WorldWideScience

Sample records for surface energy exchange

  1. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  2. Energy Exchange between Weakly Ionized Gas and a Metal Surface

    Science.gov (United States)

    Polikarpov, A. Ph.; Polikarpov, Ph. J.; Borisov, S. F.

    2008-12-01

    An attempt to describe heat exchange of low ionized gas with a metal surface has been made with the use of DSMC approach and kinetic Monte-Carlo method. Modeling is adhered to concrete experimental conditions at which thin tungsten wire is placed in plasma and dependence of a heat flow on wire surface temperature, gas pressure, gas nature and a degree of ionization is investigated. As a result of simulation temperature profiles near the wire surface for nitrogen and argon as well as dependence of relative heat flow in a gas/surface system on temperature and degree of ionization with consideration of energy accommodation have been obtained. In the case of nitrogen the chemical charge-transfer reaction is taken into account.

  3. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  4. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    electrons useful for driving chemical reactions at surfaces. Using the binary collision approximation and a nonadiabatic model that takes into account the time-varying nature of the ion–surface interaction, the energy loss of the ions is reproduced. The energy loss for Na + ions incident on the devices......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...... shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange....

  5. Energy exchange

    International Nuclear Information System (INIS)

    Anderson, B.

    2000-01-01

    The article discusses the identification of efficiencies that can minimise transaction costs in energy trading and marketing. The article describes what is meant by 'trade management'. It is argued that a trade management system should be able to dovetail with existing or future ERP, advanced risk management, and financial management systems, to provide total enterprise integration. With the right trade management systems, traders have all the necessary information to help them manage exposure to financial risks in a world where energy trading companies are forced to accept very small margins. A trade management system can cover many aspects of a business including the winning of contracts for transportation deals, including rail, car, truck, barge and pipeline. There appears to be unprecedented opportunities for companies specialising in development and provision of trade management systems

  6. Energy exchange

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B. [SolArc, Inc. (United States)

    2000-09-01

    The article discusses the identification of efficiencies that can minimise transaction costs in energy trading and marketing. The article describes what is meant by 'trade management'. It is argued that a trade management system should be able to dovetail with existing or future ERP, advanced risk management, and financial management systems, to provide total enterprise integration. With the right trade management systems, traders have all the necessary information to help them manage exposure to financial risks in a world where energy trading companies are forced to accept very small margins. A trade management system can cover many aspects of a business including the winning of contracts for transportation deals, including rail, car, truck, barge and pipeline. There appears to be unprecedented opportunities for companies specialising in development and provision of trade management systems.

  7. The ground surface energy balance in modelling horizontal ground heat exchangers

    Science.gov (United States)

    Bortoloni, M.; Bottarelli, M.; Su, Y.

    2017-01-01

    The performance of horizontal ground heat exchangers (HGHEs) is strongly dependent on climatic conditions, due to the low installation depth. In numerical modelling of HGHEs, the estimation of shallow soil temperature distribution is a key issue, therefore the boundary condition (BC) at the ground surface should be assigned carefully. With this in mind, a model of the energy balance at the ground surface (GSEB), based on weather variables, was developed. The model was tested as the 3rd kind BC at ground surface in modelling HGHEs by means of the FEM code Comsol Multiphysics, solving the unsteady heat transfer problem in a 2D domain. The GSEB model was calibrated and validated with the observed soil temperature at different depths. In addition, the effect on numerical solutions of different BCs, when assigned at the ground surface, was analysed. Three different simulations were carried out applying the GSEB model, the equivalent surface heat flux and temperature as boundary conditions of the 1st, 2nd and 3rd kind, respectively. The results of this study indicate that the use of the GSEB model is a preferable approach to the problem and that the use of the equivalent surface temperature can be considered as a reasonable simplification.

  8. Theoretical characterization of the potential energy surface for H + O2 yields HO2(asterisk) yields HO + O. II - The potential for H atom exchange in HO2

    Science.gov (United States)

    Walch, Stephen P.; Rohlfing, Celeste Mcmichael

    1989-01-01

    The results of CASSCF multireference contracted CI calculations with large ANO basis sets are presented for the exchange region of the HO2 potential-energy surface. The saddle point for H atom exchange is about 13 kcal/mol below the energy of H + O2; therefore, this region of the surface should be accessible during H + O2 recombination and methathesis reactions.

  9. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    DEFF Research Database (Denmark)

    Charalampidis, C.; Van As, D.; Box, J. E.

    2015-01-01

    negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ∼ 0...... energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface...

  10. Scraped surface heat exchangers.

    Science.gov (United States)

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  11. Deposition of metallic clusters on a metallic surface at zero initial kinetic energy: Evidence for implantation and site exchanges

    Science.gov (United States)

    Nacer, B.; Massobrio, C.; Félix, C.

    1997-10-01

    We have investigated the deposition at zero impact kinetic energy of the Ag atom and clusters (Ag7,Ag19) on the (100) and (111) surfaces of Pd by molecular-dynamics simulations performed within the embedded-atom-method scheme. Our results elucidate the role played by the adsorption energy in determining the final morphology of the cluster/substrate system when ideal nondestructive deposition conditions are implemented. While implantation of the atom is not observed, we find a finite probability of site Ag-Pd exchanges in the case of clusters. Deposition-assisted mixing occurring at the topmost surface layer appears to be correlated to the size of the cluster and the orientation of the substrate, being higher for Ag7/Pd(100) and lower for Ag19/Pd(111). Total-energy calculations, combined with an analysis of the atomic motion, indicate that the structural transformation accompanying the deposition of the cluster provides the needed activation energy to induce the observed Ag-Pd atomic exchanges.

  12. Surface energy exchanges over contrasting vegetation types on a subtropical sand island

    Science.gov (United States)

    Gray, Michael; McGowan, Hamish; Lowry, Andrew; Guyot, Adrien

    2017-04-01

    The surface energy balance of subtropical coastal vegetation communities has thus far received little attention. Here we present a multi-year observational data set using the eddy covariance method to quantify for the first time the surface energy balance over three contrasting vegetation types on a subtropical sand island in eastern Australia: a periodically inundated sedge swamp, an exotic pine plantation and a coastal heath. Maximum daily sensible heat flux varied between sites but was typically > 280 Wm-2 in the coastal heath and pine plantation but no more than 250 Wm-2 in the swamp when dry and Bowen ratio (β) 1. The partitioning of energy, as represented by β, is similar to a variety of Australian ecosystems, and a range of coastal vegetation types in other latitudes, but differs from other tropical or subtropical locations which have strongly seasonal rainfall patterns and therefore a switch from β > 1 before rainfall to β < 1 afterwards. The energy fluxes over the three vegetation types responded to seasonal changes in background meteorology with the most important influences being net radiation, absolute humidity, and rainfall. The main factor differentiating the sites was soil water content, with the remnant coastal heath and swamp having ready access to water but the exotic pine plantation having much drier soils. Should the current balance between remnant vegetation and the pine plantation undergo changes there would be a corresponding shift in the surface energy balance of the island as a whole, and altered plant water use may lead to reduced water table depth, important because the groundwater of the local islands is used as part of a regional water grid. A better understanding of the response of coastal vegetation to atmospheric forcing will enable more informed decision making on land use changes, as coastal regions the world over face development pressure.

  13. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    Science.gov (United States)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  14. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    Science.gov (United States)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  15. Impact of aerodynamic resistance formulations used in two-source modeling of energy exchange from the soil and vegetation using land surface temperature

    Science.gov (United States)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  16. Energy-Exchange Project

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

  17. Surface Energy Exchange in a Tropical Montane Cloud Forest Environment: Flux Partitioning, and Seasonal and Land Cover-Related Variations

    Science.gov (United States)

    Holwerda, F.; Alvarado-Barrientos, M. S.; González-Martínez, T.

    2015-12-01

    Relationships between seasonal climate, land cover and surface energy exchange in tropical montane cloud forest (TMCF) environments are poorly understood. Yet, understanding these linkages is essential to evaluating the impacts of land use and climate change on the functioning of these unique ecosystems. In central Veracruz, Mexico, TMCF occurs between 1100 and 2500 m asl. The canopy of this forest consists of a mix of deciduous and broadleaved-evergreen tree species, the former of which shed their leaves for a short period during the dry season. The aim of this study was to quantify the surface energy balance, and seasonal variations therein, for TMCF, as well as for shaded coffee (CO) and sugarcane (SU), two important land uses that have replaced TMCF at lower elevations. Sensible (H) and latent heat (LE) fluxes were measured using eddy covariance and sap flow methods. Other measurements included: micrometeorological variables, soil heat flux, soil moisture and vegetation characteristics. Partitioning of available energy (A) into H and LE showed important seasonal changes as well as differences among land covers. During the wet-season month of July, average midday Bowen ratios for sunny days were lowest and least variable among land covers: 0.5 in TMCF and SU versus 0.7 in CO. However, because of higher A, along with lower Bowen ratio with respect to CO, LE over TMCF was ca. 20% higher compared to CO and SU. During the late dry-season months of March and April, average midday Bowen ratios for sunny days were generally much higher and more variable among land covers. The higher Bowen ratios indicated a reduction of LE under the drier conditions prevailing (low soil moisture and high VPD), something rarely observed in TMCFs. Moreover, because some trees were still partially leafless in March, LE over TMCF was about half that over CO and SU, suggesting an important effect of phenology on energy exchange of this TMCF. Observed differences between seasons and land

  18. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.

    Science.gov (United States)

    Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W

    2016-10-12

    Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na + with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh 3 P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.

  19. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  20. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  1. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... relatered to rainfall-runo events. By combining geochemical, geophysical and hydrogeological models with numerical modeling, groundwater flow paths to a stream were investigated in a wetland. By combining the dierent tracers, condence in the paramters of the numerical model could be established...

  2. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  3. A Remote Sensing Analysis on the Spatiotemporal Variation of Land Surface Albedo and Emissivity in South Florida: An Implication for Surface-Atmosphere Energy and Water Exchange

    Science.gov (United States)

    Kandel, H. P.; Melesse, A. M.

    2016-12-01

    Land use /land cover has wide range of impacts from surface energy budget to radiative forcing of climate change. This study aims to analyze the variation in two radiative properties, albedo and emissivity in South Florida landscape to investigate how radially distinct surfaces lead to a energy and moisture contrast on the near-surface atmosphere and eventually to surface-induced climate. Maps of land surface albedo and emissivity were prepared using algorithms that convert narrow-band spectral reflectance to total short-wave albedo, and vegetation index to emissivity from Landsat -5 TM images of several different summer dates. A comparative analysis was made using the zonal statistics in ArcGIS. Relatively higher albedos were found over cultivated and developed lands (0.17 - 0.21) than in forests and herbaceous wetland (0.09 - 0.16). The emissivities, on the other hand, are lower for developed and drained lands. Average albedo exhibits a slight increase whereas emissivity is found to be decreasing through time. Urban areas showing higher albedos, a unique occurrence in this landscape, store less short-wave radiation, however, their lower emissivities points to increased storage of long-wave radiation. The results imply that the emissivity perhaps play a dominant role in heat island development and initiation of local circulation in urbanized South Florida.

  4. Offshore Energy Knowledge Exchange Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-04-12

    A report detailing the presentations and topics discussed at the Offshore Energy Knowledge Exchange Workshop, an event designed to bring together offshore energy industry representatives to share information, best practices, and lessons learned.

  5. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: Modeling versus measurements

    Science.gov (United States)

    Mezbahuddin, M.; Grant, R. F.; Hirano, T.

    2015-11-01

    Soil carbon stocks in tropical peatlands have declined recently from water table depth (WTD) drawdown caused by increased frequency and intensity of climate extremes like El Niño and by artificial drainage. Restoration of these carbon stocks under these climatic and anthropogenic disturbances requires improved predictive capacity for hydrological feedbacks to ecological processes. Process-based modeling of tropical peatland ecohydrology could provide us with such capacity, but such modeling has thus far been limited. We aimed at using basic processes for water and O2 transport and their effects on ecosystem water, carbon, and nitrogen cycling to model seasonal and interannual variations of WTD and surface energy exchange. We tested these processes in a process-based model ecosys in a drained tropical Indonesian peatland from an El Niño year 2002 to a wetter year 2005. WTD was modeled from hydraulically driven water transfers controlled vertically by precipitation versus evapotranspiration (ET) and laterally by discharge versus recharge to or from an external reference WTD. These transfers caused WTD drawdown and soil drying to be modeled during dry seasons, which reduced ET and increased Bowen ratio by lowering stomatal conductance. More pronounced dry seasons in drier years 2002-2004 versus wetter year 2005 caused deeper WTD, more intense peat drying, and greater plant water stress. These modeled trends were well corroborated by site measurements as apparent in regression statistics of modeled versus observed WTD (R2 > 0.8), latent heat (R2 > 0.8), and sensible heat (R2 > 0.7) fluxes. Insights gained from this modeling would aid in predicting the fate of tropical peatlands under future drier climates.

  6. Exchange energy in the local Airy gas approximation

    DEFF Research Database (Denmark)

    Vitos, Levente; Johansson, B.; Kollár, J.

    2000-01-01

    The Airy gas model of the edge electron gas is used to construct an exchange-energy functional that is an alternative to those obtained in the local-density and generalized-gradient approximations. Test calculations for rare-gas atoms, molecules, solids, and surfaces show that the Airy gas...... functional performs better than the local-density approximation in all cases and better than the generalized-gradient approximation for solids and surfaces....

  7. Modified feed-forward neural network structures and combined-function-derivative approximations incorporating exchange symmetry for potential energy surface fitting.

    Science.gov (United States)

    Nguyen, Hieu T T; Le, Hung M

    2012-05-10

    The classical interchange (permutation) of atoms of similar identity does not have an effect on the overall potential energy. In this study, we present feed-forward neural network structures that provide permutation symmetry to the potential energy surfaces of molecules. The new feed-forward neural network structures are employed to fit the potential energy surfaces for two illustrative molecules, which are H(2)O and ClOOCl. Modifications are made to describe the symmetric interchange (permutation) of atoms of similar identity (or mathematically, the permutation of symmetric input parameters). The combined-function-derivative approximation algorithm (J. Chem. Phys. 2009, 130, 134101) is also implemented to fit the neural-network potential energy surfaces accurately. The combination of our symmetric neural networks and the function-derivative fitting effectively produces PES fits using fewer numbers of training data points. For H(2)O, only 282 configurations are employed as the training set; the testing root-mean-squared and mean-absolute energy errors are respectively reported as 0.0103 eV (0.236 kcal/mol) and 0.0078 eV (0.179 kcal/mol). In the ClOOCl case, 1693 configurations are required to construct the training set; the root-mean-squared and mean-absolute energy errors for the ClOOCl testing set are 0.0409 eV (0.943 kcal/mol) and 0.0269 eV (0.620 kcal/mol), respectively. Overall, we find good agreements between ab initio and NN prediction in term of energy and gradient errors, and conclude that the new feed-forward neural-network models advantageously describe the molecules with excellent accuracy.

  8. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  9. Influence of deuterium on kinetics of methane isotope exchange with surface deuteroxy groups of Pt/SiO2 catalysts

    International Nuclear Information System (INIS)

    Musoyan, L.M.; Aliev, R.K.

    1990-01-01

    Reaction of isotope methane exchange with surface deuteroxy groups of 2 % Pt/SiO 2 catalyst was studied. It is shown that preliminarily chemisorbed deuterium does not decelerate the exchange reaction, but changes its mechanism. Activation energy of exchange on clean surface is equal to 25 kJ/mol; it grows in the presence of deuterium on the surface

  10. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  11. Studies of valence-bond based quantum mechanical potential-energy surfaces. I. H2 + D2 exchange reaction. II. LiH + H → Li + H2 and LiH + D → LiD + H reactions

    International Nuclear Information System (INIS)

    Freihaut, B.H.

    1975-01-01

    The first phase of this investigation involved the construction of a perfect pairing valence-bond (VB) quantum mechanical potential-energy surfaces for the (H 2 D 2 ) system to compare its results for various geometries to the other prior formulations of such. A plausible four-body pathway for the H 2 --D 2 exchange reaction as shown by a semiempirical Huckel method was explored by the current valence-bond procedure. The second phase of the present investigation involves the formation of a VB based potential-energy surface for the LiH + H → Li + H 2 and LiH + D → LiD + H reaction systems for geometries compatible for a three-center reaction mechanism. No energy acceptable four-body reaction pathway was found for the H 2 --D 2 exchange system. Good agreement was demonstrated with previous ''ab initio'' configuration interaction (CI) studies for the various geometries tested. The square configuration for the H 4 system yielded the lowest barrier height of all the four-body geometries tested although it was still considerably higher than the experimental activation energy for the (H 2 ,D 2 ) system. The barrier height energy for the linear LiH--H configuration agreed well with the one previous work on this system. The barrier height for the LiH--H system increases as the Li--H--H bond angle decreases from 180 0 to 90 0 as well as the Li--H distance at the saddle point. The VB method used herein showed markedly good comparison with recent full CI calculations on the lithium-hydrogen system especially in view of the very limited basis set used in the VB procedure

  12. High energy multi-gluon exchange amplitudes

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1980-11-01

    We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)

  13. The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation

    Science.gov (United States)

    Stiegler, Christian; Meijide, Ana; June, Tania; Knohl, Alexander

    2017-04-01

    The 2015-2016 El Niño-Southern Oscillation (ENSO) event was one of the strongest observed in the last 20 years. Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia but despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as ENSO on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event and severe forest fires on greenhouse gas exchange and surface energy budget. Continuous measurements are in operation since July 2013 and we assess turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. In the beginning of the ENSO event, the area experienced a strong drought with decreasing soil moisture, increasing air and surface temperatures, and strong atmospheric vapour pressure deficit. During the peak of the drought from August to October 2015, hundreds of forest fires in the area resulted in strong smoke production, decreasing incoming solar radiation by 35% compared to pre-ENSO values and diffuse radiation became almost the sole shortwave radiation flux. During the beginning of the drought, carbon uptake of the oil palm plantation was around 2.1 gC m-2 d-1 and initially increased by 50% due to clear-sky conditions and high incoming photosynthetically active radiation (PAR) but increasing density of smoke turned the oil palm plantation into a source of carbon. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the midday Bowen-ratio from 0.17 to 0.40. Strong smoke

  14. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  15. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the

  16. Oxygen surface exchange and oxidative dehydrogenation on oxide ion conductors

    NARCIS (Netherlands)

    Song, C.

    2012-01-01

    The research described in this thesis mainly aims at investigation of the rate of oxygen exchange at the surface of oxide ion conductors. The introduction is given in Chapter 1. A fast and simple method, referred to as pulse 18O-16O isotopic exchange (PIE), for measurement of the rate of surface

  17. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  18. Energy exchange between knee and ankle in a transfemoral prosthesis

    NARCIS (Netherlands)

    Koopman, Hubertus F.J.M.; Behrens, Sebastiaan Maria; Hekman, Edsko E.G.; Ünal, Ramazan

    2013-01-01

    In order to make an energy efficient transfemoral prosthesis, there should be energy exchange between knee and ankle of the prosthesis. A concept containing various spring elements is designed and tested for a single subject. It is shown that the concept of energy exchange can be realized; in this

  19. Characterization of energy exchange parameters in the Himalayan foothills Pakistan

    Science.gov (United States)

    Khalid, Bushra; Kumar, Mukul; Cholaw, Bueh; Aziz Khan, Junaid; Hayat Khan, Azmat

    2017-04-01

    The characterization of energy exchange parameters for spring season (April-May) has been done for Margalla hills national park (MHNP) Islamabad, Pakistan. It is important because Islamabad city lies in the foothills of Himalayas and micro meteorological activity makes the climate of surrounding areas. The activity on Himalaya's foothills (i.e., Margalla hills) regulate weather and also provide fresh water to the lakes and ponds by late afternoon thunder showers. This research is also important from the perspective of rain water harvesting in Islamabad, Pakistan. The objective of this study is to characterize the energy exchange parameters in the foothills of great Himalayas particularly on MHNP. Landsat ETM+ imageries have been used for calculating the land surface temperature (LST), normalized difference vegetation index (NDVI), and normalized difference moisture index (NDMI). SPOT 5 image has been used for land use/land cover classification over MHNP. The turbulent fluxes have been calculated by computing the values acquired from the processing of satellite imageries and real time observation data sets. The comparisons have been made between the land and atmospheric temperature and moisture to see the difference and its impacts on weather of twin cities i.e., Islamabad and Rawalpindi. The energy exchange parameters have been characterized by analyzing the impacts of weather parameters and turbulent fluxes on MHNP and surrounding cities. The potential rain water harvesting sites have been marked in the foothills. Weather and surface conditions become more favorable for the growth of vegetation by the end of April as the spring season reaches at its peak. There is the start of growing season in the month of April whereas the vegetation becomes thick over time during the month of May over Margalla hills however, the energy exchange parameters follow the same pattern in May as in April. The relative humidity remains between 18 - 55 % and the atmospheric temperature

  20. Roles of Surface and Interface Spins in Exchange Coupled Nanostructures

    Science.gov (United States)

    Phan, Manh-Huong

    Exchange bias (EB) in magnetic nanostructures has remained a topic of global interest because of its potential use in spin valves, MRAM circuits, magnetic tunnel junctions, and spintronic devices. The exploration of EB on the nanoscale provides a novel approach to overcoming the superparamagnetic limit and increasing the thermoremanence of magnetic nanoparticles, a critical bottleneck for magnetic data storage applications. Recent advances in chemical synthesis have given us a unique opportunity to explore the EB in a variety of nanoparticle systems ranging from core/shell nanoparticles of Fe/γFe2O3, Co/CoO,and FeO/Fe3O4 to hollow nanoparticles of γFe2O3 and hybrid composite nanoparticles of Au/Fe3O4. Our studies have addressed the following fundamental and important questions: (i) Can one decouple collective contributions of the interface and surface spins to the EB in a core/shell nanoparticle system? (ii) Can the dynamic and static response of the core and shell be identified separately? (iii) Can one tune ``minor loop'' to ``exchange bias'' effects in magnetic hollow nanoparticles by varying the number of surface spins? (iv) Can one decouple collective contributions of the inner and outer surface spins to the EB in a hollow nanoparticle system? (v) Can EB be induced in a magnetic nanoparticle by forming its interface with a non-magnetic metal? Such knowledge is essential to tailor EB in magnetic nanostructures for spintronics applications. In this talk, we will discuss the aforementioned findings in terms of our experimental and atomistic Monte Carlo studies. The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438.

  1. Oxygen surface exchange kinetics of erbia-stabilized bismuth oxide

    NARCIS (Netherlands)

    Yoo, C.-Y.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.

    2011-01-01

    The surface oxygen exchange kinetics of bismuth oxide stabilized with 25 mol% erbia (BE25) has been studied in the temperature and pO2 ranges 773–1,023 K and 0.1– 0.95 atm, respectively, using pulse-response 18O–16O isotope exchange measurements. The results indicate that BE25 exhibits a

  2. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  3. Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS Simulations with Aircraft and Tower Observations

    Directory of Open Access Journals (Sweden)

    Meelis Mölder

    2012-10-01

    Full Text Available Simulation of atmospheric and surface processes with an atmospheric model (RAMS during a period of ten days in August 2001 over a boreal area in Sweden were compared to tower measurements and aircraft measurements of vertical profiles as well as surface fluxes from low altitude flights. The shape of the vertical profiles was simulated reasonably well by the model although there were significant biases in absolute values. Surface fluxes were less well simulated and the model showed considerable sensitivity to initial soil moisture conditions. The simulations were performed using two different land cover databases, the original one supplied with the RAMS model and the more detailed CORINE database. The two different land cover data bases resulted in relatively large fine scale differences in the simulated values. The conclusion of this study is that RAMS has the potential to be used as a tool to estimate boundary layer conditions and surface fluxes and meteorology over a boreal area but also that further improvement is needed.

  4. Surface energy exchange and evapotranspiration from cotton crop under full irrigation conditions in the Rio Grande do Norte State, Brazilian Semi-Arid

    Directory of Open Access Journals (Sweden)

    Bergson Guedes Bezerra

    2015-03-01

    Full Text Available The main objectives of this study were documenting how energy balance partitioning and ET vary seasonally along each growth season of cotton crop under full irrigation conditions in the Brazilian semiarid. The studied area was located in the Apodi Plateau, which is located on west of Rio Grande do Norte state and is an area with extensive agricultural suitability and semiarid climate. Micrometeorological measurements were taken during cotton growth season on dry seasons of 2008 and 2009 years in a cotton crop field of about 5 ha, and the energy balance components were derived from Bowen Ratio Energy Balance (BREB method. The obtained results revealed important role of the vegetative growth of cotton crop in the energy balance partitioning. The values of LE/Rn ranged from 58% (Initial growth season to 81% (Middle-growth season in 2008 and from 63% (Initial to 81% (Middle season in 2009. These variations is in accordance to LAI variations, which ranged from 0.14 cm2 cm–2 (Initial growth season in 2008 and 0.18 cm2 cm–2 (Initial growth season in 2009 to about 5.0 cm2 cm–2 (middle season. On the other hand, H/Rn and G/Rn varied inversely with the LAI variations. The concordance between LE/Rn and LAI is evidenced by similarity between curves of ET and LAI and between curves of Kc and LAI, especially when LAI reaches values greater than 3.0.

  5. Energy and Environment. Electric power stock exchange

    International Nuclear Information System (INIS)

    Fazioli, R.; Antonioli, B.; Beccarello, M.; Da Rin, B.

    2000-01-01

    In this paper are reported the structural characteristics of electric power stock exchange in the processes liberalization of european electric markets. International experience are also considered [it

  6. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  7. Heat exchangers: an energy viewpoint approach

    International Nuclear Information System (INIS)

    Buchet, E.

    1981-01-01

    This paper, at first, presents a brief discussion of the concept of exergy. The second part studies the exchange of heat by conduction, convection and radiation as well as the irreversibilities due to the required temperature gradient. It shows the importance of the temperature level on the heat flux and the exergy lost. This analysis results also in conclusions on the fins and the thermal insulation. The third part studies the heat exchangers, in general. The loss of exergy due to the thermal exchange permits a comparison of the thermal value of these apparatus and, as well, shows the influence of the isothermal change of state of a fluid, i.e. in vaporization. Finally, based on the conclusions reached above, different types of heat exchangers used in industrial applications are analysed [fr

  8. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  9. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States); Childress, Amy [Univ. of Nevada, Reno, NV (United States); Hiibel, Sage [Univ. of Nevada, Reno, NV (United States); Kim, Kwang [Univ. of Nevada, Reno, NV (United States); Park, Chanwoo [Univ. of Nevada, Reno, NV (United States); Wirtz, Richard [Univ. of Nevada, Reno, NV (United States)

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  10. Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    General mathematical relations are presented for the specular exchange factors, F S , of diffuse radiation exchange between the inner surfaces of a rectangular enclosure. Three of these surfaces are specular reflectors, diffuse emitters and the fourth surface is a diffuse reflector, diffuse emitter. This enclosure can be used as a transplant production unit with artificial lighting for electric energy saving purposes. An image system and the crossed string method are used to derive these relations. The resulting expressions are conceptually simple and similar to the commonly known expressions of the exchange factors between diffuse surfaces, F. The accuracy of the presented F S relations was examined for different numbers of multiple reflections, N, on the specular surfaces and for different aspect ratios (ratio of the width, w to the height, h). The results proved that the relations are accurate and strongly satisfy the well-known relation of the radiation exchange between enclosure surfaces and satisfy the reciprocity relation. For any aspect ratio, considering N of 150 between highly reflective surfaces (ρ = 0.99) is sufficient to estimate the F S factors without any possible error. Using specular reflecting surfaces in such cases significantly reduces the electric energy consumption used for lighting

  11. Magnon energies and exchange interactions in terbium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden

    1968-01-01

    The magnon density of states, and hence the magnetic contribution to the specific heat, and also the exchange interaction between ions in the same sublattice have been calculated for Tb at 90°K, using experimental results obtained by inelastic neutron scattering.......The magnon density of states, and hence the magnetic contribution to the specific heat, and also the exchange interaction between ions in the same sublattice have been calculated for Tb at 90°K, using experimental results obtained by inelastic neutron scattering....

  12. The dielectric environment dependent exchange self-energy of the energy structure in graphene

    International Nuclear Information System (INIS)

    Yang, C.H.; Xu, W.

    2010-01-01

    We theoretically calculate the energy dispersion in the presence of the screened exchange self-energy in extrinsic monolayer graphene. It is found that the exchange self-energy enhances the renormalized Fermi velocity. With decreasing the dielectric constant, the screening effect and the electron correlation effect increase which induces the Fermi velocity increasing. The screened exchange energy has an energy shift at the Dirac points. The self-energy from the valance band carriers gives the main contribution to the effective energy. We also discuss the electron density dependence of the self-energy.

  13. The dielectric environment dependent exchange self-energy of the energy structure in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H., E-mail: chyang@nuist.edu.c [Faculty of Maths and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xu, W. [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-10-01

    We theoretically calculate the energy dispersion in the presence of the screened exchange self-energy in extrinsic monolayer graphene. It is found that the exchange self-energy enhances the renormalized Fermi velocity. With decreasing the dielectric constant, the screening effect and the electron correlation effect increase which induces the Fermi velocity increasing. The screened exchange energy has an energy shift at the Dirac points. The self-energy from the valance band carriers gives the main contribution to the effective energy. We also discuss the electron density dependence of the self-energy.

  14. The empirical relationship between energy futures prices and exchange rates

    International Nuclear Information System (INIS)

    Sadorsky, P.

    2000-01-01

    This paper investigates the interaction between energy futures prices and exchange rates. Results are presented to show that futures prices for crude oil, heating oil and unleaded gasoline are co-integrated with a trade-weighted index of exchange rates. This is important because it means that there exists a long-run equilibrium relationship between these four variables. Granger causality results for both the long- and short-run are presented. Evidence is also presented that suggests exchange rates transmit exogenous shocks to energy futures prices. 22 refs

  15. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Single- and double-charge exchange at low pion energies

    International Nuclear Information System (INIS)

    Baer, H.W.

    1991-01-01

    A review is given of pion single- and double-charge exchange reactions at incident energies of 25 to 65 MeV leading to isobaric analog states, and in the case of double-charge exchange leading to the ground state of the residual nucleus. The crucial role of the higher nuclear transparency at low pion energies for the analysis of the data in terms of single and double scattering is demonstrated. The large effects on double-charge exchange produced by the spatial correlations in nuclear wave functions are evident. The data on 1f 7/2 nuclei at 35 MeV are used to establish the general validity of a shell-model-based two-amplitude model for these transitions. Recent measurements of the energy dependence between 25 and 65 MeV of double-charge exchange cross sections at forward angles are presented and discussed. 33 refs., 19 figs

  17. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  18. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  19. Surface gas-exchange processes of snow algae

    OpenAIRE

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, becaus...

