WorldWideScience

Sample records for surface energy fluorinated

  1. Insights into Surface Structure and Performance of Fluorinated Silicates from Cohesive Energy Studies

    Science.gov (United States)

    2016-03-17

    fluorinated silicates from cohesive energy studies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew J...ORGANIZATION REPORT NO. Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680 9. SPONSORING...Pollux Drive NUMBER(S) Edwards AFB, CA 93524-7048 AFRL-RQ-ED-VG-2016-056 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public

  2. Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces.

    Science.gov (United States)

    Aulin, Christian; Shchukarev, Andrei; Lindqvist, Josefina; Malmström, Eva; Wågberg, Lars; Lindström, Tom

    2008-01-15

    The wetting of two different model cellulose surfaces has been studied; a regenerated cellulose (RG) surface prepared by spin-coating, and a novel multilayer film of poly(ethyleneimine) and a carboxymethylated microfibrillated cellulose (MFC). The cellulose films were characterized in detail using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM indicates smooth and continuous films on a nanometer scale and the RMS roughness of the RG cellulose and MFC surfaces was determined to be 3 and 6 nm, respectively. The cellulose films were modified by coating with various amounts of an anionic fluorosurfactant, perfluorooctadecanoic acid, or covalently modified with pentadecafluorooctanyl chloride. The fluorinated cellulose films were used to follow the spreading mechanisms of three different oil mixtures. The viscosity and surface tension of the oils were found to be essential parameters governing the spreading kinetics on these surfaces. XPS and dispersive surface energy measurements were made on the cellulose films coated with perfluorooctadecanoic acid. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the contact angle of castor oil on the surface. A dispersive surface energy less than 18 mN/m was required in order for the cellulose surface to be non-wetting (theta e>90 degrees ) by castor oil.

  3. Fluorinated saccharides on the Si(0 0 1) surface

    International Nuclear Information System (INIS)

    Szwajca, Anna; Rapp, Magdalena; Bilska, Monika; Krzywiecki, Maciej; Koroniak, Henryk

    2013-01-01

    The attachment of saccharide molecules directly to silicon surface has been for the first time. Oxygen free silicon surface was functionalized with monosacharides thanks to UV irradiation in acetonitryl solution (254 nm). Selected derivatives of pentofuranose were protected at the C-1 and C-2 position. The remaining hydroxyl group at C-3 or C-5 was suitable for direct attachment to H-terminated Si(0 0 1) surface via Si-O-C bonds. The binding energy of the saccharide to the Si surface was investigated by quantum mechanical calculations method. The Parametric Method 5 (PM5) calculations confirmed that the formation of Si-O-C bonds was chemically possible. Synthesis of new fluorinated carbohydrates has been described. The resulting monolayers were characterized by Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Attenuated Total Reflection (ATR) infrared spectroscopy. The effect of incorporating fluorine atom or CF 3 group into self-assembled monosaccharide monolayers was studied using a water contact angle measurements. The resulting surface wettability of different fluorinated components on one kind of planar substrate enables an answer which of derivative is required for the preparation of the hydrophobic monolayer.

  4. Fluorine

    Science.gov (United States)

    Hayes, Timothy S.; Miller, M. Michael; Orris, Greta J.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    after that time include the Nui Phao tungsten-fluorspar-bismuth-copper-gold deposit in northern Vietnam; the St. Lawrence project in Newfoundland, Canada, which is located in a well-known fluorspar district; the Bamianshan deposit, which is related to a strongly differentiated granite in northwestern Zhejiang Province, China, near some of that Province’s large, subalkaline-volcanic-related epithermal veins; and the Nokeng project in South Africa, which is also related to a strongly differentiated granite. Other deposits in northwestern Australia, Nevada (United States), Norway, South Africa, and Sweden have been identified and could be put into production within just a few years.Among undiscovered resources, an interesting possibility might be to produce a fluorine product from evaporitic, high-fluorine, high-pH sodium-carbonate brines like Lake Magadi (Kenya) and Lake Natron (Tanzania) in Africa’s Eastern Rift Valley. In addition, apparently conformable fluorspar deposits in tuffaceous limy lacustrine sediments, such as those in Italy, are likely to occur in similar young alkalic volcanic settings elsewhere in the world.Modern geophysical and geochemical exploration techniques have typically not been brought to bear in exploration for new fluorspar deposits, although such techniques are likely to be used in future exploration. The tendency for fluorine to dissolve in significant concentrations in water at low temperature allows both surface water and groundwater to be used as sampling media in geochemical exploration. Evolved granite-related fluorspar deposits may be particularly susceptible to geophysical exploration methods because crystalline rocks that form a basement to sedimentary sections can be approximately defined with gravity and magnetic methods, and magnetite-bearing skarns can be directly detected with magnetic surveys.Environmental considerations of fluorine mining focus especially on drinking water, where high fluorine concentrations can lead to

  5. Enhanced Bioactivity and Bacteriostasis of Surface Fluorinated Polyetheretherketone.

    Science.gov (United States)

    Chen, Meiling; Ouyang, Liping; Lu, Tao; Wang, Heying; Meng, Fanhao; Yang, Yan; Ning, Congqin; Ma, Jingzhi; Liu, Xuanyong

    2017-05-24

    Although polyetheretherketone (PEEK) has been considered as a potential orthopedic and dental application material due to its similar elastic modulus as bones, inferior osseointegration and bacteriostasis of PEEK hampers its clinical application. In this work, fluorinated PEEK was constructed via plasma immersion ion implantation (PIII) followed by hydrofluoric acid treatment to ameliorate the osseointegration and antibacterial properties of PEEK. The surface microstructure, composition, and hydrophilicity of all samples were investigated. Rat bone mesenchymal stem cells (rBMSCs) were cultured on their surfaces to estimate bioactivity. The fluorinated PEEK can enhance the cell adhesion, cell spreading, proliferation, and alkaline phosphatase (ALP) activity compared to pristine PEEK. Furthermore, the fluorinated PEEK surface exhibits good bacteriostatic effect against Porphyromonas gingivalis, which is one of the major periodontal pathogens. In summary, we provide an effective route to introduce fluorine and the results reveal that the fluorinated PEEK can enhance the osseointegration and bacteriostasis, which provides a potential candidate for dental implants.

  6. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability

    Directory of Open Access Journals (Sweden)

    Veronica Satulu

    2016-12-01

    Full Text Available Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.

  7. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Lyubov G. Bulusheva

    2017-08-01

    Full Text Available Double-walled carbon nanotubes (DWCNTs are fluorinated using (1 fluorine F2 at 200 °C, (2 gaseous BrF3 at room temperature, and (3 CF4 radio-frequency plasma functionalization. These have been comparatively studied using transmission electron microscopy and infrared, Raman, X-ray photoelectron, and near-edge X-ray absorption fine structure (NEXAFS spectroscopy. A formation of covalent C–F bonds and a considerable reduction in the intensity of radial breathing modes from the outer shells of DWCNTs are observed for all samples. Differences in the electronic state of fluorine and the C–F vibrations for three kinds of the fluorinated DWCNTs are attributed to distinct local surroundings of the attached fluorine atoms. Possible fluorine patterns realized through a certain fluorination technique are revealed from comparison of experimental NEXAFS F K-edge spectra with quantum-chemical calculations of various models. It is proposed that fluorination with F2 and BrF3 produces small fully fluorinated areas and short fluorinated chains, respectively, while the treatment with CF4 plasma results in various attached species, including single or paired fluorine atoms and –CF3 groups. The results demonstrate a possibility of different patterning of carbon surfaces through choosing the fluorination method.

  8. Reduced fouling of ultrafiltration membranes via surface fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Sedath, R.H.; Yates, S.F.; Li, N.N.

    1993-03-01

    Surface fluorination can affect significantly the performance of an ultrafiltration membrane used to concentrate a food-related stream. Membranes fluorinated and tested as flat sheets exhibit higher initial fluxes, and do not foul as rapidly as untreated membranes. This improvement is linked to increased surface hydrophilicity, as shown in decreased contact angle with water. This increased hydrophilicity, in turn, is linked to the addition of fluorine and oxygen to the surface. The pilot plant study did-not show the difference in membrane flux and fouling observed in the flat sheet study. Instead, fluorinated and unfluorinated modules behaved similarly. Fouling by potato waste feed was severe and resulted in formation of an extensive gel layer within the module on the membrane surface. XPS, SEM and FTIR indicate that buildup of organic material occurred on both fluorinated and unfluorinated membranes, but SEM indicates that a fibrous mat of material was observed only on the nonfluorinated membrane. We conclude that in the pilot study, membrane fouling and gel formation were so extensive that the surface interaction effect was overwhelmed.

  9. [Effect to demineralization and remineralization of enamel surface by fluorine].

    Science.gov (United States)

    Wu, Na; Zhou, Xuedong; Hao, Yuqing

    2012-10-01

    To analyze the mechanism of fluorine by systemic analysis of fluorination-demineralization-remineralization experiments. The enamel specimens were randomly assigned to untreated group (group A), non-fluoride group (group B), low-fluoride group (group C) and high-fluoride group (group D). The in vitro model of fluoride enamel was established in group C and D. Based on that, the establishment of demineralization model and remineralization experiment by pH-cycling in group B, C and D were followed. All enamel specimens were observed by stereomicroscope and scanning electron microscope and compared in surface microhardness value. There was distinct difference in micro-morphologic appearance on fluoride enamel surface. Artificial caries of fluoride enamel showed a relatively complete surface, the surface microhardness after demineralization and remineralization in fluoride group was higher than non-fluoride group (P fluorinated enamel can enhance cariostatic potential and remineralization capacity of dental enamel.

  10. Fluorination of poly(dimethylsiloxane surfaces by low pressure CF4 plasma – physicochemical and antifouling properties

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Fluorinated surface groups were introduced into poly(dimethylsiloxane (PDMS coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were tuned to alter the chemical composition of the plasma treated PDMS surface. The physicochemical properties and stability of the fluorine containing PDMS were characterized by X-ray photoelectron spectroscopy (XPS, atomic force microscopy (AFM and contact angle measurements. Smooth PDMS coatings with a fluorine content up to 47% were attainable. The CF4 plasma treatment generated a harder, non-brittle layer at the top-most surface of the PDMS. No changes of surface morphology were observed upon one week incubation in aqueous media. Surprisingly, the PDMS surface was more hydrophilic after the introduction of fluorine. This may be explained by an increased exposure of oxygen containing moieties towards the surface upon re-orientation of fluorinated groups towards the bulk, and/or be a consequence of oxidation effects associated with the plasma treatment. Experiments with strains of marine bacteria with different surface energies, Cobetia marina and Marinobacter hydrocarbonoclasticus, showed a significant decrease of bacteria attachment upon fluorination of the PDMS surface. Altogether, the CF4 plasma treatments successfully introduced fluorinated groups into the PDMS, being a robust and versatile surface modification technology that may find application where a minimization of bacterial adhesion is required.

  11. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: Fluorine-induced initial corrosion of non-passivated Ni-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cui-Lan, E-mail: rencuilan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Gong, Wen-Bin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Shanghai 215123 (China); Wang, Cheng-Bin; Zhang, Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Cheng, Cheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhi-Yuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-15

    Adsorption and diffusion behaviors of fluorine on Cr-doped Ni(111) surface are investigated by using first-principles simulation. It shows that the Cr in the Cr-doped Ni(111) surface serve a trap site for fluorine with adsorption energy 3.52 eV, which is 1.04 eV higher than that on Ni(111) surface. Moreover, the Cr atom is pulled out the surface for 0.41 Å after the fluorine adsorption, much higher than that on Ni(111) surface. Further diffusion behaviors analysis confirms the conclusion because the fluorine diffusion from neighbored sites onto the Cr top site is an energy barrierless process. Detailed electronic structure analysis shows that a deeper hybrid state of F 2 p-Cr 3 d indicates a strong F−Cr interaction. The Ni−Cr bond is elongated and weakened due to the new formed F−Cr bonding. Our results help to understanding the basic fluorine-induced initial corrosion mechanism for Ni-based alloy in molten salt environment.

  12. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  13. Electrochemical synthesis of fluorine from 1886 to 2006: fluorine, a key-element for nuclear energy; Le fluor, element cle pour l'energie nucleaire. Synthese electrochimique du fluor de 1886 a 2006

    Energy Technology Data Exchange (ETDEWEB)

    Groult, H.; Lantelme, F.; Devilliers, D. [Universite Pierre et Marie Curie, Lab. LI2C, CNRS UMR 7612, 75 - Paris (France); Belhomme, C.; Morel, B. [Areva/Comurhex, Lab. R et D, 26 - Pierrelatte (France); Nicolas, F. [Buc Areva NC, 26 - Pierrelatte (France); Caire, J.P. [Ecole Nationale Superieure d' Electrochimie et d' Electrometallurgie de Grenoble, LEPMI, 38 - Saint Martin d' Heres (France)

    2006-10-15

    The preparation of fluorine gas by electrolysis of molten fluorides by Henri Moissan was one of the most important discoveries in chemistry during the last century. Indeed, in addition to its use in many industrial fields (microelectronic, surface cleaning, pharmacology, medicine...), fluorine gas is involved in the development of nuclear energy since it is directly used for the preparation of UF{sub 6}, the process gas for isotopic enrichment of uranium. Due to the increase of the energy demand in industrialized and emergent countries, the production of UF{sub 6} and thus of fluorine is bound to increase significantly during the next decades. The aim of this paper is to present the process which has been used to produce fluorine from the origin to the present. The use of fluorine in the nuclear field will be also discussed. (authors)

  14. Energy lost in formation of fluorine atoms in the course of electron-beam dissociation of fluorine and fluoride molecules

    International Nuclear Information System (INIS)

    Bashkin, A.S.; Oraevskii, A.N.; Tomashov, V.N.; Yuryshev, N.N.

    1983-01-01

    It was found that the composition of a mixture used in a chemical HF laser influenced the energy of formation epsilon-c/sub F/ of a fluorine atom when fluorine and fluoride molecules were dissociated by an electron beam. The relative values of epsilon-c/sub F/ were determined for SF 6 , C 5 F 12 , and CF 4

  15. Glass carbon surface modified by the fluorine ion irradiation

    International Nuclear Information System (INIS)

    Teranishi, Yoshikazu; Ishizuka, Masanori; Kobayashi, Tomohiro; Nakamura, Isao; Uematu, Takahiko; Yasuda, Takeshi; Mitsuo, Atsushi; Morikawa, Kazuo

    2012-01-01

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word “TIRI”. The line width was varied with 300 nm, 500 nm, and 1 μm. The line depth was about 200 ∼ 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  16. Fluorinated hyperbranched polyurethane electrospun nanofibrous membrane: fluorine-enriching surface and superhydrophobic state with high adhesion to water.

    Science.gov (United States)

    Zheng, Fei; Deng, Hongtao; Zhao, Xinjun; Li, Xia; Yang, Can; Yang, Yunyan; Zhang, Aidong

    2014-05-01

    The fluorination of hyperbranched polyurethane (HPU) was achieved by atom transfer radical grafting polymerization (ATRgP) of dodecafluoroheptyl methacrylate that was initiated from 2-bromoisobutyryl bromide-modified end groups of HPU. The nanofibrous membrane of fluorinated HPU was prepared by electrospinning. The structure of fluorinated HPU was characterized by Fourier-transform infrared spectroscopy (FTIR) and (1)H nuclear magnetic resonance spectrum (1H NMR). The surface of nanofibrous membrane was investigated with scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analysis, respectively. The results suggested that compared with the reported linear fluorine-containing polyurethane materials, rather high fluorine content up to 29.14% was achieved on the surface of fluorinated HPU nanofibrous membrane. Meanwhile, a superhydrophobic surface (WCA 159.7°) with high adhesion to water was successfully fabricated via a convenient electrospinning process. The prepared material is promising for the application in microfluidic devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    OpenAIRE

    Xinwei Cui; Jian Chen; Tianfei Wang; Weixing Chen

    2014-01-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the revers...

  18. Self-Assembled Fluorinated Organogelators for Surface Modification

    Directory of Open Access Journals (Sweden)

    Anilkumar Raghavanpillai

    2012-03-01

    Full Text Available A new class of alkyl- and perfluoroalkyl-containing urea and amide derivatives was synthesized from amino acid derivatives. Most of these compounds showed excellent gelation behavior in organic solvents at low concentrations. A few organogelators selected from the initial screening were used for surface modification of fibrous substrates to create hydrophobic and oleophobic composites. The hydrophobic and oleophobic behaviors of these composites were ascribed to a combination of increased surface roughness and the alkyl/fluorinated functionalities present in the gelator backbone.

  19. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  20. Potential energy surfaces for chemical reactions

    International Nuclear Information System (INIS)

    Schaefer, H.F. III.

    1976-01-01

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  1. Fluorine-Terminated Diamond Surfaces as Dense Dipole Lattices: The Electrostatic Origin of Polar Hydrophobicity.

    Science.gov (United States)

    Mayrhofer, Leonhard; Moras, Gianpietro; Mulakaluri, Narasimham; Rajagopalan, Srinivasan; Stevens, Paul A; Moseler, Michael

    2016-03-30

    Despite the pronounced polarity of C-F bonds, many fluorinated carbon compounds are hydrophobic: a controversial phenomenon known as "polar hydrophobicity". Here, its underlying microscopic mechanisms are explored by ab initio calculations of fluorinated and hydrogenated diamond (111) surfaces interacting with single water molecules. Gradient- and van der Waals-corrected density functional theory simulations reveal that "polar hydrophobicity" of the fully fluorinated surfaces is caused by a negligible surface/water electrostatic interaction. The densely packed C-F surface dipoles generate a short-range electric field that decays within the core repulsion zone of the surface and hence vanishes in regions accessible by adsorbates. As a result, water physisorption on fully F-terminated surfaces is weak (adsorption energies Ead 0.2 eV) that is dominated by electrostatic interactions. The suppression of electrostatic interactions also holds for perfluorinated molecular carbon compounds, thus explaining the prevalent hydrophobicity of fluorocarbons. In general, densely packed polar terminations do not always lead to short-range electric fields. For example, surfaces with substantial electron density spill-out give rise to electric fields with a much slower decay. However, electronic spill-out is limited in F/H-terminated carbon materials. Therefore, our ab initio results can be reproduced and rationalized by a simple classical point-charge model. Consequently, classical force fields can be used to study the wetting of F/H-terminated diamond, revealing a pronounced correlation between adsorption energies of single H2O molecules and water contact angles.

  2. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  3. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries.

    Science.gov (United States)

    Zhong, Guiming; Chen, Huixin; Huang, Xingkang; Yue, Hongjun; Lu, Canzhong

    2018-01-01

    Li/CF x is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GF x ) with superior performance through a direct gas fluorination method. We find that the so-called "semi-ionic" C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GF x in comparison with sp 2 C content in the GF x , morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GF x decreases. Thus, by optimizing semi-ionic C-F content in our GF x , we obtain the optimal x of 0.8, with which the GF 0.8 exhibits a very high energy density of 1,073 Wh kg -1 and an excellent power density of 21,460 W kg -1 at a high current density of 10 A g -1 . More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  4. Surface modified Al2O3 in fluorinated polyimide/Al2O3 ...

    Indian Academy of Sciences (India)

    the mechanical and thermal properties of polymers (Li et al. 2010). Herein, we wish to report the synthesis and characte- rization of fluorinated PI–Al2O3 nanocomposite films via in situ polymerization using different contents of surface modified Al2O3 nanoparticles as filler and fluorinated PI as the matrix. PI which was used ...

  5. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    Science.gov (United States)

    Cui, Xinwei; Chen, Jian; Wang, Tianfei; Chen, Weixing

    2014-06-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the reversible fluorination/defluorination reactions and lithium-ion storage/release at the CNTA paper cathodes, resulting in a dual-storage mechanism. The rechargeable battery with this dual-storage mechanism demonstrated a maximum discharging capacity of 2174 mAh gcarbon-1 and a specific energy of 4113 Wh kgcarbon-1 with good cycling performance.

  6. FY 1995 development of fluorinated hydriding alloys with multi functional and functionally-graded surface and their application to energy conversion devices; 1995 nendo keishagata fukugo kino wo hyomen ni motsu suiso kyuzo gokin no kaihatsu to energy henkan gijutsu eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project is the extended researches of a fluorination technique invented by the project leader (Suda) for improving the surface properties and characteristics of conventional hydriding alloys from the following viewpoints; (1) To investigate the roles of fluorinated surface during hydrogen uptake both in the gas-solid and the electrochemical reactions. (2) To elucidate the factors which increase the protective nature of the surface. (3) To develop a material design procedure for synthesizing thin layer of functionally graded surface which is composed of metallic Ni and the fluoride compound. (1) An advanced fluorination technique was developed to incorporate metallic Ni in the surface fluoride layer. (2) Metallic Ni was successfully distributed in a functionally graded manner in the Surface fluoride layer. (3) Through the technique developed, the following properties and characteristics were successfully donated in the fluorinated hydriding alloys such as AB{sub 5}, AB{sub 2}, and AB; (3-1)Surface oxides which act as the resistant layer to the hydrogen up take was completely eliminated to result in the enhancement of the initial activation characteristics. (3-2) Hydrogen selectivity and permeability was greatly improved. (3-3) Surface protective nature against the impurity gases and contaminants was significantly improved. (3-4) Initial activation characteristics both in the gas-solid and the electrochemical reactions were distinguishably improved. (3-5) Fluorinated surface was found to function as the catalyst for a methanation reaction between the CO{sub 2} gas adsorbed over the fluorinated surface and the monatomic hydrogen absorbed in the metal lattice of the crystalline structure of the hydriding alloys. (4) A technique was developed for increasing the specific surface area and decreasing the specific surface diameter of the fluorinated hydriding alloy articles. (NEDO)

  7. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    International Nuclear Information System (INIS)

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  8. Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma : physicochemical and antifouling properties

    NARCIS (Netherlands)

    Cordeiro, A.L.; Nitschke, M.; Janke, A.; Helbig, R.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Werner, C.

    2009-01-01

    Fluorinated surface groups were introduced into poly(dimethylsiloxane) (PDMS) coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were

  9. Incompletely-Condensed Fluoroalkyl Silsesquioxanes and Derivatives: Precursors for Low Surface Energy Materials (Preprint)

    Science.gov (United States)

    2011-09-13

    controlled functionalization of Fluorinated Polyhedral Oligomeric SilSesquioxanes (F-POSS), which are useful as low surface energy materials for...fluorinated nanobuilding blocks with a controlled level of reactive functionality for the development of new superhydrophobic and oleophobic... structures were subsequently modified with non-fluorinated symmetric and asymmetric dichlorosilanes to produce functionalized F-POSS for applications in

  10. Reactions of BBr(n)(+) (n = 0--2) at fluorinated and hydrocarbon self-assembled monolayer surfaces: observations of chemical selectivity in ion--surface scattering.

    Science.gov (United States)

    Wade, N; Shen, J; Koskinen, J; Cooks, R G

    2001-07-01

    Ion-surface reactions involving BBr(n)(+) (n = 0--2) with a fluorinated self-assembled monolayer (F-SAM) surface were investigated using a multi-sector scattering mass spectrometer. Collisions of the B(+) ion yield BF(2)(+) at threshold energy with the simpler product ion BF(+)* appearing at higher collision energies and remaining of lower abundance than BF(2)(+) at all energies examined. In addition, the reactively sputtered ion CF(+) accompanies the formation of BF(2)(+) at low collision energies. These results stand in contrast with previous data on the ion-surface reactions of atomic ions with the F-SAM surface in that the threshold and most abundant reaction products in those cases involved the abstraction of a single fluorine atom. Gas-phase enthalpy data are consistent with BF(2)(+) being the thermodynamically favored product. The fact that the abundance of BF(2)(+) is relatively low and relatively insensitive to changes in collision energy suggests that this reaction proceeds through an entropically demanding intermediate at the vacuum--surface interface, one which involves interaction of the B(+) ion simultaneously with two fluorine atoms. By contrast with the reaction of B(+), the odd-electron species BBr(+)* reacts with the F-SAM surface to yield an abundant single-fluorine abstraction product, BBrF(+). Corresponding gas-phase ion--molecule experiments involving B(+) and BBr(+)* with C(6)F(14) also yield the products BF(+)* and BF(2)(+), but only in extremely low abundances and with no preference for double fluorine abstraction. Ion--surface reactions were also investigated for BBr(n)(+) (n = 0-2) with a hydrocarbon self-assembled monolayer (H-SAM) surface. Reaction of the B(+) ion and dissociative reactions of BBr(+)* result in the formation of BH(2)(+), while the thermodynamically less favorable product BH(+)* is not observed. Collisions of BBr(2)(+) with the H-SAM surface yield the dissociative ion-surface reaction products, BBrH(+) and BBrCH(3

  11. The influence of the surface properties of silicon-fluorine hydrogel on protein adsorption.

    Science.gov (United States)

    Xie, Haijiao; Zhao, Zhengbai; An, Shuangshuang; Jiang, Yong

    2015-12-01

    A range of fluorinated hydrogels were synthesized using the copolymerization of 1, 1, 1, 3, 3, 3-hexafluoroisopropyl methacrylate (HFMA) or 1H, 1H, 7H-dodecafluoroheptyl methacrylate (DFMA) with hydrophilic monomers. Bovine serum albumin (BSA) and Lysozyme (LZM) were chosen as model proteins to investigate the performance of protein adsorption on the surface of these fluorinated hydrogels. It was found that the performance of the fluorinated hydrogels toward protein adsorption was different for different proteins; simultaneously, the amount of protein adsorption was related to but not linear with the fluorine content on the hydrogel surface. With increasing HFMA content, the mass of BSA adsorption increased in the first stage and then decreased, meanwhile the mass of LZM adsorption exhibited an upward trend in general. In addition, the amount of protein adsorption was also related to the type and length of the fluorinated groups. The hydrogels made from DFMA behaved better than HFMA hydrogels in terms of reducing protein adsorption. This study might provide further reference in choosing fluorine monomer to prepare protein-repelling hydrogels. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Self-formation of a nanonet of fluorinated carbon nanowires on the Si surface by combined etching in fluorine-containing plasma

    Science.gov (United States)

    Amirov, I. I.; Gorlachev, E. S.; Mazaletskiy, L. A.; Izyumov, M. O.; Alov, N. V.

    2018-03-01

    In this work, we report a technique of the self-formation of a nanonet of fluorinated carbon nanowires on the Si surface using a combined etching in fluorine-containing C4F8/Ar and SF6 plasmas. Using scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy, we show that after the etching of Si in the C4F8/Ar plasma, a fluorinated carbon film of nanometer-scale thickness is formed on its surface and its formation accelerates at elevated temperatures. After a subsequent short-term etching in the SF6 plasma, the film is modified into a nanonet of self-formed fluorinated carbon nanowires.

  13. Surface fluorination of poly(fluorenyl ether ketone) ionomers as proton exchange membranes for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.; Xiao, M.; Wang, S.J.; Shen, P.K.; Meng, Y.Z. [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2011-06-15

    A series of sulphonated poly(fluorenyl ether ketone) ionomers were successfully fluorinated by the means of direct surface fluorination. Polymer ionomer samples in two different states (membrane and powder) were treated with F{sub 2} gas which is diluted in N{sub 2} in a special reactor. X-ray photoelectron spectroscopy (XPS) was used to examine the F/C ratios of the fluorinated materials. The results revealed that the fluorination only occurred on the membrane surface and the fluorination degree increased with increasing F{sub 2} concentration in N{sub 2}. The membrane subjected to fluorination shows an obviously enhanced oxidative stability. The endurance in a Fenton's reagent of FSPFEK-P-28 is longer than 180 min which is two times longer than that of un-fluorinated SPFEK. The PEM properties and single fuel cell performances were investigated by comparison of un- and fluorinated polymer ionomers. The fluorinated membranes demonstrated an enhanced hydrophobic surface property, increased proton conductivities and better single fuel cell performances. Surface fluorination provides a convenient and useful approach to prepare highly proton conductive membrane with long life-time PEM fuel cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers.

    Science.gov (United States)

    Zhang, Maojie; Guo, Xia; Zhang, Shaoqing; Hou, Jianhui

    2014-02-01

    The synergistic effect of fluorination on molecular energy level modulation is realized by introducing fluorine atoms onto both the donor and the acceptor moieties in a D-A polymer, and as a result, the polymer solar cell device based on the trifluorinated polymer, PBT-3F, shows a high efficiency of 8.6%, under illumination of AM 1.5G, 100 mW cm(-) (2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Characterization of an Amorphous Titanium Oxide Film Deposited onto a Nano-Textured Fluorination Surface

    Directory of Open Access Journals (Sweden)

    Pei-Yu Li

    2016-05-01

    Full Text Available The photocatalytic activity of an amorphous titanium oxide (a-TiOx film was modified using a two-step deposition. The fluorinated base layer with a nano-textured surface prepared by a selective fluorination etching process acted as growth seeds in the subsequent a-TiOx deposition. A nanorod-like microstructure was achievable from the resulting a-TiOx film due to the self-assembled deposition. Compared to the a-TiOx film directly deposited onto the untreated base layer, the rate constant of this fluorinate-free a-TiOx film surface for decomposing methylene blue (MB solution that was employed to assess the film’s photocatalytic activity was markedly increased from 0.0076 min−1 to 0.0267 min−1 as a mechanism for the marked increase in the specific surface area.

  16. A Fluorine-free Slippery Surface with Hot Water Repellency and Improved Stability against Boiling.

    Science.gov (United States)

    Togasawa, Ryo; Tenjimbayashi, Mizuki; Matsubayashi, Takeshi; Moriya, Takeo; Manabe, Kengo; Shiratori, Seimei

    2018-01-31

    Inspired by natural living things such as lotus leaves and pitcher plants, researchers have developed many excellent antifouling coatings. In particular, hot-water-repellent surfaces have received much attention in recent years because of their wide range of applications. However, coatings with stability against boiling in hot water have not been achieved yet. Long-chain perfluorinated materials, which are often used for liquid-repellent coatings owing to their low surface energy, hinder the potential application of antifouling coatings in food containers. Herein, we design a fluorine-free slippery surface that immobilizes a biocompatible lubricant layer on a phenyl-group-modified smooth solid surface through OH-π interactions. The smooth base layer was fabricated by modification of phenyltriethoxysilane through a sol-gel method. The π-electrons of the phenyl groups interact with the carboxyl group of the oleic acid used as a lubricant, which facilitates immobilization on the base layer. Water droplets slid off the surface in the temperature range from 20 to 80 °C at very low sliding angles (boiling stability under hot water. We believe that this surface will be applied in fields in which the practical use of antifouling coatings is desirable, such as food containers, drink cans, and glassware.

  17. Suppression of surface charge accumulation on Al{sub 2}O{sub 3}-filled epoxy resin insulator under dc voltage by direct fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boya; Zhang, Guixin, E-mail: guixin@mail.tsinghua.edu.cn; Li, Chuanyang; He, Jinliang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Qiang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 (China); An, Zhenlian [Department of Electrical Engineering, Tongji University, Shanghai 201804 (China)

    2015-12-15

    Surface charge accumulation on insulators under high dc voltage is a major factor that may lead to the reduction of insulation levels in gas insulated devices. In this paper, disc insulators made of Al{sub 2}O{sub 3}-filled epoxy resin were surface fluorinated using a F{sub 2}/N{sub 2} mixture (12.5% F{sub 2}) at 50 °C and 0.1 MPa for different durations of 15 min, 30 min and 60 min. A dc voltage was applied to the insulator for 30 min and the charge density on its surface was measured by an electrostatic probe. The results revealed significant lower surface charge densities on the fluorinated insulators in comparison with the original one. Surface conductivity measurements indicated a higher surface conductivity by over three orders of magnitude after fluorination, which would allow the charges to transfer along the surface and thus may suppress their accumulation. Further, attenuated total reflection infrared analysis and surface morphology observations of the samples revealed that the introduction of fluoride groups altered the surface physicochemical properties. These structure changes, especially the physical defects reduced the depth of charge traps in the surface layer, which was verified by the measurement of energy distributions of the electron and hole traps based on the isothermal current theory. The results in this paper demonstrate that fluorination can be a promising and effective method to suppress surface charge accumulation on epoxy insulators in gas insulated devices.

  18. Li+-ligand binding energies and the effect of ligand fluorination on the binding energies

    Science.gov (United States)

    Bauschlicher, Charles W.

    2018-02-01

    The Li+-ligand binding energies are computed for seven ligands and their perfluoro analogs using Density Functional Theory. The bonding is mostly electrostatic in origin. Thus the size of the binding energy tends to correlate with the ligand dipole moment, however, the charge-induced dipole contribution can be sufficiently large to affect the dipole-binding energy correlation. The perfluoro species are significantly less strongly bound than their parents, because the electron withdrawing power of the fluorine reduces the ligand dipole moment.

  19. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  20. Studies on nitrile rubber degradation in zinc bromide completion fluid and its prevention by surface fluorination

    Science.gov (United States)

    Vega-Cantu, Yadira Itzel

    Poly(acrylonitrile-co-butadiene) or nitrile-butadiene rubber (NBR) is frequently used as an O-ring material in the oil extraction industry due to its excellent chemical properties and resistance to oil. However, degradation of NBR gaskets is known to occur during the well completion and oil extraction process where packers are exposed to completion fluids such as ZnBr2 brine. Under these conditions NBR exhibits accelerated chemical degradation resulting in embrittlement and cracking. Samples of NBR, poly(acrylonitrile) (PAN) and poly(butadiene) (PB) have been exposed to ZnBr2 based completion fluid, and analyzed by ATR and diffuse reflectance IR. Analysis shows the ZnBr2 based completion fluid promotes hydrolysis of the nitrile group to form amides and carboxylic groups. Analysis also shows that carbon-carbon double bonds in NBR are unaffected after short exposure to zinc bromide based completion fluid, but are quickly hydrolyzed in acidic bromide mixtures. Although fluoropolymers have excellent chemical resistance, their strength is less than nitrile rubber and replacing the usual gasket materials with fluoroelastomers is expensive. However, a fluoropolymer surface on a nitrile elastomer can provide the needed chemical resistance while retaining their strength. In this study, we have shown that this can be achieved by direct fluorination, a rather easy and inexpensive process. Samples of NBR O-rings have been fluorinated by exposure to F2 and F2/HF mixtures at various temperatures. Fluorination with F 2 produces the desired fluoropolymer layer; however, fluorination by F2/HF mixtures gave a smoother fluorinated layer at lower temperatures and shorter times. Fluorinated samples were exposed to ZnBr2 drilling fluid and solvents. Elemental analysis shows that the fluorinated layer eliminates ZnBr2 diffusion into the NBR polymeric matrix. It was also found that surface fluorination significantly retards the loss of mechanical properties such as elasticity, tensile

  1. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles

    International Nuclear Information System (INIS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-01-01

    Graphical abstract: First-principles calculations indicate that MgAl 2 O 4 surface is fluorine-loving, but hydrophobic. N doped MgAl 2 O 4 (100) surface structure shows the highest fluorine adsorption performance and fluorine atom is more preferentially adsorbed on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: N doped MgAl 2 O 4 (100) > Al 2 O 3 (0001) > MgAl 2 O 4 (100) > MgO (100). N doped MgAl 2 O 4 is a promising candidate for fluorine removal. - Highlights: • MgAl 2 O 4 surface is fluorine-loving, not hydrophilic. • Fluorine preferentially adsorbs on the Mg-Al bridge site. • Adsorption intensity follow this order: N doped MgAl 2 O 4 > Al 2 O 3 > MgAl 2 O 4 > MgO. • Excellent adsorption performance attributes to electron compensation of N atom. • Nitrogen doped MgAl 2 O 4 is a promising candidate for fluorine removal. - Abstract: The nature of fluorine adsorption on pure and N doped MgAl 2 O 4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl 2 O 4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl 2 O 4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl 2 O 4 (100) > Al 2 O 3 (0001) > MgAl 2 O 4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl 2 O 4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl 2 O 4 is a promising candidate for fluorine removal.

  2. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    KAUST Repository

    Song, Zhibo

    2018-04-04

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  3. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    Science.gov (United States)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  4. Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets

    Directory of Open Access Journals (Sweden)

    N Jiao

    2012-06-01

    Full Text Available Using first-principles calculations within the framework of density-functional theory, we studied the modulation effect of hydrogen/fluorine chemical decoration on the surface work function of BN sheets. We found that the difference in the work function (ΔWBN between two surfaces of the chair structure varies with the different decoration. Geometric distortion and chemical effects cause opposite modulation effects, and the chemical effect plays a leading role by inducing charge redistribution in the system.

  5. Fluorine effect on pericyclic and pseudopericyclic processes ...

    Indian Academy of Sciences (India)

    Administrator

    studied the thermolysis of 2-pyrone and 6-halo-2- pyrone and have found that fluorine substitution substantially altered the potential energy surface for. ERO, sigmatropic rearrangement and electrocyclic ring closing (ERC) of pyrones. Fluorine is known to strongly perturb reaction barriers and mechanisms. 31,32. This has ...

