazine (chosen as model pesticide) imprinted nanoparticles onto the gold surface of SPR chip. Recognition element of the affinity sensor is polymerizable form of aspartic acid. The imprinted nanoparticles were characterized via FTIR and zeta-sizer measurements. SPR sensors are characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FTIR) and contact angle measurements. The imprinted nanoparticles showed more sensitivity to atrazine than the non-imprinted ones. Different concentrations of atrazine solutions are applied to SPR system to determine the adsorption kinetics. Langmuir adsorption model is found as the most suitable model for this affinity nanosensor system. In order to show the selectivity of the atrazine-imprinted nanoparticles, competitive adsorption of atrazine, simazine and amitrole is investigated. The results showed that the imprinted nanosensor has high selectivity and sensitivity for atrazine. - Highlights: • SPR based affinity sensor system was developed via molecular imprinting. • Recognition element of the affinity sensor is polymerizable form of an amino acid. • Combination of SPR and MIP offers highly selective sensor with long shelf-life. • Plastic antibody based biomimetic sensors offer relatively cheaper production. • Plastic antibody based biomimetic sensors offer high physical, chemical stability.

  12. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection

    International Nuclear Information System (INIS)

    Yılmaz, Erkut; Özgür, Erdoğan; Bereli, Nilay; Türkmen, Deniz; Denizli, Adil

    2017-01-01

    This study reports a surface plasmon resonance (SPR) based affinity sensor system with the use of molecular imprinted nanoparticles (plastic antibodies) to enhance the pesticide detection. Molecular imprinting based affinity sensor is prepared by the attachment of atrazine (chosen as model pesticide) imprinted nanoparticles onto the gold surface of SPR chip. Recognition element of the affinity sensor is polymerizable form of aspartic acid. The imprinted nanoparticles were characterized via FTIR and zeta-sizer measurements. SPR sensors are characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FTIR) and contact angle measurements. The imprinted nanoparticles showed more sensitivity to atrazine than the non-imprinted ones. Different concentrations of atrazine solutions are applied to SPR system to determine the adsorption kinetics. Langmuir adsorption model is found as the most suitable model for this affinity nanosensor system. In order to show the selectivity of the atrazine-imprinted nanoparticles, competitive adsorption of atrazine, simazine and amitrole is investigated. The results showed that the imprinted nanosensor has high selectivity and sensitivity for atrazine. - Highlights: • SPR based affinity sensor system was developed via molecular imprinting. • Recognition element of the affinity sensor is polymerizable form of an amino acid. • Combination of SPR and MIP offers highly selective sensor with long shelf-life. • Plastic antibody based biomimetic sensors offer relatively cheaper production. • Plastic antibody based biomimetic sensors offer high physical, chemical stability.

  13. Gadolinium-DTPA enhanced magnetic resonance imaging of bone cysts in patients with rheumatoid arthritis.

    Science.gov (United States)

    Gubler, F M; Algra, P R; Maas, M; Dijkstra, P F; Falke, T H

    1993-01-01

    OBJECTIVES--To examine the contents of intraosseous cysts in patients with rheumatoid arthritis (RA) through the signal intensity characteristics on gadolinium-DTPA (Gd-DTPA) enhanced magnetic resonance imaging. METHODS--The hand or foot joints of nine patients with the cystic form of RA (where the initial radiological abnormality consisted of intraosseous cysts without erosions) were imaged before and after intravenous administration of Gd-DTPA. A 0.6 unit, T1 weighted spin echo and T2* weighted gradient echo were used to obtain images in at least two perpendicular planes. RESULTS--Most cysts showed a low signal intensity on the non-enhanced T1 weighted (spin echo) images and a high signal intensity on the T2* weighted (gradient echo) images, consistent with a fluid content. No cyst showed an enhancement of signal intensity on the T1 weighted images after intravenous administration of Gd-DTPA, whereas synovium hyperplasia at the site of bony erosions did show an increased signal intensity after Gd-DTPA. Magnetic resonance imaging detected more cysts (as small as 2 mm) than plain films, and the cysts were located truly intraosseously. In six patients no other joint abnormalities were identified by magnetic resonance imaging; the three other patients also showed, after Gd-DTPA administration, an enhanced synovium at the site of bony erosions. CONCLUSIONS--It is suggested that intraosseous bone cysts in patients with RA do not contain hyperaemic synovial proliferation. The bone cysts in patients with the cystic form of RA may be the only joint abnormality. Images PMID:8257207

  14. Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Batra, A.; Tripathi, R.P.; Singh, A.K.

    2004-01-01

    The purpose of the present paper was to evaluate the utility of perfusion MRI in cerebral gliomas showing imperceptible contrast enhancement on conventional MRI, and to evaluate the relationships of perfusion MRI and magnetic resonance (MR) spectroscopic results in these tumours. Twenty-two patients with histopathologically proven cerebral gliomas and showing insignificant contrast enhancement on conventional MR were included in the present study. All patients underwent perfusion MRI and MR spectroscopy on a 1.5-T MR system. Significant differences of the relative cerebral blood volume (rCBV) values and the choline : creatine ratios were noted between low-grade and anaplastic gliomas (P < 0.01). Good correlation was found between the rCBV values and the choline : creatine values (y = 0. 532x + 1.5643; r = 0.67). Perfusion MRI can be a useful tool in assessing the histopathological grade of non-contrast-enhancing cerebral gliomas. Along with MR spectroscopic imaging it can serve as an important technique for preoperative characterization of such gliomas, so that accurate targeting by stereotactic biopsies is possible. Copyright (2004) Blackwell Science Pty Ltd

  15. Polymer-based surface plasmon resonance biochip: construction and experimental aspects

    Directory of Open Access Journals (Sweden)

    Cleumar da Silva Moreira

    Full Text Available Abstract Introduction: Surface plasmon resonance biosensors are high sensitive analytical instruments that normally employ glass materials at the optical substrate layer. However, the use of polymer-based substrates is increasing in the last years due to favorable features, like: disposability, ease to construction and low-cost design. Review Recently, a polymer-based SPR biochip was proposed by using monochromatic and polychromatic input sources. Its construction and experimental considerations are detailed here. Experimental considerations and results, aspects from performance characteristics (resonance parameters, sensitivity and full width at half maximum – FWHM – calculations are presented for hydrophilic and hydrophobic solutions. It is included also a brief description of the state of the art of polymer-based SPR biosensors.

  16. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.

    Science.gov (United States)

    Wei, Wenzuo; Hong, Ruijin; Jing, Ming; Shao, Wen; Tao, Chunxian; Zhang, Dawei

    2018-01-05

    Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.

  17. High Density Periodic Metal Nanopyramids for Surface Enhanced Raman Spectroscopy

    NARCIS (Netherlands)

    Jin, Mingliang

    2012-01-01

    The work presented in this thesis is focused on two areas. First, a new type of nanotextured noble-metal surface has been developed. The new nanotextured surface is demonstrated to enhance inelastic (Raman) scattering, called surface enhanced Raman scattering (SERS), from molecules adsorbed on the

  18. Novel concept of multi-channel fiber optic surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Piliarik, Marek; Kvasnička, Pavel; Rajarajan, M.; Homola, Jiří

    2009-01-01

    Roč. 139, č. 1 (2009), s. 199-203 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : . Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.083, year: 2009

  19. Contrast-enhanced dynamic magnetic resonance imaging findings of hepatocellular carcinoma and their correlation with histopathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Okkes I. [Department of Radiology, Erciyes University Medical Faculty, PK: 18 Talas 38280, Kayseri (Turkey)]. E-mail: oikarahan@yahoo.com; Yikilmaz, Ali [Department of Radiology, Erciyes University Medical Faculty, PK: 18 Talas 38280, Kayseri (Turkey); Artis, Tarik [Department of General Surgery, Erciyes University Medical Faculty, PK: 18 Talas 38280, Kayseri (Turkey); Canoz, Ozlem [Department of Pathology, Erciyes University Medical Faculty, PK: 18 Talas 38280, Kayseri (Turkey); Coskun, Abdulhakim [Department of Radiology, Erciyes University Medical Faculty, PK: 18 Talas 38280, Kayseri (Turkey); Torun, Edip [Department of Internal Medicine, Division of Gastrenterology, Erciyes University Medical Faculty, PK: 18 Talas 38280, Kayseri (Turkey)

    2006-03-15

    Purpose: To investigate the correlations of contrast-enhanced magnetic resonance (MR) imaging findings of large (>5 cm) hepatocellular carcinomas with tumor size and histopathologic findings. Materials and methods: MR imaging was performed in 30 patients with a histopathologic diagnosis of hepatocellular carcinoma. The imaging protocol included non-contrast, hepatic arterial, portal venous and late phases. The signal intensities relative to the liver, enhancement patterns and the morphologic features of the lesions were evaluated in relation to size and degree of differentiation. Results: On histopathologic examination, 12 of 30 (40%) tumors were well-differentiated (grade 1), 6 of 30 (20%) were moderately differentiated (grades 2 and 3) and 12 of 30 (40%) were poorly differentiated (grade 4). Tumor size, tumor boundary, serum alpha-fetoprotein level and portal vein invasion were found to have statistically significant correlations with the degree of differentiation (p < 0.05). Portal vein invasion, capsule formation and tumor surface characteristics showed statistically significant correlations with tumor size (p < 0.05). Conclusion: MR imaging findings of hepatocellular carcinomas larger than 5 cm are partially dependent on tumor size and degree of differentiation.