  20. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  1. STIR: Improved Electrolyte Surface Exchange via Atomically Strained Surfaces

    Science.gov (United States)

    2015-09-03

    PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Delaware 210 Hullihen Hall Newark, DE 19716 -0099 9-Jan-2015 ABSTRACT Number of Papers... Planck system modified to include reaction terms was built in COMSOL Multiphysics to describe the mass and charge fluxes related to electrons and both...include that the adsorption rate constant controls the behavior of platinum electrodes on YSZ surfaces much more than the reaction rate constant for

  2. Two-Way communication with energy exchange

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo

    2012-01-01

    The conventional assumption made in the design of communication systems is that the energy used to transfer information between a sender and a recipient cannot be reused for future communication tasks. A notable exception to this norm is given by passive RFID systems, in which a reader can transfer...

  3. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  4. A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors

    NARCIS (Netherlands)

    Bouwmeester, Henricus J.M.; Song, Chunlin; Song, C.; Zhu, J.J.; van Sint Annaland, M.; Yi, Jianxin; Boukamp, Bernard A.

    2009-01-01

    We demonstrate the use of a novel pulse 18O–16O isotopic exchange technique for the rapid determination of the oxygen surface exchange rate of oxide ion conductors while simultaneously providing insight into the mechanism of the oxygen exchange reaction, which contributes to the efficient

  5. Energy absorber for sodium-heated heat exchanger

    Science.gov (United States)

    Essebaggers, J.

    1975-12-01

    A heat exchanger is described in which water-carrying tubes are heated by liquid sodium and in which the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes is minimized. An energy absorbing chamber contains a compressible gas and is connected to the body of flowing sodium by a channel so that, in the event of a sodium-water reaction, products of the reaction will partially fill the energy absorbing chamber to attenuate the rise in pressure within the heat exchanger.

  6. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    Science.gov (United States)

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  7. Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR

    DEFF Research Database (Denmark)

    Abrams, Billie; Vesborg, Peter Christian Kjærgaard; Bonde, Jacob Lindner

    2009-01-01

    Cyclic voltammetric analysis of the Pt-on-Au system for hydrogen evolution and oxidation reactions (HER/HOR) indicates that dynamic surface exchange reactions occur between Pt and Au. HER/HOR activities depend on the dominant surface species present, which is controllable by the potential applied...... to the system. Bulk Au is not very active for HER/HOR; however, when Pt is deposited onto the Au surface, the system becomes active. The Pt-on-Au system can subsequently be deactivated by cycling to potentials cathodic of the OH-adsorption and Pt-dissolution potentials (~+1.18 V vs normal hydrogen electrode...... reaction is attributed to the lower surface energy of Au relative to Pt causing Au to migrate to the surface. When the system is deactivated, Au is present at the surface. However, Pt migrates back to the surface at higher positive potentials, where PtOx/PtOHx is formed, leading to adsorbate...

  8. Metropolis Evaluation of the Hartree-Fock Exchange Energy.

    Science.gov (United States)

    Cytter, Yael; Neuhauser, Daniel; Baer, Roi

    2014-10-14

    We examine the possibility of using a Metropolis algorithm for computing the exchange energy in a large molecular system. Following ideas set forth in a recent publication (Baer, Neuhauser, and Rabani, Phys. Rev. Lett. 111, 106402 (2013)) we focus on obtaining the exchange energy per particle (ExPE, as opposed to the total exchange energy) to a predefined statistical error and on determining the numerical scaling of the calculation achieving this. For this we assume that the occupied molecular orbitals (MOs) are known and given in terms of a standard Gaussian atomic basis set. The Metropolis random walk produces a sequence of pairs of three-dimensional points (x,x'), which are distributed in proportion to ρ(x,x')(2), where ρ(x,x') is the density matrix. The exchange energy per particle is then simply the average of the Coulomb repulsion energy υC(|x-x'|) over these pairs. To reduce the statistical error we separate the exchange energy into a short-range term that can be calculated deterministically in a linear scaling fashion and a long-range term that is treated by the Metropolis method. We demonstrate the method on water clusters and silicon nanocrystals showing the magnitude of the ExPE standard deviation is independent of system size. In the water clusters a longer random walk was necessary to obtain full ergodicity as Metropolis walkers tended to get stuck for a while in localized regions. We developed a diagnostic tool that can alert a user when such a situation occurs. The calculation effort scales linearly with system size if one uses an atom screening procedure that can be made numerically exact. In systems where the MOs can be localized efficiently the ExPE can even be computed with "sublinear scaling" as the MOs themselves can be screened.

  9. On the mobility of exchangeable cations on clay surfaces

    International Nuclear Information System (INIS)

    Gimmi, T.; Kosakowski, G.; Glaus, M.A.

    2010-01-01

    Document available in extended abstract form only. The diffusive mobility of radionuclides in buffer materials and potential host rocks is an important topic in the safety analysis for underground waste repositories. Many of the radionuclides are cations. Accordingly, the diffusion and retention of cations in compacted clay minerals and clay rocks is of central interest. The retention properties of the clay minerals originate from their negative surface charges. These are compensated by un-specifically sorbed cations that are located on planar surfaces or in interlayers (exchangeable cations) and by cations that are more specifically sorbed for instance to edge sites. In general, sorbed cations are considered as immobile with respect to diffusive transport. Whereas this may be correct for specifically sorbed cations, this is probably not the case for un-specifically sorbed exchangeable cations. They can easily exchange with cations in the pore solution, even if they are located- at low hydration states-in very narrow interlayers. For such exchange a certain mobility in the sorbed state is required. This is in line with the observations that many experimentally derived cation diffusion coefficients are larger than expected when compared with those of water tracers. This and the dependence of effective diffusion coefficients on the external salt concentration can be explained with so-called surface diffusion, that is, a movement of sorbed cations. Unfortunately, no direct proof of this phenomenon is available, and parameters like surface diffusion coefficients or surface mobilities are largely unknown. We compiled a large number of published cation diffusion coefficients for various clay minerals and clay rocks. We showed that by an appropriate scaling of the cation diffusion coefficients, it is possible to estimate the average surface mobility of the cation in each experiment. We define the surface mobility as the surface diffusion coefficient of a cation on a flat

  10. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  11. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe 3+ > Al 3+ > Cu 2+ >> Ca 2+ > K + > Na + , which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na + -smectite and K + -smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe 3+ , Al 3+ , and Cu 2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O 2 − · , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  12. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  13. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  14. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  15. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    Science.gov (United States)

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-04-06

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the 3 A″ state of SH 2 , which facilitates the SH + H ↔ S( 3 P) + H 2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10 2 ) of ab initio points, but it needs substantially more points (∼1 × 10 3 ) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  16. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  17. Study of thermal energy storage using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  18. Resonance charge exchange mechanism at high and moderate energies

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-01-01

    Charge exchange mechanisms at high and medium energies are investigated, ta king the resonance charge exchange of a proton by an hydrogen atom as an example . It is established that there are two classical charge exchange mechanisms rel ated to direct proton knockout from the bound state and one quantum-mechanical mechanism corresponding to the electron tunnelling from one bound state to anoth er. The classical cross-section diverges for two of these mechanisms, and the quasiclassical scattering amplitude must be calculated on the base of a complex classical trajectory. Physical grounds for the choice of such trajectories are discussed and calculations of the Van Vleck determinant for these mechanisms a re presented. Contributions from different mechanisms to the total charge excha nge cross-section are analyzed. A comparison with experimental data and results of other authors is made

  19. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  20. Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A. Paul

    2008-12-02

    Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, and XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.

  1. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    Science.gov (United States)

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  2. European energy exchanges: Too many casino's and too little time

    International Nuclear Information System (INIS)

    Zewald, H.

    2001-01-01

    The European energy market has the potential of developing into a booming business, and not just for Europeans. Now that liberalization is seriously taking shape and internet trade has overcome its teething troubles, the Europeans are setting up one exchange after another and the Americans are crossing the Atlantic with a lot of dollar signs in front of their eyes to play poker or roulette. 1 ref

  3. Time-varying dependency in European energy markets: an analysis of Nord Pool, European Energy Exchange and Intercontinental Exchange energy commodities

    OpenAIRE

    Veka, Steinar; Lien, Gudbrand; Westgaard, Sjur; Higgs, Helen

    2012-01-01

    In this paper we investigate the extent to which the price of Nordic electricity derivatives correlates with European Energy Exchange (EEX) and Intercontinental Exchange (ICE) electricity contracts. We also include their price correlation with ICE gas, Brent crude oil, coal and carbon emission contracts. Using multivariate generalized autoregressive conditional heteroskedasticity models, we find significant time-varying relationships between all of the energy commodities included in the analy...

  4. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    Abstract. We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at z = 3.32 Å. It was observed ...

  5. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at = 3.32 Å. It was observed that the ...

  6. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    Science.gov (United States)

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  7. Cosmological evolution with brane-bulk energy exchange

    CERN Document Server

    Kiritsis, Elias B; Tetradis, N; Tomaras, T N; Zarikas, V

    2003-01-01

    The consequences for the brane cosmological evolution of energy exchange between the brane and the bulk are analysed in detail, in the context of a non-factorizable background geometry with vanishing effective cosmological constant on the brane. A rich variety of brane cosmologies is obtained, depending on the precise mechanism of energy transfer, the equation of state of brane-matter and the spatial topology. An accelerating era is generically a feature of our solutions. In the case of low-density flat universe more dark matter than in the conventional FRW picture is predicted. Spatially compact solutions are found to delay their recollapse.

  8. Gas exchange and energy expenditure in chicken embryos

    DEFF Research Database (Denmark)

    Chwalibog, André; Tauson, Anne-Helene; Ali, Abdalla

    to evaluate amount of oxidized fat during embryonic development and to compare daily fat oxidation with changes in the fat content of eggs. The experiment comprised 48 embryos from a modern, fast growing line, Ross 308 (RO) and 48 from a slow growing line, Labresse (LA) of White Plymouth Rock. The O2...... fat contributing with nearly 100 % to the total EE. Since oxidised fat was the main energy fuel the content of fat in eggs decreased with 2.0 (RO) and 1.6 g (LA) during the incubation period. It can be concluded that the pattern of gas exchange and thereby the pattern of energy expenditure...

  9. Impacts of differing aerodynamic resistance formulae on modeled energy exchange at the above-canopy/within-canopy/soil interface

    Science.gov (United States)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  10. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  11. Potential energy surfaces for chemical reactions

    International Nuclear Information System (INIS)

    Schaefer, H.F. III.

    1976-01-01

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  12. The hydrodynamics of surface tidal flow exchange in saltmarshes

    Science.gov (United States)

    Young, David L.; Bruder, Brittany L.; Haas, Kevin A.; Webster, Donald R.

    2016-04-01

    Modeling studies of estuary circulation show great sensitivity to the water exchange into and out of adjacent marshes, yet there is significant uncertainty in resolving the processes governing marsh surface flow. The objective of this study is to measure the estuary channel-to-saltmarsh pressure gradient and to guide parameterization for how it affects the surface flow in the high marsh. Current meters and high-resolution pressure transducers were deployed along a transect perpendicular to the nearby Little Ogeechee River in a saltmarsh adjacent to Rose Dhu Island near Savannah, Georgia, USA. The vertical elevations of the transducers were surveyed with static GPS to yield high accuracy water surface elevation data. It is found that water level differences between the Little Ogeechee River and neighboring saltmarsh are up to 15 cm and pressure gradients are up to 0.0017 m of water surface elevation change per m of linear distance during rising and falling tides. The resulting Little-Ogeechee-River-to-saltmarsh pressure gradient substantially affects tidal velocities at all current meter locations. At the velocity measurement station located closest to the Little Ogeechee River bank, the tidal velocity is nearly perpendicular to the bank. At this location, surface flow is effectively modeled as a balance between the pressure gradient force and the drag force due to marsh vegetation and bottom stress using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow. The study thus provides a direct connection between the pressure gradient and surface flow velocity in the high marsh, thereby overcoming a long-standing barrier in directly relating flow-through-saltmarsh studies to flow-through-vegetation studies in the open channel flow literature.

  13. Hydrogen-deuterium exchange study of an allosteric energy cycle.

    Science.gov (United States)

    Beckett, Dorothy

    2012-01-01

    Elucidation of mechanisms of energy transduction through macromolecules in allosteric systems requires application of a broad range of techniques and approaches. High-resolution structures of the end states in an allosteric system provide invaluable clues about allosteric mechanism. Thermodynamic and kinetic studies reveal the rules that govern the transitions between states in the system. Acquisition of detailed molecular level information about allosteric mechanism requires interrogation of the structural and dynamic properties of both intermediates and end states in the allosteric cycle. Many experimental and computational tools have been developed to probe allostery. Among these are hydrogen-deuterium exchange detected by either NMR spectroscopy or mass spectrometry. This article provides a detailed description of application of hydrogen exchange detected by mass spectrometry (HDX-MS) to investigate an allosteric system.

  14. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  15. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  16. Surface energy and surface tension of liquid metal nanodrops

    Directory of Open Access Journals (Sweden)

    Shebzukhov A.A.

    2011-05-01

    Full Text Available A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  17. Surface energy and surface tension of liquid metal nanodrops

    Science.gov (United States)

    Shebzukhova, M. A.; Shebzukhov, A. A.

    2011-05-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  18. Surface energy and surface tension of liquid metal nanodrops

    OpenAIRE

    Shebzukhov A.A.; Shebzukhova M.A.

    2011-01-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  19. Integrated O&M for energy generation and exchange facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Ingeteam Service, part of the Ingeteam Group, is a leading company in the provision of integrated O&M services at energy generation and exchange facilities worldwide. From its head office in the Albacete Science and Technology Park, it manages the work of the 1,300 employees that make up its global workforce, rendering services to wind farms, PV installations and power generation plants. In addition, it maintains an active participation strategy in a range of R&D+i programmes that improve the existing technologies and are geared towards new production systems and new diagnostic techniques, applied to renewables installation maintenance. (Author)

  20. Self-energies and the interactions of particles with surfaces

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.; Echenique, P.M.; Gras-Marti, A.

    1987-01-01

    We have in this paper reviewed the method of treating many-body problems by means of an effective interaction self-energy. We have developed an alternatvie approach to the self-energy which is simpler and more straight-forward than standard methods, and we have illustrated its use with two examples of a charge interacting with a metal surface. In each case the self-energy produces the classical image potential together with corrections due to quantum mechanical effects. This method has also been successfully applied to the problem of an atom interacting with a surface. Corrections to the Van der Waals dispersion force are obtained, and via the non-conservative imaginary parts to /summation//sub i/(z) we discuss transition rates and energy exchange. 14 refs., 1 fig

  1. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  2. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  3. 76 FR 6128 - Energy Exchange International, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2011-02-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2730-000] Energy Exchange International, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding Energy Exchange International, LLC's application for market-based rate authority, with an...

  4. Information Exchange of the Atomic Energy Society of Japan with Nuclear Societies Worldwide

    International Nuclear Information System (INIS)

    Masao Hori; Yasushi Tomita

    2000-01-01

    This paper describes committees of the Atomic Energy Society of Japan (AESJ) related to information exchange, AESJ publications, AESJ Internet applications, and means for future information exchange between nuclear societies

  5. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  6. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  7. Gas exchange and energy expenditure in chicken embryos

    DEFF Research Database (Denmark)

    Chwalibog, André; Tauson, Anne-Helene; Ali, Abdalla

    . The pattern of curves for gas exchange was identical for RO and LA, but on a lower level for LA. The energy expenditure followed the pattern of curves for gas exchange, with a mean value around 50 J/h on day 10, increasing to 528 (RO) and 402 (LA) J/h on day 19 (Figure 1). The main source of EE was oxidized...... is independent of genetic origin of embryos. However, the embryos from the slow growing broiler line had a lower metabolic rate and oxidised less fat than the modern, fast growing line. The reduced utilization of yolk fat might be a tool for saving fat reserves for the immediate post-hatching period......) in this phase may be a crucial parameter predicting metabolic rate and consquently, growth performance of post-hatched chickens. The aim of this investigation was to determine EE in embryos of slow and fast growing lines of chickens. Taking advantage of the indirect calorimetry technique it was also possible...

  8. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-06-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  9. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-01-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  10. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  11. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  12. Fine modeling of energy exchanges between buildings and urban atmosphere

    International Nuclear Information System (INIS)

    Daviau-Pellegrin, Noelie

    2016-01-01

    This thesis work is about the effect of buildings on the urban atmosphere and more precisely the energetic exchanges that take place between these two systems. In order to model more finely the thermal effects of buildings on the atmospheric flows in simulations run under the CFD software Code-Saturne, we proceed to couple this tool with the building model BuildSysPro. This library is run under Dymola and can generate matrices describing the building thermal properties that can be used outside this software. In order to carry out the coupling, we use these matrices in a code that allows the building thermal calculations and the CFD to exchange their results. After a review about the physical phenomena and the existing models, we explain the interactions between the atmosphere and the urban elements, especially buildings. The latter can impact the air flows dynamically, as they act as obstacles, and thermally, through their surface temperatures. At first, we analyse the data obtained from the measurement campaign EM2PAU that we use in order to validate the coupled model. EM2PAU was carried out in Nantes in 2011 and represents a canyon street with two rows of four containers. Its distinctive feature lies in the simultaneous measurements of the air and wall temperatures as well as the wind speeds with anemometers located on a 10 m-high mast for the reference wind and on six locations in the canyon. This aims for studying the thermal influence of buildings on the air flows. Then the numerical simulations of the air flows in EM2PAU is carried out with different methods that allow us to calculate or impose the surface temperature we use for each of the container walls. The first method consists in imposing their temperatures from the measurements. For each wall, we set the temperature to the surface temperature that was measured during the EM2PAU campaign. The second method involves imposing the outdoor air temperature that was measured at a given time to all the

  13. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  14. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    OpenAIRE

    Lloveras Montserrat, Vega; Badetti, Elena; Veciana Miró, Jaume; Vidal-Gancedo, José

    2016-01-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution,...

  15. Towards an ethnography of electrification in rural India : Social relations and values in household energy exchanges

    NARCIS (Netherlands)

    Singh, A.; Strating, Alex T.; Romero Herrera, N.A.; van Dijk, Hylke W.; Keyson, D.V.

    2017-01-01

    Many energy researchers and practitioners envision householders to have an active role in local energy distribution in emerging energy systems. In the energy literature, the dominant view of local energy distribution, grounded in the rational choice perspective, sees exchanges of energy between

  16. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  17. Surface energy and viscoelasticity influence caramel adhesiveness.

    Science.gov (United States)

    Wagoner, Ty B; Foegeding, Edward Allen

    2017-08-26

    Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m 2 . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.

  18. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  19. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 6. Adhesion energy, surface ... 2 G A Adebayo1. Department of Physics, University of Agriculture, Abeokuta, Nigeria; Department of Pure and Applied Physics, College of Pure and Applied Science, Caleb University, Imota, Lagos, Nigeria ...

  20. Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab

    2012-05-01

    Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.

  1. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    Science.gov (United States)

    Lloveras, V.; Badetti, E.; Veciana, J.; Vidal-Gancedo, J.

    2016-02-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  2. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  3. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides.

    Science.gov (United States)

    De Souza, R A

    2006-02-21

    The isotope surface exchange coefficient k* determined in an 18O/16O exchange experiment characterises the exchange flux of the dynamic equilibrium between oxygen in the gas phase and oxygen in a solid oxide. At present there is no atomistic expression that relates measured exchange coefficients to materials' parameters. In this study an empirical, atomistic expression is developed that describes the exchange kinetics of gaseous oxygen with diverse acceptor-doped perovskite and fluorite oxides at temperatures above T approximately 900 K. The expression is used to explain the observed correlations between surface exchange coefficients k* and oxygen tracer diffusion coefficients D* and to identify compounds that exhibit high surface exchange coefficients.

  4. Polysulfide ligand exchange on zinc sulfide nanocrystal surfaces for improved film formation

    Science.gov (United States)

    Herron, Steven M.; Lawal, Qudus O.; Bent, Stacey F.

    2015-12-01

    The physical and chemical properties of nanocrystals can be modified by changing the ligands attached at their surfaces. A ligand exchange procedure with ammonium polysulfides has been developed to replace the native ligands on cubic zinc sulfide nanocrystals. Several mixtures of polysulfides in formamide and other solvents were prepared with different average chain lengths and used to achieve high yield ligand exchange, as confirmed by UV-vis spectroscopy, infrared spectroscopy and X-ray photoelectron spectroscopy. The results show that polysulfide content can be increased with longer surface ligands and that the exchange process yields compositionally pure surfaces before and after high temperature anneals. X-ray diffraction and scanning electron microscopy show that, when annealed in nitrogen at 525 °C, polysulfide ligands lead to average crystal sizes 2-3 times larger than in the un-exchanged control sample. The ligand exchange procedure itself does not alter nanocrystal size. Nanocrystal inks prepared from the exchanged samples form thin films that exhibit superior grain growth, morphology, mass retention, and composition compared to the un-exchanged material. Overall, polysulfide species are demonstrated as alternative ligands for the surfaces of metal chalcogenide nanocrystals which, when incorporated in an efficient ligand-exchange procedure, can improve the quality of ZnS nanocrystal inks.

  5. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  6. Polysulfide ligand exchange on zinc sulfide nanocrystal surfaces for improved film formation

    Energy Technology Data Exchange (ETDEWEB)

    Herron, Steven M. [Department of Chemistry, Stanford University, Stanford, CA 94305 (United States); Lawal, Qudus O. [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States); Bent, Stacey F., E-mail: sbent@stanford.edu [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2015-12-30

    Graphical abstract: - Highlights: • Ammonium polysulfides are prepared in aprotic solvents. • Native ligands on surfaces of colloidal ZnS nanocrystals are efficiently exchanged with polysulfides. • Ligand exchange improves crystallinity and composition in annealed ZnS thin films. • Polysulfide nanocrystal inks increase mass retention from 62% to 88%. - Abstract: The physical and chemical properties of nanocrystals can be modified by changing the ligands attached at their surfaces. A ligand exchange procedure with ammonium polysulfides has been developed to replace the native ligands on cubic zinc sulfide nanocrystals. Several mixtures of polysulfides in formamide and other solvents were prepared with different average chain lengths and used to achieve high yield ligand exchange, as confirmed by UV–vis spectroscopy, infrared spectroscopy and X-ray photoelectron spectroscopy. The results show that polysulfide content can be increased with longer surface ligands and that the exchange process yields compositionally pure surfaces before and after high temperature anneals. X-ray diffraction and scanning electron microscopy show that, when annealed in nitrogen at 525 °C, polysulfide ligands lead to average crystal sizes 2–3 times larger than in the un-exchanged control sample. The ligand exchange procedure itself does not alter nanocrystal size. Nanocrystal inks prepared from the exchanged samples form thin films that exhibit superior grain growth, morphology, mass retention, and composition compared to the un-exchanged material. Overall, polysulfide species are demonstrated as alternative ligands for the surfaces of metal chalcogenide nanocrystals which, when incorporated in an efficient ligand-exchange procedure, can improve the quality of ZnS nanocrystal inks.

  7. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  8. Improvement of Energy Efficiency and Environmental Safety of Thermal Energy Through the Implementation of Contact Energy Exchange Processes

    Science.gov (United States)

    Varlamov, Gennadii Borysovich; Romanova, Kateryna Alexandrovna; Nazarova, Iryna; Daschenko, Olga; Kapustiansky, Andry

    2017-12-01

    Energy efficiency improvement and ecological safety of heat power plants are urgent problems, which require scientifically grounded approaches and solutions. These problems can be solved partly within the presented heat-and-power cycles by including contact energy exchange equipment in the circuits of existing installations. A significant positive effect is obtained in the contact energy exchange installations, such as gas-steam installation `Aquarius' and the contact hydrogen heat generator that also can use hydrogen as a fuel. In these plants, the efficiency increases approximately by 10-12% in comparison with traditional installations, and the concentration of toxic substances, such as nitrogen oxides and carbon monoxide in flue gas can be reduced to 30 mg/m3 and to 5 mg/m3, respectively. Moreover, the plants additionally `generate' the clean water, which can be used for technical purposes.

  9. Improvement of Energy Efficiency and Environmental Safety of Thermal Energy Through the Implementation of Contact Energy Exchange Processes

    Directory of Open Access Journals (Sweden)

    Varlamov Gennadii Borysovich

    2017-12-01

    Full Text Available Energy efficiency improvement and ecological safety of heat power plants are urgent problems, which require scientifically grounded approaches and solutions. These problems can be solved partly within the presented heat-and-power cycles by including contact energy exchange equipment in the circuits of existing installations. A significant positive effect is obtained in the contact energy exchange installations, such as gas-steam installation ‘Aquarius’ and the contact hydrogen heat generator that also can use hydrogen as a fuel. In these plants, the efficiency increases approximately by 10-12% in comparison with traditional installations, and the concentration of toxic substances, such as nitrogen oxides and carbon monoxide in flue gas can be reduced to 30 mg/m3 and to 5 mg/m3, respectively. Moreover, the plants additionally ‘generate’ the clean water, which can be used for technical purposes.

  10. NETL's Energy Data Exchange (EDX) - a coordination, collaboration, and data resource discovery platform for energy science

    Science.gov (United States)

    Rose, K.; Rowan, C.; Rager, D.; Dehlin, M.; Baker, D. V.; McIntyre, D.

    2015-12-01

    Multi-organizational research teams working jointly on projects often encounter problems with discovery, access to relevant existing resources, and data sharing due to large file sizes, inappropriate file formats, or other inefficient options that make collaboration difficult. The Energy Data eXchange (EDX) from Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is an evolving online research environment designed to overcome these challenges in support of DOE's fossil energy goals while offering improved access to data driven products of fossil energy R&D such as datasets, tools, and web applications. In 2011, development of NETL's Energy Data eXchange (EDX) was initiated and offers i) a means for better preserving of NETL's research and development products for future access and re-use, ii) efficient, discoverable access to authoritative, relevant, external resources, and iii) an improved approach and tools to support secure, private collaboration and coordination between multi-organizational teams to meet DOE mission and goals. EDX presently supports fossil energy and SubTER Crosscut research activities, with an ever-growing user base. EDX is built on a heavily customized instance of the open source platform, Comprehensive Knowledge Archive Network (CKAN). EDX connects users to externally relevant data and tools through connecting to external data repositories built on different platforms and other CKAN platforms (e.g. Data.gov). EDX does not download and repost data or tools that already have an online presence. This leads to redundancy and even error. If a relevant resource already has an online instance, is hosted by another online entity, EDX will point users to that external host either using web services, inventorying URLs and other methods. EDX offers users the ability to leverage private-secure capabilities custom built into the system. The team is presently working on version 3 of EDX which will incorporate big data analytical

  11. Obtaining evapotranspiration and surface energy fluxes with ...

    African Journals Online (AJOL)

    In this study, SEBAL (Surface Energy Balance Algorithm for Land), a remote sensing based evapotranspiration model, has been applied with Landsat ETM+ sensor for the estimation of actual ... The land uses in this study area consists of irrigated agriculture, rain-fed agriculture and livestock grazing. The obtained results ...

  12. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  13. Turbulent water vapor exchanges and two source energy balance model estimated fluxes of heterogeneous vineyard canopies

    Science.gov (United States)

    Los, S.; Hipps, L.; Alfieri, J. G.; Prueger, J. H.; Kustas, W. P.

    2017-12-01

    Agriculture in semi-arid regions is globally facing increasing stress on water resources. Hence, knowledge of water used in irrigated crops is essential for water resource management. However, quantifying spatial and temporal distribution of evapotranspiration (ET) has proven difficult because of the inherent complexities involved. Understanding of the complex biophysical relationships that govern ET is incomplete, particularly for heterogeneous vegetation. The USDA-ARS is developing a remotely-sensed ET modeling system that utilizes a two-source energy balance (TSEB) model capable of simulating turbulent water and energy exchange from measurements of radiometric land surface temperature. The modeling system has been tested over a number of vegetated surfaces and is currently being validated for vineyard sites in the Central Valley of California through the Grape Remote sensing Atmospheric Profiling & Evapotranspiration eXperiment (GRAPEX). The highly variable, elevated canopy structure and semi-arid climatic conditions of these sites give the opportunity to gain knowledge of both turbulent exchange processes and the TSEB model's ability to simulate turbulent fluxes for heterogeneous vegetation. Analyzed are fast-response (20 Hz) 3-D velocity, temperature, and humidity measurements gathered over 4 years at two vineyard sites. These data were collected at a height of 5 m, within the surface layer but above the canopy, and at 1.5 m, below the canopy top. Power spectra and cross-spectra are used to study behavior of turbulent water vapor exchanges and coupling between the canopy layer and surface layer under various atmospheric conditions. Frequent light winds and unstable daytime conditions, combined with the complicated canopy structure, often induce intermittent and episodic turbulence transport. This resulted in a modal behavior alternating between periods of more continuous canopy venting and periods where water vapor fluxes are dominated by transient, low

  14. Potential energy surface of triplet O4.

    Science.gov (United States)

    Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G

    2018-03-28

    We present a global ground-state potential energy surface (PES) for the triplet spin state of O 4 that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in electronically adiabatic spin-conserving O 2 -O 2 collisions. The surface is based on MS-CASPT2/maug-cc-pVTZ electronic structure calculations with scaled external correlation; the active space has 16 electrons in 12 orbitals. The global ground-state potential energy surface was fitted by a many-body approach with an accurate O-O pairwise interaction and a fit of the many-body interaction potential to 10 180 electronic structure data points. The many-body fit is based on permutationally invariant polynomials in terms of bond-order functions of the six interatomic distances; the bond-order functions are mixed exponential-Gaussian functions. The geometries calculated and used for the fit include geometry scans corresponding to dissociative and vibrationally excited diatom-diatom collisions of O 2 , scans corresponding to O 3 interacting with O, additional geometries identified by running trajectories, and geometries along linear synchronous transit paths connecting randomly selected points. The global O 4 PES includes subsurfaces describing the interaction of diatomic molecules with other diatomic molecules or interactions of triatomic molecules and an atom. The interaction of ozone with a ground-state oxygen atom occurs on the triplet O 4 surface, and our surface includes high-energy points with O 3 -O geometries as well as O 2 -O 2 geometries and O 2 -O-O geometries.