  6. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  7. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  8. Modes of occurrence of fluorine in the Late Paleozoic No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China

    Energy Technology Data Exchange (ETDEWEB)

    Xibo Wang; Shifeng Dai; Yingying Sun; Dan Li; Weiguo Zhang; Yong Zhang; Yangbing Luo [China University of Mining and Technology, Beijing (China). State Key Laboratory of Coal Resources and Safe Mining

    2011-01-15

    The No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China, is enriched in Al and Ga, which are valuable metal resources that could be extracted from fly ash. However, fluorine in the coal is unusually high (mean 286 {mu}g/g) and potentially toxic to the environment in the extraction process. In this paper, a sequential extraction/density separation procedure (SE/DS) was designed to examine the modes of occurrence of fluorine in the coal. The results show that fluorine extracted in distilled water, NH{sub 4}Ac (1 mol/l), and HCl (0.5%) leachates is low, and that in sulfide fraction is below the detection limit. The organic and silicate associations are inferred to account for more than 90% of the total fluorine in the coal. Boehmite and kaolinite are prime carriers of fluorine (the fluorine content in silicate fraction of the boehmite-enriched sample H-14 is up to 1906 {mu}g/g, and that of the kaolinite-enriched sample H-29 is 384 {mu}g/g). In bench samples H-2 and H-3, a minor amount of fluorine is related to goyazite. The relationship between fluorine and boehmite indicates that they were probably derived from the sediment source region, the weathered bauxite of the uplifted Benxi formation. 29 refs., 7 figs., 3 tabs.

  9. Soft landing of polyatomic ions for selective modification of fluorinated self-assembled monolayer surfaces

    Science.gov (United States)

    Luo, Hai; Miller, Scott A.; Cooks, R. Graham; Pachuta, Steven J.

    1998-03-01

    Fluorinated self-assembled monolayer (F-SAM) surfaces comprised of CF3(CF2)7(CH2)2S- groups bound to a gold substrate were modified by deposition of mass-selected polyatomic ions at collision energies of ~10 eV. The modified material was characterized in situ by low-energy ion bombardment and by independent high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. Modification of F-SAM surfaces using hyperthermal (CH3)2SiNCS+ (m/z 116) and (CH3)3SiOSi(CH3)2 (m/z 147) projectile ion beams incorporated the intact projectile ions m/z 116 and mlz 147, respectively, which were released upon subsequent 60 eV [multiset union] sputtering. In addition to simple cases of soft landing of intact ions into a surface, two related soft landing channels, dissociative soft landing and reactive soft landing, are also identified. Surfaces modified by prolonged exposure to 35CICH2(CH3)2SiOSi(CH3)2+ (m/z 181) and its isotopic variant 37CICH2(CH3)2SiOSi(CH3)2+ (m/z 183), yielded only fragment ions derived from the projectile ions, primarily C3H10OSi235Cl+ (m/z 153) and C3H10OSi237Cl+ (m/z 155) upon [multiset union] sputtering as well as in the 15 keV Ga+TOF-SIMS spectra. In these cases, facile fragmentation occurs upon initial ion impact with the surface, the fragment ion being trapped at the interface in an overall process which is described as dissociative soft landing. Consistent with this, the fragment ions C3H10OSi235CI+ (m/z 153) and C3H10OSi237Cl+ (m/z 155) generated as such in the ion source were deposited without fragmentation and subsequently released intact by 60 eV [multiset union] sputtering. In the cases of some projectiles, such as protonated 2,4,6-trimethylpyridine, the sputtered ions released from the modified surface included chemically transformed products due to reaction of the projectile ion at the surface. Such reactive soft landing processes occur by ion/molecule reactions at the interface, although details of their mechanism and its

  10. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    KAUST Repository

    Cadiau, Amandine

    2017-05-18

    Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.

  11. Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids

    Science.gov (United States)

    Luís, Andreia; Shimizu, Karina; Araújo, João M. M.; Carvalho, Pedro J.; Lopes-da-Silva, José A.; Canongia Lopes, José N.; Rebelo, Luís Paulo N.; Coutinho, João A. P.; Freire, Mara G.; Pereiro, Ana B.

    2017-01-01

    We have investigated, both theoretically and experimentally, the balance between the presence of alkyl and perfluoroalkyl side chains on the surface organization and surface tension of fluorinated ionic liquids (FILs). A series of ILs composed of 1-alkyl-3-methylimidazolium cations ([CnC1im] with n = 2, 4, 6, 8, 10 or 12) combined with the perfluorobutanesulfonate anion was used. The surface tensions of the investigated liquid salts are considerably lower than those reported for non-fluorinated ionic liquids. The most surprising and striking feature was the identification, for the first time, of a minimum at n = 8 in the surface tension versus the length of the IL cation alkyl side chain. Supported by molecular dynamic simulations it was found that this trend is a result of the competition between the two nonpolar domains (perfluorinated and aliphatic) on pointing towards the gas-liquid interface, a phenomenon which occurs in ionic liquids with perfluorinated anions. Furthermore, these ionic liquids present the lowest surface entropy reported to date. PMID:27218210

  12. Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico.

    Science.gov (United States)

    Sariñana-Ruiz, Yareli A; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Labastida, Israel; Armienta, Ma Aurora; Aragón-Piña, Antonio; Escobedo-Bretado, Miguel A; González-Valdez, Laura S; Ponce-Peña, Patricia; Ramírez-Aldaba, Hugo; Lara, René H

    2017-07-01

    Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF 2 ) is the only fluorine-bearing phase. Total fluorine and arsenic concentrations in surface soil range from 89.75 to 926.63 and 2.7-78.6 mg kg -1 , respectively, exceeding in many points a typical baseline value for fluorine (321 mg kg -1 ), and trigger level criterion for arsenic soil remediation (20 mg kg -1 ); whereas fluoride and arsenic concentrations in groundwater vary from 0.24 to 1.8 mg L -1 and 0.12-0.650 mg L -1 , respectively. The main bioaccessible percentages of soil in the gastric phase (SBRC-G) are estimated for arsenic from 1 to 63%, and this parameter in the intestinal phase (SBRC-I) fluorine from 2 to 46%, suggesting human health risks for this region. While a negligible/low mobility is found in soil for arsenic (0.1-11%), an important mobility is determined for fluorine (2-39%), indicating environmental risk related to potential fluorine release. The environmental and health risks connected to arsenic and fluorine are discussed based on experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structural And Energetic Changes of Si (100 Surface With Fluorine in Presence of Water – A Density Functional Study

    Directory of Open Access Journals (Sweden)

    Takeo Ebina

    2001-05-01

    Full Text Available Abstract: We report density functional electronic structure calculations to monitor the change in the surface characteristics of the Si (100-2x1 surface after fluorination followed by interaction with water. Embedded finite silicon clusters are used to model an extended Si (100-2x1 surface. Two high symmetry pathways and subsequent adsorption sites were examined: (i adsorption of an fluorine atom directing onto a silicon dangling bond to form a monocoordinated fluorine atom (ii adsorption of a fluorine atom directing on top of silicon dimer to form a bridging dicoordinated fluorine atom. However, in the later case we find that no barrier exists for the bridging fluorine atom to slide towards silicon dimer dangling bond to form more stable mono coordinated Si-F bond. We calculated activation barriers and equilibrium surface configuration as a function of fluorine coverage upto 2.0 ML. We compared the stability of the fluorinated surface. The results were compared with existing experimental and theoretical results. The reaction of water with HF treated Si surface is monitored. It produces, as a first step, the exchange of Si-F with water to form Si-OH groups reducing the concentration of the fluorine on the surface, followed by a rapture of Si-Si bonds and finally the Si-O-Si bridge formation in the lattice.

  14. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    International Nuclear Information System (INIS)

    Krishnan, S.; Wang, N.; Ober, C.; Finlay, J.; Callow, M.; Callow, J.; Hexemer, A.; Sohn, K.; Kramer, E.; Fischer, D.

    2006-01-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates

  15. Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups

    Science.gov (United States)

    Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia

    2018-05-01

    Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.

  16. Synthesis of fluorine- doped silica-coating by fluorosilane nanofluid to ultrahydrophobic and ultraoleophobic surface

    Science.gov (United States)

    Saboori, R.; Azin, R.; Osfouri, Sh; Sabbaghi, S.; Bahramian, A.

    2017-10-01

    Liquid repellency treatment has many applications in various sectors including oil and gas reservoirs and self-cleaning surfaces. In this study, effect of silica, fluorine-doped silica and fluorine-doped silica-coating by fluorosilane nanofluid on ultrahydrophobic and ultraoleophobic surface of carbonate and sandstone rock were investigated. The nanoparticles were synthesized by sol-gel method and characterized using XRD, FTIR, FESEM and DLS and nanofluid was prepared. F-SiO2-F nanoparticle was adsorbed on surface of rocks and confirmed by FESEM and EDXA. Effect of nanofluid on wettability was investigated by measuring contact angles of water, crude oil, condensate, n-decane and ethylene glycol in air and stability of ultrahydrophobic and ultraoleophobic was investigated. Results show that nanofluid (0.05 wt% of nanoparticle) changes contact angle from strongly liquid-wet to strongly gas-wet in all systems. The original contact angle of water, crude oil, condensate, n-decane and ethylene glycol were 37.95°, 0°, 0°, 0° and 0° for carbonate rock and 40.30°, 0°, 0°, 0° and 0° for sandstone rock which altered to 146.47°, 145.59°, 138.24°, 139.06° and 146.52° for carbonate rock and 160.01°, 151.40°, 131.85°, 140.27° and 151.70° for sandstone rock after treatment. The ultraoleophobic and ultrahydrophobic stability were  >48 h and 120 min.

  17. Tunable bandgap energy of fluorinated nanocrystals for flash memory applications produced by low-damage plasma treatment

    Science.gov (United States)

    Huang, Chi-Hsien; Lin, Chih-Ting; Wang, Jer-Chyi; Chou, Chien; Ye, Yu-Ren; Cheng, Bing-Ming; Lai, Chao-Sung

    2012-11-01

    A plasma system with a complementary filter to shield samples from damage during tetrafluoromethane (CF4) plasma treatment was proposed in order to incorporate fluorine atoms into gadolinium oxide nanocrystals (Gd2O3-NCs) for flash memory applications. X-ray photoelectron spectroscopy confirmed that fluorine atoms were successfully introduced into the Gd2O3-NCs despite the use of a filter in the plasma-enhanced chemical vapour deposition system to shield against several potentially damaging species. The number of incorporated fluorine atoms can be controlled by varying the treatment time. The optimized memory window of the resulting flash memory devices was twice that of devices treated by a filterless system because more fluorine atoms were incorporated into the Gd2O3-NCs film with very little damage. This enlarged the bandgap energy from 5.48 to 6.83 eV, as observed by ultraviolet absorption measurements. This bandgap expansion can provide a large built-in electric field that allows more charges to be stored in the Gd2O3-NCs. The maximum improvement in the retention characteristic was >60%. Because plasma damage during treatment is minimal, maximum fluorination can be achieved. The concept of simply adding a filter to a plasma system to prevent plasma damage exhibits great promise for functionalization or modification of nanomaterials for advanced nanoelectronics while introducing minimal defects.

  18. Enhancement of atom transfer in different surface chemistry of hydrogenated vs. fluorinated tribromobenzene on Ag(111) and Cu(111)

    Science.gov (United States)

    Cecily mary glory, D.; Sambathkumar, K.; Madivanane, R.; Rajkamal, N.; Venkatachalapathy, M.

    2017-12-01

    Systematic interactions of hydrogenated & fluorinated tribromobenzene on Ag and Cu surfaces. First bromine dehalogenation takes place right upon adsorption due to catalytic properties of Ag. Different adsorption geometries of monomers and dimmers of 1,3,5-tribromo-2,4,6-trifluoro-benzene(TBFB) and 1,3,5-tribromobenzene(TBB). DFT calculations of the Csbnd Br binding energy dependent on the amount of remaining bromine atoms for both TBFB and TBB were performed. The experiments were performed at low temperature of 80 K.STM measurements where performed for of TBFB and TBB. STM show adsorbed molecules in a loose arrangement of molecules. NBO analysis the stability of the molecule arising within hyper-conjugative interactions. The HOMO and LUMO energies and electronic charge transfer (ECT) confirms that electronic transition. High field indicates that this molecule exhibit considerable electrical conductivity in atomic charges. The ESP map is found to be positive within the molecule. The negative charges have a tendency to drift from left to right. The computed thermodynamic parameters like heat capacities (Cºp,m), entropies (Sºm) and enthalpies changes (Hºm) are used for various electrical field.

  19. Nuclear energy - Determination of chlorine and fluorine in uranium dioxide powder and sintered pellets

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  20. Electron energy-loss spectroscopic study of the surface of ceria abrasives

    International Nuclear Information System (INIS)

    Gilliss, Shelley R.; Bentley, James; Carter, C. Barry

    2005-01-01

    Surfaces of ceria (CeO 2 ) particles have been studied by electron energy-loss spectroscopy in a field-emission gun scanning transmission electron microscope. All the ceria particles analyzed contained Ce 3+ at the surface. Rare-earth impurities such as La were enriched at the surface and were observed for particles ranging from tens to hundreds of nanometers in size. Fluorine in the abrasives corresponded to a lower average cerium valence. Time series investigations indicate that fluorine substitutes on the oxygen sub-lattice and is charge-balanced by some cerium changing from Ce 4+ to Ce 3+

  1. Electron energy-loss spectroscopic study of the surface of ceria abrasives

    Energy Technology Data Exchange (ETDEWEB)

    Gilliss, Shelley R. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., 151 Amundson Hall, Minneapolis, MN 55455 0132 (United States); Bentley, James [Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, Oak Ridge, TN 37831 6024 (United States); Carter, C. Barry [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., 151 Amundson Hall, Minneapolis, MN 55455 0132 (United States)]. E-mail: carter@cems.umn.edu

    2005-02-28

    Surfaces of ceria (CeO{sub 2}) particles have been studied by electron energy-loss spectroscopy in a field-emission gun scanning transmission electron microscope. All the ceria particles analyzed contained Ce{sup 3+} at the surface. Rare-earth impurities such as La were enriched at the surface and were observed for particles ranging from tens to hundreds of nanometers in size. Fluorine in the abrasives corresponded to a lower average cerium valence. Time series investigations indicate that fluorine substitutes on the oxygen sub-lattice and is charge-balanced by some cerium changing from Ce{sup 4+} to Ce{sup 3+}.

  2. Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation

    Science.gov (United States)

    Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu

    2018-04-01

    SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.

  3. Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Joseph Nathanael, A.; Mangalaraj, D.; Hong, S.I.; Masuda, Y.; Rhee, Y.H.; Kim, H.W.

    2013-01-01

    Hydroxyapatite (HAp) nanocrystals with different levels of fluorine substitution (P/F = 0, 6, 4 and 2) on the OH sites were produced via hydrothermal method. The fluorine substitution was found to alter the morphology of crystals appreciably. The aspect ratio and the crystallinity of HAp crystals increased with increasing fluorine substitution. The presence of broad ring and hallow ring patterns in electron diffraction suggests the low-crystalline nature of HAp crystals. With increasing fluorine substitution, the diffraction patterns exhibited discrete rings and numerous diffraction spots, implying the increased crystallinity. Raman spectra from the HAp nanoparticles also support the less-crystalline nature of the pristine HAp and the enhanced crystallization by fluorine substitution. In HAp crystals processed with no fluorine substitution, surface energy and planar Ca 2+ density are less sensitive to the crystallographic orientation because of its low-crystalline nature, favoring equi-axed or slightly elongated particles. The addition of fluorine apparently increased the crystallinity, enhancing the orientation dependent growth and accordingly the aspect ratio. Osteoblast proliferation was observed to be enhanced by fluorine substitution in HAp. In vitro biological data support that the excellent osteoblastic cell viability and functional activity of the fluoridated apatite. -- Highlights: ► Fluorapatite nanorods were produced hydrothermally with different fluorine content. ► Fluorine substitution was found to alter the morphology of crystals appreciably. ► It enhances the crystallinity, orientation dependent growth and hence aspect ratio. ► In vitro cellular analysis shows excellent cell viability of the fluorapatite.

  4. Surface modification of polymeric materials using ultra low energy electron beam irradiation

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Shiraki, Fumiya; Fujita, Hajime; Washio, Masakazu

    2011-01-01

    An ultra low energy electron beam (UL-EB) was used to irradiate various polymeric materials such as fluorinated polymers and a polyimide under an oxygen-free atmosphere. After the irradiation of the polyimide, the change in the thermal properties was measured by DSC and TGA. The surface modification of fluorinated polymers was demonstrated by use of styrene grafting by the preirradiation grafting method. By the use of UL-EB irradiation it was possible to facilitate styrene monomer grafting onto the surface of fluorinated polymers without losing their material characteristics. Moreover, in the case of the polyimide (Kapton TM ), which has excellent radiation resistance, the glass transition temperature was improved by about 20 o C by irradiation up to 40 MGy within 1 h.

  5. Development of superhydrophobic fabrics by surface fluorination and formation of CNT-induced roughness

    Directory of Open Access Journals (Sweden)

    Myoung Hee Shim

    2015-03-01

    Full Text Available Superhydrophobictextile material having self-cleaning function was developed by employing carbon nanotubes (CNTs and water-repellent agents.Hydrophobic fabrics were prepared on 100% polyester woven fabrics withvarious yarn diameters and yarn types. The wetting behavior of fabrics withdifferent treatments was compared for: siloxanerepellent, fluorocarbon repellent, and CNT added fluorocarbon repellent. Drawn textured yarn (DTY fabrics exhibited higher contactangle (CA than filament yarn fabrics due to the larger surface roughness contributed by the textured yarn. Fabrics treated with fluorocarbon presentedlarger CA and lower shedding angle than those treated with siloxane,because of the lower surface energy of fluorocarbon repellent. Specimens madeof 50 denier DTY and treated with CNT-Teflon AF® showed the mostsuperhydrophobic characteristics in the study, producing the static contactangle>150° and the shedding angle<15°. CNT on fabric surface contributedto the nano-scale surface roughness to hold the air traps like papillae oflotus leaf, giving superhydrophobic characteristics.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5762

  6. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  7. No relationship between the cell surface hydrophobicity of coagulase-negative staphylococci and their ability to adhere onto fluorinated poly(ethylene-propylene)

    NARCIS (Netherlands)

    Brokke, P.; Brokke, P.; Dankert, J.; Hogt, A.H.; Feijen, Jan

    1992-01-01

    The cell surface hydrophobicity of 14 encapsulated and 21 non-encapsulated coagulase-negative staphylococci (CN staph) as determined with the salt aggregation test (SAT) as well as with the xylene-water method ranged widely. Non-encapsulated strains adhered well onto fluorinated

  8. Fluorine-containing composition for forming anti-reflection film on resist surface and pattern formation method

    Science.gov (United States)

    Nishi, Mineo; Makishima, Hideo

    1996-01-01

    A composition for forming anti-reflection film on resist surface which comprises an aqueous solution of a water soluble fluorine compound, and a pattern formation method which comprises the steps of coating a photoresist composition on a substrate; coating the above-mentioned composition for forming anti-reflection film; exposing the coated film to form a specific pattern; and developing the photoresist, are provided. Since the composition for forming anti-reflection film can be coated on the photoresist in the form of an aqueous solution, not only the anti-reflection film can be formed easily, but also, the film can be removed easily by rinsing with water or alkali development. Therefore, by the pattern formation method according to the present invention, it is possible to form a pattern easily with a high dimensional accuracy.

  9. Triple layered core–shell structure with surface fluorinated ZnO-carbon nanotube composites and its electron emission properties

    International Nuclear Information System (INIS)

    Wang, H.Y.; Chua, Daniel H.C.

    2013-01-01

    Highlights: ► The effects of CF 4 plasma on ZnO-CNT core–shell structures were studied. ► ZnO was effective in protecting the aligned CNTs core for as long as 30 min of plasma etching. ► SEM showed the surface morphology was nearly similar between pristine, 2 min and 30 min plasma etched specimens. ► F was observed to displace O in ZnO. ► This is the first report of an ultra long plasma etch of fluorine onto ZnO surface. - Abstract: Core-shelled structures such as zinc oxide (ZnO) on carbon nanotubes (CNTs) give rise to interesting material properties. In this work, a triple-layered core–shell–shell structure is presented where the effects of fluorine (F) incorporation on the outmost shell of the ZnO-CNT structure are studied. The samples prepared ranged from a short 2 min to a 30 min immersion in carbon tetraflouride (CF 4 ) plasma. In addition, its effects on the electron emission properties also studied and it is shown that the plasma immersions create thinner field emitters with sharp tiny wrinkles giving rise to more electron emission sites and higher enhancement factor. In addition, X-ray photoelectron spectroscopy measurements showed that F ions replace O in ZnO coatings during immersion process, thus increasing the electrical conductivity and shifts the Fermi level of ZnO upwards. Both physical and electronic effects further contribute to a lower threshold field.

  10. Structural analysis of fluorine-containing bioactive glass nanoparticles synthesized by sol-gel route assisted by ultrasound energy.

    Science.gov (United States)

    Lins, Carolina E C; Oliveira, Agda A R; Gonzalez, Ismael; Macedo, Waldemar A A; Pereira, Marivalda M

    2018-01-01

    In the last decades, studies about the specific effects of bioactive glass on remineralization of dentin were the focus of attention, due to their excellent regenerative properties in mineralized tissues. The incorporation of Fluorine in bioactive glass nanoparticles may result in the formation of fluorapatite (FAP), which is chemically more stable than hydroxyapatite or carbonated hydroxyapatite, and therefore is of interest for dental applications. The aim of this study was to synthesize and characterize a new system of Fluorine-containing bioactive glass nanoparticles (BGNPF). A sol-gel route assisted by ultrasound was used for the synthesis of BGNPF. The particles obtained were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD), dynamic light scattering (DLS), nitrogen adsorption, and X-ray photoelectron spectroscopy (XPS). SEM micrographs showed that the particles are quite uniform spherical nanostructures, occurring agglomeration or partial sinterization of the particulate system after heat treatment. XRD and XPS analysis results suggest the formation of fluorapatite crystals embedded within the matrix of the bioactive glass nanoparticles. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 360-366, 2018. © 2017 Wiley Periodicals, Inc.

  11. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling

    International Nuclear Information System (INIS)

    Yasuhiro, Matsuda; Katsushi, Okuyama; Hiroko, Yamamoto; Hisanori, Komatsu; Masashi, Koka; Takahiro, Sato; Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano

    2015-01-01

    To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials [“MS coats F” (MSF)] and fluoride-free sealing materials (“hybrid coats 2” [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8–4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries

  12. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling

    Energy Technology Data Exchange (ETDEWEB)

    Yasuhiro, Matsuda, E-mail: matsuda@den.hokudai.ac.jp [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Katsushi, Okuyama [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Hiroko, Yamamoto [Graduate School of Dentistry, Osaka University (Japan); Hisanori, Komatsu [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Masashi, Koka; Takahiro, Sato [Takasaki Advanced Radiation Research Institute, JAEA (Japan); Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan)

    2015-04-01

    To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials [“MS coats F” (MSF)] and fluoride-free sealing materials (“hybrid coats 2” [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8–4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries.

  13. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  14. Highly sensitive and selective determination of fluorine ion by graphene oxide/nanogold resonance Rayleigh scattering-energy transfer analytical platform.

    Science.gov (United States)

    Liang, Aihui; Peng, Jing; Liu, Qingye; Wen, Guiqing; Lu, Zhujun; Jiang, Zhiliang

    2015-08-15

    In pH 4.0 acetate buffer solution, fluorine ions react with fluorine reagent (FR) and La(III) to generate blue ternary complex that exhibited strong absorption at about 370 nm. Upon addition of graphene oxide/nanogold (GO/NG) as resonance Rayleigh scattering (RRS) spectral probe with strong RRS peak at 370 nm, the color changed to gray, and the RRS intensity decreased with the increase of fluorine ion concentration due to the RRS energy transfer (RRSET) from GO/NG to the complex. Under the selected condition, the decreased RRS peak ΔI370 nm was linear to fluorine ion concentration in the range of 6.0 × 10(-8)-1.3 × 10(-5)mol/L, with a detection limit of 3.0 × 10(-8)mol/L F(-). This RRSET method was applied to the analysis of fluorine in toothpaste and water samples, with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fluorine lubricated bearing technology

    Science.gov (United States)

    Mallaire, F. R.

    1973-01-01

    An experimental program was conducted to evaluate and select materials for ball bearings intended for use in liquid fluorine and/or FLOX. The ability of three different ball-separator materials, each containing nickel, to form and transfer a nickel fluoride film to provide effective lubrication at the required areas of a ball bearing operating in liquid fluorine was evaluated. In addition, solid lubrication of a ball bearing operating in liquid fluorine by either a fused fluoride coating applied to all surfaces of the ball separator or by a fluoride impregnation of porous sintered material ball separators was evaluated. Less bearing wear occurred when tests were conducted in the less reactive FLOX. Bearings fabricated from any of the materials tested would have relatively short wear lives and would require frequent replacement in a reusable engine.

  16. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  17. Proceedings of the High Energy Density Matter (HEDM) Conference (5th) Held in Albuquerque, New Mexico on February 24-27, 1991

    National Research Council Canada - National Science Library

    Cordonnier, Michelle E

    1991-01-01

    ..., oxidizers, potential energy surfaces, surface crossing, laser spectroscopy, Fourier transform spectroscopy, cluster-impact fusion, hypervalent anions, hydrogen azide , fluorine azide, photodynamics...

  18. Fluorination reaction uranium dioxide by fluorine

    International Nuclear Information System (INIS)

    Ogata, Shinji; Homma, Shunji; Koga, Jiro; Matsumoto, Shiro; Sasahira, Akira; Kawamura, Fumio

    2004-01-01

    Kinetics of the fluorination reaction of uranium dioxide is studied using un-reacted core model with shrinking particles. The model includes the film mass transfer of fluorine gas and its diffusion in the particle. The rate constants of the model are determined by fitting the experimental data for 370-450degC. The model successfully represents the fluorination in this temperature range. The rate control step is identified by examining the rate constants of the model for 300-1,800degC. For temperature range up to 900degC, the fluorination reaction is rate controlling. For over 900degC, both mechanisms of the mass transfer of fluorine and the fluorination reaction control the rate of the fluorination. With further increase of the temperature, however, the fluorination reaction becomes so fast that the mass transfer of fluorine eventually controls the rate of the fluorination. (author)

  19. Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Peng, Weijun; Li, Hongqiang; Song, Shaoxian

    2017-02-15

    CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.

  20. Modification of surface wettability through adsorption of partly fluorinated statistical and block polyelectrolytes from aqueous medium.

    Science.gov (United States)

    Nurmi, Leena; Kontturi, Katri; Houbenov, Nikolay; Laine, Janne; Ruokolainen, Janne; Seppälä, Jukka

    2010-10-05

    The wetting properties of electrostatically charged hydrophilic substrates were modified through adsorption of ultrathin layer of amphiphilic block or statistical polyelectrolyte from aqueous medium. The studied polymers were copolymers of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA). They were adsorbed on mica from varying pH conditions, either as dissolved unimers or as kinetically trapped aqueous nanoparticles. The structures (by atomic force microscopy) and wetting properties (by dynamic contact angle measurements) of the obtained surface layers were determined. The majority of the surface layers consisted of polymeric nanoparticles with varying surface coverage. Annealing at 150 °C flattened and spread the particles on the surfaces. The surface wettability was found to be significantly influenced by the morphology and chemical composition of the obtained polymeric surface layer. The surfaces with the most homogeneous and smooth polymer layers exhibited the lowest contact angle hysteresis. The advancing/receding contact angles on the most hydrophilic copolymer layer on mica were 47°/cellulose fiber substrates and annealed at 120 °C, highly hydrophobic surfaces were obtained, with advancing contact angles around 160°.

  1. Fluorine, fluorite, and fluorspar in central Colorado

    Science.gov (United States)

    Wallace, Alan R.

    2010-01-01

    Fluorine (F) is a widespread element that was deposited in a variety of rocks, minerals, and geologic environments in central Colorado. It occurs as a trace element, as a major component of the mineral fluorite (CaFs), and as a major economic source of fluorine in fluorspar deposits, which are massive concentrations of fluorite. This study has compiled available geochemical analyses of rocks, both unmineralized and mineralized, to determine the distribution of fluorine in specific age-lithologic categories, ranging from 1.8-giga-annum (Ga) metamorphic rocks to modern soils, throughout central Colorado. It also draws upon field studies of fluorine-rich mineral deposits, including fluorspar deposits, to decipher the nearly two-billion-year-long geologic history of fluorine in the study area, with implications for mineral-resource evaluations and exploration. The resulting compilation provides an important inventory of the naturally occurring levels and sources of fluorine that ultimately weather, erode, and become part of surface waters that are used for domestic water supplies in densely populated areas along the Colorado Front Range. Most commonly, fluorine is a trace element in virtually all rocks in the region. In the 3,798 unmineralized rocks that were analyzed for fluorine in the study area, the average fluorine content was 1,550 parts per million (ppm). The median was 640 ppm, nearly identical to the average crustal abundance of 650 ppm, and some high-fluorine rocks in the Pikes Peak area skewed the average to a value much greater than the median. Most unmineralized age-lithologic rock suites, including Proterozoic metamorphic rocks, 1.7- and 1.4-Ga granitic batholiths, Cambrian igneous rocks, Phanerozoic sedimentary rocks, and Laramide and Tertiary igneous rocks, had median fluorine values of 400 to 740 ppm fluorine. In all suites, however, a small number of analyzed samples contained more than 1 percent (10,000 ppm) fluorine. The 1.1-Ga plutonic rocks

  2. Synthesis of polymeric fluorinated sol–gel precursor for fabrication of superhydrophobic coating

    International Nuclear Information System (INIS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Graphical abstract: - Highlights: • A polymeric fluorinated sol–gel precursor PFT is designed to fabricate superhydrophobic coatings. • The superhydrophobicity could be governed by the concentration of PFT. • Bio-mimicking self-cleaning property similar to lotus leaves could also be achieved. - Abstract: A fluorinated polymeric sol–gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol–gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol–gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  3. Surface modified Al2O3 in fluorinated polyimide/Al2O3 ...

    Indian Academy of Sciences (India)

    agglomeration. One approach to decrease the aggregation of inorganic Al2O3 is surface modification of these nanoparti- cles with coupling agent which usually has a long alkyl tail and shows a good compatibility with polymer .... ture and spatial distribution of the various components, through direct visualization. Figure 5 ...

  4. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  5. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  6. Grafting of cellulose by fluorine-bearing silane coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Ly, B. [Laboratoire de Genie des Procedes Papetiers, Grenoble INP-Pagora, BP 65, F-38402 Saint Martin d' Heres (France); Belgacem, M.N., E-mail: Naceur.Belgacem@pagora.genoble-inp.fr [Laboratoire de Genie des Procedes Papetiers, Grenoble INP-Pagora, BP 65, F-38402 Saint Martin d' Heres (France); Bras, J.; Brochier Salon, M.C. [Laboratoire de Genie des Procedes Papetiers, Grenoble INP-Pagora, BP 65, F-38402 Saint Martin d' Heres (France)

    2010-04-06

    The surface of model cellulose fibres, Avicell (AV), as well as that of Whatman paper (WP) was chemically modified with two fluorine-bearing alkoxysilane coupling agents, namely: 3,3,3-trifluoropropyl trimethoxysilane (TFPS) and 1H,1H,2H,2H,perfluorooctyl trimethoxysilane (PFOS). The occurrence of the grafting of soxhlet extracted modified cellulose was confirmed by the presence of silicon and fluorine atoms detected by elemental analysis, X-ray photoelectron spectroscopy and Electron Dispersion Energy/Scanning Electron Microscopy (EDS/SEM). The contact angle measurements showed that, after grafting, the surface of AV and WP samples became totally highly hydrophobic with a contact angle of 140 deg. Thus, the polar contribution to the surface energy of the modified substrates was found to be close to zero. These modified substrate could be interesting for application such as self-cleaning surface, wipes paper, grease barrier paper or for biocomposite with a polar matrix.

  7. Fluorine substituent effect on the adsorption of acetic acid derivatives (CH{sub 3−n} F{sub n}CO{sub 2}H) on anatase TiO{sub 2} (1 0 0) and (1 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Masoume [Department of Chemistry, Isfahan University of Technology, Isfahan 84154-83111 (Iran, Islamic Republic of); Najafi Chermahini, Alireza, E-mail: anajafi@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84154-83111 (Iran, Islamic Republic of); Dabbagh, Hossein A. [Department of Chemistry, Isfahan University of Technology, Isfahan 84154-83111 (Iran, Islamic Republic of); Teimouri, Abbas [Chemistry Department, Payame Noor University (PNU), Tehran 19395-4697 (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Adsorption of acetic acid derivatives on anatase TiO{sub 2} surfaces was modeled by periodic DFT method. • The HOMO, LUMO and HOMO–LUMO energy gap varies for the adsorption of acetic acid derivatives. • Adsorption of acetic acid derivatives on (1 0 1) surface occurred via a proton transfer reaction. - Abstract: A density functional theory method was used to investigate the adsorption of acetic acid and its fluorinated derivatives on (1 0 0) and (1 0 1) surfaces of anatase TiO{sub 2}. It was found that while the adsorption of acetic acid and its fluorinated derivatives on the (1 0 0) surface of TiO{sub 2} does not proceeds via a proton transfer process but surprisingly adsorption on (1 0 1) surface occurred via a complete proton transfer reaction. The calculated interaction energies for adsorption on (1 0 0) surface are −19.22, −18.36, −15.73, and −60.68 kcal/mol for acetic, fluoroacetic, difluoroacetic, and trifluoroacetic acid, respectively. Similar trend observed for absorption on (1 0 1) surface and calculated interaction energies are −25.35, −23.16, −23.02, and −69.47 kcal/mol, respectively. Structurally, calculations show that when the number of fluorine substituent increases, the length of hydrogen bonding between OH group and neighboring oxygen positioned 2c (O{sub 2c}) atom is diminished. The HOMO, LUMO and HOMO–LUMO energy gap varies for the adsorption of acetic acid derivatives on both (1 0 0) and (1 0 1) surfaces changed in comparison with clean TiO{sub 2} surface. The Fermi levels were also changed after adsorption of acetic acid derivatives.

  8. Desalination by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition.

    Science.gov (United States)

    Guo, Fei; Servi, Amelia; Liu, Andong; Gleason, Karen K; Rutledge, Gregory C

    2015-04-22

    Fibrous membranes of poly(trimethyl hexamethylene terephthalamide) (PA6(3)T) were fabricated by electrospinning and rendered hydrophobic by applying a conformal coating of poly(1H,1H,2H,2H-perfluorodecyl acrylate) (PPFDA) using initiated chemical vapor deposition (iCVD). A set of iCVD-treated electrospun PA6(3)T fiber membranes with fiber diameters ranging from 0.25 to 1.8 μm were tested for desalination using the air gap membrane distillation configuration. Permeate fluxes of 2-11 kg/m2/h were observed for temperature differentials of 20-45 °C between the feed stream and condenser plate, with rejections in excess of 99.98%. The liquid entry pressure was observed to increase dramatically, from 15 to 373 kPa with reduction in fiber diameter. Contrary to expectation, for a given feed temperature the permeate flux was observed to increase for membranes of decreasing fiber diameter. The results for permeate flux and salt rejection show that it is possible to construct membranes for membrane distillation even from intrinsically hydrophilic materials after surface modification by iCVD and that the fiber diameter is shown to play an important role on the membrane distillation performance in terms of permeate flux, salt rejection, and liquid entry pressure.

  9. Fluorine disposal

    Science.gov (United States)

    Rakow, A.

    1983-01-01

    A preliminary design of an F2 dispoal system for HELSTF is presented along with recommendations on operational policy and identification of potential operational problems. The analysis is based on sizing a system to handle two different modes of the HELSTF Fluorine Flow System (one operational and one catastrophic). This information should serve both as a guide to a final detailed design for HELSTF as well as a reference for subsequent monitoring and/or modification of the system which consists of a charcoal reactor followed by a dry soda lime scrubber.

  10. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  11. [Fluorinated analogs of nucleosides and fluorinated tracers of gene expression for positron emission tomography].

    Science.gov (United States)

    Couturier, Olivier; Chatal, Jean-François; Hustinx, Roland

    2004-09-01

    18F-FDG is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine 18 is considered as the ideal radioisotope for PET, thanks to a low positron energy, which not only limits the dose rate to the patients but also provides high-resolution images. Furthermore, the 110 min. physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site, and imaging protocols that could span hours, which permits dynamic studies and assessing metabolic processes that may be fairly slow. Recently, synthesis of fluorinated tracers from prosthetic group precursors, which allows easier radiolabeling of biomolecules, has given a boost to the development of numerous fluorinated tracers. Given the wide availability of fluorine 18, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated analogs of nucleosides and fluorinated radiotracers of gene expression recently developed and under investigation.