  20. Measurement of pressure on a surface using bubble acoustic resonances

    International Nuclear Information System (INIS)

    Aldham, Ben; Manasseh, Richard; Liffman, Kurt; Šutalo, Ilija D; Illesinghe, Suhith; Ooi, Andrew

    2010-01-01

    The frequency response of gas bubbles as a function of liquid ambient pressure was measured and compared with theory. A bubble size with equivalent spherical radius of 2.29 mm was used over a frequency range of 1000–1500 Hz. The ultimate aim is to develop an acoustic sensor that can measure static pressure and is sensitive to variations as small as a few kPa. The classical bubble resonance frequency is known to vary with ambient pressure. Experiments were conducted with a driven bubble in a pressurizable tank with a signal processing system designed to extract the resonant peak. Since the background response of the containing tank is significant, particularly near tank-modal resonances, it must be carefully removed from the bubble response signal. A dual-hydrophone method was developed to allow rapid and reliable real-time measurements. The expected pressure dependence was found. In order to obtain a reasonable match with theory, the classical theory was modified by the introduction of a 'mirror bubble' to account for the influence of a nearby surface. (technical design note)

  1. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2014-08-01

    Full Text Available Surface plasmon resonance (SPR is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  2. Fabrication and characterization of gold nanocrown arrays on a gold film for a high-sensitivity surface plasmon resonance biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Munsik; Kim, Nak-hyeon; Eom, Seyoung [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Tae Woo [School of East–West Medical Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Byun, Kyung Min, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Park, Hyeong-Ho, E-mail: hyeongho.park@kanc.re.kr [Nano Process Division, Korea Advanced Nano Fab Center, Suwon 443-270 (Korea, Republic of)

    2015-07-31

    We report on a versatile method to fabricate gold nanocrown arrays on a thin gold film based on ultraviolet nanoimprint lithography and tilted evaporation technique. We realize highly ordered 2-dimensional nanocrown arrays and characterize their sizes and morphologies using scanning electron microscopy. To demonstrate an enhanced surface plasmon resonance (SPR) detection by the fabricated gold nanocrown samples, biosensing experiments are performed by measuring SPR angle shift for biotin–streptavidin interaction and bulk refractive index change of dielectric medium. We hope that the suggested plasmonic platform with a high sensitivity could be extended to a variety of biomolecular binding reactions. - Highlights: • Gold nanocrown arrays are produced by nanoimprint lithography and tilted evaporation. • Use of gold nanocrown arrays can improve the sensor sensitivity significantly. • Improved sensitivity is due to enhanced field–matter interaction at gold nanocrowns.

  3. Injection and laser acceleration of ions based on the resonant surface photoionization

    International Nuclear Information System (INIS)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G.

    1993-01-01

    The collective effects have been investigated of the injection and acceleration of the ion beams due to the resonant surface photoionization. The considered scheme of the laser accelerator allows to obtain positive ions with relativistic velocities. 11 refs., 2 figs

  4. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  5. Gadolinium enhancement of spinal subdural collection on magnetic resonance imaging after lumbar puncture

    International Nuclear Information System (INIS)

    Teksam, Mehmet; Casey, Sean O.; McKinney, Alexander; Michel, Eduard; Truwit, Charles L.

    2003-01-01

    We report a 35-year-old male with an unusual contrast-enhancing sterile spinal subdural collection on magnetic resonance imaging (MRI), apparently occurring as a complication of lumbar puncture. Follow-up MRI after 4 weeks demonstrated spontaneous resolution of the collection without intervening treatment. (orig.)

  6. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    Science.gov (United States)

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  7. Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications

    Directory of Open Access Journals (Sweden)

    Yao Guo

    2015-07-01

    Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.

  8. Evidence on a link between the intensity of Schumann resonance and global surface temperature

    Directory of Open Access Journals (Sweden)

    M. Sekiguchi

    2006-08-01

    Full Text Available A correlation is investigated between the intensity of the global electromagnetic oscillations (Schumann resonance with the planetary surface temperature. The electromagnetic signal was monitored at Moshiri (Japan, and temperature data were taken from surface meteorological observations. The series covers the period from November 1998 to May 2002. The Schumann resonance intensity is found to vary coherently with the global ground temperature in the latitude interval from 45° S to 45° N: the relevant cross-correlation coefficient reaches the value of 0.9. It slightly increases when the high-latitude temperature is incorporated. Correspondence among the data decreases when we reduce the latitude interval, which indicates the important role of the middle-latitude lightning in the Schumann resonance oscillations. We apply the principal component (or singular spectral analysis to the electromagnetic and temperature records to extract annual, semiannual, and interannual variations. The principal component analysis (PCA clarifies the links between electromagnetic records and meteorological data.

  9. Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco [Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia ed Istologia, Università di Verona, Verona, I-37194 (Italy)

    2002-06-05

    Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology.

  10. Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    International Nuclear Information System (INIS)

    Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco

    2002-01-01

    Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology

  11. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  12. Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger; Qiu, M.

    2007-01-01

    resonances attributing to the enhanced transmission: the localized waveguide resonance and periodic surface plasmon resonances. For the film coated with dielectric layers, calculated results show that in the wavelength region of interest the localized waveguide resonant mode attributes to sensing rather than...

  13. The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2012-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.

  14. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    International Nuclear Information System (INIS)

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu

    2015-01-01

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications

  15. Evaluation of surface nuclear magnetic resonance-estimated subsurface water content

    International Nuclear Information System (INIS)

    Mueller-Petke, M; Dlugosch, R; Yaramanci, U

    2011-01-01

    The technique of nuclear magnetic resonance (NMR) has found widespread use in geophysical applications for determining rock properties (e.g. porosity and permeability) and state variables (e.g. water content) or to distinguish between oil and water. NMR measurements are most commonly made in the laboratory and in boreholes. The technique of surface NMR (or magnetic resonance sounding (MRS)) also takes advantage of the NMR phenomenon, but by measuring subsurface rock properties from the surface using large coils of some tens of meters and reaching depths as much as 150 m. We give here a brief review of the current state of the art of forward modeling and inversion techniques. In laboratory NMR a calibration is used to convert measured signal amplitudes into water content. Surface NMR-measured amplitudes cannot be converted by a simple calibration. The water content is derived by comparing a measured amplitude with an amplitude calculated for a given subsurface water content model as input for a forward modeling that must account for all relevant physics. A convenient option to check whether the measured signals are reliable or the forward modeling accounts for all effects is to make measurements in a well-defined environment. Therefore, measurements on top of a frozen lake were made with the latest-generation surface NMR instruments. We found the measured amplitudes to be in agreement with the calculated amplitudes for a model of 100 % water content. Assuming then both the forward modeling and the measurement to be correct, the uncertainty of the model is calculated with only a few per cent based on the measurement uncertainty.

  16. Microwave assisted in situ synthesis of Ag–NaCMC films and their reproducible surface-enhanced Raman scattering signals

    International Nuclear Information System (INIS)

    Jiang, Tao; Li, Junpeng; Zhang, Li; Wang, Binbing; Zhou, Jun

    2014-01-01

    Graphical abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized Ag–NaCMC film, although it maintained an EF as only 1.11 × 10 8 . The reproducible SERS signal of the Ag–NaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application. - Highlights: • The synthesis of Ag–NaCMC films was successfully fulfilled by a low-cost microwave method. • More uniform silver nanoparticles were observed in Ag–NaCMC film synthesized by microwave. • Improved reproducibility of SERS signal was obtained in microwave synthesized Ag–NaCMC film. - Abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by

  17. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator's metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  18. Detection of bisphenol A using a novel surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Piliarik, Marek; Šteinbachová, M.; Flegelová, Z.; Černohorská, H.; Homola, Jiří

    2010-01-01

    Roč. 398, č. 5 (2010), s. 1963-1966 ISSN 1618-2642 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance biosensor * bisphenol A * endocrine disruptor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.841, year: 2010

  19. Interaction between confined phonons and photons in periodic silicon resonators

    Science.gov (United States)

    Iskandar, A.; Gwiazda, A.; Younes, J.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.

    2018-03-01

    In this paper, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. The interaction between confined phonons and confined photons in silicon resonator arrays is observed by means of Raman scattering. The Raman spectra from large arrays of dielectric silicon resonators exhibited Raman enhancement accompanied with a downshift and broadening. The analysis of the Raman intensity and line shape using finite-difference time-domain simulations and a spatial correlation model demonstrated an interaction between photons confined in the resonators and phonons confined in highly defective regions prompted by the structuring process. It was shown that the Raman enhancement is due to collective lattice resonance inducing field confinement in the resonators, while the spectra downshift and broadening are signatures of the relaxation of the phonon wave vector due to phonon confinement in defective regions located in the surface layer of the Si resonators. We found that as the resonators increase in height and their shape becomes cylindrical, the amplitude of their coherent oscillation increases and hence their ability to confine the incoming electric field increases.

  20. Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, George P. [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Glaven, Richard H. [Nova Research, Inc., 1900 Elkin Street, Suite 230, Alexandria, VA 22308 (United States); Algar, W. Russ [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); College of Science, George Mason University, Fairfax, VA 22030 (United States); Susumu, Kimihiro [Optical Sciences Division, Code 5600, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Sotera Defense Solutions, Annapolis Junction, MD 20701 (United States); Stewart, Michael H. [Optical Sciences Division, Code 5600, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Medintz, Igor L. [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Goldman, Ellen R., E-mail: ellen.goldman@nrl.navy.mil [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States)

    2013-07-05

    Graphical abstract: -- Highlights: •Anti-ricin single domain antibodies (sdAb) were self-assembled on quantum dots (QDs). •Conjugates were prepared using dihydrolipoic acid-capped CdSe–ZnS core–shell QDs. •The sdAb–QD conjugates functioned in fluoroimmunoassays for ricin detection. •The conjugates provided signal amplification in surface plasmon resonance assays. •Conjugates provided sensitive detection compared to unconjugated sdAb reporters. -- Abstract: The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format.