  15. Potential for Small Unmanned Aircraft Systems applications for identifying groundwater-surface water exchange in a meandering river reach

    Science.gov (United States)

    Pai, H.; Malenda, H.; Briggs, Martin A.; Singha, K.; González-Pinzón, R.; Gooseff, M.; Tyler, S.W.; ,

    2017-01-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here, we describe the use of a suite of high spatial-resolution remote-sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index (NDVI) mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW “shortcutting” through meander necks, which was corroborated by temperature data at the riverbed interface.

  16. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    Science.gov (United States)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang; Chen, Shiji

    2017-07-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ˜0.128 and 0.47 m, and ˜0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10-2 and 7.13 × 10-3, and 2.91 × 10-3 and 1.96 × 10-3, for banana plantation and alpine meadow areas, respectively.

  17. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes1

    Science.gov (United States)

    Lewis, Donald A.; Nobel, Park S.

    1977-01-01

    The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days. Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days. Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C. PMID:16660148

  18. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes.

    Science.gov (United States)

    Lewis, D A; Nobel, P S

    1977-10-01

    The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days.Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days.Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C.

  19. Surface analysis with low energy ion scattering

    International Nuclear Information System (INIS)

    Taglauer, E.; Heiland, W.

    1976-01-01

    Principles and applications of low energy ion scattering for surface analysis are presented. Basic features are the binary collision concept, the scattering cross-sections and the ion neutralization process. The potential and the limitations of the method are outlined. Some pertinent experimental aspects are considered. In a number of examples the performance of the technique is demonstrated for qualitative composition analysis and for studies of surface structures. Finally a few comparisons are made with other techniques, such as AES, LEED, or SIMS. (orig.) [de

  20. Modeling the land surface heat exchange process with the aid of moderate resolution imaging spectroradiomer images

    Science.gov (United States)

    Gao, Zhiqiang; Zhang, Wenjiang; Gao, Wei; Chang, Ni-Bin

    2009-12-01

    Most ecosystems and crops experience water stress in arid and semiarid areas of the Inner Mongolia grassland, Northern China. Yet the lack of long-term in situ monitoring data hinders the managerial capacity of changing water vapor environment, which is tied with sustaining the grassland in the Inner Mongolia. Environmental remote sensing monitoring and modeling may provide synergistic means of observing changes in thermodynamic balance during drought onset at the grassland surface, providing reliable projections accounting for variations and correlations of water vapor and heat fluxes. It is the aim of this paper to present a series of estimates of latent heat, sensible heat, and net radiation using an innovative first-principle, physics-based model (GEOMOD: GEO-model estimated the land surface heat with MODis data) with the aid of integrated satellite remote sensing and in situ eddy covariance data. Based on the energy balance principle and aerodynamics diffusion theory, the GEOMOD model is featured with MODIS (Moderate Resolution Imaging Spectroradiometer) data with 250 m spatial resolution to collectively reflect the spatial heterogeneity of surface properties, supplement missing data with the neighborhood values across both spatial and temporal domains, estimate the surface roughness height and zero-plane displacement with dynamic look-up table, and implement a fast iterative algorithm to calculate sensible heat. Its analytical framework is designed against overreliance on local micro-meteorological parameters. Practical implementation was assessed in the study area, the Xilin Gol River Basin, a typical grassland environment, Northern China. With 179 days of MODIS data in support of modeling, coincident ground-based observations between 2000 and 2006 were selected for model calibration. The findings indicate that GEOMOD performs reasonably well in modeling the land surface heat exchange process, as demonstrated by a case study of Inner Mongolia.

  1. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  2. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  3. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  4. Investigation of Liquid Metal Heat Exchanger Designs for Fission Surface Power

    Science.gov (United States)

    Dyson, Rodger W.; Penswick, Barry; Robbie, Malcolm; Geng, Steven M.

    2009-01-01

    Fission surface power is an option for future Moon and Mars surface missions. High power nuclear reactor heated Stirling convertors are an option to provide reliable power for long duration outpost operations. This report investigates various design approaches for the liquid metal to acceptor heat exchange and clarifies the details used in the analysis.

  5. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO2 surface: The case of terminal oxygen atom exchange

    Science.gov (United States)

    Kevorkyants, Ruslan; Sboev, Mikhail. N.; Chizhov, Yuri V.

    2017-05-01

    Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between 16O18O and terminal oxygen atom of a defect TiO2 surface, which is modeled by amorphous Ti8O16 nanocluster in excited S1 electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O3- chemisorption species match well EPR data on O2 adsorption on UV-irradiated nanocrystalline TiO2. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction's mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VOx/TiO2 reported earlier.

  6. Deuterium isotopic exchange reaction on the surface of promoted nickel catalysts+

    International Nuclear Information System (INIS)

    Abou EL-Nour, F.; Abdel-Badei, M.M.; Belacy, N.

    1987-01-01

    Nickel catalysts promoted with different metal oxides proved to be efficient for the isotopic exchange of deuterium between hydrogen and water in the vapour phase. Estimation of the surface properties of this type of catalysts led to the correlation of the specific catalytic activity with their surface characteristics. The particle size of nickel content of the catalysts under investigation was determined from the surface area measurements. The equation used for particle size determination is a corrected one. The correction is based on the probability of sharing the 6-faces of cubic nickel crystals, present in the promoted catalyst, in the isotopic exchange process. It may be also due to the increased porosity of the components of the catalyst mixture. The results demonstrate the probability of migration of nickel crystals during the isotopic exchange reaction of deuterium between hydrogen and water in the vapour state on the surface of nickel catalysis promoted with different metal oxides

  7. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  8. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  9. Surface energy budget responses to radiative forcing at Summit, Greenland

    Science.gov (United States)

    Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.; Noone, David; Persson, P. Ola G.; Steffen, Konrad

    2017-02-01

    Greenland Ice Sheet surface temperatures are controlled by an exchange of energy at the surface, which includes radiative, turbulent, and ground heat fluxes. Data collected by multiple projects are leveraged to calculate all surface energy budget (SEB) terms at Summit, Greenland, for the full annual cycle from July 2013 to June 2014 and extend to longer periods for the radiative and turbulent SEB terms. Radiative fluxes are measured directly by a suite of broadband radiometers. Turbulent sensible heat flux is estimated via the bulk aerodynamic and eddy correlation methods, and the turbulent latent heat flux is calculated via a two-level approach using measurements at 10 and 2 m. The subsurface heat flux is calculated using a string of thermistors buried in the snow pack. Extensive quality-control data processing produced a data set in which all terms of the SEB are present 75 % of the full annual cycle, despite the harsh conditions. By including a storage term for a near-surface layer, the SEB is balanced in this data set to within the aggregated uncertainties for the individual terms. November and August case studies illustrate that surface radiative forcing is driven by synoptically forced cloud characteristics, especially by low-level, liquid-bearing clouds. The annual cycle and seasonal diurnal cycles of all SEB components indicate that the non-radiative terms are anticorrelated to changes in the total radiative flux and are hence responding to cloud radiative forcing. Generally, the non-radiative SEB terms and the upwelling longwave radiation component compensate for changes in downwelling radiation, although exact partitioning of energy in the response terms varies with season and near-surface characteristics such as stability and moisture availability. Substantial surface warming from low-level clouds typically leads to a change from a very stable to a weakly stable near-surface regime with no solar radiation or from a weakly stable to neutral

  10. Dimensional Analysis of Ocean Thermal Energy Conversion Heat Exchangers

    Science.gov (United States)

    1977-06-30

    34Utilisation des Forces Naturelles ," Avenir de l’dlectricit6, Revue Scientifigue, pp 370- 372 (Sept. 17, 1881). 2 Claude, Georges, "Power From the...34 fluid side of heat exchanger 11. Convective heat transfer MT" 3 -1 coefficient of working fluid WF 12. Specific heat of working fluid C L2T𔃼e" p WY 13...Viscosity of sea water MT 1 L 12. Sea water pressure drop through AtP MT- 2 L-1 -heat exchanger SW 13. Sea water convective heat h MT- 3 e 1 transfer

  11. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  12. On the mathematic simulation of the energy efficiency for heat exchangers with the systems of impingement plane-parallel jets

    Directory of Open Access Journals (Sweden)

    Haritonova Larisa

    2017-01-01

    Full Text Available The article gives the analytical generalization of the data on the energy efficiency for heat exchangers with the flat heat exchange surface to which systems of impact plane parallel jets are sent. Functional relations of specific power consumption (per unit of area, which were obtained for the first time using the techniques of the similarity law, for moving a heat carrier are shown with regard to design and operation factors. The regression equations representing a mathematical model of the process enable to carry out an analysis of various factors impact on the parameter to be determined. The obtained results can be used to optimize or to create the calculation techniques for new highly-efficient heat exchange devices with jet plane -parallel impingement systems and also to reduce power consumption for moving a heat carrier.

  13. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    Science.gov (United States)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  14. Information exchange of the Atomic Energy Society of Japan with nuclear societies worldwide

    International Nuclear Information System (INIS)

    Hori, Masao; Tomita, Yasushi

    2000-01-01

    The Atomic Energy Society of Japan (AESJ) exchanges information with nuclear societies worldwide by intersocietal communication through international councils of nuclear societies and through bilateral agreements between foreign societies and by such media as international meetings, publications, and Internet applications

  15. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Directory of Open Access Journals (Sweden)

    Andrzejczyk Rafał

    2016-12-01

    Full Text Available The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  16. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  17. The topological molecule: Its finite fluxes, exchange stability and minimal surfaces

    Science.gov (United States)

    Thomas, Gerald F.

    2016-03-01

    Molecules have at least one nontrivial topological property in common: their minimal surfaces of finite flux. This is why they are stable aggregates of atoms mutually engaged to varying degrees via Coulombic and exchange interactions in fealty to quantum mechanics on otherwise passive nuclear scaffolds. Isolated atoms do not have minimal surfaces but they do undergo exchange interactions. All surfaces implicitly defined by a molecule’s charge density are shown to have zero mean curvature and are consequently minimal surfaces. This finding extends to any potential of a molecule. The minimal surface is of importance in that it is indicative of a vanishing mean curvature whose measurement serves as a way of gauging the charge density or electrostatic potential’s local reliability, a quality assurance protocol absent in conventional crystallography but available to scanning force microscopy. The smaller the mean curvature of an atom, the more bonded is that atom in a molecule. The basis for this discovery is that implicit surfaces admit finite flux to cross them regardless of atomic affiliation, thus engendering exchange, correlation, and chemical bonding between the atoms in the underlying nuclear framework of a molecule. Finite flux in the charge density is a necessary condition for chemical bonding and the stability of molecules and is what makes the electron localization function (ELF) and the exchange-correlation functional (BLYP) useful.

  18. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  19. High energy charge exchange np and antipp scattering using the dual fermion model

    International Nuclear Information System (INIS)

    Weigt, G.

    1976-01-01

    The five independent helicity amplitudes Phisub(i)(s, t) calculated by Mandelstam from the Neveu-Schwarz-Ramond model for fermion-antifermion scattering are used in the Regge limit for a phenomenological description of high energy np and antipp charge exchange scattering. A forward spike which widens with increasing energy as well as an energy dependence changing from lower to higher energy data are reproduced by these non-evasive dual Born amplitudes using π, A 2 and rho Regge pole t-channel exchanges. (author)

  20. Surface Energy Balance System (SEBS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  1. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  2. One-parameter optimization of a nonempirical meta-generalized-gradient-approximation for the exchange-correlation energy

    International Nuclear Information System (INIS)

    Perdew, John P.; Ruzsinszky, Adrienn; Tao, Jianmin; Csonka, Gabor I.; Scuseria, Gustavo E.

    2007-01-01

    The meta-generalized-gradient-approximation (meta-GGA) for the exchange-correlation energy, as constructed by Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], has achieved usefully consistent accuracy for diverse systems and is the most reliable nonempirical density functional (and the most reliable nonhybrid) in common use. We present here an optimized version of this TPSS functional obtained by empirically fitting a single free parameter that controls the approach of the exchange enhancement factor to its rapidly-varying-density limit, while preserving all the exact constraints that the original TPSS functional satisfies. We find that molecular atomization energies are significantly improved with the optimized version and are even better than those obtained with the best hybrid functionals employing a fraction of exact exchange (e.g., the TPSS hybrid), while energy barrier heights are slightly improved; jellium surface energies remain accurate and almost unchanged. The one-parameter freedom of the TPSS functional may be useful even beyond the meta-GGA level, since the TPSS approximation is a natural starting point for the higher-level hyper-GGA

  3. Radiatel thermal exchange measurements between surfaces at 800K and above ambiant temperature

    International Nuclear Information System (INIS)

    Gauthier, A.

    1984-01-01

    The influence of surface treatments on the thermal power exchanged by radiation between two stainless steel coaxial cylinders was measured in an experimental device. In this device one of the cylinders was kept at 80K, the temperature of the other varying between 300 and 500K [fr

  4. Parameterization of atmosphere–surface exchange of CO2 over sea ice

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Jensen, Bjarne; Glud, Ronnie

    2014-01-01

    of the atmosphere and sea ice surface that can be measured or calculated on a routine basis. Parameters, which can be used in the conceptual model, are analysed based on data sampled from a seasonal fast-ice area, and the different variables influencing the exchange of CO2 between the atmosphere and ice...

  5. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    Science.gov (United States)

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  6. Home Performance with ENERGY STAR(R) Exchange

    Energy Technology Data Exchange (ETDEWEB)

    2003-10-01

    Handout for the Energy and Environmental Building Association's Building Solutions 2003 Conference and Expo: Chicago, Illinois, October 2003 The following summaries, provided by implementers of ''Home Performance with ENERGY STAR{reg_sign}'' around the country, are for use in the October 15 discussion during the Energy & Environmental Building Association (EEBA) Building Solutions, 2003 Conference in Chicago. The summaries and session discussions provide an overview of ''Home Performance with ENERGY STAR'', along with results and lessons learned from existing ''Home Performance'' implementers in New York, Wisconsin, Massachusetts, California, and Kansas City. Five future pilot projects set to begin in Georgia/Alabama, Idaho, Missouri, New Jersey and Texas will also be presented and discussed. Session topics will include the use of different training approaches, methods of quality assurance, and the role contractor certification plays in several of the programs. The session will conclude with a roundtable discussion of Home Performance issues by current and emerging implementers, with time for participant questions. ''Home Performance with ENERGY STAR'' uses the growing awareness and credibility of the ENERGY STAR brand to encourage and facilitate whole-house energy improvements in existing homes through self-sustaining energy efficiency programs. Whether you're a state energy official, utility program manager, contractor training professional or efficiency program implementer, you're sure to benefit from the unique presentations and networking opportunities that this session will offer.

  7. Hydrogen isotope exchange in tungsten irradiated sequentially with low-energy deuterium and protium ions

    NARCIS (Netherlands)

    Alimov, V. K.; Tyburska-Puschel, B.; Hoen, Mhjt; Roth, J.; Hatano, Y.; Isobe, K.; Matsuyama, M.; Yamanishi, T.

    2011-01-01

    Hydrogen isotope exchange in tungsten was investigated at various temperatures both after sequential exposure to low-energy deuterium (D) and protium (H) plasmas and after sequential irradiation with low-energy D and H ions. The methods used were thermal desorption spectroscopy, and the D((3)He,

  8. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  9. Molecular beam studies of energy transfer in scattering from crystal surfaces

    International Nuclear Information System (INIS)

    Guthrie, W.L.

    1983-01-01

    The translational energy distributions and angular distributions of D 2 O produced from the reaction of incident D 2 and O 2 on a (111) platinum single crystal surface have been measured through the use of a molecular beam-surface scattering apparatus equipped with a time-of-flight spectrometer. The translation energies were measured over the surface temperature range T/sub s/ = 664 K - 913 K and at scattering angles of 7 0 and 40 0 from the surface normal. The D 2 O translational energy, , was found to be approximately half the equilibrium value over the temperature range examined, with /2k varying from 280 K to 480 K. These results are discussed in terms of a non-equilibrium desorption model. The two-photon ionization spectrometer was built to investigate the internal rotational and vibrational energy distributions of NO scattered from Pt(111) surfaces. The rotational energy distributions were measured over the crystal temperature range of T/sub s/ = 400 K - 1200 K. The translational energy distributions and angular distributions were measured using the time-of-flight spectrometer over the crystal temperature range of 400 K - 110 K and for beam translational energies of 0.046 eV, 0.11 eV and 0.24 eV, so that complete energy exchange information for translation, rotation and vibration is available for this gas-surface system. Significant energy transfer was observed in all three modes

  10. Local description of the energy transfer process in a packed bed heat exchanger

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1990-01-01

    The energy transfer process in a packed-bed heat exchanger, in counter0flow arrangement is considered. The phenomenon is described through a Continuum Theory of Mixtures approach, in which fluid and solid (porous matrix) are regarded as continuous constituents possessing, each one, its own temperature and velocity fields. The heat 'exchangers consists of two channels, separated by an impermeable wall without thermal resistence, in which there exists a saturated flow. Some particular cases are simulated. (author)

  11. A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration

    International Nuclear Information System (INIS)

    Gadalla, Mamdouh A.

    2015-01-01

    Energy integration is a key solution in chemical process and crude refining industries to minimise external fuel consumption and to face the impact of growing energy crises. Typical energy integration projects can reach a reduction of heating fuels and cold utilities by up to 40% compared with original designs or existing installations. Pinch Analysis is a leading tool and regarded as an efficient method to increase energy efficiency and minimise fuel flow consumptions. It is valid for both natures of design, grassroots and retrofit situations. It can practically be applied to synthesise a HEN (heat exchanger network) or modify an existing preheat train for minimum energy consumption. Heat recovery systems or HENs are networks for exchanging heat between hot and cold process sources. All heat transferred from hot process sources into cold process sinks represent the scope for energy integration. On the other hand, energies required beyond this integrated amount are to be satisfied by external utilities. Graphical representations of Pinch Analysis, such as Composite and Grand Composite Curves are very useful for grassroots designs. Nevertheless, in retrofit situation the analysis is not adequate and besides it is graphically tedious to represent existing exchangers on such graphs. This research proposes a new graphical method for the analysis of heat recovery systems, applicable to HEN retrofit. The new graphical method is based on plotting temperatures of process hot streams versus temperatures of process cold streams. A new graph is constructed for representing existing HENs. For a given network, each existing exchanger is represented by a straight line, whose slope is proportional to the ratio of heat capacities and flows. Further, the length of each exchanger line is related to the heat flow transferred across this exchanger. This new graphical representation can easily identify exchangers across the pinch, Network Pinch, pinching matches and improper placement

  12. Surface oxygen exchange properties of bismuth oxide-based solid electrolytes and electrode materials

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Vinke, I.C.; de Vries, K.J.; Burggraaf, A.J.

    1989-01-01

    The surface oxygen exchange coefficient, ks, has been measured for the solid solution (Bi2O3)0.75(Er2O3)0.25 and (Bi2O3)0.6(Tb2O3)0.4 (abbreviated BE25 and BT40), using gas-phase 18O exchange techniques. The activation enth alpy of ks amounts to ΔE=110 kJ/molforBT40 andΔE=130 kJ/molforBE25. The

  13. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  14. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    Science.gov (United States)

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  15. Agriculture energy 2030. Report seminar. Summary of talks and exchanges

    International Nuclear Information System (INIS)

    2011-01-01

    Energy in agriculture is a major issue for its economic consequences for farms, for its relationships with environmental and climate issues, and for its influence on sector organisation and land planning. This seminar, through discussions on the relationships between energy, agriculture and territories and on the challenges for public action and research, proposes and discusses a comprehensive diagnosis of present challenges, as well as four scenarios by 2030. These scenarios are defined with respect to three evolution drivers: town-country mobility, economic dynamics, and natural resources

  16. Track structure for low energy ions including charge exchange processes

    International Nuclear Information System (INIS)

    Uehara, S.; Nikjoo, H.

    2002-01-01

    The model and development is described of a new generation of Monte Carlo track structure codes. The code LEAHIST simulates full slowing down of low-energy proton history tracks in the range 1 keV-1 MeV and the code LEAHIST simulates low-energy alpha particle history tracks in the range 1 keV-8 MeV in water. All primary ion interactions are followed down to 1 keV and all electrons to 1 eV. Tracks of secondary electrons ejected by ions were traced using the electron code KURBUC. Microdosimetric parameters derived by analysis of generated tracks are presented. (author)

  17. Blockchain for Smart Grid Resilience: Exchanging Distributed Energy at Speed, Scale and Security

    Energy Technology Data Exchange (ETDEWEB)

    Mylrea, Michael E.; Gourisetti, Sri Nikhil Gup

    2017-09-18

    Blockchain may help solve several complex problems related to integrity and trustworthiness of rapid, distributed, complex energy transactions and data exchanges. In a move towards resilience, blockchain commoditizes trust and enables automated smart contracts to support auditable multiparty transactions based on predefined rules between distributed energy providers and customers. Blockchain based smart contracts also help remove the need to interact with third-parties, facilitating the adoption and monetization of distributed energy transactions and exchanges, both energy flows as well as financial transactions. This may help reduce transactive energy costs and increase the security and sustainability of distributed energy resource (DER) integration, helping to remove barriers to a more decentralized and resilient power grid.

  18. Charge exchange between low energy Si ions and Cs adatoms

    Czech Academy of Sciences Publication Activity Database

    Chen, X.; Šroubek, Zdeněk; Yarmoff, J. A.

    2008-01-01

    Roč. 602, č. 2 (2008), s. 620-629 ISSN 0039-6028 R&D Projects: GA AV ČR IAA1067401; GA MŠk MEB060715 Institutional research plan: CEZ:AV0Z20670512 Keywords : ion-surface impact * scattering * silicon * alkali metals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.731, year: 2008

  19. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  20. Energy and CO $ _2 $; exchanges and influencing factors in spring ...

    Indian Academy of Sciences (India)

    Spring wheat (Triticum aestivum Linn.) is an important crop for food security in the desert-oasis farmland in the middle reaches of the Heihe River in northwestern China. We measured fluxes using eddy covarianceand meteorological parameters to explore the energy fluxes and the relationship between CO² flux and climate ...

  1. Energy Exchange Dynamics across L-H transitions in NSTX

    Science.gov (United States)

    Diallo, Ahmed

    2017-10-01

    H-mode is planned for future devices such as ITER, and is preceded by a low (L) to high (H) transition. A key question remains. What is the mechanism behind the L-H transition? Most theoretical descriptions of the L-H transition are based on the shear of the radial electric field and coincident ExB poloidal flow shear, which is thought to be responsible for the onset of the anomalous transport suppression that leads to the L-H transition. This talk will focus on the analysis of the flow dynamics across the L-H transition in NSTX. We analyze the L-H transition dynamics using the velocimetry of 2D edge turbulence data from gas-puff imaging (GPI). We determine the velocity components at the edge across the L-H transition for 17 discharges with three types of heating power (NBI, ohmic, and RF). Using a reduced model equation of edge flows and turbulence, the energy transfer dynamics is compared with the turbulence depletion hypothesis of the predator-prey model. In order for Reynolds work to suppress the turbulence, it must deplete the total turbulent free energy, including the thermal free-energy term. For this to occur, the increase in kinetic energy in the mean flow over the L-H transition must be comparable to the pre-transition thermal free energy. However, this ratio was found to be of order 10-2. Although there are significant simplifications in the theoretical model, they are unlikely to cause inaccuracy by two orders of magnitude, suggesting that direct turbulence depletion by the Reynolds work may not be large enough to explain the L-H transition on NSTX, contrary to the predator-prey model. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  2. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

    Science.gov (United States)

    Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G

    2016-05-10

    Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.

  3. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path

    International Nuclear Information System (INIS)

    Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Juergen

    2011-01-01

    Highlights: → Oxygen exchange kinetics of Pt on YSZ investigated by means of Pt model electrodes. → Two different geometry dependencies of the polarization resistance identified. → At higher temperatures the oxygen exchange reaction proceeds via a Pt surface path. → At lower temperatures a bulk path through the Pt thin film electrode is discussed. - Abstract: The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 deg. C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 deg. C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  4. Towards improved local hybrid functionals by calibration of exchange-energy densities

    International Nuclear Information System (INIS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-01-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities

  5. Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options

    Directory of Open Access Journals (Sweden)

    Antonie Kotzé

    2015-01-01

    Full Text Available Certain exotic options cannot be valued using closed-form solutions or even by numerical methods assuming constant volatility. Many exotics are priced in a local volatility framework. Pricing under local volatility has become a field of extensive research in finance, and various models are proposed in order to overcome the shortcomings of the Black-Scholes model that assumes a constant volatility. The Johannesburg Stock Exchange (JSE lists exotic options on its Can-Do platform. Most exotic options listed on the JSE’s derivative exchanges are valued by local volatility models. These models needs a local volatility surface. Dupire derived a mapping from implied volatilities to local volatilities. The JSE uses this mapping in generating the relevant local volatility surfaces and further uses Monte Carlo and Finite Difference methods when pricing exotic options. In this document we discuss various practical issues that influence the successful construction of implied and local volatility surfaces such that pricing engines can be implemented successfully. We focus on arbitrage-free conditions and the choice of calibrating functionals. We illustrate our methodologies by studying the implied and local volatility surfaces of South African equity index and foreign exchange options.

  6. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  7. Energy exchange in systems of particles with nonreciprocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.

  8. Energy exchange between the jets of the Antarctic Circumpolar Current and synoptic eddies in the Drake Passage and Scotia Sea

    Science.gov (United States)

    Koshlyakov, Mikhail; Savchenko, Darya; Tarakanov, Roman

    2017-04-01

    Energy exchange between the jets of the Antarctic Circumpolar Current (ACC) and ocean synoptic eddies in the surface layer of the Drake Passage and Scotia Sea is studied on the base of the satellite altimeter data for the period from 1993 to 2014 with the assumption that every ACC jet is enclosed between some fixed isopleths of the ocean surface absolute dynamics topography (ADT). All the ACC jets are dynamically unstable what results in the jet meandering, formation of cyclonic and anticyclonic eddies inside the meanders, intensification of the eddies up to reaching their maximum energy, subsequent eddy attenuation and their reverse merging with the mother jets. Corresponding fluctuations of the kinetic energy of the ACC jets and the eddies, generated by different jets, in the surface ocean layer were computed and analysed for the above mentioned 22 years period. As a main result of the analysis, if was confirmed that the kinetic energy of the ACC jets depends strongly on the intensivity of jet meandering and processes of eddy formation and reverse eddy absorption by the jets. Mean and extreme energy parameters of the jets and eddies were also estimated. The northern and middle jets of the South Polar Current are in the lead with respect to the formation of the ocean synoptic eddies.

  9. Heat pipe heat exchanger and its potential to energy recovery in the tropics

    Directory of Open Access Journals (Sweden)

    Yau Yat H.

    2015-01-01

    Full Text Available The heat recovery by the heat pipe heat exchangers was studied in the tropics. Heat pipe heat exchangers with two, four, six, and eight numbers of rows were examined for this purpose. The coil face velocity was set at 2 m/s and the temperature of return air was kept at 24°C in this study. The performance of the heat pipe heat exchangers was recorded during the one week of operation (168 hours to examine the performance data. Then, the collected data from the one week of operation were used to estimate the amount of energy recovered by the heat pipe heat exchangers annually. The effect of the inside design temperature and the coil face velocity on the energy recovery for a typical heat pipe heat exchanger was also investigated. In addition, heat pipe heat exchangers were simulated based on the effectiveness-NTU method, and their theoretical values for the thermal performance were compared with the experimental results.

  10. Gibbs free energy, surface stress and melting point of nanoparticle

    International Nuclear Information System (INIS)

    Luo, Wenhua; Hu, Wangyu

    2013-01-01

    Two approaches to calculating Gibbs free energy of nanoparticle are compared. It is found that the contribution from the vibrational entropy of surface atoms of nanoparticle to its Gibbs free energy can be ignored, and Jiang et al.'s formula [J. Phys. Chem. B 105 (2001) 6275] [27] for calculating surface stress is only valid around room temperature. Furthermore, an approximate relationship between surface stress and surface free energy of nanoparticles is revealed. Finally, the reason why effect of size dependent surface energy on melting point of nanoparticle was neglected is clarified

  11. A Parameter-Free Semilocal Exchange Energy Functional for Two-Dimensional Quantum Systems.

    Science.gov (United States)

    Patra, Abhilash; Jana, Subrata; Samal, Prasanjit

    2018-03-26

    The method of constructing semilocal density functional for exchange in two dimensions using one of the premier approaches, i.e., density matrix expansion, is revisited, and an accurate functional is constructed. The form of the functional is quite simple and includes no adjustable semiempirical parameters. In it, the kinetic energy dependent momentum is used to compensate nonlocal effects of the system. The functional is then examined by considering the very well-known semiconductor quantum dot systems. And despite its very simple form, the results obtained for quantum dots containing a higher number of electrons agrees pretty well with that of the standard exact exchange theory. Some of the desired properties relevant for the two-dimensional exchange functional and the lower bound associated with it are also discussed. It is observed that the above parameter-free semilocal exchange functional satisfies most of the discussed conditions.

  12. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    International Nuclear Information System (INIS)

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules

  13. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  14. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  15. Impulse exchange at the surface of the ocean and the fractal dimension of drifter trajectories

    Directory of Open Access Journals (Sweden)

    D. M. Summers

    2002-01-01

    Full Text Available An impulse-based model is developed to represent a coupling between turbulent flow in the atmosphere and turbulent flow in the ocean. In particular, it is argued that the atmosphere flowing horizontally over the ocean surface generates a velocity fluctuation field in the latter's near-surface flow. The mechanism for this can be understood kinematically in terms of an exchange of tangentially-oriented fluid impulse at the air-sea interface. We represent this exchange numerically through the creation of Lagrangian elements of impulse density. An indication of the efficacy of such a model would lie in its ability to predict the observed fractal dimension of lateral trajectories of submerged floats set adrift in the ocean. To this end, we examine the geometry of lateral tracer-paths determined from the present model.

  16. Inhomogeneity induced and appropriately parameterized semilocal exchange and correlation energy functionals in two-dimensions

    Science.gov (United States)

    Patra, Abhilash; Jana, Subrata; Samal, Prasanjit

    2018-04-01

    The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.

  17. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    Directory of Open Access Journals (Sweden)

    X. Wang

    2016-09-01

    Full Text Available Mercury (Hg emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0 from natural surfaces in China. The development implements recent advancements in the understanding of air–soil and air–foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr−1, including 565.5 Mg yr−1 from soil surfaces, 9.0 Mg yr−1 from water bodies, and −100.4 Mg yr−1 from vegetation. The air–surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air–surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake during April–October (rice planting to a net source when the farmland is not flooded (November–March. Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %, followed by spring (28 %, autumn (13 %, and winter (8 %. Model verification is accomplished using observational data of air–soil/air–water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008 that reported large emission from

  18. [A mathematical model of heat exchange between astronaut and environmental medium on the Lunar surface].