  12. Surface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography

    Science.gov (United States)

    Tak, Hyowon; Tahk, Dongha; Jeong, Chanho; Lee, Sori; Kim, Tae-il

    2017-10-01

    We presented surface energy-tunable nanoscale molds for unconventional lithography. The mold is highly robust, transparent, has a minimized haze, does not contain additives, and is a non-fluorinated isodecyl acrylate and trimethylolpropane triacrylate based polymer. By changing the mixing ratio of the polymer components, the cross-linking density, mechanical modulus, and surface energy (crucial factors in low pressure ((1-2) × 105 N m-2) low pressure-nanoimprint lithography (LP-NIL)), can be controlled. To verify these properties of the molds, we also characterized the surface energy by measuring the contact angles and calculating the work of adhesion among the wafer, polymer film, and mold for successful demolding in nanoscale structures. Moreover, the molds showed high optical clarity and precisely tunable mechanical and surface properties, capable of replicating sub-100 nm patterns by thermal LP-NIL and UV-NIL.

  13. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  14. Improvement of suspension stability and electrophoresis of nanodiamond powder by fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Wang, Y.H. [State Key Laboratory of Metastable Material Science and Technology, College of Material Science and Engineering, Hebei Street, Yanshan University, Qinhuangdao 066004 (China); Zang, J.B., E-mail: diamondzjb@163.com [State Key Laboratory of Metastable Material Science and Technology, College of Material Science and Engineering, Hebei Street, Yanshan University, Qinhuangdao 066004 (China) and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 (China); Bian, L.Y. [State Key Laboratory of Metastable Material Science and Technology, College of Material Science and Engineering, Hebei Street, Yanshan University, Qinhuangdao 066004 (China)

    2012-02-01

    Fluorinated nanodiamond (F-ND) was prepared by annealing ND in fluorine gas. The fluorine gas was periodically fed to ensure uniform exposure of every diamond nanoparticle in homogenous reactive ambience. The characteristics of the F-ND particles were investigated by the following methods: Fourier-transform infrared absorption spectroscopy, energy-dispersive X-ray spectrometer, X-ray diffraction, and transmission electron microscopy. The results showed that the fluorine atoms were chemically adsorbed on the surface of the ND particles and consequently formed C-F bonds. Fluorine of 6.4 wt.% was detected on the F-ND surface. The aggregated ND particles were disintegrated by the fluorination and the size of aggregated ND was reduced from approximately several hundred nanometers to about 40 nm. The stability of the F-ND suspension in distilled water or ethanol was higher than that of the pristine ND suspension. The anodic electrophoretic deposition of the F-ND particles was derived using ethanol suspension, indicating that the F-ND particles were negatively charged.

  15. Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability.

    Science.gov (United States)

    Tang, Xian; Liang, Weiyuan; Zhao, Jinlai; Li, Zhongjun; Qiu, Meng; Fan, Taojian; Luo, Crystal Shaojuan; Zhou, Ye; Li, Yu; Guo, Zhinan; Fan, Dianyuan; Zhang, Han

    2017-12-01

    Phosphorene has attracted great interest due to its unique electronic and optoelectronic properties owing to its tunable direct and moderate band-gap in association with high carrier mobility. However, its intrinsic instability in air seriously hinders its practical applications, and problems of technical complexity and in-process degradation exist in currently proposed stabilization strategies. A facile pathway in obtaining and stabilizing phosphorene through a one-step, ionic liquid-assisted electrochemical exfoliation and synchronous fluorination process is reported in this study. This strategy enables fluorinated phosphorene (FP) to be discovered and large-scale, highly selective few-layer FP (3-6 atomic layers) to be obtained. The synthesized FP is found to exhibit unique morphological and optical characteristics. Possible atomistic fluorination configurations of FP are revealed by core-level binding energy shift calculations in combination with spectroscopic measurements, and the results indicate that electrolyte concentration significantly modulates the fluorination configurations. Furthermore, FP is found to exhibit enhanced air stability thanks to the antioxidation and antihydration effects of the introduced fluorine adatoms, and demonstrate excellent photothermal stability during a week of air exposure. These findings pave the way toward real applications of phosphorene-based nanophotonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Density Functional Theory (DFT Study on the Ternary Interaction System of the Fluorinated Ethylene Carbonate, Li+ and Graphene Model

    Directory of Open Access Journals (Sweden)

    Mami Mutoh

    2015-12-01

    Full Text Available The ternary interaction system composed of fluorinated ethylene carbonate, denoted by EC(F, lithium ion (Li+ and a model of nano-structured graphene has been investigated by means of the density functional theory (DFT method. For comparison, fluorinated vinylene carbonate, denoted by VC(F, was also used. The model of graphene consisting of 14 benzene rings was examined as a nano-structured graphene. The effects of fluorine substitution on the electronic state and binding energy were investigated from a theoretical point of view. It was found that both EC(F and VC(F bind to a hexagonal site corresponding to the central benzene ring of the model of the graphene surface. The binding energies of Li+EC(F and Li+VC(F to the model of graphene decreased with increasing number of fluorine atoms (n.

  17. Macroscale tribological properties of fluorinated graphene

    Science.gov (United States)

    Matsumura, Kento; Chiashi, Shohei; Maruyama, Shigeo; Choi, Junho

    2018-02-01

    Because graphene is carbon material and has excellent mechanical characteristics, its use as ultrathin lubrication protective films for machine elements is greatly expected. The durability of graphene strongly depends on the number of layers and the load scale. For use in ultrathin lubrication protective films for machine elements, it is also necessary to maintain low friction and high durability under macroscale loads in the atmosphere. In this study, we modified the surfaces of both monolayer and multilayer graphene by fluorine plasma treatment and examined the friction properties and durability of the fluorinated graphene under macroscale load. The durability of both monolayer and multilayer graphene improved by the surface fluorination owing to the reduction of adhesion forces between the friction interfaces. This occurs because the carbon film containing fluorine is transferred to the friction-mating material, and thus friction acts between the two carbon films containing fluorine. On the other hand, the friction coefficient decreased from 0.20 to 0.15 by the fluorine plasma treatment in the multilayer graphene, whereas it increased from 0.21 to 0.27 in the monolayer graphene. It is considered that, in the monolayer graphene, the change of the surface structure had a stronger influence on the friction coefficient than in the multilayer graphene, and the friction coefficient increased mainly due to the increase in defects on the graphene surface by the fluorine plasma treatment.

  18. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    Abstract. We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at z = 3.32 Å. It was observed ...

  19. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at = 3.32 Å. It was observed that the ...

  20. Nephelometric determination of fluorine

    Science.gov (United States)

    Stevens, R.E.

    1936-01-01

    Fluorine in minerals may be determined with the nephelometer to about 1 per cent of the fluorine. The determination is made on an aliquot of the sodium chloride solution of the fluorine, obtained by the Berzelius method of extraction. The fluorine is precipitated as colloidal calcium fluoride in alcoholic solution, gelatin serving as a protective colloid. Arsenates, sulfates, and phosphates, which interfere with the determination, must be removed.

  1. Compendium of fluorine data

    International Nuclear Information System (INIS)

    Detamore, J.A.

    1983-01-01

    Research was conducted to locate information about fluorine. This information includes chemical and physical properties of fluorine, physiological effects produced by the material, first-aid, personnel and facility protection, and materials of construction required when handling fluorine in piping and process vessels. The results of this research have been compiled in this report

  2. Fluorine Gauche Effect Explained by Electrostatic Polarization Instead of Hyperconjugation: An Interacting Quantum Atoms (IQA) and Relative Energy Gradient (REG) Study.

    Science.gov (United States)

    Thacker, Joseph C R; Popelier, Paul L A

    2018-02-08

    We present an interacting quantum atoms (IQA) study of the gauche effect by comparing 1,2-difluoroethane, 1,2-dichloroethane, and three conformers of 1,2,3,4,5,6-hexafluorocyclohexane. In the 1,2-difluoroethane, the gauche effect is observed in that the gauche conformation is more stable than the anti, whereas in 1,2-dichloroethane the opposite is true. The analysis performed here is exhaustive and unbiased thanks to using the recently introduced relative energy gradient (REG) method [ Thacker , J. C. R. ; Popelier , P. L. A. Theor. Chem. Acc . 2017 , 136 , 86 ], as implemented in the in-house program ANANKE. We challenge the common explanation that hyperconjugation is responsible for the gauche stability in 1,2-difluoroethane and instead present electrostatics as the cause of gauche stability. Our explanation of the gauche effect is also is seen in other molecules displaying local gauche conformations, such as the recently synthesized "all-cis" hexafluorocyclohexane and its conformers where all the fluorine atoms are in the equatorial positions. Using our extension of the traditional IQA methodology that allows for the partitioning of electrostatic terms into polarization and charge transfer, we propose that the cause of gauche stability is 1,3 C···F electrostatic polarization interactions. In other words, if a number of fluorine atoms are aligned, then the stability due to polarization of nearby carbon atoms is increased.

  3. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  4. Surface energy and surface tension of liquid metal nanodrops

    Directory of Open Access Journals (Sweden)

    Shebzukhov A.A.

    2011-05-01

    Full Text Available A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  5. Surface energy and surface tension of liquid metal nanodrops

    Science.gov (United States)

    Shebzukhova, M. A.; Shebzukhov, A. A.

    2011-05-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  6. Surface energy and surface tension of liquid metal nanodrops

    OpenAIRE

    Shebzukhov A.A.; Shebzukhova M.A.

    2011-01-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  7. Fluorine-18 - ED 4311

    International Nuclear Information System (INIS)

    Ammerich, M.; Frot, P.; Gambini, D.; Gauron, C.; Moureaux, P.; Herbelet, G.; Lahaye, T.; Pihet, P.; Rannou, A.; Vidal, E.

    2013-03-01

    This sheet presents the characteristics of fluorine-18, its origin, and its radio-physical and biological properties. It briefly describes its use in nuclear medicine. It indicates its dosimetric parameters for external exposure, cutaneous contamination, and internal exposure due to acute contamination or to chronic contamination. It indicates and comments the various exposure measurement techniques: ambient dose rate measurement, surface contamination measurement, atmosphere contamination. It addresses the means of protection: premise design, protection against external exposure and against internal exposure. It describes how areas are delimited and controlled within the premises: regulatory areas, controls to be performed. It addresses the personnel classification, training and medical survey. It addresses the issue of solid and liquid wastes and liquid effluents. It briefly recalls the administrative procedures related to the authorization and declaration of possession and use of sealed and unsealed sources. It indicates regulatory aspects related to the transport of fluorine-18, describes what is to be done in case of incident or accident (for the different types of contamination or exposure)

  8. Super-hydrophobic fluorine containing aerogels

    Science.gov (United States)

    Coronado, Paul R [Livermore, CA; Poco, John F [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  9. Leaching of lava and tephra from the Oldoinyo Lengai volcano (Tanzania): Remobilization of fluorine and other potentially toxic elements into surface waters of the Gregory Rift

    Science.gov (United States)

    Bosshard-Stadlin, Sonja A.; Mattsson, Hannes B.; Stewart, Carol; Reusser, Eric

    2017-02-01

    Volcanic ash leachate studies have been conducted on various volcanoes on Earth, but few have been done on African volcanoes until now. Tephra emissions may affect the environment and the health of people living in this area, and therefore we conducted a first tephra (ash and lapilli sized) leachate study on the Oldoinyo Lengai volcano, situated in northern Tanzania. The recent explosive eruption in 2007-2008 provided us with fresh samples from the first three weeks of the eruption which were used for this study. In addition, we also used a natrocarbonatitic sample from the activity prior to the explosive eruption, as the major activity at Oldoinyo Lengai is natrocarbonatitic. To compare the leaching process affecting the natrocarbonatitic lavas and the tephras from Oldoinyo Lengai, the 2006 natrocarbonatitic lava flow was resampled 5 years after the emplacement and compared to the initial, unaltered composition. Special interest was given to the element fluorine (F), since it is potentially toxic to both humans and animals. A daily intake of fluoride (F-) in drinking water of > 1.5 mg/l can lead to dental fluorosis, and higher concentrations lead to skeletal fluorosis. For this reason, a guideline value for fluoride in drinking water was set by the WHO (2011) to 1.5 mg/l. However, surface waters and groundwaters in the Gregory Rift have elevated fluoride levels of up to 9.12 mg/l, and as a consequence, an interim guideline value for Tanzania has been set at 8 mg/l. The total concentration of fluorine in the samples from the natrocarbonatitic lava flow is high (3.2 wt%), whereas we observed a significant decrease of the fluorine concentration (between 1.7 and 0.5 wt%) in the samples collected three days and three weeks after the onset of the explosive 2007-08 eruption. However, the total amount of water-extractable fluoride is lower in the natrocarbonatitic lavas (319 mg/l) than in the nephelinitic tephra (573-895 mg/l). This is due to the solubility of the

  10. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  11. Influence of doping fluorine on the structural, surface morphological and optical properties of CdO films

    Energy Technology Data Exchange (ETDEWEB)

    Aydogu, S.; Cabuk, G. [Dumlupinar University, Department of Physics, Faculty of Science and Art, Kutahya (Turkey); Coban, M.B. [Balikesir University, Department of Physics, Faculty of Science and Art, Balikesir (Turkey)

    2017-06-15

    CdO and CdO:F films were prepared by ultrasonic spray pyrolysis method on glass substrates at temperature of 250 ± 5 C. The structural and optical properties of pure and fluorine doped CdO films were characterized by XRD measurements and UV-VIS spectra, respectively. X-ray diffraction patterns show that the films have the polycrystalline structure with preferred orientation along (111) plane. Scherrer Method and Williamson Hall Method were used for calculating of the crystalline grains and strains of films. It is observed that the films at 8% F doped has better crystallinity level, and F doping decreases the defects in CdO films and improves crystallite quality. By UV-VIS spectra, it is revealed that the film with 8% F doped has a high transmittance about 65% in the visible region together with a direct band gap of 2.70 eV. Thicknesses, refractive indices and extinction coefficient values are determined by spectroscopic ellipsometry technique using Cauchy-Urbach model. (orig.)

  12. Reactivity of simulated lunar material with fluorine

    Science.gov (United States)

    Odonnell, P. M.

    1972-01-01

    Simulated lunar surface material was caused to react with fluorine to determine the feasibility of producing oxygen by this method. The maximum total fluorine pressure used was 53.3 kilonewtons per square meter (400 torr) at temperatures up to 523 K (250 C). Postreaction analysis of both the gas and solid phases indicated that the reaction is feasible but that the efficiency is only about 4 percent of that predicted by theory.

  13. Fluorine separation and generation device

    Science.gov (United States)

    The Regents of the University of California

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  14. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  15. New highly fluorinated styrene-based materials with low surface energy prepared by ATRP

    DEFF Research Database (Denmark)

    Borkar, Sachin; Jankova Atanasova, Katja; Siesler, Heinz W

    2004-01-01

    radical polymerization (ATRP) at 110 degreesC to high conversions in relatively short times, 10-120 min; TF(F-5)S is additionally polymerized at 70 and 90 degreesC. Block copolymers with styrene are prepared by the macroinitiator approach. All polymers, in the number-average molecular weight range from...

  16. UV-laser-assisted liquid phase fluorination of PMMA

    Energy Technology Data Exchange (ETDEWEB)

    Wochnowski, C. [BIAS - Bremer Institut fuer angewandte Strahltechnik, Klagenfurter Str. 2, 28359 Bremen (Germany)], E-mail: carsten.wochnowski@dpma.de; Di Ferdinando, M.; Giolli, C. [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Benedetto Varchi 59, 50132 Firenze (Italy); Vollertsen, F. [BIAS - Bremer Institut fuer angewandte Strahltechnik, Klagenfurter Str. 2, 28359 Bremen (Germany); Bardi, U. [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Benedetto Varchi 59, 50132 Firenze (Italy)

    2007-10-15

    Polymethylmethacrylate (PMMA) substrate was covered with liquid 1,2,3,5-tetrafluorobenzene by spin coating. Then the sample was irradiated by a KrF-excimer laser ({lambda} = 248 nm). Thus, fluorine is released from the fluorine-containing precursor diffusing into the polymeric substrate material where it is expected to substitute the hydrogen atoms of the polymeric molecule and form a water-repellent (hydrophobic) fluorinated polymer. After drying out the polymeric substrate, the sample surface was investigated by SEM, EDX, XPS and contact angle measurement method in order to determine the fluorine content and the wettability of the treated polymeric surface as well as the substitution sites inside the polymeric molecule. The measurements indicate some chemically bonded fluorine at the top of the sample layer. A UV-photochemical fluorination mechanism is proposed based on the XPS spectra evaluation.

  17. Oxygen vacancies versus fluorine at CeO2(111): a case of mistaken identity?

    Science.gov (United States)

    Kullgren, J; Wolf, M J; Castleton, C W M; Mitev, P; Briels, W J; Hermansson, K

    2014-04-18

    We propose a resolution to the puzzle presented by the surface defects observed with STM at the (111) surface facet of CeO 2 single crystals. In the seminal paper of Esch et al. [Science 309, 752 (2005)] they were identified with oxygen vacancies, but the observed behavior of these defects is inconsistent with the results of density functional theory (DFT) studies of oxygen vacancies in the literature. We resolve these inconsistencies via DFT calculations of the properties of both oxygen vacancies and fluorine impurities at CeO2(111), the latter having recently been shown to exist in high concentrations in single crystals from a widely used commercial source of such samples. We find that the simulated filled-state STM images of surface-layer oxygen vacancies and fluorine impurities are essentially identical, which would render problematic their experimental distinction by such images alone. However, we find that our theoretical results for the most stable location, mobility, and tendency to cluster, of fluorine impurities are consistent with experimental observations, in contrast to those for oxygen vacancies. Based on these results, we propose that the surface defects observed in STM experiments on CeO2 single crystals reported heretofore were not oxygen vacancies, but fluorine impurities. Since the similarity of the simulated STM images of the two defects is due primarily to the relative energies of the 2p states of oxygen and fluorine ions, this confusion might also occur for other oxides which have been either doped or contaminated with fluorine.

  18. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  19. Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation.

    Science.gov (United States)

    Kujawa, Joanna; Al-Gharabli, Samer; Kujawski, Wojciech; Knozowska, Katarzyna

    2017-02-22

    Four main tasks were presented: (i) ceramic membrane functionalization (TiO 2 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved. The most meaningful finding is associated with the applicability of fluorinated and nonfluorinated grafting agents. The results of contact angle, hysteresis of contact angle, sliding angle, and critical surface tension as well as Young's modulus, nanohardness, and adhesion force for grafting by these two modifiers are comparable. This provides insight into the potential applicability of environmental friendly hydrophobic and superhydrophobic surfaces. The achieved hydrophobic membranes were very effective in the removal of VOCs (butanol, methyl-tert-butyl ether, and ethyl acetate) from binary aqueous solutions in vacuum membrane distillation. The correlation between membrane effectiveness and separated solvent polarity was compared in terms of material properties and resistance to the wetting (kinetics of wetting and in-depth liquid penetration). Material properties were interpreted considering Zisman theory and using Kao diagram. The significant influence of surface chemistry on the membrane performance was noticed (5 kDa, influence of hydrophobic nanolayer and separation controlled by solution-diffusion model; 300 kDa, no impact of surface chemistry and separation controlled by liquid-vapor equilibrium).

  20. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  1. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted. © 2015 Elsevier B.V. All rights reserved.

  2. Dating of archaeological flints by fluorine depth profiling: new insights into the mechanism of fluorine uptake

    International Nuclear Information System (INIS)

    Walter, P.; Menu, M.; Dran, J.C.

    1992-01-01

    To understand the mechanism underlying fluorination of buried archaeological flints, samples of amorphous silica have been subjected to fluorine incorporation either by aqueous treatment or by ion implantation. The nuclear reaction analysis technique using the resonant 19 F(p, αγ) 16 O reaction at 872 keV has been used to obtain profiles of fluorine with an automated electrostatic energy scanning system. Our results emphasize the role of defects for F uptake and allow us to propose a tentative mechanism for F diffusion. The use of synthetic hydrated silica appears promising to simulate the geochemical weathering of chalcedony. (orig.)

  3. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  4. Bacterial degradation of fluorinated compounds

    NARCIS (Netherlands)

    Ferreira, Maria Isabel Martins

    2007-01-01

    Fluorine was produced for the first time by Henri Moissan in 1886, for which he received the Nobel Prize in chemistry in 1906. The unique properties of fluorine have led to the development of fluorine chemistry and numerous synthetic fluorinated compounds have been prepared and tested for different

  5. Surface energy and viscoelasticity influence caramel adhesiveness.

    Science.gov (United States)

    Wagoner, Ty B; Foegeding, Edward Allen

    2017-08-26

    Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m 2 . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.

  6. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 6. Adhesion energy, surface ... 2 G A Adebayo1. Department of Physics, University of Agriculture, Abeokuta, Nigeria; Department of Pure and Applied Physics, College of Pure and Applied Science, Caleb University, Imota, Lagos, Nigeria ...

  7. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  8. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  9. Fluorinated Amphiphilic Polymers and Their Blends for Fouling-Release Applications: The Benefits of a Triblock Copolymer Surface

    KAUST Repository

    Sundaram, Harihara S.

    2011-09-28

    Surface active triblock copolymers (SABC) with mixed polyethylene glycol (PEG) and two different semifluorinated alcohol side chains, one longer than the other, were blended with a soft thermoplastic elastomer (TPE), polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The surface composition of these blends was probed by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The surface reconstruction of the coatings in water was monitored qualitatively by dynamic water contact angles in air as well as air bubble contact angle measurements in water. By blending the SABC with SEBS, we minimize the amount of the SABC used while achieving a surface that is not greatly different in composition from the pure SABC. The 15 wt % blends of the SABC with long fluoroalkyl side chains showed a composition close to that of the pure SABC while the SABC with shorter perfluoroakyl side chains did not. These differences in surface composition were reflected in the fouling-release performance of the blends for the algae, Ulva and Navicula. © 2011 American Chemical Society.

  10. Degradation of fluorine-containing organic thin films and organohalides mediated by ionizing radiation: Nitrogen-based surface modification of polymers and metallization of nitrogen-containing polymers

    Science.gov (United States)

    Wagner, Anthony Jon

    The surface modification of organic thin films and polymers has been studied using X-rays, electrons, ions, excited neutrals and metal atoms (metallization). The resulting chemical modification within the surface region has been studied to better understand the role of individual reactive species with the organic interfaces. Similarly, the role of electrons in organohalide remediation has been studied to better understand the remediation process occurring in organohalide/ice films. During the initial period of X-ray irradiation of semi-fluorinated self-assembled monolayers (SAMs), electron-stimulated C-F, C-C and S-X (X = copper or gold substrate) bond breaking events are responsible for the changes in the chemical composition of the SAM. Irradiation-induced changes to the film's chemical and structural properties, that included the chemical transformation of a fraction of the initial thiolate species, were most pronounced in these initial stages of irradiation, prior to the development of a highly cross-linked carbonaceous overlayer. The mechanism of the carbon-fluorine bond breaking within the film has been found to be consistent with a series of single C-F bond breaking events. The surface reactions of reactive neutral nitrogen species and nitrogen ions with polyethylene have also been studied. Neutral nitrogen species, generated using a modified nitrogen plasma, resulted in the incorporation of predominantly imine groups. Nitrogen ion bombardment yielded amine groups as the dominate species. The reactivity of vapor-deposited metal atoms with nylon 6, nitrogen ion implanted polyethylene and a nitrile-terminated SAM have also been studied using in situ X-ray Photoelectron Spectroscopy. Iron deposition resulted in the formation of iron-nitrogen linkages for all systems studied and iron-oxygen linkages in the case of nylon 6. Similarly, Nickel deposition resulted in nickel-nitrogen linkages for all the systems studied, however it did not react with the oxygen

  11. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  12. Obtaining evapotranspiration and surface energy fluxes with ...

    African Journals Online (AJOL)

    In this study, SEBAL (Surface Energy Balance Algorithm for Land), a remote sensing based evapotranspiration model, has been applied with Landsat ETM+ sensor for the estimation of actual ... The land uses in this study area consists of irrigated agriculture, rain-fed agriculture and livestock grazing. The obtained results ...

  13. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  14. NIGMS Fluorine Detection

    Science.gov (United States)

    Chen, Philip T.; Benna, Mehdi

    2015-01-01

    Please note that these charts were not presented at the CCMPP July 2015 Workshop; however, we would like to include these charts in the Workshop Proceedings.These charts present an overview of the NGIMS fluorine evaluation conducted for the MAVEN mission. The charts show that fluorine may be generated by the following mechanisms:-Reaction with water-Elevated temperature-Radiation, atomic oxygen, ultraviolet, spacecraft charging, and vacuum-Space environmental synergy

  15. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  16. Potential energy surface of triplet O4.

    Science.gov (United States)

    Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G

    2018-03-28

    We present a global ground-state potential energy surface (PES) for the triplet spin state of O 4 that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in electronically adiabatic spin-conserving O 2 -O 2 collisions. The surface is based on MS-CASPT2/maug-cc-pVTZ electronic structure calculations with scaled external correlation; the active space has 16 electrons in 12 orbitals. The global ground-state potential energy surface was fitted by a many-body approach with an accurate O-O pairwise interaction and a fit of the many-body interaction potential to 10 180 electronic structure data points. The many-body fit is based on permutationally invariant polynomials in terms of bond-order functions of the six interatomic distances; the bond-order functions are mixed exponential-Gaussian functions. The geometries calculated and used for the fit include geometry scans corresponding to dissociative and vibrationally excited diatom-diatom collisions of O 2 , scans corresponding to O 3 interacting with O, additional geometries identified by running trajectories, and geometries along linear synchronous transit paths connecting randomly selected points. The global O 4 PES includes subsurfaces describing the interaction of diatomic molecules with other diatomic molecules or interactions of triatomic molecules and an atom. The interaction of ozone with a ground-state oxygen atom occurs on the triplet O 4 surface, and our surface includes high-energy points with O 3 -O geometries as well as O 2 -O 2 geometries and O 2 -O-O geometries.

  17. Direct fluorination of graphene: A theoretical and computational study of its formation and of the resulting magnetic and electronic properties

    Science.gov (United States)

    Aditya, Piali Mitil

    described in Appendix A. For dynamical simulations that produce non-equilibrated configurations, the unfluorinated carbon atoms are not well localized and their interactions are likely to produce a different spin response. This being said, the classical potentials used to simulate the atomic configuration upon fluorination are dependent on DFT calculations of physical parameters like binding energy, charge, bond lengths, etc. Thus, a self interaction error free exchange correlation functional would provide an updated description of the dynamics and interaction on surfaces.

  18. Surface analysis with low energy ion scattering

    International Nuclear Information System (INIS)

    Taglauer, E.; Heiland, W.

    1976-01-01

    Principles and applications of low energy ion scattering for surface analysis are presented. Basic features are the binary collision concept, the scattering cross-sections and the ion neutralization process. The potential and the limitations of the method are outlined. Some pertinent experimental aspects are considered. In a number of examples the performance of the technique is demonstrated for qualitative composition analysis and for studies of surface structures. Finally a few comparisons are made with other techniques, such as AES, LEED, or SIMS. (orig.) [de

  19. Energetics of defects on graphene through fluorination.

    Science.gov (United States)

    Xiao, Jie; Meduri, Praveen; Chen, Honghao; Wang, Zhiguo; Gao, Fei; Hu, Jianzhi; Feng, Ju; Hu, Mary; Dai, Sheng; Brown, Suree; Adcock, Jamie L; Deng, Zhiqun; Liu, Jun; Graff, Gordon L; Aksay, Ilhan A; Zhang, Ji-Guang

    2014-05-01

    Functionalized graphene sheets (FGSs) comprise a unique member of the carbon family, demonstrating excellent electrical conductivity and mechanical strength. However, the detailed chemical composition of this material is still unclear. Herein, we take advantage of the fluorination process to semiquantitatively probe the defects and functional groups on graphene surface. Functionalized graphene sheets are used as substrate for low-temperature (DFT) and quantified experimentally by nuclear magnetic resonance (NMR). The electrochemical properties of fluorinated graphene are also discussed extending the use of graphene from fundamental research to practical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  1. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  2. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  3. Fluorination methods in drug discovery

    OpenAIRE

    Yerien, Damián Emilio; Bonesi, Sergio Mauricio; Postigo, Jose Alberto

    2017-01-01

    Fluorination reactions of medicinal and biologically-active compounds will be discussed. Late stage fluorination strategies of medicinal targets have recently attracted considerable attention on account of the influence that the fluorine atom can impart to targets of medicinal importance, such as a modulation of lipophilicity, electronegativity, basicity and bioavailability, this latter as a consequence of membrane permeability. Therefore, the recourse to late-stage fluorine substitution on c...

  4. Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan.

    Science.gov (United States)

    Sun, Lijuan; Camps, Stefan G; Goh, Hui Jen; Govindharajulu, Priya; Schaefferkoetter, Joshua D; Townsend, David W; Verma, Sanjay K; Velan, S Sendhil; Sun, Lei; Sze, Siu Kwan; Lim, Su Chi; Boehm, Bernhard Otto; Henry, Christiani Jeyakumar; Leow, Melvin Khee-Shing

    2018-01-01

    Capsinoids are reported to increase energy expenditure (EE) via brown adipose tissue (BAT) stimulation. However, imaging of BAT activation by capsinoids remains limited. Because BAT activation is a potential therapeutic strategy for obesity and related metabolic disorders, we sought to prove that capsinoid-induced BAT activation can be visualized by 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). We compared capsinoids and cold exposure on BAT activation and whole-body EE. Twenty healthy participants (8 men, 12 women) with a mean age of 26 y (range: 21-35 y) and a body mass index (kg/m2) of 21.7 (range: 18.5-26.0) underwent 18F-FDG PET and whole-body calorimetry after ingestion of 12 mg capsinoids or ≤2 h of cold exposure (∼14.5°C) in a crossover design. Mean standardized uptake values (SUVs) of the region of interest and BAT volumes were calculated. Blood metabolites were measured before and 2 h after each treatment. All of the participants showed negligible 18F-FDG uptake post-capsinoid ingestion. Upon cold exposure, 12 participants showed avid 18F-FDG uptake into supraclavicular and lateral neck adipose tissues (BAT-positive group), whereas the remaining 8 participants (BAT-negative group) showed undetectable uptake. Capsinoids and cold exposure increased EE, although cold induced a 2-fold increase in whole-body EE and higher fat oxidation, insulin sensitivity, and HDL cholesterol compared with capsinoids. Capsinoids only increased EE in BAT-positive participants, which suggests that BAT mediates EE evoked by capsinoids. This implies that capsinoids stimulate BAT to a lesser degree than cold exposure as evidenced by 18F-FDG uptake below the presently accepted SUV thresholds defining BAT activation. This trial was registered at www.clinicaltrials.gov as NCT02964442. © 2018 American Society for Nutrition. All rights reserved.

  5. DRY FLUORINE SEPARATION METHOD

    Science.gov (United States)

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-05-19

    Preparation and separation of U/sup 233/ by irradiation of ThF/sub 4/ is described. During the neutron irradiation to produce Pa/sup 233/ a fluorinating agent such as HF, F/sub 2/, or HF + F/sub 2/ is passed through the ThF/sub 4/ powder to produce PaF/sub 5/. The PaF/sub 5/, being more volatile, is removed as a gas and allowed to decay radioactively to U/sup 233/ fluoride. A batch procedure in which ThO/sub 2/ or Th metal is irradiated and fluorinated is suggested. Some Pa and U fluoride volatilizes away. Then the remainder is fluorinated with F/sub 2/ to produce very volatile UF/sub 6/ which is recovered. (T.R.H.)

  6. Metalloid Aluminum Clusters with Fluorine

    Science.gov (United States)

    2016-12-01

    FLUORINE by Nape D. Lentsoane December 2016 Thesis Advisor: Joseph Hooper Second Reader: James Luscombe THIS PAGE INTENTIONALLY LEFT BLANK i......contains significant amounts of fluorine . The fluorine can, in principle, oxidize the metallic elements, resulting in a system much like organic

  7. Fluorine content of Fukien teas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.H.; Lin, C.S.; Wu, C.; Liao, C.E.; Lin, H.Y.

    1949-01-01

    A study was made on the fluorine contents of Fukien teas and analytical results indicated the amount ranged from 5.7 to 35.5 mg. per 100 grams of dry tea. The high content of fluorine was found not to be due to contamination nor to the high fluorine content of the soil in which the tea plant was cultivated. Differences in the methods of manufacture had no effect on the fluorine content of the final products. Different varieties of tea plants have different powers to absorb fluorine from the soil. Of the two varieties of tea plants studied, Shui-Sen leaves possessed the lower fluorine content. Age of the tea leaves exerted an important influence on the fluorine content, the older leaves containing considerably more fluorine than the younger. The amount of fluorine that may be extracted in a two per cent infusion varies from 29.1 per cent for fresh leaves to 50.5 per cent for black tea. The process of roasting and rolling rendered the fluorine more soluble, hence the amount extracted increased in green tea. Fermentation further increased the extractability of the fluorine; thus the amount extracted was the highest in black tea, which was fermented, less in the semi-fermented oolong tea, and least in the unfermented green tea. The extractability of fluorine was also increased with age of the leaves.

  8. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method.

    Science.gov (United States)

    Chen, Jun; Sun, Zhigang; Zhang, Dong H

    2015-01-14

    A three dimensional potential energy surface for the F + H2 → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2)Q] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H2 reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface.

  9. Surface Energy Balance System (SEBS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  10. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  11. Does fluorine participate in halogen bonding?

    Science.gov (United States)

    Eskandari, Kiamars; Lesani, Mina

    2015-03-16

    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Radu, C.; Simion, S.; Zamfirescu, M.; Ulmeanu, M.; Enculescu, M.; Radoiu, M.

    2011-01-01

    The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl 4 ) and fluorine (C 2 Cl 3 F 3 ) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400 pulses at 330 mJ/cm 2 laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 μm, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 μm in height and with a full width at half maximum of 2.3 μm with irradiation of 700 pulses at 560 mJ/cm 2 laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role of 3D micro/nano morphology on cell

  13. Effect of plasma fluorination variables on the deposition and growth of partially fluorinated polymer over PMMA films

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2013-01-01

    Full Text Available In this work, an investigation was made of the modification of film surface of Poly(methylmethacrylate (PMMA using the plasma polymerization technique. PMMA films 10 µm thick were obtained by Spin-Coating starting from a chloroform solution (15.36% w/w. The films were exposed to the plasma of CHF3 at different gas pressures and exposure times to increase the thickness of fluorinated polymers onto PMMA films. The plasma fluorinated optical films were characterized by gravimetry, FTIR-ATR, contact angle of wetting, SEM and AFM. The surface fluorination of PMMA films can be inferred by the increase in contact angle under all experimental conditions, and confirmed with FTIR-ATR analysis. Gravimetry showed an increase of the fluorinated polymer layer over PMMA films, being 1.55 µm thick at 0.7 torr and 40 minutes of plasma exposure. The SEM analysis showed a well-defined layer of fluorinated polymer, with fluorine being detected in the EDS analysis. The film roughness for the fluorinated polymers was around of 200 Å, quite satisfactory for a 1.55 µm cladding.

  14. Molecular Dynamics Simulation for Surface and Transport Properties of Fluorinated Silica Nanoparticles in Water or Decane: Application to Gas Recovery Enhancement

    Directory of Open Access Journals (Sweden)

    Sepehrinia Kazem

    2017-05-01

    Full Text Available Determination of surface and transport properties of nanoparticles (NPs is essential for a variety of applications in enhanced oil and gas recoveries. In this paper, the impact of the surface chemistry of silica NPs on their hydro- and oleo-phobic properties as well as their transport properties are investigated in water or decane using molecular dynamics simulation. Trifluoromethyl or pentafluoroethyl groups as water and oil repellents are placed on the NPs. It is found that the density and residence time of liquid molecules around the NPs are modulated considerably with the existence of the functional groups on the NPs’ surfaces. Also, much larger density fluctuations for liquids close to the surface of the NPs are observed when the number of the groups on the NPs increases, indicating increased hydrophobicity. In addition, the diffusion coefficient of the NPs in either water or decane increases with increasing the number or length of the fluorocarbon chains, demonstrating non-Brownian behavior for the NPs. The surface chemistry imparts a considerable contribution on the diffusion coefficient of the NPs. Finally, potential of mean force calculations are undertaken. It is observed that the free energy of adsorption of the NPs on a mineral surface is more favorable than that of the aggregation of the NPs, which suggests the NPs adsorb preferably on the mineral surface.

