WorldWideScience

Sample records for surface energy fluorinated

  1. New highly fluorinated styrene-based materials with low surface energy prepared by ATRP

    DEFF Research Database (Denmark)

    Borkar, Sachin; Jankova Atanasova, Katja; Siesler, Heinz W

    2004-01-01

    2,3,5,6-Tetrafluoro-4-(2,2,3,3,3-pentafluoropropoxy)styrene (TF(F-5)S) and 2,3,5,6-tetrafluoro-4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctaoxy)styrene (TF(F,5)S) are prepared by nucleophilic substitution of 2,3,4,5,6-pentafluorostyrene. The neat monomers are subjected to atom transfer...... radical polymerization (ATRP) at 110 degreesC to high conversions in relatively short times, 10-120 min; TF(F-5)S is additionally polymerized at 70 and 90 degreesC. Block copolymers with styrene are prepared by the macroinitiator approach. All polymers, in the number-average molecular weight range from...... than 10 mol %. The fluorinated side chains of P(TF(F-5)S) and P(TF(F-15)S) enrich the surface of thin films, which results in an advancing water contact angle of 117degrees and 122degrees, respectively. Both XPS analyses and contact angle measurements strongly imply that the fluorinated parts...

  2. Microphase separated structure and surface properties of fluorinated polyurethane resin

    International Nuclear Information System (INIS)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K.

    2000-01-01

    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  3. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Mustafa, E-mail: karamanm@selcuk.edu.tr [Department of Chemical Engineering, Selçuk University, Konya, 42075 (Turkey); Advanced Technology Research & Application Center, Selçuk University, Konya, 42075 (Turkey); Uçar, Tuba [Department of Chemical Engineering, Selçuk University, Konya, 42075 (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Thin films of poly(hexafluorobutyl acrylate-glycidyl methacrylate) can be deposited by PECVD. • The coated surfaces are hydrophobic due to the long fluorinated side chains. • The hydrophobicity of the coating is observed to be stable under harsh conditions. • Film durability is attributed to the mechanical strength of the films due to their epoxide functionality. - Abstract: Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  4. Fluorine

    Science.gov (United States)

    Hayes, Timothy S.; Miller, M. Michael; Orris, Greta J.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    after that time include the Nui Phao tungsten-fluorspar-bismuth-copper-gold deposit in northern Vietnam; the St. Lawrence project in Newfoundland, Canada, which is located in a well-known fluorspar district; the Bamianshan deposit, which is related to a strongly differentiated granite in northwestern Zhejiang Province, China, near some of that Province’s large, subalkaline-volcanic-related epithermal veins; and the Nokeng project in South Africa, which is also related to a strongly differentiated granite. Other deposits in northwestern Australia, Nevada (United States), Norway, South Africa, and Sweden have been identified and could be put into production within just a few years.Among undiscovered resources, an interesting possibility might be to produce a fluorine product from evaporitic, high-fluorine, high-pH sodium-carbonate brines like Lake Magadi (Kenya) and Lake Natron (Tanzania) in Africa’s Eastern Rift Valley. In addition, apparently conformable fluorspar deposits in tuffaceous limy lacustrine sediments, such as those in Italy, are likely to occur in similar young alkalic volcanic settings elsewhere in the world.Modern geophysical and geochemical exploration techniques have typically not been brought to bear in exploration for new fluorspar deposits, although such techniques are likely to be used in future exploration. The tendency for fluorine to dissolve in significant concentrations in water at low temperature allows both surface water and groundwater to be used as sampling media in geochemical exploration. Evolved granite-related fluorspar deposits may be particularly susceptible to geophysical exploration methods because crystalline rocks that form a basement to sedimentary sections can be approximately defined with gravity and magnetic methods, and magnetite-bearing skarns can be directly detected with magnetic surveys.Environmental considerations of fluorine mining focus especially on drinking water, where high fluorine concentrations can lead to

  5. Enhanced Bioactivity and Bacteriostasis of Surface Fluorinated Polyetheretherketone.

    Science.gov (United States)

    Chen, Meiling; Ouyang, Liping; Lu, Tao; Wang, Heying; Meng, Fanhao; Yang, Yan; Ning, Congqin; Ma, Jingzhi; Liu, Xuanyong

    2017-05-24

    Although polyetheretherketone (PEEK) has been considered as a potential orthopedic and dental application material due to its similar elastic modulus as bones, inferior osseointegration and bacteriostasis of PEEK hampers its clinical application. In this work, fluorinated PEEK was constructed via plasma immersion ion implantation (PIII) followed by hydrofluoric acid treatment to ameliorate the osseointegration and antibacterial properties of PEEK. The surface microstructure, composition, and hydrophilicity of all samples were investigated. Rat bone mesenchymal stem cells (rBMSCs) were cultured on their surfaces to estimate bioactivity. The fluorinated PEEK can enhance the cell adhesion, cell spreading, proliferation, and alkaline phosphatase (ALP) activity compared to pristine PEEK. Furthermore, the fluorinated PEEK surface exhibits good bacteriostatic effect against Porphyromonas gingivalis, which is one of the major periodontal pathogens. In summary, we provide an effective route to introduce fluorine and the results reveal that the fluorinated PEEK can enhance the osseointegration and bacteriostasis, which provides a potential candidate for dental implants.

  6. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  7. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Lyubov G. Bulusheva

    2017-08-01

    Full Text Available Double-walled carbon nanotubes (DWCNTs are fluorinated using (1 fluorine F2 at 200 °C, (2 gaseous BrF3 at room temperature, and (3 CF4 radio-frequency plasma functionalization. These have been comparatively studied using transmission electron microscopy and infrared, Raman, X-ray photoelectron, and near-edge X-ray absorption fine structure (NEXAFS spectroscopy. A formation of covalent C–F bonds and a considerable reduction in the intensity of radial breathing modes from the outer shells of DWCNTs are observed for all samples. Differences in the electronic state of fluorine and the C–F vibrations for three kinds of the fluorinated DWCNTs are attributed to distinct local surroundings of the attached fluorine atoms. Possible fluorine patterns realized through a certain fluorination technique are revealed from comparison of experimental NEXAFS F K-edge spectra with quantum-chemical calculations of various models. It is proposed that fluorination with F2 and BrF3 produces small fully fluorinated areas and short fluorinated chains, respectively, while the treatment with CF4 plasma results in various attached species, including single or paired fluorine atoms and –CF3 groups. The results demonstrate a possibility of different patterning of carbon surfaces through choosing the fluorination method.

  8. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  9. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: Fluorine-induced initial corrosion of non-passivated Ni-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cui-Lan, E-mail: rencuilan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Gong, Wen-Bin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Shanghai 215123 (China); Wang, Cheng-Bin; Zhang, Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Cheng, Cheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhi-Yuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-15

    Adsorption and diffusion behaviors of fluorine on Cr-doped Ni(111) surface are investigated by using first-principles simulation. It shows that the Cr in the Cr-doped Ni(111) surface serve a trap site for fluorine with adsorption energy 3.52 eV, which is 1.04 eV higher than that on Ni(111) surface. Moreover, the Cr atom is pulled out the surface for 0.41 Å after the fluorine adsorption, much higher than that on Ni(111) surface. Further diffusion behaviors analysis confirms the conclusion because the fluorine diffusion from neighbored sites onto the Cr top site is an energy barrierless process. Detailed electronic structure analysis shows that a deeper hybrid state of F 2 p-Cr 3 d indicates a strong F−Cr interaction. The Ni−Cr bond is elongated and weakened due to the new formed F−Cr bonding. Our results help to understanding the basic fluorine-induced initial corrosion mechanism for Ni-based alloy in molten salt environment.

  10. Hydrogen and fluorine in the surfaces of lunar samples

    International Nuclear Information System (INIS)

    Leich, D.A.; Goldberg, R.H.; Burnett, D.S.; Tombrello, T.A.

    1974-04-01

    The resonant nuclear reaction F-19 (p, alpha gamma)O-16 was used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction was applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1 / 2 micrometer. These results are interpreted in terms of terrestrial H 2 O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H 2 O into laboratory glass samples which have been irradiated with O-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations were performed in a 1 pm surface layer on lunar samples using the same F-19(alpha gamma)O-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination. (U.S.)

  11. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  12. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization.

    Science.gov (United States)

    Struzzi, Claudia; Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla

    2017-01-01

    The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF 4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.

  13. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

    Directory of Open Access Journals (Sweden)

    Claudia Struzzi

    2017-08-01

    Full Text Available The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT is correlated to the CF4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.

  14. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  15. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    International Nuclear Information System (INIS)

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  16. The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor

    Science.gov (United States)

    Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak

    2015-08-01

    The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.

  17. FY 1995 development of fluorinated hydriding alloys with multi functional and functionally-graded surface and their application to energy conversion devices; 1995 nendo keishagata fukugo kino wo hyomen ni motsu suiso kyuzo gokin no kaihatsu to energy henkan gijutsu eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project is the extended researches of a fluorination technique invented by the project leader (Suda) for improving the surface properties and characteristics of conventional hydriding alloys from the following viewpoints; (1) To investigate the roles of fluorinated surface during hydrogen uptake both in the gas-solid and the electrochemical reactions. (2) To elucidate the factors which increase the protective nature of the surface. (3) To develop a material design procedure for synthesizing thin layer of functionally graded surface which is composed of metallic Ni and the fluoride compound. (1) An advanced fluorination technique was developed to incorporate metallic Ni in the surface fluoride layer. (2) Metallic Ni was successfully distributed in a functionally graded manner in the Surface fluoride layer. (3) Through the technique developed, the following properties and characteristics were successfully donated in the fluorinated hydriding alloys such as AB{sub 5}, AB{sub 2}, and AB; (3-1)Surface oxides which act as the resistant layer to the hydrogen up take was completely eliminated to result in the enhancement of the initial activation characteristics. (3-2) Hydrogen selectivity and permeability was greatly improved. (3-3) Surface protective nature against the impurity gases and contaminants was significantly improved. (3-4) Initial activation characteristics both in the gas-solid and the electrochemical reactions were distinguishably improved. (3-5) Fluorinated surface was found to function as the catalyst for a methanation reaction between the CO{sub 2} gas adsorbed over the fluorinated surface and the monatomic hydrogen absorbed in the metal lattice of the crystalline structure of the hydriding alloys. (4) A technique was developed for increasing the specific surface area and decreasing the specific surface diameter of the fluorinated hydriding alloy articles. (NEDO)

  18. Surface modification of titanium aluminides with fluorine to improve their application for high temperature service conditions

    International Nuclear Information System (INIS)

    Zschau, Hans-Eberhard; Schuetze, Michael; Baumann, Horst; Bethge, Klaus

    2007-01-01

    Recently the target temperature of components manufactured from gamma-TiAl alloys like turbine blades, turbocharger rotors or automotive valves has been increased to 900 deg. C. However, there is an insufficient oxidation resistance above 750 deg. C. One method used to improve the gamma-TiAl oxidation behaviour is the so-called fluorine microalloying effect. After application of fluorine to the TiAl surface by ion implantation or treatment with diluted HF and oxidation at 900 deg. C in air a dense alumina layer is formed. However, after the treatments a distinct loss of fluorine was observed during heating and within the first hours of oxidation. In this work the long time behaviour during isothermal and cyclic oxidation up to 1500 h/900 deg. C/air was investigated showing a slow fluorine decrease. The alumina layer acts as a diffusion barrier for fluorine, whereas fluorine diffuses into the metal. The diffusion coefficient was calculated. The results fit the theoretical model of the fluorine effect

  19. Reactions of BBr(n)(+) (n = 0--2) at fluorinated and hydrocarbon self-assembled monolayer surfaces: observations of chemical selectivity in ion--surface scattering.

    Science.gov (United States)

    Wade, N; Shen, J; Koskinen, J; Cooks, R G

    2001-07-01

    Ion-surface reactions involving BBr(n)(+) (n = 0--2) with a fluorinated self-assembled monolayer (F-SAM) surface were investigated using a multi-sector scattering mass spectrometer. Collisions of the B(+) ion yield BF(2)(+) at threshold energy with the simpler product ion BF(+)* appearing at higher collision energies and remaining of lower abundance than BF(2)(+) at all energies examined. In addition, the reactively sputtered ion CF(+) accompanies the formation of BF(2)(+) at low collision energies. These results stand in contrast with previous data on the ion-surface reactions of atomic ions with the F-SAM surface in that the threshold and most abundant reaction products in those cases involved the abstraction of a single fluorine atom. Gas-phase enthalpy data are consistent with BF(2)(+) being the thermodynamically favored product. The fact that the abundance of BF(2)(+) is relatively low and relatively insensitive to changes in collision energy suggests that this reaction proceeds through an entropically demanding intermediate at the vacuum--surface interface, one which involves interaction of the B(+) ion simultaneously with two fluorine atoms. By contrast with the reaction of B(+), the odd-electron species BBr(+)* reacts with the F-SAM surface to yield an abundant single-fluorine abstraction product, BBrF(+). Corresponding gas-phase ion--molecule experiments involving B(+) and BBr(+)* with C(6)F(14) also yield the products BF(+)* and BF(2)(+), but only in extremely low abundances and with no preference for double fluorine abstraction. Ion--surface reactions were also investigated for BBr(n)(+) (n = 0-2) with a hydrocarbon self-assembled monolayer (H-SAM) surface. Reaction of the B(+) ion and dissociative reactions of BBr(+)* result in the formation of BH(2)(+), while the thermodynamically less favorable product BH(+)* is not observed. Collisions of BBr(2)(+) with the H-SAM surface yield the dissociative ion-surface reaction products, BBrH(+) and BBrCH(3

  20. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  1. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.

    Science.gov (United States)

    Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan

    2015-02-14

    Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.

  2. Self-formation of a nanonet of fluorinated carbon nanowires on the Si surface by combined etching in fluorine-containing plasma

    Science.gov (United States)

    Amirov, I. I.; Gorlachev, E. S.; Mazaletskiy, L. A.; Izyumov, M. O.; Alov, N. V.

    2018-03-01

    In this work, we report a technique of the self-formation of a nanonet of fluorinated carbon nanowires on the Si surface using a combined etching in fluorine-containing C4F8/Ar and SF6 plasmas. Using scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy, we show that after the etching of Si in the C4F8/Ar plasma, a fluorinated carbon film of nanometer-scale thickness is formed on its surface and its formation accelerates at elevated temperatures. After a subsequent short-term etching in the SF6 plasma, the film is modified into a nanonet of self-formed fluorinated carbon nanowires.

  3. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers.

    Science.gov (United States)

    Zhang, Maojie; Guo, Xia; Zhang, Shaoqing; Hou, Jianhui

    2014-02-01

    The synergistic effect of fluorination on molecular energy level modulation is realized by introducing fluorine atoms onto both the donor and the acceptor moieties in a D-A polymer, and as a result, the polymer solar cell device based on the trifluorinated polymer, PBT-3F, shows a high efficiency of 8.6%, under illumination of AM 1.5G, 100 mW cm(-) (2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  5. Studies on nitrile rubber degradation in zinc bromide completion fluid and its prevention by surface fluorination

    Science.gov (United States)

    Vega-Cantu, Yadira Itzel

    Poly(acrylonitrile-co-butadiene) or nitrile-butadiene rubber (NBR) is frequently used as an O-ring material in the oil extraction industry due to its excellent chemical properties and resistance to oil. However, degradation of NBR gaskets is known to occur during the well completion and oil extraction process where packers are exposed to completion fluids such as ZnBr2 brine. Under these conditions NBR exhibits accelerated chemical degradation resulting in embrittlement and cracking. Samples of NBR, poly(acrylonitrile) (PAN) and poly(butadiene) (PB) have been exposed to ZnBr2 based completion fluid, and analyzed by ATR and diffuse reflectance IR. Analysis shows the ZnBr2 based completion fluid promotes hydrolysis of the nitrile group to form amides and carboxylic groups. Analysis also shows that carbon-carbon double bonds in NBR are unaffected after short exposure to zinc bromide based completion fluid, but are quickly hydrolyzed in acidic bromide mixtures. Although fluoropolymers have excellent chemical resistance, their strength is less than nitrile rubber and replacing the usual gasket materials with fluoroelastomers is expensive. However, a fluoropolymer surface on a nitrile elastomer can provide the needed chemical resistance while retaining their strength. In this study, we have shown that this can be achieved by direct fluorination, a rather easy and inexpensive process. Samples of NBR O-rings have been fluorinated by exposure to F2 and F2/HF mixtures at various temperatures. Fluorination with F 2 produces the desired fluoropolymer layer; however, fluorination by F2/HF mixtures gave a smoother fluorinated layer at lower temperatures and shorter times. Fluorinated samples were exposed to ZnBr2 drilling fluid and solvents. Elemental analysis shows that the fluorinated layer eliminates ZnBr2 diffusion into the NBR polymeric matrix. It was also found that surface fluorination significantly retards the loss of mechanical properties such as elasticity, tensile

  6. Investigation of fluorine adsorption on nitrogen doped MgAl_2O_4 surface by first-principles

    International Nuclear Information System (INIS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-01-01

    Graphical abstract: First-principles calculations indicate that MgAl_2O_4 surface is fluorine-loving, but hydrophobic. N doped MgAl_2O_4 (100) surface structure shows the highest fluorine adsorption performance and fluorine atom is more preferentially adsorbed on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: N doped MgAl_2O_4 (100) > Al_2O_3 (0001) > MgAl_2O_4 (100) > MgO (100). N doped MgAl_2O_4 is a promising candidate for fluorine removal. - Highlights: • MgAl_2O_4 surface is fluorine-loving, not hydrophilic. • Fluorine preferentially adsorbs on the Mg-Al bridge site. • Adsorption intensity follow this order: N doped MgAl_2O_4 > Al_2O_3 > MgAl_2O_4 > MgO. • Excellent adsorption performance attributes to electron compensation of N atom. • Nitrogen doped MgAl_2O_4 is a promising candidate for fluorine removal. - Abstract: The nature of fluorine adsorption on pure and N doped MgAl_2O_4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl_2O_4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl_2O_4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl_2O_4 (100) > Al_2O_3 (0001) > MgAl_2O_4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl_2O_4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl_2O_4 is a promising candidate for fluorine removal.

  7. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    KAUST Repository

    Song, Zhibo

    2018-04-04

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  8. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    Science.gov (United States)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  9. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  10. Synthesis and properties of a novel UV-cured fluorinated siloxane graft copolymer for improved surface, dielectric and tribological properties of epoxy acrylate coating

    International Nuclear Information System (INIS)

    Yan, Zhenlong; Liu, Weiqu; Gao, Nan; Wang, Honglei; Su, Kui

    2013-01-01

    A novel functional fluorinated siloxane graft copolymer bearing with vinyl end-groups was synthesized from dihydroxypropyl-terminated poly(dimethylsiloxane) (PDMS), dicarboxyl terminated poly(2,2,3,4,4,4-hexafluorobutyl acrylate) oligomer (CTHFA), 2,4-toluene diissocyanate (TDI) and 2-hydroxyethyl methacrylate (HEMA). The chemical structure was characterized by FT-IR and GPC. The effect of concentration of the vinyl-capped fluorosilicone graft copolymer (Vi-PFSi) on the surface, thermal properties, dielectric and tribological properties of UV-cured films was investigated. Contact angles and surface energies showed that the high hydrophobic and oleophobic surfaces were obtained by incorporation of Vi-PFSi at very low amount (0.5 wt%). X-ray photoelectron spectroscopy (XPS) evidenced that the fluorinated and siloxane moiety selectively migrated to the outermost surface of UV-cured film, thus reduced its surface energy from 45.42 to 15.40 mN/m 2 without affecting its bulk properties. The morphology of fracture surface of modified film exhibited rough fracture surface only at the outermost surface, revealing fluorinated and siloxane groups migrated toward air-side surface. The dielectric constants decreased from 5.32 (1 MHz) for bisphenol-A epoxy methacrylate (EMA) to 2.82 (1 MHz) for modified film when the Vi-PFSi copolymer concentration increased from 0 to 0.8 wt%. Tribological results from abrasion tester suggested that the Vi-PFSi could obviously reduce the abrasion weight loss of modified films.

  11. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  12. Modes of occurrence of fluorine in the Late Paleozoic No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China

    Energy Technology Data Exchange (ETDEWEB)

    Xibo Wang; Shifeng Dai; Yingying Sun; Dan Li; Weiguo Zhang; Yong Zhang; Yangbing Luo [China University of Mining and Technology, Beijing (China). State Key Laboratory of Coal Resources and Safe Mining

    2011-01-15

    The No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China, is enriched in Al and Ga, which are valuable metal resources that could be extracted from fly ash. However, fluorine in the coal is unusually high (mean 286 {mu}g/g) and potentially toxic to the environment in the extraction process. In this paper, a sequential extraction/density separation procedure (SE/DS) was designed to examine the modes of occurrence of fluorine in the coal. The results show that fluorine extracted in distilled water, NH{sub 4}Ac (1 mol/l), and HCl (0.5%) leachates is low, and that in sulfide fraction is below the detection limit. The organic and silicate associations are inferred to account for more than 90% of the total fluorine in the coal. Boehmite and kaolinite are prime carriers of fluorine (the fluorine content in silicate fraction of the boehmite-enriched sample H-14 is up to 1906 {mu}g/g, and that of the kaolinite-enriched sample H-29 is 384 {mu}g/g). In bench samples H-2 and H-3, a minor amount of fluorine is related to goyazite. The relationship between fluorine and boehmite indicates that they were probably derived from the sediment source region, the weathered bauxite of the uplifted Benxi formation. 29 refs., 7 figs., 3 tabs.

  13. Synergistic effects of hollow structure and surface fluorination on the photocatalytic activity of titania

    International Nuclear Information System (INIS)

    Lv Kangle; Yu Jiaguo; Deng Kejian; Sun Jie; Zhao Yanxi; Du Dongyun; Li Mei

    2010-01-01

    To study the synergistic effects of hollow structure and surface fluorination on the photoactivity of TiO 2 , TiO 2 hollow microspheres were synthesized by a hydrolysis-precipitate method using sulfonated polystyrene (PS) as templates and tetrabutylorthotitanate (TBOT) as precursor, and then calcined at 500 o C for 2 h. The calcined samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N 2 sorption. Photocatalytic activity was evaluated using reactive brilliant red X3B, an anionic organic dye, as a model pollutant in water. The results show that the photocatalytic activity of TiO 2 hollow microspheres is significantly higher than that of TiO 2 nanoparticles prepared in the same experimental conditions. At pH 7 and 3, the apparent rate constants of the former exceed that of the latter by a factor of 3.38 and 3.15, respectively. After surface fluorination at pH 3, the photoactivity of hollow microspheres and nanoparticles further increases for another 1.61 and 2.19 times, respectively. The synergistic effect of surface fluorination and hollow structure can also be used to prepare other highly efficient photocatalyst.

  14. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    KAUST Repository

    Cadiau, Amandine

    2017-05-18

    Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.

  15. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    International Nuclear Information System (INIS)

    Krishnan, S.; Wang, N.; Ober, C.; Finlay, J.; Callow, M.; Callow, J.; Hexemer, A.; Sohn, K.; Kramer, E.; Fischer, D.

    2006-01-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates

  16. Structural And Energetic Changes of Si (100 Surface With Fluorine in Presence of Water – A Density Functional Study

    Directory of Open Access Journals (Sweden)

    Takeo Ebina

    2001-05-01

    Full Text Available Abstract: We report density functional electronic structure calculations to monitor the change in the surface characteristics of the Si (100-2x1 surface after fluorination followed by interaction with water. Embedded finite silicon clusters are used to model an extended Si (100-2x1 surface. Two high symmetry pathways and subsequent adsorption sites were examined: (i adsorption of an fluorine atom directing onto a silicon dangling bond to form a monocoordinated fluorine atom (ii adsorption of a fluorine atom directing on top of silicon dimer to form a bridging dicoordinated fluorine atom. However, in the later case we find that no barrier exists for the bridging fluorine atom to slide towards silicon dimer dangling bond to form more stable mono coordinated Si-F bond. We calculated activation barriers and equilibrium surface configuration as a function of fluorine coverage upto 2.0 ML. We compared the stability of the fluorinated surface. The results were compared with existing experimental and theoretical results. The reaction of water with HF treated Si surface is monitored. It produces, as a first step, the exchange of Si-F with water to form Si-OH groups reducing the concentration of the fluorine on the surface, followed by a rapture of Si-Si bonds and finally the Si-O-Si bridge formation in the lattice.

  17. Effect of amorphous fluorinated coatings on photocatalytic properties of anodized titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Persico, Federico [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Sansotera, Maurizio, E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Diamanti, Maria Vittoria [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Magagnin, Luca; Venturini, Francesco; Navarrini, Walter [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2013-10-31

    The photocatalytic activity promoted by anodized titanium surfaces coated with different amorphous perfluoropolymers was evaluated. A copolymer between tetrafluoroethylene and perfluoro-4-trifluoromethoxy-1,3-dioxole and two perfluoropolyethers containing ammonium phosphate and triethoxysilane functionalities, respectively, were tested as coating materials. These coatings revealed good adhesion to the anodized titanium substrate and conferred to it both hydrophobicity and oleophobicity. The photocatalytic activity of the coating on anodized titanium was evaluated by monitoring the degradation of stearic acid via Infrared spectroscopy. The degradation rate of stearic acid was reduced but not set to zero by the presence of the fluorinated coatings, leading to the development of advanced functional coatings. The morphological variations of the coatings as a result of photocatalysis were also determined by atomic force microscopy. - Highlights: • Coated anodized titanium surfaces show a decreased wettability. • Evaluation of the stability of perfluorinated coatings towards photocatalysis. • Amorphous perfluorinated coatings do not hinder photocatalytic activity.

  18. Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups

    Science.gov (United States)

    Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia

    2018-05-01

    Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.

  19. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  20. Synthesis of fluorine- doped silica-coating by fluorosilane nanofluid to ultrahydrophobic and ultraoleophobic surface

    Science.gov (United States)

    Saboori, R.; Azin, R.; Osfouri, Sh; Sabbaghi, S.; Bahramian, A.

    2017-10-01

    Liquid repellency treatment has many applications in various sectors including oil and gas reservoirs and self-cleaning surfaces. In this study, effect of silica, fluorine-doped silica and fluorine-doped silica-coating by fluorosilane nanofluid on ultrahydrophobic and ultraoleophobic surface of carbonate and sandstone rock were investigated. The nanoparticles were synthesized by sol-gel method and characterized using XRD, FTIR, FESEM and DLS and nanofluid was prepared. F-SiO2-F nanoparticle was adsorbed on surface of rocks and confirmed by FESEM and EDXA. Effect of nanofluid on wettability was investigated by measuring contact angles of water, crude oil, condensate, n-decane and ethylene glycol in air and stability of ultrahydrophobic and ultraoleophobic was investigated. Results show that nanofluid (0.05 wt% of nanoparticle) changes contact angle from strongly liquid-wet to strongly gas-wet in all systems. The original contact angle of water, crude oil, condensate, n-decane and ethylene glycol were 37.95°, 0°, 0°, 0° and 0° for carbonate rock and 40.30°, 0°, 0°, 0° and 0° for sandstone rock which altered to 146.47°, 145.59°, 138.24°, 139.06° and 146.52° for carbonate rock and 160.01°, 151.40°, 131.85°, 140.27° and 151.70° for sandstone rock after treatment. The ultraoleophobic and ultrahydrophobic stability were  >48 h and 120 min.

  1. Surface properties and self-cleaning ability of the fluorinated acrylate coatings modified with dodecafluoroheptyl methacrylate through two adding ways

    International Nuclear Information System (INIS)

    Yang, Xin; Zhu, Liqun; Zhang, Yang; Chen, Yichi; Bao, Baiqing; Xu, Jinlong; Zhou, Weiwei

    2014-01-01

    Highlights: • A self-cleaning test is used to evaluate the self-cleaning ability of coatings. • Adding way of fluorine monomer has an influence on the self-cleaning ability. • The fluorine content of coating surface increases by changing modification method. • High contact angles and low sliding angles are advantageous for self-cleaning. • The self-cleaning ability of coatings is analyzed after scrubbing. - Abstract: The fluorine-modified acrylate resin was synthesized by solution radical polymerization using dodecafluoroheptyl methacrylate (DFMA) and other acrylate monomers. The same weight of DFMA was added into the reaction through two different ways: (1) adding DFMA as bottom monomer (AFBM); (2) adding DFMA drop by drop (AFDD). The different coatings were prepared by blending the fluorine-modified acrylate resin with the curing agent. Compared with AFDD coating, the AFBM coating exhibited better self-cleaning ability which was confirmed by the self-cleaning test through measuring the specular gloss of coatings before contamination and after water droplets flushing. The fluorine content at the surface of AFBM coating increased from 15.1 at.% to 23.1 at.%, while the water contact angles increased by 8° and the sliding angles decreased obviously. Furthermore, the contact angles and self-cleaning ability of the coatings prepared with DFMA through two adding ways both decreased after scrubbing by wet cotton because of the decrease of the surface fluorine atom content. It could be concluded that high contact angles and low sliding angles were advantageous for coatings to obtain excellent self-cleaning ability

  2. Surface properties and self-cleaning ability of the fluorinated acrylate coatings modified with dodecafluoroheptyl methacrylate through two adding ways

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xin [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Zhu, Liqun, E-mail: zhulq@buaa.edu.cn [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Zhang, Yang [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Chen, Yichi [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Bao, Baiqing; Xu, Jinlong; Zhou, Weiwei [Jiangsu Baihe Coatings Co., Ltd, Changzhou 213136 (China)

    2014-03-01

    Highlights: • A self-cleaning test is used to evaluate the self-cleaning ability of coatings. • Adding way of fluorine monomer has an influence on the self-cleaning ability. • The fluorine content of coating surface increases by changing modification method. • High contact angles and low sliding angles are advantageous for self-cleaning. • The self-cleaning ability of coatings is analyzed after scrubbing. - Abstract: The fluorine-modified acrylate resin was synthesized by solution radical polymerization using dodecafluoroheptyl methacrylate (DFMA) and other acrylate monomers. The same weight of DFMA was added into the reaction through two different ways: (1) adding DFMA as bottom monomer (AFBM); (2) adding DFMA drop by drop (AFDD). The different coatings were prepared by blending the fluorine-modified acrylate resin with the curing agent. Compared with AFDD coating, the AFBM coating exhibited better self-cleaning ability which was confirmed by the self-cleaning test through measuring the specular gloss of coatings before contamination and after water droplets flushing. The fluorine content at the surface of AFBM coating increased from 15.1 at.% to 23.1 at.%, while the water contact angles increased by 8° and the sliding angles decreased obviously. Furthermore, the contact angles and self-cleaning ability of the coatings prepared with DFMA through two adding ways both decreased after scrubbing by wet cotton because of the decrease of the surface fluorine atom content. It could be concluded that high contact angles and low sliding angles were advantageous for coatings to obtain excellent self-cleaning ability.

  3. Investigation of fluorine adsorption on nitrogen doped MgAl{sub 2}O{sub 4} surface by first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiaojun; Xu, Zhenming [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Li, Jie, E-mail: 15216105346@163.com [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Chen, Jiangan [Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Liu, Qingsheng [Faculty of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China)

    2016-07-15

    Graphical abstract: First-principles calculations indicate that MgAl{sub 2}O{sub 4} surface is fluorine-loving, but hydrophobic. N doped MgAl{sub 2}O{sub 4} (100) surface structure shows the highest fluorine adsorption performance and fluorine atom is more preferentially adsorbed on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: N doped MgAl{sub 2}O{sub 4} (100) > Al{sub 2}O{sub 3} (0001) > MgAl{sub 2}O{sub 4} (100) > MgO (100). N doped MgAl{sub 2}O{sub 4} is a promising candidate for fluorine removal. - Highlights: • MgAl{sub 2}O{sub 4} surface is fluorine-loving, not hydrophilic. • Fluorine preferentially adsorbs on the Mg-Al bridge site. • Adsorption intensity follow this order: N doped MgAl{sub 2}O{sub 4} > Al{sub 2}O{sub 3} > MgAl{sub 2}O{sub 4} > MgO. • Excellent adsorption performance attributes to electron compensation of N atom. • Nitrogen doped MgAl{sub 2}O{sub 4} is a promising candidate for fluorine removal. - Abstract: The nature of fluorine adsorption on pure and N doped MgAl{sub 2}O{sub 4} surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl{sub 2}O{sub 4} surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl{sub 2}O{sub 4} (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl{sub 2}O{sub 4} (100) > Al{sub 2}O{sub 3} (0001) > MgAl{sub 2}O{sub 4} (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl{sub 2}O{sub 4} attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these

  4. Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor.

    Science.gov (United States)

    Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak

    2012-09-01

    The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    International Nuclear Information System (INIS)

    Zheng, Y.; Brion, C.E.; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E.; Chakravorty, S.J.; Davidson, E.R.; Sgamellotti, A.; von Niessen, W.