  1. Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance

    International Nuclear Information System (INIS)

    Anderson, George P.; Glaven, Richard H.; Algar, W. Russ; Susumu, Kimihiro; Stewart, Michael H.; Medintz, Igor L.; Goldman, Ellen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Anti-ricin single domain antibodies (sdAb) were self-assembled on quantum dots (QDs). •Conjugates were prepared using dihydrolipoic acid-capped CdSe–ZnS core–shell QDs. •The sdAb–QD conjugates functioned in fluoroimmunoassays for ricin detection. •The conjugates provided signal amplification in surface plasmon resonance assays. •Conjugates provided sensitive detection compared to unconjugated sdAb reporters. -- Abstract: The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format

  2. Spatial mapping of mineralization with manganese-enhanced magnetic resonance imaging

    Science.gov (United States)

    Chesnick, I.E.; Centeno, J.A.; Todorov, T.I.; Koenig, A.E.; Potter, K.

    2011-01-01

    Paramagnetic manganese can be employed as a calcium surrogate to sensitize the magnetic resonance imaging (MRI) technique to the processing of calcium during the bone formation process. At low doses, after just 48h of exposure, osteoblasts take up sufficient quantities of manganese to cause marked reductions in the water proton T1 values compared with untreated cells. After just 24h of exposure, 25??M MnCl2 had no significant effect on cell viability. However, for mineralization studies 100??M MnCl2 was used to avoid issues of manganese depletion in calvarial organ cultures and a post-treatment delay of 48h was implemented to ensure that manganese ions taken up by osteoblasts is deposited as mineral. All specimens were identified by their days in vitro (DIV). Using inductively coupled plasma optical emission spectroscopy (ICP-OES), we confirmed that Mn-treated calvariae continued to deposit mineral in culture and that the mineral composition was similar to that of age-matched controls. Notably there was a significant decrease in the manganese content of DIV18 compared with DIV11 specimens, possibly relating to less manganese sequestration as a result of mineral maturation. More importantly, quantitative T1 maps of Mn-treated calvariae showed localized reductions in T1 values over the calvarial surface, indicative of local variations in the surface manganese content. This result was verified with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We also found that ??R1 values, calculated by subtracting the relaxation rate of Mn-treated specimens from the relaxation rate of age-matched controls, were proportional to the surface manganese content and thus mineralizing activity. From this analysis, we established that mineralization of DIV4 and DIV11 specimens occurred in all tissue zones, but was reduced for DIV18 specimens because of mineral maturation with less manganese sequestration. In DIV25 specimens, active mineralization was observed for

  3. Systematic investigation of resonance-induced single-harmonic enhancement in the extreme-ultraviolet range

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Bom, L. B. Elouga; Kieffer, J.-C.; Ozaki, T.

    2007-01-01

    We demonstrate the intensity enhancement of single harmonics in high-order harmonic generation from laser plasma. We identified several targets (In, Sn, Sb, Cr, and Mn) that demonstrate resonance-induced enhancement of single harmonic, that are spectrally close to ionic transitions with strong oscillator strengths. We optimized and obtained enhancements of the 13th, 17th, 21st, 29th, and 33rd harmonics from the above targets, by varying the chirp of the 800 nm wavelength femtosecond laser. We also observe harmonic enhancement by using frequency-doubled pump laser (400 nm wavelength). For Mn plasma pumped by the 400 nm wavelength laser, the maximum order of the enhanced harmonic observed was the 17th order (λ=23.5 nm), which corresponds to the highest photon energy (52.9 eV) reported for an enhanced single harmonic

  4. Resonance Ultrasonic Spectroscopy of a Nanofibrous Composite and Studying the Effect of Surface/Interface

    Directory of Open Access Journals (Sweden)

    Kobra Kalvandi

    2014-01-01

    Full Text Available Resonances are intrinsic characteristics of an elastic object, which are completely independent of the source of excitation. The appropriate utilization of the information contained within the resonance spectra and the identification of the resonance frequencies of the object can be used as a potent tool for material characterization. In this paper, a new mathematical model for the wave diffraction from a cylindrical nanofiber encased in an elastic matrix is introduced. The new model is used to evaluate the scattered pressure field resulting from normal insonification on a single nanofibrous composite. It is shown that there are specific resonances, which arise from the surface/interface energy between the nanofiber and solid matrix. They can be used to determine the characteristics and properties of fibrous nanocomposites.

  5. In Situ Evaluation of Density, Viscosity and Thickness of Adsorbed Soft Layers by Combined Surface Acoustic Wave and Surface Plasmon Resonance

    OpenAIRE

    Francis, L.; Friedt, J. -M.; Zhou, C.; Bertrand, P.

    2003-01-01

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is...

  6. Electron energy transfer effect in Au NS/CH3NH3PbI3-xClx heterostructures via localized surface plasmon resonance coupling.

    Science.gov (United States)

    Cai, Chunfeng; Zhai, Jizhi; Bi, Gang; Wu, Huizhen

    2016-09-15

    Localized surface plasmon resonance coupling effects (LSPR) have attracted much attention due to their interesting properties. This Letter demonstrates significant photoluminescence (PL) enhancement in the Au NS/CH3NH3PbI3-xClx heterostructures via the LSPR coupling. The observed PL emission enhancement is mainly attributed to the hot electron energy transfer effect related to the LSPR coupling. For the energy transfer effect, photo-generated electrons will be directly extracted into Au SPs, rather than relaxed into exciton states. This energy transfer process is much faster than the diffusion and relaxation time of free electrons, and may provide new ideas on the design of high-efficiency solar cells and ultrafast response photodetectors.

  7. Resonance enhancement of neutrinoless double electron capture

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.; Simkovic, Fedor; Frekers, Dieter; Faessler, Amand

    2011-01-01

    The process of neutrinoless double electron (0νECEC) capture is revisited for those cases where the two participating atoms are nearly degenerate in mass. The theoretical framework is the formalism of an oscillation of two atoms with different total lepton number (and parity), one of which can be in an excited state so that mass degeneracy is realized. In such a case and assuming light Majorana neutrinos, the two atoms will be in a mixed configuration with respect to the weak interaction. A resonant enhancement of transitions between such pairs of atoms will occur, which could be detected by the subsequent electromagnetic de-excitation of the excited state of the daughter atom and nucleus. Available data of atomic masses, as well as nuclear and atomic excitations are used to select the most likely candidates for the resonant transitions. Assuming an effective mass for the Majorana neutrino of 1 eV, some half-lives are predicted to be as low as 10 22 years in the unitary limit. It is argued that, in order to obtain more accurate predictions for the 0νECEC half-lives, precision mass measurements of the atoms involved are necessary, which can readily be accomplished by today's high precision Penning traps. Further advancements also require a better understanding of high-lying excited states of the final nuclei (i.e. excitation energy, angular momentum and parity) and the calculation of the nuclear matrix elements.

  8. Measurements of the Stiffness and Thickness of the Pavement Asphalt Layer Using the Enhanced Resonance Search Method

    Directory of Open Access Journals (Sweden)

    Nur Mustakiza Zakaria

    2014-01-01

    Full Text Available Enhanced resonance search (ERS is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner. This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.

  9. Trends in interfacial design for surface plasmon resonance based immunoassays

    International Nuclear Information System (INIS)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  10. Trends in interfacial design for surface plasmon resonance based immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Dhesingh Ravi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2007-12-07

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  11. Surface magnetic anisotropy in glass-coated amorphous microwires as determined from ferromagnetic resonance measurements

    International Nuclear Information System (INIS)

    Garcia-Miquel, H.; Garcia, J.M.; Garcia-Beneytez, J.M.; Vazquez, M.

    2001-01-01

    The ferromagnetic resonance frequency of different Co base glass-coated amorphous magnetic microwires about 3.5 μm in diameter with negative, vanishing and positive magnetostriction has been investigated from power absorption measurements in the microwave frequency range. The experimental technique employed here involves the replacement of the dielectric of a coaxial transmission line by the sample to be measured. From the evolution of the resonance frequency with DC applied magnetic field, the surface magnetic anisotropy field of the microwires has been quantitatively obtained and, as expected, found to depend on the sign and strength of the magnetostriction. Similar values for the surface anisotropy are obtained in comparison with bulk anisotropy as determined from quasi-static hysteresis loops measurements

  12. Detection of Volatile Organic Compound Gas Using Localized Surface Plasmon Resonance of Gold Nanoparticles

    International Nuclear Information System (INIS)

    Sri Nengsih; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahaya

    2011-01-01

    This paper reports on the detection of several organic vapors using the unique characteristic of localized surface plasmon resonance (LSPR) gold nanoparticles. Gold nanoparticles on quartz substrate were prepared using seed mediated growth method. In a typical process, gold nanoparticles with average size ca. 36 nm were obtained to densely grown on the substrate. Detection of gas was based on the change in the LSPR of the gold nanoparticles film upon the exposure to the gas sample. It was found that gold nanoparticles were sensitive to the presence of volatile organic compound (VOC) gas from the change in the surface plasmon resonance (SPR) intensity. The mechanism for the detection of VOCs gas will be discussed. (author)

  13. Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles

    International Nuclear Information System (INIS)

    Hong, Sang-Hyun; Kim, Jae-Joon; Jung, Yen-Sook; Kim, Dong-Yu; Park, Seong-Ju; Kang, Jang-Won; Yim, Sang-Youp

    2015-01-01

    We report on the characteristics of localized surface plasmon (LSP)-enhanced near-ultraviolet light-emitting diodes (NUV-LEDs) fabricated by using colloidal silver (Ag) nanoparticles (NPs). Colloidal Ag NPs were deposited on the 20 nm thick p-GaN spacer layer using a spray process. The optical output power of NUV-LEDs with colloidal Ag NPs was increased by 48.7% at 20 mA compared with NUV-LEDs without colloidal Ag NPs. The enhancement was attributed to increased internal quantum efficiency caused by the resonance coupling between excitons in the multiple quantum wells and the LSPs in the Ag NPs. (paper)

  14. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  16. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  17. A new surface plasmon resonance sensor for high-throughput screening applications

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Vaisocherová, Hana; Homola, Jiří

    2005-01-01

    Roč. 20, č. 10 (2005), s. 2104-2110 ISSN 0956-5663 R&D Projects: GA ČR(CZ) GA102/03/0633; GA AV ČR(CZ) KSK2067107 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.463, year: 2005

  18. Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing

    NARCIS (Netherlands)

    Lakayan, Dina; Tuppurainen, Jussipekka; Albers, Martin; van Lint, Matthijs J.; van Iperen, Dick J.; Weda, Jelmer J.A.; Kuncova-Kallio, Johana; Somsen, Govert W.; Kool, Jeroen

    2018-01-01

    A variable-wavelength Kretschmann configuration surface plasmon resonance (SPR) apparatus with angle scanning is presented. The setup provides the possibility of selecting the optimum wavelength with respect to the properties of the metal layer of the sensorchip, sample matrix, and biomolecular

  19. Bone marrow blood supply in gadolinium-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Saifuddin, A.; Bann, K.; Ridgway, J.P.; Butt, W.P.