    Science.gov (United States)

    Wu, Q

    1997-12-01

    To maintain thermal balance of astronaut, and avoid injuries by heats of the solar radiation and radiation from the Moon, a detailed analysis of heat exchange between the astronaut and the environment medium was made and a mathematical model was established. It indicates that the Lunar surface temperature and the thermal current transmitted to the astronaut change with the incident angle of the solar radiation. The thermal balance of the astronaut is affected by absorption coefficient, radiation coefficient and thermal resistance.

  19. Tuning the metal-insulator transition in manganite films through surface exchange coupling with magnetic nanodots.

    Science.gov (United States)

    Ward, T Z; Gai, Z; Xu, X Y; Guo, H W; Yin, L F; Shen, J

    2011-04-15

    In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots.

  20. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Khalakhan, Ivan; Václavů, Michal [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Kovács, Gábor; Kozlov, Sergey M. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona (Spain); Kúš, Peter; Skála, Tomáš; Tsud, Natalia; Lavková, Jaroslava [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Potin, Valerie [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex (France); and others

    2016-03-01

    Graphical abstract: - Highlights: • Nanostructured Pt-Co thin catalyst films were grown on carbon by magnetron sputtering. • The surface composition of the nanostructured Pt-Co films was investigated by surface analysis techniques. • We carried out modeling of Pt-Co nanoalloys by computational methods. • Both experiment and modeling based on density functional theory showed that the surface of Pt-Co nanoparticles is almost exclusively composed of Pt atoms. - Abstract: Recently we have tested a magnetron sputtered Pt-Co catalyst in a hydrogen-fed proton exchange membrane fuel cell and showed its high catalytic activity for the oxygen reduction reaction. Here we present further investigation of the magnetron sputtered Pt-Co thin film catalyst by both experimental and theoretical methods. Scanning electron microscopy and transmission electron microscopy experiments confirmed the nanostructured character of the catalyst. The surface composition of as-deposited and annealed at 773 K Pt-Co films was investigated by surface analysis techniques, such as synchrotron radiation photoelectron spectroscopy and X-ray photoelectron spectroscopy. Modeling based on density functional theory showed that the surface of 6 nm large 1:1 Pt-Co nanoparticles is almost exclusively composed of Pt atoms (>90%) at typical operation conditions and the Co content does not exceed 20% at 773 K, in agreement with the experimental characterization of such films annealed in vacuum. According to experiment, the density of valence states of surface atoms in Pt-Co nanostructures is shifted by 0.3 eV to higher energies, which can be associated with their higher activity in the oxygen reduction reaction. The changes in electronic structure caused by alloying are also reflected in the measured Pt 4f, Co 3p and Co 2p photoelectron peak binding energies.

  1. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

    Science.gov (United States)

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi

    2016-02-01

    Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn 0.9 In 0.1 P 2 O 7 -based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V 4+ /V 3+ , V 3+ /V 2+ , and Sn 4+ /Sn 2+ redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g -1 for VOSO 4 and SnSO 4 , respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  2. Application of a new point measurement to estimate goundwater-surface water exchange

    DEFF Research Database (Denmark)

    Cremeans, Mackenzie; Devlin, J.F.; McKnight, Ursula S.

    The StreamBed Point Velocity Probe (SBPVP), a new point measurement device, measures in situ groundwater velocities at the groundwater-surface water interface (GWSWI, based on a mini-tracer test on the probe surface. This device yields velocities without reliance on estimations of hydraulic...... of concentrations and velocities. Given these localized hot spots, detailed information about flow at the GWSWI could be vital to understanding solute, and, by extension, nutrient, movement in ecosystems affected by exchange. Such information could be crucial to effective remediation design....

  3. A review of measurement and modelling results of particle atmosphere-surface exchange

    DEFF Research Database (Denmark)

    Pryor, Sara; Gallagher, M.; Sievering, H.

    2008-01-01

    Atmosphere-surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (upsilon(d)) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima...... approaches and innovations in experimental approaches, and synthesize common conclusions of experimental and modelling studies. We end by proposing a number of research avenues that should be pursued in to facilitate further insights and development of improved numerical models of atmospheric particles....

  4. Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model

    KAUST Repository

    Espath, L. F. R.

    2016-05-23

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to gain further insight into the model. Highly resolved simulations involving density-driven flows and the merging of droplets allow us to analyse these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modelling droplet dynamics within the framework of NSCH equations is a sensible approach worthy of further research. © 2016 Cambridge University Press.

  5. Energy and CO2 exchanges and influencing factors in spring wheat ...

    Indian Academy of Sciences (India)

    Energy and CO2 exchanges and influencing factors in spring wheat ecosystem along the Heihe River, northwestern China. Shuchen Sun1,3, Ming'an Shao1,2,∗ and Hongbei Gao4. 1State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water. Conservation, Chinese ...

  6. Implicit numerical method for Compton scattering energy exchange between electrons and non-Planckian radiation

    International Nuclear Information System (INIS)

    Winslow, A.M.

    1975-01-01

    The multi-frequency grey method is extended to include Compton scattering. In this way one arrives at an expression for the total Compton scattering energy exchange rate, which, for a Planckian radiation field, reduces to a well known formula. 15 references, 5 graphs

  7. Turbulent exchange of energy, momentum, and reactive gases between high vegetation and the atmospheric boundary layer

    NARCIS (Netherlands)

    Shapkalijevski, M.M.

    2017-01-01

    This thesis deals with the representation of the exchange of energy, momentum and chemically reactive compounds between the land, covered by high vegetation, and the lowest part of the atmosphere, named as atmospheric boundary layer (ABL).

    The study presented in this thesis introduces the

  8. Statistical properties of the energy exchanged between two heat baths coupled by thermal fluctuations

    DEFF Research Database (Denmark)

    Ciliberto, S.; Imparato, A.; Naert, A.

    2013-01-01

    We study both experimentally and theoretically the statistical properties of the energy exchanged between two electrical conductors, kept at different temperatures by two different heat reservoirs, and coupled by the electrical thermal noise. Such a system is ruled by the same equations as two...

  9. Water and energy exchange in East Siberian forest: A synthesis, Agricultural and Forest Meteorology

    NARCIS (Netherlands)

    Maximov, T.; Ohta, T.; Dolman, A.J.

    2008-01-01

    This paper summarizes and synthesises the results obtained in several recent studies on water and energy exchange of East Siberian forests located on permafrost. It is found that annual evaporation of these forests shows relatively small inter-annual variation (147-196 mm). The availability of

  10. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  11. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  12. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  13. Characterization of photosynthetic gas exchange in leaves under simulated adaxial and abaxial surfaces alternant irradiation.

    Science.gov (United States)

    Zhang, Zi-Shan; Li, Yu-Ting; Gao, Hui-Yuan; Yang, Cheng; Meng, Qing-Wei

    2016-07-05

    Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight. To simulate adaxial and abaxial surfaces alternant irradiation (ad-ab-alt irradiation), the adaxial or abaxial surface of leaves were exposed to light regimes that fluctuated between 100 and 1,000 μmol m(-2) s(-1). Compared with constant adaxial irradiation, simulated ad-ab-alt irradiation suppressed net photosynthetic rate (Pn) and transpiration (E) but not water use efficiency. These suppressions were aggravated by an increase in alternant frequency of the light intensity. When leaves were transferred from constant light to simulated ad-ab-alt irradiation, the maximum Pn and E during the high light period decreased, but the rate of photosynthetic induction during this period remained constant. The sensitivity of photosynthetic gas exchange to simulated ad-ab-alt irradiation was lower on abaxial surface than adaxial surface. Under simulated ad-ab-alt irradiation, higher Pn and E were measured on abaxial surface compared with adaxial surface. Therefore, bifacial leaves can fix more carbon than leaves with two "sun-leaf-like" surfaces under ad-ab-alt irradiation. Photosynthetic research should be conducted under dynamic conditions that better mimic nature.

  14. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes.

    Science.gov (United States)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T; Clark, Kyle; Weber, Adam Z; Kostecki, Robert

    2011-10-13

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using direct-current voltammetry and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion membrane was examined.

  15. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  16. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.

    Science.gov (United States)

    García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto

    2016-11-01

    The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.

  17. The effect of rotational and translational energy exchange on tracer diffusion in rough hard sphere fluids.

    Science.gov (United States)

    Kravchenko, Olga; Thachuk, Mark

    2011-03-21

    A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."

  18. Reducing the energy consumption of an earth–air heat exchanger with a PID control system

    International Nuclear Information System (INIS)

    Diaz-Mendez, S.E.; Patiño-Carachure, C.; Herrera-Castillo, J.A.

    2014-01-01

    Highlights: • The application of control actions to green technologies has been simulated. • Energy consumption of green technologies can be reduced even more. • The efficiency of green technologies can be raised. • Environmental concerns can be diminished. • The sustainability of the planet can be increased. - Abstract: Reducing environmental emissions is one of the challenges that human being has to overcome. It can only be reached with a proper energetic efficiency and management of the processes that exist in the society nowadays. Several academic works have mentioned that raising the efficiency of a process it also increases sustainability and in turn decreases the environmental impact. One process that requires much attention is the cooling and heating of buildings; this process contributes to the major part of the electric bill, in particular, if a conventional and old air conditioning is used as commonly occurs in many countries. In recent years there have been developed new alternatives that are used in few countries, such as the earth–air heat exchanger, where air is passed through a heat exchanger buried a few meters below the ground. The heat exchanger takes advantage of the well-known difference between the temperature of the surrounding air and the temperature of the ground for cooling or heating the air that is subsequently injected into the buildings. This process requires less energy, then in the present work is thought that a PID (Proportional, Integral and Derivative) controller can be applied to an earth–air heat exchanger to reduce even more the energy consumption. Therefore, a simulation of a thermodynamic model of an earth–air heat exchanger was done and used along with a PID controller, to estimate savings in energy consumption. The results show that the energy consumption can be reduced up to 87% with the PID control, hence the efficiency of the process is increased as well as the sustainability of the planet and thus the

  19. Kinetics of the homogeneous exchange of alpha-lactalbumin adsorbed on titanium oxide surface.

    Science.gov (United States)

    Bentaleb, A; Haïkel, Y; Voegel, J C; Schaaf, P

    1998-06-05

    The homogeneous exchange process whereby alpha-lactalbumine molecules adsorbed on hydrophilic titanium oxide particles are replaced by alpha-lactalbumine molecules in solution has been investigated by means of a 125I radio-labeling technique, alpha-lactalbumine is a compact and highly negatively charged protein, making this study complementary to previous work devoted to the general understanding of the exchange mechanisms of adsorbed proteins on solid surfaces. The isotherm of alpha-lactalbumine exhibits bimodal adsorption shape, and the exchange process whereby adsorbed proteins are replaced by new incoming ones from the bulk solution has been studied at both the upper and the lower plateau of the isotherm. In the upper plateau the exchange process was found to be of first order with respect to the bulk molecules, and the release rate constant was equal to 0.914 L. mol-1.s-1. This behavior is identical to what has been observed with other proteinic systems. In the lower plateau domain, in contrast, the protein release process is independent of the concentration of proteins in the bulk, but the release rates are higher than the pure desorption rates. This constitutes, to our knowledge, a behavior that never before has been observed and that remains to be explained.

  20. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Science.gov (United States)

    Alekseychik, Pavel; Mammarella, Ivan; Karpov, Dmitry; Dengel, Sigrid; Terentieva, Irina; Sabrekov, Alexander; Glagolev, Mikhail; Lapshina, Elena

    2017-08-01

    Very few studies of ecosystem-atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2) and energy budgets in a typical bog of the western Siberian middle taiga based on May-August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m-2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  1. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  2. Deuterium exchange with the surface hydrogen of zeolite catalysts. 7. Nickel-containing zeolites

    International Nuclear Information System (INIS)

    Minachev, Kh.M.; Dmitriev, R.V.; Penchev, V.; Kanazirev, V.; Minchev, Kh.; Kasimov, Ch.K.

    1982-01-01

    An in-depth study of heteromolecular isotopic hydrogen exchange (HIHE) in Ni zeolites was undertaken with a view to measuring surface OH group concentrations and determining effectiveness of Ni, on the one hand, and Pd and Pt, on the other, in promoting chemical reactions. Here the degree of metal dispersion in the Ni zeolite was characterized through H 2 chemisorption and thermosorption data. A study was made of the action of these zeolites in catalyzing the disproportionation of toluene. The data obtained here have given an understanding of the effect of the metal, the OH-group concentration, and the mutual arrangement of OH groups and Ni atoms on catalyzed toluene reactions. Results indicated that HIHE occurs on reduced nickel-containing zeolite catalysts at temperatures in excess of 100 0 C, and is limited by the rate of transport of activated hydrogen from the metal particles on the support surface. High-temperature oxidation-reduction of the nickel-containing zeolite-leads to the formation of coarse nickel crystals on the external zeolite crystal faces. Also, the reduced NiCaNaY zeolites show high catalytic activity in the toluene disproportionation only when the nickel has been introduced through ion exchange. Both isotopic exchange and toluene disproportionation are promoted when the nickel particles and OH groups are in close proximity

  3. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  4. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Faculty of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-03-15

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  5. Contrasting response of European forest and grassland energy exchange to heatwaves

    DEFF Research Database (Denmark)

    Teuling, A.J.; Seneviratne, S.I.; Stöckli, R.

    2010-01-01

    on the exchange of water and energy and the interaction of this exchange with the soil water balance during heatwaves is largely unknown. Here we analyse observations from an extensive network of flux towers in Europe that reveal a difference between the temporal responses of forest and grassland ecosystems...... and induces a critical shift in the regional climate system that leads to increased heating. We propose that this mechanism may explain the extreme temperatures in August 2003. We conclude that the conservative water use of forest contributes to increased temperatures in the short term, but mitigates...

  6. Low-energy magnetoelectric control of domain states in exchange-coupled heterostructures

    Science.gov (United States)

    Al-Mahdawi, Muftah; Pati, Satya Prakash; Shiokawa, Yohei; Ye, Shujun; Nozaki, Tomohiro; Sahashi, Masashi

    2017-04-01

    The electric manipulation of antiferromagnets has become an area of great interest recently for zero-stray-field spintronic devices, and for their rich spin dynamics. Generally, the application of antiferromagnetic media for information memories and storage requires a heterostructure with a ferromagnetic layer for readout through the exchange-bias field. In magnetoelectric and multiferroic antiferromagnets, the exchange coupling exerts an additional impediment (energy barrier) to magnetization reversal by the applied magnetoelectric energy. We proposed and verified a method to overcome this barrier. We controlled the energy required for switching the magnetic domains in magnetoelectric Cr2O3 films by compensating the exchange-coupling energy from the ferromagnetic layer with the Zeeman energy of a small volumetric spontaneous magnetization found for the sputtered Cr2O3 films. Based on a simplified phenomenological model of the field-cooling process, the magnetic and electric fields required for switching could be tuned. As an example, the switching of antiferromagnetic domains around a zero-threshold electric field was demonstrated at a magnetic field of 2.6 kOe.

  7. Short-range second order screened exchange correction to RPA correlation energies

    Science.gov (United States)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  8. Short-range second order screened exchange correction to RPA correlation energies.

    Science.gov (United States)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-28

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  9. Technically exploitable geothermal energy by using Borehole Heat Exchangers: A revisit of the Cologne case

    Science.gov (United States)

    Shao, Haibing; Hein, Philipp; Bucher, Anke; Kolditz, Olaf

    2017-04-01

    In previous studies, the amount of shallow geothermal energy was estimated by assuming a uniform temperature drop of at least 2 °C in the aquifer. In this work, a more comprehensive numerical model has been employed to evaluate the technically exploitable geothermal energy by using Borehole Heat Exchanger coupled Ground Source Heat Pump systems. A case study on the city of Cologne was revisited, adopting the same hydrogeological conditions and simulating the long-term evolution of the subsurface temperature field subject to the operation of borehole heat exchangers. It is found that the cities' heating demand could potentially be fully covered by BHE-coupled GSHP systems. The resulting equivalent uniform temperature drop is then around 1.6 °C . It was also found that utilising geothermal energy will lead to at least 50% reduction of CO2 equivalent emission in comparison to conventional district heating, depending on the source of electricity used for heat pump operation.

  10. Flow with vibrational energy exchange, application to CO2 electric laser

    International Nuclear Information System (INIS)

    Dahan, Claude.

    1974-01-01

    The performances of a continuous wave (CO 2 , N 2 , He) laser ionized by an electron beam are calculated. Several types of phenomena are considered: energy exchange processes between molecules of laser medium, electron molecular excitation processes, aerodynamic phenomena: the energy exchanges accompanying the laser effect generate important quantities of heat, which have to be evacuated by the flow. After a survey of the fundamental assumptions on molecular phenomena, a computer code was developed for following, along the flow, the evolution of the thermodynamic parameters (pressure, temperature), of the laser gain, and of the electrical properties (electron density and temperature). To provide a finer description of the last ones, a model giving the energy distribution of the electrons in the laser medium was established [fr

  11. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  12. Effects of energy dependent Δ-nucleus optical potential in charge exchange reactions

    International Nuclear Information System (INIS)

    Helgesson, J.; Dmitriev, V.

    1994-01-01

    The Δ-nucleus optical potential from microscopic calculations in nuclear matter is used to study the effects of its energy dependence in charge-exchange (p, n) and ( 3 He, T) reactions. The neutron or triton spectrum is calculated via response function of a finite nucleus accounting for pion renormalization effects and short-range correlations. Only very small effects, 1-2%, were found for ( 3 He, T) reaction where the changes in the high energy part of the triton spectrum are enhanced relative to the low-energy part by ( 3 He, T) form factor. For the (p, n) reaction no visible effects were found. (orig.)

  13. Theoretical characterization of the potential energy surface for the reversible reaction H + O2 yields HO2(asterisk) yields OH + O. III - Computed points to define a global potential energy surface

    Science.gov (United States)

    Walch, Stephen P.; Duchovic, Ronald J.

    1991-01-01

    Computed energies and geometries are reported which, combined with previously published calculations, permit a global representation of the potential energy surface for the reaction H + O2 yields HO2(asterisk) yields OH + O. These new calculations characterize the potential energy surface (PES) for all H atom angles of approach to O2 and for the region of the inner repulsive wall. The region of the T-shaped H-O2 exchange saddle point is connected with the constrained energy minimum (CEM) path, and a new collinear H-O2 exchange saddle point is characterized which lies only 9 kcal/mol above the H + O2 asymptote. A vibrational analysis which utilizes local cubic and quartic polynomial representations of the PES along the CEM path has been carried out. Optimal geometries, energies, and harmonic frequencies are reported along with anharmonic analyses for the O2 and OH asymptotes and for the HO2 minimum region of the PES.

  14. Beneficial Effect of Surface Decorations on the Surface Exchange of Lanthanum Strontium Ferrite and Dual Phase Composites

    DEFF Research Database (Denmark)

    Ovtar, Simona; Søgaard, Martin; Song, Jia

    2016-01-01

    . These perovskites possess a mixed ionic and electronic conductivity (MIEC), which can be highly beneficial for the processes on oxygen electrode surfaces. The oxygen transport through a MIEC is determined by the rate of the oxygen exchange over the gas-solid interface and the diffusivity of oxide ions and electrons...... (or holes) in the bulk. The oxygen exchange process over the surface in general involves several reaction steps, O2 adsorption, dissociation, charge transfer and incorporation of ionic species. The Co-free end member of the material class; LSF (e.g. (La0.6Sr0.4FeO3-δ) is fairly low cost and chemically...... stable in both mildly reducing and oxidizing atmosphere. The electronic conductivity is excellent (283 S/cm at 800 °C) but the ionic conductivity especially at low temperature is limited (0.014 S/cm, 800 °C). Due to these properties the material is a candidate for use in composite membranes...

  15. Modeling of a nanoscale flexoelectric energy harvester with surface effects

    Science.gov (United States)

    Yan, Zhi

    2017-04-01

    This work presents the modeling of a beam energy harvester scavenging energy from ambient vibration based on the phenomenon of flexoelectricity. By considering surface elasticity, residual surface stress, surface piezoelectricity and bulk flexoelectricity, a modified Euler-Bernoulli beam model for the energy harvester is developed. After deriving the requisite energy expressions, the extended Hamilton's principle and the assumed-modes method are employed to obtain the discrete electromechanical Euler-Lagrange's equations. Then, the expressions of the steady-state electromechanical responses are given for harmonic base excitation. Numerical simulations are conducted to show the output voltage and the output power of the flexoelectric energy harvesters with different materials and sizes. Particular emphasis is given to the surface effects on the performance of the energy harvesters. It is found that the surface effects are sensitive to the beam geometries and the surface material constants, and the effect of residual surface stress is more significant than that of the surface elasticity and the surface piezoelectricity. The axial deformation of the beam is also considered in the model to account for the electromechanical coupling due to piezoelectricity, and results indicate that piezoelectricity will diminish the output electrical quantities for the case investigated. This work could lead to the development of flexoelectric energy harvesters that can make the micro- and nanoscale sensor systems autonomous.

  16. Characterization of structure of flaws in silicate glass surfaces by ion-exchange in lithium salt melts

    International Nuclear Information System (INIS)

    Kolitsch, A.; Richter, E.

    1978-03-01

    A method for characterization of flaws structure in silicate glass surfaces by ion-exchange in lithium salt melts is demonstrated. The possibilities and limits of the method are shown and several applications are discussed. (author)

  17. Origins of the Exchange-Bias Phenomenology, Coercivity Enhancement, and Asymmetric Hysteretic Shearing in Core-Surface Smart Nanoparticles

    Directory of Open Access Journals (Sweden)

    Rıza Erdem

    2016-01-01

    Full Text Available We have used a spin-1 Ising model Hamiltonian with dipolar (bilinear, J, quadrupolar (biquadratic, K, and dipolar-quadrupolar (odd, L interactions in pair approximation to investigate the exchange-bias (EB, coercive field, and asymmetric hysteretic shearing properties peculiar to core/surface (C/S composite nanoparticles (NPs. Shifted hysteresis loops with an asymmetry and coercivity enhancement are observed only in the presence of the odd interaction term in the Hamiltonian expression and their magnitudes show strong dependence on the value of L. The observed coercivity and EB in C/S NPs originated from nonzero odd coupling energies and their dependence on temperature (T and particle size (R are also discussed in relation to experimental findings.

  18. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.

    Science.gov (United States)

    Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto

    2014-04-05

    The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.

  19. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    Science.gov (United States)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  20. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  1. Molecular beam study of the mechanism of catalyzed hydrogen--deuterium exchange on platinum single crystal surfaces

    International Nuclear Information System (INIS)

    Bernasek, S.L.; Somorjai, G.A.

    1975-01-01

    The hydrogen--deuterium exchange reaction was studied by molecular beam scattering on low and high Miller index crystal faces of platinum in the surface temperature range of 300--1300degreeK. Under the condition of the experiments which put strict limitation on the residence time of the detected molecules, the reaction product, HD, was readily detectable from the high Miller index, stepped surfaces (integrated reaction probability, defined as total desorbed HD flux divided by D 2 flux, is approx.10/sup -1/) while HD formation was below the limit of detectability on the Pt(111) low Miller index surface (reaction probability 2 beam pressure and half-order in H 2 background pressure. The absence of beam kinetic energy dependence of the rate indicates that the molecular adsorption does not require activation energy. The surface is able to store a sufficiently large concentration of atoms which react with the molecules by a two-branch mechanism. The rate constants for this two-branch mechanism were determined under conditions of constant H atom coverage, reducing the bimolecular reaction to a pseudo-first-order reaction. At lower temperatures ( 1 = (2plus-or-minus1) times10 5 exp(-4.5plus-or-minus0.5 kcal/RT) sec/sup -1/. The rate determining step appears to be the diffusion of the D 2 molecule on the surface to a step site where HD is formed via a three-center (atom--molecule) reaction, or via a two-center (atom--atom) reaction subsequent to D 2 dissociation at the step. At higher temperatures (>600degreeK) the reaction between an adsorbed H atom and an incident D 2 gas molecule competes with the low temperature branch. The rate constant for this branch is k 2 = (1plus-or-minus2) times10 2 exp(-0.6plus-or-minus0.3 kcal/RT) sec/sup -1/

  2. Fingerprints of surface magnetism in Cr2O3 based exchange bias heterostructures

    Science.gov (United States)

    He, Xi; Wang, Yi; Binek, Ch.

    2009-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic (AF) compounds like Cr2O3 (max. αzz 4ps/m) and also cross-coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. In exchange bias systems the bias field depends critically on the AF interface magnetization. Hence, a strong relation between the latter and the surface magnetization of the free Cr2O3 pinning layer can be expected. Our recent research indicates that there are surface magnetic phase transitions in free Cr2O3 (111) films accompanying surface structural phase transitions. Well defined AF interface magnetization is initialized through ME annealing to T=20K. Subsequently, the interface magnetization is thermally driven through phase transitions at T=120 and 210K. Their effects on the exchange bias are studied in Cr2O3 (111)/CoPt films with the help of polar Kerr and SQUID magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh et al. 2007 Nature Materials 6 21. Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.

  3. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface

    International Nuclear Information System (INIS)

    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.

    2009-01-01

    In the present work, the effect of the use of a nanofluid in a miniature plate heat exchanger (PHE) with modulated surface has been studied both experimentally and numerically. First, the thermophysical properties (i.e., thermal conductivity, heat capacity, viscosity, density and surface tension) of a typical nanofluid (CuO in water, 4% v/v) were systematically measured. The effect of surface modulation on heat transfer augmentation and friction losses was then investigated by simulating the existing miniature PHE as well as a notional similar PHE with flat plate using a CFD code. Finally, the effect of the nanofluid on the PHE performance was studied and compared to that of a conventional cooling fluid (i.e., water). The results suggest that, for a given heat duty, the nanofluid volumetric flow rate required is lower than that of water causing lower pressure drop. As a result, smaller equipment and less pumping power are required. In conclusion, the use of the nanofluids seems to be a promising solution towards designing efficient heat exchanging systems, especially when the total volume of the equipment is the main issue. The only drawbacks so far are the high price and the possible instability of the nanoparticle suspensions.

  4. Atomic energy: exchange of letters between Canada and the European Atomic Energy Community (EURATOM)

    International Nuclear Information System (INIS)

    1978-01-01

    Letters exchanged between the Charge d'affaires, mission of Canada to the European Communites and the Commissioner of the European Communities, concerning safeguards, levels of physical protection, and further intra-Community trade of nuclear materials exported from Canada to the European Community

  5. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-01-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U VI to U IV

  6. Shapley Value-Based Payment Calculation for Energy Exchange between Micro- and Utility Grids

    Directory of Open Access Journals (Sweden)

    Robin Pilling

    2017-10-01

    Full Text Available In recent years, microgrids have developed as important parts of power systems and have provided affordable, reliable, and sustainable supplies of electricity. Each microgrid is managed as a single controllable entity with respect to the existing power system but demands for joint operation and sharing the benefits between a microgrid and its hosting utility. This paper is focused on the joint operation of a microgrid and its hosting utility, which cooperatively minimize daily generation costs through energy exchange, and presents a payment calculation scheme for power transactions based on a fair allocation of reduced generation costs. To fairly compensate for energy exchange between the micro- and utility grids, we adopt the cooperative game theoretic solution concept of Shapley value. We design a case study for a fictitious interconnection model between the Mueller microgrid in Austin, Texas and the utility grid in Taiwan. Our case study shows that when compared to standalone generations, both the micro- and utility grids are better off when they collaborate in power exchange regardless of their individual contributions to the power exchange coalition.

  7. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  8. 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange

    Science.gov (United States)

    Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.

    2014-01-01

    A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.

  9. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan

    2014-01-01

    We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed....... Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals...

  10. Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    S. Launiainen

    2010-12-01

    Full Text Available Twelve-years of eddy-covariance measurements conducted above a boreal Scots pine forest in Hyytiälä, Southern Finland, were analyzed to assess the seasonal and inter-annual variability of surface conductance (gs and energy partitioning. The gs had distinct annual course, driven by the seasonal cycle of the Scots pine. Low gs (2–3 mm s−1 in April cause the sensible heat flux to peak in May–June while evapotranspiration takes over later in July–August when gs is typically 5–7 mm s−1. Hence, during normal years Bowen ratio decreases from 4–6 in April to 0.7–0.9 in August. Sensitivity of gs to ambient vapor pressure deficit (D was relatively constant but the reference value at D = 1 kPa varied seasonally and between years. Only two drought episodes when volumetric soil moisture content in upper mineral soil decreased below 0.15 m3 m−3 occurred during the period. Below this threshold value, transpiration was strongly reduced, which promoted sensible heat exchange increasing Bowen ratio to 3–4. Annual evapotranspiration varied between 218 and 361 mm and accounted between 50% and 90% of equilibrium evaporation. The forest floor contributed between 16 and 25% of the total evapotranspiration on annual scale. The fraction stayed similar over the observed range of environmental conditions including drought periods. The inter-annual variability of evapotranspiration could not be linked to any mean climate variable while the summertime sensible heat flux and net radiation were well explained by global radiation. The energy balance closure varied annually between 0.66 and 0.95 and had a distinct seasonal cycle with worse closure in spring when a large proportion of available energy is partitioned into sensible heat.