  15. Surface Modification of MXenes: A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices

    KAUST Repository

    Ahmed, Bilal

    2017-12-31

    The recent discovery of layered transition metal carbides (MXenes) is one of the most important developments in two-dimensional (2D) materials. Preliminary theoretical and experimental studies suggest a wide range of potential applications for MXenes. The MXenes are prepared by chemically etching ‘A’-layer element from layered ternary metal carbides, nitrides and carbonitrides (MAX phases) through aqueous acid treatment, which results in various surface terminations such as hydroxyl, oxygen or fluorine. It has been found that surface terminations play a critical role in defining MXene properties and affects MXene performance in different applications such as electrochemical energy storage, electromagnetic interference shielding, water purification, sensors and catalysis. Also, the electronic, thermoelectric, structural, plasmonic and optical properties of MXenes largely depend upon surface terminations. Thus, controlling the surface chemistry if MXenes can be an efficient way to improve their properties. This research mainly aims to perform surface modifications of two commonly studied MXenes; Ti2C and Ti3C2, via chemical, thermal or physical processes to enhance electrochemical energy storage properties. The as-prepared and surface modified MXenes have been studied as electrode materials in Li-ion batteries (LIBs) and supercapacitors (SCs). In pursuit of desirable MXene surface, we have developed an in-situ room temperature oxidation process, which resulted in TiO2/MXene nanocomposite and enhanced Li-ion storage. The idea of making metal oxide and MXene nanocomposites was taken to the next level by combining a high capacity anode materials – SnO2 – and MXene. By taking advantage of already existing surface functional groups (–OH), we have developed a composite of SnO2/MXene by atomic layer deposition (ALD) which showed enhanced capacity and excellent cyclic stability. Thermal annealing of MXene at elevated temperature under different atmospheres was

  16. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  17. Fluorine-18 labelled compounds

    International Nuclear Information System (INIS)

    Kleijn, J.P. de

    1978-01-01

    The work presented in this thesis deals with the problems involved in the adaption of reactor-produced fluorine-18 to the synthesis of 18 F-labelled organic fluorine compounds. Several 18 F-labelling reagents were prepared and successfully applied. The limitations to the synthetic possibilities of reactor-produced fluoride- 18 become manifest in the last part of the thesis. An application to the synthesis of labelled aliphatic fluoro amino acids has appeared to be unsuccessful as yet, although some other synthetic approaches can be indicated. Seven journal articles (for which see the availability note) are used to compose the four chapters and three appendices. The connecting text gives a survey of known 18 F-compounds and methods for preparing such compounds. (Auth.)

  18. Tuning the electronic band-gap of fluorinated 3C-silicon carbide nanowires

    Science.gov (United States)

    Miranda Durán, Álvaro; Trejo Baños, Alejandro; Pérez, Luis Antonio; Cruz Irisson, Miguel

    The possibility of control and modulation of the electronic properties of silicon carbide nanowires (SiCNWs) by varying the wire diameter is well known. SiCNWs are particularly interesting and technologically important, due to its electrical and mechanical properties, allowing the development of materials with specific electronic features for the design of stable and robust electronic devices. Tuning the band gap by chemical surface passivation constitutes a way for the modification of the electronic band gap of these nanowires. We present, the structural and electronic properties of fluorinated SiCNWs, grown along the [111] crystallographic direction, which are investigated by first principles. We consider nanowires with six diameters, varying from 0.35 nm to 2.13 nm, and eight random covering schemes including fully hydrogen- and fluorine terminated ones. Gibbs free energy of formation and electronic properties were calculated for the different surface functionalization schemes and diameters considered. The results indicate that the stability and band gap of SiCNWs can be tuned by surface passivation with fluorine atoms This work was supported by CONACYT infrastructure project 252749 and UNAM-DGAPA-PAPIIT IN106714. A.M. would like to thank for financial support from CONACyT-Retención. Computing resources from proyect SC15-1-IR-27 of DGTIC-UNAM are acknowledged.

  19. Novel Fluorine Oxidizers

    Science.gov (United States)

    1994-02-01

    These findings demonstrate that in agreement with our results from ab initio calculations and contrary to the VSEPR concept of repelling points on a...plane deformation force constants being much larger than the out-of-plane ones. It is shown that the VSEPR model of repelling points on a sphere cannot...fluorine bridges; (vii) that the pentagonal bipyramidal structures of these fluorides and oxofluorides cannot be explained by the VSEPR rules ot repelling

  20. Mono-fluorinated alkyne-derived SAMs on oxide-free Si(111) surfaces: preparation, characterization and tuning of the Si workfunction.

    Science.gov (United States)

    Pujari, Sidharam P; van Andel, Esther; Yaffe, Omer; Cahen, David; Weidner, Tobias; van Rijn, Cees J M; Zuilhof, Han

    2013-01-15

    Organic monolayers derived from ω-fluoro-1-alkynes of varying carbon chain lengths (C(10)-C(18)) were prepared on Si(111) surfaces, resulting in changes of the physical and electronic properties of the surface. Analysis of the monolayers using XPS, Infrared Reflection Absorption Spectroscopy, ellipsometry and static water contact angle measurements provided information regarding the monolayer thickness, the tilt angle, and the surface coverage. Additionally, PCFF molecular mechanics studies were used to obtain information on the optimal packing density and the layer thickness, which were compared to the experimentally found data. From the results, it can be concluded that the monolayers derived from longer chain lengths are more ordered, possess a lower tilt angle, and have a higher surface coverage than monolayers derived from shorter chains. We also demonstrate that by substitution of an H by F atom in the terminal group, it is possible to controllably modify the surface potential and energy barrier for charge transport in a full metal/monolayer-semiconductor (MOMS) junction.

  1. Icephobicity of polydimethylsiloxane-b-poly(fluorinated acrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Li, Xiaohui; Luo, Chenghao; Zhao, Yunhui [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yuan, Xiaoyan, E-mail: yuanxy@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2014-12-31

    A facile process to fabricate icephobic surfaces was developed by spin-coating the polydimethylsiloxane-b-poly(fluorinated acrylate) (PDMS-b-PFA) block copolymers on the substrate. The surface microstructure and chemical composition of the block copolymer films can be adjusted by changing the PDMS content. Icephobic properties of the copolymer surface were mainly ascribed to “flexible-hard” microphase separation and the ratio of fluorine to silicon. The appropriate microphase domain size and the fluorine/silicon ratio could weaken the interaction of ice and copolymer surface and delay icing of water droplets on the copolymer surface. The copolymers containing 15 wt.% PDMS showed the most outstanding icephobicity by depressing the interaction between ice and the copolymer surface. - Highlights: • PDMS-b-PFA block copolymers with different PDMS contents were synthesized. • Surface microstructure can be adjusted by changing the content of PDMS. • The ratio of fluorine/silicon increased with the decrease of the PDMS content. • Ice adhesion and shear strength were decreased by the synergistic effect of silicon and fluorine.

  2. Effects of fluorine on the human fetus

    Energy Technology Data Exchange (ETDEWEB)

    He, H.; Cheng, Z.S.; Liu, W.Q. [Huaxi Medical University, Huaxi (China)

    2008-10-15

    In an endemic fluorosis area, 16 fetuses that were delivered during their sixth to eighth month of gestation by means of artificial abortion were collected and studied. The results (compared to 10 control fetuses from a non-endemic area) show that fluorine levels in tissues are obviously high, especially in brain, calvarium, and femur. The activity of alkaline phosphatase in femur and kidney was raised. By observation of the ultrastructure of samples, the number of mitochondria, rough-surfaced endoplasmic reticulum, and free ribosome in neurons of cerebral cortex were reduced, and the rough-surfaced endoplasmic reticulum was obviously dilated. These findings indicate that the neurons of the cerebral cortex in the developing brain may be one of the targets of fluorine.

  3. Synthesis and Characterization of nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion

    Science.gov (United States)

    Zhou, Jianhua; Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong

    2015-03-01

    Nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol-gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO2 presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film-air interface.

  4. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    Science.gov (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  5. Gibbs free energy, surface stress and melting point of nanoparticle

    International Nuclear Information System (INIS)

    Luo, Wenhua; Hu, Wangyu

    2013-01-01

    Two approaches to calculating Gibbs free energy of nanoparticle are compared. It is found that the contribution from the vibrational entropy of surface atoms of nanoparticle to its Gibbs free energy can be ignored, and Jiang et al.'s formula [J. Phys. Chem. B 105 (2001) 6275] [27] for calculating surface stress is only valid around room temperature. Furthermore, an approximate relationship between surface stress and surface free energy of nanoparticles is revealed. Finally, the reason why effect of size dependent surface energy on melting point of nanoparticle was neglected is clarified

  6. Passivation of fluorinated activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information

  7. Passivation of fluorinated activated charcoal

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C x F to carbon and ammonium fluoride, NH 4 F. The charcoal laden with NH 4 F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH 4 F as a mixture of NH 3 and HF, which would primarily recombine as NH 4 F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH 3 concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information, results of laboratory tests

  8. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  9. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  10. Chemical method for determination of atomic fluorine flows at low temperature

    International Nuclear Information System (INIS)

    Bezmel'nitsyn, V.N.; Spirin, S.N.; Chajvanov, B.B.

    1982-01-01

    A new method for determination of atomic fluorine flows from the Krsub(sol)+2F → KrF 2 reaction at 77 K has been developed. The kinetics of krypton difluoride formation in this reaction is studied. The atomic fluorine flows from the surface of a heated catalyst and the energetic efficiency of the process of catalytic molecular fluorine dissociation are determined in the 786-873 K temperature range and 5-40 torr pressure range

  11. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    International Nuclear Information System (INIS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  12. Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by co-milling with PTFE

    International Nuclear Information System (INIS)

    Senna, Mamoru; Šepelák, Vladimir; Shi, Jianmin; Bauer, Benjamin; Feldhoff, Armin; Laporte, Vincent; Becker, Klaus-Dieter

    2012-01-01

    Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO 2 nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm −1 (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d–d transitions of titanium ions. Incorporation of fluorine into n-TiO 2 was concentrated at the near surface region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO 2 was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO 2 lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO 6−n Vo n , located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO 2 particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO 2 and (c) fluorine migration from PTFE to TiO 2 . Highlights: Transfer of fluorine from PTFE to n-TiO 2 in a dry solid state process was confirmed. ► 40% of F in PTFE was incorporated to the near surface region of n-TiO 2 nanoparticles. ► The transfer process is

  13. Process for preparing fluorine-18

    Science.gov (United States)

    Winchell, Harry S.; Wells, Dale K.; Lamb, James F.; Beaudry, Samuel B.

    1976-09-21

    An improved process for preparation of fluorine-18 by a neon (deuteron, alpha particle) fluorine-18 nuclear reaction in a non-reactive enclosed reaction zone wherein a ultrapure product is recovered by heating the reaction zone to a high temperature and removing the product with an inert gas.

  14. Rapid general microdetermination of fluorine

    NARCIS (Netherlands)

    Leuven, H.C.E. van; Rotscheid, G.J.; Buis, W.J.

    1979-01-01

    A rapid micromethod for the determination of fluorine in a wide variety of materials has been developed. The method is based on the liberation of the fluorine (as HF) from the sample by means of pyrohydrolysis with steam at 1120?? C, The amount of fluoride in the condensate is subsequently measured

  15. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  16. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  17. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  18. Elemental distribution in fluorinated amorphous carbon thin films.

    Science.gov (United States)

    Lamperti, A; Bottani, C E; Ossi, P M

    2005-01-01

    Focused ion beam-secondary ion mass spectrometry (FIB-SIMS) with 20 nm spatial resolution has been used to analyze amorphous fluorinated carbon thin films, deposited by plasma assisted chemical vapor deposition (PACVD), at micro- to nano-scale. Mass spectra and ion imaging of film surface were acquired and the presence and distribution of contaminants were investigated. Surface images show the secondary ion distribution for F(-), CH(-), CF(-). A change in size and topology of fluorine-rich areas is correlated with film hardness and with microstructure transition from diamond-like to polymer-like, as indicated by infrared and Raman spectroscopies. Based on the surface distributions of CF(-) and CH(-) and on the vibrational spectroscopy results, a mechanism of fluorine substitution for hydrogen and an attempt to explain the film structure and microstructure is proposed.

  19. Modeling of a nanoscale flexoelectric energy harvester with surface effects

    Science.gov (United States)

    Yan, Zhi

    2017-04-01

    This work presents the modeling of a beam energy harvester scavenging energy from ambient vibration based on the phenomenon of flexoelectricity. By considering surface elasticity, residual surface stress, surface piezoelectricity and bulk flexoelectricity, a modified Euler-Bernoulli beam model for the energy harvester is developed. After deriving the requisite energy expressions, the extended Hamilton's principle and the assumed-modes method are employed to obtain the discrete electromechanical Euler-Lagrange's equations. Then, the expressions of the steady-state electromechanical responses are given for harmonic base excitation. Numerical simulations are conducted to show the output voltage and the output power of the flexoelectric energy harvesters with different materials and sizes. Particular emphasis is given to the surface effects on the performance of the energy harvesters. It is found that the surface effects are sensitive to the beam geometries and the surface material constants, and the effect of residual surface stress is more significant than that of the surface elasticity and the surface piezoelectricity. The axial deformation of the beam is also considered in the model to account for the electromechanical coupling due to piezoelectricity, and results indicate that piezoelectricity will diminish the output electrical quantities for the case investigated. This work could lead to the development of flexoelectric energy harvesters that can make the micro- and nanoscale sensor systems autonomous.

  20. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  1. 77 FR 32146 - Safety Evaluation Report, International Isotopes Fluorine Products, Inc., Fluorine Extraction...

    Science.gov (United States)

    2012-05-31

    ..., International Isotopes Fluorine Products, Inc., Fluorine Extraction Process and Depleted Uranium Deconversion... license to International Isotopes Fluorine Products, Inc., (IIFP or the applicant) to authorize construction and operations of a depleted uranium deconversion facility and possession and use of source...

  2. Fluorination by fusion

    International Nuclear Information System (INIS)

    Gray, J.H.

    1986-01-01

    LECO crucibles and incinerator ash are two waste categories that cannot be discarded due to the presence of insoluble transuranics. Current chemical processing methods are not too effective, requiring a number of repeated operations in order to dissolve more than half the transuranics. An alternate dissolution approach has been developed involving the use of ammonium bifluoride. Low temperature fusion of the waste with ammonium bifluoride is followed by dissolution of the fused material in boiling nitric acid solutions. Greater than 60% of the transuranics contained in LECO crucibles and greater than 95% of the transuranics mixed with the incinerator ash are dissolved after a single fusion and dissolution step. Fluorination of the transuranics along with other impurities appears to render the waste material soluble in nitric acid

  3. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  4. Effect of the fluorinated groups on nematic liquid crystal alignment on monomer crosslinked film

    International Nuclear Information System (INIS)

    Yu Tao; Peng Zenghui; Ruan Shengping; Xuan Li

    2004-01-01

    It was found in this work that photosensitive monomers, bisphenol A dicinnamate ester and hexafluorobiphenol a dicinnamate ester were crosslinked under irradiation of linearly polarized ultraviolet light. The exposed films induced homogeneous and homeotropic alignment of liquid crystals (LC), respectively. We verified through experiments that it was fluorinated groups that caused the generation of LC homeotropic alignment on the crosslinked film. Photoreaction process was revealed by Fourier transform infrared spectra. There was no clear morphological anisotropy on these aligned films observed through atomic force microscope analysis. The surface energies were measured and homeotropic alignment reason was discussed in this work

  5. Surface technologies 2006-Alternative energies and policy options

    International Nuclear Information System (INIS)

    Rose, Lars

    2007-01-01

    Surfaces are the immediate contact between anything in our world. Literally, every industry utilizes coatings and surface modifications in order to create surfaces tailored to specific needs, protect underlying substrates, or modify their behavior. Surface and coating technologies are essential to a large variety of different industrial sectors, including transportation, manufacturing, food and biomedical engineering, energy, resources, and materials science and technology. The present paper explains the limitations for alternative energy technologies, with a focus on fuel cell technology development and the alternative energy sector, based on the outcomes of presentations and facilitated discussion groups during a Canadian national workshop series. Options for technological improvements of alternative energy systems are presented in combination with national and international policy choices, which could positively influence research and development in the alternative energy sector

  6. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  7. Dual hierarchical biomimic superhydrophobic surface with three energy states

    Science.gov (United States)

    Chen, Ming-Hung; Hsu, Tsung-Hsing; Chuang, Yun-Ju; Tseng, Fan-Gang

    2009-07-01

    A low hysteresis surface prepared by two-length-scaled hierarchical textures to mimic the Lotus effect is proposed. The fabricated textures incorporate self-masked nanorods on microextrusions. A high static contact angle (160°) and low hysteresis (˜2.7°) are obtained and comparable to the surface properties of a natural lotus leaf. The stability of hydrophobicity is described with respect to three energy states (nonwetting, microwetting, and nanowetting) based on dynamic contact angle analysis by droplet impinging onto the surface. The estimated texture-induced energy barrier based on the principle of energy conservation is in good agreement to those estimated from Laplace's law.

  8. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.

    Science.gov (United States)

    Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei

    2017-09-19

    Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donor-acceptor (D-A)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for D-A polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with "over-fluorination", i.e., when

  9. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  10. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  11. On Averaging Timescales for the Surface Energy Budget Closure Problem

    Science.gov (United States)

    Grachev, A. A.; Fairall, C. W.; Persson, O. P. G.; Uttal, T.; Blomquist, B.; McCaffrey, K.

    2017-12-01

    An accurate determination of the surface energy budget (SEB) and all SEB components at the air-surface interface is of obvious relevance for the numerical modelling of the coupled atmosphere-land/ocean/snow system over different spatial and temporal scales, including climate modelling, weather forecasting, environmental impact studies, and many other applications. This study analyzes and discusses comprehensive measurements of the SEB and the surface energy fluxes (turbulent, radiative, and ground heat) made over different underlying surfaces based on the data collected during several field campaigns. Hourly-averaged, multiyear data sets collected at two terrestrial long-term research observatories located near the coast of the Arctic Ocean at Eureka (Canadian Archipelago) and Tiksi (East Siberia) and half-hourly averaged fluxes collected during a year-long field campaign (Wind Forecast Improvement Project 2, WFIP 2) at the Columbia River Gorge (Oregon) in areas of complex terrain. Our direct measurements of energy balance show that the sum of the turbulent sensible and latent heat fluxes systematically underestimate the available energy at half-hourly and hourly time scales by around 20-30% at these sites. This imbalance of the surface energy budget is comparable to other terrestrial sites. Surface energy balance closure is a formulation of the conservation of energy principle (the first law of thermodynamics). The lack of energy balance closure at hourly time scales is a fundamental and pervasive problem in micrometeorology and may be caused by inaccurate estimates of the energy storage terms in soils, air and biomass in the layer below the measurement height and above the heat flux plates. However, the residual energy imbalance is significantly reduced at daily and monthly timescales. Increasing the averaging time to daily scales substantially reduces the storage terms because energy locally entering the soil, air column, and vegetation in the morning is

  12. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    Science.gov (United States)

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-04-06

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the 3 A″ state of SH 2 , which facilitates the SH + H ↔ S( 3 P) + H 2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10 2 ) of ab initio points, but it needs substantially more points (∼1 × 10 3 ) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  13. Ab initio adiabatic and quasidiabatic potential energy surfaces of H ...

    Indian Academy of Sciences (India)

    s12039-015-1022-8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H. ++. CN system. BHARGAVA ANUSURI and SANJAY KUMAR. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

  14. Microanalysis of Fluorine Contamination and its Depth Distribution in Zircaloy by the Use of a Charged Particle Nuclear Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E.; Starfelt, N.

    1966-07-15

    Fluorine contamination on and below the surface of zircaloy has been studied by means of proton irradiation using a Van de Graaff accelerator and the detection of prompt gamma radiation from the {sup 19}F (p, {alpha}{gamma}) {sup 16}O reaction. Formulae for deriving depth distributions of impurities from the measured counting rates have been derived. The influence of energy straggling on the depth resolution has been studied. Both the total amount and the depth distribution have been measured in samples, which have undergone different treatments. Because of the high yield from the reaction used, a quantity of fluorine less than 0. 01 {mu}g/cm{sup 2} can be detected by this method.

  15. Proton Exchange Membrane Fuel Cell With Enhanced Durability Using Fluorinated Carbon As Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Ahmad Yasser

    2017-01-01

    Full Text Available This study evaluates the fluorination of a carbon aerogel and its effects on the durability of the resulting electrocatalyst for Proton Exchange Membrane Fuel Cell (PEMFC. Fluorine has been introduced before or after platinum deposition. The different electrocatalysts are physico-chemically and electrochemically characterized, and the results discussed by comparison with commercial Pt/XC72 from E-Tek. The results demonstrate that the level of fluorination of the carbon aerogel can be controlled. The fluorination modifies the texture of the carbons by increasing the pore size and decreasing the specific surface area, but the textures remain appropriate for PEMFC applications. Two fluorination sites are observed, leading to both high covalent C-F bond and weakened ones, the quantity of which depends on whether the treatment is done before or after platinum deposition. The order of the different treatments is very important. The presence of platinum contributes to the fluorination mechanism, but leads to amorphous platinum rather inactive towards the Oxygen Reduction Reaction. Finally, a better durability was demonstrated for the fluorinated then platinized catalyst compared both to the same but not fluorinated catalyst and to the reference commercial material (based on the loss of the electrochemical real surface area after accelerated stress tests.

  16. An energy dispersive time resolved liquid surface reflectometer

    CERN Document Server

    Garrett, R F; King, D J; Dowling, T L; Fullagar, W

    2001-01-01

    Two designs are presented for an energy dispersive liquid surface reflectometer with time resolution in the milli-second domain. The designs utilise rotating crystal and Laue analyser optics respectively to energy analyse a pink synchrotron X-ray beam after reflection from a liquid surface. Some performance estimates are presented, along with results of a test experiment using a laboratory source and solid state detector.

  17. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  18. Surface solar radiation from geostationary satellites for renewable energy

    Science.gov (United States)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  19. Intermolecular potential energy surface for CS2 dimer.

    Science.gov (United States)

    Farrokhpour, Hossein; Mombeini, Zainab; Namazian, Mansoor; Coote, Michelle L

    2011-04-15

    A new four-dimensional intermolecular potential energy surface for CS(2) dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center-of-mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller-Plesset second-order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug-cc-pVxZ, x = D, T) and corrected for the basis-set superposition error using the full counterpoise correction method. A two-point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole-dipole dispersion coefficient (C(6) ) of CS(2) fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well-known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol(-1) at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. Copyright © 2010 Wiley Periodicals, Inc.

  20. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    Science.gov (United States)

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  1. Surface Relaxations, Surface Energies and Electronic Structures of BaSnO3 (001) Surfaces: Ab Initio Calculations

    Science.gov (United States)

    Slassi, A.; Hammi, M.; El Rhazouani, O.

    2017-07-01

    The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.

  2. Surface morphology effects in a vibration based triboelectric energy harvester

    Science.gov (United States)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  3. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  4. Fluorine-18-labelled molecules: synthesis and application in medical imaging

    International Nuclear Information System (INIS)

    Dolle, F.; Perrio, C.; Barre, L.; Lasne, M.C.; Le Bars, D.

    2006-01-01

    Positron emission tomography (PET) is one of the more powerful available techniques for medical imaging. It relies on the use of molecules labelled with a positron emitter (β + ). Among those emitters, fluorine-18, available from a cyclotron, is a radionuclide of choice because of its relatively long-half-life (109.8 min) and the relatively low energy of the emitted-positron. The electrophilic form of fluorine-18 ([ 18 F]F 2 or reagents derived from [ 18 F]F 2 ) is mainly used for hydrogen or metal substitutions on aromatic or vinylic carbons. The presence of the stable isotope (fluorine-19) in the radiotracers limits their use in medical imaging. The nucleophilic form of fluorine-18 (alkaline mono-fluoride, K[ 18 F]F, the most used), obtained from irradiation of enriched water, is widely used in aliphatic and (hetero)aromatic substitutions for the synthesis of radiotracers with high specific radioactivity. Some examples of radio-fluorinated tracers used in PET are presented, as well as some of their in vivo applications in human. (authors)

  5. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  6. Corrosion-Mitigating, Bondable, Fluorinated Barrier Coating for Anodized Magnesium

    Science.gov (United States)

    2016-05-01

    benefits of Mg alloys go beyond reduced fuel consumption from weight reduction in that most Mg alloys can be recycled . Although promising, these benefits...that there is a 15-nm surface layer that has an enhanced fluorine content on the order of 15 at% (Fig. 8 , left graph inset). The as-received

  7. Autoionizing states in highly ionized oxygen, fluorine and silicon

    International Nuclear Information System (INIS)

    Forester, J.P.; Peterson, R.S.; Griffin, P.M.; Pegg, D.J.; Haselton, H.H.; Liao, K.H.; Sellin, I.A.; Mowat, J.R.; Thoe, R.S.

    1975-01-01

    Autoionizing states in high Z 3-electron ions associated with core excited configurations of the type 1s2snl and 1s2pnl are reported. The electron decay-in-flight spectra of lithium-like oxygen, fluorine, and silicon ions are presented. Initial beam energies of 6.75-MeV oxygen and fluorine ions and 22.5-MeV silicon ions were used. Stripping and excitation were done by passing the beams through a thin carbon foil. The experimental technique is described. 4 figs, 1 table, 7 refs

  8. [Fluorine as a factor in premature aging].

    Science.gov (United States)

    Machoy-Mokrzyńska, Anna

    2004-01-01

    osteoblasts, stimulate fibroblasts to produce collagenase, and trigger toxic reactions in osteocytes and chondrocytes of trabecular bone. Growing deformations of the skeleton reduce mobility and result in permanent crippling of the patient. Fluoride increases the mass of non-collagen proteins such as proteoglycans and glucosaminoglycans, accelerating skin aging even though protein biosynthesis is generally suppressed. The final outcome includes progressive vascular lesions and disorders of energy metabolism in muscles. In conclusions, the use of fluoride, particularly by dentists and pediatricians, must be controlled and adapted to individual needs. It is worth remembering that fluoride: is the cause of disability due to bone deformations and abnormalities in the musculoskeletal system; reduces the incidence of caries but do not protect against tooth loss; exerts an adverse effect of metabolic processes in the skin; accelerates calcification of vessels and thus reduces their elasticity; inhibits bioenergetic reactions, in particular oxidative phosphorylation, reducing physical activity of muscles. These findings suggest that fluorine may be yet another factor in accelerated aging and revive the dispute started more than two and half thousand years ago whether aging is a physiologic or pathologic process. The understanding of factors modifying the process of aging is the basis for preventive measures aimed at extending life and maintaining full psychosocial activity.

  9. Mono-Fluorinated Alkyne-Derived SAMs on Oxide-Free Si(III) Surfaces: Preparation, Characterization and Tuning of the Si Workfunction

    NARCIS (Netherlands)

    Pujari, S.P.; Andel, van E.; Yaffe, O.; Cahen, D.; Weidner, T.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Organic monolayers derived from ¿-fluoro-1-alkynes of varying carbon chain lengths (C(10)-C(18)) were prepared on Si(111) surfaces, resulting in changes of the physical and electronic properties of the surface. Analysis of the monolayers using XPS, Infrared Reflection Absorption Spectroscopy,

  10. Energy loss in grazing proton-surface collisions

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.

    1994-01-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  11. Fluorine as a constituent in lunar magmatic gases

    Science.gov (United States)

    Goldberg, R. H.; Tombrello, T. A.; Burnett, D. S.

    1976-01-01

    Fluorine surface deposits on Apollo 15 green glass, Apollo 17 orange glass, and on vesicle linings from Apollo 15 basalts were studied by a resonant nuclear reaction technique. Surface layers of about 10 to the 15th F atoms/sq cm were observed on unbroken spheroidal glass surfaces, whereas thinner (about 10 to the 14th atoms/sq cm) deposits were found on the vesicle linings.

  12. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  13. [Adsorption Properties of Fluorine onto Fulvic Acid-Bentonite Complex].

    Science.gov (United States)

    Fang, Dun; Tian, Hua-jing; Ye, Xin; He, Ci-li; Dan, You-meng; Wei, Shi-yong

    2016-03-15

    Fulvic Acid-Bentonite (FA-BENT) complex was prepared using coprecipitation method, and basic properties of the complex and sorption properties of fluorine at different environmental conditions were studied. XRD results showed that the d₀₀₁ spacing of FA- BENT complex had no obvious change compared with the raw bentonite, although the diffraction peak intensity of smectite in FA-BENT complex reduced, and indicated that FA mainly existed as a coating on the external surface of bentonite. Some functional groups (such as C==O, −OH, etc. ) of FA were observed in FA-BENT FTIR spectra, thus suggesting ligand exchange-surface complexation between FA and bentonite. Higher initial pH values of the reaction system were in favor of the adsorption of fluorine onto FA-BENT, while the equilibrium capacity decreased with the increase of pH at initial pH ≥ 4.50. The adsorption of fluorine onto FA-BENT was also affected by ionic strength, and the main reason might be the "polarity" effect. The adsorption of fluorine onto FA-BENT followed pseudo-second-order kinetic model and was controlled by chemical process ( R² = 0.999 2). Compared with the Freundlich model, Langmuir model was apparently of a higher goodness of fit (R² > 0.994 9) for absorption of fluorine onto FA-BENT. Thermodynamic parameters indicated that the adsorption process of fluorine was an spontaneously endothermic reaction, and was an entropy-driven process (ΔH 32.57 kJ · mol⁻¹, ΔS 112.31 J · (mol · K)⁻¹, ΔG −0.65- −1.76 kJ · mol⁻¹).

  14. [Fluorine speciation and its distribution characteristics in selected agricultural soils of North China Plain].

    Science.gov (United States)

    Yi, Chun-Yao; Wang, Bing-Guo; Jin, Meng-Gui

    2013-08-01

    The objectives of this study were to study fluorine speciation and its distribution characteristics in the cultivated soils of wheat-corn fields at the typical areas, the North China Plain. The fluorine contents in cultivated soils and profile soils were measured by consecutive extraction. The results showed that the soil total fluorine (T-F) content at typical areas in the North China Plain ranged from 338.31 mg x kg(-1) to 781.67 mg x kg(-1), with a mean of 430.46 mg x kg(-1). The soil fluorine speciation with the highest content was Residual-Fluorine (Res-F), with a mean of 402.73 mg x kg(-1). The average content of Water soluble Fluorine (Ws-F) was 14.39 mg x kg(-1). The result indicated that the cultivated soil in the study area was at a relatively high fluoride pollution level, which may be harmful to human health and the ecological environment. The contents of Organic Fluorine (Or-F) and Fe/Mn Oxide-Fluorine (Fe/ Mn-F) were also quite high, with a mean of 8.90 mg x kg(-1) and 4.10 mg x kg(-1), respectively. The exchangeable fluorine (Ex-F) only had a very small amount of 0.33 mg x kg(-1). Soil Ws-F was positively correlated with soil pH and CEC, while it was negatively correlated with the percentage of soil clay. The content of soil Fe/Mn-F was positively correlated with soil pH, CEC and the sand grain content percentage, while it was negatively correlated with the clay grain content percentage. The soil pH value had the most significant influence on the water soluble fluorine (Ws-F) and Fe/Mn Oxide-Fluorine (Fe/Mn-F), and the soil CEC had the most significant influence on the soil total fluorine (T-F) and residual-Fluorine (Res-F) by stepwise regression analysis. In the soil profiles, the T-F content appeared as peaks and valleys representing the change of the soil lithology in the vadose zone. The Ws-F in the soil profiles mainly changed in the depth of 0-100 cm near the surface soil and was little influenced by the soil lithology. But it was strongly

  15. Ab initio Potential Energy Surface for H-H2

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  16. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  17. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Hightower, J.R.; Begovich, J.M.

    2000-01-01

    Public Law (PL) 105--204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF6) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public

  18. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure.

    Science.gov (United States)

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.

  19. FLUORINE IN COLORADO OIL SHALE.

    Science.gov (United States)

    Dyni, John R.; ,

    1985-01-01

    Oil shale from the lower part of the Eocene Green River Formation in the Piceance Creek Basin, Colorado, averages 0. 13 weight percent fluorine, which is about twice that found in common shales, but is the same as the average amount found in some oil shales from other parts of the world. Some fluorine may reside in fluorapatite; however, limited data suggest that cryolite may be quantitatively more important. To gain a better understanding of the detailed distribution of fluorine in the deeper nahcolite-bearing oil shales, cores were selected for study from two exploratory holes drilled in the northern part of the Piceance Creek Basin where the oil shales reach their maximum thickness and grade.

  20. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ferrada, J.J.

    2000-04-03

    Public Law (PL) 105-204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF{sub 6}) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public. Fluorine is a pale-yellow gas with a pungent, irritating odor. It is the most reactive nonmetal and will react vigorously with most oxidizable substances at room temperature, frequently with ignition. Fluorine is a severe irritant of the eyes, mucous membranes, skin, and lungs. In humans, the inhalation of high concentrations causes laryngeal spasm and broncospasms, followed by the delayed onset of pulmonary edema. At sublethal levels, severe local irritation and laryngeal spasm will preclude voluntary exposure to high concentrations, unless the individual is trapped or incapacitated. A blast of fluorine gas on the shaved skin of a rabbit causes a second degree burn. Lower concentrations cause severe burns of insidious onset, resulting in ulceration, similar to the effects produced by hydrogen fluoride. Hydrofluoric acid is a colorless, fuming liquid or gas with a pungent odor. It is soluble in water with release of heat. Ingestion of an estimated 1.5 grams produced sudden death without gross pathological damage. Repeated ingestion of small amounts resulted in moderately advanced hardening of the bones. Contact of skin with anhydrous liquid produces severe burns. Inhalation of AHA or aqueous hydrofluoric acid mist or vapors can cause severe respiratory tract irritation that may be fatal. Based on the extreme chemical

  1. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  2. Surface/interfacial free energies and the surface tension of uranium dioxide

    International Nuclear Information System (INIS)

    Deshpande, M.S.; Desai, P.D.; Solomon, A.A.

    1984-01-01

    The purpose of this study is to review literature on surface/interfacial free energies and surface tension of UO/sub 2 +- x/. The data available in the literature are reviewed and critical evaluation and analyses of the available data are made by comparing them not only with each other, but also with the estimated values based on the available theoretical models. In light of the complexity of the material and the problems associated with the available literature data, no recommendations of surface/interfacial free energies and surface tension values are possible at this time. However, an attempt is made to point out problems associated with the data in general and also to develop procedures that can be used to analyze surface energies

  3. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  4. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Storing Fluorine In Graphitelike Carbon Fibers

    Science.gov (United States)

    Hung, Ching-Cheh

    1995-01-01

    Fluorine stored in graphite or graphitelike carbon fibers for later release and/or use in chemical reactions. Storage in carbon fibers eliminates difficulty and risk of using high-pressure tanks and pipes to hold corrosive gas. Storage in carbon fibers makes fluorine more readily accessible than does storage as constituent of metal fluoride. Carbon fibers heated to release stored fluorine, which draws away to vessel where reacts with material to be fluorinated, possibly at temperature other than release temperature. Alternatively, material to be fluorinated mixed or otherwise placed in contact with fibers and entire mass heated to or beyond release temperature.

  6. Fluorinated tracers for imaging cancer with positron emission tomography.

    Science.gov (United States)

    Couturier, Olivier; Luxen, André; Chatal, Jean-François; Vuillez, Jean-Philippe; Rigo, Pierre; Hustinx, Roland

    2004-08-01

    2-[18F]fluoro-2-deoxy-D-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of 18F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes "generalist" tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of "specific" tracers for receptor expression (i.e. oestrogens or somatostatin), cell hypoxia or

  7. Fluorinated tracers for imaging cancer with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Olivier; Chatal, Jean-Francois [Division of Nuclear Medicine, Hotel Dieu, CHU, Nantes (France); Luxen, Andre [Centre de Recherche du Cyclotron, University of Liege, Liege (Belgium); Vuillez, Jean-Philippe [Division of Nuclear Medicine, CHU, Grenoble (France); Rigo, Pierre [Division of Nuclear Medicine, Hopital Princesse Grace, Monte Carlo (Monaco); Hustinx, Roland [Division of Nuclear Medicine, CHU, Liege (Belgium)

    2004-08-01

    2-[{sup 18}F]fluoro-2-deoxy-d-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of{sup 18}F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes ''generalist'' tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of ''specific'' tracers for receptor

  8. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal) and b...

  9. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  10. Surface energies of metals in both liquid and solid states

    Energy Technology Data Exchange (ETDEWEB)

    Aqra, Fathi, E-mail: fathiaqra2009@hotmail.com [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown); Ayyad, Ahmed [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown)

    2011-05-15

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension ({gamma}{sub m}), surface energy ({gamma}{sub SV}), surface excess entropy (-d{gamma}/dT), surface excess enthalpy (H{sub s}), coefficient of thermal expansion ({alpha}{sub m} and {alpha}{sub b}), sound velocity (c{sub m}) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  11. Self-energies and the interactions of particles with surfaces

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.; Echenique, P.M.; Gras-Marti, A.

    1987-01-01

    We have in this paper reviewed the method of treating many-body problems by means of an effective interaction self-energy. We have developed an alternatvie approach to the self-energy which is simpler and more straight-forward than standard methods, and we have illustrated its use with two examples of a charge interacting with a metal surface. In each case the self-energy produces the classical image potential together with corrections due to quantum mechanical effects. This method has also been successfully applied to the problem of an atom interacting with a surface. Corrections to the Van der Waals dispersion force are obtained, and via the non-conservative imaginary parts to /summation//sub i/(z) we discuss transition rates and energy exchange. 14 refs., 1 fig

  12. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NARCIS (Netherlands)

    Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; King, J.C.; Gray, T.; Reijmer, C.H.|info:eu-repo/dai/nl/229345956

    2012-01-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in

  13. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NARCIS (Netherlands)

    Kuipers Munneke, P.; van den Broeke, Michiel; King, J.C.; Gray, T.; Reijmer, C.H.