    1994-01-01

    A retrospective study was performed to determine whether bone blood supply can be assessed on gadolinium-enhanced magnetic resonance imaging. Lumbar spine magnetic resonance imaging (MRI) examinations of 49 patients attending for post-laminectomy examination were reviewed (30 male, 19 female, mean age 46.4 years, age range 23-84 years). Each study included sagittal T1-weighted spin echo sequences before and after gadolinium administration. Regions of interest were drawn within the L3 vertebral body from a parasagittal slice from each sequence. Signal intensity (SI) values were ascertained and the percentage increase in SI was calculated. For each patient, changes in receiver gain for pre- and post-gadolinium images were corrected by an image scaling factor. In all cases, a measurable increase in SI was found (mean 15.3%, range 4.4-55.7) due to bone vascularity. The results give no indication of the quantity or timing of blood supply but provide a basis for further work. (orig.)

  20. Experimental REMPI [Resonance Enhanced Multiphoton Ionization] studies of small molecules

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dehmer, P.M.; Pratt, S.T.; O'Halloran, M.A.; Tomkins, F.S.

    1986-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. We shall give an overview together with examples of current studies of excited molecular states to illustrate the principles of and prospects for REMPI. 27 refs., 3 figs

  1. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance

    Science.gov (United States)

    Parsekian, Andrew D.; Grosse, Guido; Walbrecker, Jan O.; Müller-Petke, Mike; Keating, Kristina; Liu, Lin; Jones, Benjamin M.; Knight, Rosemary

    2013-01-01

    A talik is a layer or body of unfrozen ground that occurs in permafrost due to an anomaly in thermal, hydrological, or hydrochemical conditions. Information about talik geometry is important for understanding regional surface water and groundwater interactions as well as sublacustrine methane production in thermokarst lakes. Due to the direct measurement of unfrozen water content, surface nuclear magnetic resonance (NMR) is a promising geophysical method for noninvasively estimating talik dimensions. We made surface NMR measurements on thermokarst lakes and terrestrial permafrost near Fairbanks, Alaska, and confirmed our results using limited direct measurements. At an 8 m deep lake, we observed thaw bulb at least 22 m below the surface; at a 1.4 m deep lake, we detected a talik extending between 5 and 6 m below the surface. Our study demonstrates the value that surface NMR may have in the cryosphere for studies of thermokarst lake hydrology and their related role in the carbon cycle.

  2. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Lopez-royo, Francisco; Yang, Yang; Zayats, Anatoly

    2017-01-01

    that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold

  3. Magnetic resonance imaging of the pituitary adenoma: Analysis of the enhancement patterns

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Choi, Woo Suk; Shin, In Soo; Ryu, Kyung Nam; Yoon, Yup [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1993-11-15

    The magnetic resonance images (MRI) of 30 patients with surgically or biochemically confirmed pituitary adenomas (20 macroadenomas, 10 microadenomas) were retrospectively evaluated. Ten patients had hyperprolactinaemia, another eight had acromegaly, another eight had nonfunctioning adenoma and four had cushing disease. The examinations were performed at a1.5 T superconducting MR system using a multisection spin-echo technique with 3 mm thick sections and a 256 X 224 matrix. TI weighted sagittal and coronal images were obtained before and within 30 minutes after the administration of Gd-DTPA (0.1 mmol/kg). Analysis of the MRI was focused on the signal intensity and enhancement patterns of the pituitary adenoma before and after Gd-DTPA administration. Compared with endocrinological diagnosis, macroadenoma showed heterogeneous enhancement in 55%, rim enhancement in 35% and homogeneous enhancement in 10%. Conclusively, the enhancement patterns of the pituitary adenoma did not correlate with the subtypes made according to hormone production.

  4. A surface plasmon resonance biosensor for direct detection of the rabies virus

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2012-01-01

    Full Text Available A surface plasmon resonance biosensor chip was constructed for detection of rabies virus. For the construction of the biosensor chip, N protein specific antibody and N protein specific antibody combined with G protein specific antibody of rabies virus were linked on two different flow cells on one CM5 chip, respectively. The chip was tested for the detection of rabies virus antigens using the crude extract of rabies virus from infected BHK cell strain culture. Tenfold serial dilutions of SRV9 strain virus-infected cell cultures were tested by the biosensor chip to establish the detection limit. The limit detection was approximately 70 pg/ml of nucleoprotein and glycoprotein. The biosensor chip developed in this study was employed for the detection of rabies virus in five suspect infectious specimens of brain tissue from guinea pigs; the results were compared by fluorescent antibody test. Surface plasmon resonance biosensor chip could be a useful automatic tool for prompt detection of rabies virus infection.

  5. Real time detection of antibody-antigen interaction using a laser scanning confocal imaging-surface plasmon resonance system

    International Nuclear Information System (INIS)

    Zhang Hong-Yan; Yang Li-Quan; Ning Ting-Yin; Liu Wei-Min; Sun Jia-Yu; Wang Peng-Fei; Meng Lan; Nie Jia-Cai

    2012-01-01

    A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is built to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibodies in real time. The shifts of resonant wavelength at different reaction time stages are obtained by SPR, corresponding well with the changes of the fluorescence intensity collected by using LSCM. The instrument shows the merits of the combination and complementation of the SPR and LSCM, with such advantages as quantificational analysis, high spatial resolution and real time monitor, which are of great importance for practical applications in biosensor and life science. (general)

  6. Note: surface acoustic wave resonators for detecting of small changes of temperature: a thermometric "magnifying glass".

    Science.gov (United States)

    Kryshtal, R G; Medved, A V

    2014-02-01

    Application of surface acoustic wave resonators with a phase format of an output signal as the thermometric "magnifying glass" is suggested. Possibilities of monitoring and measuring of small changes of temperature from 0.001 K to 0.3 K of objects having thermal contact with the resonator's substrate are shown experimentally.

  7. Visualization of isolated trigeminal nerve invasion by lymphoma using gadolinium-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Manon-Espaillat, R.; Lanska, D.J.; Ruff, R.L.; Cleveland Veteran's Administration Medical Center, OH; Case Western Reserve Univ., Cleveland, OH; Masaryk, T.; University Hospitals of Cleveland, OH; Case Western Reserve Univ., Cleveland, OH

    1990-01-01

    A 50-year-old man with active histiocytic lymphoma for 12 years developed an isolated right trigeminal neuropathy. Initial evaluation with head computed tomography, X-rays of the skull base, bone scan, and cerebrospinal fluid analysis including cytology were normal. Gadolinium-enhanced magnetic resonance imaging (MRI) showed enlargement of the proximal third of the right trigeminal nerve. Gadolinium-enhanced MRI can be useful for the early demonstration of cranial nerve invasion by lymphoma. (orig.)

  8. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Marchesini, Gerardo R.; Bremer, Maria G. E. G.; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois

    2012-01-01

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices - the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave

  9. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing

    NARCIS (Netherlands)

    Rebe-Raz, S.; Marchesini, G.R.; Bremer, M.G.E.G.; Colpo, P.; Garcia, C.P.; Guidetti, G.; Norde, W.; Rossi, F.

    2012-01-01

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices – the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave

  10. Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    Directory of Open Access Journals (Sweden)

    Sbarbati Andrea

    2002-06-01

    Full Text Available Abstract Background Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI at high field intensity (4.7 T. The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. Methods The study was performed in 4-month-old (n = 6 and 20-month-old (n = 6 rats. Results At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. Conclusion The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology.

  11. Rich information format surface plasmon resonance biosensor based on array of diffraction gratings

    Czech Academy of Sciences Publication Activity Database

    Dostálek, Jakub; Homola, Jiří; Miler, Miroslav

    2005-01-01

    Roč. 107, č. 1 (2005), s. 154-161 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] R&D Projects: GA ČR(CZ) GA102/03/0633 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * surface plasmons Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.646, year: 2005

  12. Collective acceleration of ions on the basis of resonance surface photoionization

    International Nuclear Information System (INIS)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G.

    1994-01-01

    The effects of ion beam shaping and collective acceleration on the basis of resonance surface ionization are discussed. The principle diagram of the device for collective acceleration of positive ions is given. The method suggested for positive ion acceleration provides the efficiency increase, the design simplification, the size decrease and the increase in the frequency of the collective laser ion accelerator pulses

  13. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering.