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green's function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs

  6. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    KAUST Repository

    Cadiau, Amandine; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant; Pillai, Renjith S.; Shkurenko, Aleksander; Martineau-Corcos, Charlotte; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-01-01

    fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas

  7. Nuclear energy - Determination of chlorine and fluorine in uranium dioxide powder and sintered pellets

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  8. Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges

    Science.gov (United States)

    Zhang, Xiaoqing; Sessler, Gerhard M.; Ma, Xingchen; Xue, Yuan; Wu, Liming

    2018-06-01

    Wavy fluorinated ethylene propylene (FEP) electret films with negative charges were prepared by a patterning method followed by a corona charging process. The thermal stability of these films was characterized by the surface potential decay with annealing time at elevated temperatures. The results show that thermally stable electret films can be made by corona charging followed by pre-aging treatment. Vibration energy harvesters having a very simple sandwich structure, consisting of a central wavy FEP electret film and two outside metal plates, were designed and their performance, including the resonance frequency, output power, half power bandwidth, and device stability, was investigated. These harvesters show a broad bandwidth as well as high output power. Their performance can be further improved by using a wavy-shaped counter electrode. For an energy harvester with an area of 4 cm2 and a seismic mass of 80 g, the output power referred to 1 g (g is the gravity of the earth), the resonance frequency, and the 3 dB bandwidth are 1.85 mW, 90 Hz, and 24 Hz, respectively. The output power is sufficient to power some electronic devices. Such devices may be embedded in shoe soles, carpets or seat cushions where the flexibility is required and large force is available.

  9. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  10. Surface and grain boundary modifications of YBa2Cu3O7-δ ceramics by plasma-enhanced fluorination

    International Nuclear Information System (INIS)

    Magro, C.; Heintz, J.M.; Etourneau, J.; Tressaud, A.; Cardinaud, C.; Turban, G.; Hudakova, N.

    1994-01-01

    The radiofrequency plasma technique involving mixtures of CF 4 + O 2 gases has been applied to the treatment of high T c superconducting oxides (YBa 2 Cu 3 O 7-δ ). The investigation of the various experimental parameters of the process has shown that the improvement of the critical current density J c mainly depends on the inlet precursor composition CF 4 + τ % O 2 , on the total pressure, and on the reaction time. The presence of fluorine in the bulk of the ceramics has been observed from electron microprobe analysis, together with an increase of the open-quotes Cu 3+ close quotes content. The plasma enhanced fluorination (PEF) treatment improves the superconducting properties of the materials: both values of the resistivity in the normal state and of the superconducting transition width are reduced and the critical transition temperature is improved of about 1 K. Mechanisms of interaction between the reactive species of the plasma and YBa 2 Cu 3 O 7-δ ceramics have been proposed through detailed angle resolved X-ray photoelectron spectroscopic analyses. At the surface of the outer grains, the plasma treatment removes (OH) - and (CO 3 ) 2- species contained in the degradation layer and gives rise to a fluoride-rich layer. In the bulk of the material the occurrence of metal-fluorine bonds in the superconducting phase has to be assumed. Moreover, interactions between atomic fluorine and grain boundaries result in an improvement of intergranular magnetic behavior, according to a.c. susceptibility measurements. An increase of the oxidation state of copper has also been detected, confirming the oxidizing effect of the plasma treatment

  11. Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation

    Science.gov (United States)

    Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu

    2018-04-01

    SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.

  12. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling

    Science.gov (United States)

    Yasuhiro, Matsuda; Katsushi, Okuyama; Hiroko, Yamamoto; Hisanori, Komatsu; Masashi, Koka; Takahiro, Sato; Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano

    2015-04-01

    To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials ["MS coats F" (MSF)] and fluoride-free sealing materials ("hybrid coats 2" [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8-4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries.

  13. Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Joseph Nathanael, A.; Mangalaraj, D.; Hong, S.I.; Masuda, Y.; Rhee, Y.H.; Kim, H.W.

    2013-01-01

    Hydroxyapatite (HAp) nanocrystals with different levels of fluorine substitution (P/F = 0, 6, 4 and 2) on the OH sites were produced via hydrothermal method. The fluorine substitution was found to alter the morphology of crystals appreciably. The aspect ratio and the crystallinity of HAp crystals increased with increasing fluorine substitution. The presence of broad ring and hallow ring patterns in electron diffraction suggests the low-crystalline nature of HAp crystals. With increasing fluorine substitution, the diffraction patterns exhibited discrete rings and numerous diffraction spots, implying the increased crystallinity. Raman spectra from the HAp nanoparticles also support the less-crystalline nature of the pristine HAp and the enhanced crystallization by fluorine substitution. In HAp crystals processed with no fluorine substitution, surface energy and planar Ca 2+ density are less sensitive to the crystallographic orientation because of its low-crystalline nature, favoring equi-axed or slightly elongated particles. The addition of fluorine apparently increased the crystallinity, enhancing the orientation dependent growth and accordingly the aspect ratio. Osteoblast proliferation was observed to be enhanced by fluorine substitution in HAp. In vitro biological data support that the excellent osteoblastic cell viability and functional activity of the fluoridated apatite. -- Highlights: ► Fluorapatite nanorods were produced hydrothermally with different fluorine content. ► Fluorine substitution was found to alter the morphology of crystals appreciably. ► It enhances the crystallinity, orientation dependent growth and hence aspect ratio. ► In vitro cellular analysis shows excellent cell viability of the fluorapatite.

  14. Self-assembled monolayers of semi-fluorinated thiols and disulfides with a potentially antibacterial terminal fragment on gold surfaces

    International Nuclear Information System (INIS)

    Thebault, P.; Taffin de Givenchy, E.; Guittard, F.; Guimon, C.; Geribaldi, S.

    2008-01-01

    Attempts to elaborate the best organized cationic self-assembled monolayers (SAMs) with sulfur derivatives containing potentially bactericidal quaternary ammonium salt moieties have been performed on gold with the final aim to obtain contact-active antibacterial surfaces. Four molecules bearing two hydrocarbon spacers with different lengths between the sulfur atom and the quaternized nitrogen atom, and two different terminal semi-fluorinated alkyl chains have been synthesised and used in view to evaluate their capacity for leading to the highest densities and the highest organization of potentially active molecules on the metal surface. The formation and quality of SAMs characterized by X-ray photoelectron spectroscopy, Internal Reflexion Infra Red Imaging, contact angle and blocking factor measurements depend on the lengths of both the hydrocarbon spacer and terminal perfluorinated chain

  15. Development of superhydrophobic fabrics by surface fluorination and formation of CNT-induced roughness

    Directory of Open Access Journals (Sweden)

    Myoung Hee Shim

    2015-03-01

    Full Text Available Superhydrophobictextile material having self-cleaning function was developed by employing carbon nanotubes (CNTs and water-repellent agents.Hydrophobic fabrics were prepared on 100% polyester woven fabrics withvarious yarn diameters and yarn types. The wetting behavior of fabrics withdifferent treatments was compared for: siloxanerepellent, fluorocarbon repellent, and CNT added fluorocarbon repellent. Drawn textured yarn (DTY fabrics exhibited higher contactangle (CA than filament yarn fabrics due to the larger surface roughness contributed by the textured yarn. Fabrics treated with fluorocarbon presentedlarger CA and lower shedding angle than those treated with siloxane,because of the lower surface energy of fluorocarbon repellent. Specimens madeof 50 denier DTY and treated with CNT-Teflon AF® showed the mostsuperhydrophobic characteristics in the study, producing the static contactangle>150° and the shedding angle<15°. CNT on fabric surface contributedto the nano-scale surface roughness to hold the air traps like papillae oflotus leaf, giving superhydrophobic characteristics.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5762

  16. Production of low energy gamma rays by neutron interactions with fluorine for incident neutron energies between 0.1 and 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.; Dickens, J.K.

    1975-06-01

    Differential cross sections for the production of low-energy gamma rays (less than 240 keV) by neutron interactions in fluorine have been measured for neutron energies between 0.1 and 20 MeV. The Oak Ridge Electron Linear Accelerator was used as the neutron source. Gamma rays were detected at 92 0 using an intrinsic germanium detector. Incident neutron energies were determined by time-of-flight techniques. Tables are presented for the production cross sections of three gamma rays having energies of 96, 110, and 197 keV. (14 figures, 3 tables) (U.S.)

  17. Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs

    International Nuclear Information System (INIS)

    Chen Wanjun; Zhang Jing; Zhang Bo; Chen, Kevin Jing

    2013-01-01

    The gate forward leakage current in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated. It is shown that the current which originated from the forward biased Schottky-gate contributed to the gate forward leakage current. Therefore, a fluorine-plasma surface treatment is presented to induce the negative ions into the AlGaN layer which results in a higher metal—semiconductor barrier. Consequently, the gate forward leakage current shrinks. Experimental results confirm that the gate forward leakage current is decreased by one order magnitude lower than that of HEMT device without plasma treatment. In addition, the DC characteristics of the HEMT device with plasma treatment have been studied. (semiconductor devices)

  18. Triple layered core–shell structure with surface fluorinated ZnO-carbon nanotube composites and its electron emission properties

    International Nuclear Information System (INIS)

    Wang, H.Y.; Chua, Daniel H.C.

    2013-01-01

    Highlights: ► The effects of CF 4 plasma on ZnO-CNT core–shell structures were studied. ► ZnO was effective in protecting the aligned CNTs core for as long as 30 min of plasma etching. ► SEM showed the surface morphology was nearly similar between pristine, 2 min and 30 min plasma etched specimens. ► F was observed to displace O in ZnO. ► This is the first report of an ultra long plasma etch of fluorine onto ZnO surface. - Abstract: Core-shelled structures such as zinc oxide (ZnO) on carbon nanotubes (CNTs) give rise to interesting material properties. In this work, a triple-layered core–shell–shell structure is presented where the effects of fluorine (F) incorporation on the outmost shell of the ZnO-CNT structure are studied. The samples prepared ranged from a short 2 min to a 30 min immersion in carbon tetraflouride (CF 4 ) plasma. In addition, its effects on the electron emission properties also studied and it is shown that the plasma immersions create thinner field emitters with sharp tiny wrinkles giving rise to more electron emission sites and higher enhancement factor. In addition, X-ray photoelectron spectroscopy measurements showed that F ions replace O in ZnO coatings during immersion process, thus increasing the electrical conductivity and shifts the Fermi level of ZnO upwards. Both physical and electronic effects further contribute to a lower threshold field.

  19. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling

    Energy Technology Data Exchange (ETDEWEB)

    Yasuhiro, Matsuda, E-mail: matsuda@den.hokudai.ac.jp [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Katsushi, Okuyama [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Hiroko, Yamamoto [Graduate School of Dentistry, Osaka University (Japan); Hisanori, Komatsu [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Masashi, Koka; Takahiro, Sato [Takasaki Advanced Radiation Research Institute, JAEA (Japan); Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan)

    2015-04-01

    To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials [“MS coats F” (MSF)] and fluoride-free sealing materials (“hybrid coats 2” [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8–4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries.

  20. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling

    International Nuclear Information System (INIS)

    Yasuhiro, Matsuda; Katsushi, Okuyama; Hiroko, Yamamoto; Hisanori, Komatsu; Masashi, Koka; Takahiro, Sato; Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano

    2015-01-01

    To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials [“MS coats F” (MSF)] and fluoride-free sealing materials (“hybrid coats 2” [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8–4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries

  1. Structural analysis of fluorine-containing bioactive glass nanoparticles synthesized by sol-gel route assisted by ultrasound energy.

    Science.gov (United States)

    Lins, Carolina E C; Oliveira, Agda A R; Gonzalez, Ismael; Macedo, Waldemar A A; Pereira, Marivalda M

    2018-01-01

    In the last decades, studies about the specific effects of bioactive glass on remineralization of dentin were the focus of attention, due to their excellent regenerative properties in mineralized tissues. The incorporation of Fluorine in bioactive glass nanoparticles may result in the formation of fluorapatite (FAP), which is chemically more stable than hydroxyapatite or carbonated hydroxyapatite, and therefore is of interest for dental applications. The aim of this study was to synthesize and characterize a new system of Fluorine-containing bioactive glass nanoparticles (BGNPF). A sol-gel route assisted by ultrasound was used for the synthesis of BGNPF. The particles obtained were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD), dynamic light scattering (DLS), nitrogen adsorption, and X-ray photoelectron spectroscopy (XPS). SEM micrographs showed that the particles are quite uniform spherical nanostructures, occurring agglomeration or partial sinterization of the particulate system after heat treatment. XRD and XPS analysis results suggest the formation of fluorapatite crystals embedded within the matrix of the bioactive glass nanoparticles. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 360-366, 2018. © 2017 Wiley Periodicals, Inc.

  2. Concavity Theorems for Energy Surfaces

    OpenAIRE

    Giraud, B. G.; Karataglidis, S.

    2011-01-01

    Concavity properties prevent the existence of significant landscapes in energy surfaces obtained by strict constrained energy minimizations. The inherent contradiction is due to fluctuations of collective coordinates. A solution to those fluctuations is given.

  3. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  4. Fluorine-doped tin oxide surfaces modified by self-assembled alkanethiols for thin-film devices

    Energy Technology Data Exchange (ETDEWEB)

    Alves, A.C.T.; Gomes, D.J.C.; Silva, J.R.; Silva, G.B., E-mail: george@cpd.ufmt.br

    2013-08-15

    In this work, we have investigated self-assembled monolayers (SAMs) from alkanethiols on fluorine-doped tin oxide (FTO) surfaces, which were used as an anode for thin-film devices prepared from the conductive copolymer so-called sulfonated poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl) (S-P3MEET). The assembled monolayers were characterized by using wetting contact angle, atomic force microscopy, and electrical measurements. The results indicated that dodecanethiol molecules, CH{sub 3}(CH{sub 2}){sub 11}SH, were well assembled on the FTO surfaces. In addition, it was found similar values of wetting contact angle for dodecanethiol assembled on both FTO and Au surfaces. Concerning the thin-film device, current–voltage analysis revealed a hysteresis. This behavior was associated to a charge-trapping effect and also to structural changes of the SAMs. Finally, charge injection capability of tin oxide electrodes can be improved by using SAMs and then this approach can plays an important role in molecular-scale electronic devices.

  5. Highly sensitive and selective determination of fluorine ion by graphene oxide/nanogold resonance Rayleigh scattering-energy transfer analytical platform.

    Science.gov (United States)

    Liang, Aihui; Peng, Jing; Liu, Qingye; Wen, Guiqing; Lu, Zhujun; Jiang, Zhiliang

    2015-08-15

    In pH 4.0 acetate buffer solution, fluorine ions react with fluorine reagent (FR) and La(III) to generate blue ternary complex that exhibited strong absorption at about 370 nm. Upon addition of graphene oxide/nanogold (GO/NG) as resonance Rayleigh scattering (RRS) spectral probe with strong RRS peak at 370 nm, the color changed to gray, and the RRS intensity decreased with the increase of fluorine ion concentration due to the RRS energy transfer (RRSET) from GO/NG to the complex. Under the selected condition, the decreased RRS peak ΔI370 nm was linear to fluorine ion concentration in the range of 6.0 × 10(-8)-1.3 × 10(-5)mol/L, with a detection limit of 3.0 × 10(-8)mol/L F(-). This RRSET method was applied to the analysis of fluorine in toothpaste and water samples, with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Diffusion modelling of low-energy ion-implanted BF{sub 2} in crystalline silicon: Study of fluorine vacancy effect on boron diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, J. [Laboratoire Electronique Microtechnologie et Instrumentation (LEMI), University of Rouen, 76821 Mont Saint Aignan (France)], E-mail: Jerome.Marcon@univ-rouen.fr; Merabet, A. [Laboratoire de Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, 19000 Setif (Algeria)

    2008-12-05

    We have investigated and modelled the diffusion of boron implanted into crystalline silicon in the form of boron difluoride BF{sub 2}{sup +}. We have used published data for BF{sub 2}{sup +} implanted with an energy of 2.2 keV in crystalline silicon. Fluorine effects are considered by using vacancy-fluorine pairs which are responsible for the suppression of boron diffusion in crystalline silicon. Following Uematsu's works, the simulations satisfactory reproduce the SIMS experimental profiles in the 800-1000 deg. C temperature range. The boron diffusion model in silicon of Uematsu has been improved taking into account the last experimental data.

  7. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  8. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  9. Fluorination reaction uranium dioxide by fluorine

    International Nuclear Information System (INIS)

    Ogata, Shinji; Homma, Shunji; Koga, Jiro; Matsumoto, Shiro; Sasahira, Akira; Kawamura, Fumio

    2004-01-01

    Kinetics of the fluorination reaction of uranium dioxide is studied using un-reacted core model with shrinking particles. The model includes the film mass transfer of fluorine gas and its diffusion in the particle. The rate constants of the model are determined by fitting the experimental data for 370-450degC. The model successfully represents the fluorination in this temperature range. The rate control step is identified by examining the rate constants of the model for 300-1,800degC. For temperature range up to 900degC, the fluorination reaction is rate controlling. For over 900degC, both mechanisms of the mass transfer of fluorine and the fluorination reaction control the rate of the fluorination. With further increase of the temperature, however, the fluorination reaction becomes so fast that the mass transfer of fluorine eventually controls the rate of the fluorination. (author)

  10. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    Science.gov (United States)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  11. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  12. Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Peng, Weijun; Li, Hongqiang; Song, Shaoxian

    2017-02-15

    CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.

  13. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  14. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  15. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  16. Synthesis of polymeric fluorinated sol–gel precursor for fabrication of superhydrophobic coating

    International Nuclear Information System (INIS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Graphical abstract: - Highlights: • A polymeric fluorinated sol–gel precursor PFT is designed to fabricate superhydrophobic coatings. • The superhydrophobicity could be governed by the concentration of PFT. • Bio-mimicking self-cleaning property similar to lotus leaves could also be achieved. - Abstract: A fluorinated polymeric sol–gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol–gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol–gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  17. The electrochemical fluorination of polymeric materials for high energy density aqueous and non-aqueous battery and fuel cell separators

    Science.gov (United States)

    Liu, C. C.

    1983-01-01

    A computerized system was established and the electrochemical fluorination of trichloroethylene, polyacrylic acid and polyvinyl alcohol in anhydrous hydrogen fluoride was attempted. Both solid substrates as well as membranes were used. Some difficulties were found in handling and analyzing the solid substrates and membranes. Further studies are needed in this area. A microprocessor aided electrochemical fluorination system capable of obtaining highly reproducible experimental results was established.

  18. Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Nathanael, A., E-mail: ajosephnc@yahoo.com [Department of Nanomaterials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Hong, S.I., E-mail: sihong@cnu.ac.kr [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Masuda, Y. [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Rhee, Y.H.; Kim, H.W. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-01-15

    Hydroxyapatite (HAp) nanocrystals with different levels of fluorine substitution (P/F = 0, 6, 4 and 2) on the OH sites were produced via hydrothermal method. The fluorine substitution was found to alter the morphology of crystals appreciably. The aspect ratio and the crystallinity of HAp crystals increased with increasing fluorine substitution. The presence of broad ring and hallow ring patterns in electron diffraction suggests the low-crystalline nature of HAp crystals. With increasing fluorine substitution, the diffraction patterns exhibited discrete rings and numerous diffraction spots, implying the increased crystallinity. Raman spectra from the HAp nanoparticles also support the less-crystalline nature of the pristine HAp and the enhanced crystallization by fluorine substitution. In HAp crystals processed with no fluorine substitution, surface energy and planar Ca{sup 2+} density are less sensitive to the crystallographic orientation because of its low-crystalline nature, favoring equi-axed or slightly elongated particles. The addition of fluorine apparently increased the crystallinity, enhancing the orientation dependent growth and accordingly the aspect ratio. Osteoblast proliferation was observed to be enhanced by fluorine substitution in HAp. In vitro biological data support that the excellent osteoblastic cell viability and functional activity of the fluoridated apatite. -- Highlights: Black-Right-Pointing-Pointer Fluorapatite nanorods were produced hydrothermally with different fluorine content. Black-Right-Pointing-Pointer Fluorine substitution was found to alter the morphology of crystals appreciably. Black-Right-Pointing-Pointer It enhances the crystallinity, orientation dependent growth and hence aspect ratio. Black-Right-Pointing-Pointer In vitro cellular analysis shows excellent cell viability of the fluorapatite.

  19. Grafting of cellulose by fluorine-bearing silane coupling agents

    International Nuclear Information System (INIS)

    Ly, B.; Belgacem, M.N.; Bras, J.; Brochier Salon, M.C.

    2010-01-01

    The surface of model cellulose fibres, Avicell (AV), as well as that of Whatman paper (WP) was chemically modified with two fluorine-bearing alkoxysilane coupling agents, namely: 3,3,3-trifluoropropyl trimethoxysilane (TFPS) and 1H,1H,2H,2H,perfluorooctyl trimethoxysilane (PFOS). The occurrence of the grafting of soxhlet extracted modified cellulose was confirmed by the presence of silicon and fluorine atoms detected by elemental analysis, X-ray photoelectron spectroscopy and Electron Dispersion Energy/Scanning Electron Microscopy (EDS/SEM). The contact angle measurements showed that, after grafting, the surface of AV and WP samples became totally highly hydrophobic with a contact angle of 140 deg. Thus, the polar contribution to the surface energy of the modified substrates was found to be close to zero. These modified substrate could be interesting for application such as self-cleaning surface, wipes paper, grease barrier paper or for biocomposite with a polar matrix.

  20. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  1. Low energy range dielectronic recombination of Fluorine-like Fe17+ at the CSRm

    Science.gov (United States)

    Khan, Nadir; Huang, Zhong-Kui; Wen, Wei-Qiang; Mahmood, Sultan; Dou, Li-Jun; Wang, Shu-Xing; Xu, Xin; Wang, Han-Bing; Chen, Chong-Yang; Chuai, Xiao-Ya; Zhu, Xiao-Long; Zhao, Dong-Mei; Mao, Li-Jun; Li, Jie; Yin, Da-Yu; Yang, Jian-Cheng; Yuan, You-Jin; Zhu, Lin-Fan; Ma, Xin-Wen

    2018-05-01

    The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe17+ ions was measured at the main cooler storage ring at the Institute of Modern Physics, Lanzhou, China. The experimental electron-ion collision energy range covers the first Rydberg series up to n = 24 for the DR resonances associated with the {}2P1/2\\to {}2P3/2{{Δ }}n=0 core excitations. A theoretical calculation was performed by using FAC code and compared with the measured DR rate coefficient. Overall reasonable agreement was found between the experimental results and calculations. Moreover, the plasma rate coefficient was deduced from the experimental DR rate coefficient and compared with the available results from the literature. At the low energy range, significant discrepancies were found, and the measured resonances challenge state-of-the-art theory at low collision energies. Supported by the National Key R&D Program of China (2017YFA0402300), the National Natural Science Foundation of China through (11320101003, U1732133, 11611530684) and Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)

  2. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  3. Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability.

    Science.gov (United States)

    Tang, Xian; Liang, Weiyuan; Zhao, Jinlai; Li, Zhongjun; Qiu, Meng; Fan, Taojian; Luo, Crystal Shaojuan; Zhou, Ye; Li, Yu; Guo, Zhinan; Fan, Dianyuan; Zhang, Han

    2017-12-01

    Phosphorene has attracted great interest due to its unique electronic and optoelectronic properties owing to its tunable direct and moderate band-gap in association with high carrier mobility. However, its intrinsic instability in air seriously hinders its practical applications, and problems of technical complexity and in-process degradation exist in currently proposed stabilization strategies. A facile pathway in obtaining and stabilizing phosphorene through a one-step, ionic liquid-assisted electrochemical exfoliation and synchronous fluorination process is reported in this study. This strategy enables fluorinated phosphorene (FP) to be discovered and large-scale, highly selective few-layer FP (3-6 atomic layers) to be obtained. The synthesized FP is found to exhibit unique morphological and optical characteristics. Possible atomistic fluorination configurations of FP are revealed by core-level binding energy shift calculations in combination with spectroscopic measurements, and the results indicate that electrolyte concentration significantly modulates the fluorination configurations. Furthermore, FP is found to exhibit enhanced air stability thanks to the antioxidation and antihydration effects of the introduced fluorine adatoms, and demonstrate excellent photothermal stability during a week of air exposure. These findings pave the way toward real applications of phosphorene-based nanophotonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improvement of suspension stability and electrophoresis of nanodiamond powder by fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Wang, Y.H. [State Key Laboratory of Metastable Material Science and Technology, College of Material Science and Engineering, Hebei Street, Yanshan University, Qinhuangdao 066004 (China); Zang, J.B., E-mail: diamondzjb@163.com [State Key Laboratory of Metastable Material Science and Technology, College of Material Science and Engineering, Hebei Street, Yanshan University, Qinhuangdao 066004 (China) and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 (China); Bian, L.Y. [State Key Laboratory of Metastable Material Science and Technology, College of Material Science and Engineering, Hebei Street, Yanshan University, Qinhuangdao 066004 (China)

    2012-02-01

    Fluorinated nanodiamond (F-ND) was prepared by annealing ND in fluorine gas. The fluorine gas was periodically fed to ensure uniform exposure of every diamond nanoparticle in homogenous reactive ambience. The characteristics of the F-ND particles were investigated by the following methods: Fourier-transform infrared absorption spectroscopy, energy-dispersive X-ray spectrometer, X-ray diffraction, and transmission electron microscopy. The results showed that the fluorine atoms were chemically adsorbed on the surface of the ND particles and consequently formed C-F bonds. Fluorine of 6.4 wt.% was detected on the F-ND surface. The aggregated ND particles were disintegrated by the fluorination and the size of aggregated ND was reduced from approximately several hundred nanometers to about 40 nm. The stability of the F-ND suspension in distilled water or ethanol was higher than that of the pristine ND suspension. The anodic electrophoretic deposition of the F-ND particles was derived using ethanol suspension, indicating that the F-ND particles were negatively charged.

  5. Macroscale tribological properties of fluorinated graphene

    Science.gov (United States)

    Matsumura, Kento; Chiashi, Shohei; Maruyama, Shigeo; Choi, Junho

    2018-02-01

    Because graphene is carbon material and has excellent mechanical characteristics, its use as ultrathin lubrication protective films for machine elements is greatly expected. The durability of graphene strongly depends on the number of layers and the load scale. For use in ultrathin lubrication protective films for machine elements, it is also necessary to maintain low friction and high durability under macroscale loads in the atmosphere. In this study, we modified the surfaces of both monolayer and multilayer graphene by fluorine plasma treatment and examined the friction properties and durability of the fluorinated graphene under macroscale load. The durability of both monolayer and multilayer graphene improved by the surface fluorination owing to the reduction of adhesion forces between the friction interfaces. This occurs because the carbon film containing fluorine is transferred to the friction-mating material, and thus friction acts between the two carbon films containing fluorine. On the other hand, the friction coefficient decreased from 0.20 to 0.15 by the fluorine plasma treatment in the multilayer graphene, whereas it increased from 0.21 to 0.27 in the monolayer graphene. It is considered that, in the monolayer graphene, the change of the surface structure had a stronger influence on the friction coefficient than in the multilayer graphene, and the friction coefficient increased mainly due to the increase in defects on the graphene surface by the fluorine plasma treatment.

  6. Compendium of fluorine data

    International Nuclear Information System (INIS)

    Detamore, J.A.

    1983-01-01

    Research was conducted to locate information about fluorine. This information includes chemical and physical properties of fluorine, physiological effects produced by the material, first-aid, personnel and facility protection, and materials of construction required when handling fluorine in piping and process vessels. The results of this research have been compiled in this report

  7. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  8. The fluorine destruction in stars: First experimental study of the 19F(p,α)16O reaction at astrophysical energies

    International Nuclear Information System (INIS)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.

    2012-01-01

    The 19 F(p,α) 16 O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E cm ∼ 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the 2 H( 19 F,α 16 O)n reaction. The TH measurement of the α 0 channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  9. Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Brioude, A.; Miele, P. [Laboratoire des Multimateriaux et Interfaces, UMR 5615 CNRS Universite Lyon 1, Universite de Lyon, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-07-15

    The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH{sub 4}). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209-12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. (author)

  10. Leaching of lava and tephra from the Oldoinyo Lengai volcano (Tanzania): Remobilization of fluorine and other potentially toxic elements into surface waters of the Gregory Rift

    Science.gov (United States)

    Bosshard-Stadlin, Sonja A.; Mattsson, Hannes B.; Stewart, Carol; Reusser, Eric

    2017-02-01

    Volcanic ash leachate studies have been conducted on various volcanoes on Earth, but few have been done on African volcanoes until now. Tephra emissions may affect the environment and the health of people living in this area, and therefore we conducted a first tephra (ash and lapilli sized) leachate study on the Oldoinyo Lengai volcano, situated in northern Tanzania. The recent explosive eruption in 2007-2008 provided us with fresh samples from the first three weeks of the eruption which were used for this study. In addition, we also used a natrocarbonatitic sample from the activity prior to the explosive eruption, as the major activity at Oldoinyo Lengai is natrocarbonatitic. To compare the leaching process affecting the natrocarbonatitic lavas and the tephras from Oldoinyo Lengai, the 2006 natrocarbonatitic lava flow was resampled 5 years after the emplacement and compared to the initial, unaltered composition. Special interest was given to the element fluorine (F), since it is potentially toxic to both humans and animals. A daily intake of fluoride (F-) in drinking water of > 1.5 mg/l can lead to dental fluorosis, and higher concentrations lead to skeletal fluorosis. For this reason, a guideline value for fluoride in drinking water was set by the WHO (2011) to 1.5 mg/l. However, surface waters and groundwaters in the Gregory Rift have elevated fluoride levels of up to 9.12 mg/l, and as a consequence, an interim guideline value for Tanzania has been set at 8 mg/l. The total concentration of fluorine in the samples from the natrocarbonatitic lava flow is high (3.2 wt%), whereas we observed a significant decrease of the fluorine concentration (between 1.7 and 0.5 wt%) in the samples collected three days and three weeks after the onset of the explosive 2007-08 eruption. However, the total amount of water-extractable fluoride is lower in the natrocarbonatitic lavas (319 mg/l) than in the nephelinitic tephra (573-895 mg/l). This is due to the solubility of the

  11. Fluorine Gauche Effect Explained by Electrostatic Polarization Instead of Hyperconjugation: An Interacting Quantum Atoms (IQA) and Relative Energy Gradient (REG) Study.

    Science.gov (United States)

    Thacker, Joseph C R; Popelier, Paul L A

    2018-02-08

    We present an interacting quantum atoms (IQA) study of the gauche effect by comparing 1,2-difluoroethane, 1,2-dichloroethane, and three conformers of 1,2,3,4,5,6-hexafluorocyclohexane. In the 1,2-difluoroethane, the gauche effect is observed in that the gauche conformation is more stable than the anti, whereas in 1,2-dichloroethane the opposite is true. The analysis performed here is exhaustive and unbiased thanks to using the recently introduced relative energy gradient (REG) method [ Thacker , J. C. R. ; Popelier , P. L. A. Theor. Chem. Acc . 2017 , 136 , 86 ], as implemented in the in-house program ANANKE. We challenge the common explanation that hyperconjugation is responsible for the gauche stability in 1,2-difluoroethane and instead present electrostatics as the cause of gauche stability. Our explanation of the gauche effect is also is seen in other molecules displaying local gauche conformations, such as the recently synthesized "all-cis" hexafluorocyclohexane and its conformers where all the fluorine atoms are in the equatorial positions. Using our extension of the traditional IQA methodology that allows for the partitioning of electrostatic terms into polarization and charge transfer, we propose that the cause of gauche stability is 1,3 C···F electrostatic polarization interactions. In other words, if a number of fluorine atoms are aligned, then the stability due to polarization of nearby carbon atoms is increased.

  12. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  13. Influence of doping fluorine on the structural, surface morphological and optical properties of CdO films

    Energy Technology Data Exchange (ETDEWEB)

    Aydogu, S.; Cabuk, G. [Dumlupinar University, Department of Physics, Faculty of Science and Art, Kutahya (Turkey); Coban, M.B. [Balikesir University, Department of Physics, Faculty of Science and Art, Balikesir (Turkey)

    2017-06-15

    CdO and CdO:F films were prepared by ultrasonic spray pyrolysis method on glass substrates at temperature of 250 ± 5 C. The structural and optical properties of pure and fluorine doped CdO films were characterized by XRD measurements and UV-VIS spectra, respectively. X-ray diffraction patterns show that the films have the polycrystalline structure with preferred orientation along (111) plane. Scherrer Method and Williamson Hall Method were used for calculating of the crystalline grains and strains of films. It is observed that the films at 8% F doped has better crystallinity level, and F doping decreases the defects in CdO films and improves crystallite quality. By UV-VIS spectra, it is revealed that the film with 8% F doped has a high transmittance about 65% in the visible region together with a direct band gap of 2.70 eV. Thicknesses, refractive indices and extinction coefficient values are determined by spectroscopic ellipsometry technique using Cauchy-Urbach model. (orig.)