    2011-01-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), including melt energy. The two AWSs are separated by about 70 km in the

  14. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  15. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and double......-phosgene surfaces were found to have absolute minima of -72.1, -140.4, and -326.6 cm -1 at distances between the rare-gas atom and the phosgene center of mass of 3.184, 3.254, and 3.516 Å, respectively. The potentials were further used in the evaluation of rovibrational states and the rotational constants...

  16. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  17. Surface free energy analysis of adsorbents used for radioiodine adsorption

    Energy Technology Data Exchange (ETDEWEB)

    González-García, C.M. [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); Román, S., E-mail: sroman@unex.es [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); González, J.F.; Sabio, E. [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); Ledesma, B. [Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain)

    2013-10-01

    In this work, the surface free energy of biomass-based activated carbons, both fresh and impregnated with triethylenediamine, has been evaluated. The contribution of Lifshitz van der Waals components was determined by the model proposed by van Oss et al. The results obtained allowed predicting the most probable configurations of the impregnant onto the carbon surface and its influence on the subsequent adsorption of radioactive methyl iodide.

  18. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  19. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  20. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  1. Free energy surfaces in the superconducting mixed state

    Science.gov (United States)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  2. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  3. Saturation of the hydroxyapatite mineral phase using radioactive fluorine

    International Nuclear Information System (INIS)

    Flores de la Torre, J.A.; Badillo A, V.E.; Lopez D, F.A.

    2005-01-01

    With the purpose of knowing the Anion exchange capacity (CIA) of the hydroxyapatite mineral phase, marketed by BIO-RAD, becomes necessary to saturate the surface of the mineral with an anion specie that possesses a strong affinity by this solid as it is the case of the fluorine. Moreover it takes advantage that offers the radioactive tracer technique, using the radioactive isotope of the fluorine, 18 F, produced in the cyclotron of the UNAM. This saturation is obtained in terms of the quantity of retained fluorine (mmol/ 100 g) in the synthetic hydroxyapatite in function of the concentration of the solution of NaF that oscillates from 0.7 M up to 0.16 M to fixed values of pH of 9.2. Those results demonstrate that to this fixed pH value the saturation of the surface of the hydroxyapatite is achieved in approximately 30 mmol/ 100 g, using important concentrations of NaF that correspond to 0.14 M from now on. This result demonstrates the high capacity of the solid considered to retain considerable quantities of fluorine even to basic pH values. (Author)

  4. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  5. Evaluation of Satellite-Based Surface Energy Budget Products with Surface Measurements Over the Great Lakes

    Science.gov (United States)

    Wang, H.; Loeb, N. G.; Lenters, J. D.; Spence, C.; Blanken, P.

    2017-12-01

    Earth's climate is fundamentally driven by the global energy balance. While Earth's energy budget at the top-of-atmosphere (TOA) is well understood, satellite-based estimates of the global mean surface energy budget yield an imbalance of 15-20 Wm-2. The data products used to infer the components of the surface energy budget are often based upon physical or empirical models and ancillary input data sets of varying quality. In order to make progress, comparisons between satellite-based estimates of the surface energy budget components and direct surface measurements are critically needed. This study evaluates surface radiative fluxes from NASA CERES EBAF and surface turbulent heat fluxes from OAFLUX by comparing them with surface station measurements from the Great Lakes Evaporation Network (GLEN). The GLEN measurements are collected using instruments on lighthouses in the Great Lakes, and include surface evaporation measurement via eddy covariance technique. The evaluation is performed for 3 offshore and 1 nearshore Great Lakes sites. We highlight results for Stannard Rock in Lake Superior, which is the farthest lighthouse from shore ( 40km from the nearest land). Relative to the GLEN observations, the OAFLUX underestimates latent heat flux by 12 Wm-2 (19 Wm-2) at Stannard Rock (4-station average), in part due to its weaker near surface wind speed, and overestimates sensible heat flux by 12 Wm-2 (6 Wm-2), which is partly contributed by its colder surface air temperature. The CERES EBAF-Surface overestimates the surface downward all-sky shortwave (longwave) flux by 8 Wm-2 (7 Wm-2) at Stannard Rock, and is comparable to the 4-station average. As a result, the surface estimated using EBAF-Surface and OAFLUX receives 16 Wm-2 (13 Wm-2) more than the GLEN observations at Stannard Rock (4-station average). The above surface energy flux differences will be further discussed based on a comparison between the input data sets used in the satellite-based estimates and

  6. Low Energy Surface Activation of Zirconia Based Restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N

    2016-03-01

    To evaluate the influence of low energy surface activation technique on the biaxial flexure strength of zirconia frameworks. Zirconia discs were prepared by cutting CAD/CAM zirconia blocks. Sintered discs were airborne particle abraded using one of the following particles: 30 μm alumina particles, 50 μm alumina particles, or modified round edges 30 μm alumina particles at low pressure. Scanning electron microscopy, x-ray diffraction analysis, surface roughness, and biaxial flexure strength tests were performed (n = 20). Fractured specimens were fractographically analyzed (α = 0.05). Low energy surface activation resulted in 7% monoclinic crystallographic transformation, increasing surface roughness from 0.05 to 0.3 μm and in significant increase in biaxial flexure strength (1718 MPa) compared 30 μm (1064 MPa), 50 μm (1210 MPa), and as-sintered specimens (1150 MPa). Low energy surface activation of zirconia specimens improved the biaxial flexure strength of zirconia frameworks without creation of surface damage. Clinical implications: by controlling particle size and shape of alumina, the flexure strength of zirconia restorations could be increased usinglow pressure particle abrasion.

  7. Investigation on the pure and fluorine doped vanadium oxide thin films deposited by spray pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Margoni, Mudaliar Mahesh; Mathuri, S. [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur, – 603203 Kancheepuram Dt., Tamil Nadu (India); Ramamurthi, K., E-mail: krmurthin@yahoo.co.in [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur, – 603203 Kancheepuram Dt., Tamil Nadu (India); Babu, R. Ramesh [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli – 620024, Tamil Nadu (India); Sethuraman, K. [School of Physics, Madurai Kamaraj University, Madurai – 625021, Tamil Nadu (India)

    2016-05-01

    Vanadium oxide and fluorine doped vanadium oxide thin films were deposited on the micro-slide glass substrates at 400 °C by spray pyrolysis technique. Vanadium oxide films were deposited using 0.1 M ammonium meta vanadate aqua solution. Precursor solution used to deposit fluorine doped vanadium oxide films was prepared adding separately 5 wt.%, 10 wt.%, 15 wt.% and 20 wt.% of ammonium fluoride with the 0.1 M ammonium meta vanadate aqua solution. X-ray diffraction results showed that the films are in mixed phases of β-V{sub 2}O{sub 5}, V{sub 2}O{sub 5} and V{sub 3}O{sub 7}. Surface morphology and band gap of these films were modified due to different levels of fluorine doping. The average visible transmittance (500–800 nm) of vanadium oxide films is decreased due to low level concentration of fluorine doping. - Highlights: • Addition of a few ml HCl yielded clear precursor aqua solution. • F doped vanadium oxide films were deposited for less concentration of fluorine. • Low level fluorine doping modified the surface morphology of the thin films. • Direct band gap of vanadium oxide film is slightly increased by fluorine doping.

  8. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes.

    Science.gov (United States)

    Li, Hao; Zheng, Nan; Liang, Ni; Zhang, Di; Wu, Min; Pan, Bo

    2016-07-01

    Multi-walled carbon nanotubes (MC) were fluorinated by a solid-phase reaction method using polytetrafluoroethylene (PTFE). The surface alteration of carbon nanotubes after fluorination (MC-F) was confirmed based on surface elemental analysis, TEM and SEM. The incorporation of F on MC surface was discussed as F incorporation on carbon defects, replacement of carboxyl groups, as well as surface coating of PTFE. The adsorption performance and mechanisms of MC-F for five kinds of representative organic compounds: sulfamethoxazole (SMX), ofloxacin (OFL), norfloxacin (NOR), bisphenol a (BPA) and phenanthrene (PHE) were investigated. Although BET-N2 surface area of the investigated CNTs decreased after fluorination, the adsorption of all five chemicals increased. Because of the glassification of MC-F surface coating during BET-N2 surface area measurement, the accessible surface area of MC-F was underestimated. Desorption hysteresis was generally observed in all the sorption systems in this study, and the desorption hysteresis of MC-F were stronger than the pristine CNTs. The enhanced adsorption of MC-F may be attributed the pores generated on the coated PTFE and the dispersed CNT aggregates due to the increased electrostatic repulsion after fluorination. The rearrangement of the bundles or diffusion of the adsorbates in MC-F inner pores were the likely reason for the strong desorption hysteresis of MC-F. The butterfly structure of BPA resulted in its high sorption and strong desorption hysteresis. The exothermic sorption character of OFL on CNTs resulted in its strong desorption hysteresis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Abundance of Interstellar Fluorine

    Science.gov (United States)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  10. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  11. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs.

    Science.gov (United States)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya; Chuang, Yu-Chun; Chen, Yu-Sheng; Jacobson, Allan J; Miljanić, Ognjen Š

    2015-11-16

    Two mesoporous fluorinated metal-organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m(2) g(-1), the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)-the latter two being ozone-depleting substances and potent greenhouse species-with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya; Chuang, Yu-Chun; Chen, Yu-Sheng; Jacobson, Allan J.; Miljani,; #263; Ognjen, Š. [NSRRC; (UC); (Houston)

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m2g-1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  13. Plasma Treatment Maintains Surface Energy of the Implant Surface and Enhances Osseointegration

    Directory of Open Access Journals (Sweden)

    Fernando P. S. Guastaldi

    2013-01-01

    Full Text Available The surface energy of the implant surface has an impact on osseointegration. In this study, 2 surfaces: nonwashed resorbable blasting media (NWRBM; control and Ar-based nonthermal plasma 30 days (Plasma 30 days; experimental, were investigated with a focus on the surface energy. The surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and the chemistry by X-ray photoelectron spectroscopy (XPS. Five adult beagle dogs received 8 implants (n=2 per surface, per tibia. After 2 weeks, the animals were euthanized, and half of the implants (n=20 were removal torqued and the other half were histologically processed (n=20. The bone-to-implant contact (BIC and bone area fraction occupancy (BAFO were evaluated on the histologic sections. The XPS analysis showed peaks of C, Ca, O, and P for the control and experimental surfaces. While no significant difference was observed for BIC parameter (P>0.75, a higher level for torque (P<0.02 and BAFO parameter (P<0.01 was observed for the experimental group. The surface elemental chemistry was modified by the plasma and lasted for 30 days after treatment resulting in improved biomechanical fixation and bone formation at 2 weeks compared to the control group.

  14. Potential energy surfaces for Ж = , Ne- Ba nuclei

    Indian Academy of Sciences (India)

    112Ba nu- clei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RA1 and TM1 parameter sets ...

  15. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...

  16. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Abstract. Limitations of the static Woods–Saxon potential and the applicability of the energy- dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional. Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface exci- tations of the fusing nuclei are found to ...

  17. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  18. Surface energy, CO2 fluxes and sea ice

    CSIR Research Space (South Africa)

    Gulev, SK

    2009-09-01

    Full Text Available This paper reviews the current state of observation, parameterization and evaluation of surface air-sea energy and gas fluxes, and sea ice, for the purposes of monitoring and predicting the state of the global ocean. The last 10 years have been...

  19. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  20. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  1. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Limitations of the static Woods–Saxon potential and the applicability of the energy dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface excitations of the fusing nuclei are found to be ...

  2. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  3. Analysis of fluorine by nuclear reactions and applications to human dental enamel

    International Nuclear Information System (INIS)

    Stroobants, J.; Bodart, F.; Deconninck, G.; Demortier, G.; Nicolas, G.

    Nuclear reactions induced on Fluorine by low energy protons are investigated, thick target excitation yield curves and tables for 19 F(p,p'γ) 19 F and 19 F(p,αγ) 16 O reactions are given between 0.3 and 2.5 MeV. Interferences from other nuclear reactions, detection limits and sensitivity for Fluorine detection are investigated. After a wide investigation of the repartition of Fluorine in tooth enamel it is concluded that there is an equilibrium of the concentrations between tooth and saliva which is rapidly restored after the perturbation introduced by the external treatments. (author)

  4. Instrumental method for determination of nitrogen and fluorine in plutonium using (α, pγ) reaction

    International Nuclear Information System (INIS)

    Ovechkin, V.V.; Melent'ev, V.I.; Gorbunov, V.F.

    1976-01-01

    The instrumental method of determining nitrogen and fluorine in 239 Pu has been developed which is based on measuring the areas of peaks of γ-radiation with energy 871 keV (for nitrogen) and 1275 KeV (for fluorine) with respect to the peak areas of 239 Pu γ-self-radiation. The lower limits for nitrogen and fluorine detection equal to 5.10 -3 and 3x10 -3 wt.%, respectively, have been attained when analysing 5g plutonium sample for 2 hours with the help of γ-spectrometer

  5. Constructing Fluorine-Free and Cost-Effective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO2 Nanoparticles.

    Science.gov (United States)

    Ye, Hui; Zhu, Liqun; Li, Weiping; Liu, Huicong; Chen, Haining

    2017-01-11

    Superhydrophobic coatings have drawn much attention in recent years for their wide potential applications. However, a simple, cost-effective, and environmentally friendly approach is still lacked. Herein, a promising approach using nonhazardous chemicals was proposed, in which multiple hydrophobic functionalized silica nanoparticles (SiO 2 NPs) were first prepared as core component, through the efficient reaction between amino group containing SiO 2 NPs and the isocyanate containing hydrophobic surface modifiers synthesized by normal alcohols, followed by simply spraying onto various substrates for superhydrophobic functionalization. Furthermore, to further improve the mechanical durability, an organic-inorganic composite superhydrophobic coating was fabricated by incorporating cross-linking agent (polyisocyanate) into the mixture of hydrophobic-functionalized SiO 2 NPs and hydroxyl acrylic resin. The hybrid coating with cross-linked network structures is very stable with excellent mechanical durability, self-cleaning property and corrosion resistance.

  6. Energy loss of light ions scattered off Al(110) single crystal surfaces at low energy

    NARCIS (Netherlands)

    Hausmann, S; Hofner, C; Schlathölter, Thomas; Franke, H; Narmann, A; Heiland, W

    We present energy loss data taken after grazing incidence scattering of H+, H-0, He2+, He+, and He-0 off an Al(110) surface, The data is evaluated by means of a procedure that allows to extract surface electron density parameters. The obtained density parameters will be compared to those obtained

  7. Exploring the free energy surfaces of clusters using reconnaissance metadynamics

    Science.gov (United States)

    Tribello, Gareth A.; Cuny, Jérôme; Eshet, Hagai; Parrinello, Michele

    2011-09-01

    A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010), 10.1073/pnas.1011511107] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface.

  8. Three-dimensional potential energy surface of Ar–CO

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, Yoshihiro, E-mail: y-sumiyoshi@gunma-u.ac.jp [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  9. Fluorine atom subsurface diffusion and reaction in photoresist

    International Nuclear Information System (INIS)

    Greer, Frank; Fraser, D.; Coburn, J.W.; Graves, David B.

    2003-01-01

    Kinetic studies of fluorine and deuterium atoms interacting with an OiR 897 10i i-line photoresist (PR) are reported. All experiments were conducted at room temperature. Films of this PR were coated on quartz-crystal microbalance (QCM) substrates and exposed to alternating fluxes of these atoms in a high vacuum apparatus. Mass changes of the PR were observed in situ and in real time during the atom beam exposures using the QCM. A molecular-beam sampled differentially pumped quadrupole mass spectrometer (QMS) was used to measure the species desorbing from the PR surface during the F and D atom exposures. During the D atom exposures, hydrogen abstraction and etching of the PR was observed, but no DF formation was detected. However, during the F atom exposures, the major species observed to desorb from the surface was DF, formed from fluorine abstraction of deuterium from the photoresist. No evidence of film etching or fluorine self-abstraction was observed. The film mass increased during F atom exposure, evidently due to the replacement of D by F in the film. The rate of DF formation and mass uptake were both characterized by the same kinetics: An initially rapid step declining exponentially with time (e -t/τ ), followed by a much slower step following inverse square root of time (t -1/2 ) kinetics. The initially rapid step was interpreted as surface abstraction of D by F to form DF, which desorbs, with subsequent F impacting the surface inserted into surface C dangling bonds. The slower step was interpreted as F atoms diffusing into the fluorinated photoresist, forming DF at the boundary of the fluorinated carbon layer. The t -1/2 kinetics of this step are interpreted to indicate that F diffusion through the fluorinated carbon layer is much slower than the rate of F abstraction of D to form DF, or the rate of F insertion into the carbon dangling bonds left behind after DF formation. A diffusion-limited growth model was formulated, and the model parameters are

  10. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Randy R. [Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  11. Degree of functionalization and stability of fluorine groups fixed to carbon nanotubes and graphite nanoplates by CF{sub 4} microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader-Fernández, V.K.; Morales-Lara, F. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Melguizo, M.; García-Gallarín, C.; López-Garzón, R.; Godino-Salido, M.L. [Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén (Spain); López-Garzón, F.J., E-mail: flopez@ugr.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Domingo-García, M.; Pérez-Mendoza, M.J. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2015-12-01

    Highlights: • The surface area of GNPs and MWCNTs determines the degree of fluorination by plasma. • Fluorine is bound to carbon atoms in up to eight chemical environments. • The stability of the fluorine groups varies in a wide range of temperature. • The electronic properties of MWCNTs are changed as a consequence of fluorination. • The textural characteristics of the materials are not changed after fluorination. - Abstract: The fluorination of graphite nanoplates (GNPs) and multi-wall carbon nanotubes (MWCNTs) by CF{sub 4} cold plasma is reported. The aim is to analyze the influence of the textural characteristics in the degree of fluorination and in the thermal stability of the fluorine groups. We have used thermal programmed desorption which clearly discriminates the nature of the desorbing species and their stability. The degree of fluorination of both materials is similar up to 20 min of treatment and then it decreases in GNPs at longer treatments. Nevertheless, the fluorine content in MWCNTs keeps increasing after 45 min. This different evolution of the fluorination degree with the time is related to the surface areas. The fluorine bonding is produced not only in defects and irregularities but also on the external graphene sheets of both materials, and it results in up to eight different chemical environments having different thermal stabilities from 150 °C up to temperatures higher than 900 °C. The fluorination increases the electronic states near the Fermi level of the nanotubes whereas it does not affect the electronic properties of graphite nanoplates. It is shown that no intercalation compounds are formed and that the textural characteristics of the materials remain unchanged after fluorination.

  12. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  13. Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer.

    Science.gov (United States)

    Riskowski, Ryan A; Armstrong, Rachel E; Greenbaum, Nancy L; Strouse, Geoffrey F

    2016-02-23

    Optical ruler methods employing multiple fluorescent labels offer great potential for correlating distances among several sites, but are generally limited to interlabel distances under 10 nm and suffer from complications due to spectral overlap. Here we demonstrate a multicolor surface energy transfer (McSET) technique able to triangulate multiple points on a biopolymer, allowing for analysis of global structure in complex biomolecules. McSET couples the competitive energy transfer pathways of Förster Resonance Energy Transfer (FRET) with gold-nanoparticle mediated Surface Energy Transfer (SET) in order to correlate systematically labeled points on the structure at distances greater than 10 nm and with reduced spectral overlap. To demonstrate the McSET method, the structures of a linear B-DNA and a more complex folded RNA ribozyme were analyzed within the McSET mathematical framework. The improved multicolor optical ruler method takes advantage of the broad spectral range and distances achievable when using a gold nanoparticle as the lowest energy acceptor. The ability to report distance information simultaneously across multiple length scales, short-range (10-50 Å), mid-range (50-150 Å), and long-range (150-350 Å), distinguishes this approach from other multicolor energy transfer methods.

  14. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  15. Influence of Surface Energy Effects on Elastic Fields of a Layered Elastic Medium under Surface Loading

    Directory of Open Access Journals (Sweden)

    Supakorn Tirapat

    2017-01-01

    Full Text Available This paper presents the analysis of a layered elastic half space under the action of axisymmetric surface loading and the influence of the surface energy effects. The boundary value problems for the bulk and the surface are formulated based on classical linear elasticity and a complete Gurtin-Murdoch constitutive relation. An analytical technique using Love’s representation and the Hankel integral transform is employed to derive an integral-form solution for both displacement and stress fields. An efficient numerical quadrature is then applied to accurately evaluate all involved integrals. Selected numerical results are presented to portray the influence of various parameters on elastic fields. Numerical results indicate that the surface stress displays a significant influence on both displacement and stress fields. It is also found that the layered half space becomes stiffer with the presence of surface stresses. In addition, unlike the classical elasticity solution, size-dependent behavior of elastic fields is noted. The present analytical solutions provide fundamental understanding of the influence of surface energy on layered elastic materials. It can also be used as a benchmark solution for the development of numerical techniques such as FEM and BEM, for analysis of more complex problems involving a layered medium under the influence of surface energy effects.

  16. Seasonal contrast in the surface energy balance of the Sahel

    Science.gov (United States)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  17. Energy Exchange between Weakly Ionized Gas and a Metal Surface

    Science.gov (United States)

    Polikarpov, A. Ph.; Polikarpov, Ph. J.; Borisov, S. F.

    2008-12-01

    An attempt to describe heat exchange of low ionized gas with a metal surface has been made with the use of DSMC approach and kinetic Monte-Carlo method. Modeling is adhered to concrete experimental conditions at which thin tungsten wire is placed in plasma and dependence of a heat flow on wire surface temperature, gas pressure, gas nature and a degree of ionization is investigated. As a result of simulation temperature profiles near the wire surface for nitrogen and argon as well as dependence of relative heat flow in a gas/surface system on temperature and degree of ionization with consideration of energy accommodation have been obtained. In the case of nitrogen the chemical charge-transfer reaction is taken into account.

  18. Electronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine.

    Science.gov (United States)

    Duan, Yuhua; Stinespring, Charter D; Chorpening, Benjamin

    2015-10-01

    To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2 H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine above the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the p orbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.

  19. Potential energy surface for ? dissociation including spin-orbit effects

    Science.gov (United States)

    Siebert, Matthew R.; Aquino, Adelia J. A.; de Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-01

    Previous experiments [J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation ( ? ) and found a one-dimensional distribution of translational energy, an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction ? → C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single-point (energy) calculations, and multi-reference energy calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the ? reactant has a substantial effect on the role of the SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for ? similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for ? , similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcalmol-1. Also, we find that, for this system, coupled-cluster single-point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  20. Constraining Agricultural Irrigation Surface Energy Budget Feedbacks in Atmospheric Models

    Science.gov (United States)

    Aufforth, M. E.; Desai, A. R.; Suyker, A.

    2017-12-01

    The expansion and modernization of irrigation increased the relevance of knowing the effects it has on regional weather and climate feedbacks. We conducted a set of observationally-constrained simulations determining the result irrigation exhibits on the surface energy budget, the atmospheric boundary layer, and regional precipitation feedbacks. Eddy covariance flux tower observations were analyzed from two irrigated and one rain-fed corn/soybean rotation sites located near Mead, Nebraska. The evaluated time period covered the summer growing months of June, July, and August (JJA) during the years when corn grew at all three sites. As a product of higher continuous surface moisture availability, the irrigated crops had significantly higher amounts of energy partitioned towards latent heating than the non-irrigated site. The daily average peak of latent heating at the rain-fed site occurred before the irrigated sites and was approximately 45 W/m2 lower. Land surface models were evaluated on their ability to reproduce these effects, including those used in numerical weather prediction and those used in agricultural carbon cycle projection. Model structure, mechanisms, and parameters that best represent irrigation-surface energy impacts will be compared and discussed.

  1. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  2. Surface energy budget responses to radiative forcing at Summit, Greenland

    Science.gov (United States)

    Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.; Noone, David; Persson, P. Ola G.; Steffen, Konrad

    2017-02-01

    Greenland Ice Sheet surface temperatures are controlled by an exchange of energy at the surface, which includes radiative, turbulent, and ground heat fluxes. Data collected by multiple projects are leveraged to calculate all surface energy budget (SEB) terms at Summit, Greenland, for the full annual cycle from July 2013 to June 2014 and extend to longer periods for the radiative and turbulent SEB terms. Radiative fluxes are measured directly by a suite of broadband radiometers. Turbulent sensible heat flux is estimated via the bulk aerodynamic and eddy correlation methods, and the turbulent latent heat flux is calculated via a two-level approach using measurements at 10 and 2 m. The subsurface heat flux is calculated using a string of thermistors buried in the snow pack. Extensive quality-control data processing produced a data set in which all terms of the SEB are present 75 % of the full annual cycle, despite the harsh conditions. By including a storage term for a near-surface layer, the SEB is balanced in this data set to within the aggregated uncertainties for the individual terms. November and August case studies illustrate that surface radiative forcing is driven by synoptically forced cloud characteristics, especially by low-level, liquid-bearing clouds. The annual cycle and seasonal diurnal cycles of all SEB components indicate that the non-radiative terms are anticorrelated to changes in the total radiative flux and are hence responding to cloud radiative forcing. Generally, the non-radiative SEB terms and the upwelling longwave radiation component compensate for changes in downwelling radiation, although exact partitioning of energy in the response terms varies with season and near-surface characteristics such as stability and moisture availability. Substantial surface warming from low-level clouds typically leads to a change from a very stable to a weakly stable near-surface regime with no solar radiation or from a weakly stable to neutral

  3. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  4. Effect of fluorine on dairy cattle. V. Fluorine in the urine as an estimator of fluorine intake

    Energy Technology Data Exchange (ETDEWEB)

    Shupe, J.L.; Harris, L.E.; Greenwood, D.A.; Butcher, J.E.; Nielsen, H.M.

    1963-03-01

    Thirty-two Holstein-Friesian cows were fed four levels of fluorine, two levels of calcium-phosphorus mineral, and two levels of a concentrate mix from about 3 months to 7.5 years of age. Two digestion and balance trials were conducted before calving and three after the animals started to lactate. In addition, after the cows were on trial for 7 years and 52 days, urine was collected approximately every 1.5 hours and composited for each 3-hour interval over a 24-hour period. During these and previous studies, it was found that urine samples should be taken in the morning for best results and that, when possible, samples of urine should be obtained from several cows and the results pooled to give a reliable index of the fluorine consumed. The determination of the fluorine:creatinine ratio was found to have merit as a means of adjusting for differences in urine volumes. A correlation was found to exist among concentration of fluorine in the urine, amount of fluorine in dry matter consumed, and the length of time that fluorine is ingested. By determining parts per million (ppm) of fluorine in the urine and combining this with a knowledge of the length of time the animals had ingested fluorine, the ppm of fluorine in the ingested dry matter could be estimated. Taken alone, however, this measurement was an inadequate criterion for a definite diagnosis of fluorosis in cattle. 10 references, 4 figures, 3 tables.

  5. Erosive potential of energy drinks on the dentine surface.

    Science.gov (United States)

    Pinto, Shelon C S; Bandeca, Matheus C; Silva, Carolina N; Cavassim, Rodrigo; Borges, Alvaro H; Sampaio, José E C

    2013-02-19

    Considering the current high consumption of energy drinks, the aim of the present study is to evaluate the influence of energy drinks in removing the smear layer and exposing dentinal tubules on root surface. Dentine root surfaces were exposed using a diamond bur. Forty movements of scaling were performed in the area prepared in order to create a smear layer. One hundred and thirty specimens were obtained from 35 teeth. Specimens were randomly distributed into 12 groups (n = 10) and divided into subgroups according to the application: topical (n = 5) and friction (n = 5). Twelve energy drinks were evaluated: RedBull, Burn, TNT, Flash Power, Flying Horse, Sports Drink, Ionic, Hot Power, Army Power, Gladiator and Bug. Distilled water was used as a control group. The specimens were analysed by scanning electron microscopy. Topical application: a significant influence of energy drinks on smear layer removal was found for FlyingHorse and Bug when compared with the control group. Friction application: significant smear layer removal was found for Burn, FlyingHorse, Gladiator, SportsDrinks, when compared with the control group. Comparing the different application forms, a statistically significant difference was found for Army Power. Considering the significant smear layer removal, energy drinks can be an important etiological factor for cervical dentine hypersensitivity.

  6. Surface modifications of polypropylene by high energy carbon ions

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  7. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme.

    Science.gov (United States)

    Sharma, Indu; Pattanayek, Sudip K

    2017-07-01

    The surface energy, a macroscopic property, depends on the chemical functionality and micro- and macroscopic roughness of the surface. The adsorption of two widely used proteins bovine serum albumin (BSA) and lysozyme on surfaces of four different chemical functionalities were done to find out the interrelation between macroscopic and microscopic properties. We have observed the secondary structure of protein after its adsorption. In addition, we observed the variation of surface energy of proteins due to variation in adsorption time, change in protein concentration and effect of a mixture of proteins. Surfaces of three different chemical functionalities namely, amine, hydroxyl and octyl were obtained through self-assembled monolayer on silica surfaces and were tested for responses towards adsorption of lysozyme and BSA. The adsorbed lysozyme has higher surface energy than the adsorbed BSA on amine and octyl surfaces. On hydroxyl functional surface, the surface energy due to the adsorbed lysozyme or BSA increases slowly with time. The surface energy of the adsorbed protein increases gradually with increasing protein concentration on hydrophobic surfaces. On hydrophilic surfaces, with increasing BSA concentration in bulk solution, the surface energy of the adsorbed protein on GPTMS and amine surfaces is maximum at 1μM concentration. During the adsorption from a mixture of BSA and lysozyme on octyl surface, first lysozyme adsorbs and subsequent BSA adsorption leads to a high surface energy. Copyright © 2016. Published by Elsevier B.V.

  8. Special Feature Organo-Fluorine Chemical Science

    Directory of Open Access Journals (Sweden)

    Helmut Martin Hügel

    2012-06-01

    Full Text Available Fluorine is the 13th most abundant element and, with other fluorine containing functional groups, is a most effective element in biological substances, pharmaceuticals, agrochemicals, liquid crystals, dyes, polymers and a wide range of consumer products. This reflects its resistance to metabolic change due to the strength of the C-F bond providing biological stability and the application of its nonstick-interfacial physical characteristics. Its introduction often remains a synthetic challenge. The widespread use of organofluorines has increased the demand for the development of practical and simple reagents and experimental strategies for the incorporation of fluorine into all types of molecular structures and this was the reasoning behind this special feature on Organo-Fluorine Chemical Science.The contributed articles belong to two broad groups: (i preparation of fluorine materials, polymers; (ii the synthesis/applications of organo-fluorine molecules. [...

  9. The interaction of low energy ion beams with surfaces

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  10. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  11. Supramolecular Surface Photochemistry: Cascade Energy Transfer between Encapsulated Dyes Aligned on a Clay Nanosheet Surface.

    Science.gov (United States)

    Tsukamoto, Takamasa; Ramasamy, Elamparuthi; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, V

    2016-03-29

    Three coumarin derivatives (7-propoxy coumarin, coumarin-480, and coumarin-540a, 2, 3, and 4, respectively) having different absorption and emission spectra were encapsulated within a water-soluble organic capsule formed by the two positively charged ammonium-functionalized cavitand octaamine (OAm, 1). Guests 2, 3, and 4 absorb in ultraviolet, violet, and blue regions and emit in violet, blue, and green regions, respectively. Energy transfer between the above three coumarin@(OAm)2 complexes assembled on the surface of a saponite clay nanosheet was investigated by steady-state and time-resolved emission techniques. Judging from their emission and excitation spectra, we concluded that the singlet-singlet energy transfer proceeded from 2 to 3, from 2 to 4, and from 3 to 4 when OAm-encapsulated 2, 3, and 4 were aligned on a clay surface as two-component systems. Under such conditions, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were calculated to be 33, 36, and 50% in two-component systems. When all three coumarins were assembled on the surface and 2 was excited, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were estimated to be 32, 34, and 33%. A comparison of energy transfer efficiencies of the two-component and three-component systems revealed that excitation of 2 leads to emission from 4. Successful merging of supramolecular chemistry and surface chemistry by demonstrating novel multi-step energy transfer in a three-component dye encapsulated system on a clay surface opens up newer opportunities for exploring such systems in an artificial light-harvesting phenomenon.

  12. Low energy atomic and molecular collision with graphite surface

    International Nuclear Information System (INIS)

    Bercu, M.; Grecu, V. V.

    2002-01-01

    The interaction of atomic and molecular species of hydrogen with basal plane of graphite has been investigated by means of atomic cluster models of 10, 24 and 48 carbon atoms using Hartree-Fock - Linear Combination of Atomic Orbitals (HF-LCAO) theory at the ab-initio and semiempirical level of approximation. The last approach was based on an original package developed for carbon clusters. Atomic migration between consecutive basal planes was described by cluster models of two sheets of carbon atoms. Our contribution presents the theoretical results about atomic and molecular interactions with graphite. It was found for H atom bonding energy the value 2.6 eV, using the largest cluster model. The migration of H atoms above the surface and between consecutive basal planes was simulated by extended calculations of potential energy in each point of a mesh containing 450 points describing a local surface of 0.25 nm 2 . A 3D interpolation approach gives the image of a hypersurface potential energy projection at a given distance to the graphite surface. The semi-quantitative results have indicated two significant facts related to atomic species migration. The first is that H atom has the smallest displacement barrier along C-C bonds at a distance of 1.3 A from the basal plane. In the case of absorbed atoms between graphite basal planes an almost free motion channel has been found parallel to the surface. The interaction potential barrier for H atom collision with graphite surface at the center of the carbon ring has been calculated neglecting surface vibration modes and found to be 5.9 eV . The hyperfine interaction between the electron of hydrogen and the proton has been taken as a measure of the interaction between the incident atom and the target local states. The isotropic hyperfine constant obtained at the level of the semiempiric calculations was found to be 402 Gs at the equilibrium position of H atom above a C atom at a distance of 1.3 A. The corresponding value

  13. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  14. Constructing ab initio and empirical potential energy surfaces for water

    International Nuclear Information System (INIS)

    Kain, Jacqueline Sophie

    2001-01-01

    The infrared spectrum of water is possibly one of the most well studied and yet portions of it are still poorly understood. Recently, significant advances have been made in assigning water spectra using variational nuclear calculations. The major factor determining the accuracy of ro-vibrational spectra of water is the accuracy of the underlying Potential Energy Surface. Even the most accurate ab initio Potential Energy Surface does not reproduce the Born-Oppenheimer surface to sufficient accuracy for spectroscopic studies. Furthermore, effects beyond this model such as the adiabatic correction, the relativistic correction and the non-adiabatic correction have to be considered. This thesis includes a discussion on how the relativistic correction was calculated, for the water molecule, from first-order perturbation theory. The relativistic correction improved vibrational stretching motion while making the prediction of the bending modes far worse. For rotational motion the relativistic effect had an increasing effect with increasing Ka. A further alteration to the ab initio calculations is introduced by adjusting the barrier to linearity in the water potential. This alteration to the barrier was considered in order to compensate for the lack of convergence of quantum chemical calculations of the Born-Oppenheimer surface. This barrier attempts to represent the change in the potential from linear to equilibrium. We show the improvements this has on the calculated energy levels by comparison with the HITRAN database. This then led the way to the improved spectroscopic potential presented here in this thesis. This new spectroscopic potential reduces the overall standard deviation significantly for vibrational and rotational energy levels. (author)

  15. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  16. Plasma deposited fluorinated films on porous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gancarz, Irena [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Bryjak, Marek, E-mail: marek.bryjak@pwr.edu.pl [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawski, Jan; Wolska, Joanna [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawa, Joanna; Kujawski, Wojciech [Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarina St., 87-100 Torun (Poland)

    2015-02-01

    75 KHz plasma was used to modify track etched poly(ethylene terephthalate) membranes and deposit on them flouropolymers. Two fluorine bearing monomers were used: perflourohexane and hexafluorobenzene. The modified surfaces were analyzed by means of attenuated total reflection infra-red spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and wettability. It was detected that hexaflourobenxene deposited to the larger extent than perflourohaxane did. The roughness of surfaces decreased when more fluoropolymer was deposited. The hydrophobic character of surface slightly disappeared during 20-days storage of hexaflourobenzene modified membrane. Perfluorohexane modified membrane did not change its character within 120 days after modification. It was expected that this phenomenon resulted from post-reactions of oxygen with radicals in polymer deposits. The obtained membranes could be used for membrane distillation of juices. - Highlights: • Plasma deposited hydrophobic layer of flouropolymers. • Deposition degree affects the surface properties. • Hydrohilization of surface due to reaction of oxygen with entrapped radicals. • Possibility to use modified porous membrane for water distillation and apple juice concentration.

  17. Ab initio surface core-level shifts and surface segregation energies

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located...