    Science.gov (United States)

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C M

    2016-07-08

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

  14. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  15. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  16. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Song XM

    2009-01-01

    Full Text Available Abstract The Pt nanoparticles (NPs, which posses the wider tunable localized-surface-plasmon (LSP energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors.

  17. Lead salt resonant cavity enhanced detector with MEMS mirror

    Science.gov (United States)

    Felder, F.; Fill, M.; Rahim, M.; Zogg, H.; Quack, N.; Blunier, S.; Dual, J.

    2010-01-01

    We describe a tunable resonant cavity enhanced detector (RCED) for the mid-infrared employing narrow gap lead-chalcogenide (IV-VI) layers on a Si substrate. The device consists of an epitaxial Bragg reflector layer, a thin p-n+ heterojunction with PbSrTe as detecting layer and a micro-electro-mechanical system (MEMS) micromirror as second mirror. Despite the thin absorber layer the sensitivity is even higher than for a conventional detector. Tunability is achieved by changing the cavity length with a vertically movable MEMS mirror. The device may be used as miniature infrared spectrometer to cover the spectral range from 30 μm.

  18. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva; Viger-Gravel, Jasmine; Abou-Hamad, Edy; Samantaray, Manoja; Hamzaoui, Bilel; Gurinov, Andrei; Anjum, Dalaver H.; Gajan, David; Lesage, Anne; Bendjeriou-Sedjerari, Anissa; Emsley, Lyndon; Basset, Jean-Marie

    2016-01-01

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  19. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  20. Surface plasmon resonance sensor for detection of bisphenol A in drinking water

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Homola, Jiří

    2010-01-01

    Roč. 151, č. 1 (2010), s. 177-179 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance biosensor * bisphenol A * drinking water Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.368, year: 2010

  1. Observations of magnetospheric ionization enhancements using upper-hybrid resonance noise band data from the RAE-1 satellite

    Science.gov (United States)

    Mosier, S. R.

    1975-01-01

    Noise bands associated with the upper-hybrid resonance were used to provide direct evidence for the existence of regions of enhanced density in the equatorial magnetosphere near L = 2. Density enhancements ranging from several percent to as high as 45 percent are observed with radial dimensions of several hundred kilometers. The enhancement characteristics strongly suggest their identification as magnetospheric whistler ducts.

  2. Molecular resonances, fusion reactions and surface transparency of interaction between heavy ions

    International Nuclear Information System (INIS)

    Abe, Yasuhisa.

    1980-01-01

    A review of the Band Crossing Model is given, including recent results on the 16 O + 16 O system. Surface Transparency is discussed in the light of the recent development in our understanding of the fusion reaction mechanisms and by calculating the number of open channels available to direct reactions. The existence of the Molecular Resonance Region is suggested in several systems by the fact that Band Crossing Region overlaps with the Transparent Region. A systematic study predicts molecular resonances in the 14 C + 14 C and 12 C + 14 C systems as prominent as those observed in the 16 O + 16 O and 12 C + 16 O systems

  3. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  4. Plasmonic Photonic-Crystal Slabs: Visualization of the Bloch Surface Wave Resonance for an Ultrasensitive, Robust and Reusable Optical Biosensor

    Directory of Open Access Journals (Sweden)

    Alexander V. Baryshev

    2014-12-01

    Full Text Available A one-dimensional photonic crystal (PhC with termination by a metal film—a plasmonic photonic-crystal slab—has been theoretically analyzed for its optical response at a variation of the dielectric permittivity of an analyte and at a condition simulating the molecular binding event. Visualization of the Bloch surface wave resonance (SWR was done with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a PhC. An SWR peak in spectra of such a plasmonic photonic crystal (PPhC slab comprising a noble or base metal layer was shown to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. As a consequence, the considered PPhC-based optical sensors exhibited an enhanced sensitivity and a good robustness in comparison with the conventional surface-plasmon and Bloch surface wave sensors. The PPhC biosensors can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration.

  5. UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum

    Science.gov (United States)

    Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve

    2017-08-01

    Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.

  6. Gadolinium-DTPA enhanced magnetic resonance imaging of bone cysts in patients with rheumatoid arthritis

    NARCIS (Netherlands)

    Gubler, F. M.; Algra, P. R.; Maas, M.; Dijkstra, P. F.; Falke, T. H.

    1993-01-01

    To examine the contents of intraosseous cysts in patients with rheumatoid arthritis (RA) through the signal intensity characteristics on gadolinium-DTPA (Gd-DTPA) enhanced magnetic resonance imaging. The hand or foot joints of nine patients with the cystic form of RA (where the initial radiological

  7. Delay-enhanced stability and stochastic resonance in perception bistability under non-Gaussian noise

    International Nuclear Information System (INIS)

    Yang, Tao; Zeng, Chunhua; Liu, Ruifen; Wang, Hua; Mei, Dongcheng

    2015-01-01

    In this paper we investigate the effect of time delay in an attractor network model of perception bistability driven by non-Gaussian noise. Using delay Langevin and Fokker–Planck approaches, the theoretical analysis of the model is presented. It is found that the mean first-passage time (MFPT) as a function of the time delay exhibits a maximum, which is identified as the characteristic of the delay-enhanced stability of the system. This is different to the case of noise-enhanced stability. The non-Gaussian noise-enhanced stability of the system is also analyzed. The signal-to-noise ratio (SNR) as a function of the noise intensity exhibits a maximum. This maximum implies the identifying characteristic of stochastic resonance (SR), and the time delay and non-Gaussian noise can enhance the SR phenomenon. (paper)

  8. Periodic array-based substrates for surface-enhanced infrared spectroscopy

    Science.gov (United States)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-01-01

    At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS) surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS), SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures.

  9. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  10. Laser deposition of resonant silicon nanoparticles on perovskite for photoluminescence enhancement

    Science.gov (United States)

    Tiguntseva, E. Y.; Zalogina, A. S.; Milichko, V. A.; Zuev, D. A.; Omelyanovich, M. M.; Ishteev, A.; Cerdan Pasaran, A.; Haroldson, R.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid lead halide perovskite based optoelectronics is a promising area of modern technologies yielding excellent characteristics of light emitting diodes and lasers as well as high efficiencies of photovoltaic devices. However, the efficiency of perovskite based devices hold a potential of further improvement. Here we demonstrate high photoluminescence efficiency of perovskites thin films via deposition of resonant silicon nanoparticles on their surface. The deposited nanoparticles have a number of advances over their plasmonic counterparts, which were applied in previous studies. We show experimentally the increase of photoluminescence of perovskite film with the silicon nanoparticles by 150 % as compared to the film without the nanoparticles. The results are supported by numerical calculations. Our results pave the way to high throughput implementation of low loss resonant nanoparticles in order to create highly effective perovskite based optoelectronic devices.

  11. Secretin-enhanced magnetic resonance cholangiopancreaticography: value for the diagnosis of chronic pancreatitis

    International Nuclear Information System (INIS)

    Heverhagen, J.T.; Burbelko, M.; Schenck zu Schweinsberg, T.; Funke, C.; Wecker, C.; Walthers, E.M.; Rominger, M.

    2007-01-01

    Endoscopic retrograde cholangiopancreaticography (ERCP) is the morphologic gold standard for the diagnosis of chronic pancreatitis. Magnetic Resonance Imaging (MRI) enables the visualization of not only the pancreatic duct but also the surrounding parenchyma using T2- and T1-weighted sequences before and after the application of a contrast agent. Moreover, it allows the depiction of ductal segments distal to a stenosis or occlusion. However, conventional Magnetic Resonance Cholangiopancreaticography (MRCP) was not able to achieve accuracy similar to that of ERCP. Despite many technological innovations, such as fast breath-hold acquisitions or respiratory-gated 3D sequences, this drawback could not be overcome. In recent years, secretin-enhanced MRCP has been used for the diagnosis of chronic pancreatitis. A recent study showed that secretin not only improves the visibility of the pancreatic duct and its side branches but it also enhances the diagnostic accuracy of MRCP. The sensitivity, specificity, and positive and negative predictive values were improved by the application of secretin. Moreover, the agreement between independent observers increased after the use of secretin. In addition, quantitative post-processing tools have been developed that enable the measurement of the exocrine pancreatic output non-invasively using secretin-enhanced MRCP. These tools facilitate applications, such as functional follow-up after pancreaticogastrostomy and pancreaticogastric anastomoses, evaluation of the functional status of the graft after pancreas transplantation and follow-up of pancreatic drainage procedures and duct disruption. (orig.)

  12. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    International Nuclear Information System (INIS)

    Singh, Asha; Jayabalan, J; Chari, Rama; Srivastava, Himanshu; Oak, S M

    2010-01-01

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  13. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  14. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  15. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    Science.gov (United States)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  16. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.

    Science.gov (United States)

    Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J

    2016-07-01

    Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of surface plasmon resonance on the photocatalytic activity of Au/TiO2 under UV/visible illumination.

    Science.gov (United States)

    Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei

    2012-01-01

    In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.

  18. High-Efficiency and High-Color-Rendering-Index Semitransparent Polymer Solar Cells Induced by Photonic Crystals and Surface Plasmon Resonance.

    Science.gov (United States)

    Shen, Ping; Wang, Guoxin; Kang, Bonan; Guo, Wenbin; Shen, Liang

    2018-02-21

    Semitransparent polymer solar cells (ST-PSCs) show attractive potential in power-generating windows or building-integrated photovoltaics. However, the development of ST-PSCs is lagging behind opaque PSCs because of the contradiction between device efficiency and transmission. Herein, Ag/Au alloy nanoparticles and photonic crystals (PCs) were simultaneously introduced into ST-PSCs, acting compatibly as localized surface plasmon resonances and distributed Bragg reflectors to enhance light absorption and transmission. As a result, ST-PSCs based on a hybrid PTB7-Th:PC 71 BM active layer contribute an efficiency as high as 7.13 ± 0.15% and an average visible transmission beyond 20%, which are superior to most of the reported results. Furthermore, PCs can partly compensate valley range of transmission by balancing reflection and transmission regions, yielding a high color rendering index of 95. We believe that the idea of two light management methods compatibly enhancing the performance of ST-PSCs can offer a promising path to develop photovoltaic applications.