  11. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)

    2016-06-29

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  12. Spatio-temporal surface-subsurface water exchanges: from the local to the watershed scale

    Science.gov (United States)

    Rivière, Agnès; Flipo, Nicolas; Mouhri, Amer; Ansart, Patrick; Baudin, Aurélien; Berrhouma, Asma; Bodet, Ludovic; Cocher, Emmanuel; Cucchi, Karina; Durand, Véronique; Flageul, Sébastien; de Fouquet, Chantal; Goblet, Patrick; Hovhannissian, Gaghik; Jost, Anne; Pasquet, Sylvain; Rejiba, Fayçal; Rubin, Yoram; Tallec, Gaëlle; Mouchel, Jean-Marie

    2016-04-01

    Understanding the temporal and spatial variations of the surface-subsurface water exchanges is a prerequisite to achieve sustainable water use in basin. The concept of nested stream-aquifer interfaces (Flipo et al., 2014) is used to simulate the variation of the spatio-temporal surface-subsurface exchanges at the watershed scale from LOcal MOnitoring Stations (LOMOSs) measurements of the stream-aquifer exchanges. This method is applied along the stream network of the Avenelles basin. The Avenelles basin (46 km2) is located 70 km east from Paris. The basin is composed of a multi-layer aquifer system which consists of two limestone aquifers: the Brie aquifer (Oligocene) and the Champigny aquifer (Eocene) separated by a clayey aquitard. The meandering river is shallow, connected with the Brie aquifer in its upstream part and the Champigny aquifer in its downstream part. A high-frequency hydrologic monitoring network was deployed on the basin from 1960. The network measures water levels and water temperatures in the aquifers, and in-stream discharge rates. Five LOMOSs have been operating since 2012 along the stream-network (two upstream, two intermediate, and one downstream site) to monitor spatio-temporal stream-aquifer exchanges over years. LOMOSs are composed of one or two shallow piezometers to monitor the temperature and the hydraulic head variations in the aquifers, two hyporheic zone (HZ) temperature profiles located close to each river bank and one water level and temperature monitoring system in the river. A local 2D thermo-hydro model is used to determine hydrogeological and thermal properties of the aquifer and the HZ by inversion and to quantify the stream-aquifer exchanges at the local scale. We performed a pseudo 3D hydro(geo)logical simulation, over 23 years, at the Avenelles basin scale by the used of CAWAQS modelling platform. The CAWAQS platform is composed of four spatially distributed modules (Surface, Sub-surface, River and Groundwater

  13. Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Hiser, Diana E; O'Connell, John P; Fernandez, Erik J

    2014-08-15

    Recent studies with proteins indicate that conformational changes and aggregation can occur during ion exchange chromatography (IEC). Such behavior is not usually expected, but could lead to decreased yield and product degradation from both IEC and multi mode chromatography (MMC) that has ligands of both hydrophobic and charged functionalities. In this study, we used hydrogen exchange mass spectrometry to investigate unfolding of the model protein BSA on IEC and MMC surfaces under different solution conditions at 25°C. Increased solvent exposure, indicating greater unfolding relative to that in solution, was found for protein adsorbed on cationic IEC and MMC surfaces in the pH range of 3.0 to 4.5, where BSA has decreased stability in solution. There was no effect of anionic surfaces at pH values in the range from 6.0 to 9.0. Differences of solvent exposure of whole molecules when adsorbed and in solution suggest that adsorbed BSA unfolds at lower pH values and may show aggregation, depending upon pH and the surface type. Measurements on digested peptides showed that classifications of stability can be made for various regions; these are generally retained as pH is changed. When salt was added to MMC systems, where electrostatic interactions would be minimized, less solvent exposure was seen, implying that it is the cationic moieties, rather than the hydrophobic ligands, which cause greater surface unfolding at low salt concentrations. These results suggest that proteins of lower stability may exhibit unfolding and aggregation during IEC and MMC separations, as they can with hydrophobic interaction chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effect of water content and specific surface on exchange capacity of cellulose anionite

    Energy Technology Data Exchange (ETDEWEB)

    Asaulova, T.A.; Lutysyk, R.V.; Morin, B.P.; Ennan, A.A.

    1985-07-01

    The specific features of fibrous anion exchange cellulose materials make them suitable for sanitary gas purification, especially as individual respirators to protect the wearer from acidic gases and vapors. In the USSR, highly basic cellulose anionite TSM-A2ND used for this purpose is prepared in nonwoven form from TsM-A2 fiber, which is obtained by graft polymerization of cellulose (viscose staple fiber) to 2-methyl-5-vinylpyridine followed by alkylation with epichlorohydrin. Gas adsorption is known to increase with rising water content and a study was made of the effects of pore structure and type of water bond with TsM-A2 fiber on its exchange capacity. Fiber samples containing 15-63% grafted polymethyl-vinylpyridine were used. The study shows that although TsM-A2 has a high water capacity and a highly developed surface, its exchange capacity is relatively low. Evidently, the effectiveness of similar adsorbents may be increased by changing their physical structure and thereby increasing access to ionogenic groups. 11 references, 3 figures.

  15. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  16. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    DEFF Research Database (Denmark)

    Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead...... of the noninteracting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy...... on the potential energy curves in the equilibrium region, improving the accuracy of binding energies and equilibrium bond distances when second-order perturbation theory is appropriate....

  17. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    International Nuclear Information System (INIS)

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs

  18. Dynamical contribution to the heat conductivity in stochastic energy exchanges of locally confined gases

    Science.gov (United States)

    Gaspard, Pierre; Gilbert, Thomas

    2017-04-01

    We present a systematic computation of the heat conductivity of the Markov jump process modeling the energy exchanges in an array of locally confined hard spheres at the conduction threshold. Based on a variational formula (Sasada 2016 (arXiv:1611.08866)), explicit upper bounds on the conductivity are derived, which exhibit a rapid power-law convergence towards an asymptotic value. We thereby conclude that the ratio of the heat conductivity to the energy exchange frequency deviates from its static contribution by a small negative correction, its dynamic contribution, evaluated to be -0.000 373 in dimensionless units. This prediction is corroborated by kinetic Monte Carlo simulations which were substantially improved compared to earlier results.

  19. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs.

  20. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market

    International Nuclear Information System (INIS)

    Yusta, J.M.; De Oliveira-De Jesus, P.M.; Khodr, H.M.

    2008-01-01

    This paper addresses an optimal strategy for the daily energy exchange of a 22-MW combined-cycle cogeneration plant of an industrial factory operating in a liberalized electricity market. The optimization problem is formulated as a Mixed-Integer Linear Programming Problem (MILP) that maximizes the profit from energy exchange of the cogeneration, and is subject to the technical constraints and the industrial demand profile. The integer variables are associated with export or import of electricity whereas the real variables relate to the power output of gas and steam turbines, and to the electricity purchased from or sold to the market. The proposal is applied to a real cogeneration plant in Spain where the detailed cost function of the process is obtained. The problem is solved using a large-scale commercial package and the results are discussed and compared with different predefined scheduling strategies. (author)

  1. Comparison of Methods for Computing the Exchange Energy of quantum helium and hydrogen

    International Nuclear Information System (INIS)

    Cayao, J. L. C. D.

    2009-01-01

    I investigate approach methods to find the exchange energy for quantum helium and hydrogen. I focus on Heitler-London, Hund-Mullikan, Molecular Orbital and variational approach methods. I use Fock-Darwin states centered at the potential minima as the single electron wavefunctions. Using these we build Slater determinants as the basis for the two electron problem. I do a comparison of methods for two electron double dot (quantum hydrogen) and for two electron single dot (quantum helium) in zero and finite magnetic field. I show that the variational, Hund-Mullikan and Heitler-London methods are in agreement with the exact solutions. Also I show that the exchange energy calculation by Heitler-London (HL) method is an excellent approximation for large inter dot distances and for single dot in magnetic field is an excellent approximation the Variational method. (author)

  2. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue

    Energy Technology Data Exchange (ETDEWEB)

    Anirudhan, T.S., E-mail: tsani@rediffmail.com [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581 (India); Radhakrishnan, P.G. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581 (India)

    2009-02-15

    A new cation exchange resin (PGTFS-COOH) having a carboxylate functional group at the chain end was prepared by grafting poly(hydroxyethylmethacrylate) onto tamarind fruit shell, TFS (a lignocellulosic residue) using potassium peroxydisulphate-sodium thiosulphate redox initiator, and in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinking agent, followed by functionalisation. The adsorbent was characterized with the help of FTIR, XRD, scanning electron micrographs (SEM), and potentiometric titrations. The kinetic and isotherm data, obtained at optimum pH value 6.0 at different temperatures could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. An increase in temperature induces positive effect on the adsorption process. The calculated activation energy of adsorption (E{sub a}, 18.67 kJ/mol) indicates that U(VI) adsorption was largely due to diffusion-controlled process. The values of adsorption enthalpy, Gibbs free energy, and entropy were calculated using thermodynamic function relationships. The decrease in adsorption enthalpy with increasing U(VI) uploading on the adsorbent, reflects the surface energetic heterogeneity of the adsorbent. The isosteric heat of adsorption was quantitatively correlated with the fractional loading for the U(VI) ions adsorption onto PGTFS-COOH. The results showed that the PGTFS-COOH possessed heterogeneous surface with sorption sites having different activities.

  3. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue

    Science.gov (United States)

    Anirudhan, T. S.; Radhakrishnan, P. G.

    2009-02-01

    A new cation exchange resin (PGTFS-COOH) having a carboxylate functional group at the chain end was prepared by grafting poly(hydroxyethylmethacrylate) onto tamarind fruit shell, TFS (a lignocellulosic residue) using potassium peroxydisulphate-sodium thiosulphate redox initiator, and in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinking agent, followed by functionalisation. The adsorbent was characterized with the help of FTIR, XRD, scanning electron micrographs (SEM), and potentiometric titrations. The kinetic and isotherm data, obtained at optimum pH value 6.0 at different temperatures could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. An increase in temperature induces positive effect on the adsorption process. The calculated activation energy of adsorption ( Ea, 18.67 kJ/mol) indicates that U(VI) adsorption was largely due to diffusion-controlled process. The values of adsorption enthalpy, Gibbs free energy, and entropy were calculated using thermodynamic function relationships. The decrease in adsorption enthalpy with increasing U(VI) uploading on the adsorbent, reflects the surface energetic heterogeneity of the adsorbent. The isosteric heat of adsorption was quantitatively correlated with the fractional loading for the U(VI) ions adsorption onto PGTFS-COOH. The results showed that the PGTFS-COOH possessed heterogeneous surface with sorption sites having different activities.

  4. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    Science.gov (United States)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  5. Surface technologies 2006-Alternative energies and policy options

    International Nuclear Information System (INIS)

    Rose, Lars

    2007-01-01

    Surfaces are the immediate contact between anything in our world. Literally, every industry utilizes coatings and surface modifications in order to create surfaces tailored to specific needs, protect underlying substrates, or modify their behavior. Surface and coating technologies are essential to a large variety of different industrial sectors, including transportation, manufacturing, food and biomedical engineering, energy, resources, and materials science and technology. The present paper explains the limitations for alternative energy technologies, with a focus on fuel cell technology development and the alternative energy sector, based on the outcomes of presentations and facilitated discussion groups during a Canadian national workshop series. Options for technological improvements of alternative energy systems are presented in combination with national and international policy choices, which could positively influence research and development in the alternative energy sector

  6. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  7. Regime-Dependent Differences in Surface Freshwater Exchange Estimates Over the Ocean

    Science.gov (United States)

    Wong, Sun; Behrangi, Ali

    2018-01-01

    Differences in gridded precipitation (P), surface evaporation (E), and the resultant surface freshwater exchange (P - E) among different products over the ocean are diagnosed as functions of moisture advection (Qadvt) and moisture tendency by dynamical convergence (Qcnvg). Compared to the GPCP product, the TRMM3B42 product captures higher frequency of precipitation with larger extreme precipitation rates in regimes of deep convection and more light rain detections in regimes of frequent occurrence of boundary layer clouds. Discrepancies in E depend on moisture flux divergence, with the OAFlux product having the largest E in regimes of divergence. Discrepancies in mean P - E in deep convective regimes are highly influenced by differences in precipitation, with the TRMM3B42 product yielding P - E histograms closer to those inferred from the reanalysis moisture flux convergence. In nonconvergent regimes, observation-based P - E histograms skew toward positive values while the inferred reanalysis histograms are symmetric about the means.

  8. Modeling Plant-Atmosphere Interactions and Ramifications on the Surface Energy Balance in Arctic Ecosystems

    Science.gov (United States)

    Linn, R.; Cunningham, P.; Wilson, C. J.

    2011-12-01

    There is broad recognition that the melting of the permafrost in arctic landscapes could have pronounced global climatological impacts. The evolution of the permafrost and its impacts on the carbon and water balances is directly related to balances in the surface energy budget. There are a number of factors that are expected to impact the net heat flux at the surface of the soil including regional atmospheric conditions. However, ultimately this surface energy balance is controlled by local processes including evaporation from the surface, transpiration from vegetation as well as radiative and convective heat transfer. These four processes are directly impacted by coupling between the vegetation and atmosphere, and thus depend heavily upon the horizontal and vertical vegetation structure. If shrubs replace grasses in the arctic ecosystem there will be net shifts in the heat transfer to the ground. For example, the solar radiation that is absorbed by shrubs is separated from the soil by a stem space through which winds blow. In order for the energy to reach the soil it must warm the air and then warm the soil, however some of the warm air is mixed into the atmosphere and diffused. This structural feature can act in a fashion similar to a closed canopy forest, which frequently have cooler temperatures below the canopy than nearby grasslands An atmospheric hydrodynamics model, HIGRAD, has been enhanced to simulate complex, three-dimensional plant-atmosphere interactions at extremely high resolution (~0.1 m in all three directions). The model represents the transport of momentum, heat, moisture, and CO2 and their exchange between the vegetation and surrounding air. HIGRAD was used to simulate coupled atmosphere/vegetation systems representative of heterogeneous shrub and tussock grass surrounding a thermokarst. In these simulations shrubs, uneven grasses, and a thermokarst depression are explicitly resolved, and atmospheric conditions are similar to those of summer

  9. Test results of heat exchanger cleaning in support of ocean thermal energy conversion

    Science.gov (United States)

    Lott, D. F.

    1980-12-01

    This report documents tests conducted at the Naval Coastal Systems Center (NCSC) in support of the Department of Energy's Ocean Thermal Energy Conversion (OTEC) Program. These tests covered the period September 1978 to May 1980 and evaluated flow-driven brushes, recirculating sponge rubber balls, chlorination, and mechanical system/chlorination combinations for in-situ cleaning of two potential heat exchanger materials: titanium and aluminum alloy 5052. Tests were successful when fouling resistance was 0.0003 sq. ft. hr-F/Btu. Results indicated systems and cleaning techniques using brushes, soft sponge balls, and various concentrations of chlorine had some potential for maintaining heat transfer efficiency.

  10. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  11. Dual hierarchical biomimic superhydrophobic surface with three energy states

    Science.gov (United States)

    Chen, Ming-Hung; Hsu, Tsung-Hsing; Chuang, Yun-Ju; Tseng, Fan-Gang

    2009-07-01

    A low hysteresis surface prepared by two-length-scaled hierarchical textures to mimic the Lotus effect is proposed. The fabricated textures incorporate self-masked nanorods on microextrusions. A high static contact angle (160°) and low hysteresis (˜2.7°) are obtained and comparable to the surface properties of a natural lotus leaf. The stability of hydrophobicity is described with respect to three energy states (nonwetting, microwetting, and nanowetting) based on dynamic contact angle analysis by droplet impinging onto the surface. The estimated texture-induced energy barrier based on the principle of energy conservation is in good agreement to those estimated from Laplace's law.

  12. Environmental control on water vapour and energy exchanges over grasslands in semiarid region of Brazil

    Directory of Open Access Journals (Sweden)

    Patrícia S. de S. Gondim

    2015-01-01

    Full Text Available A micrometeorological experiment was conducted over grasslands in a semi-arid region of north-eastern Brazil (São João, Pernambuco from January to December 2011, using the Bowen ratio energy balance method, to improve the current understanding of energy partitioning and water vapour exchange over this ecosystem in this region. The objectives of the present study were to quantify the seasonal and diurnal variations in energy and water vapour exchanges over grasslands and understand the biotic and abiotic factors controlling the energy partitioning of this ecosystem. In the dry period, the low stored soil water limited the grass production and leaf area index, and as a consequence of these conditions, most of the annual net radiation (58% was consumed in sensible heat flux. During the course of the study the evaporative fraction was linearly related to the leaf area index. The total annual evapotranspiration and its daily maximum were 543.8 mm and 3.14 mm d-1. The seasonal and diurnal variations in energy partitioning and evapotranspiration were controlled by soil water availability and leaf area index.

  13. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.

    Science.gov (United States)

    Chen, Shumei; Li, Guixin; Lei, Dangyuan; Cheah, Kok Wai

    2013-10-07

    Plasmonic analogues of Rabi-splitting have been extensively studied in various metallic nanosystems hybridized with semiconductor quantum dots, nanocrystals and organic molecules, with a focus on the splitting energy gap where surface plasmon polaritons (SPPs) strongly couple with excitons. Similar strong coupling also occurs for individual metallic nanoparticles locating inside a photonic microcavity or nearby a waveguide due to the strong interaction between localized surface plasmons and photonic modes in the near-infrared wavelength range. In this work we study experimentally and theoretically the strong coupling between propagating SPPs and the Fabry-Perot (F-P) cavity mode in a metallic nanoparticle array-nanocavity hybrid system in the visible spectral range. The strong modal hybridization created giant modal anti-crossing which can be considered as the classical phenomenon of Rabi splitting i.e. a Rabi-analogue. In addition to the observation of a giant Rabi-analogue splitting energy of 148 meV at the strong coupling regime, we also reveal highly-efficient energy exchange between SPP and F-P modes at the low frequency dispersion branch through detailed numerical near-field studies and experimental phase delay analysis. The observed efficient mode conversion in the investigated plasmonic nanocavity is useful for designing novel nanophotonic devices, in which conventional photonic components need to be integrated with miniaturized plasmonic devices or vice versa.

  14. Intracellular role of exchangeable apolipoproteins in energy homeostasis, obesity and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Wu, Chen-Lu; Zhao, Shui-Ping; Yu, Bi-Lian

    2015-05-01

    Exchangeable apolipoproteins play an important role in systemic lipid metabolism, especially for lipoproteins with which they are associated. Recently, emerging evidence has suggested that exchangeable apolipoproteins, such as apolipoprotein A4 (apoA4), apolipoprotein A5 (apoA5), apolipoprotein C3 (apoC3) and apolipoprotein E (apoE), also exert important effects on intracellular lipid homeostasis. There is a close link between lipid metabolism in adipose tissue and liver because the latter behaves as the metabolic sensor of dysfunctional adipose tissue and is a main target of lipotoxicity. Given that the energy balance between these two major lipogenic organs is intimately involved in the pathogenesis of obesity and non-alcoholic fatty liver disease (NAFLD), we here review recent findings concerning the intracellular function of exchangeable apolipoproteins in triglyceride metabolism in adipocytes and hepatocytes. These apolipoproteins may act as mediators of crosstalk between adipose tissue and liver, thus influencing development of obesity and hepatosteatosis. This review provides new insights into the physiological role of exchangeable apolipoproteins and identifies latent targets for therapeutic intervention of obesity and its related disorders. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  15. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  16. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  17. On Averaging Timescales for the Surface Energy Budget Closure Problem

    Science.gov (United States)

    Grachev, A. A.; Fairall, C. W.; Persson, O. P. G.; Uttal, T.; Blomquist, B.; McCaffrey, K.

    2017-12-01

    An accurate determination of the surface energy budget (SEB) and all SEB components at the air-surface interface is of obvious relevance for the numerical modelling of the coupled atmosphere-land/ocean/snow system over different spatial and temporal scales, including climate modelling, weather forecasting, environmental impact studies, and many other applications. This study analyzes and discusses comprehensive measurements of the SEB and the surface energy fluxes (turbulent, radiative, and ground heat) made over different underlying surfaces based on the data collected during several field campaigns. Hourly-averaged, multiyear data sets collected at two terrestrial long-term research observatories located near the coast of the Arctic Ocean at Eureka (Canadian Archipelago) and Tiksi (East Siberia) and half-hourly averaged fluxes collected during a year-long field campaign (Wind Forecast Improvement Project 2, WFIP 2) at the Columbia River Gorge (Oregon) in areas of complex terrain. Our direct measurements of energy balance show that the sum of the turbulent sensible and latent heat fluxes systematically underestimate the available energy at half-hourly and hourly time scales by around 20-30% at these sites. This imbalance of the surface energy budget is comparable to other terrestrial sites. Surface energy balance closure is a formulation of the conservation of energy principle (the first law of thermodynamics). The lack of energy balance closure at hourly time scales is a fundamental and pervasive problem in micrometeorology and may be caused by inaccurate estimates of the energy storage terms in soils, air and biomass in the layer below the measurement height and above the heat flux plates. However, the residual energy imbalance is significantly reduced at daily and monthly timescales. Increasing the averaging time to daily scales substantially reduces the storage terms because energy locally entering the soil, air column, and vegetation in the morning is

  18. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    Science.gov (United States)

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  19. Ab initio adiabatic and quasidiabatic potential energy surfaces of H ...

    Indian Academy of Sciences (India)

    s12039-015-1022-8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H. ++. CN system. BHARGAVA ANUSURI and SANJAY KUMAR. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

  20. THE SORPTION EXTRACTION FEATURES OF KARMOAZONATE MERCURY(I COMPLE X BY ANION EXCHANGER AV-17-8 SURFACE

    Directory of Open Access Journals (Sweden)

    Н. M. Guzenko

    2014-11-01

    Full Text Available The dynamic and kinetic curves were analyzed, they were obtained by karmoazonate mercury(I complex extraction by anion exchanger AV-17-8 surface, and also calculated values of sorption process speed factor have allowed to establish the features of the adsorption layers formation on the resin surface.

  1. An energy dispersive time resolved liquid surface reflectometer

    CERN Document Server

    Garrett, R F; King, D J; Dowling, T L; Fullagar, W

    2001-01-01

    Two designs are presented for an energy dispersive liquid surface reflectometer with time resolution in the milli-second domain. The designs utilise rotating crystal and Laue analyser optics respectively to energy analyse a pink synchrotron X-ray beam after reflection from a liquid surface. Some performance estimates are presented, along with results of a test experiment using a laboratory source and solid state detector.

  2. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  3. Surface solar radiation from geostationary satellites for renewable energy

    Science.gov (United States)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  4. Intermolecular potential energy surface for CS2 dimer.

    Science.gov (United States)

    Farrokhpour, Hossein; Mombeini, Zainab; Namazian, Mansoor; Coote, Michelle L

    2011-04-15

    A new four-dimensional intermolecular potential energy surface for CS(2) dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center-of-mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller-Plesset second-order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug-cc-pVxZ, x = D, T) and corrected for the basis-set superposition error using the full counterpoise correction method. A two-point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole-dipole dispersion coefficient (C(6) ) of CS(2) fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well-known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol(-1) at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. Copyright © 2010 Wiley Periodicals, Inc.

  5. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    Science.gov (United States)

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  6. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  7. U.S. Department of Energy national technology information exchange workshops

    International Nuclear Information System (INIS)

    Daub, G.J.; Earle, S.D.; Smibert, A.M.; Wight, E.H.

    1994-01-01

    The U.S. Department of Energy National Technology Information Exchange (TIE) Workshops bring together environmental restoration and technology development personnel to exchange and share problems, needs, technological solutions, ideas, and successes and failures from lessons learned at DOE sites. The success of this forum is measured by the knowledge gained, contacts made, and program dollars saved by the people who actually do the work in the field. TIE is a unique opportunity to unite the DOE community and allow individuals to listen and to learn about each others' problems and solutions. By using today's technologies better, the National TIE Workshops help identify and implement cost-effective and appropriate technologies to meet the needs of the DOE environmental restoration program

  8. Surface Relaxations, Surface Energies and Electronic Structures of BaSnO3 (001) Surfaces: Ab Initio Calculations

    Science.gov (United States)

    Slassi, A.; Hammi, M.; El Rhazouani, O.

    2017-07-01

    The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.

  9. Surface morphology effects in a vibration based triboelectric energy harvester

    Science.gov (United States)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  10. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  11. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  12. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  13. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... estimation functional with van der Waals correlation (BEEF-vdW), a semilocal approximation with an additional nonlocal correlation term. Furthermore, an ensemble of functionals around BEEF-vdW comes out naturally, offering an estimate of the computational error. An extensive assessment on a range of data...

  14. Energy exchangers with LCT as a precision method for diet control in LCHADD.

    Science.gov (United States)

    Mozrzymas, Renata; Konikowska, Klaudia; Regulska-Ilow, Bożena

    2017-01-01

    Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is a rare genetic disease. The LCHADD treatment is mainly based on special diet. In this diet, energy from long-chain triglycerides (LCT) cannot exceed 10%, however energy intake from the consumption of medium-chain triglycerides (MCTs) should increase. The daily intake of energy should be compatible with energy requirements and treatment should involve frequent meals including during the night to avoid periods of fasting. In fact, there are no recommendations for total content of LCT in all of the allowed food in the LCHADD diet. The aim of the study was to present a new method of diet composition in LCHADD with the use of blocks based on energy exchangers with calculated LCT content. In the study, the diet schema was shown for calculating the energy requirements and LCT content in the LCHADD diet. How to create the diet was also shown, based on a food pyramid developed for patients with LCHADD. The blocks will make it possible, in a quick and simple way, to create a balanced diet which provides adequate energy value, essential nutrients and LCT content. This method can be used by doctors and dietitians who specialize in treating rare metabolic diseases. It can also be used by patients and their families for accurate menu planning with limited LCT content.

  15. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

    Science.gov (United States)

    Renfrew, Ian A.; King, John C.; Markus, Thorsten

    2002-06-01

    The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992-1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997-1998 allowed a large oceanic warming of the region. Wintertime freezing seasons are characterized by episodes of high heat fluxes interspersed with more quiescent periods and controlled by coastal polynya dynamics. The high heat fluxes are primarily due to the sensible heat flux component, with smaller complementary latent and radiative flux components. The average freezing season area-integrated energy exchange is 3.48 × 1019 J, with contributions of 63, 22, and 15% from the sensible, latent, and radiative components, respectively. The average melting season area-integrated energy exchange is -5.31 × 1019 J, almost entirely due to the radiative component. There is considerable interannual variability in the surface energy budget

  16. Energy loss in grazing proton-surface collisions

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.

    1994-01-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  17. Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.

    Science.gov (United States)

    Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S

    2017-08-22

    Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.

  18. Nonperturbative effects and indirect exchange interaction between quantum impurities on metallic (111) surfaces

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2017-06-01

    The (111) surface of noble metals is usually treated as an isolated two-dimensional (2D) triangular lattice completely decoupled from the bulk. However, unlike in topological insulators, bulk bands also cross the Fermi level. We here introduce an effective tight-binding model that accurately reproduces results from first-principles calculations, accounting for both surface and bulk states. We numerically solve the many-body problem of two quantum impurities sitting on the surface by means of the density matrix renormalization group. By performing simulations in a star geometry, we are able to study the nonperturbative problem in the thermodynamic limit with machine precision accuracy. We find that there is a nontrivial competition between Kondo and RKKY physics and as a consequence, ferromagnetism is never developed, except at short distances. The bulk introduces a variation in the period of the RKKY interactions, and therefore the problem departs considerably from the simpler 2D case. In addition, screening and the magnitude of the effective indirect exchange are enhanced by the contributions from the bulk states.

  19. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo [Hanyang Univ., Seoul (Korea, Republic of); Kim, Ook Joong [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-07-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer.

  20. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  1. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  2. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    Science.gov (United States)

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  4. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  5. Reaction mechanism and nuclear correlations study by low energy pion double charge exchange

    International Nuclear Information System (INIS)

    Weinfeld, Z.

    1993-06-01

    In pion double-charge-exchange (DCX) reactions, a positive (negative) pion is incident on a nucleus and a negative (positive) pion emerges. These reactions are of fundamental interest since the process must involve at least two nucleons in order to conserve charge. Although two nucleon processes are present in many reactions they are usually masked by the dominant single nucleon processes. DCX is unique in that respect since it is a two nucleon process in lowest order and thus may be sensitive to two-nucleon correlations. Measurements of low energy pion double-charge-exchange reactions to the double-isobaric-analog-state (DIAS) and ground-state (GS) of the residual nucleus provide new means for studying nucleon-nucleon correlations in nuclei. At low energies (T π 7/2 shell at energies ranging from 25 to 65 MeV. Cross sections were measured on 42,44,48 Ca, 46,50 Ti and 54 Fe. The calcium isotopes make a good set of nuclei on which to study the effects of correlations in DCX reactions

  6. Ab initio Potential Energy Surface for H-H2

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  7. Role of energy exchange in vibrational dephasing processes in liquids and solids

    International Nuclear Information System (INIS)

    Marks, S.

    1981-08-01

    Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d 14 -durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h 14 -durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening

  8. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  9. A study of the charge-exchange reaction $pp \\to n\\Delta^{++} (1232)$ at ISR energies

    CERN Document Server

    De Kerret, H; Bartl, Walter; Brandt, A; Broll, C; Coignet, G; Dibon, Heinz; Eichinger, H; Favier, Jean; Flügge, G; Gottfried, Christian; Massonnet, Louis; Nagy, E; Neuhofer, G; Niebergall, F; Orr, R S; Regler, Meinhard; Schmidt-Parzefall, W; Schubert, K R; Schumacher, P E; Vivargent, M; Winter, Klaus

    1977-01-01

    A study is reported of the charge-exchange reaction pp to n Delta /sup ++/(1232) at the CERN intersecting storage rings (ISR) in the energy range square root s=23 to 53 GeV. From the analysis of the energy dependence of the total cross-section, of the differential cross- section d sigma /dt and of the decay angular distributions evidence is found that pion exchange is dominant up to square root s=23 GeV and that ( rho +A/sub 2/) exchange dominates the reaction for square root s>or=30 GeV, as described by simple Regge-pole models. (13 refs).

  10. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    Science.gov (United States)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    balance. Diurnal and seasonal scale heat budget imbalances were found. We suggest that unmeasured surface heat storage may be responsible for some of the observed imbalance. The presence of the unexplained residual in this and other studies of energy balance over forests casts a note of caution on the interpretation of energy balance components obtained using heat residual methods.

  11. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    Science.gov (United States)

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method.

  12. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  13. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure.

    Science.gov (United States)

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.