  14. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    Science.gov (United States)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  15. Probing plasma fluorinated graphene via spectromicroscopy.

    Science.gov (United States)

    Struzzi, C; Scardamaglia, M; Reckinger, N; Sezen, H; Amati, M; Gregoratti, L; Colomer, J-F; Ewels, C; Snyders, R; Bittencourt, C

    2017-11-29

    Plasma fluorination of graphene is studied using a combination of spectroscopy and microscopy techniques, giving insight into the yield and fluorination mechanism for functionalization of supported graphene with both CF 4 and SF 6 gas precursors. Ion acceleration during fluorination is used to probe the effect on grafting functionalities. Adatom clustering, which occurs with CF 4 plasma treatment, is suppressed when higher kinetic energy is supplied to the ions. During SF 6 plasma functionalization, the sulfur atoms tend to bond to bare copper areas instead of affecting the graphene chemistry, except when the kinetic energy of the ions is restricted. Using scanning photoelectron microscopy, with a 100 nm spatial resolution, the chemical bonding environment is evaluated in the fluorinated carbon network at selected regions and the functionalization homogeneity is controlled in individual graphene flakes.

  16. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  17. Study of copper fluorination

    International Nuclear Information System (INIS)

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  18. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    Science.gov (United States)

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  19. Reactive flow analysis with fluorine thermal dissociation in a FLUOREX flame reactor

    International Nuclear Information System (INIS)

    Ohtsuka, Masaya; Tagawa, Hisato; Sasahira, Akira; Hoshino, Kuniyoshi; Kawamura, Fumio; Homma, Shunji; Amano, Osamu

    2004-01-01

    A reactive flow analysis method for flame reactors of the FLUOREX (Hybrid Process of Fluoride Volatility and Solvent Extraction) method was been developed. Transport equations for UO 2 /PuO 2 mixed particles were formulated in the Lagrangian framework and several fluid/particles interactions were modeled using mass, momentum and energy exchanges through surface chemical reactions, forces and heat transfers. The coal combustion model was modified without devolatilization and the char burnout model was replaced by the UO 2 /PuO 2 fluorination model. Overall reaction rates were calculated using the combined model of the surface reaction rate and the diffusion rate of F2 and F. Fluid flows were modeled through incompressible flows using the k-ε turbulent model in the Euler framework. A cylindrical flame reactor (φ 80 mm x 500mm was analyzed where 99%UO 2 +1%PuO 2 mixed particles were injected with Ar and 5% excess F 2 flow. The average particle diameter was 4 μm and the flow rate was 300 g/h. The fluorination reaction of PuO 2 was limited through fluorine molecular reaction but was accelerated due to fluorine thermal dissociation. The simulated corresponded to the experimental result in that both UO 2 and PuO 2 were almost completely fluorinated. (author)

  20. Insights into Surface Structure and Performance of Fluorinated Silicates from Cohesive Energy Studies

    Science.gov (United States)

    2016-03-17

    inhomogeneity, and texture each affect wetting properties.. As-coated, Ra = 4 nm Annealed 110 °C, 270 min., Ra = 11 nm 8Distribution A: Approved for public...enables potential competition among multiple driving forces during film formation when mixed with PMMA, cast, dried, and subsequently annealed ...mL total solids; 20-50 wt% F-decyl-M2, prepared via pin casting @ 1500 rpm for 30 sec Thermal annealing of films at temperatures of 80-110 C for 30

  1. The influence of diffusion of fluorine compounds for silicon lateral etching

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick; Goodyear, Alec; Braithwaite, Nicholas St.John

    2004-07-01

    In an earlier study, it was proposed that long-range surface transport of fluorine atoms could precede the eventual binding to a silicon atom. The rate of binding increases if the silicon is bombarded with high energy ions. In this study, the lateral etching of a silicon layer, sandwiched between two silicon dioxide layers, was studied in order to investigate and extend these hypotheses. The under etching of the silicon layer was higher for wafers which suffered ion bombardment, showing that this mechanism is important even for horizontal etching. At the same time, the thickness of the silicon layer was varied. In all cases, the thinner silicon layer etched much faster then the thicker layer, indicating that fluorine surface transport is much more important than re-emission for these processes. The etch rate increase with ion bombardment can be explained by the fact that part of the energy of the incoming ions is transferred to the fluorine compounds which are on the horizontal surfaces and that ion bombardment enhances the fluorine surface transport.

  2. Waves energy comes to surface

    International Nuclear Information System (INIS)

    Guezel, J.Ch.

    2006-01-01

    The wave- or thalasso-energy, potentially as promising as wind energy, have started to develop in Europe. Great Britain has already a good experience in this domain but France shows also ambitions in this beginning industry with several projects in progress. This article makes an overview of the existing tide-, current- and wave-powered generators: tide mills, underwater hydro-turbines, immersed linear generators, air-compression systems, buoy systems, etc. (J.S.)

  3. Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation.

    Science.gov (United States)

    Kujawa, Joanna; Al-Gharabli, Samer; Kujawski, Wojciech; Knozowska, Katarzyna

    2017-02-22

    Four main tasks were presented: (i) ceramic membrane functionalization (TiO 2 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved. The most meaningful finding is associated with the applicability of fluorinated and nonfluorinated grafting agents. The results of contact angle, hysteresis of contact angle, sliding angle, and critical surface tension as well as Young's modulus, nanohardness, and adhesion force for grafting by these two modifiers are comparable. This provides insight into the potential applicability of environmental friendly hydrophobic and superhydrophobic surfaces. The achieved hydrophobic membranes were very effective in the removal of VOCs (butanol, methyl-tert-butyl ether, and ethyl acetate) from binary aqueous solutions in vacuum membrane distillation. The correlation between membrane effectiveness and separated solvent polarity was compared in terms of material properties and resistance to the wetting (kinetics of wetting and in-depth liquid penetration). Material properties were interpreted considering Zisman theory and using Kao diagram. The significant influence of surface chemistry on the membrane performance was noticed (5 kDa, influence of hydrophobic nanolayer and separation controlled by solution-diffusion model; 300 kDa, no impact of surface chemistry and separation controlled by liquid-vapor equilibrium).

  4. Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact

    International Nuclear Information System (INIS)

    Liu Fang; Qin Zhixin

    2016-01-01

    Fluorine plasma treatment was used prior to the Schottky metal deposition on the undoped Al 0.45 Ga 0.55 N, which aimed at the solar-blind wavelength. After fluorine plasma treatment and before depositing the Ni/Au Schottky, the samples were thermal annealed in the N 2 gas at 400 °C. The reverse leakage current density of Al 0.45 Ga 0.55 N Schottky diode was reduced by 2 orders of magnitude at −10 V. The reverse leakage current density was reduced by 3 orders of magnitude after thermal annealing. Further capacitance–frequency analysis revealed that the fluorine-based plasma treatment reduces the surface states of AlGaN by one order of magnitude at different surface state energies. The capacitance–frequency analysis also proved that the concentration of carriers in AlGaN top is reduced through fluorine plasma treatment. (paper)

  5. Plants and fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Garber, K

    1962-01-01

    A report is given about the contents of fluorine in soil and different plants. It is stated that spinach and several spice herbages are rich in fluorine (0.98 - 21.8 ppm) while in other plants are not more than 5 ppm maximum. An exception is found in Thea sinensis with 178 ppm and more. Tea is, therefore, a source of fluorine for contamination of the human body. An increase of the fluorine contents of plants by manuring with F-salts or mineral manure is possible but of long duration. Damage to plants by uptake of fluorine from soil as well as in a gaseous condition from the atmosphere are described. The rate of damage is related to the type of soil in which the plant is grown.

  6. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted. © 2015 Elsevier B.V. All rights reserved.

  7. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  8. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  9. MODELLING OF KINETICS OF FLUORINE ADSORPTION ONTO MODIFIED DIATOMITE

    Directory of Open Access Journals (Sweden)

    VEACESLAV ZELENTSOV

    2017-03-01

    Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.

  10. Bacterial degradation of fluorinated compounds

    NARCIS (Netherlands)

    Ferreira, Maria Isabel Martins

    2007-01-01

    Fluorine was produced for the first time by Henri Moissan in 1886, for which he received the Nobel Prize in chemistry in 1906. The unique properties of fluorine have led to the development of fluorine chemistry and numerous synthetic fluorinated compounds have been prepared and tested for different

  11. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S. [INFN-LNS, Catania (Italy); Cyclotron Institute, Texas A and M University, College Station, Texas (United States); University of Catania and INFN-LNS, Catania (Italy); and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  12. Fluorinated Amphiphilic Polymers and Their Blends for Fouling-Release Applications: The Benefits of a Triblock Copolymer Surface

    KAUST Repository

    Sundaram, Harihara S.

    2011-09-28

    Surface active triblock copolymers (SABC) with mixed polyethylene glycol (PEG) and two different semifluorinated alcohol side chains, one longer than the other, were blended with a soft thermoplastic elastomer (TPE), polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The surface composition of these blends was probed by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The surface reconstruction of the coatings in water was monitored qualitatively by dynamic water contact angles in air as well as air bubble contact angle measurements in water. By blending the SABC with SEBS, we minimize the amount of the SABC used while achieving a surface that is not greatly different in composition from the pure SABC. The 15 wt % blends of the SABC with long fluoroalkyl side chains showed a composition close to that of the pure SABC while the SABC with shorter perfluoroakyl side chains did not. These differences in surface composition were reflected in the fouling-release performance of the blends for the algae, Ulva and Navicula. © 2011 American Chemical Society.

  13. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  14. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  15. Effect of surface energy on powder compactibility.

    Science.gov (United States)

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  16. Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsin-Ying; Wang, Chih-Yu; Lin, Chia-Jen; Pan, Ru-Pin [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan 30010 (China); Lin, Song-Shiang; Lee, Chein-Dhau [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 31040 (China); Kou, Chwung-Shan, E-mail: rpchao@mail.nctu.edu.t [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 (China)

    2009-08-07

    This work explores the surface treatment of copolymer materials with fluorinated carbonyl groups in various mole fractions by ultraviolet irradiation and ion-beam (IB) bombardment and its effect on liquid crystal (LC) surface alignments. X-ray photoemission spectroscopic analysis confirms that the content of the grafted CF{sub 2} side chains dominates the pretilt angle. A significant increase in oxygen content is responsible for the increase in the polar surface energy during IB treatment. Finally, the polar component of the surface energy dominates the pretilt angle of the LCs.

  17. Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films

    International Nuclear Information System (INIS)

    Wu, Hsin-Ying; Wang, Chih-Yu; Lin, Chia-Jen; Pan, Ru-Pin; Lin, Song-Shiang; Lee, Chein-Dhau; Kou, Chwung-Shan

    2009-01-01

    This work explores the surface treatment of copolymer materials with fluorinated carbonyl groups in various mole fractions by ultraviolet irradiation and ion-beam (IB) bombardment and its effect on liquid crystal (LC) surface alignments. X-ray photoemission spectroscopic analysis confirms that the content of the grafted CF 2 side chains dominates the pretilt angle. A significant increase in oxygen content is responsible for the increase in the polar surface energy during IB treatment. Finally, the polar component of the surface energy dominates the pretilt angle of the LCs.

  18. Impact of fluorine co-implantation on B deactivation and leakage currents in low and high energy Ge preamorphised p+n shallow junctions

    International Nuclear Information System (INIS)

    Girginoudi, D.; Tsiarapas, C.

    2008-01-01

    The impact of fluorine (F) co-implantation on boron (B) deactivation and B TED, as well as on the I-V characteristics of p + n shallow junctions, have been studied for low (10 keV) and high (70 keV) energy Ge preamorphised (PAI) n-type Si samples, that were annealed at 600 deg. C and 700 deg. C. Transmission electron microscopy revealed the existence of defects and dislocation loops (DLs) in the EOR region. It has been found that F stabilizes the EOR defect population via the increase of EOR defect density and the percentage of the stable DLs. This phenomenon is more pronounced when the preamorphisation is shallow (10 keV Ge energy). SIMS and sheet resistance measurements showed the formation of BICs, which implies B deactivation and increased B TED, especially in the shallow PAI samples and at the 700 deg. C annealing temperature. The role of F on B deactivation is multiplex: in the 70 keV PAI samples, and at 600 deg. C annealing temperature, F forms clusters with B causing further B deactivation. In the case of 700 deg. C annealing temperature, F probably forms fluorine-vacancy (F-V) clusters that trap silicon interstitials (Is), thus reducing the possibility of forming BICs and, therefore, resulting in B re-activation and suppression of B TED. Conversely, in the 10-keV PAI samples, and irrespective of the annealing temperature, F improves significantly the sheet resistance, and we suggest that this is a result of the contribution of two physical mechanisms: in the EOR region, F is trapped into DLs, which release less Is than other types of defects. In the amorphous part of Si, there are probably F-V clusters that trap the Is released from the EOR region. Although F in most cases improves B deactivation, it increases the reverse leakage currents, probably due to the stabilization of the EOR defects. As regards the carrier-transport mechanisms, it has been found that the dominant mechanism is the generation-recombination process under forward bias as well as under

  19. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  20. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  1. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  2. Fluorinated Graphene Prepared by Direct Fluorination of N, O-Doped Graphene Aerogel at Different Temperatures for Lithium Primary Batteries

    Directory of Open Access Journals (Sweden)

    Xu Bi

    2018-06-01

    Full Text Available Fluorinated graphene (FG has been a star material as a new derivative of graphene. In this paper, a series of fluorinated graphene materials are prepared by using N, O-doped graphene aerogel as precursor via a direct fluorination method, and the effect of fluorination temperature on the FG structure is investigated. The prepared FG samples are systematically characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. It is found that the structure of FG, including features such as layer size, chemical composition, chemical bond state of the component elements, etc., is significantly related to the fluorination temperature. With the change of the fluorination temperature, fluorine atoms enter the graphene framework by a substitution process of the N, O-containing groups, including residual phenol, ether, carbonyl groups, or C–N groups, and the addition to CC bonds, subsequently forming a fluoride with different fluorine contents. The fluorine content increases as the fluorination temperature increases from 200 °C to 300 °C, but decreases at a fluorination temperature of 350 °C due to the decomposition of the fluorinated graphene. The prepared FG samples are used as cathode material for lithium primary batteries. The FG sample prepared at 300 °C gives a high specific capacity of 632 mAh g−1 and a discharge plateau of 2.35 V at a current density of 10 mA g−1, corresponding to a high energy density of 1485 Wh kg−1.

  3. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  4. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  5. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  6. Self-lubricating fluorine shaft seal material

    Science.gov (United States)

    Munk, W. R.

    1970-01-01

    Lubricating film is produced by a reaction of fluorine with a composite of aluminum oxide and nickel powder. The rate of nickel fluoride generation is proportional to the rate at which the fluoride is rubbed off the surface, allowing the seal to operate with the lowest possible heating.

  7. Surface energy of very neutron rich nuclei

    CERN Document Server

    Von Groote, H

    1976-01-01

    For a microscopic model calculation of the nuclear surface-energy coefficient sigma the surface energy is defined as the energy loss of an uncharged, semiinfinite (inhomogeneous) two-component system compared to an infinite (homogeneous) system with the same particle asymmetry delta . Using the Thomas-Fermi model the calculations are performed for a series of systems with increasing delta , starting from symmetric matter ( delta =0) and extending beyond the drip line of the neutrons, until the system undergoes a phase transition to a homogeneous system. The results for the surface energy as well as for the neutron skin and for the surface diffuseness are compared to the macroscopic approach of the Droplet Model (DM), which turns out to be a good approximation for small asymmetries typical for the region of the valley of beta -stability. For larger asymmetries, close to the drip lines, terms of higher order than contained in the DM approach are no longer negligible. Beyond the drip lines the pressure of the ou...

  8. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  9. Fluorination methods in drug discovery

    OpenAIRE

    Yerien, Damián Emilio; Bonesi, Sergio Mauricio; Postigo, Jose Alberto

    2017-01-01

    Fluorination reactions of medicinal and biologically-active compounds will be discussed. Late stage fluorination strategies of medicinal targets have recently attracted considerable attention on account of the influence that the fluorine atom can impart to targets of medicinal importance, such as a modulation of lipophilicity, electronegativity, basicity and bioavailability, this latter as a consequence of membrane permeability. Therefore, the recourse to late-stage fluorine substitution on c...

  10. Fluorine content of Fukien teas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T H; Lin, C S; Wu, C; Liao, C E; Lin, H Y

    1949-01-01

    A study was made on the fluorine contents of Fukien teas and analytical results indicated the amount ranged from 5.7 to 35.5 mg. per 100 grams of dry tea. The high content of fluorine was found not to be due to contamination nor to the high fluorine content of the soil in which the tea plant was cultivated. Differences in the methods of manufacture had no effect on the fluorine content of the final products. Different varieties of tea plants have different powers to absorb fluorine from the soil. Of the two varieties of tea plants studied, Shui-Sen leaves possessed the lower fluorine content. Age of the tea leaves exerted an important influence on the fluorine content, the older leaves containing considerably more fluorine than the younger. The amount of fluorine that may be extracted in a two per cent infusion varies from 29.1 per cent for fresh leaves to 50.5 per cent for black tea. The process of roasting and rolling rendered the fluorine more soluble, hence the amount extracted increased in green tea. Fermentation further increased the extractability of the fluorine; thus the amount extracted was the highest in black tea, which was fermented, less in the semi-fermented oolong tea, and least in the unfermented green tea. The extractability of fluorine was also increased with age of the leaves.

  11. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  12. Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan.

    Science.gov (United States)

    Sun, Lijuan; Camps, Stefan G; Goh, Hui Jen; Govindharajulu, Priya; Schaefferkoetter, Joshua D; Townsend, David W; Verma, Sanjay K; Velan, S Sendhil; Sun, Lei; Sze, Siu Kwan; Lim, Su Chi; Boehm, Bernhard Otto; Henry, Christiani Jeyakumar; Leow, Melvin Khee-Shing

    2018-01-01

    Capsinoids are reported to increase energy expenditure (EE) via brown adipose tissue (BAT) stimulation. However, imaging of BAT activation by capsinoids remains limited. Because BAT activation is a potential therapeutic strategy for obesity and related metabolic disorders, we sought to prove that capsinoid-induced BAT activation can be visualized by 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). We compared capsinoids and cold exposure on BAT activation and whole-body EE. Twenty healthy participants (8 men, 12 women) with a mean age of 26 y (range: 21-35 y) and a body mass index (kg/m2) of 21.7 (range: 18.5-26.0) underwent 18F-FDG PET and whole-body calorimetry after ingestion of 12 mg capsinoids or ≤2 h of cold exposure (∼14.5°C) in a crossover design. Mean standardized uptake values (SUVs) of the region of interest and BAT volumes were calculated. Blood metabolites were measured before and 2 h after each treatment. All of the participants showed negligible 18F-FDG uptake post-capsinoid ingestion. Upon cold exposure, 12 participants showed avid 18F-FDG uptake into supraclavicular and lateral neck adipose tissues (BAT-positive group), whereas the remaining 8 participants (BAT-negative group) showed undetectable uptake. Capsinoids and cold exposure increased EE, although cold induced a 2-fold increase in whole-body EE and higher fat oxidation, insulin sensitivity, and HDL cholesterol compared with capsinoids. Capsinoids only increased EE in BAT-positive participants, which suggests that BAT mediates EE evoked by capsinoids. This implies that capsinoids stimulate BAT to a lesser degree than cold exposure as evidenced by 18F-FDG uptake below the presently accepted SUV thresholds defining BAT activation. This trial was registered at www.clinicaltrials.gov as NCT02964442. © 2018 American Society for Nutrition. All rights reserved.

  13. Synthesis and characterization of nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianhua, E-mail: zhoujianh@21cn.com [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China); Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021 (China); Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China)

    2015-03-15

    Graphical abstract: Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion was synthesized by emulsifier-free emulsion polymerization and sol–gel process using ethyl silicate as precursor for nano-SiO{sub 2}. - Highlights: • Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion was successfully synthesized by emulsion polymerization using surfmer and sol–gel process. • The contact angle results showed that the finished fabric had an excellent water and oil repellency. • The nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. • The transmission electron microscopy (TEM) indicated that the nano-SiO{sub 2} presented on the surface of latex particles. • The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film–air interface. - Abstract: Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol–gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO{sub 2} presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer

  14. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  15. Relationship between microhardness and fluorine contents on tooth enamel determined by PIGE analysis

    International Nuclear Information System (INIS)

    Ma, D.S.; Paik, D.I.; Park, D.Y.; Moon, H.S.; Chang, Y.I.; Kim, J.B.

    1997-01-01

    The remineralization effect of fluoride has been measured by surface microhardness on tooth enamel. The purpose of this study was to investigate the relationship between microhardness and fluorine concentration on tooth enamel. Twelve sound bovine enamel specimens were prepared and immersed in 0.05% NaF solution for 1, 3, 6, 24 and 36 hours, respectively. The concentration of fluorine in specimens were measured by PIGE analysis and surface microhardness of each specimen was measured by surface microhardness tester. Fluorine concentration was increased by immersing time. There was no change in microhardness of each specimen by fluorine content. The results of this study suggest that there was no relationship between the fluorine concentration and surface microhardness in sound tooth enamel. PIGE analysis can be used effectively to assess the remineralization effect of fluorine content in tooth enamel. (author)

  16. Molecular Dynamics Simulation for Surface and Transport Properties of Fluorinated Silica Nanoparticles in Water or Decane: Application to Gas Recovery Enhancement

    Directory of Open Access Journals (Sweden)

    Sepehrinia Kazem

    2017-05-01

    Full Text Available Determination of surface and transport properties of nanoparticles (NPs is essential for a variety of applications in enhanced oil and gas recoveries. In this paper, the impact of the surface chemistry of silica NPs on their hydro- and oleo-phobic properties as well as their transport properties are investigated in water or decane using molecular dynamics simulation. Trifluoromethyl or pentafluoroethyl groups as water and oil repellents are placed on the NPs. It is found that the density and residence time of liquid molecules around the NPs are modulated considerably with the existence of the functional groups on the NPs’ surfaces. Also, much larger density fluctuations for liquids close to the surface of the NPs are observed when the number of the groups on the NPs increases, indicating increased hydrophobicity. In addition, the diffusion coefficient of the NPs in either water or decane increases with increasing the number or length of the fluorocarbon chains, demonstrating non-Brownian behavior for the NPs. The surface chemistry imparts a considerable contribution on the diffusion coefficient of the NPs. Finally, potential of mean force calculations are undertaken. It is observed that the free energy of adsorption of the NPs on a mineral surface is more favorable than that of the aggregation of the NPs, which suggests the NPs adsorb preferably on the mineral surface.

  17. Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Radu, C.; Simion, S.; Zamfirescu, M.; Ulmeanu, M.; Enculescu, M.; Radoiu, M.

    2011-01-01

    The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl 4 ) and fluorine (C 2 Cl 3 F 3 ) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400 pulses at 330 mJ/cm 2 laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 μm, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 μm in height and with a full width at half maximum of 2.3 μm with irradiation of 700 pulses at 560 mJ/cm 2 laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role of 3D micro/nano morphology on cell

  18. Effect of plasma fluorination variables on the deposition and growth of partially fluorinated polymer over PMMA films

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2013-01-01

    Full Text Available In this work, an investigation was made of the modification of film surface of Poly(methylmethacrylate (PMMA using the plasma polymerization technique. PMMA films 10 µm thick were obtained by Spin-Coating starting from a chloroform solution (15.36% w/w. The films were exposed to the plasma of CHF3 at different gas pressures and exposure times to increase the thickness of fluorinated polymers onto PMMA films. The plasma fluorinated optical films were characterized by gravimetry, FTIR-ATR, contact angle of wetting, SEM and AFM. The surface fluorination of PMMA films can be inferred by the increase in contact angle under all experimental conditions, and confirmed with FTIR-ATR analysis. Gravimetry showed an increase of the fluorinated polymer layer over PMMA films, being 1.55 µm thick at 0.7 torr and 40 minutes of plasma exposure. The SEM analysis showed a well-defined layer of fluorinated polymer, with fluorine being detected in the EDS analysis. The film roughness for the fluorinated polymers was around of 200 Å, quite satisfactory for a 1.55 µm cladding.

  19. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method

    International Nuclear Information System (INIS)

    Chen, Jun; Sun, Zhigang; Zhang, Dong H.

    2015-01-01

    A three dimensional potential energy surface for the F + H 2 → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2) Q ] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H 2 reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface

  20. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  1. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  2. Fluorine-18 labelled compounds

    International Nuclear Information System (INIS)

    Kleijn, J.P. de

    1978-01-01

    The work presented in this thesis deals with the problems involved in the adaption of reactor-produced fluorine-18 to the synthesis of 18 F-labelled organic fluorine compounds. Several 18 F-labelling reagents were prepared and successfully applied. The limitations to the synthetic possibilities of reactor-produced fluoride- 18 become manifest in the last part of the thesis. An application to the synthesis of labelled aliphatic fluoro amino acids has appeared to be unsuccessful as yet, although some other synthetic approaches can be indicated. Seven journal articles (for which see the availability note) are used to compose the four chapters and three appendices. The connecting text gives a survey of known 18 F-compounds and methods for preparing such compounds. (Auth.)

  3. Effects of fluorine on the human fetus

    Energy Technology Data Exchange (ETDEWEB)

    He, H.; Cheng, Z.S.; Liu, W.Q. [Huaxi Medical University, Huaxi (China)

    2008-10-15

    In an endemic fluorosis area, 16 fetuses that were delivered during their sixth to eighth month of gestation by means of artificial abortion were collected and studied. The results (compared to 10 control fetuses from a non-endemic area) show that fluorine levels in tissues are obviously high, especially in brain, calvarium, and femur. The activity of alkaline phosphatase in femur and kidney was raised. By observation of the ultrastructure of samples, the number of mitochondria, rough-surfaced endoplasmic reticulum, and free ribosome in neurons of cerebral cortex were reduced, and the rough-surfaced endoplasmic reticulum was obviously dilated. These findings indicate that the neurons of the cerebral cortex in the developing brain may be one of the targets of fluorine.

  4. Surface Modification of MXenes: A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices

    KAUST Repository

    Ahmed, Bilal

    2017-12-31

    The recent discovery of layered transition metal carbides (MXenes) is one of the most important developments in two-dimensional (2D) materials. Preliminary theoretical and experimental studies suggest a wide range of potential applications for MXenes. The MXenes are prepared by chemically etching ‘A’-layer element from layered ternary metal carbides, nitrides and carbonitrides (MAX phases) through aqueous acid treatment, which results in various surface terminations such as hydroxyl, oxygen or fluorine. It has been found that surface terminations play a critical role in defining MXene properties and affects MXene performance in different applications such as electrochemical energy storage, electromagnetic interference shielding, water purification, sensors and catalysis. Also, the electronic, thermoelectric, structural, plasmonic and optical properties of MXenes largely depend upon surface terminations. Thus, controlling the surface chemistry if MXenes can be an efficient way to improve their properties. This research mainly aims to perform surface modifications of two commonly studied MXenes; Ti2C and Ti3C2, via chemical, thermal or physical processes to enhance electrochemical energy storage properties. The as-prepared and surface modified MXenes have been studied as electrode materials in Li-ion batteries (LIBs) and supercapacitors (SCs). In pursuit of desirable MXene surface, we have developed an in-situ room temperature oxidation process, which resulted in TiO2/MXene nanocomposite and enhanced Li-ion storage. The idea of making metal oxide and MXene nanocomposites was taken to the next level by combining a high capacity anode materials – SnO2 – and MXene. By taking advantage of already existing surface functional groups (–OH), we have developed a composite of SnO2/MXene by atomic layer deposition (ALD) which showed enhanced capacity and excellent cyclic stability. Thermal annealing of MXene at elevated temperature under different atmospheres was

  5. Passivation of fluorinated activated charcoal

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C x F to carbon and ammonium fluoride, NH 4 F. The charcoal laden with NH 4 F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH 4 F as a mixture of NH 3 and HF, which would primarily recombine as NH 4 F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH 3 concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information, results of laboratory tests

  6. Passivation of fluorinated activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information

  7. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  8. The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea)

    2009-02-15

    In order to improve the capacity of hydrogen storage using activated carbon nanofibers, metal and fluorine were introduced into the activated carbon nanofibers by electrospinning, heat treatment, and direct fluorination. The pore structure of the samples was developed by the KOH activation process and investigated using nitrogen isotherms and micropore size distribution. The specific surface area and total pore volume approached 2800 m{sup 2}/g and 2.7 cc/g, respectively. Because of the electronegativity gap between the two elements (metal and fluorine), the electron of a hydrogen molecule can be attracted to one side. This reaction effectively guides the hydrogen molecule into the carbon nanofibers. The amount of hydrogen storage was dramatically increased in this metal-carbon-fluorine system; hydrogen content was as high as 3.2 wt%. (author)

  9. Rapid general microdetermination of fluorine

    NARCIS (Netherlands)

    Leuven, H.C.E. van; Rotscheid, G.J.; Buis, W.J.

    1979-01-01

    A rapid micromethod for the determination of fluorine in a wide variety of materials has been developed. The method is based on the liberation of the fluorine (as HF) from the sample by means of pyrohydrolysis with steam at 1120?? C, The amount of fluoride in the condensate is subsequently measured

  10. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    International Nuclear Information System (INIS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  11. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrinia, Kazem; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu

    2016-05-15

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  12. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  13. In-vivo analysis of fluorine and other elements in human tooth enamel

    International Nuclear Information System (INIS)

    Baijot-Stroobants, J.; Vreven, J.

    1979-01-01

    The technique used to study fluorination of human tooth enamel is based on prompt activation by charged particles and detection of the 110- and 197-keV gamma rays emitted in the (p,p'γ) reaction on fluorine. The proton beam is provided by the Van de Graaff accelerator at the University of Namur and is used at atmospheric pressure. The technique can be used for non-destructive determination of fluorine concentrations of the same area of enamel both before and after topical application of fluorinated compounds (commercial solutions and gels) and thus for determination of fluorine fixation in the surface layer of the enamel. A very high degree of enrichment is obtained 30 min after the application of a solution of amine fluoride (AmF; 4400 ppm) and of two fluorophosphate acid (APF) gels (1774 and 3277 ppm). Monofluorophosphate (MFP) and amine fluoride (AmF) gels, however, produce insignificant degrees of enrichment (105 and 228 ppm). Measurement of fluorine retention during the hours after fluorination shows a small loss of fluorine 6 h after application of the AmF solution and the APF gels, whereas with MFP and AmF gels the degree of enrichment is nil 5 h after treatment. Determinations of sodium and of phosphorus have also been carried out with the same technique after brushing with a fluorinated tooth-paste or after topical application of a fluorinated gel. (author)

  14. Fluorine concentration profiles in archaeological bone

    International Nuclear Information System (INIS)

    Coote, G.E.; Sparks, R.J.