  19. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface

    International Nuclear Information System (INIS)

    Ahn, Ho Seon; Lee, Chan; Kim, Hyungdae; Jo, HangJin; Kang, SoonHo; Kim, Joonwon; Shin, Jeongseob; Kim, Moo Hwan

    2010-01-01

    Consideration of the critical heat flux (CHF) requires difficult compromises between economy and safety in many types of thermal systems, including nuclear power plants. Much research has been directed towards enhancing the CHF, and many recent studies have revealed that the significant CHF enhancement in nanofluids is due to surface deposition of nanoparticles. The surface deposition of nanoparticles influenced various surface characteristics. This fact indicated that the surface wettability is a key parameter for CHF enhancement and so is the surface morphology. In this study, surface wettability of zircaloy-4 used as cladding material of fuel rods in nuclear power plants was modified using surface treatment technique (i.e. anodization). Pool boiling experiments of distilled water on the prepared surfaces was conducted at atmospheric and saturated conditions to examine effects of the surface modification on CHF. The experimental results showed that CHF of zircaloy-4 can be significantly enhanced by the improvement in surface wettability using the surface modification, but only the wettability effect cannot explain the CHF increase on the treated zircaloy-4 surfaces completely. It was found that below a critical value of contact angle (10 o ), micro/nanostructures created by the surface treatment increased spreadability of liquid on the surface, which could lead to further increase in CHF even beyond the prediction caused only by the wettability improvement. These micro/nanostructures with multiscale on heated surface induced more significant CHF enhancement than it based on the wettability effect, due to liquid spreadability.

  20. Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement

    Science.gov (United States)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.

  1. Behavioral Stochastic Resonance

    Science.gov (United States)

    Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank

    2001-03-01

    Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.

  2. Native SrTiO3 (001) surface layer from resonant Ti L2,3 reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valvidares, Manuel; Huijben, Mark; Yu, Pu; Ramesh, Ramamoorthy; Kortright, Jeffrey

    2010-11-03

    We quantitatively model resonant Ti L2,3 reflectivity Rs,p(q, hn) from several SrTiO3 (001) single crystals having different initial surface preparations and stored in ambient conditions before and between measurements. All samples exhibit unexpected 300 K Rs(hn) - Rp(hn) anisotropy corresponding to weak linear dichroism and tetragonal distortion of the TiO6 octahedra indicating a surface layer with properties different from cubic SrTiO3. Oscillations in Rs(q) confirm a ubiquitous surface layer 2-3 nm thick that evolves over a range of time scales. Resonant optical constant spectra derived from Rs,p(hn) assuming a uniform sample are refined using a single surface layer to fit measured Rs(q). Differences in surface layer and bulk optical properties indicate that the surface is significantly depleted in Sr and enriched in Ti and O. While consistent with the tendency of SrTiO3 surfaces toward non-stoichiometry, this layer does not conform simply to existing models for the near surface region and apparently forms via room temperature surface reactions with the ambient. This new quantitative spectral modeling approach is generally applicable and has potential to study near-surface properties of a variety of systems with unique chemical and electronic sensitivities.

  3. Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal

    International Nuclear Information System (INIS)

    Xie Shaofei; Xiang Bingren; Deng Haishan; Xiang Suyun; Lu Jun

    2007-01-01

    Based on the theory of stochastic resonance, an improved stochastic resonance algorithm with a new criterion for optimizing system parameters to enhance signal-to-noise ratio (SNR) of HPLC/UV chromatographic signal for trace analysis was presented in this study. Compared with the conventional criterion in stochastic resonance, the proposed one can ensure satisfactory SNR as well as good peak shape of chromatographic peak in output signal. Application of the criterion to experimental weak signals of HPLC/UV was investigated and the results showed an excellent quantitative relationship between different concentrations and responses

  4. Giant Magnetic Field Enhancement in Hybridized MIM Structures

    KAUST Repository

    Alrasheed, Salma

    2017-10-23

    We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM, at its center, another dielectric material of a high refractive index (HRI). This results in an increase in the magnetic near field enhancement of the magnetic plasmon (MP) resonance by 82% compared with the MIM without the HRI material. We then couple this enhanced MP resonance to a propagating surface plasmon polariton (SPP) to achieve a further enhancement of 438%. The strong coupling between the MP and the SPP is demonstrated by the large anti-crossing in the reflection spectra. The resulting maximum magnetic field enhancement at the gap is ~ |H / Hi|² = 3555.

  5. Sensing (un)binding events via surface plasmons: effects of resonator geometry

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael

    2016-04-01

    The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations

  6. Intersubband surface plasmon polaritons in all-semiconductor planar plasmonic resonators

    Science.gov (United States)

    ZałuŻny, M.

    2018-01-01

    We theoretically discuss properties of intersubband surface plasmon polaritons (ISPPs) supported by the system consisting of a multiple quantum well (MQW) slab embedded into planar resonator with highly doped semiconducting claddings playing the role of cavity mirrors. Symmetric structures, where the MQW slab occupies the whole space between the claddings and asymmetric structures, where the MQW occupy only half of the space between mirrors, are considered. We focus mainly on the nearly degenerate structures where intersubband frequency is close to frequency of the surface plasmon of the mirrors. The ISPP characteristics are calculated numerically using a semiclassical approach based on the transfer matrix formalism and the effective-medium approximation. The claddings are described by the lossless Drude model. The possibility of engineering the dispersion of the ISPP branches is demonstrated. In particular, for certain parameters of the asymmetric structures we observe the formation of the multimode ISPP branches with two zero group velocity points. We show that the properties of the ISPP branches are reasonably well interpreted employing quasiparticle picture provided that the concept of the mode overlap factor is generalized, taking into account the dispersive character of the mirrors. In addition to this, we demonstrate that the lossless dispersion characteristics of the ISPP branches obtained in the paper are consistent with the angle-resolved reflection-absorption spectra of the GaAlAs-based realistic plasmonic resonators.

  7. Development of a biosensor microarray towards food screening using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Rebe, S.; Bremer, M.G.E.G.; Giesbers, M.; Norde, W.

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration

  8. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Bremer, Maria G. E. G.; Giesbers, Marcel; Norde, Willem

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration

  9. Fano-induced spontaneous emission enhancement of molecule placed in a cluster of asymmetrically-arranged metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q., E-mail: khai.lequang@hoasen.edu.vn [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh (Viet Nam); Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Bai, Jing [Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Nguyen, H.P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States)

    2016-05-15

    We demonstrate that plasmonic Fano resonance significantly boosts spontaneous emission rate of a single emitter, e.g. atom, molecule and quantum dot, over a moderately broad emission spectrum. An emission enhancement of up to 140 times compared to the system with no external inclusion at tunable frequencies is achieved, providing a new complementary enhancement mechanism. Fano resonance is induced in clusters of four asymmetric-arranged nanoparticles with ultra-small inter-particle gaps. It is shown to play a dominant role in light-emitting enhancement, mediated by combined localized surface plasmon resonances.

  10. Optimized coplanar waveguide resonators for a superconductor–atom interface

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M. A., E-mail: mabeck2@wisc.edu; Isaacs, J. A.; Booth, D.; Pritchard, J. D.; Saffman, M.; McDermott, R. [Department of Physics, University Of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-08-29

    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor–atom experiments at 4.2 K, we show that resonator quality factors above 10{sup 4} can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 μm above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor and strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.

  11. Search for a resonant enhancement of the 7Be + d reaction and primordial 7Li abundances

    International Nuclear Information System (INIS)

    O'Malley, Patrick; Adekola, A.S.; Cizewski, J.A.; Howard, M.E.; Strauss, S.; Bardayan, Daniel W.; Chae, Kyung Yuk; Nesaraja, Caroline D.; Pain, Steven D.; Smith, Michael Scott; Ahn, S.H.; Jones, K.L.; Pittman, S.T.; Schmitt, Kyle; Graves, S.; Kozub, R.L.; Shriner, J.F. Jr.; Wheeler, J.L.; Linhardt, Laura; Matos, M.; Moazen, B.M.; Peters, W.A.; Spassova, I.

    2011-01-01

    Big Bang nucleosynthesis calculations, constrained by the Wilkinson Microwave Anisotropy Probe results, produce 7 Li abundances almost a factor of four larger than those extrapolated from observations. Since primordial 7 Li is believed to be mostly produced by the beta decay of 7 Be, one proposed solution to this discrepancy is a resonant enhancement of the 7 Be(d,p)2α reaction rate through the 5/2 + 16.7-MeV state in 9 B. The 2 H( 7 Be,d) 7 Be reaction was used to search for such a resonance; none was observed. An upper limit on the width of the proposed resonance was deduced.

  12. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  13. Resonant-enhanced above-threshold ionization of atoms by XUV short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, V.D. [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: vladimir@df.uba.ar; Macri, P.A. [Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Departamento de Fisica, FCEyN, Universidad Nacional de Mar del Plata, CONICET, Funes 3350, 7600 Mar del Plata (Argentina); Arbo, D.G. [Instituto de Astronomia y Fisica del Espacio, UBA-CONICET, CC 67 Suc 28 Buenos Aires (Argentina)

    2009-01-15

    Above-threshold ionization of atoms by XUV short laser pulses is investigated close to the resonant 1s-2p transitions. Both ab initio TDSE and a theoretical Coulomb-Volkov like theory are used to study the enhancement in the ionization probabilities. Our modified Coulomb-Volkov theory, fully accounting for the important 1s-2p transition is able to explain the spectrum as well as the total ionization cross sections.