  14. STUDY ON ENERGY EXCHANGE PROCESSES IN NORMAL OPERATION OF METRO ROLLING STOCK WITH REGENERATIVE BRAKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. O. Sulym

    2017-10-01

    Full Text Available Purpose. The analysis of the existing studies showed that the increasing of energy efficiency of metro rolling stock becomes especially important and requires timely solutions. It is known that the implementation of regenerative braking systems on rolling stock will allow significantly solving this problem. It was proved that one of the key issues regarding the introduction of the above-mentioned systems is research on efficient use of electric energy of regenerative braking. The purpose of the work is to evaluate the amount of excessive electric power of regenerative braking under normal operation conditions of the rolling stock with regenerative braking systems for the analysis of the energy saving reserves. Methodology. Quantifiable values of electrical energy consumed for traction, returned to the contact line and dissipated in braking resistors (excessive energy are determined using results of experimental studies of energy exchange processes under normal operating conditions of metro rolling stock with regenerative systems. Statistical methods of data processing were applied as well. Findings. Results of the studies analysis of metro rolling stock operation under specified conditions in Sviatoshinsko-Brovarskaia line of KP «Kyiv Metro system» stipulate the following: 1 introduction of regenerative braking systems into the rolling stock allows to return about 17.9-23.2% of electrical energy consumed for traction to the contact line; 2 there are reserves for improving of energy efficiency of rolling stock with regenerative systems at the level of 20.2–29.9 % of electrical energy consumed for traction. Originality. For the first time, it is proved that the most significant factor that influences the quantifiable values of the electrical energy regeneration is a track profile. It is suggested to use coefficients which indicate the amount and reserves of unused (excessive electrical energy for quantitative evaluation. Studies on

  15. Validation of a new device to quantify groundwater-surface water exchange.

    Science.gov (United States)

    Cremeans, Mackenzie M; Devlin, J F

    2017-11-01

    Distributions of flow across the groundwater-surface water interface should be expected to be as complex as the geologic deposits associated with stream or lake beds and their underlying aquifers. In these environments, the conventional Darcy-based method of characterizing flow systems (near streams) has significant limitations, including reliance on parameters with high uncertainties (e.g., hydraulic conductivity), the common use of drilled wells in the case of streambank investigations, and potentially lengthy measurement times for aquifer characterization and water level measurements. Less logistically demanding tools for quantifying exchanges across streambeds have been developed and include drive-point mini-piezometers, seepage meters, and temperature profiling tools. This project adds to that toolbox by introducing the Streambed Point Velocity Probe (SBPVP), a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the interface with high density sampling, which can effectively, rapidly, and accurately complement conventional methods. The SBPVP is a direct push device that measures in situ water velocities at the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic conductivity or gradient information, nor do they require long equilibration times. Laboratory testing indicated that the SBPVP has an average accuracy of ±3% and an average precision of ±2%. Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising agreement between groundwater fluxes determined by conventional methods and those estimated from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool to quantify groundwater-surface water interactions in high definition in sandy streambeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Validation of a new device to quantify groundwater-surface water exchange

    Science.gov (United States)

    Cremeans, Mackenzie M.; Devlin, J. F.

    2017-11-01

    Distributions of flow across the groundwater-surface water interface should be expected to be as complex as the geologic deposits associated with stream or lake beds and their underlying aquifers. In these environments, the conventional Darcy-based method of characterizing flow systems (near streams) has significant limitations, including reliance on parameters with high uncertainties (e.g., hydraulic conductivity), the common use of drilled wells in the case of streambank investigations, and potentially lengthy measurement times for aquifer characterization and water level measurements. Less logistically demanding tools for quantifying exchanges across streambeds have been developed and include drive-point mini-piezometers, seepage meters, and temperature profiling tools. This project adds to that toolbox by introducing the Streambed Point Velocity Probe (SBPVP), a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the interface with high density sampling, which can effectively, rapidly, and accurately complement conventional methods. The SBPVP is a direct push device that measures in situ water velocities at the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic conductivity or gradient information, nor do they require long equilibration times. Laboratory testing indicated that the SBPVP has an average accuracy of ± 3% and an average precision of ± 2%. Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising agreement between groundwater fluxes determined by conventional methods and those estimated from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool to quantify groundwater-surface water interactions in high definition in sandy streambeds.

  17. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  18. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010

    Directory of Open Access Journals (Sweden)

    Magnus Lund

    2014-07-01

    Full Text Available Global warming will bring about changes in surface energy balance of Arctic ecosystems, which will have implications for ecosystem structure and functioning, as well as for climate system feedback mechanisms. In this study, we present a unique, long-term (2000–2010 record of summer-time energy balance components (net radiation, R n; sensible heat flux, H; latent heat flux, LE; and soil heat flux, G from a high Arctic tundra heath in Zackenberg, Northeast Greenland. This area has been subjected to strong summer-time warming with increasing active layer depths (ALD during the last decades. We observe high energy partitioning into H, low partitioning into LE and high Bowen ratio (β=H/LE compared with other Arctic sites, associated with local climatic conditions dominated by onshore winds, slender vegetation with low transpiration activity and relatively dry soils. Surface saturation vapour pressure deficit (D s was found to be an important variable controlling within-year surface energy partitioning. Throughout the study period, we observe increasing H/R n and LE/R n and decreasing G/R n and β, related to increasing ALD and decreasing soil wetness. Thus, changes in summer-time surface energy balance partitioning in Arctic ecosystems may be of importance for the climate system.

  19. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  20. Adsorption of naphthalene onto a high-surface-area carbon from waste ion exchange resin.

    Science.gov (United States)

    Shi, Qianqian; Li, Aimin; Zhu, Zhaolian; Liu, Bing

    2013-01-01

    A high-surface-area carbon (KC-1) was prepared from waste polystyrene-based ion exchange resin by KOH activation and used for naphthalene adsorption. The carbon exhibited a good hydrophobic nature with developed porous structure, favoring the adsorption of organic compounds. The Brunauer-Emmett-Teller surface area and total pore volume of KC-1 were 3442.2 and 1.68 cm3/g, respectively, which can be compared with those of KOH-activated carbons prepared from other precursors. Batch experiments were carried out to investigate the adsorption of naphthalene onto KC-1. The equilibrium data were analyzed by the Langmuir, Freundlich, and Polanyi-Manes isotherms and agreed with the Polanyi-Manes Model. The adsorption of naphthalene depended greatly on the porosity of the carbon, and the dispersive interactions between naphthalene and carbon could be relatively weak. The pH variation in aqueous solution had little effect on the adsorption process. The equilibrium time for 0.04 g/L of carbon dose was around 5 hr. Different models were used to evaluate the kinetic data and the pseudo second-order model was suitable to describe the kinetic process of naphthalene adsorption onto KC-1. Regeneration of spent carbon could be carried out effectively by alcohol treatment. The results indicated that KC-1 was a promising adsorbent for the removal of polycyclic aromatic hydrocarbons from aqueous solutions.

  1. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  2. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA.

    Science.gov (United States)

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.

    2014-12-01

    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  3. Surface/interfacial free energies and the surface tension of uranium dioxide

    International Nuclear Information System (INIS)

    Deshpande, M.S.; Desai, P.D.; Solomon, A.A.

    1984-01-01

    The purpose of this study is to review literature on surface/interfacial free energies and surface tension of UO/sub 2 +- x/. The data available in the literature are reviewed and critical evaluation and analyses of the available data are made by comparing them not only with each other, but also with the estimated values based on the available theoretical models. In light of the complexity of the material and the problems associated with the available literature data, no recommendations of surface/interfacial free energies and surface tension values are possible at this time. However, an attempt is made to point out problems associated with the data in general and also to develop procedures that can be used to analyze surface energies

  4. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Aklujkar, Muktak

    2013-01-01

    Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy....... The lack of acetate metabolism resulted in less fumarate reduction and lower cell abundance of G. sulfurreducens. RNAseq analysis of transcript abundance was consistent with a lack of acetate metabolism in G. sulfurreducens and revealed gene expression levels for the uptake hydrogenase, formate...... dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration....

  5. Probabilities of vibrational energy exchange between carbon dioxide and carbon tetrafluoride

    International Nuclear Information System (INIS)

    Manzanares I, C.; Colon, E.

    1984-01-01

    The deactivation rate constant of CO 2 (ν 3 ) in mixtures with CF 4 has been measured at 298 K. A pulsed CO 2 laser was used to excite the CO 2 molecules. To interpret the mechanism of energy exchange, the probabilities of V--V energy transfer for CO 2 --CF 4 mixtures and the V-T self-relaxation of CF 4 (ν 2 ) were calculated. The model used considers a Morse potential to describe the interaction between the molecules and the quantum mechanical first order distorted wave approximation to calculate the probabilities. Order of magnitude agreement between the experimental and calculated results for CO 2 --CF 4 mixtures and for the CF 4 (ν 2 ) self-relaxation is obtained

  6. Exchange processes from the deep interior to the surface of icy moons

    Science.gov (United States)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and

  7. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  8. Charge exchange during pion-nucleon scattering at low energy: experiment and analysis

    International Nuclear Information System (INIS)

    Vernin, Pascal

    1972-01-01

    This research thesis lies within the frame of a more general study of pion-nucleon scattering according to the following processes: π + p → π + p; π - p → π - p; π - p → π 0 n. It more precisely addresses the last reaction, so-called charge exchange. Pion-nucleon interactions are described by phase shifts of scattering waves. But the measurement of one of these phase shifts (that of the S wave) requires very low energy pions, and could not have been performed until now with a good precision. In order to fill this gap, the author performed charge exchange experiments at 180 deg. and for energies of 22.6, 33.9 and 42.6 MeV. After a recall on involved theoretical data, the author describes the experimental setup, and reports the detailed study of problems raised by neutron detection. He shows that the analysis of experimental data allows (a 3 - a 1 ) to be obtained with a precision which, without being as high as desired, is nevertheless satisfying [fr

  9. Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane

    Science.gov (United States)

    Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that

  10. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  12. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal) and b...

  13. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  14. Surface energies of metals in both liquid and solid states

    Energy Technology Data Exchange (ETDEWEB)

    Aqra, Fathi, E-mail: fathiaqra2009@hotmail.com [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown); Ayyad, Ahmed [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown)

    2011-05-15

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension ({gamma}{sub m}), surface energy ({gamma}{sub SV}), surface excess entropy (-d{gamma}/dT), surface excess enthalpy (H{sub s}), coefficient of thermal expansion ({alpha}{sub m} and {alpha}{sub b}), sound velocity (c{sub m}) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  15. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NARCIS (Netherlands)

    Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; King, J.C.; Gray, T.; Reijmer, C.H.|info:eu-repo/dai/nl/229345956

    2012-01-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in

  16. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NARCIS (Netherlands)

    Kuipers Munneke, P.; van den Broeke, Michiel; King, J.C.; Gray, T.; Reijmer, C.H.

    2011-01-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), including melt energy. The two AWSs are separated by about 70 km in the

  17. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and double......-phosgene surfaces were found to have absolute minima of -72.1, -140.4, and -326.6 cm -1 at distances between the rare-gas atom and the phosgene center of mass of 3.184, 3.254, and 3.516 Å, respectively. The potentials were further used in the evaluation of rovibrational states and the rotational constants...

  18. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  19. Surface free energy analysis of adsorbents used for radioiodine adsorption

    Energy Technology Data Exchange (ETDEWEB)

    González-García, C.M. [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); Román, S., E-mail: sroman@unex.es [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); González, J.F.; Sabio, E. [Departamento de Física Aplicada, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain); Ledesma, B. [Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda. Elvas s/n, 06006 Badajoz (Spain)

    2013-10-01

    In this work, the surface free energy of biomass-based activated carbons, both fresh and impregnated with triethylenediamine, has been evaluated. The contribution of Lifshitz van der Waals components was determined by the model proposed by van Oss et al. The results obtained allowed predicting the most probable configurations of the impregnant onto the carbon surface and its influence on the subsequent adsorption of radioactive methyl iodide.

  20. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  1. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  2. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  3. Free energy surfaces in the superconducting mixed state

    Science.gov (United States)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  4. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  5. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Directory of Open Access Journals (Sweden)

    A. D. Elvidge

    2016-02-01

    Full Text Available Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol–Cloud Coupling And Climate Interactions in the Arctic (ACCACIA project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10 from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85  ×  10−3. CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012 tailored for sea-ice drag over the MIZ in which the two constituent components of drag – skin and form drag – are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012 scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values – especially at the higher ice fractions – than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on

  6. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2016-02-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012) tailored for sea-ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on surface roughness is recognised, and

  7. Observations of surface momentum exchange over the marginal-ice-zone and recommendations for its parameterization

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2015-10-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parameterization of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parameterization scheme (Lüpkes et al., 2012) tailored for sea ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parameterization schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement is found to hold for subsets of the data from different locations despite differences in sea ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea ice morphology and floe size on surface roughness is

  8. Evaluation of Satellite-Based Surface Energy Budget Products with Surface Measurements Over the Great Lakes

    Science.gov (United States)

    Wang, H.; Loeb, N. G.; Lenters, J. D.; Spence, C.; Blanken, P.

    2017-12-01

    Earth's climate is fundamentally driven by the global energy balance. While Earth's energy budget at the top-of-atmosphere (TOA) is well understood, satellite-based estimates of the global mean surface energy budget yield an imbalance of 15-20 Wm-2. The data products used to infer the components of the surface energy budget are often based upon physical or empirical models and ancillary input data sets of varying quality. In order to make progress, comparisons between satellite-based estimates of the surface energy budget components and direct surface measurements are critically needed. This study evaluates surface radiative fluxes from NASA CERES EBAF and surface turbulent heat fluxes from OAFLUX by comparing them with surface station measurements from the Great Lakes Evaporation Network (GLEN). The GLEN measurements are collected using instruments on lighthouses in the Great Lakes, and include surface evaporation measurement via eddy covariance technique. The evaluation is performed for 3 offshore and 1 nearshore Great Lakes sites. We highlight results for Stannard Rock in Lake Superior, which is the farthest lighthouse from shore ( 40km from the nearest land). Relative to the GLEN observations, the OAFLUX underestimates latent heat flux by 12 Wm-2 (19 Wm-2) at Stannard Rock (4-station average), in part due to its weaker near surface wind speed, and overestimates sensible heat flux by 12 Wm-2 (6 Wm-2), which is partly contributed by its colder surface air temperature. The CERES EBAF-Surface overestimates the surface downward all-sky shortwave (longwave) flux by 8 Wm-2 (7 Wm-2) at Stannard Rock, and is comparable to the 4-station average. As a result, the surface estimated using EBAF-Surface and OAFLUX receives 16 Wm-2 (13 Wm-2) more than the GLEN observations at Stannard Rock (4-station average). The above surface energy flux differences will be further discussed based on a comparison between the input data sets used in the satellite-based estimates and

  9. Low Energy Surface Activation of Zirconia Based Restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N

    2016-03-01

    To evaluate the influence of low energy surface activation technique on the biaxial flexure strength of zirconia frameworks. Zirconia discs were prepared by cutting CAD/CAM zirconia blocks. Sintered discs were airborne particle abraded using one of the following particles: 30 μm alumina particles, 50 μm alumina particles, or modified round edges 30 μm alumina particles at low pressure. Scanning electron microscopy, x-ray diffraction analysis, surface roughness, and biaxial flexure strength tests were performed (n = 20). Fractured specimens were fractographically analyzed (α = 0.05). Low energy surface activation resulted in 7% monoclinic crystallographic transformation, increasing surface roughness from 0.05 to 0.3 μm and in significant increase in biaxial flexure strength (1718 MPa) compared 30 μm (1064 MPa), 50 μm (1210 MPa), and as-sintered specimens (1150 MPa). Low energy surface activation of zirconia specimens improved the biaxial flexure strength of zirconia frameworks without creation of surface damage. Clinical implications: by controlling particle size and shape of alumina, the flexure strength of zirconia restorations could be increased usinglow pressure particle abrasion.

  10. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  11. Dynamic range of nanoresonators with random rough surfaces in the presence of thermomechanical and momentum exchange noise

    NARCIS (Netherlands)

    Palasantzas, G.

    2007-01-01

    The authors investigate the simultaneous influence of thermomechanical and momentum exchange noise on the linear dynamic range DR of nanoresonators with random rough surfaces. The latter are characterized by the roughness amplitude w, the lateral correlation length xi, and the roughness exponent 0

  12. DFT-SAPT intermolecular interaction energies employing exact-exchange Kohn-Sham response methods.

    Science.gov (United States)

    Hesselmann, Andreas

    2018-03-22

    Intermolecular interaction energies have been calculated by symmetry-adapted perturbation theory based on density-functional theory monomer properties (DFT-SAPT) employing response functions from time-dependent exact-exchange (TDEXX) kernels. Combined with a new asymptotic correction scheme for the xc potentials of the monomers, it is shown that this DFT-SAPT[TDEXX] method delivers highly accurate intermolecular interaction energies for the S22, S66 and IonHB benchmark data bases by Hobza et al.. A corresponding DFT-SAPT approach employing the adiabatic TDEXX kernel in the response calculations has also been tested. While exhibiting a similar performance than DFT-SAPT[TDEXX] for dispersion-dominated dimer systems, it was found found that the accuracies of the interaction energies for hydrogen-bonded dimers deteriorate with this DFT-SAPT[ATDEXX] method. Compared to this, the DFT-SAPT[TDEXX] yields a balanced description of the interaction energies for various interaction-type motifs, similar to the standard DFT-SAPT method that utilises the ALDA xc kernel to compute the response functions.

  13. Surface Rheology and Adsorption Kinetics Reveal the Relative Amphiphilicity, Interfacial Activity, and Stability of Human Exchangeable Apolipoproteins☆

    Science.gov (United States)

    Bolanos-Garcia, Victor Martin; Renault, Anne; Beaufils, Sylvie

    2008-01-01

    Exchangeable apolipoproteins are located in the surface of lipoprotein particles and regulate lipid metabolism through direct protein-protein and protein-lipid interactions. These proteins are characterized by the presence of tandem repeats of amphiphatic α-helix segments and a high surface activity in monolayers and lipoprotein surfaces. A noteworthy aspect in the description of the function of exchangeable apolipoproteins is the requirement of a quantitative account of the relation between their physicochemical and structural characteristics and changes in the mesoscopic system parameters such as the maximum surface pressure and relative stability at interfaces. To comply with this demand, we set out to establish the relations among α-helix amphiphilicity, surface concentration, and surface rheology of apolipoproteins ApoA-I, ApoA-II, ApoC-I, ApoC-II, and ApoC-III adsorbed at the air-water interface. Our studies render further insights into the interfacial properties of exchangeable apolipoproteins, including the kinetics of their adsorption and the physical properties of the interfacial layer. PMID:17993480

  14. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  15. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  16. Plasma Treatment Maintains Surface Energy of the Implant Surface and Enhances Osseointegration

    Directory of Open Access Journals (Sweden)

    Fernando P. S. Guastaldi

    2013-01-01

    Full Text Available The surface energy of the implant surface has an impact on osseointegration. In this study, 2 surfaces: nonwashed resorbable blasting media (NWRBM; control and Ar-based nonthermal plasma 30 days (Plasma 30 days; experimental, were investigated with a focus on the surface energy. The surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and the chemistry by X-ray photoelectron spectroscopy (XPS. Five adult beagle dogs received 8 implants (n=2 per surface, per tibia. After 2 weeks, the animals were euthanized, and half of the implants (n=20 were removal torqued and the other half were histologically processed (n=20. The bone-to-implant contact (BIC and bone area fraction occupancy (BAFO were evaluated on the histologic sections. The XPS analysis showed peaks of C, Ca, O, and P for the control and experimental surfaces. While no significant difference was observed for BIC parameter (P>0.75, a higher level for torque (P<0.02 and BAFO parameter (P<0.01 was observed for the experimental group. The surface elemental chemistry was modified by the plasma and lasted for 30 days after treatment resulting in improved biomechanical fixation and bone formation at 2 weeks compared to the control group.

  17. Using Diurnal Temperature Signals to Infer Vertical Groundwater-Surface Water Exchange.

    Science.gov (United States)

    Irvine, Dylan J; Briggs, Martin A; Lautz, Laura K; Gordon, Ryan P; McKenzie, Jeffrey M; Cartwright, Ian

    2017-01-01

    Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer. © 2016, National Ground Water Association.

  18. Potential energy surfaces for Ж = , Ne- Ba nuclei

    Indian Academy of Sciences (India)

    112Ba nu- clei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RA1 and TM1 parameter sets ...

  19. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...

  20. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Abstract. Limitations of the static Woods–Saxon potential and the applicability of the energy- dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional. Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface exci- tations of the fusing nuclei are found to ...

  1. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  2. Surface energy, CO2 fluxes and sea ice

    CSIR Research Space (South Africa)

    Gulev, SK

    2009-09-01

    Full Text Available This paper reviews the current state of observation, parameterization and evaluation of surface air-sea energy and gas fluxes, and sea ice, for the purposes of monitoring and predicting the state of the global ocean. The last 10 years have been...

  3. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  4. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  5. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Limitations of the static Woods–Saxon potential and the applicability of the energy dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface excitations of the fusing nuclei are found to be ...

  6. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  7. Energy-Efficient Implementation of ECDH Key Exchange for Wireless Sensor Networks

    Science.gov (United States)

    Lederer, Christian; Mader, Roland; Koschuch, Manuel; Großschädl, Johann; Szekely, Alexander; Tillich, Stefan

    Wireless Sensor Networks (WSNs) are playing a vital role in an ever-growing number of applications ranging from environmental surveillance over medical monitoring to home automation. Since WSNs are often deployed in unattended or even hostile environments, they can be subject to various malicious attacks, including the manipulation and capture of nodes. The establishment of a shared secret key between two or more individual nodes is one of the most important security services needed to guarantee the proper functioning of a sensor network. Despite some recent advances in this field, the efficient implementation of cryptographic key establishment for WSNs remains a challenge due to the resource constraints of small sensor nodes such as the MICAz mote. In this paper we present a lightweight implementation of the elliptic curve Diffie-Hellman (ECDH) key exchange for ZigBee-compliant sensor nodes equipped with an ATmega128 processor running the TinyOS operating system. Our implementation uses a 192-bit prime field specified by the NIST as underlying algebraic structure and requires only 5.20 ·106 clock cycles to compute a scalar multiplication if the base point is fixed and known a priori. A scalar multiplication using a random base point takes about 12.33 ·106 cycles. Our results show that a full ECDH key exchange between two MICAz motes consumes an energy of 57.33 mJ (including radio communication), which is significantly better than most previously reported ECDH implementations on comparable platforms.

  8. Energy loss of light ions scattered off Al(110) single crystal surfaces at low energy

    NARCIS (Netherlands)

    Hausmann, S; Hofner, C; Schlathölter, Thomas; Franke, H; Narmann, A; Heiland, W

    We present energy loss data taken after grazing incidence scattering of H+, H-0, He2+, He+, and He-0 off an Al(110) surface, The data is evaluated by means of a procedure that allows to extract surface electron density parameters. The obtained density parameters will be compared to those obtained

  9. EFFECTS OF RUN-UP VELOCITY ON PERFORMANCE, KINEMATICS, AND ENERGY EXCHANGES IN THE POLE VAULT

    Directory of Open Access Journals (Sweden)

    Nicholas P. Linthorne

    2012-06-01

    Full Text Available This study examined the effect of run-up velocity on the peak height achieved by the athlete in the pole vault and on the corresponding changes in the athlete's kinematics and energy exchanges. Seventeen jumps by an experienced male pole vaulter were video recorded in the sagittal plane and a wide range of run-up velocities (4.5-8.5 m/s was obtained by setting the length of the athlete's run-up (2-16 steps. A selection of performance variables, kinematic variables, energy variables, and pole variables were calculated from the digitized video data. We found that the athlete's peak height increased linearly at a rate of 0.54 m per 1 m/s increase in run-up velocity and this increase was achieved through a combination of a greater grip height and a greater push height. At the athlete's competition run-up velocity (8.4 m/s about one third of the rate of increase in peak height arose from an increase in grip height and about two thirds arose from an increase in push height. Across the range of run-up velocities examined here the athlete always performed the basic actions of running, planting, jumping, and inverting on the pole. However, he made minor systematic changes to his jumping kinematics, vaulting kinematics, and selection of pole characteristics as the run-up velocity increased. The increase in run-up velocity and changes in the athlete's vaulting kinematics resulted in substantial changes to the magnitudes of the energy exchanges during the vault. A faster run-up produced a greater loss of energy during the take-off, but this loss was not sufficient to negate the increase in run-up velocity and the increase in work done by the athlete during the pole support phase. The athlete therefore always had a net energy gain during the vault. However, the magnitude of this gain decreased slightly as run-up velocity increased

  10. Exploring the free energy surfaces of clusters using reconnaissance metadynamics

    Science.gov (United States)

    Tribello, Gareth A.; Cuny, Jérôme; Eshet, Hagai; Parrinello, Michele

    2011-09-01

    A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010), 10.1073/pnas.1011511107] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface.

  11. Three-dimensional potential energy surface of Ar–CO

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, Yoshihiro, E-mail: y-sumiyoshi@gunma-u.ac.jp [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  12. Formation of ZnSe/Bi2Se3 QDs by surface cation exchange and high photothermal conversion

    Directory of Open Access Journals (Sweden)

    Guozhi Jia

    2015-08-01

    Full Text Available Water-dispersed core/shell structure ZnSe/Bi2Se3 quantum dots were synthesized by ultrasonicwave-assisted cation exchange reaction. Only surface Zn ion can be replaced by Bi ion in ZnSe quantum dots, which lead to the ultrathin Bi2Se3 shell layer formed. It is significance to find to change the crystal of QDs due to the acting of ultrasonicwave. Cation exchange mechanism and excellent photothermal conversion properties are discussed in detail.

  13. Effect of injection energy on residual dose around the charge exchange foil

    Directory of Open Access Journals (Sweden)

    Kazami Yamamoto

    2012-12-01

    Full Text Available The rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC and the accumulator ring (AR of Spallation Neutron Source (SNS can be used as high-power pulsed neutron sources. In both cases, the injection region becomes one of the highest activation areas in the ring. However, residual dose distributions have revealed that the highest activation points in the J-PARC RCS and the SNS AR are different in detail. The dose of the charge exchange chamber in the SNS is more than 100 times larger than that of the RCS though the ratio of beam power is less than 10. We investigated the reason of this difference by Geant4 and MARS, and the calculation results indicated that the difference was due to the dependence of the neutron and pion production rate on the injection energy.

  14. Quasielastic scattering charge exchange p3He→nFppp reaction at mean energies

    International Nuclear Information System (INIS)

    Blinov, A.V.; Vanyushin, I.A.; Grechko, V.E.

    1988-01-01

    The main characteristics of the quasi-elastic charge-exchange reaction p 3 He → n F ppp (where n F is fast neutron in the rest frame of 3 He nucleus) are studied making use of the ITEP 80-cm liquid-hydrogen bubble chamber exposed in the 3 He beams of 2.5 and 5 GeV/c momenta (the kinetic energy T p of the primary protons in the rest frame of the nucleus is, respectively, 0.318 and 0.978 GeV). The experimental data are compared with the Galuber - Sitenko multiple scattering theory predictions and with the pole-model calculations taking into account the final-state interaction of the spectator nucleons. In the mass spectrum of the 3p system at 3.05 GeV a prominent structure has been observed which cannot be described by the pole model. Possible resonance nature of this structure is discussed

  15. Molecular (Feshbach) treatment of charge exchange Li/sup 3 +/+He collisions. I. Energies and couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Riera, A.; Yanez, M.

    1986-05-15

    We point out a fundamental difference between the molecular treatment of charge exchange X/sup n/++H(1s) and X/sup n/++He(1s/sup 2/) collisions, which is that the latter process involves molecular states that are formally autoionizing. Then standard ab initio methods do not, in general, yield the relevant wave functions that are needed in the collision treatment, irrespective of whether quasimolecular autoionization be significant or not during the collision. We implement a particularly simple and useful form of the Feshbach formalism to calculate the energies of those two electron systems, and a method to evaluate the corresponding dynamical couplings is presented for the first time. Our implementation of this formalism together with the new computational techniques involved are presented in detail.

  16. Information exchange within the U.S. Department of Energy pollution prevention community

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, J.R. [Argonne National Lab., IL (United States). Environmental Management Operations

    1995-07-01

    Improving Pollution Prevention and Waste Minimization Program (PP/WMIN) technologies, actions, and culture could be an important cost-cutting step for the US Department of Energy (DOE). Communicating ideas, concepts, process changes, and achievements is essential for the success of this program. The need to openly communicate ideas and concepts in a cost-effective manner is essential in an organization that has such diverse components as research and development, weapons production, and power generation. This approach is in contrast to the historic DOE culture developed within the cold war period in which compartmentalization, independence, and secrecy were stressed. DOE has now recognized that for any pollution prevention program to be successful, the many diverse elements of the organization must share information. Avenues for such information exchange are examined in this report.

  17. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Randy R. [Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  18. Study on the turbulence model sensitivity for various cross-corrugated surfaces applied to matrix type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Myung; Ha, Man Yeong; Son, Chang Min; Doo, Jeong Hoon; Min, June Kee [Pusan National University, Busan (Korea, Republic of)

    2016-03-15

    Diverse cross-corrugated surface geometries were considered to estimate the sensitivity of four variants of k-ε turbulence models (Low Reynolds, standard, RNG and realizable models). The cross-corrugated surfaces considered in this study are a conventional sinusoidal shape and two different asymmetric shapes. The numerical simulations using the steady incompressible Reynolds-averaged Navier Stokes (RANS) equations were carried out to obtain the steady solutions of the flow and thermal fields in the unitary cell of the heat exchanger matrix. In addition, the experimental test for the measurement of local convective heat transfer coefficients on the heat transfer surfaces was performed by means of the Transient liquid crystal (TLC) technique in order to compare the numerical results with the measured data. The features on detailed flow structure and corresponding heat transfer in the unitary cell of the matrix type heat exchanger are compared and analyzed against four different turbulence models considered in this study.

  19. Far-from-equilibrium processes without net thermal exchange via energy sorting.

    Science.gov (United States)

    Vilar, Jose M G; Rubi, J Miguel

    2012-02-14

    Many important processes at the microscale require far-from-equilibrium conditions to occur, as in the functioning of mesoscopic bioreactors, nanoscopic rotors, and nanoscale mass conveyors. Achieving such conditions, however, is typically based on energy inputs that strongly affect the thermal properties of the environment and the controllability of the system itself. Here, we present a general class of far-from-equilibrium processes that suppress the net thermal exchange with the environment by maintaining the Maxwell-Boltzmann velocity distribution intact. This new phenomenon, referred to as ghost equilibrium, results from the statistical cancellation of superheated and subcooled nonequilibrated degrees of freedom that are autonomously generated through a microscale energy sorting process. We provide general conditions to observe this phenomenon and study its implications for manipulating energy at the microscale. The results are applied explicitly to two mechanistically different cases, an ensemble of rotational dipoles and a gas of trapped particles, which encompass a great variety of common situations involving both rotational and translational degrees of freedom. © 2012 American Institute of Physics

  20. ENERGY BALANCE AND CO2 EXCHANGE BEHAVIOUR IN SUB-TROPICAL YOUNG PINE (Pinus roxburghii PLANTATION

    Directory of Open Access Journals (Sweden)

    B. K. Bhattacharya

    2012-08-01

    Full Text Available A study was conducted to understand the seasonal and annual energy balance behaviour of young and growing sub-tropical chir pine (Pinus roxburghii plantation of eight years age in the Doon valley, India and its coupling with CO2 exchange. The seasonal cycle of dekadal daytime latent heat fluxes mostly followed net radiation cycle with two minima and range between 50–200 Wm-2 but differed from the latter during the period when soil wetness and cloudiness were not coupled. Dekadal evaporative fraction closely followed the seasonal dryness-wetness cycle thus minimizing the effect of wind on energy partitioning as compared to diurnal variation. Daytime latent heat fluxes were found to have linear relationship with canopy net assimilation rate (Y = 0.023X + 0.171, R2 = 0.80 though nonlinearity exists between canopy latent heat flux and hourly net CO2 assimilation rate . Night-time plant respiration was found to have linear relationship (Y = 0.088 + 1.736, R2 = 0.72 with night-time average vapour pressure deficit (VPD. Daily average soil respiration was found to be non-linearly correlated to average soil temperatures (Y = -0.034X2 + 1.676X – 5.382, R2 = 0.63 The coupled use of empirical models, seasonal energy fluxes and associated parameters would be useful to annual water and carbon accounting in subtropical pine ecosystem of India in the absence high-response eddy covariance tower.