    1981-01-01

    The nuclear microprobe at the Institute of Nuclear Sciences was applied to the measurement of radial concentration profiles of fluorine, in transverse slices of archaeological bone from humans, moas, and other animals. A beam of 2.5 MeV protons was focused to a rectangular spot 250 microns by 50 microns, traversed along a radial line 3mm long, and gamma rays of 5-7 MeV from the reaction 19 F(p, α#betta#) 16 O were detected in a large sodium iodide crystal. Bombardment caused no detectable loss of fluorine from the bone. Measured profiles display a wide variety of shapes and maximum concentrations. In bones which had been exposed to ground water the fluorine concentration usually increases from the centre towards the surface, sometimes by as much as a factor of eight. The concentration at the surface is usually in the range 0.2 to 1%, though in moa bone from a limestone cave it is only 0.025%. Once a quantitative method of analysis has been developed, based on the shape of the profile rather than its magnitude, these profiles might be useful for dating bone. In the meantime, they could be used to distinguish bones of different ages from a common site

  15. Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by co-milling with PTFE

    International Nuclear Information System (INIS)

    Senna, Mamoru; Šepelák, Vladimir; Shi, Jianmin; Bauer, Benjamin; Feldhoff, Armin; Laporte, Vincent; Becker, Klaus-Dieter

    2012-01-01

    Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO 2 nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm −1 (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d–d transitions of titanium ions. Incorporation of fluorine into n-TiO 2 was concentrated at the near surface region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO 2 was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO 2 lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO 6−n Vo n , located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO 2 particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO 2 and (c) fluorine migration from PTFE to TiO 2 . Highlights: Transfer of fluorine from PTFE to n-TiO 2 in a dry solid state process was confirmed. ► 40% of F in PTFE was incorporated to the near surface region of n-TiO 2 nanoparticles. ► The transfer process is

  16. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    Science.gov (United States)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  17. Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi-Firouzjah, Marzieh [Semnan Science and Technology Park, 3614933578, Shahrood (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Laser & Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983963113 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, G.C., Evin, Tehran 1983963113 (Iran, Islamic Republic of)

    2015-02-27

    Structural and optical properties of low refractive index fluorinated silica (SiO{sub x}C{sub y}F{sub z}) films were investigated. The films were deposited on p-type silicon and polycarbonate substrates by radio frequency plasma enhanced chemical vapor deposition method at low temperatures. A mixture of tetraethoxysilane vapor, oxygen, and CF{sub 4} was used for deposition of the films. The influence of oxygen flow rate on the elemental compositions, chemical bonding states and surface roughness of the films was studied using energy dispersive X-ray analyzer, Fourier transform infrared spectroscopy in reflectance mode and atomic force microscopy, respectively. Effects of chemical bonds of the film matrix on optical properties and chemical stability were discussed. Energy dispersive spectroscopy showed high fluorine content in the SiO{sub x}C{sub y}F{sub z} film matrix which is in the range of 7.6–11.3%. It was concluded that in fluorine content lower than a certain limit, chemical stability of the film enhances, while higher contents of fluorine heighten moisture absorption followed by increasing refractive index. All of the deposited films were highly transparent. Finally, it was found that the refractive index of the SiO{sub x}C{sub y}F{sub z} film was continuously decreased with the increase of the O{sub 2} flow rate down to the minimum value of 1.16 ± 0.01 (at 632.8 nm) having the most ordered and nano-void structure and the least organic impurities. This sample also had the most chemical stability against moisture absorption. - Highlights: • Low deposition temperature and organic precursor led to higher film fluorination. • High fluorine and nanovoid structure led to drastic decrease in the refractive index. • Silica based thin film with ultralow refractive index of 1.16 was produced. • The produced ultralow-n film is highly stable against moisture absorption.

  18. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  19. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  20. Mechanical and Structural Properties of Fluorine-Ion-Implanted Boron Suboxide

    Directory of Open Access Journals (Sweden)

    Ronald Machaka

    2012-01-01

    degradation of near-surface mechanical properties with increasing fluorine fluence. Implications of these observations in the creation of amorphous near-surface layers by high-dose ion implantation are discussed in this paper.

  1. Fluorination by fusion

    International Nuclear Information System (INIS)

    Gray, J.H.

    1986-01-01

    LECO crucibles and incinerator ash are two waste categories that cannot be discarded due to the presence of insoluble transuranics. Current chemical processing methods are not too effective, requiring a number of repeated operations in order to dissolve more than half the transuranics. An alternate dissolution approach has been developed involving the use of ammonium bifluoride. Low temperature fusion of the waste with ammonium bifluoride is followed by dissolution of the fused material in boiling nitric acid solutions. Greater than 60% of the transuranics contained in LECO crucibles and greater than 95% of the transuranics mixed with the incinerator ash are dissolved after a single fusion and dissolution step. Fluorination of the transuranics along with other impurities appears to render the waste material soluble in nitric acid

  2. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  3. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  4. Analysis of energy flow during playground surface impacts.

    Science.gov (United States)

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  5. Energy quantization for approximate H-surfaces and applications

    Directory of Open Access Journals (Sweden)

    Shenzhou Zheng

    2013-07-01

    Full Text Available We consider weakly convergent sequences of approximate H-surface maps defined in the plane with their tension fields bounded in $L^p$ for p> 4/3, and establish an energy quantization that accounts for the loss of their energies by the sum of energies over finitely many nontrivial bubbles maps on $mathbb{R}^2$. As a direct consequence, we establish the energy identity at finite singular time to their H-surface flows.

  6. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  7. Study on characteristics of fluorine concentration profiles in fluorosis sheep teeth and bones

    International Nuclear Information System (INIS)

    Song Shizhan; Shui Yongqing; Wang Lianbin; Yang Huazhong; Zhai Xujiu; Wang Yuwen; Lei Guilin

    1990-01-01

    The deep-ward fluorine concentration profiles in fluorosis sheep teeth and bones were determined through 19 F(p, αγ) 16 O reaction with proton energy 3.2 MeV. The profiles show a diffusion characteristic, indicating that the fluorine ion diffusion may be one of the important factors that brought forth pathological changes of livestock teeth and bones

  8. Mechanical and Structural Properties of Fluorine-Ion-Implanted Boron Suboxide

    OpenAIRE

    Machaka, Ronald; Mwakikunga, Bonex W.; Manikandan, Elayaperumal; Derry, Trevor E.; Sigalas, Iakovos; Herrmann, Mathias

    2012-01-01

    Results on a systematic study on the effects of ion implantation on the near-surface mechanical and structural properties of boron suboxide (B 6O) prepared by uniaxial hot pressing are reviewed. 150keV fluorine ions at fluences of up to 5.0 × 10 16ions/cm 2 were implanted into the ultrahard ceramic material at room temperature and characterized using Raman spectroscopy, atomic force microscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Evidence of ion-beam-as...

  9. Effect of the fluorinated groups on nematic liquid crystal alignment on monomer crosslinked film

    International Nuclear Information System (INIS)

    Yu Tao; Peng Zenghui; Ruan Shengping; Xuan Li

    2004-01-01

    It was found in this work that photosensitive monomers, bisphenol A dicinnamate ester and hexafluorobiphenol a dicinnamate ester were crosslinked under irradiation of linearly polarized ultraviolet light. The exposed films induced homogeneous and homeotropic alignment of liquid crystals (LC), respectively. We verified through experiments that it was fluorinated groups that caused the generation of LC homeotropic alignment on the crosslinked film. Photoreaction process was revealed by Fourier transform infrared spectra. There was no clear morphological anisotropy on these aligned films observed through atomic force microscope analysis. The surface energies were measured and homeotropic alignment reason was discussed in this work

  10. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  11. Reflections on the surface energy imbalance problem

    Science.gov (United States)

    Ray Leuning; Eva van Gorsela; William J. Massman; Peter R. Isaac

    2012-01-01

    The 'energy imbalance problem' in micrometeorology arises because at most flux measurement sites the sum of eddy fluxes of sensible and latent heat (H + λE) is less than the available energy (A). Either eddy fluxes are underestimated or A is overestimated. Reasons for the imbalance are: (1) a failure to satisfy the fundamental assumption of one-...

  12. Surface energy for electroluminescent polymers and indium-tin-oxide

    International Nuclear Information System (INIS)

    Zhong Zhiyou; Yin Sheng; Liu Chen; Zhong Youxin; Zhang Wuxing; Shi Dufang; Wang Chang'an

    2003-01-01

    The contact angles on the thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and indium-tin-oxide (ITO) were measured by the sessile-drop technique. The surface energies of the films were calculated using the Owens-Wendt (OW) and van Oss-Chaudhury-Good (vOCG) approaches. The overall total surface energies of MEH-PPV and the as-received ITO were 30.75 and 30.07 mJ/m 2 , respectively. Both approaches yielded almost the same surface energies. The surface energies were mainly contributed from the dispersion interactions or Lifshitz-van der Waals (LW) interactions for both MEH-PPV and ITO. The changes in the contact angles and surface energies of the ITO films, due to different solvent cleaning processes and oxygen plasma treatments, were analyzed. Experimental results revealed that the total surface energy of the ITO films increased after various cleaning processes. In comparison with different solvents used in this study, we found that methanol is an effective solvent for ITO cleaning, as a higher surface energy was observed. ITO films treated with oxygen plasma showed the highest surface energy. This work demonstrated that contact angle measurement is a useful method to diagnose the cleaning effect on ITO films

  13. A systematic first-principles study of surface energies, surface relaxation and Friedel oscillation of magnesium surfaces

    International Nuclear Information System (INIS)

    Tang, Jia-Jun; Yang, Xiao-Bao; Zhao, Yu-Jun; OuYang, LiuZhang; Zhu, Min

    2014-01-01

    We systematically study the surface energies and surface relaxations of various low-index and high-index Mg surfaces. It is found that low-index surfaces are not necessarily stable as Mg(1 0  1-bar  0) is the most unstable surface in the series of Mg(1 0  1-bar  n) (n = 0–9). A surface-energy predicting model based on the bond cutting is proposed to explain the relative surface stabilities. The local relaxations of the low-index surfaces could be explained by the Friedel oscillation. For the high-index surfaces, the combination of charge smoothing effect and dramatic charge depletion influences the relaxations, which show a big difference from the low-index ones. Our findings provide theoretical data for considerable insights into the surface energies of hexagonal close-packed metals. (paper)

  14. Kramers-Kronig transform for the surface energy loss function

    International Nuclear Information System (INIS)

    Tan, G.L.; DeNoyer, L.K.; French, R.H.; Guittet, M.J.; Gautier-Soyer, M.

    2005-01-01

    A new pair of Kramers-Kronig (KK) dispersion relationships for the transformation of surface energy loss function Im[-1/(ε + 1)] has been proposed. The validity of the new surface KK transform is confirmed, using both a Lorentz oscillator model and the surface energy loss functions determined from the experimental complex dielectric function of SrTiO 3 and tungsten metal. The interband transition strength spectra (J cv ) have been derived either directly from the original complex dielectric function or from the derived dielectric function obtained from the KK transform of the surface energy loss function. The original J cv trace and post-J cv trace overlapped together for the three modes, indicating that the new surface Kramers-Kronig dispersion relationship is valid for the surface energy loss function

  15. Model calculation for energy loss in ion-surface collisions

    International Nuclear Information System (INIS)

    Miraglia, J.E.; Gravielle, M.S.

    2003-01-01

    The so-called local plasma approximation is generalized to deal with projectiles colliding with surfaces of amorphous solids and with a specific crystalline structure (plannar channeling). Energy loss of protons grazingly colliding with aluminum, SnTe alloy, and LiF surfaces is investigated. The calculations agree quite well with previous theoretical results and explain the experimental findings of energy loss for aluminum and SnTe alloy, but they fall short to explain the data for LiF surfaces

  16. Balancing High Open Circuit Voltage over 1.0 V and High Short Circuit Current in Benzodithiophene-Based Polymer Solar Cells with Low Energy Loss: A Synergistic Effect of Fluorination and Alkylthiolation

    DEFF Research Database (Denmark)

    Du, Zhengkun; Bao, Xichang; Li, Yonghai

    2018-01-01

    Based on the most recently significant progress within the last one year in organic photovoltaic research from either alkylthiolation or fluorination on benzo[1,2-b: 4,5-b'] dithiophene moiety for high efficiency polymer solar cells (PSCs), two novel simultaneously fluorinated and alkylthiolated ...

  17. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.

    Science.gov (United States)

    Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei

    2017-09-19

    Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donor-acceptor (D-A)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for D-A polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with "over-fluorination", i.e., when

  18. Proton Exchange Membrane Fuel Cell With Enhanced Durability Using Fluorinated Carbon As Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Ahmad Yasser

    2017-01-01

    Full Text Available This study evaluates the fluorination of a carbon aerogel and its effects on the durability of the resulting electrocatalyst for Proton Exchange Membrane Fuel Cell (PEMFC. Fluorine has been introduced before or after platinum deposition. The different electrocatalysts are physico-chemically and electrochemically characterized, and the results discussed by comparison with commercial Pt/XC72 from E-Tek. The results demonstrate that the level of fluorination of the carbon aerogel can be controlled. The fluorination modifies the texture of the carbons by increasing the pore size and decreasing the specific surface area, but the textures remain appropriate for PEMFC applications. Two fluorination sites are observed, leading to both high covalent C-F bond and weakened ones, the quantity of which depends on whether the treatment is done before or after platinum deposition. The order of the different treatments is very important. The presence of platinum contributes to the fluorination mechanism, but leads to amorphous platinum rather inactive towards the Oxygen Reduction Reaction. Finally, a better durability was demonstrated for the fluorinated then platinized catalyst compared both to the same but not fluorinated catalyst and to the reference commercial material (based on the loss of the electrochemical real surface area after accelerated stress tests.

  19. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  20. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  1. Valence bond model potential energy surface for H4

    International Nuclear Information System (INIS)

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  2. Surface sterilization by low energy electron beams

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1989-01-01

    The germicidal effectiveness of low energy electron beams (175 KV) against bacterial cells was investigated. The dry spores of Bacillus pumilus ATCC 27142 and Bacillus globigii ATCC 9372 inoculated on carrier materials and irradiated by gamma rays showed the exponential type of survival curves whereas they showed sigmoidal ones when exposed to low energy electron beams. When similarly irradiated, the wet spores inoculated on membrane filter showed the same survival curves as the dry spores inoculated on carrier materials. The wet vegetative cells of Escherichia coli ATCC 25922 showed exponential curves when exposed to gamma and electron beam irradiation. Low energy electron beams in air showed little differences from nitrogen stream in their germicidal effectiveness against dry spores of B. pumilus. The D values of B. pumilus spores inoculated on metal plates decreased as the amounts of backscattering electrons from the plates increased. There was adequate correlation between the D value (linear region of survival curve), average D value (6D/6) and 1% survival dose and backscattering factor. Depth dose profile and backscatterig dose of low energy electron beams were measured by radiochromic dye film dosimeter (RCD). These figures were not always in accord with the observed germicidal effectiveness against B. pumilus spores because of varying thickness of RCD and spores inoculated on carrier material. The dry spores were very thin and this thinness was useful in evaluating the behavior of low energy electrons. (author)

  3. An accurate potential energy surface for the F + H{sub 2} → HF + H reaction by the coupled-cluster method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: zsun@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2015-01-14

    A three dimensional potential energy surface for the F + H{sub 2} → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2){sub Q}] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H{sub 2} reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface.

  4. Photoemission studies of fluorine functionalized porous graphitic carbon

    Science.gov (United States)

    Ganegoda, Hasitha; Jensen, David S.; Olive, Daniel; Cheng, Lidens; Segre, Carlo U.; Linford, Matthew R.; Terry, Jeff

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated, PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF2 along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.

  5. Photoemission studies of fluorine functionalized porous graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens; Segre, Carlo U.; Terry, Jeff [Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Jensen, David S.; Linford, Matthew R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States)

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated, PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.

  6. Microanalysis of Fluorine Contamination and its Depth Distribution in Zircaloy by the Use of a Charged Particle Nuclear Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E; Starfelt, N

    1966-07-15

    Fluorine contamination on and below the surface of zircaloy has been studied by means of proton irradiation using a Van de Graaff accelerator and the detection of prompt gamma radiation from the {sup 19}F (p, {alpha}{gamma}) {sup 16}O reaction. Formulae for deriving depth distributions of impurities from the measured counting rates have been derived. The influence of energy straggling on the depth resolution has been studied. Both the total amount and the depth distribution have been measured in samples, which have undergone different treatments. Because of the high yield from the reaction used, a quantity of fluorine less than 0. 01 {mu}g/cm{sup 2} can be detected by this method.

  7. [Fluorine as a factor in premature aging].

    Science.gov (United States)

    Machoy-Mokrzyńska, Anna

    2004-01-01

    osteoblasts, stimulate fibroblasts to produce collagenase, and trigger toxic reactions in osteocytes and chondrocytes of trabecular bone. Growing deformations of the skeleton reduce mobility and result in permanent crippling of the patient. Fluoride increases the mass of non-collagen proteins such as proteoglycans and glucosaminoglycans, accelerating skin aging even though protein biosynthesis is generally suppressed. The final outcome includes progressive vascular lesions and disorders of energy metabolism in muscles. In conclusions, the use of fluoride, particularly by dentists and pediatricians, must be controlled and adapted to individual needs. It is worth remembering that fluoride: is the cause of disability due to bone deformations and abnormalities in the musculoskeletal system; reduces the incidence of caries but do not protect against tooth loss; exerts an adverse effect of metabolic processes in the skin; accelerates calcification of vessels and thus reduces their elasticity; inhibits bioenergetic reactions, in particular oxidative phosphorylation, reducing physical activity of muscles. These findings suggest that fluorine may be yet another factor in accelerated aging and revive the dispute started more than two and half thousand years ago whether aging is a physiologic or pathologic process. The understanding of factors modifying the process of aging is the basis for preventive measures aimed at extending life and maintaining full psychosocial activity.

  8. Fluorine-18-labelled molecules: synthesis and application in medical imaging

    International Nuclear Information System (INIS)

    Dolle, F.; Perrio, C.; Barre, L.; Lasne, M.C.; Le Bars, D.

    2006-01-01

    Positron emission tomography (PET) is one of the more powerful available techniques for medical imaging. It relies on the use of molecules labelled with a positron emitter (β + ). Among those emitters, fluorine-18, available from a cyclotron, is a radionuclide of choice because of its relatively long-half-life (109.8 min) and the relatively low energy of the emitted-positron. The electrophilic form of fluorine-18 ([ 18 F]F 2 or reagents derived from [ 18 F]F 2 ) is mainly used for hydrogen or metal substitutions on aromatic or vinylic carbons. The presence of the stable isotope (fluorine-19) in the radiotracers limits their use in medical imaging. The nucleophilic form of fluorine-18 (alkaline mono-fluoride, K[ 18 F]F, the most used), obtained from irradiation of enriched water, is widely used in aliphatic and (hetero)aromatic substitutions for the synthesis of radiotracers with high specific radioactivity. Some examples of radio-fluorinated tracers used in PET are presented, as well as some of their in vivo applications in human. (authors)

  9. Diels-Alder reactions onto fluorinated and hydrogenated graphene

    Science.gov (United States)

    Denis, Pablo A.

    2017-09-01

    We studied Diels-Alder (DA) reactions onto functionalized graphene. When fluorine, hydrogen or oxygen functional groups are present on one side of the sheet, the DA cycloadditions become significantly more exergonic when performed on the opposite side. Hydrogen is more effective than fluorine and oxygen to promote these cycloadditions. In contrast with the results obtained for perfect graphene, the functionalization with H, F or O turns the DA reactions exergonic, with ΔG°298 = -127.2 kcal/mol. The reaction barriers are expected to be considerably lowered with respect to perfect graphene because the functional groups significantly reduce the distortion energy.

  10. Autoionizing states in highly ionized oxygen, fluorine and silicon

    International Nuclear Information System (INIS)

    Forester, J.P.; Peterson, R.S.; Griffin, P.M.; Pegg, D.J.; Haselton, H.H.; Liao, K.H.; Sellin, I.A.; Mowat, J.R.; Thoe, R.S.

    1975-01-01

    Autoionizing states in high Z 3-electron ions associated with core excited configurations of the type 1s2snl and 1s2pnl are reported. The electron decay-in-flight spectra of lithium-like oxygen, fluorine, and silicon ions are presented. Initial beam energies of 6.75-MeV oxygen and fluorine ions and 22.5-MeV silicon ions were used. Stripping and excitation were done by passing the beams through a thin carbon foil. The experimental technique is described. 4 figs, 1 table, 7 refs

  11. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  12. Probing Free-Energy Surfaces with Differential Scanning Calorimetry

    Science.gov (United States)

    Sanchez-Ruiz, Jose M.

    2011-05-01

    Many aspects of protein folding can be understood in terms of projections of the highly dimensional energy landscape onto a few (or even only one) particularly relevant coordinates. These free-energy surfaces can be probed conveniently from experimental differential scanning calorimetry (DSC) thermograms, as DSC provides a direct relation with the protein partition function. Free-energy surfaces thus obtained are consistent with two fundamental scenarios predicted by the energy-landscape perspective: (a) well-defined macrostates separated by significant free-energy barriers, in some cases, and, in many other cases, (b) marginal or even vanishingly small barriers, which furthermore show a good correlation with kinetics for fast- and ultrafast-folding proteins. Overall, the potential of DSC to assess free-energy surfaces for a wide variety of proteins makes it possible to address fundamental issues, such as the molecular basis of the barrier modulations produced by natural selection in response to functional requirements or to ensure kinetic stability.

  13. Cohesion and coordination effects on transition metal surface energies

    Science.gov (United States)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  14. Direct Measurement of the Surface Energy of Graphene.

    Science.gov (United States)

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  15. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Hightower, J.R.; Begovich, J.M.

    2000-01-01

    Public Law (PL) 105--204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF6) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public

  16. Fluorine-18 labeling of proteins

    International Nuclear Information System (INIS)

    Kilbourn, M.R.; Dence, C.S.; Welch, M.J.; Mathias, C.J.

    1987-01-01

    Two fluorine-18-labeled reagents, methyl 3-[ 18 F]fluoro-5-nitrobenzimidate and 4-[ 18 F]fluorophenacyl bromide, have been prepared for covalent attachment of fluorine-18 to proteins. Both reagents can be prepared in moderate yields (30-50%, EOB) in synthesis times of 50-70 min. Reaction of these reagents with proteins (human serum albumin, human fibrinogen, and human immunoglobulin A) is pH independent, protein concentration dependent, and takes 5-60 min at mild pH (8.0) and temperature (25-37 degrees C), in yields up to 95% (corrected). The 18 F-labeled proteins are purified by size exclusion chromatography

  17. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...

  18. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    and noble metals, as derived from the surface tension of liquid metals. In addition, they give work functions which agree with the limited experimental data obtained from single crystals to within 15%, and explain the smooth behavior of the experimental work functions of polycrystalline samples......We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  19. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ferrada, J.J.

    2000-04-03

    Public Law (PL) 105-204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF{sub 6}) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public. Fluorine is a pale-yellow gas with a pungent, irritating odor. It is the most reactive nonmetal and will react vigorously with most oxidizable substances at room temperature, frequently with ignition. Fluorine is a severe irritant of the eyes, mucous membranes, skin, and lungs. In humans, the inhalation of high concentrations causes laryngeal spasm and broncospasms, followed by the delayed onset of pulmonary edema. At sublethal levels, severe local irritation and laryngeal spasm will preclude voluntary exposure to high concentrations, unless the individual is trapped or incapacitated. A blast of fluorine gas on the shaved skin of a rabbit causes a second degree burn. Lower concentrations cause severe burns of insidious onset, resulting in ulceration, similar to the effects produced by hydrogen fluoride. Hydrofluoric acid is a colorless, fuming liquid or gas with a pungent odor. It is soluble in water with release of heat. Ingestion of an estimated 1.5 grams produced sudden death without gross pathological damage. Repeated ingestion of small amounts resulted in moderately advanced hardening of the bones. Contact of skin with anhydrous liquid produces severe burns. Inhalation of AHA or aqueous hydrofluoric acid mist or vapors can cause severe respiratory tract irritation that may be fatal. Based on the extreme chemical

  20. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  1. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  2. Surface energy and crystallization phenomena of ammonium dinitramide

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Ulrich; Heintz, Thomas [Fraunhofer-Institut fuer Chemische Technologie (ICT), PO Box 1240, D-76318 Pfinztal (Germany)

    2005-12-01

    Ammonium dinitramide (ADN) was characterized during recrystallization from the melt. The surface tension of molten ADN at 97 C was measured to be 89 mN/m. The wetting angles between molten ADN and different solid surfaces (polytetrafluoroethylene, glass, steel, and aluminum) were determined. The wettability depends on the surface tension of molten ADN, the free surface energy of the solid surfaces and the interfacial tension between the solid and liquid. Observations of the recrystallization behavior of molten ADN showed that nucleation does not occur, even at super cooling rates of 70 K. Crystallization can be initiated by the application of seed crystals. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  3. Wettability and surface free energy of polarised ceramic biomaterials

    International Nuclear Information System (INIS)

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Yamashita, Kimihiro; Toyama, Takeshi; Nishimiya, Nobuyuki

    2015-01-01

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces. (note)

  4. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    Science.gov (United States)

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  5. Surface studies with high-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  6. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  7. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  8. Low energy quasi free scattering on nuclear surface

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, S.

    1983-05-01

    The result of RGM calculation of low energy /sup 3/He(n, n)/sup 3/ He total elastic cross section does not agree well with experimental data for E/sub n/<1 MeV. This discrepancy can be improved by assuming lwo energy quasi-free scattering of particles beyond the nuclear surface.

  9. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  10. Atom-surface interaction: Zero-point energy formalism

    International Nuclear Information System (INIS)

    Paranjape, V.V.

    1985-01-01

    The interaction energy between an atom and a surface formed by a polar medium is derived with use of a new approach based on the zero-point energy formalism. It is shown that the energy depends on the separation Z between the atom and the surface. With increasing Z, the energy decreases according to 1/Z 3 , while with decreasing Z the energy saturates to a finite value. It is also shown that the energy is affected by the velocity of the atom, but this correction is small. Our result for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who follow a more traditional approach to the problem

  11. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.

    Science.gov (United States)

    Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine

    2013-07-01

    Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion

  12. Chronic intestinal intoxication with fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Cristiani, H; Gautier, R

    1925-01-01

    The accumulation of fluorine in bones of guinea pigs which died of an osteomalacia-like condition is described. The time required for the condition to develop varied from a few weeks to several months when hay with a F content of 1:1000 to 1:10000 was used as food.

  13. Energy loss in grazing proton-surface collisions

    Energy Technology Data Exchange (ETDEWEB)

    Juaristi, J I [Dept. Fisica de Materiales, Facultad de Quimicas, UPV/EHU, San Sebastian (Spain); Garcia de Abajo, F J [Dept. Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, UPV/EHU, San Sebastian (Spain)

    1994-05-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: (i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and (ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  14. Energy loss in grazing proton-surface collisions

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.

    1994-01-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  15. Fluorinated tracers for imaging cancer with positron emission tomography

    International Nuclear Information System (INIS)

    Couturier, Olivier; Chatal, Jean-Francois; Luxen, Andre; Vuillez, Jean-Philippe; Rigo, Pierre; Hustinx, Roland

    2004-01-01

    2-[ 18 F]fluoro-2-deoxy-d-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of 18 F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes ''generalist'' tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of ''specific'' tracers for receptor expression (i.e. oestrogens or somatostatin), cell

  16. Potential energy surfaces for nucleon exchanging in dinuclear systems

    International Nuclear Information System (INIS)

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  17. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  18. Saturation of the hydroxyapatite mineral phase using radioactive fluorine

    International Nuclear Information System (INIS)

    Flores de la Torre, J.A.; Badillo A, V.E.; Lopez D, F.A.

    2005-01-01

    With the purpose of knowing the Anion exchange capacity (CIA) of the hydroxyapatite mineral phase, marketed by BIO-RAD, becomes necessary to saturate the surface of the mineral with an anion specie that possesses a strong affinity by this solid as it is the case of the fluorine. Moreover it takes advantage that offers the radioactive tracer technique, using the radioactive isotope of the fluorine, 18 F, produced in the cyclotron of the UNAM. This saturation is obtained in terms of the quantity of retained fluorine (mmol/ 100 g) in the synthetic hydroxyapatite in function of the concentration of the solution of NaF that oscillates from 0.7 M up to 0.16 M to fixed values of pH of 9.2. Those results demonstrate that to this fixed pH value the saturation of the surface of the hydroxyapatite is achieved in approximately 30 mmol/ 100 g, using important concentrations of NaF that correspond to 0.14 M from now on. This result demonstrates the high capacity of the solid considered to retain considerable quantities of fluorine even to basic pH values. (Author)

  19. Adsorption energy of iron-phthalocyanine on crystal surfaces

    International Nuclear Information System (INIS)

    Struzzi, C.; Scardamaglia, M.; Angelucci, M; Massimi, L.; Mariani, C.; Betti, G.

    2013-01-01

    The adsorption energy of iron-phthalocyanine (FePc) deposited on different crystal surfaces is studied by thermal desorption spectroscopy. A thin film of molecules has been absorbed on highly oriented pyrolytic graphite (HOPG), on graphene epitaxially grown on Ir(111), and on Au(110). Activation energies for the desorption of a molecular thin film and for the FePc single layer are determined at the three surfaces. The desorption temperature measured for the thin films is only slightly dependent on the substrate, since it is mostly dominated by molecule-molecule interactions. A definitely different desorption temperature is found at the single-layer coverage: we find an increasing desorption temperature going from HOPG, to graphene/Ir, to the Au(110) surface. The different adsorption energies of the first FePc layer in contact with the substrate surface are discussed taking into account the interaction and the growth morphology.

  20. A simulation of laser energy absorption by nanowired surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F., E-mail: miguel.vasconcelos@usp.br, E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Escola de Artes, Ciências e Humanidades

    2017-07-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  1. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  2. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  3. Constructing Fluorine-Free and Cost-Effective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO2 Nanoparticles.

    Science.gov (United States)

    Ye, Hui; Zhu, Liqun; Li, Weiping; Liu, Huicong; Chen, Haining

    2017-01-11

    Superhydrophobic coatings have drawn much attention in recent years for their wide potential applications. However, a simple, cost-effective, and environmentally friendly approach is still lacked. Herein, a promising approach using nonhazardous chemicals was proposed, in which multiple hydrophobic functionalized silica nanoparticles (SiO 2 NPs) were first prepared as core component, through the efficient reaction between amino group containing SiO 2 NPs and the isocyanate containing hydrophobic surface modifiers synthesized by normal alcohols, followed by simply spraying onto various substrates for superhydrophobic functionalization. Furthermore, to further improve the mechanical durability, an organic-inorganic composite superhydrophobic coating was fabricated by incorporating cross-linking agent (polyisocyanate) into the mixture of hydrophobic-functionalized SiO 2 NPs and hydroxyl acrylic resin. The hybrid coating with cross-linked network structures is very stable with excellent mechanical durability, self-cleaning property and corrosion resistance.

  4. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  5. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  7. Influence of the target surface contamination on UHV screening energies

    Energy Technology Data Exchange (ETDEWEB)

    Targosz-Sleczka, N; Czerski, K; Kilic, A I [Institute of Physics, University of Szczecin, Szczecin (Poland); Huke, A; Martin, L; Heide, P [Institut fuer Atomare Physik und Optik, Technische Universitaet Berlin, Berlin (Germany); Blauth, D; Winter, H, E-mail: natalia.targosz@wmf.univ.szczecin.p [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany)

    2010-01-01

    The d + d fusion reactions have been investigated in the Zirconium environment under ultra high vacuum (UHV) conditions for projectile energies below 30 keV. The experimentally determined screening energy value of 497 {+-} 7 eV is larger than the previous results by a factor of almost two. Despite the UHV conditions a small deviation between experimental data and the theoretical curve arising from the target surface contamination could be still observed at the lowest projectile energies. Calculations made under the assumption of formation of a Zirconium oxide contamination, show that every atomic monolayer reduces the estimated screening energy significantly.

  8. Influence of the target surface contamination on UHV screening energies

    International Nuclear Information System (INIS)

    Targosz-Sleczka, N; Czerski, K; Kilic, A I; Huke, A; Martin, L; Heide, P; Blauth, D; Winter, H

    2010-01-01

    The d + d fusion reactions have been investigated in the Zirconium environment under ultra high vacuum (UHV) conditions for projectile energies below 30 keV. The experimentally determined screening energy value of 497 ± 7 eV is larger than the previous results by a factor of almost two. Despite the UHV conditions a small deviation between experimental data and the theoretical curve arising from the target surface contamination could be still observed at the lowest projectile energies. Calculations made under the assumption of formation of a Zirconium oxide contamination, show that every atomic monolayer reduces the estimated screening energy significantly.

  9. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  10. Surface relaxation and surface energy of face –centered Cubic ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Surface relaxation and surface energy of face –centered Cubic metals. 1AGHEMENLO H E; *2IYAYI, S E; 3AVWIRI ,G O. 1, 3 Department of Physics, Ambrose Alli University, Ekpoma, Nigeria. 2 Department of Physics, University of Benin, Benin City, Nigeria. 3 Department of Physics, University of Port Harcourt, PH, Nigeria.

  11. Fluorine atom subsurface diffusion and reaction in photoresist

    International Nuclear Information System (INIS)

    Greer, Frank; Fraser, D.; Coburn, J.W.; Graves, David B.

    2003-01-01

    Kinetic studies of fluorine and deuterium atoms interacting with an OiR 897 10i i-line photoresist (PR) are reported. All experiments were conducted at room temperature. Films of this PR were coated on quartz-crystal microbalance (QCM) substrates and exposed to alternating fluxes of these atoms in a high vacuum apparatus. Mass changes of the PR were observed in situ and in real time during the atom beam exposures using the QCM. A molecular-beam sampled differentially pumped quadrupole mass spectrometer (QMS) was used to measure the species desorbing from the PR surface during the F and D atom exposures. During the D atom exposures, hydrogen abstraction and etching of the PR was observed, but no DF formation was detected. However, during the F atom exposures, the major species observed to desorb from the surface was DF, formed from fluorine abstraction of deuterium from the photoresist. No evidence of film etching or fluorine self-abstraction was observed. The film mass increased during F atom exposure, evidently due to the replacement of D by F in the film. The rate of DF formation and mass uptake were both characterized by the same kinetics: An initially rapid step declining exponentially with time (e -t/τ ), followed by a much slower step following inverse square root of time (t -1/2 ) kinetics. The initially rapid step was interpreted as surface abstraction of D by F to form DF, which desorbs, with subsequent F impacting the surface inserted into surface C dangling bonds. The slower step was interpreted as F atoms diffusing into the fluorinated photoresist, forming DF at the boundary of the fluorinated carbon layer. The t -1/2 kinetics of this step are interpreted to indicate that F diffusion through the fluorinated carbon layer is much slower than the rate of F abstraction of D to form DF, or the rate of F insertion into the carbon dangling bonds left behind after DF formation. A diffusion-limited growth model was formulated, and the model parameters are

  12. Analysis of fluorine by nuclear reactions and applications to human dental enamel

    International Nuclear Information System (INIS)

    Stroobants, J.; Bodart, F.; Deconninck, G.; Demortier, G.; Nicolas, G.