  18. CO dimer: new potential energy surface and rovibrational calculations.

    Science.gov (United States)

    Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2013-08-15

    The spectrum of CO dimer was investigated by solving the rovibrational Schrödinger equation on a new potential energy surface constructed from coupled-cluster ab initio points. The Schrödinger equation was solved with a Lanczos algorithm. Several 4D (rigid monomer) global ab initio potential energy surfaces (PESs) were made using a previously reported interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The potential has two nonpolar minima giving rise to a complicated set of energy level stacks, which are very sensitive to the shapes and relative depths of the two wells. Although the CO dimer has defied previous attempts at an accurate purely ab initio description our best surface yields results in good agreement with experiment. Root-mean-square (rms) fitting errors of less than 0.1 cm(-1) were obtained for each of the fits using 2226 ab initio data at different levels. This allowed direct assessment of the quality of various levels of ab initio theory for prediction of spectra. Our tests indicate that standard CCSD(T) is slow to converge the interaction energy even when sextuple zeta bases as large as ACV6Z are used. The explicitly correlated CCSD(T)-F12b method was found to recover significantly more correlation energy (from singles and doubles) at the CBS limit. Correlation of the core-electrons was found to be important for this system. The best PES was obtained by extrapolation of calculations at the CCSD(T)(AE)-F12b/CVnZ-F12 (n = 3,4) levels. The calculated energy levels were compared to 105 J ≤ 10 levels from experiment. The rms error for 68 levels with J ≤ 6 is only 0.29 cm(-1). The calculated energy levels were assigned stack labels using several tools. New stacks were found. One of them, stack y1, has an energy lower than many previously known stacks and may be observable.

  19. Study on the energy performance of glazing surfaces

    Directory of Open Access Journals (Sweden)

    Ligia MOGA

    2014-12-01

    Full Text Available A proper thermal design of the building envelope represents an important factor for the energy economics. Glazing surfaces represent one of the important elements in the hygrothermal design activity of a building envelope. The window’s thermal performance has also a strong influence on the thermal performance of the opaque area of the wall. This fact imposed the research of the real interaction, of cooperation and of mutual influences of the characteristics between the two components of the wall of the building envelope, respectively the opaque and the glazing area. Optimal constructive details for the opaque and glazing area of the wall need to be properly designed in order to achieve the required thermal and energy performances imposed for new types of buildings, e.g. passive houses, zero energy buildings.

  20. The importance of surface finish to energy performance

    Directory of Open Access Journals (Sweden)

    Smith Geoff B.

    2017-01-01

    Full Text Available Power generation in solar energy systems, thermal control in buildings and mitigation of the Urban Heat Island problem, are all sensitive to directional response to incoming radiation. The radiation absorption and emission profile also plays a crucial role in each system's response and depends strongly on surface finish. This important sensitivity needs wider recognition in materials data sheets, system modeling, plus in materials and environmental engineering. The impact of surface roughness on thermal response of natural and man-made external environments is examined. Important examples will be given of the role of surface finish within each class. Total emittance links to the way surface finish influences directional emittance E(θ. Smooth surface thermal emittance on PV module covers, many solar absorbers, some roof paints, polished concrete, and glass windows can be up to 15% different from insulator results based on fully diffuse models of the same material. Widespread evidence indicates smooth metals and low-E solar absorber surfaces cool faster, and smooth insulators slower than previously thought. Matt paint is cooler than low sheen paint under the same solar heating impacts and normal concrete cooler than polished. Emittance for water is the prime environmental example of oblique impacts as it reflects strongly at oblique incidence, which leads to a significant drop in E(θ. Ripples or waves however raise water's average emittance. A surprise in this work was the high sensitivity of total E and its angular components to roughness in the depth range of 0.1–0.8 μm, which are well under ambient thermal IR wavelengths of 3–30 μm but common in metal finishing. Parallel energy flows such as evaporation and convective cooling vary if emittance varies. Thermal image analysis can provide insights into angular radiative effects.

  1. Artificial upwelling using the energy of surface waves

    Science.gov (United States)

    Soloviev, A.

    2016-02-01

    The ocean is an important component of climate and climate change, since the heat capacity of a few meters of the upper ocean is equivalent to the heat capacity of the entire atmosphere. (Solar radiation and IR balance in the atmosphere are of course major factors as well.) Artificial upwelling devices using the energy of surface waves, similar to those developed by Vershinskiy, Pshenichnyy, and Soloviev (1987), can bring cold water from below the thermocline to the sea surface. Their wave-inertia pump consisted of a vertical tube, a valve, and a buoy to keep the device afloat. The device operated by using energy of surface waves to create an upward flow of water in the tube. An outlet valve at the top of the unit synchronized the operation of the device with surface waves and prevented back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. This type of artificial upwelling can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from the deep layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps has been estimated for different environmental conditions using a computational fluid dynamics model. The cooled near-surface layer of the ocean will be getting more heat from the sun, which is a detrimental consequence. Cloud seeding can help to mitigate this extra warming. A synergistic approach to climate engineering can thus reduce detriments and increase potential benefits of this system to society.

  2. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  3. Energy density and energy flow of surface waves in a strongly magnetized graphene

    Science.gov (United States)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  4. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  5. Surface energy absorbing layers produced by ion implantation

    International Nuclear Information System (INIS)

    Gurarie, V.N.

    1997-01-01

    Single crystals of magnesia have been ion implanted with 80 keV Si and Cr ions at variable doses and then subjected to testing in a shock plasma. The peak surface temperature has been calibrated by measuring the size and temperature deformation of the fragments formed by multiple microcracking during thermal shock. the crack density curves for MgO crystals demonstrate that in a wide range of thermal shock intensity the ion implanted crystals develop a system of microcracks of a considerably higher density than the unimplanted ones. The high density of cracks nucleated in the ion implanted samples results in the formation of a surface energy absorbing layer which effectively absorbs elastic strain energy induced by thermal shock. As a consequence the depth of crack penetration in the layer and hence the degree of fracture damage are decreased. the results indicate that a Si implant decreases the temperature threshold of cracking and simultaneously increases the crack density in MgO crystals. However, in MgO crystals implanted with Cr a substantial increase in the crack density is achieved without a noticeable decrease in the temperature threshold of fracture. This effect is interpreted in terms of different Cr and Si implantation conditions and damage. The mechanical properties of the energy-absorbing layer and the relation to implantation-induced lattice damage are discussed. 11 refs., 4 figs

  6. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    Science.gov (United States)

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  7. Fluorine-Hydrazine Propulsion Technology update

    Science.gov (United States)

    Bond, D. L.; Appel, M. A.; Kruger, G. W.

    1980-01-01

    The current status of the fluorine hydrazine propulsion system development is discussed. Progress on the components, rocket engine, and system design is presented. A detailed look at a fluorine hydrazine system as a potential propulsion option for the Galileo Project (Jupiter orbiter) is delineated and the results of safety and technical reviews which were accomplished to verify the feasibility of this option are summarized.

  8. Do defects enhance fluorination of graphene?

    Czech Academy of Sciences Publication Activity Database

    da Costa, Sara; Ek Weis, Johan; Frank, Otakar; Fridrichová, Michaela; Bastl, Zdeněk; Kalbáč, Martin

    2016-01-01

    Roč. 6, AUG 2016 (2016), s. 81471-81476 ISSN 2046-2069 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : fluorination * graphene * fluorine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.108, year: 2016

  9. Synthesis of nanocrystalline fluorinated hydroxyapatite by ...

    Indian Academy of Sciences (India)

    or by soft drinks). Apart from enhancing the acid resistance of the hydroxyapatite, fluorine is thought to stimulate bone growth directly by suppressing the maturation of osteoclasts, inhibiting phagocyte cell activity and mini- mizing proliferation of fibroblasts (Pullen and Gross. 2005). The fluorine content in the natural bone is ...

  10. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    Science.gov (United States)

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  11. Surface Free Energy Determination of APEX Photosensitive Glass

    Directory of Open Access Journals (Sweden)

    William R. Gaillard

    2016-02-01

    Full Text Available Surface free energy (SFE plays an important role in microfluidic device operation. Photosensitive glasses such as APEX offer numerous advantages over traditional glasses for microfluidics, yet the SFE for APEX has not been previously reported. We calculate SFE with the Owens/Wendt geometric method by using contact angles measured with the Sessile drop technique. While the total SFE for APEX is found to be similar to traditional microstructurable glasses, the polar component is lower, which is likely attributable to composition. The SFE was modified at each stage of device fabrication, but the SFE of the stock and fully processed glass was found to be approximately the same at a value of 51 mJ·m−2. APEX exhibited inconsistent wetting behavior attributable to an inhomogeneous surface chemical composition. Means to produce more consistent wetting of photosensitive glass for microfluidic applications are discussed.

  12. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  13. Polynomials, Riemann surfaces, and reconstructing missing-energy events

    CERN Document Server

    Gripaios, Ben; Webber, Bryan

    2011-01-01

    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.

  14. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  15. Applications of Fluorine in Medicinal Chemistry.

    Science.gov (United States)

    Gillis, Eric P; Eastman, Kyle J; Hill, Matthew D; Donnelly, David J; Meanwell, Nicholas A

    2015-11-12

    The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, (18)F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography.

  16. Planckian energy scattering and surface terms in the gravitational action

    CERN Document Server

    Fabbrichesi, Marco E; Veneziano, Gabriele; Vilkovisky, G A

    1994-01-01

    This is a revised version of our previous paper by the same name and preprint number. It contains various changes, two figures and new results in sect.5. We propose a new approach to four-dimensional Planckian-energy scattering in which the phase of the ${\\cal S}$-matrix is written---to leading order in $\\hbar$ and to all orders in $R/b =Gs/J$---in terms of the surface term of the gravity action and of a boundary term for the colliding quanta. The proposal is checked at the leading order in $R/b$ and also against some known examples of scattering in strong gravitational fields.

  17. A simple model for the surface energy of ionic crystals

    International Nuclear Information System (INIS)

    Roman, E.; Tosi, M.P.

    1982-01-01

    The surface energy of ionic materials is empirically related to bulk properties (elastic constants, electronic dielectric constant and optical band gap) through an analysis of the cleavage force. This is evaluated at small and large separations of the two crystal halves from phonon dispersion curves and from van der Waals interactions, respectively, and these two limiting behaviours are connected by a scaling hypothesis introduced for metals by Kohn and Yaniv. The experimental data that are available for a few ionic crystals seem to satisfy the suggested relation, with an empirical universal parameter which has roughly the same value as determined for metals. (author)

  18. Treatment of surfaces with low-energy electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mikmeková, Eliška; Lejeune, M.

    2017-01-01

    Roč. 407, JUN 15 (2017), s. 105-108 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Low-energy electrons * Electron beam induced release * Graphene * Ultimate cleaning of surfaces Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  19. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  20. Treatment of surfaces with low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  1. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  2. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  3. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    Science.gov (United States)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  4. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  5. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    P. Kuipers Munneke

    2012-03-01

    Full Text Available Data collected by two automatic weather stations (AWS on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB, which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.

  6. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  7. Aliphatic Nucleophilic Radio-fluorination

    International Nuclear Information System (INIS)

    Roeda, D.; Dolle, F.

    2010-01-01

    In this review we are looking at some aspects of nucleophilic aliphatic radio-fluorination, notably the labelled fluoride source, design aspects, the leaving group and the solvent. It should be clear that there is more to this branch of radiolabelling than one would suspect from the frequently used standard tosylate replacement with kryptofix/[ 18 F]fluoride in acetonitrile or DMSO. Competitive elimination can be a serious problem that can affect both yield and purification. De-protection of sensitive groups after radiolabelling and its possible side reactions can complicate purification. The right choice of leaving group and protecting groups may be crucial. Newer developments such as the use of tertiary alcohols or ionic liquids as solvents, long-chain poly-fluorinated sulphonate leaving groups facilitating fluorous solid phase extraction, or immobilisation of the precursor on a solid phase support may help to solve these problems, for example the longstanding problems with [ 18 F]FLT, whereas older concepts such as certain cyclic reactive entities for ring opening or even an abandoned reagent as [ 18 F]DAST should not be forgotten. (authors)

  8. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  9. An Ab Initio Based Potential Energy Surface for Water

    Science.gov (United States)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  10. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  11. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  12. Electronic and magnetic properties of zigzag GaN nanoribbons with hydrogenation and fluorination

    Science.gov (United States)

    Li, Song; Xing, Huaizhong; Xie, Ruikuan; Zeng, Yijie; Huang, Yan; Lu, Aijiang; Chen, Xiaoshuang

    2018-03-01

    First principles calculations are performed to investigate the electronic and magnetic properties of hydrogenated and fluorinated zigzag GaN nanoribbons (zGaNNRs). Five kinds of possible different hydrogenated structures and four kinds of possible fluorinated structures are considered, and they show various electronic and magnetic properties. We find that the Ga-edges with two hydrogen atoms terminated or two fluorine atoms terminated are ferromagnetic while the N-edges with two hydrogen atoms terminated or two fluorine atoms terminated are nonmagnetic. Results show the structure is half-metal when the Ga-edges are saturated with two fluorine atoms and N-edges saturated with one fluorine atom. The Gibbs free energy of all the considered structures are calculated here to analyze the stability and their relation with chemical potentials. Moreover, the magnetic and electronic properties can be tailored by external electric field. zGaNNRs transform from half-metal to semiconductor under Ga→N direction electric field; it also can change from half-metal to magnetic metal then to nonmagnetic metal under N→Ga direction electric field.

  13. CERES Energy Balanced and Filled(EBAF) Surface Monthly means data in netCDF

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Surface product provides computed monthly mean surface radiative fluxes...

  14. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Science.gov (United States)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  15. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  16. Low-energy particle treatment of GaAs surface

    International Nuclear Information System (INIS)

    Pincik, E.; Ivanco, J.; Brunner, R.; Jergel, M.; Falcony, C.; Ortega, L.; Kucera, J. M.

    2002-01-01

    The paper presents results of a complex study of surface properties of high-doped (2x10 18 cm -3 ) and semi-insulating GaAs after an interaction with the particles coming from low-energy ion sources such as RF plasma and ion beams. The virgin samples were mechano-chemically polished liquid-encapsulated Czochralski-grown GaAs (100) oriented wafers. The crystals were mounted on the grounded electrode (holder). The mixture Ar+H 2 as well as O 2 and CF 4 were used as working gases: In addition, a combination of two different in-situ exposures was applied, such as e.g. hydrogen and oxygen. Structural, electrical and optical properties of the exposed surfaces were investigated using X-ray diffraction at grazing incidence, quasi-static and high-frequency C-V curve measurements, deep-level transient spectroscopy, photo-reflectance, and photoluminescence. Plasma and ion beam exposures were performed in a commercial RF capacitively coupled plasma equipment SECON XPL-200P and a commercial LPAI device, respectively. The evolution of surface properties as a function of the pressure of working gas and the duration of exposure was observed. (Authors)

  17. Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Terumitsu [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Department of Radiology, Tachikawa Hospital, 4-2-22, Nishiki-cho, Tachikawa, Tokyo 190-8531 (Japan)], E-mail: teru_hasebe@hotmail.com; Nagashima, So [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Kamijo, Aki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Yoshimura, Taichi; Ishimaru, Tetsuya; Yoshimoto, Yukihiro; Yohena, Satoshi; Kodama, Hideyuki; Hotta, Atsushi [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Takahashi, Koki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Suzuki, Tetsuya [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)

    2007-12-03

    Fluorine-doped diamond-like carbon (F-DLC) has recently drawn a great deal of attention as a more non-thrombogenic coating than conventional DLC for blood-contacting medical devices. We conducted quantitative depth profiling of F-DLC film by X-ray photoelectron spectroscopy (XPS) in order to elucidate the effects of fluorine and fluorine distribution in F-DLC film in connection with the prevention of surface blood adhesion. F-DLC films were prepared on silicon substrates using the radio frequency plasma enhanced chemical vapor deposition method, and the thickness of films was {approx} 50 nm. 50-nm-thick F-DLC film samples were etched at 10-nm thickness intervals using argon plasma, and each surface was examined by XPS. Thereafter, each etched film layer was incubated with platelet-rich plasma isolated from human whole blood, and the platelet-covered area per unit area was evaluated for each surface. XPS spectra showed the localization of doped fluorine in the top-most thin layer of the film. Platelet-covered areas represented progressively larger portions of the surfaces of deeper etched layers, corresponding to the decreasing fluorine content in such sample surfaces. These results indicate that the localized fluorine in the top-most thin layer is one of the key factors in the promotion of the non-thrombogenicity of F-DLC film.

  18. Synthetic biology approaches to fluorinated polyketides.

    Science.gov (United States)

    Thuronyi, Benjamin W; Chang, Michelle C Y

    2015-03-17

    The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides.

  19. Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau

    NARCIS (Netherlands)

    Chen, Xuelong; Su, Zhongbo; Ma, Y.; Yang, K.; Wang, B.

    2013-01-01

    Surface solar radiation is an important parameter in surface energy balance models and in estimation of evapotranspiration. This study developed a DEM based radiation model to estimate instantaneous clear sky solar radiation for surface energy balance system to obtain accurate energy absorbed by the

  20. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  1. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    Science.gov (United States)

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  2. U.S. Navy Surface Ship Fleet: Propulsion Energy Evaluation, and Identification of Cost Effective Energy Enhancement Devices

    National Research Council Canada - National Science Library

    Cusanelli, Dominic S; Karafiath, Gabor

    2006-01-01

    .... Navy surface ship fleet was prepared. This information was used to identify eleven U.S. Navy surface ship classes as candidates for consideration with regard to retrofit of energy enhancement devices...

  3. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  4. Discovery of Fluorine in Cool Extreme Helium Stars

    OpenAIRE

    Pandey, Gajendra

    2006-01-01

    Neutral fluorine (F I) lines are identified in the optical spectra of cool EHe stars. These are the first identification of F I lines in a star's spectrum, and provide the first measurement of fluorine abundances in EHe stars. The results show that fluorine is overabundant in EHe stars. The overabundance of fluorine provides evidence for the synthesis of fluorine in these stars, that is discussed in the light of asymptotic giant branch (AGB) evolution, and the expectation from accretion of an...

  5. The calculation of surface free energy based on embedded atom method for solid nickel

    International Nuclear Information System (INIS)

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  6. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  7. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  8. Exploring Multiple Potential Energy Surfaces: Photochemistry of Small Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Satoshi Maeda

    2012-01-01

    Full Text Available In theoretical studies of chemical reactions involving multiple potential energy surfaces (PESs such as photochemical reactions, seams of intersection among the PESs often complicate the analysis. In this paper, we review our recipe for exploring multiple PESs by using an automated reaction path search method which has previously been applied to single PESs. Although any such methods for single PESs can be employed in the recipe, the global reaction route mapping (GRRM method was employed in this study. By combining GRRM with the proposed recipe, all critical regions, that is, transition states, conical intersections, intersection seams, and local minima, associated with multiple PESs, can be explored automatically. As illustrative examples, applications to photochemistry of formaldehyde and acetone are described. In these examples as well as in recent applications to other systems, the present approach led to discovery of many unexpected nonadiabatic pathways, by which some complicated experimental data have been explained very clearly.

  9. Regional warming of hot extremes accelerated by surface energy fluxes

    Science.gov (United States)

    Donat, M. G.; Pitman, A. J.; Seneviratne, S. I.

    2017-07-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hot spots of accelerated warming of model-simulated hot extremes in Europe, North America, South America, and Southeast China. These hot spots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most Coupled Model Intercomparison Project Phase 5 models. Exploring the conditions on the specific day when the hot extreme occurs demonstrates that the hot spots are explained by changes in the surface energy fluxes consistent with drying soils. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a reevaluation of how climate models resolve the relevant terrestrial processes.

  10. Improved DFT Potential Energy Surfaces via Improved Densities.

    Science.gov (United States)

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

  11. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    International Nuclear Information System (INIS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-01-01

    Graphical abstract: - Highlights: • The superhydrophobic PFA/SiO 2 coating was successfully fabricated by spraying. • The synthesized PFA latex showed core–shell structure and good dispersion. • The PFA/SiO 2 coating showed good resistance to acid and base, weather and heat. • The superhydrophobic coating could be fabricated on various substrates. - Abstract: The core–shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO 2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO 2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO 2 content on the wetting behavior and surface morphology of PFA/SiO 2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core–shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO 2 particles, the surface morphology and wetting behavior of the PFA/SiO 2 hybrid coatings could be controlled. When the mass ratio of SiO 2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA

  12. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    The core-shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO2 content on the wetting behavior and surface morphology of PFA/SiO2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core-shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO2 particles, the surface morphology and wetting behavior of the PFA/SiO2 hybrid coatings could be controlled. When the mass ratio of SiO2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA/SiO2 hybrid coating showed good acid and base corrosion resistance, and it could keep superhydrophobicity after being heated at 250 °C for 2 h or exposed to ambient atmosphere for more than 3 months. Additionally, the superhydrophobic PFA/SiO2 hybrid coating could be applied to various substrates through spraying. This was a green and eco-friendly method in fabricating stable

  13. The puckering free-energy surface of proline

    Directory of Open Access Journals (Sweden)

    Di Wu

    2013-03-01

    Full Text Available Proline has two preferred puckering states, which are often characterized by the pseudorotation phase angle and amplitude. Although proline's five endocyclic torsion angles can be utilized to calculate the phase angle and amplitude, it is not clear if there is any direct correlation between each torsion angle and the proline-puckering pathway. Here we have designed five proline puckering pathways utilizing each torsion angle χj (j = 1∼5 as the reaction coordinate. By examining the free-energy surfaces of the five puckering pathways, we find they can be categorized into two groups. The χ2 pathway (χ2 is about the Cβ—Cγ bond is especially meaningful in describing proline puckering: it changes linearly with the puckering amplitude and symmetrically with the phase angle. Our results show that this conclusion applies to both trans and cis proline conformations. We have also analyzed the correlations of proline puckering and its backbone torsion angles ϕ and ψ. We show proline has preferred puckering states at the specific regions of ϕ, ψ angles. Interestingly, the shapes of ψ-χ2 free-energy surfaces are similar among the trans proline in water, cis proline in water and cis proline in the gas phase, but they differ substantially from that of the trans proline in the gas phase. Our calculations are conducted using molecular simulations; we also verify our results using the proline conformations selected from the Protein Data Bank. In addition, we have compared our results with those calculated by the quantum mechanical methods.

  14. Taming Metal/Fluorine Carbenoids.

    Science.gov (United States)

    Molitor, Sebastian; Feichtner, Kai-Stephan; Gessner, Viktoria H

    2017-02-21

    Although Li/Cl carbenoids are versatile reagents in organic synthesis, the controlled handling of the extremely reactive and labile M/F carbenoids remains a challenge. We now show that even these compounds can be stabilized and isolated in solid state, as well as in solution. Particularly the sodium and potassium compounds exhibit a remarkable stability, thus allowing the first isolation of a room-temperature-stable fluorine carbenoid. Spectroscopic, as well as DFT studies confirmed the pronounced carbenoid character, showing M-F-C interactions with elongated C-F bonds. The different stabilities of the carbenoids was found to originate from the different strength of the M-F interaction. Hence, the lithium compounds are considerably more reactive than their heavier congeners. Reactivity studies showed that the nature of the metal also influences the reactivity, resulting in different selectivity in the addition to thioketones. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh, Quyen [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Nanosens, IJsselkade 7, 7201 HB Zutphen (Netherlands); Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Wang, Bin [The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003 (Israel); Wang, Zhanhua [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Haick, Hossam [The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003 (Israel); Zuilhof, Han [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Rijn, Cees J.M. van, E-mail: cees.vanrijn@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands)

    2016-11-30

    Highlights: • Oxide-free H-terminated silicon nanowires undergo efficient surface modification by reaction with fluorinated 1-alkynes (HC≡C−(CH{sub 2}){sub 6}C{sub 8}H{sub 17−x}F{sub x}; x = 0–17). • These surface-modified Si NWs are chemically stable under range of conditions (including acid, base). • The surface coating yields efficient electrical passivation as demonstrated by a near-zero electrochemical activity of the surface. - Abstract: Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C{sub 16}H{sub 30−x}F{sub x}) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Si−H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core–shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  16. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-photoemission spectroscopy measurements. This comparison shows that the modified Delta SCF method gives results in close agreement with experiment, significantly closer than the comparable methods. For N2 adsorbed on ruthenium (0001) we map out a two-dimensional part of the potential energy surfaces in the ground state...

  17. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  18. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Science.gov (United States)

    Lourenço-Martins, Hugo; Kociak, Mathieu

    2017-10-01

    Recently, two reports [Krivanek et al. Nature (London) 514, 209 (2014), 10.1038/nature13870, Lagos et al. Nature (London) 543, 529 (2017), 10.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014), 10.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989), 10.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997), 10.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008), 10.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012), 10.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015), 10.1021/acsphotonics.5b00421].

  19. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.

    Science.gov (United States)

    Kothari, Kartik; Maldovan, Martin

    2017-07-17

    Thermal transport at small length scales has attracted significant attention in recent years and various experimental and theoretical methods have been developed to establish the reduced thermal conductivity. The fundamental understanding of how phonons move and the physical mechanisms behind nanoscale thermal transport, however, remains poorly understood. Here we move beyond thermal conductivity calculations and provide a rigorous and comprehensive physical description of thermal phonon transport in superlattices by solving the Boltzmann transport equation and using the Beckman-Kirchhoff surface scattering theory with shadowing to precisely describe phonon-surface interactions. We show that thermal transport in superlattices can be divided in two different heat transport modes having different physical properties at small length scales: layer-restricted and extended heat modes. We study how interface conditions, periodicity, and composition can be used to manipulate the distribution of thermal energy flow among such layer-restricted and extended heat modes. From predicted frequency and mean free path spectra of superlattices, we also investigate the existence of wave effects. The results and insights in this paper advance the fundamental understanding of heat transport in superlattices and the prospects of rationally designing thermal systems with tailored phonon transport properties.

  20. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  1. An Accurate Potential Energy Surface for H2O

    Science.gov (United States)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  2. Fluorine disposal processes for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Netzer, W.D.

    1977-04-08

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable.

  3. Fluorine disposal processes for nuclear applications

    International Nuclear Information System (INIS)

    Netzer, W.D.

    1977-01-01

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable

  4. Special Feature Organo-Fluorine Chemical Science

    OpenAIRE

    Helmut Martin Hügel; Neale Jackson

    2012-01-01

    Fluorine is the 13th most abundant element and, with other fluorine containing functional groups, is a most effective element in biological substances, pharmaceuticals, agrochemicals, liquid crystals, dyes, polymers and a wide range of consumer products. This reflects its resistance to metabolic change due to the strength of the C-F bond providing biological stability and the application of its nonstick-interfacial physical characteristics. Its introduction often remains a synthetic challenge...

  5. Quantification of Fluorine Content in AFFF Concentrates

    Science.gov (United States)

    2017-09-29

    expensive and time consuming . Newer analytical methods focus on detection and measurement of the fluorine- containing molecule which frequently...formulations, an analysis 19F NMR spectra wherein profiles somewhat unique to individual commercial AFFF can be identified and a fluorine content comparison...establishing a volatiles profile along with a non- volatiles or solids content for an AFFF concentrate. These concentrates have a strong potential

  6. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  7. Recent advances in green fluorine chemistry

    OpenAIRE

    Hu, Jinbo; Zeng,Yuwen

    2015-01-01

    Yuwen Zeng, Jinbo HuKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People’s Republic of ChinaAbstract: Fluorinated compounds are intriguing for the development of pharmaceuticals, agrochemicals, and materials, and thus, much effort has been exerted to develop more general and efficient approaches for introducing fluorine atom(s) or fluoroalkyl group(s) into organic molecules. Although many traditional metho...

  8. Photoelectrochemical properties of bare fluorine doped tin oxide and its electrocatalysis and photoelectrocatalysis toward cysteine oxidation

    International Nuclear Information System (INIS)

    Mu, Shaolin; Shi, Qiaofang

    2016-01-01

    Graphical abstract: CVs of 0.30 M Na 2 SO 4 solution containing 2.0 mM cysteine, curves: (1) glassy carbon electrode, (2) FTO electrode in the dark, (3) FTO electrode in the light illumination, and (4) Pt electrode; pH 10.0, at a scan rate of 60 mV s −1 . - Highlights: • First revelation of photoelectrochemical properties of bare fluorine doped tin oxide. • Determination of band gap of energy of FTO in the solution without a redox couple. • Electrochemical and photoelectrochemical catalysis of bare FTO toward cysteine oxidation. • Determination and recognition of cysteine with electrocatalytic and photocatalytic methods. • Rate-determining step of cysteine oxidation at the FTO electrode. - Abstract: We first revealed that the bare fluorine doped tin oxide (FTO) under the cathodic polarization over −0.7 V (vs.SCE) shows very sensitive to the irradiating light in a wide wavelength region 850–400 nm in the aqueous solution free of a redox couple, and its band gap of energy E g is determined to be 1.38 eV via the photoelectrochemical method. The bare FTO can effectively catalyze electrochemically L-cysteine (CySH) oxidation and especially shows the photocatalytic ability toward CySH oxidation. Thus the bare FTO electrode can be directly used for determination of CySH concentration using cyclic voltammetry in both the dark and light illumination and it can be used to recognize CySH among 20 α-amino acids found in proteins, based on the low oxidation peak potential and unique photoelectric response. The rate-determining step for the photocatalytic oxidation of CySH on the bare FTO electrode is controlled by supply of charge inside the FTO film to the electrode surface, which exhibits the typical characteristics of semiconductors.

  9. Enhancement of the Stability of Fluorine Atoms on Defective Graphene and at Graphene/Fluorographene Interface.

    Science.gov (United States)

    Ao, Zhimin; Jiang, Quanguo; Li, Shuang; Liu, Hao; Peeters, Francois M; Li, Sean; Wang, Guoxiu

    2015-09-09

    Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.

  10. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  11. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2010-01-01

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h -1 ) higher than that of a general ion exchange resin (SV=10 h -1 ) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  12. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    Directory of Open Access Journals (Sweden)

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  13. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget

    Science.gov (United States)

    Cuxart, Joan; Wrenger, Burkhard; Martínez-Villagrasa, Daniel; Reuder, Joachim; Jonassen, Marius O.; Jiménez, Maria A.; Lothon, Marie; Lohou, Fabienne; Hartogensis, Oscar; Dünnermann, Jens; Conangla, Laura; Garai, Anirban

    2016-07-01

    The effect of terrain heterogeneities in one-point measurements is a continuous subject of discussion. Here we focus on the order of magnitude of the advection term in the equation of the evolution of temperature as generated by documented terrain heterogeneities and we estimate its importance as a term in the surface energy budget (SEB), for which the turbulent fluxes are computed using the eddy-correlation method. The heterogeneities are estimated from satellite and model fields for scales near 1 km or broader, while the smaller scales are estimated through direct measurements with remotely piloted aircraft and thermal cameras and also by high-resolution modelling. The variability of the surface temperature fields is not found to decrease clearly with increasing resolution, and consequently the advection term becomes more important as the scales become finer. The advection term provides non-significant values to the SEB at scales larger than a few kilometres. In contrast, surface heterogeneities at the metre scale yield large values of the advection, which are probably only significant in the first centimetres above the ground. The motions that seem to contribute significantly to the advection term in the SEB equation in our case are roughly those around the hectometre scales.

  14. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget

    Directory of Open Access Journals (Sweden)

    J. Cuxart

    2016-07-01

    Full Text Available The effect of terrain heterogeneities in one-point measurements is a continuous subject of discussion. Here we focus on the order of magnitude of the advection term in the equation of the evolution of temperature as generated by documented terrain heterogeneities and we estimate its importance as a term in the surface energy budget (SEB, for which the turbulent fluxes are computed using the eddy-correlation method. The heterogeneities are estimated from satellite and model fields for scales near 1 km or broader, while the smaller scales are estimated through direct measurements with remotely piloted aircraft and thermal cameras and also by high-resolution modelling. The variability of the surface temperature fields is not found to decrease clearly with increasing resolution, and consequently the advection term becomes more important as the scales become finer. The advection term provides non-significant values to the SEB at scales larger than a few kilometres. In contrast, surface heterogeneities at the metre scale yield large values of the advection, which are probably only significant in the first centimetres above the ground. The motions that seem to contribute significantly to the advection term in the SEB equation in our case are roughly those around the hectometre scales.

  15. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  16. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  17. The molar surface Gibbs energy and prediction of surface tension of [Cnpy][DCA] (n = 3, 4, 5)

    International Nuclear Information System (INIS)

    Xing, Nannan; Dai, Bing; Ma, Xiaoxue; Wei, Jie; Pan, Yi; Guan, Wei

    2016-01-01

    Highlights: • The molar surface Gibbs energy, g s was put forword. • A new Eötvös equation is obtained. The molar surface enthalpy, h, is a temperature-independent constant. • By using g s and n D , the surface tensions of [C n py][DCA] (n = 3, 4, 5) were estimated. - Abstract: Three pyridinium-based ionic liquids of [C n py][DCA] (n = 3, 4, 5) (N-alkyl-pyridinium dicyanamide) were prepared and characterized by 1 H NMR ( 1 H nuclear magnetic resonance) spectroscopy, 13 C NMR ( 13 C nuclear magnetic resonance) spectroscopy. Their densities, surface tensions and refractive indices were measured at different temperatures. The molar surface Gibbs energy, g s , critical temperature, T c and Eötvös empirical parameter related to polarity, k E , were also calculated. In terms of the concept of molar surface Gibbs energy, g s , a new Eötvös equation was obtained. It is found that the slope of the new Eötvös equation is the molar surface entropy of the ILs and the intercept is the molar surface enthalpy which is a temperature-independent constant. By using the refractive index and the molar surface Gibbs energy, an equation to predict surface tension of the ILs was derived and the predicted values of the surface tension of [C n py][DCA] (n = 3, 4, 5) are all most the same with the corresponding experimental values.

  18. Ab initio potential energy surface and vibration-rotation energy levels of beryllium monohydroxide.

    Science.gov (United States)

    Koput, Jacek

    2017-01-05

    The accurate potential energy surface of beryllium monohydroxide, BeOH, in its ground electronic state X 2A' has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, and adiabatic effects were taken into account. The BeOH molecule was confirmed to be bent at equilibrium, with the BeOH angle of 141.2° and the barrier to linearity of 129 cm -1 . The vibration-rotation energy levels of the BeOH and BeOD isotopologues were predicted using a variational approach and compared with recent experimental data. The results can be useful in a further analysis of high-resolution vibration-rotation spectra of these interesting species. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.

    Science.gov (United States)

    Koput, Jacek

    2017-05-05

    An accurate potential energy surface of sulfur dioxide, SO 2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO 2 molecule is discussed. The vibration-rotation energy levels of the 32 SO 2 and 34 SO 2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  1. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment.

    Science.gov (United States)

    Strasser, Thomas; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-02-05

    The aim of this study was to examine the effects of surface pre-treatment on CAD/CAM materials including ceramics, zirconia, resin-infiltrated ceramic, and resin-based composite. Specimens were made of ten CAD/CAM materials (Celtra Duo, Degudent, D; Vita Suprinity, Vita, D; E.max CAD, Ivoclar-Vivadent, FL; E.max ZirCAD, Ivoclar-Vivadent, FL; Vita Enamic, Vita, D; Cerasmart, GC, B; LAVA Ultimate, 3M, D; SHOFU Block HC, SHOFU, US; Grandio Blocs, VOCO, D; BRILLIANT Crios, Coltene, CH) and pretreated to represent clinical procedures (Hf 20 s/5%; phosphoric acid 20 s/37%; Monobond etch and prime (Ivoclar-Vivadent, FL); water-cooled diamond bur (80 μm; 4 μm); Al 2 O 3 -blasting (50 μm/1 bar, 50 μm/2 bar, 120 μm/1 bar, 120 μm/2 bar); untreated; manufacturer's instructions). SEM-analysis (Phenom, FEI, NL) of the surfaces was performed (magnifications ≤ 10,000×). Roughness values R a , R z (KJ 3D, Keyence, J), and surface energy SE (OCA15 plus, SCA20, DataPhysics, D) were determined (statistics: non-parametric Mann-Whitney U test/Kruskal-Wallis test for independent specimen, α = 0.05). Kruskal-Wallis revealed significant (p CAD/CAM materials require individual pre-treatment for optimized and protective surface activation. Cementation is a key factor for clinical success. Given the variety of available CAD/CAM materials, specific procedures are needed.

  2. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Science.gov (United States)

    2010-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process. ...

  3. Reference values for fluorine-18-fluorodeoxyglucose and fluorine-18-sodium fluoride uptake in human arteries

    DEFF Research Database (Denmark)

    Blomberg, Björn A; Thomassen, Anders; de Jong, Pim A

    2017-01-01

    OBJECTIVE: Reference values of fluorine-18-fluorodeoxyglucose (F-FDG) and fluorine-18-sodium fluoride (F-NaF) uptake in human arteries are unknown. The aim of this study was to determine age-specific and sex-specific reference values of arterial F-FDG and F-NaF uptake. PARTICIPANTS AND METHODS...