  14. Modal optimization and filtering in piezoelectric microplate resonators

    International Nuclear Information System (INIS)

    Sanchez-Rojas, J L; Hernando, J; Donoso, A; Bellido, J C; Manzaneque, T; Ababneh, A; Seidel, H; Schmid, U

    2010-01-01

    A systematic design procedure to tailor the modal response of micro-resonators based on flexible plates with piezoelectric films is demonstrated. Sensors/actuators were designed by optimizing the surface electrode shapes in the plane dimensions. A numerical finite element procedure, which considers the effective surface electrode covering the piezoelectric film as a binary function on each element, has been implemented. Two design goals are considered: (i) optimized response (actuation or sensing) in a given mode; (ii) implementation of a modal transducer by filtering specific modes. For a given mode in a plate with arbitrary boundary conditions, our calculations allowed us to predict the top electrode layout reaching higher displacement in resonance than any other electrode design for the same structure. Microcantilevers and microbridges were fabricated and their modal response characterized by laser Doppler vibrometry. In comparison to a conventional square-shaped electrode, our experiments show that the implemented designs can increase the response in any desired resonant mode and simultaneously attenuate the contributions from other unwanted modes, by simply shaping the surface electrodes. Enhancement ratios as high as 42 dB, relative to a full-size electrode case, are demonstrated. The limitations imposed by the fabrication are also discussed.

  15. Electron impact ionization of B-like ion N2+. Resonance enhancement of the single-channel cross section

    International Nuclear Information System (INIS)

    Li Guohe; Qian Xingzhong; Pan Soufu

    1998-01-01

    The electron impact ionization cross sections of B-like ion N 2+ are calculated in the Coulomb-Born no exchange approximation by using R-matrix method, and the single differential cross section is given. The calculated results exhibit the Rydberg series of resonances. The resonance enhancement of the single-channel cross section is significantly greater than direct ionization cross section. It is agreement with that of Chidichimo

  16. Surface-enhanced light olefin yields during steam cracking

    NARCIS (Netherlands)

    Golombok, M.; Kornegoor, M.; Brink, van den P.; Dierickx, J.; Grotenbreg, R.

    2000-01-01

    Various papers have shown enhanced olefin yields during steam cracking when a catalytic surface is introduced. Our studies reveal that increased light olefin yields during catalytic steam cracking are mainly due to a surface volume effect and not to a traditional catalytic effect. Augmentation of

  17. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    Science.gov (United States)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  18. Launching focused surface plasmon in circular metallic grating

    International Nuclear Information System (INIS)

    Kumar, Pawan; Tripathi, V. K.; Kumar, Ashok; Shao, X.

    2015-01-01

    The excitation of focused surface plasma wave (SPW) over a metal–vacuum interface embedded with circular surface grating is investigated theoretically. The normally impinged radiation imparts oscillatory velocity to free electrons that beats with the surface ripple to produce a nonlinear current, driving the SPW. As SPW propagates, it gets focused. The focused radiation has a maximum at the centre of grating and decreases beyond the centre due to diffraction. The amplitude of SPW is fixed for a given groove depth and increases rapidly around the resonance frequency. The intensity at the focus point depends on dimensions of the grating. It increases with the radiation frequency approaching the surface plasmon resonance. The scheme has potential applications for photonic devices and surface enhanced Raman scattering

  19. Influence of nanoparticle–graphene separation on the localized surface plasmon resonances of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masoudian Saadabad, Reza, E-mail: masoudian-reza@yahoo.com, E-mail: rms@mail.usb.ac.ir; Aporvari, Ahmad Shafiei [University of Sistan and Baluchestan, Department of Physics (Iran, Islamic Republic of); Shirdel-Havar, Amir Hushang [Golestan University, Department of Physics (Iran, Islamic Republic of); Havar, Majid Shirdel [University of Kashan, Department of Physics (Iran, Islamic Republic of)

    2016-01-15

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4-nm-radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  20. Metal nanoinks as chemically stable surface enhanced scattering (SERS) probes for the analysis of blue BIC ballpoint pens.

    Science.gov (United States)

    Alyami, A; Saviello, D; McAuliffe, M A P; Mirabile, A; Lewis, L; Iacopino, D

    2017-06-07

    Metal nanoinks constituted by Ag nanoparticles and Au nanorods were employed as probes for the Surface Enhanced Raman Scattering (SERS) analysis of a blue BIC ballpoint pen. The dye components of the pen ink were first separated by thin layer chromatography (TLC) and subsequently analysed by SERS at illumination wavelengths of 514 nm and 785 nm. Compared to normal Raman conditions, enhanced spectra were obtained for all separated spots, allowing easy identification of phthalocyanine Blue 38 and triarylene crystal violet in the ink mixture. A combination of effects such as molecular resonance, electromagnetic and chemical effects were the contributing factors to the generation of spectra enhanced compared to normal Raman conditions. Enhancement factors (EFs) between 5 × 10 3 and 3 × 10 6 were obtained, depending on the combination of SERS probes and laser illumination used. In contrast to previous conflicting reports, the metal nanoinks were chemically stable, allowing the collection of reproducible spectra for days after deposition on TLC plates. In addition and in advance to previously reported SERS probes, no need for additional aggregating agents or correction of electrostatic charge was necessary to induce the generation of enhanced SERS spectra.

  1. Multiple layered metallic nanostructures for strong surface-enhanced Raman spectroscopy enhancement

    International Nuclear Information System (INIS)

    Xia, Ming; Xie, Ya-Hong; Qiao Kuan; Cheng Zhiyuan

    2016-01-01

    We report a systematic study on a practical way of patterning metallic nanostructures to achieve high surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs) and high hot-spot density. By simply superimposing a 1-layer Au nanotriangle array on another to form a multilayer nanotriangle array, the SERS signal can be enhanced by 2 orders of magnitude compared with a 1-layer nanotriangle array. The drastic increases in the SERS EF and the hot spot density of the multilayer Au nanotriangle array are due to the increase in the number of gaps formed between Au nanotriangles and the decrease of the gap width. (author)

  2. Hybrid surface platform for the simultaneous detection of proteins and DNA using a surface plasmon resonance (SPR) imaging sensor

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Piliarik, Marek; Ladd, J.; Taylor, A.; Shaoyi, J.

    2008-01-01

    Roč. 80, č. 11 (2008), s. 4231-4236 ISSN 0003-2700 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * DNA-directed immobilization * protein array Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.712, year: 2008

  3. Surface-enhanced Raman spectroscopy based on conical holed enhancing substrates

    International Nuclear Information System (INIS)

    Chen, Yao; Chen, Zeng-Ping; Zuo, Qi; Shi, Cai-Xia; Yu, Ru-Qin

    2015-01-01

    In this contribution, surface-enhanced Raman spectroscopy (SERS) based on conical holed glass substrates deposited with silver colloids was reported for the first time. It combines the advantages of both dry SERS assays based on plane films deposited with silver colloids and wet SERS assays utilizing cuvettes or capillary tubes. Compared with plane glass substrates deposited with silver colloids, the conical holed glass substrates deposited with silver colloids exhibited five-to ten-folds of increase in the rate of signal enhancement, due to the internal multiple reflections of both the excitation laser beam and the Raman scattering photons within conical holes. The application of conical holed glass substrates could also yield significantly stronger and more reproducible SERS signals than SERS assays utilizing capillary tubes to sample the mixture of silver colloids and the solution of the analyte of interest. The conical holed glass substrates in combination with the multiplicative effects model for surface-enhanced Raman spectroscopy (MEM SERS ) achieved quite sensitive and precise quantification of 6-mercaptopurine in complex plasma samples with an average relative prediction error of about 4% and a limit of detection of about 0.02 μM using a portable i-Raman 785H spectrometer. It is reasonable to expect that SERS technique based on conical holed enhancing substrates in combination with MEM SERS model can be developed and extended to other application areas such as drug detection, environmental monitoring, and clinic analysis, etc. - Highlights: • A novel conical holed SERS enhancing substrate was designed and manufactured. • The optimal conical holed glass substrates can produce stronger SERS signal. • The novel substrates can overcome the shortcomings of both dry and wet methods. • The novel substrates coupled with MEM SERS can realize quantitative SERS assays

  4. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

    International Nuclear Information System (INIS)

    Lee, Chul Jae; Kim, Hee Jin; Karim, Mohammad Rezaul; Lee, Mu Sang

    2006-01-01

    We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2- chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the γ - irradiation method. The influence of pH and the influence of anion (Cl - , Br - , I - ) on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, Br - and I - were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance

  5. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  6. Nanogap embedded silver gratings for surface plasmon enhanced fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal and dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures have shown to provide very efficient and extreme light concentration at the nano-scale in recent years. The enhanced electric field produced within a few hundred nanometers of these surfaces can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences and improving the qualities and capabilities of fluorescence based detectors and imaging equipment remains a big challenge for industry manufacturers. We report a novel fabrication technique for producing nano-gap embedded periodic grating substrates on the nanoscale using a store bought HD-DVD and conventional soft lithography procedures. Polymethylsilsesquioxane (PMSSQ) polymer is used as the ink for the micro-contact printing process with PDMS stamps obtained from the inexpensive HD-DVDs as master molds. Fluorescence enhancement factors of up to 118 times were observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for a robust and inexpensive optical system with applications such as low-level fluorescence based analyte detection, single molecule imaging, and surface enhanced Raman studies. Preliminary results in single molecule experiments have also been obtained by imaging individual 3 nm and 20 nm dye-doped nanoparticles attached to the silver plasmonic gratings using epi-fluorescence microscopy.