    Nuclear reactions induced on Fluorine by low energy protons are investigated, thick target excitation yield curves and tables for 19 F(p,p'γ) 19 F and 19 F(p,αγ) 16 O reactions are given between 0.3 and 2.5 MeV. Interferences from other nuclear reactions, detection limits and sensitivity for Fluorine detection are investigated. After a wide investigation of the repartition of Fluorine in tooth enamel it is concluded that there is an equilibrium of the concentrations between tooth and saliva which is rapidly restored after the perturbation introduced by the external treatments. (author)

  13. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  14. Surface free energy analysis of adsorbents used for radioiodine adsorption

    International Nuclear Information System (INIS)

    González-García, C.M.; Román, S.; González, J.F.; Sabio, E.; Ledesma, B.

    2013-01-01

    In this work, the surface free energy of biomass-based activated carbons, both fresh and impregnated with triethylenediamine, has been evaluated. The contribution of Lifshitz van der Waals components was determined by the model proposed by van Oss et al. The results obtained allowed predicting the most probable configurations of the impregnant onto the carbon surface and its influence on the subsequent adsorption of radioactive methyl iodide.

  15. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  16. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  17. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  18. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  19. Kinetic-energy functionals studied by surface calculations

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....

  20. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  1. Self-energies and the interactions of particles with surfaces

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.; Echenique, P.M.; Gras-Marti, A.

    1987-01-01

    We have in this paper reviewed the method of treating many-body problems by means of an effective interaction self-energy. We have developed an alternatvie approach to the self-energy which is simpler and more straight-forward than standard methods, and we have illustrated its use with two examples of a charge interacting with a metal surface. In each case the self-energy produces the classical image potential together with corrections due to quantum mechanical effects. This method has also been successfully applied to the problem of an atom interacting with a surface. Corrections to the Van der Waals dispersion force are obtained, and via the non-conservative imaginary parts to /summation//sub i/(z) we discuss transition rates and energy exchange. 14 refs., 1 fig

  2. Degree of functionalization and stability of fluorine groups fixed to carbon nanotubes and graphite nanoplates by CF{sub 4} microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader-Fernández, V.K.; Morales-Lara, F. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Melguizo, M.; García-Gallarín, C.; López-Garzón, R.; Godino-Salido, M.L. [Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén (Spain); López-Garzón, F.J., E-mail: flopez@ugr.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Domingo-García, M.; Pérez-Mendoza, M.J. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2015-12-01

    Highlights: • The surface area of GNPs and MWCNTs determines the degree of fluorination by plasma. • Fluorine is bound to carbon atoms in up to eight chemical environments. • The stability of the fluorine groups varies in a wide range of temperature. • The electronic properties of MWCNTs are changed as a consequence of fluorination. • The textural characteristics of the materials are not changed after fluorination. - Abstract: The fluorination of graphite nanoplates (GNPs) and multi-wall carbon nanotubes (MWCNTs) by CF{sub 4} cold plasma is reported. The aim is to analyze the influence of the textural characteristics in the degree of fluorination and in the thermal stability of the fluorine groups. We have used thermal programmed desorption which clearly discriminates the nature of the desorbing species and their stability. The degree of fluorination of both materials is similar up to 20 min of treatment and then it decreases in GNPs at longer treatments. Nevertheless, the fluorine content in MWCNTs keeps increasing after 45 min. This different evolution of the fluorination degree with the time is related to the surface areas. The fluorine bonding is produced not only in defects and irregularities but also on the external graphene sheets of both materials, and it results in up to eight different chemical environments having different thermal stabilities from 150 °C up to temperatures higher than 900 °C. The fluorination increases the electronic states near the Fermi level of the nanotubes whereas it does not affect the electronic properties of graphite nanoplates. It is shown that no intercalation compounds are formed and that the textural characteristics of the materials remain unchanged after fluorination.

  3. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  4. Free energy surfaces in the superconducting mixed state

    Science.gov (United States)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  5. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  6. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  7. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and doub...... of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised....

  8. Fluorine determination in human healthy and carious teeth using the PIGE technique

    International Nuclear Information System (INIS)

    Carvalho, M.L.; Karydas, A.G.; Casaca, C.; Zarkadas, Ch.; Paradellis, Th.; Kokkoris, M.; Nsouli, B.; Cunha, A.S.

    2001-01-01

    The purpose of this study is to determine and compare the fluorine concentration in human teeth from two different populations, living in the Portuguese quite isolated islands of Acores: S. Miguel and Terceira. Both populations have similar dietary habits, similar occupational activities, mostly rural, and the age of both populations is more or less the same, around 40 years. No chronic diseases were registered in any of the donors. The two groups are exposed to different levels of fluorine in drinking water. Terceira island has moderate fluorine concentration levels (1-2 μg g -1 ) while S. Miguel island is known for the high fluorine concentration levels in its water (>3 μg g -1 ), especially in one area known as Furnas. Thirty-three teeth, 17 healthy and 16 carious without restoration (14 incisors and canines, 7 premolars and 12 molars), were collected and analyzed for the determination of fluorine concentration in the dentine region, using the nuclear reaction 19 F(p,αγ) 16 O. The teeth were cross-sectioned along the vertical plane and polished, in order to obtain a smooth and plane surface of about 1 mm thickness. In this work an association between caries prevalence and fluorine content of drinking water is discussed and the variation of fluorine concentration among different types of teeth (canines and incisors, premolars, molars) and physical state (carious and non-carious) is examined

  9. Re-examination of the threshold energy surface in copper

    International Nuclear Information System (INIS)

    King, W.E.; Benedek, R.; Merkle, K.L.; Meshii, M.

    1981-01-01

    Radiation-induced defect production in copper has been studied using in-situ electrical resistivity damage-rate measurements in the HVEM and molecular dynamics simulations. Analysis of the results yields a threshold energy surface characterized by two isolated pockets of low threshold energy centered at and surrounded by regions of much higher threshold energy; the corresponding damage function exhibits a plateau at 0.65 Frenkel pairs. A Frenkel pair resistivity of (2.75/sub -0.2/ + 0 6 ) x 10 - 4 Ω-cm is proposed. A model damage function is constructed and compared to results from ion irradiation damage-rate measurements. 7 figures

  10. Energy utilization in surface mining project : with case study illustration

    International Nuclear Information System (INIS)

    Sinha, D.K.; De, Amitosh

    1992-01-01

    The importance of reducing energy consumption per tonne of output in the mining projects needs an innovative approach and style to change the behaviour and postures of the technical characteristics. The need for suitable energy policy can not be overlooked with the addition of new large size surface mining projects having a lot of technological development. But the immediate prescription to the problem is to pinpoint specific high energy consuming areas prefixed by thorough diagnosis and followed by deep scientific thought into it. To that extent this paper makes a primary attempt to characterise the various problems. (author). 7 tabs

  11. Quantification of Fluorine Content in AFFF Concentrates

    Science.gov (United States)

    2017-09-29

    for MilSpec compliance. Fluorocarbon surfactants are the most active components in these concentrates, and analysis of the fluorine content in the... physical requirements for AFFF concentrates includes a total fluorine content determination and a requirement for subsequent evaluations of this AFFF...the standard for fluorine content as well as the reference for chemical shift. For preparation of an NMR solution, it is important that the TFE

  12. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Limitations of the static Woods–Saxon potential and the applicability of the energy dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface excitations of the fusing nuclei are found to be ...

  13. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Abstract. Limitations of the static Woods–Saxon potential and the applicability of the energy- dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional. Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface exci- tations of the fusing nuclei are found to ...

  14. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  15. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  16. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  17. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  18. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  19. Plasma deposited fluorinated films on porous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gancarz, Irena [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Bryjak, Marek, E-mail: marek.bryjak@pwr.edu.pl [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawski, Jan; Wolska, Joanna [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawa, Joanna; Kujawski, Wojciech [Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarina St., 87-100 Torun (Poland)

    2015-02-01

    75 KHz plasma was used to modify track etched poly(ethylene terephthalate) membranes and deposit on them flouropolymers. Two fluorine bearing monomers were used: perflourohexane and hexafluorobenzene. The modified surfaces were analyzed by means of attenuated total reflection infra-red spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and wettability. It was detected that hexaflourobenxene deposited to the larger extent than perflourohaxane did. The roughness of surfaces decreased when more fluoropolymer was deposited. The hydrophobic character of surface slightly disappeared during 20-days storage of hexaflourobenzene modified membrane. Perfluorohexane modified membrane did not change its character within 120 days after modification. It was expected that this phenomenon resulted from post-reactions of oxygen with radicals in polymer deposits. The obtained membranes could be used for membrane distillation of juices. - Highlights: • Plasma deposited hydrophobic layer of flouropolymers. • Deposition degree affects the surface properties. • Hydrohilization of surface due to reaction of oxygen with entrapped radicals. • Possibility to use modified porous membrane for water distillation and apple juice concentration.

  20. Fluorine and sulfur simultaneously co-doped suspended graphene

    Science.gov (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  1. Modelling of low energy ion sputtering from oxide surfaces

    International Nuclear Information System (INIS)

    Kubart, T; Nyberg, T; Berg, S

    2010-01-01

    The main aim of this work is to present a way to estimate the values of surface binding energy for oxides. This is done by fitting results from the binary collisions approximation code Tridyn with data from the reactive sputtering processing curves, as well as the elemental composition obtained from x-ray photoelectron spectroscopy (XPS). Oxide targets of Al, Ti, V, Nb and Ta are studied. The obtained surface binding energies are then used to predict the partial sputtering yields. Anomalously high sputtering yield is observed for the TiO 2 target. This is attributed to the high sputtering yield of Ti lower oxides. Such an effect is not observed for the other studied metals. XPS measurement of the oxide targets confirms the formation of suboxides during ion bombardment as well as an oxygen deficient surface in the steady state. These effects are confirmed from the processing curves from the oxide targets showing an elevated sputtering rate in pure argon.

  2. Surface energy and radiation balance systems - General description and improvements

    Science.gov (United States)

    Fritschen, Leo J.; Simpson, James R.

    1989-01-01

    Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.

  3. Urbanization Process and Variation of Energy Budget of Land Surfaces

    Directory of Open Access Journals (Sweden)

    Ciro Gardi

    2007-06-01

    Full Text Available Urban areas are increasing at a rate much higher than human population growth in many part of the world; actually more than 73 towns in the world are larger than 1000 km2. The European Environmental Agency indicates an urban area average growth rate, over the last 20 years, of 20%. The urbanization process, and the consequent soil sealing, determines not only the losses of the ecological functions of the soil, but also a variation of the energy budget of land surfaces, that affect the microclimatic conditions (heat islands. The alteration of the energy budget are determined by the variations of albedo and roughness of surfaces, but especially by the net losses of evapotranspirating areas. In the present research we have assessed the variation of Parma territory energy budget, induced by the change in land use over the last 122 years. The urban area increase between 1881 and 2003 was 535%.

  4. Exploring the free energy surfaces of clusters using reconnaissance metadynamics

    Science.gov (United States)

    Tribello, Gareth A.; Cuny, Jérôme; Eshet, Hagai; Parrinello, Michele

    2011-09-01

    A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010), 10.1073/pnas.1011511107] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface.

  5. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China. (China)

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  6. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  7. Seasonal contrast in the surface energy balance of the Sahel

    Science.gov (United States)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  8. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  9. Understanding the Effects of Defect Modification on the Structure and Properties of Fluorinated Polymers and Implications for Capacitive Energy Storage Technologies

    Science.gov (United States)

    Gadinski, Matthew R.

    As the world begins to turn to alternative energy technologies and our electronic devices have become more both mobile and integral to everyday life, increasing interest has been focused on energy storage technologies. Capacitors are one of these energy storage technologies that utilize the polarization of an insulating material sandwiched by two electrodes as a means to store electric charge. Polymers are a preferred dielectric material for capacitors because of both their performance and practicality. However, polymer dielectrics are limited in energy density by low dielectric constant, and high loss at elevated temperature. This work aims to address these issues in order to enable polymer dielectrics for future applications and demands. As most polymer tend to have low dielectric constants (˜2-3), but impressive breakdown strengths, only a moderate improvement in dielectric constant has the potential to vastly improve the energy density of polymer capacitors. As such tremendous interest has been placed on poly(vinylidene fluoride) (PVDF) which has a dielectric of 10+ due to the highly polar C-F bonds of its backbone. To improve PVDF's performance defect monomers have been introduced to tailor the polymorphic crystalline phase to tune its properties. Additionally, this defect modification has implications for piezoelectric, electrocaloric, and thermoelectric applications of PVDF. In Chapter 2 a copolymer of VDF and bromotrifluoroethylene (BTFE) was produced. The effect of BTFE on the structure and dielectric properties of the resulting copolymer had not been previously evaluated, and its synthesis allowed for the comparison to previously reported VDF based copolymers including P(VDF-CTFE) and P(VDF-HFP). Through 19F NMR it was determined due to reactivity ratio differences of BTFE in comparison to previously explored copolymers, BTFE during synthesis is much more likely to link with itself. This results in long runs of BTFE-BTFE defects along with isolated

  10. The Fluorine Gauche Effect Explained by Electrostatic Polarization Instead of Hyperconjugation: An Interacting Quantum Atoms (IQA) and Relative Energy Gradient (REG) Study

    OpenAIRE

    Thacker, Joseph; Popelier, Paul

    2018-01-01

    We present an interacting quantum atoms (IQA) study of the gauche effect by comparing 1,2-difluoroethane, 1,2-dichloroethane, and three conformers of 1,2,3,4,5,6-hexafluorocyclohexane. In the 1,2-difluoroethane, the gauche effect is observed in that the gauche conformation is more stable than the anti, whereas in 1,2-dichloroethane the opposite is true. The analysis performed here is exhaustive and unbiased thanks to using the recently introduced relative energy gradient (REG) method [Thacker...

  11. Surface energy of amorphous carbon films containing iron

    International Nuclear Information System (INIS)

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  12. Low energy pion detection by a silicon surface barrier telescope

    International Nuclear Information System (INIS)

    Sealock, R.M.; Caplan, H.S.; Leung, M.K.

    1978-01-01

    Four telescopes of three (2-ΔE, 1-E) silicon surface barrier detectors each, mounted in the focal plane of a magnetic spectrometer, have been used to detect positive pions in the energy range from 4.7-17.9 MeV and negative pions from 14.1-17.9 MeV. Positive pions from 4.7-12.7 MeV were stopped in the third detector while positive and negative pions from 14.1-17.9 MeV were detected in transmission. For energies greater than 7.4 MeV aluminum moderators were placed in front of the first detector to degrade the pion energy. Energy spectra show well resolved pion peaks with extremely low background. Double differential cross sections for the 12 C(e,π + ) 12 B,e' reaction have been measured. (Auth.)

  13. Harvesting electrostatic energy using super-hydrophobic surfaces

    Science.gov (United States)

    Pociecha, Dominik; Zylka, Pawel

    2016-11-01

    Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.

  14. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  15. Surface wind energy trends near Taiwan in winter since 1871

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available The tropical surface wind speed in boreal winter reaches a maximum near Taiwan. This stable wind resource may be used for future clean energy development. How this surface wind energy source has changed in past 141 years is investigated using the 20th century reanalysis dataset and CMIP5 models. Our observational analysis shows that the surface wind speed experienced a weakening trend in the past 141 years (1871 - 2010. The average decreasing rate is around -1.4 m s-1 per century. The decrease is primarily attributed to the relative sea surface temperature (SST cooling in the subtropical North Pacific, which forces a large-scale low-level anti-cyclonic circulation anomaly in situ and is thus responsible for the southerly trend near Taiwan. The relative SST trend pattern is attributed mainly to the greenhouse gas effect associated with anthropogenic activities. The southerly trend near Taiwan is more pronounced in the boreal winter than in summer. Such seasonal difference is attributed to the reversed seasonal mean wind, which promotes more efficient positive feedback in the boreal winter. The CMIP5 historical run analysis reveals that climate models capture less SST warming and large-scale anti-cyclonic circulation in the subtropical North Pacific, but the simulated weakening trend of the surface wind speed near Taiwan is too small.

  16. Scaling of surface energy fluxes using remotely sensed data

    Science.gov (United States)

    French, Andrew Nichols

    Accurate estimates of evapotranspiration (ET) across multiple terrains would greatly ease challenges faced by hydrologists, climate modelers, and agronomists as they attempt to apply theoretical models to real-world situations. One ET estimation approach uses an energy balance model to interpret a combination of meteorological observations taken at the surface and data captured by remote sensors. However, results of this approach have not been accurate because of poor understanding of the relationship between surface energy flux and land cover heterogeneity, combined with limits in available resolution of remote sensors. The purpose of this study was to determine how land cover and image resolution affect ET estimates. Using remotely sensed data collected over El Reno, Oklahoma, during four days in June and July 1997, scale effects on the estimation of spatially distributed ET were investigated. Instantaneous estimates of latent and sensible heat flux were calculated using a two-source surface energy balance model driven by thermal infrared, visible-near infrared, and meteorological data. The heat flux estimates were verified by comparison to independent eddy-covariance observations. Outcomes of observations taken at coarser resolutions were simulated by aggregating remote sensor data and estimated surface energy balance components from the finest sensor resolution (12 meter) to hypothetical resolutions as coarse as one kilometer. Estimated surface energy flux components were found to be significantly dependent on observation scale. For example, average evaporative fraction varied from 0.79, using 12-m resolution data, to 0.93, using 1-km resolution data. Resolution effects upon flux estimates were related to a measure of landscape heterogeneity known as operational scale, reflecting the size of dominant landscape features. Energy flux estimates based on data at resolutions less than 100 m and much greater than 400 m showed a scale-dependent bias. But estimates

  17. Surface modifications of polypropylene by high energy carbon ions

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  18. Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape

    Science.gov (United States)

    Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.

    1980-04-01

    Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.

  19. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  20. The interaction of low energy ion beams with surfaces

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  1. Phytoindication of air pollution by fluorine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Holub, Z; Kontrisova, O

    1973-01-01

    Analytical techniques allowing quantitative chemical analysis of toxic materials in leaves are described. The method is specifically designed to examine foliage which has been exposed to fluorine. Naturally occurring plants (angiosperms) are effective as bioindicators of high levels of fluorine pollution, while lichens and/or carefully cultivated plants are more effective as indicators of low levels of F.

  2. Fluorine geochemistry in volcanic rock series

    DEFF Research Database (Denmark)

    Stecher, Ole

    1998-01-01

    A new analytical procedure has been established in order to determine low fluorine concentrations (30–100 ppm F) in igneous rocks, and the method has also proven successful for higher concentrations (100–4000 ppm F). Fluorine has been measured in a series of olivine tholeiites from the Reykjanes ...

  3. Do defects enhance fluorination of graphene?

    Czech Academy of Sciences Publication Activity Database

    da Costa, Sara; Ek Weis, Johan; Frank, Otakar; Fridrichová, Michaela; Bastl, Zdeněk; Kalbáč, Martin

    2016-01-01

    Roč. 6, AUG 2016 (2016), s. 81471-81476 ISSN 2046-2069 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : fluorination * graphene * fluorine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.108, year: 2016

  4. Ab initio surface core-level shifts and surface segregation energies

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located in...

  5. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  6. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  7. Constraining the Surface Energy Balance of Snow in Complex Terrain

    Science.gov (United States)

    Lapo, Karl E.

    Physically-based snow models form the basis of our understanding of current and future water and energy cycles, especially in mountainous terrain. These models are poorly constrained and widely diverge from each other, demonstrating a poor understanding of the surface energy balance. This research aims to improve our understanding of the surface energy balance in regions of complex terrain by improving our confidence in existing observations and improving our knowledge of remotely sensed irradiances (Chapter 1), critically analyzing the representation of boundary layer physics within land models (Chapter 2), and utilizing relatively novel observations to in the diagnoses of model performance (Chapter 3). This research has improved the understanding of the literal and metaphorical boundary between the atmosphere and land surface. Solar irradiances are difficult to observe in regions of complex terrain, as observations are subject to harsh conditions not found in other environments. Quality control methods were developed to handle these unique conditions. These quality control methods facilitated an analysis of estimated solar irradiances over mountainous environments. Errors in the estimated solar irradiance are caused by misrepresenting the effect of clouds over regions of topography and regularly exceed the range of observational uncertainty (up to 80Wm -2) in all regions examined. Uncertainty in the solar irradiance estimates were especially pronounced when averaging over high-elevation basins, with monthly differences between estimates up to 80Wm-2. These findings can inform the selection of a method for estimating the solar irradiance and suggest several avenues of future research for improving existing methods. Further research probed the relationship between the land surface and atmosphere as it pertains to the stable boundary layers that commonly form over snow-covered surfaces. Stable conditions are difficult to represent, especially for low wind speed

  8. The importance of surface finish to energy performance

    Directory of Open Access Journals (Sweden)

    Smith Geoff B.

    2017-01-01

    Full Text Available Power generation in solar energy systems, thermal control in buildings and mitigation of the Urban Heat Island problem, are all sensitive to directional response to incoming radiation. The radiation absorption and emission profile also plays a crucial role in each system's response and depends strongly on surface finish. This important sensitivity needs wider recognition in materials data sheets, system modeling, plus in materials and environmental engineering. The impact of surface roughness on thermal response of natural and man-made external environments is examined. Important examples will be given of the role of surface finish within each class. Total emittance links to the way surface finish influences directional emittance E(θ. Smooth surface thermal emittance on PV module covers, many solar absorbers, some roof paints, polished concrete, and glass windows can be up to 15% different from insulator results based on fully diffuse models of the same material. Widespread evidence indicates smooth metals and low-E solar absorber surfaces cool faster, and smooth insulators slower than previously thought. Matt paint is cooler than low sheen paint under the same solar heating impacts and normal concrete cooler than polished. Emittance for water is the prime environmental example of oblique impacts as it reflects strongly at oblique incidence, which leads to a significant drop in E(θ. Ripples or waves however raise water's average emittance. A surprise in this work was the high sensitivity of total E and its angular components to roughness in the depth range of 0.1–0.8 μm, which are well under ambient thermal IR wavelengths of 3–30 μm but common in metal finishing. Parallel energy flows such as evaporation and convective cooling vary if emittance varies. Thermal image analysis can provide insights into angular radiative effects.

  9. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    International Nuclear Information System (INIS)

    Mulero, A; Galan, C; Cuadros, F

    2003-01-01

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs

  10. Aliphatic Nucleophilic Radio-fluorination

    International Nuclear Information System (INIS)

    Roeda, D.; Dolle, F.

    2010-01-01

    In this review we are looking at some aspects of nucleophilic aliphatic radio-fluorination, notably the labelled fluoride source, design aspects, the leaving group and the solvent. It should be clear that there is more to this branch of radiolabelling than one would suspect from the frequently used standard tosylate replacement with kryptofix/[ 18 F]fluoride in acetonitrile or DMSO. Competitive elimination can be a serious problem that can affect both yield and purification. De-protection of sensitive groups after radiolabelling and its possible side reactions can complicate purification. The right choice of leaving group and protecting groups may be crucial. Newer developments such as the use of tertiary alcohols or ionic liquids as solvents, long-chain poly-fluorinated sulphonate leaving groups facilitating fluorous solid phase extraction, or immobilisation of the precursor on a solid phase support may help to solve these problems, for example the longstanding problems with [ 18 F]FLT, whereas older concepts such as certain cyclic reactive entities for ring opening or even an abandoned reagent as [ 18 F]DAST should not be forgotten. (authors)

  11. Study on the energy performance of glazing surfaces

    Directory of Open Access Journals (Sweden)

    Ligia MOGA

    2014-12-01

    Full Text Available A proper thermal design of the building envelope represents an important factor for the energy economics. Glazing surfaces represent one of the important elements in the hygrothermal design activity of a building envelope. The window’s thermal performance has also a strong influence on the thermal performance of the opaque area of the wall. This fact imposed the research of the real interaction, of cooperation and of mutual influences of the characteristics between the two components of the wall of the building envelope, respectively the opaque and the glazing area. Optimal constructive details for the opaque and glazing area of the wall need to be properly designed in order to achieve the required thermal and energy performances imposed for new types of buildings, e.g. passive houses, zero energy buildings.

  12. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  13. A dielectric matrix calculation of the surface-plasmon energy for the silicon (100) surface

    International Nuclear Information System (INIS)

    Forsyth, A.J.; Smith, A.E.; Josefsson, T.W.

    1996-01-01

    Full text: As an extension of previous work, we present preliminary calculations for the dielectric properties of the silicon (100) surface. In particular, the |q|→0 and |q|=2π/a(1,0,0) surface loss function, and corresponding surface plasmon energies have been calculated within a simple model for the silicon surface. The results have been obtained from the Adler and Wiser dielectric matrix (DM). The bandstructure used for the calculation was based on the highly successful empirical pseudopotential method of Cohen and Chelikovsky. We have used a 59 plane wave basis for the bandstructure, and have chosen a DM size of 59 x 59. Results are compared and contrasted with volume plasmon calculations, free electron calculations and experiment

  14. Inversed linear dichroism in F K-edge NEXAFS spectra of fluorinated planar aromatic molecules

    DEFF Research Database (Denmark)

    de Oteyza, D. G.; Sakko, A.; El-Sayed, A.

    2012-01-01

    The symmetry and energy distribution of unoccupied molecular orbitals is addressed in this work by means of NEXAFS and density functional theory calculations for planar, fluorinated organic semiconductors (perfluorinated copper phthalocyanines and perfluoropentacene). We demonstrate how molecular...

  15. Gas Sensing of Fluorine Doped Tin Oxide Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    A. A. YADAV

    2008-05-01

    Full Text Available Fluorine doped tin oxide (F: SnO2 films have been prepared onto the amorphous glass substrates by a spray pyrolysis. XRD studies reveal that the material deposited is polycrystalline SnO2 and have tetragonal structure. It is observed that films are highly orientated along (200 direction. The direct optical band gap energy for the F: SnO2 films are found to be 4.15 eV. Gas sensing properties of the sensor were checked against combustible gases like H2, CO2 CO, C3H8, CH4.The H2 sensitivity of the F-doped SnO2 sensor was found to be increased. The increase in the sensitivity is discussed in terms of increased resistivity and reduced permeation of gaseous oxygen into the underlying sensing layer due to the surface modification of the sensor.

  16. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    Science.gov (United States)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  17. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  18. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang; Wei, Bin; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  19. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  20. The surface-forming energy release rate versus the local energy release rate

    OpenAIRE

    Xiao, Si; Wang, He-ling; Landis, Chad M; Hwang, Keh-Chih; Liu, Bin

    2016-01-01

    This paper identifies two ways to extract the energy (or power) flowing into a crack tip during propagation based on the power balance of areas enclosed by a stationary contour and a comoving contour. It is very interesting to find a contradiction that two corresponding energy release rates (ERRs), a surface-forming ERR and a local ERR, are different when stress singularity exists at a crack tip. Besides a rigorous mathematical interpretation, we deduce that the stress singularity leads to an...

  1. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    Science.gov (United States)

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  2. Treatment of surfaces with low-energy electrons

    Science.gov (United States)

    Frank, L.; Mikmeková, E.; Lejeune, M.

    2017-06-01

    Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  3. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  4. Synthetic biology approaches to fluorinated polyketides.

    Science.gov (United States)

    Thuronyi, Benjamin W; Chang, Michelle C Y

    2015-03-17

    The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides.

  5. Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Terumitsu [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Department of Radiology, Tachikawa Hospital, 4-2-22, Nishiki-cho, Tachikawa, Tokyo 190-8531 (Japan)], E-mail: teru_hasebe@hotmail.com; Nagashima, So [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Kamijo, Aki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Yoshimura, Taichi; Ishimaru, Tetsuya; Yoshimoto, Yukihiro; Yohena, Satoshi; Kodama, Hideyuki; Hotta, Atsushi [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Takahashi, Koki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Suzuki, Tetsuya [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)

    2007-12-03

    Fluorine-doped diamond-like carbon (F-DLC) has recently drawn a great deal of attention as a more non-thrombogenic coating than conventional DLC for blood-contacting medical devices. We conducted quantitative depth profiling of F-DLC film by X-ray photoelectron spectroscopy (XPS) in order to elucidate the effects of fluorine and fluorine distribution in F-DLC film in connection with the prevention of surface blood adhesion. F-DLC films were prepared on silicon substrates using the radio frequency plasma enhanced chemical vapor deposition method, and the thickness of films was {approx} 50 nm. 50-nm-thick F-DLC film samples were etched at 10-nm thickness intervals using argon plasma, and each surface was examined by XPS. Thereafter, each etched film layer was incubated with platelet-rich plasma isolated from human whole blood, and the platelet-covered area per unit area was evaluated for each surface. XPS spectra showed the localization of doped fluorine in the top-most thin layer of the film. Platelet-covered areas represented progressively larger portions of the surfaces of deeper etched layers, corresponding to the decreasing fluorine content in such sample surfaces. These results indicate that the localized fluorine in the top-most thin layer is one of the key factors in the promotion of the non-thrombogenicity of F-DLC film.

  6. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

    2014-05-07

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

  7. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  8. Preparation and characterization of silica/fluorinated acrylate copolymers hybrid films and the investigation of their icephobicity

    International Nuclear Information System (INIS)

    Huang Yanfen; Hu Mingjie; Yi Shengping; Liu Xinghai; Li Houbin; Huang Chi; Luo Yunbai; Li Yan

    2012-01-01

    Inexpensive hydrophobic and icephobic coatings and films were obtained by a simple method. These coatings were prepared by mixing silica sol and fluorinated acrylate copolymers. There was a phase separation process in the film-forming which can provide the excellent performance. Small amount (about 2 wt.%) of fluorinated (methyl) acrylate was used in all of these coatings. The coatings were eco-friendly by using ethanol as the solvent system. Scanning electron microscopy, atomic force microscope, energy dispersive X-ray fluorescence spectrometer, water contact angle, thermal gravimetric analysis and tests of adhesion and hardness had been performed to characterize the morphological feature, chemical composition, hydrophobicity and icephobicity of the surface, thermal stability and mechanical properties of the coatings. The results showed that the films had good hydrophobicity, high thermal stability and excellent mechanical properties of adhesion strength and pencil hardness. Furthermore, by testing their properties of delaying water droplet from icing, it was found that ice formation was delayed for 90 min compared with the glass surface at − 5.6 °C. The hybrid coatings may be suitable for large-scale and practical application owing to its flexibility and simplicity. - Highlights: ► Coatings were prepared by mixing fluorinated acrylate copolymer and silica. ► Mechanical properties and anti-icing performance of the coatings were examined. ► Water contact angle increased with raising SiO 2 (sol)/monomers weight ratio. ► Ice formation was delayed for 90 min at − 5.6 °C.

  9. Treatment of surfaces with low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  10. Conceptual design of a continuous fluorinator experimental facility (CFEF)

    International Nuclear Information System (INIS)

    Lindauer, R.B.; Hightower, J.R. Jr.

    1976-07-01

    A conceptual design has been made of a circulating salt system, consisting principally of a fluorinator and reduction column, to demonstrate uranium removal from the salt by fluorination. The fluorinator vessel wall will be protected from fluorine corrosion by a frozen salt film. The circulating salt in the fluorinator will be kept molten by electrical heating that simulates fission product heating in an actual MSBR system

  11. Tape casting fluorinated YBC123

    International Nuclear Information System (INIS)

    Taylor, J.A.T.; Luke, D.M.; Whiteley, B.A.

    1991-01-01

    Tape casting the superconducting Ba-Y-Cu oxide was accomplished by several laboratories and show promise for being a versatile forming technique. The major problem is low current density, probably due to lack of grain alignment and grain boundary related weak links. The latter problem may be due to formation of carbonates and hydroxides during binder burnout. Preliminary work done at Alfred shows that a bimodal powder size distribution displays significant alignment after tape casting and that F treated powder is resistant to attack by steam at 100C. Such corrosion resistant powder cast as form tape should survive the binder burnout without the detrimental grain boundary phases that develop from reaction of the superconducting phase, steam and carbon dioxide. This paper presents the results of an investigation of tape casting fluorinated powder with a bimodal size distribution

  12. Treatment of surfaces with low-energy electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mikmeková, Eliška; Lejeune, M.