  4. Fluorination of uranium compounds by gaseous bromine trifluoride and a bromine-fluorine mixture

    International Nuclear Information System (INIS)

    Sakurai, Tsutomu

    1976-03-01

    This report summarizes the studies of fluorination of uranium compounds by gaseous BrF 3 and a Br 2 -F 2 mixture, which were carried out in Fluorine Chemistry Laboratory of JAERI in connection with the reprocessing method of nuclear fuels. Although thermodynamically more stable than F 2 , BrF 3 has higher reactivity at relatively low temperatures: fluorination of uranium compounds can be carried out at 100 0 -- 200 0 C by using gaseous BrF 3 . This fluorination temperature is lower than those of F 2 , BrF 5 , ClF and SF 4 , and close to that of ClF 3 . The usage of BrF 3 has however the drawbacks that it requires additional devices to heat the corrosive liquid and to remove Br 2 produced as a byproduct. In order to eliminate the difficulties indicated, a new method of fluorination was developed - the use of a Br 2 -F 2 mixture. Addition of small amounts of Br 2 to the fluorine flow (about 6% in relation to the fluorine concentration) gives marked effects on the rate of fluorination. (auth.)

  5. Surface Energy Characteristics of Toner Particles by Automated Inverse Gas Chromatography

    NARCIS (Netherlands)

    Segeren, L.H.G.J.; Wouters, M.E.L.; Bos, M.; van den Berg, J.W.A.; Vancso, Gyula J.

    2002-01-01

    Inverse gas chromatography (IGC) was applied to the surface energy study of surfaces of toner particles. The dispersive component of the surface energy was determined for three toner materials by infinite dilution IGC. The values obtained were comparable to the values obtained from contact angle

  6. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are ...

  7. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites.

    Science.gov (United States)

    Khoshkava, V; Kamal, M R

    2013-09-09

    Dispersion quality and polymer-filler interaction are important factors in determining the final properties of polymer nanocomposites. Surface energy of nanocrystalline cellulose (NCC) and some polymers (polypropylene, PP, and polylactic acid, PLA) was measured at room and high temperatures. NCC had higher polarity and surface energy than PP and PLA at room temperature but had a lower surface energy at higher temperatures. The effect of surface modification with alkenyl succinic anhydride (ASA) on NCC surface energy at room and high temperature was studied. Total surface energy of NCC was lowered after surface modification. Thermodynamic work of adhesion for PP/NCC and PLA/NCC was lowered by NCC surface modification. A thermodynamic analysis is proposed to estimate the dispersion energy, based on surface energy measurements at room and high temperatures. Also, a dispersion factor is defined to provide a quantitative indication of the dispersibility of nanoparticles in a polymer matrix under various conditions. The required dispersion energy was reduced by lowering the interfacial tension. On the other hand, it increased as the quality of NCC dispersion (i.e., the nanoparticle surface area) in the system was improved. Surface modification of NCC with ASA had a negative effect on the compatibility between NCC and PLA, whereas it had a positive influence on compatibility between PP and NCC.

  8. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    Science.gov (United States)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  9. Effect of surface free energy on PDMS transfer in microcontact printing and its application to ToF-SIMS to probe surface energies.

    Science.gov (United States)

    Yang, Li; Shirahata, Naoto; Saini, Gaurav; Zhang, Feng; Pei, Lei; Asplund, Matthew C; Kurth, Dirk G; Ariga, Katsuhiko; Sautter, Ken; Nakanishi, Takashi; Smentkowski, Vincent; Linford, Matthew R

    2009-05-19

    Although polydimethylsiloxane (PDMS) transfer during microcontact printing (microCP) has been observed in previous reports, which generally focused on only one or a few different substrates, in this work we investigate the extent of PDMS transfer onto a series of surfaces with a wide range of hydrophobicities using an uninked, unpatterned PDMS stamp. These surfaces include clean silicon, clean titanium, clean gold, "dirty" silicon, polystyrene, Teflon, surfaces modified with PEG, amino, dodecyl, and hexadecyl monolayers, and also two loose molecular materials. The PDMS transferred onto planar surfaces is, in general, easily detected by wetting and spectroscopic ellipsometry. More importantly, it is detected by time-of-flight secondary ion mass spectrometry (ToF-SIMS) because of the sensitivity of this technique to PDMS. The effect of surface free energy on PDMS transfer in microcontact printing is investigated, and the relationship between the amount of PDMS in ToF-SIMS spectra and the surface tensions of initial surfaces is revealed. We show that PDMS transfer can be applied as a probe of surface free energies using ToF-SIMS, where PDMS preferentially transfers onto more hydrophilic surface features during stamping, with little being transferred onto very hydrophobic surface features. Multivariate curve resolution (MCR) analysis of the ToF-SIMS image data further confirms and clarifies these results. Our data lend themselves to the hypothesis that it is the free energy of the surface that plays a major role in determining the degree of PDMS transfer during microCP.

  10. Surface potential effects in low-energy current image diffraction patterns observed on the Al(001) surface

    International Nuclear Information System (INIS)

    Fine structure observed in high-resolution low-energy electron diffraction (LEED) measurements near the energy threshold for emergence of new beams has been attributed to surface barrier effects. Recently, the surface barrier has been suggested as the source of the fine structure observed in current image diffraction (CID) patterns obtained by rastering the primary beam across an Al(001) crystal surface at a constant energy. This suggestion was based on kinematic arguments which correlated the emergence angle for a new electron beam with the observed structure in the CID pattern. In this work, the angular dependence of the elastic component of the total crystal reflectivity is calculated at constant energy. The calculations are based on full dynamical theories such as used in LEED but incorporating different surface barrier models to account for the saturating image potential. The results are compared with the experimental CID results

  11. Surface free energy of ultra-high molecular weight polyethylene modified by electron and gamma irradiation

    International Nuclear Information System (INIS)

    Abdul-Kader, A.M.; Turos, A.; Radwan, R.M.; Kelany, A.M.

    2009-01-01

    Surface free energy of biocompatible polymers is important factor which affects the surface properties such as wetting, adhesion and biocompatibility. In the present work, the change in the surface free energy of ultra-high molecular weight polyethylene (UHMWPE) samples, which is produced by electron beam and gamma ray irradiation were, investigated. Mechanism of the changes in surface free energy induced by irradiations of doses ranging from 25 to 500 kGy was studied. FTIR technique was applied for sample analysis. Contact angle measurements showed that wettability and surface free energy of samples have increased with increasing the irradiation dose, where the values of droplet contact angle of the samples decrease gradually with increasing the radiation dose. The increase in the wettability and surface free energy of the irradiated samples are attributed to formation of hydrophilic groups on the polymer surface by the oxidation, which apparently occurs by exposure of irradiated samples to the air.

  12. Adhesion and friction properties of fluoropolymer brushes: On the tribological inertness of fluorine

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Pujari, S.P.; Rijn, van C.J.M.; Zuilhof, H.

    2014-01-01

    The effects of fluorination on the adhesion and friction properties of covalently bound poly(fluoroalkyl methacrylate) polymer brushes (thickness ~80 nm) were systematically investigated. Si(111) surfaces were functionalized with a covalently bound initiator via a thiol–yne click reaction to have a

  13. Inversed linear dichroism in F K-edge NEXAFS spectra of fluorinated planar aromatic molecules

    DEFF Research Database (Denmark)

    de Oteyza, D. G.; Sakko, A.; El-Sayed, A.

    2012-01-01

    The symmetry and energy distribution of unoccupied molecular orbitals is addressed in this work by means of NEXAFS and density functional theory calculations for planar, fluorinated organic semiconductors (perfluorinated copper phthalocyanines and perfluoropentacene). We demonstrate how molecular...... orbitals with significant density of states on the fluorine atoms show different symmetry from those mainly located on C and N atoms. As a result, the angle-dependent linear dichroism in NEXAFS F K-edge spectra is inversed with respect to that in the C and N K-edges. In addition, the significant overlap...

  14. Dual Effect in Fluorine-Doped Hematite Nanocrystals for Efficient Water Oxidation.

    Science.gov (United States)

    Xie, Junfeng; Liu, Weiwei; Xin, Jianping; Lei, Fengcai; Gao, Li; Qu, Haichao; Zhang, Xiaodong; Xie, Yi

    2017-11-23

    Herein, excellent light absorption and oxygen-evolving activity were simultaneously achieved by doping fluorine anions into hematite nanocrystals. Upon anion doping, the band structure of hematite can be effectively regulated, leading to the generation of defect levels between the band gap and remarkably increased visible light absorption. The activity for electrocatalytic oxygen evolution reaction (OER) of the hematite nanocrystals is enhanced after fluorine doping, where the doped hematite assists as an effective catalyst for photoelectrochemical water splitting. The optimization strategy proposed herein may shed light on the future design of photocatalysts for energy-related applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental study of the plasma fluorination of Y-Ba-Cu-O thin films

    CERN Document Server

    Li Qi; Ji Zheng Ming; Feng Yi Jun; Kang Lin; Yang Sen Zu; Wu Pei Heng; Wang Xiao Shu; Ye Yuda

    2002-01-01

    The authors have experimentally studied the surface modifications of Y-Ba-Cu-O (YBCO) thin films using CF sub 4 plasma. The intensity of the plasma fluorination was controlled by changing the biasing voltage and the time of the plasma treatment. Microstructural analyses reveal that the oxygen content of the YBCO thin films was changed. Transport measurements of sufficient fluorinated YBCO films imply that the films changed totally into an oxygen-deficient semi-conducting state. From these experimental results, the authors believe that plasma fluorination is quite a useful method to form controllable a thin barrier layer in fabricating interface engineered junctions and to form a stable narrow weak-link region in fabricating planar superconductor-normal-superconductor junctions

  16. In vitro effect of energy drinks on human enamel surface

    Directory of Open Access Journals (Sweden)

    Marise Sano Suga MATUMOTO

    Full Text Available Abstract Introduction Energy drinks (ED possess low pH and citric acid in their composition, making them potentially erosive beverages that can contribute to the high dental erosion rates found currently in the general population and also in young people. Objective To evaluate the mean pH and titratable acidity of commercial ED and the influence of a brand of ED on the superficial microhardness of human enamel. Material and method Ten commercial ED were selected and the pH of two lots of each ED with and without gas was obtained. Acid titration was conducted with the addition of NaOH aliquots until the pH 7 was reached. Eighteen human enamel specimens were allocated in three groups (N=6, Red Bull (RB, Red Bull Light (RBL and distilled water (C, submitted to an acid challenge with the ED, six consecutive times, with 12 hours intervals, during three days. Knoop microhardness was measured before and after the acid challenge. Result All ED brands tested presented low pH levels ranging from 2.1 to 3.2. Regarding titratable acidity, it was found that the amount of base required promoting the neutralization of the solutions ranged from 1200μL to 3750μL. Samples of human enamel in the RB and RBL groups submitted to the acid challenge presented significantly decreased Knoop microhardness when compared with the group C. Conclusion All ED examined have potential to promote mineral loss due to the low pH and high titratable acidity. The ED analyzed promoted significant mineral losses on the dental enamel surface.

  17. Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.

    2018-02-01

    Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.

  18. X-ray pre-ionized molecular fluorine laser with a large discharge cross-section

    NARCIS (Netherlands)

    Bastiaens, Hubertus M.J.; Peters, P.J.M.; Witteman, W.J.

    1997-01-01

    High energy extraction from UV pre-ionized molecular fluorine lasers is hampered by the short period of discharge stability and the spatial inhomogeneity of the discharge. So far stable discharge operation is reported for small discharge cross sections with an area less than 0.8 cm2 and efficiencies

  19. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, John A. [Univ. of Alabama, Birmingham, AL (United States). Material Science & Engineering Dept.

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  20. Deposition of Ultrathin Nano-Hydroxyapatite Films on Laser Micro-Textured Titanium Surfaces to Prepare a Multiscale Surface Topography for Improved Surface Wettability/Energy

    Directory of Open Access Journals (Sweden)

    Maria Surmeneva

    2016-10-01

    Full Text Available The primary aim of this study was to analyse the correlation between topographical features and chemical composition with the changes in wettability and the surface free energy of microstructured titanium (Ti surfaces. Periodic microscale structures on the surface of Ti substrates were fabricated via direct laser interference patterning (DLIP. Radio-frequency magnetron sputter deposition of ultrathin nanostructured hydroxyapatite (HA films was used to form an additional nanoscale grain morphology on the microscale-structured Ti surfaces to generate multiscale surface structures. The surface characteristics were evaluated using atomic force microscopy and contact angle and surface free energy measurements. The structure and phase composition of the HA films were investigated using X-ray diffraction. The HA-coated periodic microscale structured Ti substrates exhibited a significantly lower water contact angle and a larger surface free energy compared with the uncoated Ti substrates. Control over the wettability and surface free energy was achieved using Ti substrates structured via the DLIP technique followed by the deposition of a nanostructured HA coating, which resulted in the changes in surface chemistry and the formation of multiscale surface topography on the nano- and microscale.

  1. Enantioselective Fluorination of Spirocyclic β-Prolinals Using Enamine Catalysis

    DEFF Research Database (Denmark)

    Fjelbye, Kasper; Marigo, Mauro; Clausen, Rasmus Prætorius

    2017-01-01

    A series of spirocyclic carbaldehydes were successfully fluorinated using enamine catalysis, furnishing the corresponding tertiary fluorides in both high yields and enantioselectivities. The fluorinated spirocycles provide a set of novel building blocks interesting from a medicinal chemistry point...

  2. Controlled Synthesis of Fluorinated Copolymers with Pendant Sulfonates

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2008-01-01

    Novel fluorinated copolymers of different architectures and bearing sulfopropyl groups were synthesized by atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers and two modification reactions performed on the polymer chain - demethylation followed by sulfopropylation. As a ...

  3. Simple electrolytic cell for production of elemental fluorine

    International Nuclear Information System (INIS)

    Dides F, M.; Padilla S, U.

    1990-01-01

    It was constructed and tested a simple electrolytic cell for the production of elemental fluorine. The fluorine production is essential in the obtainment of uranium hexafluoride, a compound for the nuclear fuel cycle. (A.C.A.S.)

  4. Application of Liquid-Phase Direct Fluorination: Novel Synthetic Methods for a Polyfluorinated Coating Material and a Monomer of a Perfluorinated Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takashi Okazoe

    2012-04-01

    Full Text Available A new polyfluorinated anti-staining coating material CF3O(CF2CF2OxCF2-CONHCH2CH2CH2Si(OCH33 has been developed by utilizing the PERFECT method, which employs a liquid-phase direct fluorination reaction with elemental fluorine as a key step. Direct fluorination of a partially-fluorinated ester, which was prepared from a non-fluorinated poly(ethylene glycol and a perfluorinated acyl fluoride, followed by methanolysis, gave the perfluorinated corresponding compound, which was led to the coating material for surface treating agents, and the methyl ester of the starting perfluorinated acyl fluoride. Application to the synthesis of a new perfluorinated bifunctional sulfonate monomer CF2=CFOCF2CF2CF2OCF(CF2SO2F2 for polymer electrolyte membranes (PEMs of fuel cells was also developed.

  5. SCANNING ELECTRON-MICROSCOPIC EVALUATION OF THE FRACTURED SURFACES OF CANINE CALCULI FROM SUBSTRATA WITH DIFFERENT SURFACE FREE-ENERGY

    NARCIS (Netherlands)

    UYEN, HMW; JONGEBLOED, WL; BUSSCHER, HJ

    1991-01-01

    The strength of adhesion between dental calculus and enamel or dentin surfaces determines the ease with which the calculus can be removed by brushing or professional dental treatment. In this study, we examined the adhesion of canine calculi formed on substrata with different surface free energies

  6. Radiosyntheses using Fluorine-18: the Art and Science of Late Stage Fluorination

    Science.gov (United States)

    Cole, Erin L.; Stewart, Megan N.; Littich, Ryan; Hoareau, Raphael; Scott, Peter J. H.

    2014-01-01

    Positron (β+) emission tomography (PE) is a powerful, noninvasive tool for the in vivo, three-dimensional imaging of physiological structures and biochemical pathways. The continued growth of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as possible has made development of methodologies that enable rapid and efficient late stage fluorination an area of research within its own right. In this review we describe strategies for radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging techniques for late stage fluorination reactions, as well as labeling technologies such as microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare, personalized medicine and drug discovery settings. PMID:24484425

  7. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    Science.gov (United States)

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    Science.gov (United States)

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  9. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  10. Lunar mining of oxygen using fluorine

    Science.gov (United States)

    Burt, Donald M.

    1992-01-01

    An important aspect of lunar mining will be the extraction of volatiles, particularly oxygen, from lunar rocks. Thermodynamic data show that oxygen could readily be recovered by fluorination of abundant lunar anorthite, CaAl2Si2O8. Fluorine is the most reactive element, and the only reagent able to extract 100 percent of the oxygen from any mineral, yet it can safely be stored or reacted in nickel or iron containers. The general fluorination reaction, mineral + 2F2 = mixed fluorides = O2, has been used for more than 30 years at a laboratory scale by stable-isotope geochemists. For anorthite, metallic Al and Si may be recovered from the mixed fluorides by Na-reduction, and CaO via exchange with Na2O; the resulting NaF may be recycled into F2 and Na by electrolysis, using lanthanide-doped CaF2 as the inert anode.

  11. Fluorine geochemistry in volcanic rock series

    DEFF Research Database (Denmark)

    Stecher, Ole

    1998-01-01

    A new analytical procedure has been established in order to determine low fluorine concentrations (30–100 ppm F) in igneous rocks, and the method has also proven successful for higher concentrations (100–4000 ppm F). Fluorine has been measured in a series of olivine tholeiites from the Reykjanes...... Peninsula, a tholeiite to rhyolitic rock series from Kerlingarfjöll, central Iceland, and an alkaline rock series from Jan Mayen that ranges from ankaramites to trachytes. Fluorine is not appreciably degassed during extrusion and appears to be insensitive to slight weathering. The olivine tholeiites from...... the Reykjanes Peninsula have F contents of 30–300 ppm and exhibit linear increases proportional to the incompatible elements K, P, and Ti. Such incompatible behaviour for F has been confirmed for the less evolved rocks of the other series. The tholeiites from Kerlingarfjöll (100–2000 ppm F) show a linear...

  12. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  13. Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface.

    Science.gov (United States)

    Zhou, Xueyao; Nattino, Francesco; Zhang, Yaolong; Chen, Jun; Kroes, Geert-Jan; Guo, Hua; Jiang, Bin

    2017-11-22

    A fifteen-dimensional global potential energy surface for the dissociative chemisorption of methane on the rigid Ni(111) surface is developed by a high fidelity fit of ∼200 000 DFT energy points computed using a specific reaction parameter density functional designed to reproduce experimental data. The permutation symmetry and surface periodicity are rigorously enforced using the permutation invariant polynomial-neural network approach. The fitting accuracy of the potential energy surface is thoroughly investigated by examining both static and dynamical attributes of CHD 3 dissociation on the frozen surface. This potential energy surface is expected to be chemically accurate as after correction for surface temperature effects it reproduces the measured initial sticking probabilities of CHD 3 on Ni(111) for various incidence conditions.

  14. 21 CFR 170.45 - Fluorine-containing compounds.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fluorine-containing compounds. 170.45 Section 170... § 170.45 Fluorine-containing compounds. The Commissioner of Food and Drugs has concluded that it is in the interest of the public health to limit the addition of fluorine compounds to foods (a) to that...

  15. Fluorine photochemistry in the stratosphere. [effect on ozone

    Science.gov (United States)

    Stolarski, R. S.; Rundel, R. D.

    1975-01-01

    The photochemistry of fluorine in the stratosphere is surveyed in order to estimate the effect on ozone of fluorine atoms released by the breakdown of chlorofluoromethanes. The catalytic efficiency for ozone destruction by fluorine is found to be less than .0001 that of chlorine in the altitude range from 25 to 50 km.

  16. Fluorinated Polyurethane Scaffolds for 19F Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Lammers, Twan; Mertens, Marianne E.; Schuster, Philipp; Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J.C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Researchers used fluorinated polyurethane scaffolds for 19F magnetic resonance imaging. They generated a novel fluorinated polymer based on thermoplastic polyurethane (19F -TPU) which possesses distinct properties rendering it suitable for fluorine-based MRI. The 19F -TPU is synthesized from a

  17. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence.

    Science.gov (United States)

    Remete, Attila Márió; Nonn, Melinda; Fustero, Santos; Haukka, Matti; Fülöp, Ferenc; Kiss, Loránd

    2017-01-01

    A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy-fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  18. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence

    Directory of Open Access Journals (Sweden)

    Attila Márió Remete

    2017-11-01

    Full Text Available A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy–fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  19. Ultrasound assisted synthesis and physicochemical characterizations of fluorine-modified CoMo/Al2O3 nanocatalysts used for hydrodesulfurization of thiophene.

    Science.gov (United States)

    Ebrahimynejad, Mitra; Haghighi, Mohammad; Asgari, Nazli

    2014-09-01

    A series of CoMo/F-Al2O3 nanocatalysts with different fluorine loadings of 0, 0.4, 0.8 and 1 wt% were successfully synthesized by a sonochemical method and used for catalytic hydrodesulfurization (HDS) of thiophene. The nanocatalysts were characterized with X-ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM), BET nitrogen adsorption Brunauer-Emmett-Teller (BET) analysis, Fourier Transform Infrared Spectroscopy (FTIR) and temperature programmed desorption of ammonia (TPD-NH3) techniques. The XRD results showed a high dispersion of the molybdenum species on the γ-Al2O3 support due to the application of sonochemical method along with fluorine addition. The CoMo/F-Al2O3 nanocatalysts had a particle size less than 100 nm. The specific surface area of the samples was slightly decreased with increasing the fluorine content. The FTIR results confirmed that with the increase of fluorine amount in the CoMo/Al2O3 nanocatalysts, it would generate more active sites. Moreover, the TPD results showed that the fluorinated nanocatalysts had higher acidity than the promoter-free nanocatalysts, because of the formation of new strong acid sites on the γ-Al2O3 support by the promoter. The catalytic activity for thiophene HDS reaction was investigated in a stirred slurry-tank reactor in the atmospheric pressure to determine the effect of fluorine amount on the nanocatalyst performance. The results of thiophene HDS reaction showed that the fluorinated nanocatalysts were more active than fluorine-free nanocatalysts and consequently, they were able to remove nearly 100% of thiophene in the initial solution. Furthermore, the nanocatalyst with the fluorine content of 0.8 wt% had the highest activity in HDS of thiophene. However, further addition of fluorine led to decrease in catalytic activity which could be attributed to the agglomerated particles formed on the nanocatalyst surface.

  20. Improved target system for production of high purity [18F]fluorine via the 18O(p,n)18F reaction.

    Science.gov (United States)

    Hess, E; Blessing, G; Coenen, H H; Qaim, S M

    2000-06-01

    An improved aluminium target system for production of elemental fluorine via the 18O(p,n)18F reaction using a two-step irradiation protocol is described. In the first step highly enriched gaseous oxygen-18 is irradiated with protons to form fluorine-18 which gets deposited on the inner target surface. In the second step, after cryogenic recovery of oxygen-18 target gas, a mixture of elemental 'cold' fluorine and krypton is introduced and a short proton irradiation is done, whereby an isotopic exchange between the gaseous fluorine and the deposited radiofluorine occurs. The second step leads to the recovery of the radiofluorine as [18F]fluorine. Optimisation studies were performed regarding the yield and specific radioactivity of [18F]fluorine. Furthermore, some irradiation parameters relevant to the recovery step were investigated. It was found that a 15 to 20 min irradiation with a beam current of 20 microA is sufficient for the isotopic exchange between the fluorine-carrier and the 18F-radioactivity deposited on the inner wall of the target. The distribution of the 18F-radioactivity deposited on the inner target surface is inhomogeneous, probably due to convection effects. Extensive radioanalytical techniques were applied to characterise the reactivity of [18F]fluorine and to identify undesired nonreactive 18F-compounds, mainly [18F]tetrafluoromethane and [18F]nitrogentrifluoride. The [18F]fluorine produced in the system used has the distinction of having a negligible contamination from those inert 18F-compounds. This is a combined effect of the use of highest purity gases and a welded target construction, which avoids any contact of the gases with organic material during irradiations. The target has proved to be very reliable for production of [18F]fluorine in high yields of up to 34 GBq and specific activities of 350-600 GBq/mmol, both at 30 min after end of activation bombardment.

  1. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.

    Science.gov (United States)

    Mulyadi, Arie; Zhang, Zhe; Deng, Yulin

    2016-02-03

    Aerogels based on cellulose nanofibrils (CNFs) have been of great interest as absorbents due to their high absorption capacity, low density, biodegradability, and large surface area. Hydrophobic aerogels have been designed to give excellent oil absorption tendency from water. Herein, we present an in situ method for CNF surface modification and hydrophobic aerogel preparation. Neither solvent exchange nor fluorine chemical is used in aerogel preparations. The as-prepared hydrophobic aerogels exhibit low density (23.2 mg/cm(-3)), high porosity (98.5%), good flexibility, and solvent-induced shape recovery property. Successful surface modification was confirmed through field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and water contact angle measurements. The hydrophobic aerogels show high absorption capacities for various oils, depending on liquid density, up to 47× their original weight but with low water uptake (<0.5 g/g aerogel).

  2. Effect of deposition temperature on the bonding configurations and properties of fluorine doped silicon oxide film

    International Nuclear Information System (INIS)

    Lu, Wei-Lun; Kuo, Ting-Wei; Huang, Chun-Hsien; Wang, Na-Fu; Tsai, Yu-Zen; Wang, Ming-Wei; Hung, Chen-I.; Houng, Mau-Phon

    2011-01-01

    In our study, fluorine-doped silicon oxide (SiOF) films were prepared using a mixture of SiH 4 , N 2 O, and CF 4 in a conventional plasma enhanced chemical vapor deposition system at various deposition temperatures. Deposition behaviors are determined by the deposition temperature. Our results show that for temperatures below 300 deg. C the process is surface-reaction-limited controlled, but becomes diffusion-limited when the deposition temperature exceeds 300 deg. C. The surface topography images obtained using an atomic force microscope show that a large amount of free volume space was created in the film with a low temperature deposition. The optical microscope and secondary ion mass spectrometer analyses show that precipitates were produced at the near-surface at the deposition temperature of 150 deg. C with a higher fluorine concentration of 2.97 at.%. Our results show that the properties of the SiOF film are controlled not only by the free volume space but also by the fluorine concentration. An optimal SiOF film prepared at a temperature of 200 deg. C shows a low dielectric constant of 3.55, a leakage current of 1.21 x 10 -8 A/cm 2 at 1 MV/cm, and a fluorine concentration of 2.5 at.%.

  3. Total Testosterone, Cortizol, Growth hormone and Fluorine Levels in Fluorine Intoxicated Rabbits

    OpenAIRE

    AKDOĞAN, Mehmet

    2001-01-01

    In this study, the effects of fluorine given subchronically (70 days) in drinking water (1, 10, 40 mg/L) were assessed in New Zealand male rabbits and their effects on total testosterone, cortisol and growth hormone (GH) levels were determined. Blood samples were taken from control and experimental groups after 0, 21 and 70 days and total testosterone, cortisol, GH and fluorine levels were measured. As a result, in animals given 10 mg/L fluorinated water, on the 21st day there was a statistic...

  4. Revisited study of fluorine implantation impact on negative bias temperature instability for input/output device of automotive micro controller unit

    Science.gov (United States)

    Yoshida, Tetsuya; Maekawa, Keiichi; Tsuda, Shibun; Shimizu, Tatsuo; Ogasawara, Makoto; Aono, Hideki; Yamaguchi, Yasuo

    2018-04-01

    We investigate the effect of fluorine implanted in the polycrystalline silicon (poly-Si) gate and source/drain (S/D) region on negative bias temperature instability (NBTI) improvement. It is found that there is a trade-off implantation energy dependence of NBTI between fluorine in the poly-Si gate and that in the S/D region. Fluorine implanted in the poly-Si gate contributes to NBTI improvement under low energy implantation. On the other hand, NBTI is improved by fluorine implanted in the S/D region under high energy. We propose that the two-step implantation process with high and low energy is the optimum condition for NBTI improvement.

  5. Structures and properties of fluorinated amorphous carbon films

    Science.gov (United States)

    Huang, K. P.; Lin, P.; Shih, H. C.

    2004-07-01

    Fluorinated amorphous carbon (a-C:F) films were deposited by radio frequency bias assisted microwave plasma electron cyclotron resonance chemical vapor deposition with tetrafluoromethane (CF4) and acetylene (C2H2) as precursors. The deposition process was performed at two flow ratios R=0.90 and R=0.97, where R=CF4/(CF4+C2H2). The samples were annealed at 300 °C for 30 min. in a N2 atmosphere. Both Fourier transform infrared and electron spectroscopy for chemical analyzer were used to characterize the a-C:F film chemical bond and fluorine concentration, respectively. A high resolution electron energy loss spectrometer was applied to detect the electronic structure. The higher CF4 flow ratio (R=0.97) produced more sp3 linear structure, and it made the a-C:F film smoother and softer. A lifetime of around 0.34 μs and an energy gap of ˜2.75 eV were observed in both the as-deposited and after annealing conditions. The short carriers lifetime in the a-C:F film made the photoluminescence peak blueshift. The annealing changed both the structure and composition of the a-C:F film. The type of fluorocarbon bond and electronic structure characterized the mechanical and physical properties of a-C:F film.

  6. Fluorinated Amine Stereotriads via Allene Amination.

    Science.gov (United States)

    Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-16

    The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products. The resulting stereotriads are readily transformed into fluorinated pyrrolidines and protected α-, β-, and γ-amino acids.

  7. Lunar mining of oxygen using fluorine

    Science.gov (United States)

    Burt, Donald M.; Tyburczy, James A.; Roberts, Jeffery J.; Balasubramanian, Rajan

    1992-01-01

    Experiments during the first year of the project were directed towards generating elemental fluorine via the electrolysis of anhydrous molten fluorides. Na2SiF6 was dissolved in either molten NaBF4 or a eutectic (minimum-melting) mixture of KF-LiF-NaF and electrolyzed between 450 and 600 C to Si metal at the cathode and F2 gas at the anode. Ar gas was continuously passed through the system and F2 was trapped in a KBr furnace. Various anode and cathode materials were investigated. Despite many experimental difficulties, the capability of the process to produce elemental fluorine was demonstrated.

  8. Surface influence on convoy electron emission at low energies

    International Nuclear Information System (INIS)

    Sanchez, E.A.

    1988-01-01

    It is studied the dependence of the production of convoy electrons induced by H + - 60 KeV with surface conditions of Al targets by in situ deposition of Na and O. The conclusion is that convoy electron production increases with the work function of the surface. (A.C.A.S.) [pt

  9. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Chavin Jongwannasiri

    2012-01-01

    Full Text Available Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII technique using acetylene (C2H2 and tetrafluoromethane (CF4 as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys.

  10. 75 FR 7457 - Notice of Public Hearing on Stone Energy Corporation Proposed Surface Water Withdrawal and...

    Science.gov (United States)

    2010-02-19

    ... projects follow: Stone Energy Corporation D-2009-13-1. An application for approval of a surface water... DELAWARE RIVER BASIN COMMISSION Notice of Public Hearing on Stone Energy Corporation Proposed Surface Water Withdrawal and Natural Gas Well Site SUMMARY: Because of the high level of public interest...

  11. Modelling evapotranspiration using the surface energy balance systems (sebs) and landsat tm data (rabat region, morocco)

    NARCIS (Netherlands)

    Kwast, J. van der; Jong, S.M. de

    2004-01-01

    Modelling and understanding the surface energy balance is important for assessing the re-distribution of moisture and heat in soil and atmosphere. The Surface Energy Balance System (SEBS) estimates turbulent heat fluxes using satellite earth observation data in the visible, near infrared, and

  12. On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods.

    Science.gov (United States)

    Michalski; Hardy; Saramago

    1998-12-01

    The surface free energy of polymeric films of polyvinylchloride (PVC) + poly(ethylene-co-vinylacetate) (EVA) blends was calculated using the van Oss treatment (Lifshitz and electron donor-electron acceptor components of surface free energy) and the Owens-Wendt treatment (dispersive and nondispersive components of surface free energy). Surface free energy results were found to be greatly dependent on the calculation method and on the number of standard liquids used for contact angle measurements. The nondispersive/donor-acceptor surface free energy component and the total surface free energy of polymeric films were always higher when the van Oss treatment was used compared to the Owens-Wendt treatment. Conversely, both methods led to similar apolar/Lifshitz components. All the calculation methods were in good agreement for the surface free energy of PVC; however, a discrepancy between the methods arose as EVA content in the blends increased. It seems that there is not yet a definite solution for the calculation of solid surface free energy. Further developments of existing models are needed in order to gain consistency when calculating this important physicochemical quantity. Copyright 1998 Academic Press.

  13. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  14. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  15. The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface

    NARCIS (Netherlands)

    Kollet, S.J.; Cvijanovic, I.; Schüttemeyer, D.; Maxwell, R.M.; Moene, A.F.; Bayer, P.

    2009-01-01

    In land surface models, which account for the energy balance at the land surface, subsurface heat transport is an important component that reciprocally influences ground, sensible, and latent heat fluxes and net radiation. In most models, subsurface heat transport parameterizations are commonly

  16. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  17. Components of near-surface energy balance derived from satellite soundings – Part 1: Net available energy

    OpenAIRE

    K. Mallick; A. Jarvis; G. Wohlfahrt; G. Kiely; T. Hirano; A. Miyata; S. Yamamoto; L. Hoffmann

    2014-01-01

    This paper introduces a relatively simple method for recovering global fields of near-surface net available energy (the sum of the sensible and latent heat flux or the difference between the net radiation and surface heat accumulation) using satellite visible and infra-red products derived from the AIRS (Atmospheric Infrared Sounder) and MODIS (MOderate Resolution Imaging Spectroradiometer) platforms. The method focuses on first specifying net surface radiation by con...

  18. Incident energy dependence of scattering behavior of water molecules on Si (100) and graphite surfaces

    Science.gov (United States)

    Kihara, G.; Kotsubo, Y.; Yoshimoto, Y.; Kinefuchi, I.; Takagi, S.

    2016-11-01

    The interaction between water molecules and solid surfaces has a great impact on water vapor flows in nanostructures. We conduct molecular beam scattering experiments covering the incident energy range corresponding to the thermal energy at room temperature to investigate the scattering behavior of water molecules on silicon and graphite surfaces. The incident energy dependence of the scattering distributions exhibits opposite trends on these surfaces. Molecular dynamics simulations reveal that the difference is caused by the inertia effect of the incident molecules and the surface corrugations.

  19. The formation energy for steps and kinks on cubic transition metal surfaces

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollàr, Janos

    1999-01-01

    We have used our first-principles database of surface energies for metals in conjunction with the concept of vicinal surfaces to derive the energies of formation of monoatomic steps and corresponding kinks on close-packed surface facets of bcc and fee transition metals. The entries in the database...... allow for a direct calculation of the energies of a number of important steps. For the remaining steps and for all the kinks the energies of formation have been estimated from pair potential expansions of the entries in the database. (C) 1999 Elsevier Science B.V. All rights reserved....

  20. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design.

    Science.gov (United States)

    Meanwell, Nicholas A

    2018-02-05

    The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.

  1. Study on behavior of fluorine-18 in tilapia

    International Nuclear Information System (INIS)

    He Xinruo; Fan Guangyu; Bai Suozhen; Diao Guoping; Dong Guizhi; Zhang Weiqin

    1986-01-01

    The metabolism of fluorine in Tilapia was investigated by using fluorine-18 as tracer. For Tilapia, the fluorine was taken from water by digestive system, gills and skin, then spread to whole body. The amount of fluorine-18 accumulated in various tissues of Tilapia is considerably different. The highest is in the scale. The lowest is in the muscle and fat. The middle is in the liver, kidney and heart. The excretion of fluorine-18 is released into water body by kidney, gills and skin. The more it was taken, the more it was released

  2. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System.

    Science.gov (United States)

    Dec, K; Łukomska, A; Maciejewska, D; Jakubczyk, K; Baranowska-Bosiacka, I; Chlubek, D; Wąsik, A; Gutowska, I

    2017-06-01

    Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by the excessive intake of fluorine. Recent studies showed that fluorine is toxic to the central nervous system (CNS). There are several known mechanisms which lead to structural brain damage caused by the excessive intake of fluorine. This element is able to cross the blood-brain barrier, and it accumulates in neurons affecting cytological changes, cell activity and ion transport (e.g. chlorine transport). Additionally, fluorine changes the concentration of non-enzymatic advanced glycation end products (AGEs), the metabolism of neurotransmitters (influencing mainly glutamatergic neurotransmission) and the energy metabolism of neurons by the impaired glucose transporter-GLUT1. It can also change activity and lead to dysfunction of important proteins which are part of the respiratory chain. Fluorine also affects oxidative stress, glial activation and inflammation in the CNS which leads to neurodegeneration. All of those changes lead to abnormal cell differentiation and the activation of apoptosis through the changes in the expression of neural cell adhesion molecules (NCAM), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and MAP kinases. Excessive exposure to this element can cause harmful effects such as permanent damage of all brain structures, impaired learning ability, memory dysfunction and behavioural problems. This paper provides an overview of the fluoride neurotoxicity in juveniles and adults.