  1. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  2. Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer.

    Science.gov (United States)

    Riskowski, Ryan A; Armstrong, Rachel E; Greenbaum, Nancy L; Strouse, Geoffrey F

    2016-02-23

    Optical ruler methods employing multiple fluorescent labels offer great potential for correlating distances among several sites, but are generally limited to interlabel distances under 10 nm and suffer from complications due to spectral overlap. Here we demonstrate a multicolor surface energy transfer (McSET) technique able to triangulate multiple points on a biopolymer, allowing for analysis of global structure in complex biomolecules. McSET couples the competitive energy transfer pathways of Förster Resonance Energy Transfer (FRET) with gold-nanoparticle mediated Surface Energy Transfer (SET) in order to correlate systematically labeled points on the structure at distances greater than 10 nm and with reduced spectral overlap. To demonstrate the McSET method, the structures of a linear B-DNA and a more complex folded RNA ribozyme were analyzed within the McSET mathematical framework. The improved multicolor optical ruler method takes advantage of the broad spectral range and distances achievable when using a gold nanoparticle as the lowest energy acceptor. The ability to report distance information simultaneously across multiple length scales, short-range (10-50 Å), mid-range (50-150 Å), and long-range (150-350 Å), distinguishes this approach from other multicolor energy transfer methods.

  3. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  4. The exchange reaction between hydrogen and deuterium. I. Importance of surface reactions in the steady-state mechanism

    International Nuclear Information System (INIS)

    Marteau, Chantal; Gaillard-Cusin, Francoise; James, H.

    1978-01-01

    Investigation of heterogeneous initiation process of gas phase linear chain reactions is carried out through the study of H 2 -D 2 exchange reaction. Experimental data under study concern mainly the stationary rate of HD formation and the prestationary proceeding. Steady-state method accounts for the first one of these data; it allows to clearly compare the wall process part to the part played by the homogeneous chain reaction towards HD formation. Activation energy of exchange elementary step between chemisorbed hydrogen (on silica) and gaseous deuterium has been evaluated: Esub(e1)=52+-1 Kcal/mole [fr

  5. Influence of Surface Energy Effects on Elastic Fields of a Layered Elastic Medium under Surface Loading

    Directory of Open Access Journals (Sweden)

    Supakorn Tirapat

    2017-01-01

    Full Text Available This paper presents the analysis of a layered elastic half space under the action of axisymmetric surface loading and the influence of the surface energy effects. The boundary value problems for the bulk and the surface are formulated based on classical linear elasticity and a complete Gurtin-Murdoch constitutive relation. An analytical technique using Love’s representation and the Hankel integral transform is employed to derive an integral-form solution for both displacement and stress fields. An efficient numerical quadrature is then applied to accurately evaluate all involved integrals. Selected numerical results are presented to portray the influence of various parameters on elastic fields. Numerical results indicate that the surface stress displays a significant influence on both displacement and stress fields. It is also found that the layered half space becomes stiffer with the presence of surface stresses. In addition, unlike the classical elasticity solution, size-dependent behavior of elastic fields is noted. The present analytical solutions provide fundamental understanding of the influence of surface energy on layered elastic materials. It can also be used as a benchmark solution for the development of numerical techniques such as FEM and BEM, for analysis of more complex problems involving a layered medium under the influence of surface energy effects.

  6. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fluvial and climate controls on the surface energy balance in a large lowland river

    Science.gov (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2013-12-01

    Partitioning of radiant and turbulent energy into evaporation and absorption in a river channel is controlled by climate and streamflow characteristics, and controls the water and energy balance. Atmosphere-surface interactions, coupled with advective processes, drive the heterogeneity of heat storage and exchange over longitudinal profiles whose hydraulic and thermal patterns are crucial for survival of migratory and resident fishes and subject to alteration by humans. Over 100 large-scale flow experiments have been conducted globally to measure abiotic and biotic responses to streamflow, yet none has been utilized to elucidate large-scale physical controls on the surface energy balance of a river. In this paper, we describe a synoptic method by which net solar radiation and turbulent heat fluxes were calculated over the length of a river from time series of hydroclimatological and fluvial conditions measured during a long-term large-scale flow experiment. We examine what are the dominant physical controls to the surface energy balance in a lowland river when surface water stage varies with flow releases in a 240-km reach of the San Joaquin River, California, USA. We developed an energy balance model integrated with advective exchange of heat utilizing spatially-distributed predictions of water surface elevation, inundated surface area, and velocity from an existing hydraulic model that accounts for losses and gains over the length of the river. Absorption of radiation along the river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient. Results show that over the solar spectrum, the absorption coefficient varies by seven orders of magnitude, while flow depth varies by two orders of magnitude over time and distance. Observations and modeling show that (1) discharge is controlled mainly by flow releases, diversions, and exchanges with

  8. Numerical analysis of three-dimensional flow and thermal behaviour in a scraped-surface heat exchanger; Analyse numerique tridimensionnelle des comportements hydrodynamique et thermique d`un echangeur de chaleur a surface raclee

    Energy Technology Data Exchange (ETDEWEB)

    Baccar, M.; Salah Abid, M. [Ecole Nationale d`ingenieurs de Sfax (Tunisia)

    1997-11-01

    In the present work, heat transfer from a jacketed wall of a scraped-surface heat exchanger (SSHE) is numerically simulated. With the purpose to analyse the hydrodynamic and thermal behaviour under various operating and geometrical conditions, the three-dimensional form of the Navier-Stockes and energy equations are discretized using the controlled-volume method. The hydrodynamic and thermal behaviour can take a variety of possible configurations depending on the number, shape, size of the scrapers and the ratio of rotation to the axial Reynolds numbers. The rate of heat transfer is also numerically determined in order to optimize operating and geometrical conditions. (authors) 20 refs.

  9. Seasonal contrast in the surface energy balance of the Sahel

    Science.gov (United States)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  10. Potential energy surface for ? dissociation including spin-orbit effects

    Science.gov (United States)

    Siebert, Matthew R.; Aquino, Adelia J. A.; de Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-01

    Previous experiments [J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation ( ? ) and found a one-dimensional distribution of translational energy, an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction ? → C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single-point (energy) calculations, and multi-reference energy calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the ? reactant has a substantial effect on the role of the SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for ? similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for ? , similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcalmol-1. Also, we find that, for this system, coupled-cluster single-point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  11. Constraining Agricultural Irrigation Surface Energy Budget Feedbacks in Atmospheric Models

    Science.gov (United States)

    Aufforth, M. E.; Desai, A. R.; Suyker, A.

    2017-12-01

    The expansion and modernization of irrigation increased the relevance of knowing the effects it has on regional weather and climate feedbacks. We conducted a set of observationally-constrained simulations determining the result irrigation exhibits on the surface energy budget, the atmospheric boundary layer, and regional precipitation feedbacks. Eddy covariance flux tower observations were analyzed from two irrigated and one rain-fed corn/soybean rotation sites located near Mead, Nebraska. The evaluated time period covered the summer growing months of June, July, and August (JJA) during the years when corn grew at all three sites. As a product of higher continuous surface moisture availability, the irrigated crops had significantly higher amounts of energy partitioned towards latent heating than the non-irrigated site. The daily average peak of latent heating at the rain-fed site occurred before the irrigated sites and was approximately 45 W/m2 lower. Land surface models were evaluated on their ability to reproduce these effects, including those used in numerical weather prediction and those used in agricultural carbon cycle projection. Model structure, mechanisms, and parameters that best represent irrigation-surface energy impacts will be compared and discussed.

  12. Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling

    DEFF Research Database (Denmark)

    Zöll, Undine; Brümmer, Christian; Schrader, Frederik

    2016-01-01

    Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentrations...... at high time resolution and thus to quantify the net exchange between a seminatural peatland ecosystem and the atmosphere based on the eddy-covariance approach. Changing diurnal patterns of both ammonia concentration and fluxes were found during different periods of the campaign. We observed a clear......, and surface wetness were identified to partially regulate ammonia exchange at the site, the seasonal concentration pattern was clearly dominated by agricultural practices in the surrounding area. Comparing the results of a compensation point model with our measurement-based flux estimates showed considerable...

  13. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?

    Science.gov (United States)

    Launiainen, Samuli; Katul, Gabriel G; Kolari, Pasi; Lindroth, Anders; Lohila, Annalea; Aurela, Mika; Varlagin, Andrej; Grelle, Achim; Vesala, Timo

    2016-12-01

    Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (G s ), water- and light-use efficiency and surface-atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO 2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil-vegetation-atmosphere transfer model as well as by a bulk G s representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO 2 , H 2 O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably 'conservative' over the studied LAI range 0.5-7.0 m 2 m -2 . Both ET and G s experienced a minimum in the LAI range 1-2 m 2 m -2 caused by opposing nonproportional response of stomatally controlled transpiration and 'free' forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m 2 m -2 ) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests. © 2016 John Wiley & Sons Ltd.

  14. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  15. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  16. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    Science.gov (United States)

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. © 2014, National Ground Water Association.

  17. Erosive potential of energy drinks on the dentine surface.

    Science.gov (United States)

    Pinto, Shelon C S; Bandeca, Matheus C; Silva, Carolina N; Cavassim, Rodrigo; Borges, Alvaro H; Sampaio, José E C

    2013-02-19

    Considering the current high consumption of energy drinks, the aim of the present study is to evaluate the influence of energy drinks in removing the smear layer and exposing dentinal tubules on root surface. Dentine root surfaces were exposed using a diamond bur. Forty movements of scaling were performed in the area prepared in order to create a smear layer. One hundred and thirty specimens were obtained from 35 teeth. Specimens were randomly distributed into 12 groups (n = 10) and divided into subgroups according to the application: topical (n = 5) and friction (n = 5). Twelve energy drinks were evaluated: RedBull, Burn, TNT, Flash Power, Flying Horse, Sports Drink, Ionic, Hot Power, Army Power, Gladiator and Bug. Distilled water was used as a control group. The specimens were analysed by scanning electron microscopy. Topical application: a significant influence of energy drinks on smear layer removal was found for FlyingHorse and Bug when compared with the control group. Friction application: significant smear layer removal was found for Burn, FlyingHorse, Gladiator, SportsDrinks, when compared with the control group. Comparing the different application forms, a statistically significant difference was found for Army Power. Considering the significant smear layer removal, energy drinks can be an important etiological factor for cervical dentine hypersensitivity.

  18. Surface modifications of polypropylene by high energy carbon ions

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  19. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme.

    Science.gov (United States)

    Sharma, Indu; Pattanayek, Sudip K

    2017-07-01

    The surface energy, a macroscopic property, depends on the chemical functionality and micro- and macroscopic roughness of the surface. The adsorption of two widely used proteins bovine serum albumin (BSA) and lysozyme on surfaces of four different chemical functionalities were done to find out the interrelation between macroscopic and microscopic properties. We have observed the secondary structure of protein after its adsorption. In addition, we observed the variation of surface energy of proteins due to variation in adsorption time, change in protein concentration and effect of a mixture of proteins. Surfaces of three different chemical functionalities namely, amine, hydroxyl and octyl were obtained through self-assembled monolayer on silica surfaces and were tested for responses towards adsorption of lysozyme and BSA. The adsorbed lysozyme has higher surface energy than the adsorbed BSA on amine and octyl surfaces. On hydroxyl functional surface, the surface energy due to the adsorbed lysozyme or BSA increases slowly with time. The surface energy of the adsorbed protein increases gradually with increasing protein concentration on hydrophobic surfaces. On hydrophilic surfaces, with increasing BSA concentration in bulk solution, the surface energy of the adsorbed protein on GPTMS and amine surfaces is maximum at 1μM concentration. During the adsorption from a mixture of BSA and lysozyme on octyl surface, first lysozyme adsorbs and subsequent BSA adsorption leads to a high surface energy. Copyright © 2016. Published by Elsevier B.V.

  20. The interaction of low energy ion beams with surfaces

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  1. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  2. Fan cycling strategies and heat pipe heat exchangers provide energy efficient dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Shirey, D.B. III [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1995-03-01

    This article describes two methods to reduce energy consumption and peak demand in buildings that require humidity control that were demonstrated at the Salvador Dali Museum in St. Petersburg, Florida. The first method centered on alternative indoor fan cycling strategies and the second method involved the use of heat pipe heat exchangers. Both approaches increased the dehumidification performance of the existing air-conditioning systems and provided substantial savings. Simple, low cost alternative fan cycling strategies were used. When possible, auto fan control replaced constant fan operation to avoid excess fan energy consumption, ventilation load and compressor operation. The alternative fan control strategies reduced indoor humidity fluctuations in all zones, and significantly reduced overall humidity levels in the museum lobby and storage area. An HPHX was installed within one of the two gallery RTUs to improve the unit`s dehumidification performance. The passive HPHX significantly reduced electric reheat and compressor operation while maintaining the precise temperature and humidity requirements within the gallery. The second gallery RTU now operates primarily as a back-up unit to the heat pipe-assisted air-conditioning unit.

  3. Anomalous energy exchange in the gBL and quasilinear theories

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1992-02-01

    The rate of turbulence-induced energy exchange W o between species is computed in the framework of the quasilinear and gBL transport theories, and the relationship between these two theories, and the relationship between these two similar theories is thereby elucidated. For both theories, general formal expressions for W o are developed, and then applied to the trapped electron mode for illustration. The general expressions for W o in the two theories are formally closely related, but can yield predictions of very different magnitude in concrete applications. The fact that quasilinear theory is not valid for saturated steady-state turbulence gives rise to certain peculiarities in its predictions for this normal experimental situation, such as permitting energy to flow from the cooler to the hotter species, even in the limit of thermal equilibrium, where real-space gradients vanish. The gBL theory may be viewed as a modification of quasilinear theory to be valid for steady-state turbulence, keeping extra terms due to the self-consistent back reaction of particles on the fluctuations, which are just such as to eliminate these peculiarities

  4. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  5. Supramolecular Surface Photochemistry: Cascade Energy Transfer between Encapsulated Dyes Aligned on a Clay Nanosheet Surface.

    Science.gov (United States)

    Tsukamoto, Takamasa; Ramasamy, Elamparuthi; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, V

    2016-03-29

    Three coumarin derivatives (7-propoxy coumarin, coumarin-480, and coumarin-540a, 2, 3, and 4, respectively) having different absorption and emission spectra were encapsulated within a water-soluble organic capsule formed by the two positively charged ammonium-functionalized cavitand octaamine (OAm, 1). Guests 2, 3, and 4 absorb in ultraviolet, violet, and blue regions and emit in violet, blue, and green regions, respectively. Energy transfer between the above three coumarin@(OAm)2 complexes assembled on the surface of a saponite clay nanosheet was investigated by steady-state and time-resolved emission techniques. Judging from their emission and excitation spectra, we concluded that the singlet-singlet energy transfer proceeded from 2 to 3, from 2 to 4, and from 3 to 4 when OAm-encapsulated 2, 3, and 4 were aligned on a clay surface as two-component systems. Under such conditions, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were calculated to be 33, 36, and 50% in two-component systems. When all three coumarins were assembled on the surface and 2 was excited, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were estimated to be 32, 34, and 33%. A comparison of energy transfer efficiencies of the two-component and three-component systems revealed that excitation of 2 leads to emission from 4. Successful merging of supramolecular chemistry and surface chemistry by demonstrating novel multi-step energy transfer in a three-component dye encapsulated system on a clay surface opens up newer opportunities for exploring such systems in an artificial light-harvesting phenomenon.

  6. Low energy atomic and molecular collision with graphite surface

    International Nuclear Information System (INIS)

    Bercu, M.; Grecu, V. V.

    2002-01-01

    The interaction of atomic and molecular species of hydrogen with basal plane of graphite has been investigated by means of atomic cluster models of 10, 24 and 48 carbon atoms using Hartree-Fock - Linear Combination of Atomic Orbitals (HF-LCAO) theory at the ab-initio and semiempirical level of approximation. The last approach was based on an original package developed for carbon clusters. Atomic migration between consecutive basal planes was described by cluster models of two sheets of carbon atoms. Our contribution presents the theoretical results about atomic and molecular interactions with graphite. It was found for H atom bonding energy the value 2.6 eV, using the largest cluster model. The migration of H atoms above the surface and between consecutive basal planes was simulated by extended calculations of potential energy in each point of a mesh containing 450 points describing a local surface of 0.25 nm 2 . A 3D interpolation approach gives the image of a hypersurface potential energy projection at a given distance to the graphite surface. The semi-quantitative results have indicated two significant facts related to atomic species migration. The first is that H atom has the smallest displacement barrier along C-C bonds at a distance of 1.3 A from the basal plane. In the case of absorbed atoms between graphite basal planes an almost free motion channel has been found parallel to the surface. The interaction potential barrier for H atom collision with graphite surface at the center of the carbon ring has been calculated neglecting surface vibration modes and found to be 5.9 eV . The hyperfine interaction between the electron of hydrogen and the proton has been taken as a measure of the interaction between the incident atom and the target local states. The isotropic hyperfine constant obtained at the level of the semiempiric calculations was found to be 402 Gs at the equilibrium position of H atom above a C atom at a distance of 1.3 A. The corresponding value

  7. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  8. Constructing ab initio and empirical potential energy surfaces for water

    International Nuclear Information System (INIS)

    Kain, Jacqueline Sophie

    2001-01-01

    The infrared spectrum of water is possibly one of the most well studied and yet portions of it are still poorly understood. Recently, significant advances have been made in assigning water spectra using variational nuclear calculations. The major factor determining the accuracy of ro-vibrational spectra of water is the accuracy of the underlying Potential Energy Surface. Even the most accurate ab initio Potential Energy Surface does not reproduce the Born-Oppenheimer surface to sufficient accuracy for spectroscopic studies. Furthermore, effects beyond this model such as the adiabatic correction, the relativistic correction and the non-adiabatic correction have to be considered. This thesis includes a discussion on how the relativistic correction was calculated, for the water molecule, from first-order perturbation theory. The relativistic correction improved vibrational stretching motion while making the prediction of the bending modes far worse. For rotational motion the relativistic effect had an increasing effect with increasing Ka. A further alteration to the ab initio calculations is introduced by adjusting the barrier to linearity in the water potential. This alteration to the barrier was considered in order to compensate for the lack of convergence of quantum chemical calculations of the Born-Oppenheimer surface. This barrier attempts to represent the change in the potential from linear to equilibrium. We show the improvements this has on the calculated energy levels by comparison with the HITRAN database. This then led the way to the improved spectroscopic potential presented here in this thesis. This new spectroscopic potential reduces the overall standard deviation significantly for vibrational and rotational energy levels. (author)

  9. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  10. Charge exchange, surface-induced dissociation and reactions of doubly charged molecular ions SF42+ upon impact on a stainless steel surface: A comparison with surface-induced dissociation of singly charged SF4+ molecular ions

    Czech Academy of Sciences Publication Activity Database

    Feketeová, L.; Grill, V.; Zappa, F.; Endstrasser, N.; Rasul, B.; Herman, Zdeněk; Scheier, P.; Märk, T. D.

    2008-01-01

    Roč. 276, č. 1 (2008), s. 37-42 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z40400503 Keywords : doubly charged ion * surface-induced dissociations * surface-induced reaction * charge exchange Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.445, year: 2008

  11. ELECTROMAGNETIC THERMAL INSTABILITY WITH MOMENTUM AND ENERGY EXCHANGE BETWEEN ELECTRONS AND IONS IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Nekrasov, Anatoly K.

    2011-01-01

    Thermal instability in an electron-ion magnetized plasma, which is relevant in the intragalactic medium of galaxy clusters, solar corona, and other two-component plasma objects, is investigated. We apply the multicomponent plasma approach where the dynamics of all species are considered separately through electric field perturbations. General expressions for the dynamical variables obtained in this paper can be applied over a wide range of astrophysical and laboratory plasmas also containing neutrals and dust grains. We assume that background temperatures of electrons and ions are different and include the energy exchange in thermal equations for electrons and ions along with the collisional momentum exchange in equations of motion. We take into account the dependence of collision frequency on density and temperature perturbations. The cooling-heating functions are taken for both electrons and ions. A condensation mode of thermal instability has been studied in the fast sound speed limit. We derive a new dispersion relation including different electron and ion cooling-heating functions and other effects mentioned above and find its simple solutions for growth rates in limiting cases. We show that the perturbations have an electromagnetic nature and demonstrate the crucial role of the electric field perturbation along the background magnetic field in the fast sound speed limit. We find that at the conditions under consideration, condensation must occur along the magnetic field while the transverse scale sizes can be both larger and smaller than the longitudinal ones. The results obtained can be useful for interpretating observations of dense cold regions in astrophysical objects.

  12. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    Science.gov (United States)

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-09

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  13. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  14. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2017-11-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  15. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  16. Ab initio surface core-level shifts and surface segregation energies

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located...

  17. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  18. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    Science.gov (United States)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  19. CO dimer: new potential energy surface and rovibrational calculations.

    Science.gov (United States)

    Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2013-08-15

    The spectrum of CO dimer was investigated by solving the rovibrational Schrödinger equation on a new potential energy surface constructed from coupled-cluster ab initio points. The Schrödinger equation was solved with a Lanczos algorithm. Several 4D (rigid monomer) global ab initio potential energy surfaces (PESs) were made using a previously reported interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The potential has two nonpolar minima giving rise to a complicated set of energy level stacks, which are very sensitive to the shapes and relative depths of the two wells. Although the CO dimer has defied previous attempts at an accurate purely ab initio description our best surface yields results in good agreement with experiment. Root-mean-square (rms) fitting errors of less than 0.1 cm(-1) were obtained for each of the fits using 2226 ab initio data at different levels. This allowed direct assessment of the quality of various levels of ab initio theory for prediction of spectra. Our tests indicate that standard CCSD(T) is slow to converge the interaction energy even when sextuple zeta bases as large as ACV6Z are used. The explicitly correlated CCSD(T)-F12b method was found to recover significantly more correlation energy (from singles and doubles) at the CBS limit. Correlation of the core-electrons was found to be important for this system. The best PES was obtained by extrapolation of calculations at the CCSD(T)(AE)-F12b/CVnZ-F12 (n = 3,4) levels. The calculated energy levels were compared to 105 J ≤ 10 levels from experiment. The rms error for 68 levels with J ≤ 6 is only 0.29 cm(-1). The calculated energy levels were assigned stack labels using several tools. New stacks were found. One of them, stack y1, has an energy lower than many previously known stacks and may be observable.

  20. Study on the energy performance of glazing surfaces

    Directory of Open Access Journals (Sweden)

    Ligia MOGA

    2014-12-01

    Full Text Available A proper thermal design of the building envelope represents an important factor for the energy economics. Glazing surfaces represent one of the important elements in the hygrothermal design activity of a building envelope. The window’s thermal performance has also a strong influence on the thermal performance of the opaque area of the wall. This fact imposed the research of the real interaction, of cooperation and of mutual influences of the characteristics between the two components of the wall of the building envelope, respectively the opaque and the glazing area. Optimal constructive details for the opaque and glazing area of the wall need to be properly designed in order to achieve the required thermal and energy performances imposed for new types of buildings, e.g. passive houses, zero energy buildings.

  1. The importance of surface finish to energy performance

    Directory of Open Access Journals (Sweden)

    Smith Geoff B.

    2017-01-01

    Full Text Available Power generation in solar energy systems, thermal control in buildings and mitigation of the Urban Heat Island problem, are all sensitive to directional response to incoming radiation. The radiation absorption and emission profile also plays a crucial role in each system's response and depends strongly on surface finish. This important sensitivity needs wider recognition in materials data sheets, system modeling, plus in materials and environmental engineering. The impact of surface roughness on thermal response of natural and man-made external environments is examined. Important examples will be given of the role of surface finish within each class. Total emittance links to the way surface finish influences directional emittance E(θ. Smooth surface thermal emittance on PV module covers, many solar absorbers, some roof paints, polished concrete, and glass windows can be up to 15% different from insulator results based on fully diffuse models of the same material. Widespread evidence indicates smooth metals and low-E solar absorber surfaces cool faster, and smooth insulators slower than previously thought. Matt paint is cooler than low sheen paint under the same solar heating impacts and normal concrete cooler than polished. Emittance for water is the prime environmental example of oblique impacts as it reflects strongly at oblique incidence, which leads to a significant drop in E(θ. Ripples or waves however raise water's average emittance. A surprise in this work was the high sensitivity of total E and its angular components to roughness in the depth range of 0.1–0.8 μm, which are well under ambient thermal IR wavelengths of 3–30 μm but common in metal finishing. Parallel energy flows such as evaporation and convective cooling vary if emittance varies. Thermal image analysis can provide insights into angular radiative effects.

  2. A phenomenological study of the π- p → π0 n charge exchange reaction at high energy

    International Nuclear Information System (INIS)

    Michaud, Y.

    1995-01-01

    The aim of the study was to examine the behaviour of the proton-proton elastic scattering, for mass center energies around 10 GeV, and more especially to study the charge exchange reaction π - p → π 0 n for mass center energies between 3 and 20 GeV. A formalism based on the Glauber model has been used, and a Regge trajectory exchange term was introduced in the model in order to enable the description of the lower energy domain (inferior to 10 GeV) that is characterized by a large contribution of meson exchanges at the scattering amplitude. The Glauber model is then applied to the charge exchange reaction and the differential cross section is analyzed for a center mass energy comprised between 3 and 20 GeV, together with the polarization at 40 GeV/c. The approach is then validated through the study of the π - p → η n reaction. The size of the kernel of proton and pion components implied in the π - p → π 0 n reaction, is also investigated. 90 refs., 48 figs., 4 tabs., 5 appends

  3. The effect of varying soil moisture on the energy balance and CO2 exchange of sunflowers: A study using a mini weighing lysimeter system

    Science.gov (United States)

    Diaz-Espejo, A.; Verhoef, A.

    2003-04-01

    Soil moisture is, together with nitrogen, the most important limiting factor in the plant global production. Its spatial and temporal evolution will determine the energy, water and carbon budgets and the vegetation distribution. For vegetated surfaces, the evapotranspiration is a large component of the energy balance. Understanding the response of the plants to their environment is critical to estimate this flux. To study the evolution of the evapotranspiration under different conditions we have designed a high precision mini lysimeter system. The aim of this set-up is to get a better insight into the interaction between root-zone soil moisture and canopy exchange processes. The experiment consists of 25 soil-filled perspex boxes, which are arranged in a 5× 5-square. This set-up allows for flexibility in experimental set-up and vegetation types/soil moisture levels, and enables us to mimic within-field, or even within-region, variability, without the experimental difficulties encountered in field trials. The results show how soil water stress promotes a high variability in the canopy development and in the evapotranspiration, thereby affecting other components of the energy balance, especially the sensible heat flux. The effect of this variation on the CO_2 exchange and its impact on the water use efficiency by plants is also discussed. The results will be used to include the impact of soil water stress on canopy gas exchange in a Soil Vegetation Atmosphere Transfer model (SVAT). Furthermore, it will be tested how well a simple SVAT scheme can deal with within and between pixel variability. This study is deemed extremely relevant for large-scale remote sensing and to aid our understanding the impact of climate change on heterogeneous surfaces.

  4. Artificial upwelling using the energy of surface waves

    Science.gov (United States)

    Soloviev, A.

    2016-02-01

    The ocean is an important component of climate and climate change, since the heat capacity of a few meters of the upper ocean is equivalent to the heat capacity of the entire atmosphere. (Solar radiation and IR balance in the atmosphere are of course major factors as well.) Artificial upwelling devices using the energy of surface waves, similar to those developed by Vershinskiy, Pshenichnyy, and Soloviev (1987), can bring cold water from below the thermocline to the sea surface. Their wave-inertia pump consisted of a vertical tube, a valve, and a buoy to keep the device afloat. The device operated by using energy of surface waves to create an upward flow of water in the tube. An outlet valve at the top of the unit synchronized the operation of the device with surface waves and prevented back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. This type of artificial upwelling can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from the deep layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps has been estimated for different environmental conditions using a computational fluid dynamics model. The cooled near-surface layer of the ocean will be getting more heat from the sun, which is a detrimental consequence. Cloud seeding can help to mitigate this extra warming. A synergistic approach to climate engineering can thus reduce detriments and increase potential benefits of this system to society.

  5. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  6. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  8. Energy efficiency in process plants with emphasis on heat exchanger networks : optimization, thermodynamics and insight

    Energy Technology Data Exchange (ETDEWEB)

    Anantharaman, Rahul

    2011-07-01

    This thesis focuses on energy recovery system design and energy integration to improve the energy efficiency of process plants. The objectives of this work are to (a) develop a systematic methodology based on thermodynamic principles to integrate energy intensive processes and (b) develop a mathematical programming based approach using thermodynamics and insight for solving industrial sized HENS problems. A novel energy integration methodology, Energy Level Composite Curves (ELCC), has been developed that is a synergy of Exergy Analysis and Composite Curves. ELCC is a graphical tool which provides the engineer with insights on energy integration and this work represents the first methodological attempt to represent thermal, mechanical and chemical energy in a graphical form similar to composite curves for the thermal integration of energy intensive processes. This method provides physical insight to integrate energy sources with sinks. The methodology is useful as a screening tool, functioning as an idea generator prior to the heat and power integration step. A simple energy targeting algorithm is developed to obtain utility targets. The ELCC was applied to a methanol plant to show the efficacy of the methodology.The Sequential Framework, an iterative and sequential methodology for Heat Exchanger Network Synthesis (HENS), is presented in this thesis. The main objective of the Sequential Framework is to solve industrial size problems. The subtasks of the design process are solved sequentially using Mathematical Programming. There are two main advantages of the methodology. First, the design procedure is, to a large extent, automated while keeping significant user interaction. Second, the subtasks of the framework (MILP and NLP problems) are much easier to solve numerically than the MINLP models that have been suggested for HENS. Application of the Sequential Framework to literature examples showed that the methodology generated solutions with total annualized costs

  9. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.