  7. Surface enhanced Raman scattering spectroscopic waveguide

    Science.gov (United States)

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  8. Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell

    International Nuclear Information System (INIS)

    Dhonde, Mahesh; Sahu, Kirti; Murty, V.V.S.; Nemala, Siva Sankar; Bhargava, Parag

    2017-01-01

    Highlights: •Pure and Cu-doped TiO 2 Nanoparticles are synthesized and incorporated in DSSCs. •Addition of Cu provided high surface area and reduced charge recombination due to LSPR effect. •The highest photo conversion efficiency achieved is 8.65% with J sc of 18.8 mA cm −2 . •This efficiency is 26% higher than that of pure TiO 2 DSSC. -- Abstract: Pure and copper doped titanium dioxide nanoparticles (TiO 2 NPs) for Dye Sensitized Solar Cell (DSSC) photo anodes with different doping amounts of copper (Cu) 0.1, 0.3 and 0.5 mole% are synthesized using modified sol-gel route. Addition of Cu in TiO 2 matrix can enhance absorption towards visible spectrum and can reduce the charge carrier recombination due to Localized Surface Plasmon Resonance (LSPR). The samples are characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV–vis spectroscopy (UV-VIS), X-ray Photoelectron Spectroscopy (XPS), Electro Chemical Impedance Spectroscopy (EIS). The crystallite size is measured by XRD and surface morphology of the samples is analyzed using SEM. UV–vis measurement shows that the influence of Cu in TiO 2 lattice altered its optical properties and extended absorption in the visible region. The resistances between different junctions of the cell are measured by EIS. The J-V measurement of the cell prepared using pure and Cu-doped TiO 2 NPs is carried out by solar simulator. The optimized Cu doped DSSC with 0.3 mole% Cu in TiO 2 shows the best power conversion efficiency of 8.65% which is approximately 26% greater than the efficiency of undoped DSSC (6.41%).

  9. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor.

    Science.gov (United States)

    Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping

    2018-06-25

    A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  10. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Yu Shao

    2018-06-01

    Full Text Available A surface plasmon resonance (SPR sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA is demonstrated for relative humidity (RH sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  11. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yang Yong; Huang Zhengren; Jiang Dongliang; Tanemura, Masaki; Yamaguchi, Kohei; Li Zhiyuan; Huang Yingping; Kawamura, Go; Nogami, Masayuki

    2010-01-01

    A simple Ar + -ion irradiation route has been developed to prepare gold nanoneedle arrays on glass substrates for surface-enhanced Raman scattering (SERS)-active substrates. The nanoneedles exhibited very sharp tips with an apex diameter of 20 nm. These arrays were evaluated as potential SERS substrates using malachite green molecules and exhibited a SERS enhancement factor of greater than 10 8 , which is attributed to the localized electron field enhancement around the apex of the needle and the surface plasmon coupling originating from the periodic structure. This work demonstrates a new technique for producing controllable and reproducible SERS substrates potentially applicable for chemical and biological assays.

  12. Effects of conjugation length and resonance enhancement on two-photon absorption in phenylene–vinylene oligomers

    DEFF Research Database (Denmark)

    Johnsen, Mette; Paterson, M.J.; Arnbjerg, J.

    2008-01-01

    . This phenomenon of the so-called resonance enhancement allows for greater control in obtaining an optimal response when using existing two-photon chromophores, and provides a much-needed guide for the systematic development and efficient use of two-photon singlet oxygen sensitizers....

  13. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    NARCIS (Netherlands)

    Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the

  14. Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths.

    Science.gov (United States)

    Balram, Krishna C; Audet, Ross M; Miller, David A B

    2013-04-22

    We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material's direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.

  15. Metal-in-metal localized surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G B; Earp, A A, E-mail: g.smith@uts.edu.au [Department of Physics and Advanced Materials and Institute of Nanoscale Technology, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2010-01-08

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  16. Metal-in-metal localized surface plasmon resonance

    Science.gov (United States)

    Smith, G. B.; Earp, A. A.

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  17. Multiphase contrast-enhanced magnetic resonance imaging features of Bacillus Calmette-Guerin-induced granulomatous prostatitis in five patients

    Energy Technology Data Exchange (ETDEWEB)

    Kawada, Hiroshi; Kanematsu, Masayuki; Goshima, Satoshi; Kondo, Hiroshi; Watanabe, Haruo; Noda, Yoshifumi; Tanahashi, Yukichi; Kawai, Nobuyuki; Hoshi, Hiroaki [Gifu University Hospital, Gifu (Japan)

    2015-04-15

    To evaluate the multiphase contrast-enhanced magnetic resonance (MR) imaging features of Bacillus Calmette-Guerin (BCG)-induced granulomatous prostatitis (GP). Magnetic resonance images obtained from five patients with histopathologically proven BCG-induced GP were retrospectively analyzed for tumor location, size, signal intensity on T2-weighted images (T2WI) and diffusion-weighted images (DWI), apparent diffusion coefficient (ADC) value, and appearance on gadolinium-enhanced multiphase images. MR imaging findings were compared with histopathological findings. Bacillus Calmette-Guerin-induced GP (size range, 9-40 mm; mean, 21.2 mm) were identified in the peripheral zone in all patients. The T2WI showed lower signal intensity compared with the normal peripheral zone. The DWIs demonstrated high signal intensity and low ADC values (range, 0.44-0.68 x 10(-3) mm2/sec; mean, 0.56 x 10(-3) mm2/sec), which corresponded to GP. Gadolinium-enhanced multiphase MR imaging performed in five patients showed early and prolonged ring enhancement in all cases of GP. Granulomatous tissues with central caseation necrosis were identified histologically, which corresponded to ring enhancement and a central low intensity area on gadolinium-enhanced MR imaging. The findings on T2WI, DWI, and gadolinium-enhanced images became gradually obscured with time. Bacillus Calmette-Guerin-induced GP demonstrates early and prolonged ring enhancement on gadolinium-enhanced MR imaging which might be a key finding to differentiate it from prostate cancer.

  18. Analysis of Surface Plasmon Resonance Curves with a Novel Sigmoid-Asymmetric Fitting Algorithm

    Directory of Open Access Journals (Sweden)

    Daeho Jang

    2015-09-01

    Full Text Available The present study introduces a novel curve-fitting algorithm for surface plasmon resonance (SPR curves using a self-constructed, wedge-shaped beam type angular interrogation SPR spectroscopy technique. Previous fitting approaches such as asymmetric and polynomial equations are still unsatisfactory for analyzing full SPR curves and their use is limited to determining the resonance angle. In the present study, we developed a sigmoid-asymmetric equation that provides excellent curve-fitting for the whole SPR curve over a range of incident angles, including regions of the critical angle and resonance angle. Regardless of the bulk fluid type (i.e., water and air, the present sigmoid-asymmetric fitting exhibited nearly perfect matching with a full SPR curve, whereas the asymmetric and polynomial curve fitting methods did not. Because the present curve-fitting sigmoid-asymmetric equation can determine the critical angle as well as the resonance angle, the undesired effect caused by the bulk fluid refractive index was excluded by subtracting the critical angle from the resonance angle in real time. In conclusion, the proposed sigmoid-asymmetric curve-fitting algorithm for SPR curves is widely applicable to various SPR measurements, while excluding the effect of bulk fluids on the sensing layer.

  19. Enhanced Light Output of Dipole Source in GaN-Based Nanorod Light-Emitting Diodes by Silver Localized Surface Plasmon

    Directory of Open Access Journals (Sweden)

    Huamao Huang

    2014-01-01

    Full Text Available The light output of dipole source in three types of light-emitting diodes (LEDs, including the conventional planar LED, the nanorod LED, and the localized surface plasmon (LSP assisted LED by inserting silver nanoparticles in the gaps between nanorods, was studied by use of two-dimensional finite difference time domain method. The height of nanorod and the size of silver nanoparticles were variables for discussion. Simulation results show that a large height of nanorod induces strong wavelength selectivity, which can be significantly enhanced by LSP. On condition that the height of nanorod is 400 nm, the diameter of silver nanoparticle is 100 nm, and the wavelength is 402.7 nm, the light-output efficiency for LSP assisted LED is enhanced by 190% or 541% as compared to the nanorod counterpart or the planar counterpart, respectively. The space distribution of Poynting vector was present to demonstrate the significant enhancement of light output at the resonant wavelength of LSP.

  20. Synthesis of gold nanorods with a longitudinal surface plasmon resonance peak of around 1250 nm

    Science.gov (United States)

    Nguyen, Thi Nhat Hang; Le Trinh Nguyen, Thi; Thanh Tuyen Luong, Thi; Thang Nguyen, Canh Minh; Nguyen, Thi Phuong Phong

    2016-03-01

    We prepared gold nanorods and joined them to chemicals such as tetrachloauric (III) acid trihydrate, silver nitrate, hydroquinone, hexadecyltrimethylammonium bromide, sodium hydroxide and sodium borohydride using the seed-mediated method. The combination of hydroquinone, with or without salicylic acid, influences the size of the gold nanorods, and this is demonstrated by the results of TEM images, UV-vis spectra and the value of the longitudinal surface plasmon resonance peak with respect to the UV-vis spectra. By changing the Ag+ ion and hydroquinone concentration and the combination of hydroquinone and salicylic acid, the size of the gold nanorods can be controlled and this is manifested by longitudinal surface plasmon resonance peaks forming between 875 and 1278 nm. In particular, sample E2 achieved a longitudinal surface plasmon peak at 1273 nm and an aspect ratio of more than 10 by modifying the hydroquinone to 2.5 mM and salicylic acid to 0.5 mM concentration in the growth solution.