    2017-01-01

    Roč. 407, JUN 15 (2017), s. 105-108 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Low- energy electrons * Electron beam induced release * Graphene * Ultimate cleaning of surfaces Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  13. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  14. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  15. Experimental survey of the potential energy surfaces associated with fission

    International Nuclear Information System (INIS)

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  16. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Alireza Ghasemi, S. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, IR-Zanjan (Iran, Islamic Republic of); Roy, Shantanu [Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel (Switzerland)

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  17. Polynomials, Riemann surfaces, and reconstructing missing-energy events

    CERN Document Server

    Gripaios, Ben; Webber, Bryan

    2011-01-01

    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.

  18. Intermolecular potential energy surface and thermophysical properties of propane.

    Science.gov (United States)

    Hellmann, Robert

    2017-03-21

    A six-dimensional potential energy surface (PES) for the interaction of two rigid propane molecules was determined from supermolecular ab initio calculations up to the coupled cluster with single, double, and perturbative triple excitations level of theory for 9452 configurations. An analytical site-site potential function with 14 sites per molecule was fitted to the calculated interaction energies. To validate the analytical PES, the second virial coefficient and the dilute gas shear viscosity and thermal conductivity of propane were computed. The dispersion part of the potential function was slightly adjusted such that quantitative agreement with the most accurate experimental data for the second virial coefficient at room temperature was achieved. The adjusted PES yields values for the three properties that are in very good agreement with the best experimental data at all temperatures.

  19. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    International Nuclear Information System (INIS)

    Ismail, R.; Tauviqirrahman, M.; Jamari; Schipper, D. J.

    2009-01-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  20. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  1. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  2. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  3. Electrochemical fluorination for processing of used nuclear fuel

    Science.gov (United States)

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  4. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    International Nuclear Information System (INIS)

    Nguyen Minh, Quyen; Pujari, Sidharam P.; Wang, Bin; Wang, Zhanhua; Haick, Hossam; Zuilhof, Han; Rijn, Cees J.M. van

    2016-01-01

    Highlights: • Oxide-free H-terminated silicon nanowires undergo efficient surface modification by reaction with fluorinated 1-alkynes (HC≡C−(CH 2 ) 6 C 8 H 17−x F x ; x = 0–17). • These surface-modified Si NWs are chemically stable under range of conditions (including acid, base). • The surface coating yields efficient electrical passivation as demonstrated by a near-zero electrochemical activity of the surface. - Abstract: Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C 16 H 30−x F x ) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Si−H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core–shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  5. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh, Quyen [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Nanosens, IJsselkade 7, 7201 HB Zutphen (Netherlands); Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Wang, Bin [The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003 (Israel); Wang, Zhanhua [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Haick, Hossam [The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003 (Israel); Zuilhof, Han [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Rijn, Cees J.M. van, E-mail: cees.vanrijn@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands)

    2016-11-30

    Highlights: • Oxide-free H-terminated silicon nanowires undergo efficient surface modification by reaction with fluorinated 1-alkynes (HC≡C−(CH{sub 2}){sub 6}C{sub 8}H{sub 17−x}F{sub x}; x = 0–17). • These surface-modified Si NWs are chemically stable under range of conditions (including acid, base). • The surface coating yields efficient electrical passivation as demonstrated by a near-zero electrochemical activity of the surface. - Abstract: Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C{sub 16}H{sub 30−x}F{sub x}) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Si−H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core–shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  6. Effects of backbone conformation and surface texture of polyimide alignment film on the pretilt angle of liquid crystals

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Chou, Ray-Lin; Lin, Yu-Chi; Liang, Bau-Jy; Chen, Jyun-Ji

    2011-01-01

    Polyimides (PIs) with different inclination angle of polymer backbones, together with polar hydroxyl group and/or nonpolar trifluoromethyl group at various sites of the backbone were synthesized and used as liquid crystal alignment layers. The molecular conformation, surface chemistry, surface energy, surface morphology, and pretilt angle of the PI film were investigated. The distributions of fluorinated group and hydroxyl group at different depths of the PI surfaces were analyzed by X-ray photoelectron spectroscopy. Effects of the conformation of the PI molecular backbone on the surface morphology of the rubbed PI layer, the pretilt angle and surface energy of the alignment film were studied. The PI which contains both nonpolar fluorinated groups sticking out of the surface and the polar hydroxyl groups on the surface exhibits high pretilt angle.

  7. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  8. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    International Nuclear Information System (INIS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-01-01

    Graphical abstract: - Highlights: • The superhydrophobic PFA/SiO 2 coating was successfully fabricated by spraying. • The synthesized PFA latex showed core–shell structure and good dispersion. • The PFA/SiO 2 coating showed good resistance to acid and base, weather and heat. • The superhydrophobic coating could be fabricated on various substrates. - Abstract: The core–shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO 2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO 2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO 2 content on the wetting behavior and surface morphology of PFA/SiO 2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core–shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO 2 particles, the surface morphology and wetting behavior of the PFA/SiO 2 hybrid coatings could be controlled. When the mass ratio of SiO 2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA

  9. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    The core-shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO2 content on the wetting behavior and surface morphology of PFA/SiO2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core-shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO2 particles, the surface morphology and wetting behavior of the PFA/SiO2 hybrid coatings could be controlled. When the mass ratio of SiO2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA/SiO2 hybrid coating showed good acid and base corrosion resistance, and it could keep superhydrophobicity after being heated at 250 °C for 2 h or exposed to ambient atmosphere for more than 3 months. Additionally, the superhydrophobic PFA/SiO2 hybrid coating could be applied to various substrates through spraying. This was a green and eco-friendly method in fabricating stable

  10. Fluorine disposal processes for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Netzer, W.D.

    1977-04-08

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable.

  11. Fluorine disposal processes for nuclear applications

    International Nuclear Information System (INIS)

    Netzer, W.D.

    1977-01-01

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable

  12. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  13. The uranyl cation as a visible-light photocatalyst for C(sp{sup 3})-H fluorination

    Energy Technology Data Exchange (ETDEWEB)

    West, Julian G.; Bedell, T. Aaron; Sorensen, Erik J. [Department of Chemistry, Princeton University, Princeton, NJ (United States)

    2016-07-25

    The fluorination of unactivated C(sp{sup 3})-H bonds remains a desirable and challenging transformation for pharmaceutical, agricultural, and materials scientists. Previous methods for this transformation have used bench-stable fluorine atom sources; however, many still rely on the use of UV-active photocatalysts for the requisite high-energy hydrogen atom abstraction event. Uranyl nitrate hexahydrate is described as a convenient, hydrogen atom abstraction catalyst that can mediate fluorinations of certain alkanes upon activation with visible light. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Low-energy particle treatment of GaAs surface

    International Nuclear Information System (INIS)

    Pincik, E.; Ivanco, J.; Brunner, R.; Jergel, M.; Falcony, C.; Ortega, L.; Kucera, J. M.

    2002-01-01

    The paper presents results of a complex study of surface properties of high-doped (2x10 18 cm -3 ) and semi-insulating GaAs after an interaction with the particles coming from low-energy ion sources such as RF plasma and ion beams. The virgin samples were mechano-chemically polished liquid-encapsulated Czochralski-grown GaAs (100) oriented wafers. The crystals were mounted on the grounded electrode (holder). The mixture Ar+H 2 as well as O 2 and CF 4 were used as working gases: In addition, a combination of two different in-situ exposures was applied, such as e.g. hydrogen and oxygen. Structural, electrical and optical properties of the exposed surfaces were investigated using X-ray diffraction at grazing incidence, quasi-static and high-frequency C-V curve measurements, deep-level transient spectroscopy, photo-reflectance, and photoluminescence. Plasma and ion beam exposures were performed in a commercial RF capacitively coupled plasma equipment SECON XPL-200P and a commercial LPAI device, respectively. The evolution of surface properties as a function of the pressure of working gas and the duration of exposure was observed. (Authors)

  15. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  16. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  17. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  18. Surface energy loss processes in XPS studied by absolute reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Nagatomi, T.; Goto, K.

    2010-01-01

    The results of the investigation of the inelastic interaction of 300-3000 eV electrons with the Ni and Au surfaces by the analysis of absolute reflection electron energy loss spectroscopy (REELS) spectra were described. The present analysis enables the inelastic mean free path (IMFP), surface excitation parameter (SEP) and differential SEP (DSEP) to be obtained simultaneously from an absolute REELS spectrum. The obtained IMFPs for Ni and Au showed a good agreement with those calculated using the TPP-2M predictive equation. The present SEPs determined for Ni and Au were fitted to the Chen's formula describing the dependence of the SEP on the electron energy, and material parameters for Ni and Au in Chen's formula were proposed. The present DESPs were compared with the theoretical results, and a reasonable agreement between the experimentally determined DSEPs and theoretical results was confirmed. The MC modeling of calculating the REELS spectrum, in which energy loss processes due to surface excitations are taken into account, was also described. The IMFP, SEP and DSEP determined by the present absolute REELS analysis were employed to describe energy loss processes by inelastic scattering in the proposed MC simulation. The simulated REELS spectra were found to be in a good agreement with the experimental spectra for both Ni and Au.

  19. Investigating H₂ Sorption in a Fluorinated Metal-Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering.

    Science.gov (United States)

    Forrest, Katherine A; Pham, Tony; Georgiev, Peter A; Pinzan, Florian; Cioce, Christian R; Unruh, Tobias; Eckert, Juergen; Space, Brian

    2015-07-07

    Simulations of H2 sorption were performed in a metal-organic framework (MOF) consisting of Zn(2+) ions coordinated to 1,2,4-triazole and tetrafluoroterephthalate ligands (denoted [Zn(trz)(tftph)] in this work). The simulated H2 sorption isotherms reported in this work are consistent with the experimental data for the state points considered. The experimental H2 isosteric heat of adsorption (Qst) values for this MOF are approximately 8.0 kJ mol(-1) for the considered loading range, which is in the proximity of those determined from simulation. The experimental inelastic neutron scattering (INS) spectra for H2 in [Zn(trz)(tftph)] reveal at least two peaks that occur at low energies, which corresponds to high barriers to rotation for the respective sites. The most favorable sorption site in the MOF was identified from the simulations as sorption in the vicinity of a metal-coordinated H2O molecule, an exposed fluorine atom, and a carboxylate oxygen atom in a confined region in the framework. Secondary sorption was observed between the fluorine atoms of adjacent tetrafluoroterephthalate ligands. The H2 molecule at the primary sorption site in [Zn(trz)(tftph)] exhibits a rotational barrier that exceeds that for most neutral MOFs with open-metal sites according to an empirical phenomenological model, and this was further validated by calculating the rotational potential energy surface for H2 at this site.

  20. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Science.gov (United States)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  1. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  2. Enhancement of the Stability of Fluorine Atoms on Defective Graphene and at Graphene/Fluorographene Interface.

    Science.gov (United States)

    Ao, Zhimin; Jiang, Quanguo; Li, Shuang; Liu, Hao; Peeters, Francois M; Li, Sean; Wang, Guoxiu

    2015-09-09

    Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.

  3. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2010-01-01

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h -1 ) higher than that of a general ion exchange resin (SV=10 h -1 ) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  4. Fluorination of uranium compounds by gaseous bromine trifluoride and a bromine-fluorine mixture

    International Nuclear Information System (INIS)

    Sakurai, Tsutomu

    1976-03-01

    This report summarizes the studies of fluorination of uranium compounds by gaseous BrF 3 and a Br 2 -F 2 mixture, which were carried out in Fluorine Chemistry Laboratory of JAERI in connection with the reprocessing method of nuclear fuels. Although thermodynamically more stable than F 2 , BrF 3 has higher reactivity at relatively low temperatures: fluorination of uranium compounds can be carried out at 100 0 -- 200 0 C by using gaseous BrF 3 . This fluorination temperature is lower than those of F 2 , BrF 5 , ClF and SF 4 , and close to that of ClF 3 . The usage of BrF 3 has however the drawbacks that it requires additional devices to heat the corrosive liquid and to remove Br 2 produced as a byproduct. In order to eliminate the difficulties indicated, a new method of fluorination was developed - the use of a Br 2 -F 2 mixture. Addition of small amounts of Br 2 to the fluorine flow (about 6% in relation to the fluorine concentration) gives marked effects on the rate of fluorination. (auth.)

  5. Reference values for fluorine-18-fluorodeoxyglucose and fluorine-18-sodium fluoride uptake in human arteries

    DEFF Research Database (Denmark)

    Blomberg, Björn A; Thomassen, Anders; de Jong, Pim A

    2017-01-01

    OBJECTIVE: Reference values of fluorine-18-fluorodeoxyglucose (F-FDG) and fluorine-18-sodium fluoride (F-NaF) uptake in human arteries are unknown. The aim of this study was to determine age-specific and sex-specific reference values of arterial F-FDG and F-NaF uptake. PARTICIPANTS AND METHODS...

  6. The calculation of surface free energy based on embedded atom method for solid nickel

    International Nuclear Information System (INIS)

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  7. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  8. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...... be estimated, which is not possible in traditional Delta SCF because of very delocalized Kohn-Sham orbitals. The method is applied to N2, CO, and NO adsorbed on different metallic surfaces and compared to ordinary Delta SCF without our modification, spatially constrained DFT, and inverse...

  9. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  10. Micro-PIGE determination of fluorine distribution in developing hamster tooth germs

    International Nuclear Information System (INIS)

    Lyaruu, D.M.; Lenglet, W.J.; Woeltgens, J.H.B.; Bronckers, A.L.

    1989-01-01

    A micro-PIGE (Proton-Induced gamma-ray Emission) technique based on the delayed 5/2+----1/2+ nuclear transition of fluorine (E gamma = 197 keV, t1/2 = 87 ns) emitted after 19 F(p,p', gamma) 19 F reaction was used to detect and study the distribution of fluorine in the developing enamel organ during pre-eruptive stages, i.e., the transitional to early maturation stages of enamel formation in neonatal hamsters administered a single IP dose of sodium fluoride (20 mg NaF/kg body weight). The aforementioned nuclear reaction is unique for fluorine, and therefore detection of gamma-rays emanating from this reaction in a biological specimen implies a positive identification of fluorine at that particular site. Calcium and phosphorus X-rays were also recorded and used as parameters for assessment of the relationship between the degree of mineralization and fluoride incorporation into the enamel organ. The highest fluorine concentration in the enamel organ was recorded in the dentin near the dentin-enamel junction (DEJ). In the enamel, the highest concentration of fluorine was found to be associated with the more mature areas of the enamel near the DEJ, but gradually decreased in the direction of the enamel surface. Fluorine was not detected in the control germs. These results suggest that administration of fluoride in high doses during the pre-eruptive stages of enamel formation leads to incorporation of the ion into the forming dentin and enamel mineral, and that the enamel matrix does not seem to bind fluoride avidly

  11. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  12. The puckering free-energy surface of proline

    Directory of Open Access Journals (Sweden)

    Di Wu

    2013-03-01

    Full Text Available Proline has two preferred puckering states, which are often characterized by the pseudorotation phase angle and amplitude. Although proline's five endocyclic torsion angles can be utilized to calculate the phase angle and amplitude, it is not clear if there is any direct correlation between each torsion angle and the proline-puckering pathway. Here we have designed five proline puckering pathways utilizing each torsion angle χj (j = 1∼5 as the reaction coordinate. By examining the free-energy surfaces of the five puckering pathways, we find they can be categorized into two groups. The χ2 pathway (χ2 is about the Cβ—Cγ bond is especially meaningful in describing proline puckering: it changes linearly with the puckering amplitude and symmetrically with the phase angle. Our results show that this conclusion applies to both trans and cis proline conformations. We have also analyzed the correlations of proline puckering and its backbone torsion angles ϕ and ψ. We show proline has preferred puckering states at the specific regions of ϕ, ψ angles. Interestingly, the shapes of ψ-χ2 free-energy surfaces are similar among the trans proline in water, cis proline in water and cis proline in the gas phase, but they differ substantially from that of the trans proline in the gas phase. Our calculations are conducted using molecular simulations; we also verify our results using the proline conformations selected from the Protein Data Bank. In addition, we have compared our results with those calculated by the quantum mechanical methods.

  13. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  14. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  15. Quasilocal energy and surface geometry of Kerr spacetime

    Science.gov (United States)

    Yu, Chengjie; Liu, Jian-Liang

    2017-04-01

    We study the quasilocal energy (QLE) and the surface geometry for Kerr spacetime in the Boyer-Lindquist coordinates without taking the slow rotation approximation. We also consider in the region r ≤2 m , which is inside the ergosphere. For a certain region, r >rk(a ) , the Gaussian curvature of the surface with constant t , r is positive, and for r >√{3 }a the critical value of the QLE is positive. We found that the three curves: the outer horizon r =r+(a ), r =rk(a ) and r =√{3 }a intersect at the point a =√{3 }m /2 , which is the limit for the horizon to be isometrically embedded into R3. The numerical result indicates that the Kerr QLE is monotonically decreasing to the ADM m from the region inside the ergosphere to large r . Based on the second law of black hole dynamics, the QLE is increasing with respect to the irreducible mass Mir. From the results of Chen-Wang-Yau, we conclude that in a certain region, r >rh(a ), the critical value of the Kerr QLE is a global minimum.

  16. On analogy between surface fracture energy and activaiton energy of bonding in solid phase

    International Nuclear Information System (INIS)

    Shatinsky, V.F.; Kopylov, V.I.

    1976-01-01

    This article makes an attempt on the basis of experimental data to compare the processes of failure and formation of a bond by comparing the energy consumptions going in one case or another into initial plastic deformation of a certain volume and the further interatomic interaction at the boundary (separation, formation of the bond). Two values characterizing the different processes - the unit failure energy γ and the activation energy for the formation of a bond Q - are compared. It has been established that the energy consumed for plastic deformation and adhesion interaction of atoms on the surface of microprojections and providing the formation of a bond in the solid-phase condition is close to the specific failure energy. The equality of energies consumed for the formation of a bond and failure allows to make use of any of those characteristics to calculate parameters of processes of the formation of a bond and failure. It seems to be convenient in the analysis of the failure process at a temperature when the ductility is high and methodically, the crack propagation is hard to investigate, in particular to estimate the volume of the preliminary failure zone. Having determined γ from the contact interaction data, the strength characteristics can be evaluated. (author)

  17. Crystallization of glass-forming liquids: Specific surface energy

    International Nuclear Information System (INIS)

    Schmelzer, Jürn W. P.; Abyzov, Alexander S.

    2016-01-01

    A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbull relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.

  18. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  19. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    Directory of Open Access Journals (Sweden)

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  20. Iodine and fluorine removal of the water using two synthetic adsorbents of great fixation capacity

    International Nuclear Information System (INIS)

    Neri G, M.; Badillo A, V. E.

    2012-10-01

    In this work is studied the affinity of two synthetic adsorbents of great fixation capacity, the alumina and the hydroxyapatite, as alternative for the removal of two halogens, iodine and fluorine of the water; the first of importance in the radioactive wastes management and the second of interest in public health. This study was carried out applying the technique of radioactive tracers, with 131 I and the radionuclide 18 F (it produced in the unit PET-cyclotron of the UNAM). The affinity of the synthetic adsorbents for the halogens is expressed in terms of the distribution coefficient and of the retention percent in function of the solution ph. The results obtained for the iodine and fluorine in the synthetic solids are markedly different; in the case of the iodine, the retention is worthless in the whole interval of studied ph while for the fluorine high distribution coefficient and fixation percentages are presented of until 100%. Also for the fluorine in hydroxyapatite high distribution coefficients and superiors are obtained in relation to those that are obtained in the alumina. In both solids the fluorine retention diminishes as the ph of the solution increases, what shows the competition with the hydroxyl ions for the active places in surface. (Author)

  1. Diagnosis of fluorine damage. II. Estimation of fluorine-containing emission by demonstration of the storage of fluorine in the cortex of trees

    Energy Technology Data Exchange (ETDEWEB)

    Lampadius, F

    1960-01-01

    The thorium titration method was employed for estimating the fluorine content of the cortex. The question as to what fluorine content in the bark is to be regarded as natural has not yet been exactly established. Various indications in the literature lead to the assumption that the storage in the bark of cortex of the trees from an area without fluorine-containing emissions gave <0.2 mg. F/100 ml. distillate in all samples. This fluorine content was initially taken as the limit for the natural fluorine content of the cortex. The investigation of the fluorine content of the cortex extended only to the bark and was calculated in mg. of F in 5 g. of air-dry ground bark. The results show a clear relation between the quantity of fluorine stored in the bark and the distance of the point of sampling from the source of emission and its disposition to it. With high fluorine emission and unfavorable wind conditions in the affected area, fluorine was found in considerable quantities in the bark at places quite a long way from the source of emission. The qualitative estimation of the fluorine content of gassed leaves and needles by the crystal precipitation method, and the quantitative estimation of the fluorine content of gassed bark by the thorium titration method led to results that were in good agreement, so it was possible in this way to define the area in which damage may occur with reliable accuracy.

  2. Experimental study of the plasma fluorination of Y-Ba-Cu-O thin films

    CERN Document Server

    Li Qi; Ji Zheng Ming; Feng Yi Jun; Kang Lin; Yang Sen Zu; Wu Pei Heng; Wang Xiao Shu; Ye Yuda

    2002-01-01

    The authors have experimentally studied the surface modifications of Y-Ba-Cu-O (YBCO) thin films using CF sub 4 plasma. The intensity of the plasma fluorination was controlled by changing the biasing voltage and the time of the plasma treatment. Microstructural analyses reveal that the oxygen content of the YBCO thin films was changed. Transport measurements of sufficient fluorinated YBCO films imply that the films changed totally into an oxygen-deficient semi-conducting state. From these experimental results, the authors believe that plasma fluorination is quite a useful method to form controllable a thin barrier layer in fabricating interface engineered junctions and to form a stable narrow weak-link region in fabricating planar superconductor-normal-superconductor junctions

  3. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment.

    Science.gov (United States)

    Strasser, Thomas; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-02-05

    The aim of this study was to examine the effects of surface pre-treatment on CAD/CAM materials including ceramics, zirconia, resin-infiltrated ceramic, and resin-based composite. Specimens were made of ten CAD/CAM materials (Celtra Duo, Degudent, D; Vita Suprinity, Vita, D; E.max CAD, Ivoclar-Vivadent, FL; E.max ZirCAD, Ivoclar-Vivadent, FL; Vita Enamic, Vita, D; Cerasmart, GC, B; LAVA Ultimate, 3M, D; SHOFU Block HC, SHOFU, US; Grandio Blocs, VOCO, D; BRILLIANT Crios, Coltene, CH) and pretreated to represent clinical procedures (Hf 20 s/5%; phosphoric acid 20 s/37%; Monobond etch and prime (Ivoclar-Vivadent, FL); water-cooled diamond bur (80 μm; 4 μm); Al 2 O 3 -blasting (50 μm/1 bar, 50 μm/2 bar, 120 μm/1 bar, 120 μm/2 bar); untreated; manufacturer's instructions). SEM-analysis (Phenom, FEI, NL) of the surfaces was performed (magnifications ≤ 10,000×). Roughness values R a , R z (KJ 3D, Keyence, J), and surface energy SE (OCA15 plus, SCA20, DataPhysics, D) were determined (statistics: non-parametric Mann-Whitney U test/Kruskal-Wallis test for independent specimen, α = 0.05). Kruskal-Wallis revealed significant (p CAD/CAM materials require individual pre-treatment for optimized and protective surface activation. Cementation is a key factor for clinical success. Given the variety of available CAD/CAM materials, specific procedures are needed.

  4. Controlled Synthesis of Fluorinated Copolymers with Pendant Sulfonates

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2008-01-01

    Novel fluorinated copolymers of different architectures and bearing sulfopropyl groups were synthesized by atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers and two modification reactions performed on the polymer chain - demethylation followed by sulfopropylation. As a ...

  5. Fluorine in plants in the areas of Yugoslav aluminum factories

    Energy Technology Data Exchange (ETDEWEB)

    Ivos, J.; Ciszek, H.; Rezek, A.; Marjanovic, L.

    1970-01-01

    Distribution of fluorine in the areas around aluminum production facilities was investigated. The plants in areas around the factories did indeed show increased levels of fluorine. Distribution patterns were found to be affected by wind and precipitation patterns.

  6. Simple electrolytic cell for production of elemental fluorine

    International Nuclear Information System (INIS)

    Dides F, M.; Padilla S, U.

    1990-01-01

    It was constructed and tested a simple electrolytic cell for the production of elemental fluorine. The fluorine production is essential in the obtainment of uranium hexafluoride, a compound for the nuclear fuel cycle. (A.C.A.S.)

  7. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer.

    Science.gov (United States)

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu

    2013-02-01

    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Fluorine and fluorine tolerance in fodder of domestic animals. Part 2. Pathophysiology of fluorine and fodder tests on domestic animals

    Energy Technology Data Exchange (ETDEWEB)

    Bronsch, K; Grieser, N

    1964-01-01

    Important tests with fluorine on domestic animals were critically evaluated with the aim of coming to some conclusion about fluorine tolerance in fodder for domestic animals, keeping various different factors in mind. Slightly lower concentrations were reached than those of the NRC in the USA, reckoning on a non-optimal mineral content, especially in calcium and phosphorus, since the USA obviously used a basis for feeding which was otherwise sufficient. According to these tests, fluoride is tolerated within certain limits by domestic animals without recognisable disadvantages. There are, however, important differences between different types of animals in regard to dosage.

  9. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    Science.gov (United States)

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Kinetics study of the fluorination of uranium tetrafluoride in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Khani, M.H.; Pahlavanzadeh, H.; Ghannadi, M.

    2008-01-01

    The kinetics of reaction of the uranium tetrafluoride conversion to the uranium hexafluoride with fluorine gas taking place in a fluidized bed reactor operating in industrial conditions have been studied. The external and internal diffusion effects are investigated by Mears and Weisz-Prater criterions. The kinetic equation for the fluorination of uranium tetrafluoride is developed in the absence of diffusional limitation using an integral method by assuming that the gas flow is of plug or perfectly mixed type. A good agreement is observed between the experimental data and a first-order model with respect to fluorine in the CSTR system. The activation energy of the reaction and the pre-exponential factor are obtained using analytical results from a better model

  11. Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.

    2018-02-01

    Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.

  12. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  13. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  14. Fluorinated Alq3 derivatives with tunable optical properties.

    Science.gov (United States)

    Shi, Yue-Wen; Shi, Min-Min; Huang, Jia-Chi; Chen, Hong-Zheng; Wang, Mang; Liu, Xiao-Dong; Ma, Yu-Guang; Xu, Hai; Yang, Bing

    2006-05-14

    This communication reports that not only the emission colour but also the photoluminescence quantum yield of Alq3 can be tuned by introducing fluorine atoms at different positions; with fluorination at C-5 the emission is red-shifted with a tremendously decreased intensity, fluorination at C-6 causes a blue-shift with a significantly increased intensity, and fluorination at C-7 has a minor effect on both the colour and intensity of Alq3's emission.

  15. β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G.

    1981-01-01

    The synthesis of a number of new aliphatic fluorinated β- diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed [ru

  16. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1981-10-01

    The synthesis of a number of new aliphatic fluorinated ..beta..-diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed.

  17. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  18. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are ...

  19. Fluorine 18 in tritium generator ceramic materials

    International Nuclear Information System (INIS)

    Jimenez-Becerril, J.; Bosch, P.; Bulbulian, S.

    1992-01-01

    At present time, the ceramic materials generators of tritium are very interesting mainly by the necessity of to found an adequate product for its application as fusion reactor shielding. The important element that must contain the ceramic material is the lithium and especially the isotope with mass=6. The tritium in these materials is generated by neutron irradiation, however, when the ceramic material contains oxygen, then is generated too fluorine 18 by the action of energetic atoms of tritium in recoil on the 16 O, as it is showed in the next reactions: 1) 6 Li (n, α) 3 H ; 2) 16 O( 3 H, n) 18 F . In the present work was studied the LiAlO 2 and the Li 2 O. The first was prepared in the laboratory and the second was used such as it is commercially expended. In particular the interest of this work is to study the chemical behavior of fluorine-18, since if it would be mixed with tritium it could be contaminate the fusion reactor fuel. The ceramic materials were irradiated with neutrons and also the chemical form of fluorine-18 produced was studied. It was determined the amount of fluorine-18 liberated by the irradiated materials when they were submitted to extraction with helium currents and argon-hydrogen mixtures and also it was investigated the possibility about the fluorine-18 was volatilized then it was mixed so with the tritium. Finally it was founded that the liberated amount of fluorine-18 depends widely of the experimental conditions, such as the temperature and the hydrogen amount in the mixture of dragging gas. (Author)

  20. Fluorinated Polyurethane Scaffolds for 19F Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Lammers, Twan; Mertens, Marianne E.; Schuster, Philipp; Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J.C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Researchers used fluorinated polyurethane scaffolds for 19F magnetic resonance imaging. They generated a novel fluorinated polymer based on thermoplastic polyurethane (19F -TPU) which possesses distinct properties rendering it suitable for fluorine-based MRI. The 19F -TPU is synthesized from a

  1. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence

    Directory of Open Access Journals (Sweden)

    Attila Márió Remete

    2017-11-01

    Full Text Available A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy–fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  2. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence.

    Science.gov (United States)

    Remete, Attila Márió; Nonn, Melinda; Fustero, Santos; Haukka, Matti; Fülöp, Ferenc; Kiss, Loránd

    2017-01-01

    A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy-fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  3. Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation.

    Science.gov (United States)

    Gayen, Pralay; Chaplin, Brian P

    2017-08-23

    This research investigated the effects of surface fluorination on both rates of organic compound oxidation (phenol and terephthalic acid (TA)) and ClO 4 - formation at boron-doped diamond (BDD) film anodes at 22 °C. Different fluorination methods (i.e., electrochemical oxidation with perfluorooctanoic acid (PFOA), radio frequency plasma, and silanization) were used to incorporate fluorinated moieties on the BDD surface, which was confirmed by X-ray photoelectron spectroscopy (XPS). The silanization method was found to be the most effective fluorination method using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane precursor to form a self-assembled monolayer (SAM) on the oxygenated BDD surface. The ClO 4 - formation decreased from rates of 0.45 ± 0.03 mmol m -2 min -1 during 1 mM NaClO 3 oxidation and 0.28 ± 0.01 mmol m -2 min -1 during 10 mM NaCl oxidation on the BDD electrode to below detectable levels (layer on the BDD surface that inhibited charge transfer via steric hindrance and hydrophobic effects. The surface coverages and thicknesses of the fluorinated films controlled the charge transfer rates, which was confirmed by estimates of film thicknesses using XPS and density functional theory simulations. The aliphatic silanized electrode also showed very high stability during OH • production. Perchlorate formation rates were below the detection limit (<0.12 μmoles m -2 min -1 ) for up to 10 consecutive NaClO 3 oxidation experiments.

  4. Strontium and fluorine in tuatua shells

    International Nuclear Information System (INIS)

    Trompetter, W.J.; Coote, G.E.

    1993-01-01

    This report describes the research to date on the elemental distributions of strontium, calcium, and fluorine in a collection of 24 tuatua shells (courtesy of National Museum). Variations in elemental concentrations were measured in the shell cross-sections using a scanning proton microprobe (PIXE and PIGME). In this paper we report the findings to date, and present 2-D measurement scans as illustrative grey-scale pictures. Our results support the hypothesis that increased strontium concentrations are deposited in the shells during spawning, and that fluorine concentration is proportional to growth rate. (author). 15 refs.; 13 figs.; 1 appendix

  5. Fluorinated Amine Stereotriads via Allene Amination.

    Science.gov (United States)

    Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-16

    The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products. The resulting stereotriads are readily transformed into fluorinated pyrrolidines and protected α-, β-, and γ-amino acids.

  6. Depleted uranium processing and fluorine extraction

    International Nuclear Information System (INIS)

    Laflin, S.T.