  3. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics

    Directory of Open Access Journals (Sweden)

    Forrest S. Etheridge

    2016-08-01

    Full Text Available Homoleptic zinc(II complexes of di(phenylacetyleneazadipyrromethene (e.g., Zn(WS32 are potential non-fullerene electron acceptors for organic photovoltaics. To tune their properties, fluorination of Zn(WS32 at various positions was investigated. Three fluorinated azadipyrromethene-based ligands were synthesized with fluorine at the para-position of the proximal and distal phenyl groups, and at the pyrrolic phenylacetylene moieties. Additionally, a CF3 moiety was added to the pyrrolic phenyl positions to study the effects of a stronger electron withdrawing unit at that position. The four ligands were chelated with zinc(II and BF2+ and the optical and electrochemical properties were studied. Fluorination had little effect on the optical properties of both the zinc(II and BF2+ complexes, with λmax in solution around 755 nm and 785 nm, and high molar absorptivities of 100 × 103 M−1cm−1 and 50 × 103 M−1cm−1, respectively. Fluorination of Zn(WS32 raised the oxidation potentials by 0.04 V to 0.10 V, and the reduction potentials by 0.01 V to 0.10 V, depending on the position and type of substitution. The largest change was observed for fluorine substitution at the proximal phenyl groups and CF3 substitution at the pyrrolic phenylacetylene moieties. The later complexes are expected to be stronger electron acceptors than Zn(WS32, and may enable charge transfer from other conjugated polymer donors that have lower energy levels than poly(3-hexylthiophene (P3HT.

  4. Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age

    Energy Technology Data Exchange (ETDEWEB)

    Kips, R. [European Commission, General Directorate Joint Research Centre, Inst. for Reference Materials and Measurements, Retieseweg 111, 2440 Geel (Belgium); University of Antwerp, Dept. of Chemistry, Universiteitsplein 1, 2610 Antwerpen (Belgium)], E-mail: kips1@llnl.gov; Pidduck, A.J. [QinetiQ, Malvern Technology Centre, St Andrews Road, Malvern, Worcestershire WR14 3PS (United Kingdom)], E-mail: ajpidduck@taz.qinetiq.com; Houlton, M.R. [QinetiQ, Malvern Technology Centre, St Andrews Road, Malvern, Worcestershire WR14 3PS (United Kingdom)], E-mail: mrhoulton@qinetiq.com; Leenaers, A. [Studie Centrum voor Kernenergie Centre d' Etude de l' energie Nucleaire (SCK CEN), Nuclear Materials Inst., Boeretang 200, 2400 Mol (Belgium)], E-mail: aleenaer@sckcen.be; Mace, J.D. [QinetiQ, Malvern Technology Centre, St Andrews Road, Malvern, Worcestershire WR14 3PS (United Kingdom)], E-mail: jdmace@qinetiq.com; Marie, O. [Commissariat a l' Energie Atomique, Dept. Analyse Surveillance Environnement, Centre DAM - Ile-de-France, Bruyeres-le-Chatel, 91297 Arpajon (France)], E-mail: olivier.marie@cea.fr; Pointurier, F. [Commissariat a l' Energie Atomique, Dept. Analyse Surveillance Environnement, Centre DAM - Ile-de-France, Bruyeres-le-Chatel, 91297 Arpajon (France)], E-mail: fabien.pointurier@cea.fr; Stefaniak, E.A. [University of Antwerp, Dept. of Chemistry, Universiteitsplein 1, 2610 Antwerpen (Belgium)], E-mail: elzbieta.stefaniak@ua.ac.be; Taylor, P.D.P. [European Commission, General Directorate Joint Research Centre, Inst. for Reference Materials and Measurements, Retieseweg 111, 2440 Geel (Belgium)], E-mail: philip.taylor@ec.europa.eu; Van den Berghe, S. [Studie Centrum voor Kernenergie Centre d' Etude de l' energie Nucleaire (SCK CEN), Nuclear Materials Inst., Boeretang 200, 2400 Mol (Belgium)], E-mail: svdbergh@sckcen.be; Van Espen, P. [University of Antwerp, Dept. of Chemistry, Universiteitsplein 1, 2610 Antwerpen (Belgium)], E-mail: piet.vanespen@ua.ac.be (and others)

    2009-03-15

    As swipe samples from enrichment activities typically contain uranium particles with a detectable amount of fluorine, the question was raised whether the analysis of fluorine in particles could complement the information on the uranium isotope ratios. For this, uranium oxyfluoride particles were prepared from the controlled hydrolysis of uranium hexafluoride (UF{sub 6}). The relative amount of fluorine was characterized by scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDX), as well as ion-microprobe secondary ion mass spectrometry (IM-SIMS). Of particular interest was the assessment of the reduction of the amount of fluorine over time, and after exposure to UV-light and high temperatures. Micro-Raman spectrometry (MRS) was applied to look for differences in molecular structure between these various sample types. Both SEM-EDX and IM-SIMS showed a general reduction of the fluorine-to-uranium ratio after 1-2 years of storage. The exposure to UV-light and high temperatures was found to have accelerated the loss of fluorine. A distinct peak at 865 cm{sup -1} Raman shift was detected for the majority of particles analyzed by MRS. For the particles that were heat-treated, the Raman spectra were similar to the spectrum of U{sub 3}O{sub 8}. Although often large variations were observed between particles from the same sample, the three particle measurement techniques (IM-SIMS, SEM-EDX and MRS) showed some consistent trends. They therefore appear promising in terms of the ability to place bounds on particle age, as well as shedding light on the complex processes involved in UO{sub 2}F{sub 2} particle ageing.

  5. Effect of Lowering Laser Energy on the Surface Roughness of Human Corneal Lenticules in SMILE.

    Science.gov (United States)

    Ji, Yong Woo; Kim, Minseo; Kang, David Sung Yong; Reinstein, Dan Z; Archer, Timothy J; Choi, Jin Young; Kim, Eung Kweon; Lee, Hyung Keun; Seo, Kyoung Yul; Kim, Tae-Im

    2017-09-01

    To determine the effect of lowering femtosecond laser energy on the surface quality of the intrastromal interface during small incision lenticule extraction (SMILE). Forty age- and diopter-matched female patients (40 eyes) with moderate myopia received SMILE with different energy levels (100 to 150 nJ) and fixed spot separation (4.5 μm). Five human corneal lenticules from each energy group were evaluated by atomic force microscopy and scanning electron microscopy (SEM). Both anterior and posterior surface characteristics of the lenticules were assessed. All measurements of surface roughness were approximately three times higher and in the anterior and posterior surface of the lenticules with the energy level of 150 nJ than with 100 nJ (P < .001). Furthermore, atomic force microscopy analysis found that energy differences of 15 nJ or more made a significant difference in surface roughness at energy levels of 115 nJ or higher. Interestingly, there was no significant difference in all roughness values of both surfaces among the 100, 105, and 110 nJ groups. In addition, all values of surface roughness were significantly positively correlated with laser energy for both anterior and posterior surfaces of the lenticule (P < .001). Consistent with atomic force microscopy results, SEM also showed that the SMILE lenticules in the higher laser energy group had more irregular surfaces. Lowering laser energy levels can improve surface quality of the lenticule of SMILE. To achieve better visual outcomes with faster recovery after the procedure, it is recommended to reduce the laser energy to less than 115 nJ at a spot separation of 4.5 μm. [J Refract Surg. 2017;33(9):617-624.]. Copyright 2017, SLACK Incorporated.

  6. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance

    Science.gov (United States)

    Qing, Yongquan; Yang, Chuanning; Hu, Chuanbo; Zheng, Yansheng; Liu, Changsheng

    2015-01-01

    In this paper, we report a simple and inexpensive method for fabricating fluorinated polysiloxane/ZnO nanocomposite coatings on the steel substrates. The surface wettability and topology of coating were characterized by contact angle measurement, scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic sbnd CH3 and sbnd CH2sbnd groups were introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to fluorinated polysiloxane was 13:7, the contact angle of nanocomposite coating was 166°, and a sliding angle of 4°, coating surface with hierarchical micro/nano-structures. In addition, the as-prepared superhydrophobic surface has excellent durability and corrosion resistance. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on steel materials.

  7. Energy dependent neutron sputtering and surface damage cross sections

    International Nuclear Information System (INIS)

    Odette, G.R.; Doiron, D.R.; Kennerley, R.J.

    1976-01-01

    The results clearly indicate that damage function analysis might be usefully applied to define both the neutron and primary recoil energy dependence of sputtering yields. Even with relatively large data errors, it appears that it is possible to both detect the existence and indicate the form of the deviation of sputtering yield from linear damage energy dependence (if such deviation exists). This information would be very useful in developing improved models of the sputtering phenomena

  8. Production and transport chemistry of atomic fluorine in remote plasma source and cylindrical reaction chamber

    International Nuclear Information System (INIS)

    Gangoli, S P; Johnson, A D; Fridman, A A; Pearce, R V; Gutsol, A F; Dolgopolsky, A

    2007-01-01

    Increasingly, NF 3 -based plasmas are being used in semiconductor manufacturing to clean chemical vapour deposition (CVD) chambers. With advantages such as faster clean times, substantially lower emissions of gases having high global warming potentials, and reduced chamber damage, NF 3 plasmas are now favoured over fluorocarbon-based processes. Typically, a remote plasma source (RPS) is used to dissociate the NF 3 gas and produce atomic fluorine that etches the CVD residues from the chamber surfaces. However, it is important to efficiently transport F atoms from the plasma source into the process chamber. The current work is aimed at understanding and improving the key processes involved in the production and transport of atomic fluorine atoms. A zero-dimensional model of NF 3 dissociation and F production chemistry in the RPS is developed based on various known and derived plasma parameters. Additionally, a model describing the transport of atomic fluorine is proposed that includes both physical (diffusion, adsorption and desorption) and chemical processes (surface and three-body volume recombination). The kinetic model provides an understanding of the impact of chamber geometry, gas flow rates, pressure and temperature on fluorine recombination. The plasma-kinetic model is validated by comparing model predictions (percentage F atom density) with experimental results (etch rates)

  9. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  10. Fluorine effect on pericyclic and pseudopericyclic processes ...

    Indian Academy of Sciences (India)

    Administrator

    corresponds to a borderline case; 2-pyranol (3) and pyran (5) and 6-fluoro pyran (6) reactions are clearly pericyclic in character. Correspondingly pseudeopericyclic reactions show up orbital disconnections and fluorine delays the occurrence of orbital disconnections on the reaction trajectory. Keywords. Pericyclic reaction ...

  11. Synthesis of nanocrystalline fluorinated hydroxyapatite by ...

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite, (FHA, Ca10(PO4)6(OH)2-F), possesses higher corrosion resistance in biofluids than pure HA and reduces the risk of dental caries. The present work deals with the synthesis of nanocrystalline FHAs by microwave processing. The crystal size and morphology of the nanopowders were ...

  12. Fluorine effect on pericyclic and pseudopericyclic processes ...

    Indian Academy of Sciences (India)

    ... (reaction 4) corresponds to a borderline case; 2-pyranol (3) and pyran (5) and 6-fluoro pyran (6) reactions are clearly pericyclic in character. Correspondingly pseudeopericyclic reactions show up orbital disconnections and fluorine delays the occurrence of orbital disconnections on the reaction trajectory.

  13. Partially fluorinated electrospun proton exchange membranes

    DEFF Research Database (Denmark)

    2016-01-01

    or in a filter. The porous membrane layer comprises a plurality of randomly oriented fibers manufactured by electrospinning, wherein the fibers comprise a graft copolymer, wherein the graft copolymer comprises a backbone and at least one side chain, wherein the backbone comprises a partially fluorinated...

  14. Decomposition of Fluorinated Graphene under Heat Treatment

    Czech Academy of Sciences Publication Activity Database

    Plšek, Jan; Drogowska, Karolina; Valeš, Václav; Ek Weis, Johan; Kalbáč, Martin

    2016-01-01

    Roč. 22, č. 26 (2016), s. 8990-8997 ISSN 1521-3765 R&D Projects: GA ČR(CZ) GAP208/12/1062 Institutional support: RVO:61388955 Keywords : fluorination * graphene * photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Study on radiation chemistry of fluorinated polymers for EUV resist

    Science.gov (United States)

    Nomura, Naoya; Okamoto, Kazumasa; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo

    2015-06-01

    The fluorination of a chemically amplified resist is an effective method for use in EUV lithography. However, it has been suggested that the fluorination of the base polymer of the chemically amplified resist induces the electron scavenging reaction by the base polymer and reduces the acid yield. In this study, we clarified the formation of transient species and the acid yields of fluorinated polymers after exposure to the ionizing radiations. The acid yields of fluorinated polymers with hydroxyl groups were lower than that of poly(4-hydroxystyrene) (PHS). The lower acid generation efficiency in fluorinated polymers was due to not only the reaction between fluorinated polymers and electrons but also the lower deprotonation efficiency of the radical cation of the fluorinated polymer.

  16. Fluorine compounds for doping conductive oxide thin films

    Science.gov (United States)

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  17. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    Science.gov (United States)

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  18. Formation of fluorine-containing defects and nanocrystals in SiO2 upon implantation with fluorine, silicon, and germanium ions: Numerical simulation and photoluminescence spectroscopy

    Science.gov (United States)

    Gus'kova, O. P.; Vorotyntsev, V. M.; Abrosimova, N. D.; Mikhaylov, A. N.; Tetelbaum, D. I.; Shobolov, E. L.

    2015-11-01

    The incorporation of fluorine atoms into the silicon dioxide lattice upon F+ ion implantation and the formation of silicon (germanium) nanocrystals in SiO2 upon Si+ (Ge+) ion implantation have been numerically simulated. The calculations for F have been performed by the density functional theory (DFT) method; the calculations for Si and Ge have been carried out by combining the DFT (in the cluster approximation) and Monte Carlo methods. The energy gain of the fluorine atom attachment to one of silicon atoms with the formation of a nonbridging oxygen hole center (NBOHC) and an energy level appearing in the band gap has been demonstrated. In the case of ion implantation, the simulation at a dissolved Si (Ge) atom concentration of ˜2 at % has revealed the formation of nanocrystals (NCs) with an average size of ˜1 nm.

  19. Molecular beam studies of energy transfer in scattering from crystal surfaces

    International Nuclear Information System (INIS)

    Guthrie, W.L.

    1983-01-01

    The translational energy distributions and angular distributions of D 2 O produced from the reaction of incident D 2 and O 2 on a (111) platinum single crystal surface have been measured through the use of a molecular beam-surface scattering apparatus equipped with a time-of-flight spectrometer. The translation energies were measured over the surface temperature range T/sub s/ = 664 K - 913 K and at scattering angles of 7 0 and 40 0 from the surface normal. The D 2 O translational energy, , was found to be approximately half the equilibrium value over the temperature range examined, with /2k varying from 280 K to 480 K. These results are discussed in terms of a non-equilibrium desorption model. The two-photon ionization spectrometer was built to investigate the internal rotational and vibrational energy distributions of NO scattered from Pt(111) surfaces. The rotational energy distributions were measured over the crystal temperature range of T/sub s/ = 400 K - 1200 K. The translational energy distributions and angular distributions were measured using the time-of-flight spectrometer over the crystal temperature range of 400 K - 110 K and for beam translational energies of 0.046 eV, 0.11 eV and 0.24 eV, so that complete energy exchange information for translation, rotation and vibration is available for this gas-surface system. Significant energy transfer was observed in all three modes

  20. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...... Institute of Physics. [http://dx.doi.org/10.1063/1.4742153]...

  1. Full charge-density calculation of the surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by mea...

  2. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    the seasonal time scale, the net longwave radiation is the largest energy loss term at the experi- mental site. The seasonal variation in the energy sink term is small compared to that in the energy source term. 1. Introduction. Land surface temperature is an important meteoro- logical variable and is required in many practi-.

  3. 4H-SiC surface energy tuning by nitrogen up-take

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Amarasinghe, V.P. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Xu, C.; Gustafsson, T. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Stedile, F.C. [PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Feldman, L.C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2017-04-30

    Highlights: • Wettability modification of 4H-SiC as a function of nitrogen adsorption is reported. • SiC surface energy was significantly reduced as nitrogen was incorporated. • Modifications obtained were proved to be inert to etching and stable against time. • Variable control of SiC surface provides new opportunities for biomedical applications. - Abstract: Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  4. Deciphering the Fluorine Code-The Many Hats Fluorine Wears in a Protein Environment.

    Science.gov (United States)

    Berger, Allison Ann; Völler, Jan-Stefan; Budisa, Nediljko; Koksch, Beate

    2017-09-19

    Deciphering the fluorine code is how we describe not only the focus of this Account, but also the systematic approach to studying the impact of fluorine's incorporation on the properties of peptides and proteins used by our groups and others. The introduction of fluorine has been shown to impart favorable, but seldom predictable, properties to peptides and proteins, but up until about two decades ago the outcomes of fluorine modification of peptides and proteins were largely left to chance. Driven by the motivation to extend the application of the unique properties of the element fluorine from medicinal and agro chemistry to peptide and protein engineering we have established extensive research programs that enable the systematic investigation of effects that accompany the introduction of fluorine into this class of biopolymers. The introduction of fluorine into amino acids offers a universe of options for modifications with regard to number and position of fluorine substituents in the amino acid side chain. Moreover, it is important to emphasize that the consequences of incorporating the C-F bond into a biopolymer can be attributed to two distinct yet related phenomena: (i) the fluorine substituent can directly engage in intermolecular interactions with its environment and/or (ii) the other functional groups present in the molecule can be influenced by the electron withdrawing nature of this element (intramolecular) and in turn interact differently with their immediate environment (intermolecular). Based on our studies, we have shown that a change in number and/or position of as subtle as one single fluorine substituent has the power to considerably modify key properties of amino acids such as hydrophobicity, polarity, and secondary structure propensity. These properties are crucial factors in peptide and protein engineering, and thus, fluorinated amino acids can be applied to fine-tune properties such as protein folding, proteolytic stability, and protein

  5. [Preparation and Characterization of Manganese and Fluorine Co-Modified Hydroxyapatite Composite Coating].

    Science.gov (United States)

    Zhang, Xue-jiao; Hao, Min; Qiao, Hai-xia; Zhang, Xiao-yun; Huang, Yong; Nian, Xiao-feng; Pang, Xiao-feng

    2016-03-01

    Titanium and titanium alloys have been widely used as orthopedic, dental implants and cardiovascular stents owing to their superior physical properties. However, titanium surface is inherently bio-inert, thus could not form efficient osseointegration with surrounding bone tissue. Therefore, to improve the surface property of titanium implant is significantly important in clinical application. Manganese and fluorine co-doped hydroxyapatite (FMnHAP) coatings were prepared on titanium substrate by electrochemical deposition technique. The as-prepared coatings were examined by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) tests. The results indicated that the FMnHAP coatings take the morphology of nanoscale-villous-like, the composite coating becomes more compact. The FTIR test indicated that the symmetry of bending vibration modes of hydroxyl changed, simulated body fluid immersion test proved that the FMnHAP coatings had induce carbonate-apatite formation, indicating that the composite coating possess excellent biocompatibility. In the electrochemical corrosion testing, the FMnHAP coatings showed stronger corrosion resistance than pure Ti.

  6. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin, E-mail: ganzhiyin@126.com

    2017-06-15

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  7. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Science.gov (United States)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  8. Fluorine and Lithium at the Kimberley Outcrop, Gale Crater

    Science.gov (United States)

    Forni, O.; Vaniman, D. T.; Le Deit, L.; Clegg, S. M.; Lanza, N. L.; Lasue, J.; Bish, D. L.; Mangold, N.; Wiens, R. C.; Meslin, P.-Y.; hide

    2015-01-01

    ChemCam is an active remote sensing instrument which has operated successfully on MSL since landing in August, 2012. Its laser pulses remove dust and to profile through weathering coatings of rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) produces emission spectra of materials ablated from the samples in electronically excited states. As the plasma cools, elements can recombine and molecular emission lines are observed. Recent experiments have shown that some of these molecular emissions can be much brighter than the associated atomic lines, especially when halo-gens and rare earth elements are present. We observed these molecular emissions in some of the ChemCam spectra and report the first detection of chlorine and fluorine with ChemCam. It is also the first time ever that fluorine has been detected on the surface of Mars. Among all the F-bearing observations, one third are observed in the Kimberley outcrop. We will dis-cuss the potential mineralogies related to these observations as well as the related elemental correlations and propose interpretations.

  9. Surface modification of hexatriacontane by CF_4 plasmas studied by optical emission and threshold ionization mass spectrometries

    Science.gov (United States)

    Poncin-Epaillard, F.; Wang, W.; Ausserré, D.; Scharzenbach, W.; Derouard, J.; Sadeghi, N.

    1998-11-01

    The behavior of tetrafluoromethane microwave plasma (2% argon included) has been studied by emission spectroscopy during the treatment of hexatriacontane, a model for high density polyethylene. The evolution of the densities of F* atoms, and CF, CF^*2, radicals has been followed by using the actinometric technique with 2% argon added to the gas. The surface properties, such as surface energy and surface roughness were correlated to the emission intensity of reactives species in the plasma gas phase. We found that the evolution of the fluorinated species emissions in the plasma gas phase can be a direct indication of the surface modifications by the plasma. A mild exposure to the plasma can result in a great decrease of surface energy corresponding to the fluorination. The surface roughness only changes under drastic plasma conditions. Threshold ionization mass spectroscopy is applied to detect the fluorine atoms and CFx radicals. Time resolved measurements in pulsed plasma, give access to the decay rate of F atoms concentration in the afterglow, and to their sticking coefficient on different surfaces. The influences of the discharge parameters and of the surfaces (metal, silicon or hexatriacontane) in contact with the plasma are investigated. The results show that the plasma generated ions and/or UV radiations highly enhance the reactivity of the F atoms on polymer surface.

  10. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, Nicholas D. [Department; Dudnik, Alexander S. [Department; Harutyunyan, Boris [Department; Aldrich, Thomas J. [Department; Leonardi, Matthew J. [Department; Manley, Eric F. [Department; Chemical; Butler, Melanie R. [Department; Harschneck, Tobias [Department; Ratner, Mark A. [Department; Chen, Lin X. [Department; Chemical; Bedzyk, Michael J. [Department; Department; Melkonyan, Ferdinand S. [Department; Facchetti, Antonio [Department; Chang, Robert P. H. [Department; Marks, Tobin J. [Department; Department

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the two SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.

  11. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  12. The use of low energy alkali ion scattering as a probe of surface structure

    International Nuclear Information System (INIS)

    Overbury, S.H.

    1987-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distribution are discussed in therms of advantages and disadvantages of each. The scattering potential, which is the primary nonstructural parameter needed for analysis, is discussed in terms of recent experimental results. The structures of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo (111) surface and missing row reconstructions on the Au (110) and Pt (110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au (110) and Pt (110) surfaces and reconstructed Mo (111) surfaces, and to ordering of adsorbates on Mo

  13. Earthquake Energy Distribution along the Earth Surface and Radius

    International Nuclear Information System (INIS)

    Varga, P.; Krumm, F.; Riguzzi, F.; Doglioni, C.; Suele, B.; Wang, K.; Panza, G.F.

    2010-07-01

    The global earthquake catalog of seismic events with M W ≥ 7.0, for the time interval from 1950 to 2007, shows that the depth distribution of earthquake energy release is not uniform. The 90% of the total earthquake energy budget is dissipated in the first ∼30km, whereas most of the residual budget is radiated at the lower boundary of the transition zone (410 km - 660 km), above the upper-lower mantle boundary. The upper border of the transition zone at around 410 km of depth is not marked by significant seismic energy release. This points for a non-dominant role of the slabs in the energy budged of plate tectonics. Earthquake number and energy release, although not well correlated, when analysed with respect to the latitude, show a decrease toward the polar areas. Moreover, the radiated energy has the highest peak close to (±5 o ) the so-called tectonic equator defined by Crespi et al. (2007), which is inclined about 30 o with respect to the geographic equator. At the same time the presence of a clear axial co- ordination of the radiated seismic energy is demonstrated with maxima at latitudes close to critical (±45 o ). This speaks about the presence of external forces that influence seismicity and it is consistent with the fact that Gutenberg-Richter law is linear, for events with M>5, only when the whole Earth's seismicity is considered. These data are consistent with an astronomical control on plate tectonics, i.e., the despinning (slowing of the Earth's angular rotation) of the Earth's rotation caused primarily by the tidal friction due to the Moon. The mutual position of the shallow and ∼660 km deep earthquake energy sources along subduction zones allows us to conclude that they are connected with the same slab along the W-directed subduction zones, but they may rather be disconnected along the opposed E-NE-directed slabs, being the deep seismicity controlled by other mechanisms. (author)

  14. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    Science.gov (United States)

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  15. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    International Nuclear Information System (INIS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan; Şenay, Volkan

    2016-01-01

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  16. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    Energy Technology Data Exchange (ETDEWEB)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Şenay, Volkan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Bayburt University, Primary Science Education Department, 69000 (Turkey)

    2016-03-25

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  17. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various...... transition-metal surfaces and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy surface and show that this model can describe desorption dynamics...... in both the DIET and DIMET regimes and reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong....

  18. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  19. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  20. Synergistic effect of 3D electrode architecture and fluorine doping of Li1.2Ni0.15Mn0.55Co0.1O2 for high energy density lithium-ion batteries

    Science.gov (United States)

    Krishna Kumar, S.; Ghosh, Sourav; Ghosal, Partha; Martha, Surendra K.

    2017-07-01

    Li1.2Ni0.15Mn0.55Co0.1O2 (LMR NMC) is synthesized by solution combustion method followed by LiF coating onto LMR NMC by solid state synthesis. The electrochemical performance of the pristine LMR NMC and corresponding F-doped samples as cathodes for Lithium ion Batteries (LIBs) are investigated by galvanostatic charge-discharge cycling and impedance spectroscopy. The fluorine doped cathodes deliver high capacity of ∼300 mAh g-1 at C/10 rate (10-20% greater than the pristine LMR NMC cathodes), have high discharge voltage plateau (>0.25 V) and low charge voltage plateau (0.2-0.4 V) compared to pristine LMR NMC cathodes. Beside, irreversible capacity, voltage fade, capacity loss are significantly reduced in-relation to the pristine LMR NMC electrodes. LiF coating onto LMR NMC, partially replaces Msbnd O bonds of the material by Msbnd F bonds, thus increasing the interfacial and structural stability. Besides, the manuscript describes possible replacement of aluminium current collector with 3D carbon fiber current collector which delivers high capacity of >200 mAh g-1 at 1C rate, good capacity retentions for over 200 cycles. The study opens a possibility for LMR NMC cathode material which has almost double the capacity of currently used cathodes, can be a possible substitute cathode for LIBs used in electric vehicles.

  1. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1982-01-01

    as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  2. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  3. Investigating H 2 Sorption in a Fluorinated Metal–Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering

    KAUST Repository

    Forrest, Katherine A.

    2015-07-07

    © 2015 American Chemical Society. Simulations of H2 sorption were performed in a metal-organic framework (MOF) consisting of Zn2+ ions coordinated to 1,2,4-triazole and tetrafluoroterephthalate ligands (denoted [Zn(trz)(tftph)] in this work). The simulated H2 sorption isotherms reported in this work are consistent with the experimental data for the state points considered. The experimental H2 isosteric heat of adsorption (Qst) values for this MOF are approximately 8.0 kJ mol-1 for the considered loading range, which is in the proximity of those determined from simulation. The experimental inelastic neutron scattering (INS) spectra for H2 in [Zn(trz)(tftph)] reveal at least two peaks that occur at low energies, which corresponds to high barriers to rotation for the respective sites. The most favorable sorption site in the MOF was identified from the simulations as sorption in the vicinity of a metal-coordinated H2O molecule, an exposed fluorine atom, and a carboxylate oxygen atom in a confined region in the framework. Secondary sorption was observed between the fluorine atoms of adjacent tetrafluoroterephthalate ligands. The H2 molecule at the primary sorption site in [Zn(trz)(tftph)] exhibits a rotational barrier that exceeds that for most neutral MOFs with open-metal sites according to an empirical phenomenological model, and this was further validated by calculating the rotational potential energy surface for H2 at this site. (Figure Presented).

  4. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  5. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  6. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Science.gov (United States)

    Alkhaier, F.; Su, Z.; Flerchinger, G. N.

    2012-07-01

    The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS) to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012). The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  7. Apparent Surface Free Energy of Polymer/Paper Composite Material Treated by Air Plasma

    Directory of Open Access Journals (Sweden)

    Konrad Terpiłowski

    2017-01-01

    Full Text Available Surface plasma treatment consists in changes of surface properties without changing internal properties. In this paper composite polymer/paper material is used for production of packaging in cosmetic industry. There are problems with bonding this material at the time of packaging production due to its properties. Composite surface was treated by air plasma for 1, 10, 20, and 30 s. The advancing and receding contact angles of water, formamide, and diiodomethane were measured using both treated and untreated samples. Apparent surface free energy was estimated using the hysteresis (CAH and Van Oss, Good, Chaudhury approaches (LWAB. Surface roughness was investigated using optical profilometry and identification of after plasma treatment emerging chemical groups was made by means of the XPS (X-ray photoelectron spectroscopy technique. After plasma treatment the values of contact angles decreased which is particularly evident for polar liquids. Apparent surface free energy increased compared to that of untreated samples. Changes of energy value are due to the electron-donor parameter of energy. This parameter increases as a result of adding polar groups at the time of surface plasma activation. Changes of surface properties are combination of increase of polar chemical functional groups, increase on the surface, and surface roughness increase.

  8. Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Materer, Nicholas F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    We investigated the surface bonding of various adsorbates (0, S, C2H3 and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

  9. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show......We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...

  10. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    International Nuclear Information System (INIS)

    Crusius, Johann-Philipp; Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-01-01

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C 2 H 4 O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide

  11. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  12. Using Electronic Energy Derivative Information in Automated Potential Energy Surface Construction for Vibrational Calculations.

    Science.gov (United States)

    Sparta, Manuel; Hansen, Mikkel B; Matito, Eduard; Toffoli, Daniele; Christiansen, Ove

    2010-10-12

    The availability of an accurate representation of the potential energy surface (PES) is an essential prerequisite in an anharmonic vibrational calculation. At the same time, the high dimensionality of the fully coupled PES and the adverse scaling properties with respect to the molecular size make the construction of an accurate PES a computationally demanding task. In the past few years, our group tested and developed a series of tools and techniques aimed at defining computationally efficient, black-box protocols for the construction of PESs for use in vibrational calculations. This includes the definition of an adaptive density-guided approach (ADGA) for the construction of PESs from an automatically generated set of evaluation points. Another separate aspect has been the exploration of the use of derivative information through modified Shepard (MS) interpolation/extrapolation procedures. With this article, we present an assembled machinery where these methods are embedded in an efficient way to provide both a general machinery as well as concrete computational protocols. In this framework we introduce and discuss the accuracy and computational efficiency of two methods, called ADGA[2gx3M] and ADGA[2hx3M], where the ADGA recipe is used (with MS interpolation) to automatically define modest sized grids for up to two-mode couplings, while MS extrapolation based on, respectively, gradients only and gradients and Hessians from the ADGA determined points provides access to sufficiently accurate three-mode couplings. The performance of the resulting potentials is investigated in vibrational coupled cluster (VCC) calculations. Three molecular systems serve as benchmarks: a trisubstituted methane (CHFClBr), methanimine (CH2NH), and oxazole (C3H3NO). Furthermore, methanimine and oxazole are addressed in accurate calculations aiming to reproduce experimental results.

  13. Palladium-catalysed electrophilic aromatic C-H fluorination

    Science.gov (United States)

    Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias

    2018-02-01

    Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.

  14. Corrosion resistant materials for fluorine and hydrogen fluoride

    International Nuclear Information System (INIS)

    Hauffe, K.

    1984-01-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with -1 is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a -1 . In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials. (orig.) [de

  15. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  16. Surface energy balance measurements in the Mexico City: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Jauregui Ostos, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)

    2005-01-01

    During the last decade of the 20th Century, diverse campaigns for measuring the atmospheric energy balance were performed in downtown Mexico City (School of Mines and Preparatory School No. 7), in the southern suburbs (University Reserve) and in the surrounding rural areas (Plan Texcoco), in addition to a campaign carried out in 1985 in the Tacubaya district, a suburban western peripheral site. The objective was to obtain data for a better understanding of the climatic alterations due to urbanization, particularly to describe the role that the modification of the natural ground cover has played as a result of paving and the construction of urban canyons. In this paper, a review of these campaigns is presented. Energy partitioning in some areas (Tacubaya and Preparatory School No.7) is similar to that observed in urban centers of middle latitudes, whereas the major contrast was observed between Texcoco, with maximum energy consumption through evaporation, and School of Mines, where the latent heat is as low as in a desert. From the values of the correlations among the different components of energy balance, it may be possible to attempt the modeling of the diverse components of energy balance by means of regression equations starting from the net radiation. Those same coefficients distinguish the type of environment: urban, suburban or rural. [Spanish] Las primeras mediciones de balance energetico en la Ciudad de Mexico se realizaron en 1985 en un suburbio al poniente de la ciudad (el observatorio de Tacubaya). Ya en la decada de los anos noventa del siglo XX, dichas observaciones se multiplicaron tanto en el centro historico (antigua Escuela de Minas y en el edificio de la Preparatoria No. 7), como en otros sitios al sur (en terrenos de Ciudad Universitaria) y en la periferia rural (Plan Texcoco). El proposito de estas mediciones ha sido tener un mejor entendimiento de las alteraciones climaticas debidas a la urbanizacion. En este trabajo se presenta una revision

  17. Relationships between surface energy analysis and functional characteristics of dairy powders.

    Science.gov (United States)

    Kondor, Anett; Hogan, Sean A

    2017-12-15

    Surface energetics of demineralised whey (DMW), skimmed milk (SMP), phosphocasein (PCN) and infant milk formula (IMF) powders were determined by inverse gas chromatography (IGC). All four milk powders were amphoteric in nature with the dispersive (apolar) component of surface energy dominating the specific (polar) contribution. PCN and IMF had the highest and lowest extent of surface heterogeneity, respectively. PCN also demonstrated the poorest functional properties of the powders examined. In contrast, IMF had excellent flow and rehydration properties. Thermodynamic work of cohesion was highest in PCN and may have contributed to inadequate rehydration behaviour. Glass transition temperature of IMF powder, determined by IGC, suggested a surface dominated by lactose. Surface heterogeneity provided a better indicator of functional behaviour than total surface energy. IGC is a useful complementary technique for chemical and structural analysis of milk powders and allows improved insight into the contribution of surface and bulk factors to functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fine powder flow under humid environmental conditions from the perspective of surface energy.

    Science.gov (United States)

    Karde, Vikram; Ghoroi, Chinmay

    2015-05-15

    The influence of humidity on surface energetics and flow behavior of fine pharmaceutical powders was investigated. Amorphous and crystalline fine powders with hydrophilic (Corn starch and Avicel PH105) and hydrophobic (ibuprofen) nature were considered for this study. The surface energy was determined using surface energy analyzer and flow behavior was measured in terms of unconfined yield stress (UYS) using a shear tester. The study showed that unlike hydrophobic ibuprofen powder, surface energy and flow of hydrophilic excipient powders were affected by relative humidity (RH). The Lifshitz-van der Waals dispersive (γ(LW)) component of surface energy barely changed with varying RH for all pharmaceutical powders. For hydrophilic excipients, the specific component of surface energy (γ(SP)) was found to increase with increasing RH. Furthermore, for these excipients, flow deterioration at elevated RH was observed due to increased capillary bridge formation. Detailed analysis showed that γ(SP) component of surface energy can be an effective indicator for flow behavior of fine powders under varying humid conditions. The present study also brought out the existence of different regimes of probable interparticle forces which dictate the bulk flow behavior of fine hydrophilic powder under humid conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of mechanical denaturation on surface free energy of protein powders.

    Science.gov (United States)

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Diffusion phenomena of fluorine and cations in molten Li2BeF4, LiBeF3 and NaBeF3

    International Nuclear Information System (INIS)

    Ohno, Hideo

    1984-03-01

    Self-diffusion coefficients of fluorine and cations in molten LiF-BeF 2 and NaF-BeF 2 systems were summarized by the capillary reservoir technique. The diffusion coefficients and the activation energies of cations in these molten salts follow a similar behavior with those of cations in molten alkali halides. On the other hand, self-diffusion of fluorine have unusually high diffusion coefficients and activation energies. The characteristic diffusion phenomena of fluorine in these molten alkali fluoroberyllates are very similar to those of oxygen in molten CaO-SiO 2 and CaO-SiO 2 -Al 2 O 3 slag. The dynamical behavior of Li and F in molten Li 2 BeF 4 was also analyzed by NMR technique. According to both these experiments, most probable mechanism of characteristic diffusion of fluorine in these molten systems could be dissociation of F atom from complex anion and long distance diffusion. (author)