    2010-01-01

    Since the beginning of the nuclear era, there has never been a commercial solution for the large quantities of depleted uranium hexafluoride generated from uranium enrichment. In the United States alone, there is already in excess of 1.6 billion pounds (730 million kilograms) of DUF_6 currently stored. INIS is constructing a commercial uranium processing and fluorine extraction facility. The INIS facility will convert depleted uranium hexafluoride and use it as feed material for the patented Fluorine Extraction Process to produce high purity fluoride gases and anhydrous hydrofluoric acid. The project will provide an environmentally friendly and commercially viable solution for DUF_6 tails management. (author)

  7. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    Science.gov (United States)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  8. Effect of deposition temperature on the bonding configurations and properties of fluorine doped silicon oxide film

    International Nuclear Information System (INIS)

    Lu, Wei-Lun; Kuo, Ting-Wei; Huang, Chun-Hsien; Wang, Na-Fu; Tsai, Yu-Zen; Wang, Ming-Wei; Hung, Chen-I.; Houng, Mau-Phon

    2011-01-01

    In our study, fluorine-doped silicon oxide (SiOF) films were prepared using a mixture of SiH 4 , N 2 O, and CF 4 in a conventional plasma enhanced chemical vapor deposition system at various deposition temperatures. Deposition behaviors are determined by the deposition temperature. Our results show that for temperatures below 300 deg. C the process is surface-reaction-limited controlled, but becomes diffusion-limited when the deposition temperature exceeds 300 deg. C. The surface topography images obtained using an atomic force microscope show that a large amount of free volume space was created in the film with a low temperature deposition. The optical microscope and secondary ion mass spectrometer analyses show that precipitates were produced at the near-surface at the deposition temperature of 150 deg. C with a higher fluorine concentration of 2.97 at.%. Our results show that the properties of the SiOF film are controlled not only by the free volume space but also by the fluorine concentration. An optimal SiOF film prepared at a temperature of 200 deg. C shows a low dielectric constant of 3.55, a leakage current of 1.21 x 10 -8 A/cm 2 at 1 MV/cm, and a fluorine concentration of 2.5 at.%.

  9. Novel Fluorinated Tensioactive Extractant Combined with Flotation for Decontamination of Extractant Residual during Solvent Extraction

    Science.gov (United States)

    Wu, Xue; Chang, Zhidong; Liu, Yao; Choe, Chol Ryong

    2017-12-01

    Solvent-extraction is widely used in chemical industry. Due to the amphiphilic character, a large amount of extractant remains in water phase, which causes not only loss of reagent, but also secondary contamination in water phase. Novel fluorinated extractants with ultra-low solubility in water were regarded as effective choice to reduce extractant loss in aqueous phase. However, trace amount of extractant still remained in water. Based on the high tensioactive aptitude of fluorinated solvent, flotation was applied to separate fluorinated extractant remaining in raffinate. According to the data of surface tension measurement, the surface tension of solution was obviously decreased with the addition of fluorinated extractant tris(2,2,3,3,4,4,5,5-octafluoropentyl) phosphate (FTAP). After flotation, the FTAP dissolved in water can be removed as much as 70%, which proved the feasibility of this key idea. The effects of operation time, gas velocity, pH and salinity of bulk solution on flotation performance were discussed. The optimum operating parameters were determined as gas velocity of 12ml/min, operating time of 15min, pH of 8.7, and NaCl volume concentration of 1.5%, respectively. Moreover, adsorption process of FTAP on bubble surface was simulated by ANSYS VOF model using SIMPLE algorithm. The dynamic mechanism of flotation was also theoretically investigated, which can be considered as supplement to the experimental results.

  10. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    Science.gov (United States)

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  11. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  12. Structures and properties of fluorinated amorphous carbon films

    Science.gov (United States)

    Huang, K. P.; Lin, P.; Shih, H. C.

    2004-07-01

    Fluorinated amorphous carbon (a-C:F) films were deposited by radio frequency bias assisted microwave plasma electron cyclotron resonance chemical vapor deposition with tetrafluoromethane (CF4) and acetylene (C2H2) as precursors. The deposition process was performed at two flow ratios R=0.90 and R=0.97, where R=CF4/(CF4+C2H2). The samples were annealed at 300 °C for 30 min. in a N2 atmosphere. Both Fourier transform infrared and electron spectroscopy for chemical analyzer were used to characterize the a-C:F film chemical bond and fluorine concentration, respectively. A high resolution electron energy loss spectrometer was applied to detect the electronic structure. The higher CF4 flow ratio (R=0.97) produced more sp3 linear structure, and it made the a-C:F film smoother and softer. A lifetime of around 0.34 μs and an energy gap of ˜2.75 eV were observed in both the as-deposited and after annealing conditions. The short carriers lifetime in the a-C:F film made the photoluminescence peak blueshift. The annealing changed both the structure and composition of the a-C:F film. The type of fluorocarbon bond and electronic structure characterized the mechanical and physical properties of a-C:F film.

  13. WO3 and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms.

    Science.gov (United States)

    Johnson, Nicholas R; George, Steven M

    2017-10-04

    The thermal atomic layer etching (ALE) of WO 3 and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO 3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl 3 ) and hydrogen fluoride (HF). BCl 3 converts the WO 3 surface to a B 2 O 3 layer while forming volatile WO x Cl y products. Subsequently, HF spontaneously etches the B 2 O 3 layer producing volatile BF 3 and H 2 O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl 3 and HF reactions were self-limiting versus exposure. The WO 3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl 3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO 3 layer using O 2 /O 3 . Subsequently, the WO 3 layer is etched with BCl 3 and HF. SE could simultaneously monitor the W and WO 3 thicknesses and conversion of W to WO 3 . SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl 3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

  14. In vitro effect of energy drinks on human enamel surface

    Directory of Open Access Journals (Sweden)

    Marise Sano Suga MATUMOTO

    Full Text Available Abstract Introduction Energy drinks (ED possess low pH and citric acid in their composition, making them potentially erosive beverages that can contribute to the high dental erosion rates found currently in the general population and also in young people. Objective To evaluate the mean pH and titratable acidity of commercial ED and the influence of a brand of ED on the superficial microhardness of human enamel. Material and method Ten commercial ED were selected and the pH of two lots of each ED with and without gas was obtained. Acid titration was conducted with the addition of NaOH aliquots until the pH 7 was reached. Eighteen human enamel specimens were allocated in three groups (N=6, Red Bull (RB, Red Bull Light (RBL and distilled water (C, submitted to an acid challenge with the ED, six consecutive times, with 12 hours intervals, during three days. Knoop microhardness was measured before and after the acid challenge. Result All ED brands tested presented low pH levels ranging from 2.1 to 3.2. Regarding titratable acidity, it was found that the amount of base required promoting the neutralization of the solutions ranged from 1200μL to 3750μL. Samples of human enamel in the RB and RBL groups submitted to the acid challenge presented significantly decreased Knoop microhardness when compared with the group C. Conclusion All ED examined have potential to promote mineral loss due to the low pH and high titratable acidity. The ED analyzed promoted significant mineral losses on the dental enamel surface.

  15. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Chavin Jongwannasiri

    2012-01-01

    Full Text Available Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII technique using acetylene (C2H2 and tetrafluoromethane (CF4 as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys.

  16. Revisited study of fluorine implantation impact on negative bias temperature instability for input/output device of automotive micro controller unit

    Science.gov (United States)

    Yoshida, Tetsuya; Maekawa, Keiichi; Tsuda, Shibun; Shimizu, Tatsuo; Ogasawara, Makoto; Aono, Hideki; Yamaguchi, Yasuo

    2018-04-01

    We investigate the effect of fluorine implanted in the polycrystalline silicon (poly-Si) gate and source/drain (S/D) region on negative bias temperature instability (NBTI) improvement. It is found that there is a trade-off implantation energy dependence of NBTI between fluorine in the poly-Si gate and that in the S/D region. Fluorine implanted in the poly-Si gate contributes to NBTI improvement under low energy implantation. On the other hand, NBTI is improved by fluorine implanted in the S/D region under high energy. We propose that the two-step implantation process with high and low energy is the optimum condition for NBTI improvement.

  17. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from the ...

  18. SCANNING ELECTRON-MICROSCOPIC EVALUATION OF THE FRACTURED SURFACES OF CANINE CALCULI FROM SUBSTRATA WITH DIFFERENT SURFACE FREE-ENERGY

    NARCIS (Netherlands)

    UYEN, HMW; JONGEBLOED, WL; BUSSCHER, HJ

    1991-01-01

    The strength of adhesion between dental calculus and enamel or dentin surfaces determines the ease with which the calculus can be removed by brushing or professional dental treatment. In this study, we examined the adhesion of canine calculi formed on substrata with different surface free energies

  19. Structural dependence of the 5d-metal surface energies as deduced from surface core-level shift measurements

    International Nuclear Information System (INIS)

    Mrartensson, N.; Saalfeld, H.B.; Kuhlenbeck, H.; Neumann, M.

    1989-01-01

    Surface core-level shift measurements performed at the BESSY storage ring yield -0.41(2) eV for Os(0001) and 0.00(10) eV for Re(0001). An analysis of the surface shifts in the 5d transition series shows that the surface energy as a function of Z has a maximum at lower Z for the bcc phase than for the fcc-hcp phases, at W and between Re and Os, respectively

  20. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine

  1. Decomposition of Fluorinated Graphene under Heat Treatment

    Czech Academy of Sciences Publication Activity Database

    Plšek, Jan; Drogowska, Karolina; Valeš, Václav; Ek Weis, Johan; Kalbáč, Martin

    2016-01-01

    Roč. 22, č. 26 (2016), s. 8990-8997 ISSN 1521-3765 R&D Projects: GA ČR(CZ) GAP208/12/1062 Institutional support: RVO:61388955 Keywords : fluorination * graphene * photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  2. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance

    Science.gov (United States)

    Qing, Yongquan; Yang, Chuanning; Hu, Chuanbo; Zheng, Yansheng; Liu, Changsheng

    2015-01-01

    In this paper, we report a simple and inexpensive method for fabricating fluorinated polysiloxane/ZnO nanocomposite coatings on the steel substrates. The surface wettability and topology of coating were characterized by contact angle measurement, scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic sbnd CH3 and sbnd CH2sbnd groups were introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to fluorinated polysiloxane was 13:7, the contact angle of nanocomposite coating was 166°, and a sliding angle of 4°, coating surface with hierarchical micro/nano-structures. In addition, the as-prepared superhydrophobic surface has excellent durability and corrosion resistance. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on steel materials.

  3. Effects of fluorine contamination on spin-on dielectric thickness in semiconductor manufacturing

    Science.gov (United States)

    Kim, Hyoung-ryeun; Hong, Soonsang; Kim, Samyoung; Oh, Changyeol; Hwang, Sung Min

    2018-03-01

    In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production. SOD film must be uniformly thin, homogeneous and free of particle defects because it has been perfectly perserved after chemical-mechanical polishing (CMP) and etching process. Spin coating is one of the most common techniques for applying SOD thin films to substrates. In spin coating process, the film thickness and uniformity are strong function of the solution viscosity, the final spin speed and the surface properties. Especially, airborne molecular contaminants (AMCs), such as HF, HCl and NH3, are known to change to surface wetting characteristics. In this work, we study the SOD film thickness as a function of fluorine contamination on the wafer surface. To examine the effects of airborne molecular contamination, the wafers are directly exposed to HF fume followed by SOD coating. It appears that the film thickness decreases by higher contact angle on the wafer surface due to fluorine contamination. The thickness of the SOD film decreased with increasing fluorine contamination on the wafer surface. It means that the wafer surface with more hydrophobic property generates less hydrogen bonding with the functional group of Si-NH in polysilazane(PSZ)-SOD film. Therefore, the wetting properties of silicon wafer surfaces can be degraded by inorganic contamination in SOD coating process.

  4. Production and transport chemistry of atomic fluorine in remote plasma source and cylindrical reaction chamber

    International Nuclear Information System (INIS)

    Gangoli, S P; Johnson, A D; Fridman, A A; Pearce, R V; Gutsol, A F; Dolgopolsky, A

    2007-01-01

    Increasingly, NF 3 -based plasmas are being used in semiconductor manufacturing to clean chemical vapour deposition (CVD) chambers. With advantages such as faster clean times, substantially lower emissions of gases having high global warming potentials, and reduced chamber damage, NF 3 plasmas are now favoured over fluorocarbon-based processes. Typically, a remote plasma source (RPS) is used to dissociate the NF 3 gas and produce atomic fluorine that etches the CVD residues from the chamber surfaces. However, it is important to efficiently transport F atoms from the plasma source into the process chamber. The current work is aimed at understanding and improving the key processes involved in the production and transport of atomic fluorine atoms. A zero-dimensional model of NF 3 dissociation and F production chemistry in the RPS is developed based on various known and derived plasma parameters. Additionally, a model describing the transport of atomic fluorine is proposed that includes both physical (diffusion, adsorption and desorption) and chemical processes (surface and three-body volume recombination). The kinetic model provides an understanding of the impact of chamber geometry, gas flow rates, pressure and temperature on fluorine recombination. The plasma-kinetic model is validated by comparing model predictions (percentage F atom density) with experimental results (etch rates)

  5. Fluorine and Lithium at the Kimberley Outcrop, Gale Crater

    Science.gov (United States)

    Forni, O.; Vaniman, D. T.; Le Deit, L.; Clegg, S. M.; Lanza, N. L.; Lasue, J.; Bish, D. L.; Mangold, N.; Wiens, R. C.; Meslin, P.-Y.; hide

    2015-01-01

    ChemCam is an active remote sensing instrument which has operated successfully on MSL since landing in August, 2012. Its laser pulses remove dust and to profile through weathering coatings of rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) produces emission spectra of materials ablated from the samples in electronically excited states. As the plasma cools, elements can recombine and molecular emission lines are observed. Recent experiments have shown that some of these molecular emissions can be much brighter than the associated atomic lines, especially when halo-gens and rare earth elements are present. We observed these molecular emissions in some of the ChemCam spectra and report the first detection of chlorine and fluorine with ChemCam. It is also the first time ever that fluorine has been detected on the surface of Mars. Among all the F-bearing observations, one third are observed in the Kimberley outcrop. We will dis-cuss the potential mineralogies related to these observations as well as the related elemental correlations and propose interpretations.

  6. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  7. Surface influence on convoy electron emission at low energies

    International Nuclear Information System (INIS)

    Sanchez, E.A.

    1988-01-01

    It is studied the dependence of the production of convoy electrons induced by H + - 60 KeV with surface conditions of Al targets by in situ deposition of Na and O. The conclusion is that convoy electron production increases with the work function of the surface. (A.C.A.S.) [pt

  8. Fluorine content in the soft tissues, blood and milk of ruminants outside and inside fluorine emission areas

    Energy Technology Data Exchange (ETDEWEB)

    Oelschlaeger, W; Feyler, L; Schwarz, E

    1972-01-01

    Data on the fluorine content of soft tissues, blood and milk inside and outside fluorine emission areas vary widely, probably because of analytical difficulties. Possible errors and their elimination are discussed. A large number of analyses was carried out to determine the fluorine content of heart, liver, lung, kidney, adrenal, muscle, spleen, pancreas, lymph nodes, thyroid, thymus, pituitary and cerebrum and cerebellum of cows and calves, as well as 388 milk samples and 232 blood samples. In calves born from cows kept for 3 1/2 years near a factory producing hydrofluoric acid, there was a clear relationship between the fluorine content during the suckling and drinking period, and also in a still-born calf, with the fluorine uptake of the dam during the months of pregnancy. In contrast to cattle, calves showed significantly higher fluorine levels in the adrenals compared with the kidneys. The soft tissues of cattle outside the fluorine emission areas contained more fluorine than in calves within the emission areas. Fluorine accumulation in liver, lung, kidney, cerebrum and cerebellum, thyroid and pituitary was markedly raised in animals with high fluorine uptake, whereas there was no significant change in the levels in the heart, musculature and spleen. So far as human health is concerned, the raised fluorine level in milk was significantly below the maximum level permitted in fluoridated drinking water.

  9. Low energy He+ irradiation effect on graphite surface

    International Nuclear Information System (INIS)

    Asari, E.; Nakamura, K.G.; Kitajima, M.; Kawabe, T.

    1992-01-01

    Study on the lattice disordering and the secondary electron emission under low energy (1-5keV) He + irradiation is reported. Real-time Raman measurements show that difference in the observed Raman spectra for different ion energies is due to the difference of the damage depth. The relation between the observed Raman spectrum and the depth profile of lattice damage is discussed. Energy dependence of the secondary electron emission coefficient are also described. (author)

  10. Collisions of benzene and buckminsterfullerene at fluorinated and non-fluorinated self-assembled monolayer films

    International Nuclear Information System (INIS)

    Wysocki, V.H.; Ding, H.M.; Kane, T.E.; Somogyi, A.; Callahan, J.H.

    1992-01-01

    It has been illustrated that a variety of analytically-useful processes occur upon low-energy (eV) collisions of mass-selected polyatomic ions with a surface. These include surface induced dissociation, reactive collisions of projectile ions with surface adsorbates, and chemical sputtering. The goal of the research described here is to investigate the ion-surface chemistry that is detected when C 6 H 6 + , C 6 D 6 + , C 6 H 5 F + , C 60 + , and C 60 ++ collide with a well-characterized surface at collision energies of 10-100 eV

  11. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, Nicholas D. [Department; Dudnik, Alexander S. [Department; Harutyunyan, Boris [Department; Aldrich, Thomas J. [Department; Leonardi, Matthew J. [Department; Manley, Eric F. [Department; Chemical; Butler, Melanie R. [Department; Harschneck, Tobias [Department; Ratner, Mark A. [Department; Chen, Lin X. [Department; Chemical; Bedzyk, Michael J. [Department; Department; Melkonyan, Ferdinand S. [Department; Facchetti, Antonio [Department; Chang, Robert P. H. [Department; Marks, Tobin J. [Department; Department

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the two SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.

  12. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  13. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  14. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  15. Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes

    International Nuclear Information System (INIS)

    Zhang Dingwen; Shen Jie; Huang Sumei; Wang Milton; Brolo, Alexandre G; Li Xiaodong

    2013-01-01

    We have investigated plasmon-assisted energy conversion in dye-sensitized solar cells (DSCs) applying gold nanoparticles (NPs) modified fluorine tin oxide (FTO) electrodes. A series of Au NPs with different sizes (15-80 nm) were synthesized and immobilized onto FTO glass slides. Photoanodes were prepared on these Au modified FTO substrates using P25 TiO 2 powders and by the screen-printing method. The size effects of Au NPs on the photovoltaic performance of the formed DSCs were investigated systematically. Structural and photoelectrochemical properties of the formed photoanodes were examined by field emission scanning electron microscopy and electrochemical impedance spectroscopy. It was found that the energy conversion efficiency of the DSC was highly dependent on the Au particle size. When the particle size was not greater than 60 nm, the DSC based on the Au NP-FTO composite electrode showed a higher short-circuit current density and better photovoltaic (PV) performance than the cell based on the bare FTO. The best cell was achieved using 25 nm sized Au NPs modified FTO. It exhibited a conversion efficiency of 6.69%, which was 15% higher than that of DSCs without Au NPs. The related PV performance enhancement mechanisms, photoelectrochemical processes and surface-plasmon resonances in DSCs with Au nanostructures are analysed and discussed.

  16. Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization

    Science.gov (United States)

    Al-Terkawi, Abdal-Azim; Scholz, Gudrun; Emmerling, Franziska; Kemnitz, Erhard

    2018-05-01

    A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)·0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflection-infrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments.

  17. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  18. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  19. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  20. Cluster ion-surface interactions: from meV to MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Kai; Meinander, Kristoffer; Jaervi, Tommi T.; Peltola, Jarkko; Samela, Juha [Accelerator Laboratory, University of Helsinki (Finland)

    2008-07-01

    The nature of cluster ion-surface interactions changes dramatically with the kinetic energy of the incoming cluster species. In this talk I review some of our recent work on the nature of cluster-surface interactions spanning an energy range from a few MeV/cluster to about 1 MeV/cluster and cluster sizes in the range of 10 - 1000 atoms/cluster. In the energy range of a few MeV/cluster ion, the kinetic energy of the incoming ion is insignificant compared to the energy gained when the surface potential energy at the cluster-surface interface is released and partly translated into kinetic energy. Even in this energy regime I show that surprisingly drastic effects can occur. When the energy of the incoming cluster is raised to a few eV/atom, the kinetic energy of the incoming cluster starts to affect the deposition. It will cause the cluster to entirely reform on impact. When the energy is raised to the range of keV's/cluster, the clusters start to penetrate the sample, fairly similar to conventional ion implantation. However, in dense targets the cluster ions may stick close to each other long enough to cause a significant enhancement of the heat spike in the material. Finally, I show that at kinetic energies around 1 MeV/cluster the cluster enhancement of the heat spike may lead to dramatic surface effects.

  1. Dispersion and energy conservation relations of surface waves in semi-infinite plasma

    International Nuclear Information System (INIS)

    Atanassov, V.

    1981-01-01

    The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)

  2. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    Science.gov (United States)

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of the diffusion coefficient of fluorine during the electropolishing of niobium

    Directory of Open Access Journals (Sweden)

    Hui Tian

    2010-08-01

    Full Text Available Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nanosmoothness. Electropolishing (EP is the technique of choice being developed for high-field superconducting radio frequency (SRF cavities. Previous study has shown that the mechanism of Nb electropolishing proceeds by formation and dissolution of a compact salt film under fluorine diffusion-limited mass transport control. We pursue an improved understanding of the microscopic conditions required for optimum surface finishing. The viscosity of the standard electrolyte has been measured using a commercial viscometer, and the diffusion coefficient of fluorine was derived at a variety of temperatures from 0 to 50°C using a Nb rotating disk electrode. In addition, data indicate that electrode kinetics becomes competitive with the mass transfer current limitation and increases dramatically with temperature. These findings are expected to guide the optimization of EP process parameters for achieving controlled, reproducible, and uniform nanosmooth surface finishing of SRF cavities.

  4. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  5. Palladium-catalysed electrophilic aromatic C-H fluorination

    Science.gov (United States)

    Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias

    2018-02-01

    Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.

  6. Corrosion resistant materials for fluorine and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Hauffe, K.

    1984-12-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with <0,3 mm.a/sup -1/ is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a/sup -1/. In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials.

  7. Corrosion resistant materials for fluorine and hydrogen fluoride

    International Nuclear Information System (INIS)

    Hauffe, K.

    1984-01-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with -1 is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a -1 . In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials. (orig.) [de

  8. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  9. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces

    DEFF Research Database (Denmark)

    Calle-Vallejo, F.; Martínez, J. I.; García Lastra, Juan Maria

    2012-01-01

    phenomenon between any set of adsorbates bound similarly to the surface. On the example of the near-surface alloys of Pt, we show that scalability is a result of identical variations of adsorption energies with respect to the valence configuration of both the surface components and the adsorbates....

  10. Investigating H 2 Sorption in a Fluorinated Metal–Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering

    KAUST Repository

    Forrest, Katherine A.

    2015-07-07

    © 2015 American Chemical Society. Simulations of H2 sorption were performed in a metal-organic framework (MOF) consisting of Zn2+ ions coordinated to 1,2,4-triazole and tetrafluoroterephthalate ligands (denoted [Zn(trz)(tftph)] in this work). The simulated H2 sorption isotherms reported in this work are consistent with the experimental data for the state points considered. The experimental H2 isosteric heat of adsorption (Qst) values for this MOF are approximately 8.0 kJ mol-1 for the considered loading range, which is in the proximity of those determined from simulation. The experimental inelastic neutron scattering (INS) spectra for H2 in [Zn(trz)(tftph)] reveal at least two peaks that occur at low energies, which corresponds to high barriers to rotation for the respective sites. The most favorable sorption site in the MOF was identified from the simulations as sorption in the vicinity of a metal-coordinated H2O molecule, an exposed fluorine atom, and a carboxylate oxygen atom in a confined region in the framework. Secondary sorption was observed between the fluorine atoms of adjacent tetrafluoroterephthalate ligands. The H2 molecule at the primary sorption site in [Zn(trz)(tftph)] exhibits a rotational barrier that exceeds that for most neutral MOFs with open-metal sites according to an empirical phenomenological model, and this was further validated by calculating the rotational potential energy surface for H2 at this site. (Figure Presented).

  11. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Science.gov (United States)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  12. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin, E-mail: ganzhiyin@126.com

    2017-06-15

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  13. Climate-induced hotspots in surface energy fluxes from 1948 to 2000

    International Nuclear Information System (INIS)

    Sheng Li; Liu Shuhua; Liu Heping

    2010-01-01

    Understanding how land surfaces respond to climate change requires knowledge of land-surface processes, which control the degree to which interannual variability and mean trends in climatic variables affect the surface energy budget. We use the latest version of the Community Land Model version 3.5 (CLM3.5), which is driven by the latest updated hybrid reanalysis-observation atmospheric forcing dataset constructed by Princeton University, to obtain global distributions of the surface energy budget from 1948 to 2000. We identify climate change hotspots and surface energy flux hotspots from 1948 to 2000. Surface energy flux hotspots, which reflect regions with strong changes in surface energy fluxes, reveal seasonal variations with strong signals in winter, spring, and autumn and weak ones in summer. Locations for surface energy flux hotspots are not, however, fully linked with those for climate change hotspots, suggesting that only in some regions are land surfaces more responsive to climate change in terms of interannual variability and mean trends.

  14. The effect of fluorine and homeopathic medicines in rats fed cariogenic diet.

    Science.gov (United States)

    Almeida, N T; Dalmeida, V; Pustiglione, M

    2004-07-01

    Although some sectors of dentistry have benefited from technological advances, dental caries is still a major problem. Prevention and treatment of dental caries by fluorine is considered a major advance in public health. Nevertheless fluorosis, caused by ingestion of excessive amounts of fluorine during the period of teeth formation, is of great concern. In accordance with the homeopathic doctrine, minimum doses of fluorine and other substances could prevent and/or treat caries. In this experiment, we compared the preventive action of fluorine and evaluated the effect of homeopathic medicines on the teeth of rats fed a cariogenic diet. None of the groups included in this study developed caries. However, microscopy revealed the presence of precipitate and/or deposit in the groups treated with homeopathic medicines. This phenomenon might be due to deposit in the dental surface or precipitation of bacterial plaque or calcium salts. It was not possible to identify the composition of the deposit/precipitate due for technical reasons. In one of the groups treated with homeopathic medicines fur loss was observed in 40% of animals. These reactions might be caused due to the action of the homeopathic medicines.

  15. Sample preparation and study by electronic diffraction of oxidations and fluorinations of some metals and alloys

    International Nuclear Information System (INIS)

    Auguin, B.

    1963-06-01

    After having recalled that electron diffraction is particularly adapted to the study of thin films and surface layers, notably those forming during corrosions, and recalled some characteristics of this technique (wavelength, interactions with substances, parasite reactions, observation by transmission or reflection, obtained diagrams for polycrystalline and mono-crystalline substances), the author describes how samples are prepared in the case of examinations performed by transmission and by reflection. As fluorination agents are used for the separation of uranium 235 and 238, the second part discusses some works related to the fluorination of metals and alloys, some of them being used in these separation installations. Chlorine trifluoride is generally used and materials are generally oxidised. Thus, the author reports the study of the action of ClF 3 on different oxides. Oxidations of iron, nickel and Monel are addressed, as well as the behaviour of stainless steel. The study of fluorinations of metals (nickel, chromium, copper), alloys (stainless steel, Monel) and oxides is reported. The author finally addresses treatments performed after fluorinations: vacuum heating, action of humid air

  16. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  17. 4H-SiC surface energy tuning by nitrogen up-take

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Amarasinghe, V.P. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Xu, C.; Gustafsson, T. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Stedile, F.C. [PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Feldman, L.C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2017-04-30

    Highlights: • Wettability modification of 4H-SiC as a function of nitrogen adsorption is reported. • SiC surface energy was significantly reduced as nitrogen was incorporated. • Modifications obtained were proved to be inert to etching and stable against time. • Variable control of SiC surface provides new opportunities for biomedical applications. - Abstract: Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  18. Effect of crystal habits on the surface energy and cohesion of crystalline powders.

    Science.gov (United States)

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Gamble, John F; Tobyn, Michael J; Heng, Jerry Y Y

    2014-09-10

    The role of surface properties, influenced by particle processing, in particle-particle interactions (powder cohesion) is investigated in this study. Wetting behaviour of mefenamic acid was found to be anisotropic by sessile drop contact angle measurements on macroscopic (>1cm) single crystals, with variations in contact angle of water from 56.3° to 92.0°. This is attributed to variations in surface chemical functionality at specific facets, and confirmed using X-ray photoelectron spectroscopy (XPS). Using a finite dilution inverse gas chromatography (FD-IGC) approach, the surface energy heterogeneity of powders was determined. The surface energy profile of different mefenamic acid crystal habits was directly related to the relative exposure of different crystal facets. Cohesion, determined by a uniaxial compression test, was also found to relate to surface energy of the powders. By employing a surface modification (silanisation) approach, the contribution from crystal shape from surface area and surface energy was decoupled. By "normalising" contribution from surface energy and surface area, needle shaped crystals were found to be ∼2.5× more cohesive compared to elongated plates or hexagonal cuboid shapes crystals. Copyright © 2014. Published by Elsevier B.V.

  19. Spectrographic determination of chlorine and fluorine

    International Nuclear Information System (INIS)

    Contamin, G.

    1965-04-01

    Experimental conditions have been investigated in order to obtain the highest sensitivity in spectrographic determination of chlorine and fluorine using the Fassel method of excitation in an inert atmosphere. The influence of the nature of the atmosphere, of the discharge conditions and of the matrix material has been investigated. The following results have been established: 1. chlorine determination is definitely possible: a working curve has been drawn between 10 μg and 100 μg, the detection limit being around 5 μg; 2. fluorine determination is not satisfactory: the detection limit is still of the order of 80 μg. The best operating conditions have been defined for both elements. (author) [fr

  20. Molecular beam studies of energy transfer in scattering from crystal surfaces

    International Nuclear Information System (INIS)

    Guthrie, W.L.

    1983-01-01

    The translational energy distributions and angular distributions of D 2 O produced from the reaction of incident D 2 and O 2 on a (111) platinum single crystal surface have been measured through the use of a molecular beam-surface scattering apparatus equipped with a time-of-flight spectrometer. The translation energies were measured over the surface temperature range T/sub s/ = 664 K - 913 K and at scattering angles of 7 0 and 40 0 from the surface normal. The D 2 O translational energy, , was found to be approximately half the equilibrium value over the temperature range examined, with /2k varying from 280 K to 480 K. These results are discussed in terms of a non-equilibrium desorption model. The two-photon ionization spectrometer was built to investigate the internal rotational and vibrational energy distributions of NO scattered from Pt(111) surfaces. The rotational energy distributions were measured over the crystal temperature range of T/sub s/ = 400 K - 1200 K. The translational energy distributions and angular distributions were measured using the time-of-flight spectrometer over the crystal temperature range of 400 K - 110 K and for beam translational energies of 0.046 eV, 0.11 eV and 0.24 eV, so that complete energy exchange information for translation, rotation and vibration is available for this gas-surface system. Significant energy transfer was observed in all three modes

  1. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    Science.gov (United States)

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  2. Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes

    Science.gov (United States)

    Karkare, Siddharth; Bazarov, Ivan

    2015-08-01

    The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

  3. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  4. A rapid stereoselective synthesis of fluorinated carbohydrates

    International Nuclear Information System (INIS)

    Adam, M.J.; Neeser, J-R.; Hall, L.D.; Pate, B.D.

    1983-01-01

    Acetyl hypofluorite has been added to six unsaturated carbohydrates which contain the vinyl ether moiety. All reactions were rapid (less than 5 min.) at -78 degrees C and gave, with one exception, high yields of isomerically pure products. The hypofluorite was shown to add exclusively in a cis mode and with a strong preference for a particular 'face' of the double bond. As well as the syntheses, NMR data and preferred conformations for the fluorinated products are also discussed

  5. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  6. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M; Venaelaeinen, A; Tourula, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  7. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  8. Diffusion phenomena of fluorine and cations in molten Li2BeF4, LiBeF3 and NaBeF3

    International Nuclear Information System (INIS)

    Ohno, Hideo

    1984-03-01

    Self-diffusion coefficients of fluorine and cations in molten LiF-BeF 2 and NaF-BeF 2 systems were summarized by the capillary reservoir technique. The diffusion coefficients and the activation energies of cations in these molten salts follow a similar behavior with those of cations in molten alkali halides. On the other hand, self-diffusion of fluorine have unusually high diffusion coefficients and activation energies. The characteristic diffusion phenomena of fluorine in these molten alkali fluoroberyllates are very similar to those of oxygen in molten CaO-SiO 2 and CaO-SiO 2 -Al 2 O 3 slag. The dynamical behavior of Li and F in molten Li 2 BeF 4 was also analyzed by NMR technique. According to both these experiments, most probable mechanism of characteristic diffusion of fluorine in these molten systems could be dissociation of F atom from complex anion and long distance diffusion. (author)

  9. [Health effects of fluorine and its compounds].

    Science.gov (United States)

    Kono, K

    1994-12-01

    Fluoride, the ionic form of fluorine, is a natural component of the biosphere and 13th most abundant element in the crust of the earth. It is, therefore, found in a wide range of concentrations in virtually all inanimate and living things. Many trace elements perform a definite function in human metabolism and the question of the value of fluoride, always found in the body, has been raised. Much evidence suggesting that the inclusion of fluoride in drinking water has beneficial as well as adverse effects on human health was obtained. Either alone or in combination with calcium and/or vitamin D, it is used in high daily doses for the treatment of osteoporosis. Although organic fluorine compounds are used in medicine and commerce, the inorganic fluorine compounds are of greater importance toxicologically because they are more readily available. The major pathway of fluoride elimination from the human body is via the kidney. When renal function deteriorates, the ability to excrete fluoride markedly decreases, possibly resulting in greater retention of fluoride in the body. At this point, more research is needed to evaluate the effects of physiological variables on the fluoride metabolism in humans.

  10. Nuclear Magnetic Resonance Study of Fluorine-Graphite Intercalation Compounds

    International Nuclear Information System (INIS)

    Panich, A.M.; Goren, S.D.; Nakajima, T.; Vieth, H.-M.; Privalov, A.

    1998-01-01

    To study the origin of semimetal-metal and metal-insulator transformations, localization effects and C-E bonding in fluorine-intercalated graphite C x F, 13 C and 19 F NMR investigations have been carried out for a wide range of fluorine content, 3.8 8, are attributed to mobile fluorine acceptor species which are responsible for the increase of electric conductivity in the dilute compound. When increasing the fluorine content to x ∼ 8 corresponding to the maximum electric conductivity, covalent C-P bonds start to oc- cur. The number of these bonds grows with fluorine content resulting in the decrease in conductivity which is caused by a percolation mechanism rather than by a change in bond length. A difference in 19 F chemical shift for fluorine-intercalated graphite C x F and covalent graphite fluoride (CF) n has been observed and is attributed to different C-P bonding in these compounds

  11. Free energy surfaces from nonequilibrium processes without work measurement

    Science.gov (United States)

    Adib, Artur B.

    2006-04-01

    Recent developments in statistical mechanics have allowed the estimation of equilibrium free energies from the statistics of work measurements during processes that drive the system out of equilibrium. Here a different class of processes is considered, wherein the system is prepared and released from a nonequilibrium state, and no external work is involved during its observation. For such "clamp-and-release" processes, a simple strategy for the estimation of equilibrium free energies is offered. The method is illustrated with numerical simulations and analyzed in the context of tethered single-molecule experiments.

  12. Earthquake Energy Distribution along the Earth Surface and Radius

    International Nuclear Information System (INIS)

    Varga, P.; Krumm, F.; Riguzzi, F.; Doglioni, C.; Suele, B.; Wang, K.; Panza, G.F.

    2010-07-01

    The global earthquake catalog of seismic events with M W ≥ 7.0, for the time interval from 1950 to 2007, shows that the depth distribution of earthquake energy release is not uniform. The 90% of the total earthquake energy budget is dissipated in the first ∼30km, whereas most of the residual budget is radiated at the lower boundary of the transition zone (410 km - 660 km), above the upper-lower mantle boundary. The upper border of the transition zone at around 410 km of depth is not marked by significant seismic energy release. This points for a non-dominant role of the slabs in the energy budged of plate tectonics. Earthquake number and energy release, although not well correlated, when analysed with respect to the latitude, show a decrease toward the polar areas. Moreover, the radiated energy has the highest peak close to (±5 o ) the so-called tectonic equator defined by Crespi et al. (2007), which is inclined about 30 o with respect to the geographic equator. At the same time the presence of a clear axial co- ordination of the radiated seismic energy is demonstrated with maxima at latitudes close to critical (±45 o ). This speaks about the presence of external forces that influence seismicity and it is consistent with the fact that Gutenberg-Richter law is linear, for events with M>5, only when the whole Earth's seismicity is considered. These data are consistent with an astronomical control on plate tectonics, i.e., the despinning (slowing of the Earth's angular rotation) of the Earth's rotation caused primarily by the tidal friction due to the Moon. The mutual position of the shallow and ∼660 km deep earthquake energy sources along subduction zones allows us to conclude that they are connected with the same slab along the W-directed subduction zones, but they may rather be disconnected along the opposed E-NE-directed slabs, being the deep seismicity controlled by other mechanisms. (author)

  13. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    Science.gov (United States)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  14. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  15. Nanoscale control of energy and matter in plasma-surface interactions: Toward energy- and matter-efficient nanotech

    International Nuclear Information System (INIS)

    Ostrikov, K.

    2011-01-01

    The approach to control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at nano- and subnanometer scales is introduced. This ability is related to the solution of the grand challenge of directing energy and matter at nanoscales and is critical for the renewable energy and energy-efficient technologies for a sustainable future development. The examples of deterministic synthesis of self-organized arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication are considered to illustrate this possibility. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under nonequilibrium conditions and harnessing numerous plasma-specific controls of species creation, delivery to the surface, nucleation, and large-scale self-organization of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilized, and further processed to meet the specific requirements of the envisaged applications.

  16. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  17. Single and double stereoselective fluorination of (E-allylsilanes

    Directory of Open Access Journals (Sweden)

    Tredwell Matthew

    2007-10-01

    Full Text Available Abstract Acyclic allylic monofluorides were prepared by electrophilic fluorination of branched (E-allylsilanes with Selectfluor. These reactions proceeded with efficient transfer of chirality from the silylated to the fluorinated stereocentre. Upon double fluorination, an unsymmetrical ethyl syn-2,5-difluoroalk-3-enoic ester was prepared, the silyl group acting as an anti stereodirecting group for the two C-F bond forming events.

  18. Determination of carbon chlorine and fluorine in uranium dioxide

    International Nuclear Information System (INIS)

    Kijko, N.I.; Timofeev, G.A.

    1983-01-01

    Techniques of chlorine and fluorine determination and simultaneous determination of carbon and chlorine in electrolytic uranium dioxide are described. The method of chlorine and fluorine determination is based on their separation during oxide pyrohydrolysis with subsequent spectrophotometric analysis of condensate. Lower determination limits constitute 1 μg for chlorine, 0.5 μg for fluorine. Relative standard deviation when the content of impurities analyzed is 10 -3 % constitutes 0.05-0.07

  19. Nucleophilic Fluorination Reactions in Novel Reaction Media for 18F-Fluorine Labeling Method

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Jeong, Hwan Jeong; Lim, Seok Tae; Sohn, Myung Hee

    2009-01-01

    Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography (PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with 18F-fluorine. In this review we describe recent methods and novel trends for the introduction of 18 F-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic 18 F-fluorination of some halo- and mesyloxyalkanes to the corresponding 18 F-fluoroalkanes with 18 F-fluoride obtained from an 18 O(p,n) 18 F reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for 18 F-fluorine labeling. Ionic liquid method is rapid and particularly convenient because 18 F-fluoride in H 2 O can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with 18 F-fluorine for PET imaging, and it is illustrated by the synthesis of 18 F-fluoride radiolabeled molecular imaging probes, such as 18 F-FDG, 18 F-FLT, 18 F-FP-CIT, and 18 F-FMISO, in high yield and purity and in shorter times compared to conventional syntheses

  20. Band energy control of molybdenum oxide by surface hydration

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T., E-mail: k.t.butler@bath.ac.uk; Walsh, Aron [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Crespo-Otero, Rachel [School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS (United Kingdom); Buckeridge, John; Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Bovill, Edward; Lidzey, David [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-12-07

    The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.

  1. Optical emission from low-energy ion-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Thomas, E.W.; Van der Weg, W.F.; Tolk, N.H.

    1977-01-01

    Impact of energetic heavy particles on surfaces gives rise to emission of optical radiation from reflected particles, sputtered particles and also from excited states of the solid. The present status of research in this area is reviewed with emphasis on understanding the basic mechanisms which give rise to formation of excited states. The spectral line shape from ejected atoms may be analyzed to provide information on the distribution of speeds and directions of the excited species; the line intensity provides a measure of the probability for creating the state. Formation of excited species is related both to the collision processes within the solid and also to the interaction of the recoiling ejected species with the target surface. Most ejected species are atomic but important examples of ejected molecules are also discussed. Luminescence induced in the solid itself is related to recombination of electron hole pairs and is related significantly to the presence of defects

  2. Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces

    Science.gov (United States)

    Zhang, Yao; Wang, Ao; DeBenedictis, Elizabeth P.; Keten, Sinan

    2017-11-01

    The functional amyloid curli fiber, a major proteinaceous component of biofilm extracellular matrices, plays an important role in biofilm formation and enterobacteriaceae adhesion. Curli nanofibers exhibit exceptional underwater adhesion to various surfaces, have high rigidity and strong tensile mechanical properties, and thus hold great promise in biomaterials. The mechanisms of how curli fibers strongly attach to surfaces and detach under force remain elusive. To investigate curli fiber adhesion to surfaces, we developed a coarse-grained curli fiber model, in which the protein subunit CsgA (curli specific gene A) self-assembles into the fiber. The coarse-grained model yields physiologically relevant and tunable bending rigidity and persistence length. The force-induced desorption of a single curli fiber is examined using coarse-grained modeling and theoretical analysis. We find that the bending energy penalty arising from high persistence length enhances the resistance of the curli fiber against desorption and thus strengthens the adhesion of the curli fiber to surfaces. The CsgA-surface adhesion energy and the curli fiber bending rigidity both play crucial roles in the resistance of curli fiber against desorption from surfaces. To enable the desorption process, the applied peeling force must overcome both the interfacial adhesion energy and the energy barrier for bending the curli fiber at the peeling front. We show that the energy barrier to desorption increases with the interfacial adhesion energy, however, the bending induced failure of a single curli fiber limits the work of adhesion if the proportion of the CsgA-surface adhesion energy to the CsgA-CsgA cohesive energy becomes large. These results illustrate that the optimal adhesion performance of nanofibers is dictated by the interplay between bending, surface energy and cohesive energy. Our model provides timely insight into enterobacteriaceae adhesion mechanisms as well as future designs of engineered

  3. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  4. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    International Nuclear Information System (INIS)

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; Abild-Pedersen, Frank; Nørskov, Jens K.; Chan, Karen

    2017-01-01

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. This shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.

  5. Apparent Surface Free Energy of Polymer/Paper Composite Material Treated by Air Plasma

    Directory of Open Access Journals (Sweden)

    Konrad Terpiłowski

    2017-01-01

    Full Text Available Surface plasma treatment consists in changes of surface properties without changing internal properties. In this paper composite polymer/paper material is used for production of packaging in cosmetic industry. There are problems with bonding this material at the time of packaging production due to its properties. Composite surface was treated by air plasma for 1, 10, 20, and 30 s. The advancing and receding contact angles of water, formamide, and diiodomethane were measured using both treated and untreated samples. Apparent surface free energy was estimated using the hysteresis (CAH and Van Oss, Good, Chaudhury approaches (LWAB. Surface roughness was investigated using optical profilometry and identification of after plasma treatment emerging chemical groups was made by means of the XPS (X-ray photoelectron spectroscopy technique. After plasma treatment the values of contact angles decreased which is particularly evident for polar liquids. Apparent surface free energy increased compared to that of untreated samples. Changes of energy value are due to the electron-donor parameter of energy. This parameter increases as a result of adding polar groups at the time of surface plasma activation. Changes of surface properties are combination of increase of polar chemical functional groups, increase on the surface, and surface roughness increase.

  6. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuang [State Key Laboratory of Environmental Criteria and Risk Assessment (China); Research Academy of Environmental Sciences, Beijing 100012 (China); Shu, Yun [Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Gang; Huang, Jiayu [Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Fan, E-mail: zhangfan5188@vip.sina.com [Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-01-15

    Highlights: • Chlorine and fluorine are present mainly in an inorganic form on ash. • Correlations of carbon–oxygen complexes with mercury retention are established. • Concentrations of carbon–oxygen complexes on ash are related to coal type. • No effect of fluorine on mercury retention is observed. • Chlorine, fluorine and carbon in ash are enriched on surface. - Abstract: Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon–oxygen functional groups indicate that the C=O, OH/C−O and (O−C=O)−O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed.

  7. Comparison of topotactic fluorination methods for complex oxide films

    Science.gov (United States)

    Moon, E. J.; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; Barbash, D.; May, S. J.

    2015-06-01

    We have investigated the synthesis of SrFeO3-αFγ (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  8. Comparison of topotactic fluorination methods for complex oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Moon, E. J., E-mail: em582@drexel.edu; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J., E-mail: smay@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Barbash, D. [Centralized Research Facilities, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  9. Consultants' meeting on reactor production and utilization of Fluorine-18

    International Nuclear Information System (INIS)

    Vera Ruiz, H.

    1986-08-01

    The nuclear research reactors with thermal neutron fluxes in the order of 1x10 13 cm -2 s -1 can produce sufficient quantities of fluorine-18 for biomedical applications. The recent improvements in labelling with fluorine-18 via nucleophilic reactions have made it possible to develop efficient synthesis techniques for preparing useful quantities of radiopharmaceuticals, which are of great interest for studying regional metabolic functions with positron emission tomography. Other non-medical activities in the field of pharmacology, toxicology, no-carrier-added syntheses and reaction mechanisms in fluorine chemistry can also conveniently be studied using fluorine-18 as a tracer

  10. Production of elemental fluorine at IPEN - S. Paulo, Brazil

    International Nuclear Information System (INIS)

    Abrao, A.; Ikuta, A.; Wirkner, F.M.; Silva, F.P. da.

    1981-04-01

    The construction, installation and operation of a pilot unit for electrolytic generation of elemental fluorine are described. The 400 A monel electrolytic cell is heated by a water jacket. The electrolyte has the composition KF.1,8 - 2,0 HF that is maintained by intermittent addition of gaseous HF. Pre-electrolysis is made using nickel anodes which are then exchanged by non-graphitized carbon ones. Systems for purification of elemental fluorine by cryoscopy and absortion of HF, compression and storage for fluorine are described. Pure fluorine is used for the preparation of uranium hexafluoride. Identification of problems and difficulties and their solution are pointed out. (Author) [pt

  11. Comparison of topotactic fluorination methods for complex oxide films

    Directory of Open Access Journals (Sweden)

    E. J. Moon

    2015-06-01

    Full Text Available We have investigated the synthesis of SrFeO3−αFγ (α and γ ≤ 1 perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  12. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  13. Energy characteristics of finest coal particles surfaces versus their upgrading using flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy Sablik

    2007-07-01

    The paper presents selected results of investigations on energy properties of the fine coal particles, and methodological grounds for conducting such investigations. Using the discussed relationships, values of contact angle of coal particles with various degree of coalification in the range defined by the energy nonhomogeneity of the surfaces were computed. There have been determined the values of the contact angles of coal particles with hydrophobic and hydrophilic surfaces after coating with nonpolar and polar reagents. The energy state of the surfaces of coal particles in the feeds and products of industrial flotation were determined, which enabled to evaluate this process. 22 refs., 6 figs., 4 tabs.

  14. Material transfer mechanisms between aluminum and fluorinated carbon interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sen, F.G. [NSERC/General Motors of Canada Industrial Research Chair, Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4 (Canada); Qi, Y. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T., E-mail: aalpas@uwindsor.ca [NSERC/General Motors of Canada Industrial Research Chair, Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4 (Canada)

    2011-04-15

    First-principles calculations and sliding contact experiments were conducted to elucidate material transfer mechanisms between aluminum and fluorinated carbon (diamond, diamond-like carbon (DLC)) surfaces. An interface model that examined interactions between Al (1 1 1) and F-terminated diamond (1 1 1) surfaces revealed that F atoms would transfer to the Al surface in increasing quantities with an increase in the contact pressure, and this F transfer would lead to the formation of a stable AlF{sub 3} compound at the Al surface. The presence of AlF{sub 3} on the transfer layers formed at the Al counterface placed in sliding contact against DLC containing 3 at.% F was confirmed by both X-ray photoelectron spectroscopy and cross-sectional focussed-ion beam transmission electron microscopy analyses. The coefficient of friction (COF) of the DLC coating was high initially due to deformation and wear of Al counterface, but formation of -OH and -H passivated C-rich transfer layers on Al reduced the COF to a low steady-state value of 0.20. The repulsive forces generated between the two F-passivated surfaces further decreased the COF to 0.14.

  15. Material transfer mechanisms between aluminum and fluorinated carbon interfaces

    International Nuclear Information System (INIS)

    Sen, F.G.; Qi, Y.; Alpas, A.T.

    2011-01-01

    First-principles calculations and sliding contact experiments were conducted to elucidate material transfer mechanisms between aluminum and fluorinated carbon (diamond, diamond-like carbon (DLC)) surfaces. An interface model that examined interactions between Al (1 1 1) and F-terminated diamond (1 1 1) surfaces revealed that F atoms would transfer to the Al surface in increasing quantities with an increase in the contact pressure, and this F transfer would lead to the formation of a stable AlF 3 compound at the Al surface. The presence of AlF 3 on the transfer layers formed at the Al counterface placed in sliding contact against DLC containing 3 at.% F was confirmed by both X-ray photoelectron spectroscopy and cross-sectional focussed-ion beam transmission electron microscopy analyses. The coefficient of friction (COF) of the DLC coating was high initially due to deformation and wear of Al counterface, but formation of -OH and -H passivated C-rich transfer layers on Al reduced the COF to a low steady-state value of 0.20. The repulsive forces generated between the two F-passivated surfaces further decreased the COF to 0.14.

  16. Determining concentration depth profiles in fluorinated networks by means of electric force microscopy

    International Nuclear Information System (INIS)

    Miccio, Luis A.; Kummali, Mohammed M.; Alegria, Angel; Montemartini, Pablo E.; Oyanguren, Patricia A.; Schwartz, Gustavo A.; Colmenero, Juan

    2011-01-01

    By means of electric force microscopy, composition depth profiles were measured with nanometric resolution for a series of fluorinated networks. By mapping the dielectric permittivity along a line going from the surface to the bulk, we were able to experimentally access to the fluorine concentration profile. Obtained data show composition gradient lengths ranging from 30 nm to 80 nm in the near surface area for samples containing from 0.5 to 5 wt. % F, respectively. In contrast, no gradients of concentration were detected in bulk. This method has several advantages over other techniques because it allows profiling directly on a sectional cut of the sample. By combining the obtained results with x-ray photoelectron spectroscopy measurements, we were also able to quantify F/C ratio as a function of depth with nanoscale resolution.

  17. Production of uranium hexafluoride by fluorination tetra-fluoride with elemental fluorine under pressure; Proizvodnja uraovega heksafluorida s tlacnim fluoriranjem uranovega tetrafluorida z elementarnim fluorom

    Energy Technology Data Exchange (ETDEWEB)

    Lutar, K; Smalc, A; Zemljic, A [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    In the introduction a brief description of some activities of fluorine chemistry department at the J. Stefan Institute is given - from production of elemental fluorine to the investigations in the field of uranium technology. Furthermore, a new method for the production of uranium hexafluoride is described more in detail. The method is based on the fluorination of uranium tetrafluoride with elemental fluorine. (author)

  18. Synthesis and characterization of fluorinated polyaminoquinones and fluorinated polyimides

    Science.gov (United States)

    Vaccaro, Eleonora

    Phenolic and quinonoid compounds are widely studied in biological sciences because of their ability to chelate heavy metals like iron and copper and recently have found new applications in synthetic macromolecules. Amino- p-benzoquinone polymers, poly[(2,5-hexamethylenediamino)-1,4-benzoquinone] and poly {[2,5-(2,2'-bistrifluoromethyl)-4,4' -biphenylenediamino]1,4-benzoquinone}, were synthesized and evaluated as adhesion promoters for steel/epoxy joints. An improvement in the torsional shear strength of these joints was observed when these polymers were used as adhesion promoters. The durability of the adhesive bond was also improved after boiling water treatment, relative to untreated and silane treated joints. The improvement in adhesion could be attributed to the formation of a chelate between the polyaminoquinone (PAQ) and the iron surface and a chemical reaction between the PAQ and the epoxy resin. A low molecular weight model compound, bis[2,5-(4-methylanilido)]-1,4-benzoquinone was also used to study coupling between the epoxy adhesive and the steel surface. Electron spin resonance (ESR), atomic absorption spectroscopy and infrared spectroscopy were used to document the epoxy-coupling agent reaction and the chelate formation. Polyimides have acquired importance in the last twenty years as the most promising macromolecules for high technology applications in new materials. Their good thermo-oxidative stability is well known, as well as their high glass transition temperature. Polyimides are versatile polymers, which can be utilized for a wide range of applications: i.e., as matrices for high performance advanced composite materials, as thin films in electronic applications, as structural adhesives and sealants and as membranes for gas separation. A novel anhydride, 1,1,1-trifluoromethyl-1-pentafluorophenylethylidene-2,2-diphthalic anhydride, 8FDA, was synthesized. Five diamines were used in the synthesis of polyimides, namely p-phenylene diamine, 3

  19. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  20. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  1. Surface energy balance measurements in the Mexico City: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Jauregui Ostos, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)

    2005-01-01

    During the last decade of the 20th Century, diverse campaigns for measuring the atmospheric energy balance were performed in downtown Mexico City (School of Mines and Preparatory School No. 7), in the southern suburbs (University Reserve) and in the surrounding rural areas (Plan Texcoco), in addition to a campaign carried out in 1985 in the Tacubaya district, a suburban western peripheral site. The objective was to obtain data for a better understanding of the climatic alterations due to urbanization, particularly to describe the role that the modification of the natural ground cover has played as a result of paving and the construction of urban canyons. In this paper, a review of these campaigns is presented. Energy partitioning in some areas (Tacubaya and Preparatory School No.7) is similar to that observed in urban centers of middle latitudes, whereas the major contrast was observed between Texcoco, with maximum energy consumption through evaporation, and School of Mines, where the latent heat is as low as in a desert. From the values of the correlations among the different components of energy balance, it may be possible to attempt the modeling of the diverse components of energy balance by means of regression equations starting from the net radiation. Those same coefficients distinguish the type of environment: urban, suburban or rural. [Spanish] Las primeras mediciones de balance energetico en la Ciudad de Mexico se realizaron en 1985 en un suburbio al poniente de la ciudad (el observatorio de Tacubaya). Ya en la decada de los anos noventa del siglo XX, dichas observaciones se multiplicaron tanto en el centro historico (antigua Escuela de Minas y en el edificio de la Preparatoria No. 7), como en otros sitios al sur (en terrenos de Ciudad Universitaria) y en la periferia rural (Plan Texcoco). El proposito de estas mediciones ha sido tener un mejor entendimiento de las alteraciones climaticas debidas a la urbanizacion. En este trabajo se presenta una revision

  2. Extension of a He-H2 potential energy surface

    International Nuclear Information System (INIS)

    Raczkowski, A.W.; Lester, W.A. Jr.

    1977-01-01

    The CI surface of Tsapline and Kutzelnigg is extended to smaller H 2 -He separations. Defining R as the H 2 -He distance, r as the H 2 separation, and γ as the angle between them, the ab initio values are fit to a Legendre series in cosγ retaining the first three (even) terms with the coefficients given as analytic functions of R and r to facilitate semiclassical scattering computations. The fit is quantitative for 1.0 approximately r/2+1. (Auth.)

  3. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mulero, A [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Galan, C [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Cuadros, F [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain)

    2003-04-16

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs.

  4. Benchtop Fluorination of Fluorescent Nanodiamonds on a Preparative Scale: Toward Unusually Hydrophilic Bright Particles

    Czech Academy of Sciences Publication Activity Database

    Havlík, Jan; Raabová, Helena; Gulka, Michal; Petráková, Vladimíra; Krečmarová, M.; Mašek, V.; Louša, Petr; Štursa, Jan; Boyen, H. G.; Nesládek, M.; Cígler, Petr

    2016-01-01

    Roč. 26, č. 23 (2016), s. 4134-4142 ISSN 1616-301X R&D Projects: GA MZd(CZ) NV15-33094A; GA MŠk(CZ) LM2011019; GA MŠk(CZ) LO1304; GA ČR(CZ) GA16-16336S Institutional support: RVO:61388963 ; RVO:68378271 ; RVO:61389005 Keywords : nitrogen-vacancy centers * catalyzed decarboxylative fluorination * surface modification Subject RIV: CC - Organic Chemistry Impact factor: 12.124, year: 2016

  5. Study of mass and momentum transfer and their effect on the direct fluorination of uranium oxide

    International Nuclear Information System (INIS)

    Cross, P.E.

    1983-01-01

    The mechanism for the fluorination of solid U 3 O 8 to gaseous UF 6 was found to be a two-step process with solid UO 2 F 2 as an intermediate. The highest particle temperatures were found to be associated with the initial reaction step to UO 2 F 2 ; it was recommended that these temperatures be maintained below 1700 0 F. The chemical equilibrium constant for the fluorination of PuF 4 to PuF 6 was found to be unexpectedly low at typical flame tower temperatures. Although not confirmed, there is an indication in the literature that a similar equilibrium constant is associated with the fluorination of NpF 4 and other transuranic molecules. It was recommended that uranium oxides which are significantly contaminated with transuranics should not be processed through a direct fluorination reactor such as the UF 6 flame tower. Reaction rate equations were developed for the fluorination of U 3 O 8 , UF 4 , PuF 4 and NpF 4 . During the course of the development, a significant discrepancy was found in the literature for the activation energy of the fluorination of U 3 O 8 . Equations were developed for both a high and low limit rate constant for the fluorination of U 3 O 8 . A variey of momentum, heat and mass transfer equations were developed for both oxide particles and the gas phase within the flame tower. Equations were developed to estimate the physical and transport properties of each gaseous component and the gas mixture as a whole. These properties and the transport equations were used to estimate the reaction time and distance for oxide particles with both the low and high limit reaction rate constant. The procedures used to perform these calculations is limited to constant temperature and an oxide feed comprised of a single particle size. The results indicate that above 1000 0 F the mass transfer of reactants and products becomes increasingly important to the overall rate of the reaction

  6. Constructing a multidimensional free energy surface like a spider weaving a web.

    Science.gov (United States)

    Chen, Changjun

    2017-10-15

    Complete free energy surface in the collective variable space provides important information of the reaction mechanisms of the molecules. But, sufficient sampling in the collective variable space is not easy. The space expands quickly with the number of the collective variables. To solve the problem, many methods utilize artificial biasing potentials to flatten out the original free energy surface of the molecule in the simulation. Their performances are sensitive to the definitions of the biasing potentials. Fast-growing biasing potential accelerates the sampling speed but decreases the accuracy of the free energy result. Slow-growing biasing potential gives an optimized result but needs more simulation time. In this article, we propose an alternative method. It adds the biasing potential to a representative point of the molecule in the collective variable space to improve the conformational sampling. And the free energy surface is calculated from the free energy gradient in the constrained simulation, not given by the negative of the biasing potential as previous methods. So the presented method does not require the biasing potential to remove all the barriers and basins on the free energy surface exactly. Practical applications show that the method in this work is able to produce the accurate free energy surfaces for different molecules in a short time period. The free energy errors are small in the cases of various biasing potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1982-01-01

    The reaction between atomic oxygen and carbon disulfide is predicted to lead to at least two primary products, which are the dithiiranone (1) and the oxathiirane-thione (2) and/or the carbon disulfide S-oxide (4). The possible intramolecular equilibria 1 ⇄ 2, 1 ⇄ 3, 2 ⇄ 4, and 2 ⇄ 5 as well...... as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  8. Influence of ZrO2 particles on fluorine-doped lead dioxide electrodeposition process from nitrate bath

    International Nuclear Information System (INIS)

    Yao, Yingwu; Zhou, Tao; Zhao, Chunmei; Jing, Qiming; Wang, Yang

    2013-01-01

    The influence of ZrO 2 particles on fluorine-doped lead dioxide electrodeposition process on the glass carbon electrode (GCE) from lead nitrate electrolytes was studied by cyclic voltammetry (CV) and chronoamperometry (CA), coupled with the scanning electron microscope (SEM). Instantaneous nucleation mechanism is found for fluorine-doped lead dioxide electrodeposition in the presence of ZrO 2 particles according to Scharifker–Hills’ model with three-dimensional growth. The results show that the addition of ZrO 2 particles decrease the active surface area of the GCE, and the growth of the lead dioxide crystallites was obstructed

  9. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  10. Discrete lattice plane broken bond interfacial energy calculations and the use of the dividing surface concept

    International Nuclear Information System (INIS)

    Ramanujan, R.V.

    2003-01-01

    The concept of the dividing surface has been extensively used to define the relationships between thermodynamic quantities at the interface between two phases; it is also useful in calculations of interfacial energy (γ). However, in the original formulation, the two phases are continuum phases, the atomistic nature of the interface was not considered. It is, therefore, useful to examine the use of the dividing surface in the context of atomistic interfacial energy calculations. The case of a planar fcc:hcp interface is considered and the dividing surface positions which are useful in atomistic interfacial energy calculations are stated, one position equates γ to the excess internal energy, the other position allows us to use the Gibbs adsorption equation. An example of a calculation using the convenient dividing surface positions is presented

  11. Relation between bulk compressibility and surface energy of electron-hole liquids

    International Nuclear Information System (INIS)

    Singwi, K.S.; Tosi, M.P.

    1979-08-01

    Attention is drawn to the existence of an empirical relation chiσ/asup(*)sub(B) approximately 1 between the compressibility, the surface energy and the excitonic radius in electron-hole liquids. (author)

  12. Energy storage considerations for a robotic Mars surface sampler

    International Nuclear Information System (INIS)

    O'Donnell, P.M.; Cataldo, R.L.; Gonzalez-Sanabria, O.D.

    1988-01-01

    Manned exploration of Mars is being proposed by the National Commission on Space for the next century. To accomplish this task with minimal resupply cost for extended stay times, use of Mars' resources is essential. Methods must be developed to manufacture or extract water and oxygen from elements indigenous to Mars before they send explorers to the planet. Therefore, they must send precursor surveying equipment to determine Mars' resources to a greater extent than is now known from Viking 1 and Viking 2 data. A 1992 launch is planned for the Mars Observer that will contribute greater mapping resolution and expand the scientific data base. The proposed rover will provide scientists with the necessary information about abundant resources that would guide the required technology development needed to support a manned Mars infrastructure. The actual rover operations plan for both the sample return and extended mission will have a large impact on rover capabilities and the power system supplying power for traversing and scientific instrumentation. POWER SOURCE AND CONVERSION. Several power source/conversion options for the rover have been identified. These include power generation on the lander, Entry Vehicle (EV), Mars Orbiter Vehicle (MOV) and on the rover itself. Power from the lander would require the rover to return to landing site to recharge the energy storage systems, which limits rover excursions to one-half the range of the storage capacity. For on-board rover power, a Radioisotope Thermoelectric Generator (RTG) has been considered with the appropriate energy storage to handle peak power demands

  13. The investigation of the fluorine uptake in tooth enamel after the application of a NaF containing varnish

    Science.gov (United States)

    Plier, F.; Zschau, H. E.; Otto, G.

    1992-03-01

    The 935 keV resonance of the 19F( p, p' γ) 19F nuclear reaction was used to determine flourine depth profiles in human tooth enamel for three separate cases. These investigations allowed conclusions to be drawn about the interaction processes between the oral milieu containing fluorine, and the enamel surface.

  14. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  15. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Ivana [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Mizera, Jiří, E-mail: mizera@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Řanda, Zdeněk; Chvátil, David; Krist, Pavel [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic)

    2015-01-01

    Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron–electron annihilation line of {sup 18}F at 511 keV, which is a product of the photonuclear reaction {sup 19}F(γ, n){sup 18}F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from {sup 45}Ti and {sup 34m}Cl, whereas those from {sup 44}Sc and {sup 89}Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10–100 μg g{sup −1}.

  16. Kinetic energy distributions of ions after surface collisions

    International Nuclear Information System (INIS)

    Short, R.T.; Todd, P.J.; Grimm, C.C.

    1991-01-01

    As a part of the development of an organic ion microprobe, to be used for imaging of particular organic compounds in biological tissue, various methods of quadrupole-based tandem mass spectroscopy (MS/MS) have been investigated. High transmission efficiency is essential for the success of the organic ion microprobe, due to expected low analyte concentrations in biological tissue and the potential for sample damage from prolonged exposure to the primary ion beam. MS/MS is necessary for organic ion imaging because of the complex nature of the biological matrices. The goal of these studies of was to optimize the efficiency of daughter ion production and transmission by first determining daughter ion properties and then designing ion optics based on those properties. The properties of main interest are daughter ion kinetic energy and angular distribution. 1 fig

  17. Electronic energy transfer from molecules to metal and semiconductor surfaces, and chemisorption-induced changes in optical response of the nickel (111) surface

    International Nuclear Information System (INIS)

    Whitmore, P.M.

    1982-10-01

    The evolution of molecular excited states near solid surfaces is investigated. The mechanisms through which energy is transferred to the surface are described within a classical image dipole picture of the interaction. More sophisticated models for the dielectric response of the solid surface add important new decay channels for the energy dissipation. The predictions and applicability of three of these refined theories are discussed

  18. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  19. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...

  20. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)