    Science.gov (United States)

    Liu, Ran; Duay, Jonathon; Lee, Sang Bok

    2010-07-27

    MnO2 nanoparticle enriched poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires are fabricated by simply soaking the PEDOT nanowires in potassium permanganate (KMnO4) solution. The structures of these MnO2 nanoparticle enriched PEDOT nanowires are characterized by SEM and TEM, which show that the MnO2 nanoparticles have uniform sizes and are finely dispersed in the PEDOT matrix. The chemical constituents and bonding of these composite nanowires are characterized by energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, and infrared spectroscopy, which indicate that the formation and dispersion of these MnO2 nanoparticles into the nanoscale pores of the PEDOT nanowires are most likely triggered by the reduction of KMnO4 via the redox exchange of permanganate ions with the functional group on PEDOT. Varying the concentrations of KMnO4 and the reaction time controls the loading amount and size of the MnO2 nanoparticles. Cyclic voltammetry and galvanostatic charge-discharge are used to characterize the electrochemical properties of these MnO2 nanoparticle loaded PEDOT nanowires. Due to their extremely high exposed surface area with nanosizes, the pristine MnO2 nanoparticles in these MnO2 nanoparticle enriched PEDOT nanowires show very high specific capacitance (410 F/g) as the supercapacitor electrode materials as well as high Li+ storage capacity (300 mAh/g) as cathode materials of Li ion battery, which boost the energy storage capacity of PEDOT nanowires to 4 times without causing excessive volume expansion in the polymer. The highly conductive and porous PEDOT matrix facilitates fast charge/discharge of the MnO2 nanoparticles and prevents them from agglomerating. These synergic properties enable the MnO2 nanoparticle enriched PEDOT nanowires to be promising electrode materials for supercapacitors and lithium ion batteries.

  10. Energy density and energy flow of surface waves in a strongly magnetized graphene

    Science.gov (United States)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  11. Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids

    International Nuclear Information System (INIS)

    Teng, K.H.; Amiri, Ahmad; Kazi, S.N.; Bakar, M.A.; Chew, B.T.; Al-Shamma’a, A.; Shaw, A.

    2017-01-01

    Highlights: • Decoration EDTA on MWCNT surface to retard the rate of fouling. • Preparation of DTPA-treated MWCNT/water nanofluid. • Evaluating the mitigation of DTPA-treated MWCNT-based water nanofluids. • Retarding of calcium carbonate crystals by MWCNT-DTPA additives. • The effect of additive on the rate of fouling. - Abstract: Mineral scale deposition on heat exchanging surfaces increases the thermal resistance and reduces the operating service life. The effect is usually intensified at higher temperatures due to the inverse temperature solubility characteristics of some minerals in the cooling water. Scale formation build up when dissolved salt crystallize from solution onto the heated surface, forming an adherent deposit. It is very important for heat transfer applications to cope with the fouling problems in industry. In this present study, a set of fouling experiments was conducted to evaluate the mitigation of calcium carbonate scaling by applying DTPA-treated MWCNT-based water nanofluids on heat exchanger surfaces. Investigation of additive DTPA-treated MWCNT-based water nanofluids (benign to the environment) on fouling rate of deposition was performed. 300 mg L −1 of artificially-hardened calcium carbonate solution was prepared as a fouling solution for deposit analysis. Assessment of the deposition of calcium carbonate on the heat exchanger surface with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution.

  12. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  13. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    Science.gov (United States)

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  14. Plasma-induced Styrene Grafting onto the Surface of Polytetrafluoroethylene Powder for Proton Exchange Membrane Application

    Science.gov (United States)

    Lan, Yan; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Chen, Longwei; Yang, Guangjie; Nagatsu, M.; Meng, Yuedong

    2011-10-01

    Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluoroethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was sulfonated in chlorosulfonic acid and fabricated into a membrane, which was used as inexpensive PEM material for a proton exchange membrane fuel cell (PEMFC). Fourier transform infrared spectroscopy attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the structure of the sulfonated PTFE powder. The results showed that all the PTFE powders were successfully grafted by nitrogen plasma and then sulfonated under such experimental conditions. A scanning electron microscopy (SEM) image indicated that the fabricated membrane exhibits flat morphology and homogenous structure. The ion exchange capacity (IEC) of this kind of PEM was also investigated.

  15. Surface energy absorbing layers produced by ion implantation

    International Nuclear Information System (INIS)

    Gurarie, V.N.

    1997-01-01

    Single crystals of magnesia have been ion implanted with 80 keV Si and Cr ions at variable doses and then subjected to testing in a shock plasma. The peak surface temperature has been calibrated by measuring the size and temperature deformation of the fragments formed by multiple microcracking during thermal shock. the crack density curves for MgO crystals demonstrate that in a wide range of thermal shock intensity the ion implanted crystals develop a system of microcracks of a considerably higher density than the unimplanted ones. The high density of cracks nucleated in the ion implanted samples results in the formation of a surface energy absorbing layer which effectively absorbs elastic strain energy induced by thermal shock. As a consequence the depth of crack penetration in the layer and hence the degree of fracture damage are decreased. the results indicate that a Si implant decreases the temperature threshold of cracking and simultaneously increases the crack density in MgO crystals. However, in MgO crystals implanted with Cr a substantial increase in the crack density is achieved without a noticeable decrease in the temperature threshold of fracture. This effect is interpreted in terms of different Cr and Si implantation conditions and damage. The mechanical properties of the energy-absorbing layer and the relation to implantation-induced lattice damage are discussed. 11 refs., 4 figs

  16. MUREX: a land-surface field experiment to study the annual cycle of the energy and water budgets

    Directory of Open Access Journals (Sweden)

    J.-C. Calvet

    1999-06-01

    Full Text Available The MUREX (monitoring the usable soil reservoir experimentally experiment was designed to provide continuous time series of field data over a long period, in order to improve and validate the Soil-vegetation-Atmosphere Transfer (SVAT parameterisations employed in meteorological models. Intensive measurements were performed for more than three years over fallow farmland in southwestern France. To capture the main processes controlling land-atmosphere exchanges, the local climate was fully characterised, and surface water and energy fluxes, vegetation biomass, soil moisture profiles, surface soil moisture and surface and soil temperature were monitored. Additional physiological measurements were carried out during selected periods to describe the biological control of the fluxes. The MUREX data of 1995, 1996, and 1997 are presented. Four SVAT models are applied to the annual cycle of 1995. In general, they succeed in simulating the main features of the fallow functioning, although some shortcomings are revealed.Key words. Hydrology (evapotranspiration; soil moisture; water-energy interactions.

  17. Long-term Impacts of Hurricane Wilma on Land Surface-Atmosphere Exchanges

    Science.gov (United States)

    Fuentes, J. D.; Dowell, K. K.; Engel, V. C.; Smith, T. J.

    2008-05-01

    In October 2005, Hurricane Wilma made landfall along the mangrove forests of western Everglades National Park, Florida, USA. Damage from the storm varied with distance from landfall and included widespread mortality and extensive defoliation. Large sediment deposition events were recorded in the interior marshes, with erosion taking place along the coastal margins. Wilma made landfall near a 30 m flux tower where eddy-covariance measurements of ecosystem-level carbon and energy fluxes started in 2003. Repairs to the structure were completed in 2006, enabling comparisons of surface fluxes before and after the storm. One year after the hurricane, both the average and daily integrated CO2 fluxes are consistently lower than the pre-storm values. The storm's impact on standing live biomass and the slow recovery of leaf area appear to have resulted in decreased photosynthetic uptake capacity. Nighttime respiratory CO2 fluxes above the canopy are unchanged from pre-storm values. During some periods, daily integrated fluxes show the forest as a net source of CO2 to the atmosphere. Soil CO2 fluxes are not measured directly, but daytime soil temperatures and vertical heat fluxes have shown consistently higher values after the storm. Nighttime soil temperatures values have been slightly lower. These stronger diurnal soil temperature fluctuations indicate enhanced radiative fluxes at the soil surface, possibly as a result of the reduced leaf area. The increases in daytime soil temperatures are presumably leading to higher below-ground respiration rates and, along with the reduced photosynthetic capacity, contributing to the lower net CO2 assimilation rates. This hypothesis is supported by nearby measurements of declining surface elevations of the organic soils which have been correlated with mangrove mortality in impacted areas. Both sensible and latent heat fluxes above the canopy are found to be reduced following the hurricane, and soil heat storage is higher. Together

  18. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    Science.gov (United States)

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  19. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  20. A run-around heat exchanger system to improve the energy efficiency of a home appliance using hot water

    International Nuclear Information System (INIS)

    Park, Jae Sung; Jacobi, Anthony M.

    2009-01-01

    A significant portion of the energy consumed by many home appliances using hot water is used to heat cold supply water. Such home appliances generally are supplied water at a temperature lower than the ambient temperature, and the supply water is normally heated to its maximum operating temperature, often using natural gas or an electrical heater. In some cases, it is possible to pre-heat the supply water and save energy that would normally be consumed by the natural gas or electrical heater. In order to save the energy consumed by an appliance using water heater, a run-around heat exchanger system is used to transfer heat from the ambient to the water before an electrical heater is energized. A simple model to predict the performance of this system is developed and validated, and the model is used to explore design and operating issues relevant to the run-around heat exchanger system. Despite the additional power consumption by the fan and pump of the run-around heat exchanger system, the experimental data and analysis show that for some systems the overall energy efficiency of the appliance can be improved, saving about 6% of the energy used by the baseline machine.

  1. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    Science.gov (United States)

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  2. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  3. Surface Free Energy Determination of APEX Photosensitive Glass

    Directory of Open Access Journals (Sweden)

    William R. Gaillard

    2016-02-01

    Full Text Available Surface free energy (SFE plays an important role in microfluidic device operation. Photosensitive glasses such as APEX offer numerous advantages over traditional glasses for microfluidics, yet the SFE for APEX has not been previously reported. We calculate SFE with the Owens/Wendt geometric method by using contact angles measured with the Sessile drop technique. While the total SFE for APEX is found to be similar to traditional microstructurable glasses, the polar component is lower, which is likely attributable to composition. The SFE was modified at each stage of device fabrication, but the SFE of the stock and fully processed glass was found to be approximately the same at a value of 51 mJ·m−2. APEX exhibited inconsistent wetting behavior attributable to an inhomogeneous surface chemical composition. Means to produce more consistent wetting of photosensitive glass for microfluidic applications are discussed.

  4. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  5. Polynomials, Riemann surfaces, and reconstructing missing-energy events

    CERN Document Server

    Gripaios, Ben; Webber, Bryan

    2011-01-01

    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.

  6. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  7. Planckian energy scattering and surface terms in the gravitational action

    CERN Document Server

    Fabbrichesi, Marco E; Veneziano, Gabriele; Vilkovisky, G A

    1994-01-01

    This is a revised version of our previous paper by the same name and preprint number. It contains various changes, two figures and new results in sect.5. We propose a new approach to four-dimensional Planckian-energy scattering in which the phase of the ${\\cal S}$-matrix is written---to leading order in $\\hbar$ and to all orders in $R/b =Gs/J$---in terms of the surface term of the gravity action and of a boundary term for the colliding quanta. The proposal is checked at the leading order in $R/b$ and also against some known examples of scattering in strong gravitational fields.

  8. A simple model for the surface energy of ionic crystals

    International Nuclear Information System (INIS)

    Roman, E.; Tosi, M.P.

    1982-01-01

    The surface energy of ionic materials is empirically related to bulk properties (elastic constants, electronic dielectric constant and optical band gap) through an analysis of the cleavage force. This is evaluated at small and large separations of the two crystal halves from phonon dispersion curves and from van der Waals interactions, respectively, and these two limiting behaviours are connected by a scaling hypothesis introduced for metals by Kohn and Yaniv. The experimental data that are available for a few ionic crystals seem to satisfy the suggested relation, with an empirical universal parameter which has roughly the same value as determined for metals. (author)

  9. Treatment of surfaces with low-energy electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mikmeková, Eliška; Lejeune, M.

    2017-01-01

    Roč. 407, JUN 15 (2017), s. 105-108 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Low-energy electrons * Electron beam induced release * Graphene * Ultimate cleaning of surfaces Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  10. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  11. Treatment of surfaces with low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  12. Numerical analysis of a heat exchanger with differentiated temperatures surface at varying distances from the wall

    Science.gov (United States)

    Orłowska, Magdalena

    2018-02-01

    This article is one of a series of articles by the author. For many years she conducts research on convective heat exchange. The work is mainly concerned on knowing the effect of positioning the heater on the heat output of the device. It turns out that the correct location is very important.

  13. Study of exchange current contributions for the pion-deuteron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Melo, S.W.A. de.

    1983-01-01

    The contribution of the pions exchange currents to the πd elastic scattering in the Δ(1232) resonance region is calculated using Feynman diagrams. The results show that the addition of exchange currents to the simple and double scattering terms improve the agreement with the experimental data. (L.C.) [pt

  14. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  15. Effects of fin pitch and array of the frost layer growth on extended surface of a heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dong Keun; Lee, Kwan Soo [Hanyang Univ., Seoul (Korea, Republic of)

    2003-07-01

    This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better.

  16. Gradient approximated exchange energy functionals with improved performances for two-dimensional quantum dot systems

    Science.gov (United States)

    Jana, Subrata; Patra, Abhilash; Samal, Prasanjit

    2018-03-01

    Semilocal exchange-correlation functionals are frequently used to accurately describe the complex many-electron effects of two-dimensional quantum systems. Most of these functionals are designed using the reduced density gradient as the main ingredient. A semilocal functional for the exchange and the corresponding enhancement factor is constructed using the inhomogeneity parameter of the generalized gradient approximations by analyzing the small and large-density gradient expansion of the exchange hole. This exchange functional significantly reduces the error compared to the existing gradient approximations. Performance of the proposed semilocal functional is demonstrated by considering parabolic and Gaussian quantum dots with varying particle number and confinement strength. The results are also compared with that of the exact exchange formalism by considering it as the standard.

  17. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  18. FY 2000 report on information exchanges/analytical survey for improvement of energy consumption efficiency; 2000 nendo energy shohi koritsuka joho kokan bunseki chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of surveying the situation of the arrangement of methods of energy conservation promotion and the emissions trading system in developing countries by Japan having the effectiveness or in cooperation with developed countries, information was collected through the participation in international conferences related to energy conservation promotion, etc. and by visits at governmental organizations in charge in developed countries and developing countries. The results of the survey were classified into the following four items: 1) survey method; 2) exchanges of information on energy conservation in main 3 developing counties; 3) exchanges of information of energy conservation in the main developed countries; 4) exchanges of information of the emissions trading system (international trading system of energy conservation values (greenhouse effect gas emission right)). In 4), survey was made on the following: the emissions trading system for the inside of company group (BP-Amoco), the details of the emissions trading system for one country (the U.K.), the grapple with the emissions trading by a private trading organization (NATSOURCE Co.), and the handle with the emissions trading system by each of the OECD countries. (NEDO)

  19. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    P. Kuipers Munneke

    2012-03-01

    Full Text Available Data collected by two automatic weather stations (AWS on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB, which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.

  20. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis.

    Science.gov (United States)

    Haggie, Peter M; Phuan, Puay-Wah; Tan, Joseph-Anthony; Zlock, Lorna; Finkbeiner, Walter E; Verkman, A S

    2016-06-01

    Pendrin (SLC26A4) is a Cl(-)/anion exchanger expressed in the epithelium of inflamed airways where it is thought to facilitate Cl(-) absorption and HCO3 (-) secretion. Studies using pendrin knockout mice and airway epithelial cells from hearing-impaired subjects with pendrin loss of function suggest involvement of pendrin in inflammatory lung diseases, including cystic fibrosis (CF), perhaps by regulation of airway surface liquid (ASL) volume. Here we identified small-molecule pendrin inhibitors and demonstrated their efficacy in increasing ASL volume. A cell-based, functional high-throughput screen of ∼36,000 synthetic small molecules produced 3 chemical classes of inhibitors of human pendrin. After structure-activity studies, tetrahydropyrazolopyridine and pyrazolothiophenesulfonamide compounds reversibly inhibited pendrin-facilitated Cl(-) exchange with SCN(-), I(-), NO3 (-), and HCO3 (-) with drug concentration causing 50% inhibition down to ∼2.5 μM. In well-differentiated primary cultures of human airway epithelial cells from non-CF and CF subjects, treatment with IL-13, which causes inflammation with strong pendrin up-regulation, strongly increased Cl(-)/HCO3 (-) exchange and the increase was blocked by pendrin inhibition. Pendrin inhibition significantly increased ASL depth (by ∼8 μm) in IL-13-treated non-CF and CF cells but not in untreated cells. These studies implicate the involvement of pendrin-facilitated Cl(-)/HCO3 (-) in the regulation of ASL volume and suggest the utility of pendrin inhibitors in inflammatory lung diseases, including CF.-Haggie, P. M., Phuan, P.-W., Tan, J.-A., Zlock, L., Finkbeiner, W. E., Verkman, A. S. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis. © FASEB.

  1. Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies.

    Science.gov (United States)

    Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul

    2016-09-21

    Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

  2. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  3. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    Science.gov (United States)

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana

    2018-01-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.

  4. Explaining the isotope effect on heat transport in L-mode with the collisional electron-ion energy exchange

    Science.gov (United States)

    Schneider, P. A.; Bustos, A.; Hennequin, P.; Ryter, F.; Bernert, M.; Cavedon, M.; Dunne, M. G.; Fischer, R.; Görler, T.; Happel, T.; Igochine, V.; Kurzan, B.; Lebschy, A.; McDermott, R. M.; Morel, P.; Willensdorfer, M.; the ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-06-01

    In ASDEX Upgrade (AUG), the normalised gyroradius {ρ\\star} was varied via a hydrogen isotope scan while keeping other dimensionless parameters constant. This was done in L-mode, to minimise the impact of pedestal stability on confinement. Power balance and perturbative transport analyses reveal that the electron heat transport is unaffected by the differences in isotope mass. Nonlinear simulations with the Gene code suggest that these L-mode discharges are ion temperature gradient (ITG) dominated. The different gyroradii due to the isotope mass do not necessarily result in a change of the predicted heat fluxes. This result is used in simulations with the Astra transport code to match the experimental profiles. In these simulations the experimental profiles and confinement times are reproduced with the same transport coefficients for hydrogen and deuterium plasmas. The mass only enters in the energy exchange term between electrons and ions. These numerical observations are supported by additional experiments which show a lower ion energy confinement compared to that of the electrons. Additionally, hydrogen and deuterium plasmas have a similar confinement when the energy exchange time between electrons and ions is matched. This strongly suggests that the observed isotope dependence in L-mode is not dominated by a gyroradius effect, but a consequence of the mass dependence in the collisional energy exchange between electrons and ions.

  5. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  6. An Ab Initio Based Potential Energy Surface for Water

    Science.gov (United States)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  7. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  8. Numerical sensitivity study of the nocturnal low-level jet over a forest canopy and implications for nocturnal surface exchange of carbon dioxide and other trace gases

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, M.Y.; Duarte, H.F.

    2010-01-01

    and are typically intertwined with other contributing factors, they constitute an important cause of jet formation. This mechanism is the only one that can be simulated by one-dimensional atmospheric boundary-layer model. This mechanism is a strong function of the distribution of surface energy properties which...... in the nocturnal boundary layer, several studies demonstrated the role of nocturnal jets in transporting moisture, ozone, and other trace gases between the biosphere and the lower atmosphere (Mathieu et al., 2005; Karipot et al., 2006; 2007; 2008; 2009). This study suggests that SCADIS, because of its simplicity...... and low computational demand, has potential as a research tool regarding surface–atmosphere gaseous exchange in the nocturnal boundary layer, especially if carbon dioxide, water vapor, ozone and other gases are released or deposited inside the forest canopy....

  9. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  10. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    Science.gov (United States)

    Belkić, Dževad

    1999-06-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/ dΩ for the basic charge exchange process H ++H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pad

  11. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    International Nuclear Information System (INIS)

    Belkic, Dzevad

    1999-01-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/dΩ for the basic charge exchange process H + +H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pade

  12. Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset

    DEFF Research Database (Denmark)

    Else, B.G.T.; Papakyriakou, T.N.; Raddatz, R.

    2014-01-01

    Relatively few sea ice energy balance studies have successfully captured the transition season of warming, snowmelt, and melt pond formation. In this paper, we report a surface energy budget for landfast sea ice that captures this important period. The study was conducted in the Canadian Arctic......) combined with the seasonal increase in incoming shortwave radiation then triggered snowmelt onset. Melt progressed with a rapid reduction in albedo and attendant increases in shortwave energy absorption, resulting in melt pond formation 8 days later. The key role of longwave radiation in initiating melt...... onset supports past findings, and confirms the importance of clouds and water vapor associated with synoptic weather systems. However, we also observed a period of strong turbulent energy exchange associated with the passage of a cyclone. The cyclone event occurred shortly after melt pond formation...

  13. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions

    Science.gov (United States)

    Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Kohnert, Katrin; Zona, Donatella; Sachs, Torsten

    2018-03-01

    The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June-July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.

  14. Quantifying exchange between groundwater and surface water in rarely measured organic sediments

    Science.gov (United States)

    Rosenberry, D. O.; Cavas, M.; Keith, D.; Gefell, M. J.; Jones, P. M.

    2016-12-01

    Transfer of water and chemicals between poorly competent organic sediments and surface water in low-energy riverine and lentic settings depends on several factors, including rate and direction of flow, redox state, number and type of benthic invertebrates, and chemical gradients at and near the sediment-water interface. In spite of their commonly large areal extent, direct measurements of flow in soft, organic sediments are rarely made and little is known about flux direction, rate, or heterogeneity. Commonly used monitoring wells are difficult to install and suffer from slow response to changing hydraulic head due to the low permeability of these sediments. Seepage meters can directly quantify seepage flux if several challenges can be overcome. Meters are difficult to install and operate where water is deep, visibility is poor, and the position of the sediment-water interface is not readily apparent. Soft, easily eroded sediment can be displaced during meter installation, creating bypass flow beneath the bottom of the seepage cylinder. Poorly competent sediments often cannot support the weight of the meters; they slowly sink into the bed and displace water inside the seepage cylinder, which leads to the interpretation of large upward flow. Decaying organic material within the sediment generates gas that can displace water and corrupt seepage-meter measurements. Several inexpensive modifications to a standard seepage meter, as well as precautions during installation and operation, can minimize these sources of error. Underwater video cameras can be mounted to the meter to remotely observe sediment disturbance during sensor installation and monitor the stability of the meter insertion depth during the period of deployment. Anchor rods can be driven a meter or more into the sediment until refusal, firmly anchoring the seepage meter at a constant sediment insertion depth. Data collected from modified seepage meters installed in Minnesota and New York demonstrate the

  15. Scale - dependent effects on the surface energy fluxes modelling in Iberian oak-savanna (dehesa) using the Two-Source Energy Balance (TSEB)

    Science.gov (United States)

    Andreu, Ana; Nieto, Hector; Gómez-Giráldez, Pedro; González-Dugo, Maria P.

    2017-04-01

    Iberian semi-arid oak-savannas (dehesas) are complex ecosystems where bare soil and different layers of vegetation (grass/scrubs/trees) are distributed following heterogeneous patterns. An assumption of the two source energy balance models is that the effective source/sink for turbulent flux exchange at the surface(canopy/soil) is described by a bulk radiometric surface temperature (TRAD) and resistance. Therefore, the agreement of the TRAD used as an input to these models, with the "bulk" concept (determined by the spatial resolution), will influence the final energy fluxes estimations. The representativeness of the field-ground measurements, the spatial resolution of sensors, the averaging and the up-scaling of TRAD and the ecosystem vegetation parameters, will be crucial for the precision of the results, more than in homogeneous landscapes. The aim of this study is to analyze the scale-effects derived from TSEB application, comparing the observed energy fluxes and the estimated ones obtained from multiple TRAD data sources of different nature: tree/grass/soil ground-based observations, tower footprint, hyperspectral reflectance imagery acquired with an airborne platform, medium (Landsat) and low spatial resolution satellite data (Sentinel 3, MODIS), and how the up-scaling of the vegetation structural characteristics contribute to the discrepancies. The study area selected for this purpose is a dehesa site (Santa Clotilde, Cordoba), which present canopy mosaics (oak, annual grasses and bushes) differing in phenology, physiology and functioning, and bare soil, all of them influencing the turbulent and radiative exchanges.

  16. CERES Energy Balanced and Filled(EBAF) Surface Monthly means data in netCDF

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Surface product provides computed monthly mean surface radiative fluxes...

  17. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Science.gov (United States)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  18. Studying temporal and spatial variations of groundwater-surface water exchange flux for the Slootbeek (Belgium) using the LPML method

    Science.gov (United States)

    Anibas, Christian; Schneideweind, Uwe; Vandersteen, Gerd; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Knowledge of groundwater-surface water interaction is important for the assessment of water resources and for the investigation of fate and transport of contaminants and nutrients. In streams and rivers exchange fluxes of water are sensitive to local and regional factors such as riverbed hydraulic conductivity and hydraulic gradients. Field monitoring in time and space is therefore indispensible for assessing the variability of groundwater-surface water interaction. Not only the complexity of the examined processes demand novel data processing and characterization tools, the amount of acquired data also urges for new modeling tools. These tools should be easily applicable, allow for a fast computation, and utilize the maximum amount of available data for detailed analysis, including uncertainties. Such analytical tools should be combined with modern field equipment, data processing tools, geographical information systems and geostatistics for best results. A simple and cost effective methodology to estimate groundwater-surface water interaction is the use of temperature as an environmental tracer (ANDERSON, 2005). LPML (VANDERSTEEN et al., 2014) is one of the most advanced analytical 1D coupled water flow and heat transport models, combining a local polynomial method with a maximum likelihood estimator. It is flexible, fast and able to create time series of exchange fluxes, as well as model quality and parameter uncertainty. LPML determines frequency response functions from measured temperature time series and an analytical model, and applies a non-linear optimization technique. With this tool the variability of groundwater-surface water interaction of the Belgian stream Slootbeek was assessed. Multilevel temperature sensors were placed in seven locations to obtain temperature-time series. Located at the streambed top and at six depths below, several months worth of data was collected and analyzed. Results identified a high spatial and temporal variability of

  19. The fabrication of a process heat exchanger for a SO3 decomposer using surface-modified hastelloy X materials

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim Yong Wan

    2008-01-01

    This study investigates the surface modification of a Hastelloy X plate and diffusion bonding in the assembly of surface modified plates. These types of plates are involved in the key processes in the fabrication of a Process Heat Exchanger (PHE) for a SO 3 decomposer. Strong adhesion of a SiC film deposited onto Hastelloy X can be achieved by a thin SiC film deposition and a subsequent N ion beam bombardment followed by an additional deposition of a thicker film that prevents the Hastelloy X surface from becoming exposed to a corrosive environment through the pores. This process not only produces higher corrosion resistance as proved by electrolytic etching but also exhibits higher endurance against thermal stress above 900 .deg. C. A process for a good bonding between Hastelloy X sheets, which is essential for a good heat exchanger, was developed by diffusion bonding. The diffusion bonding was done by mechanically clamping the sheets under a heat treatment at 900 .deg. C. When the clamping jig consisted of materials with a thermal expansion coefficient that was equal to or less than that of the Hastelloy X, sound bonding was achieved

  20. Atmospheric and Surface-Condition Effects on CO2 Exchange in the Liaohe Delta Wetland, China

    Directory of Open Access Journals (Sweden)

    Qingyu Jia

    2017-10-01

    Full Text Available The eddy covariance method was used to study the CO2 budget of the Liaohe Delta reed wetland in northern China during 2012–2015. The changes in environmental factors (including meteorology, vegetation, hydrology, and soil were analyzed simultaneously. The change in the trend of the CO2 concentration in the reed wetland was similar to global changes over the four years. The average annual CO2 accumulation was 2.037 kg·CO2·m−2, ranging from 1.472 to 2.297 kg·CO2·m−2. The seasonal characteristics of the CO2 exchange included high CO2 absorption in June and July, and high emissions in April and from September to October, with the highest emissions in July 2015. The average temperatures from 2013 to 2015 were higher than the 50-year average, largely due to increased temperatures in winter. Precipitation was below the 50-year average, mainly because of low precipitation in summer. The average wind speed was less than the 50-year average, and sunshine duration decreased each year. The CO2 exchange and environmental factors had a degree of correlation or consistency. The contribution of meteorology, vegetation, hydrology, and soil to the CO2 budget was analyzed using the partial least squares method. Water and soil temperature had a greater effect on the CO2 exchange variability. The regression equation of the CO2 budget was calculated using the significant contributing factors, including temperature, precipitation, relative humidity, water-table level, salinity, and biomass. The model fit explained more than 70% of the CO2 exchange, and the simulation results were robust.

  1. Low-energy particle treatment of GaAs surface

    International Nuclear Information System (INIS)

    Pincik, E.; Ivanco, J.; Brunner, R.; Jergel, M.; Falcony, C.; Ortega, L.; Kucera, J. M.

    2002-01-01

    The paper presents results of a complex study of surface properties of high-doped (2x10 18 cm -3 ) and semi-insulating GaAs after an interaction with the particles coming from low-energy ion sources such as RF plasma and ion beams. The virgin samples were mechano-chemically polished liquid-encapsulated Czochralski-grown GaAs (100) oriented wafers. The crystals were mounted on the grounded electrode (holder). The mixture Ar+H 2 as well as O 2 and CF 4 were used as working gases: In addition, a combination of two different in-situ exposures was applied, such as e.g. hydrogen and oxygen. Structural, electrical and optical properties of the exposed surfaces were investigated using X-ray diffraction at grazing incidence, quasi-static and high-frequency C-V curve measurements, deep-level transient spectroscopy, photo-reflectance, and photoluminescence. Plasma and ion beam exposures were performed in a commercial RF capacitively coupled plasma equipment SECON XPL-200P and a commercial LPAI device, respectively. The evolution of surface properties as a function of the pressure of working gas and the duration of exposure was observed. (Authors)

  2. Comparison of two ESI-MS based H/D exchange methods for extracting protein folding energies

    Science.gov (United States)

    Liyanage, Rohana; Devarapalli, Nagarjuna; Puckett, Latisha M.; Phan, N. H.; Gidden, Jennifer; Stites, Wesley E.; Lay, Jackson O., Jr.

    2009-10-01

    In this report, the model proteins staphylococcal nuclease and ubiquitin were used to test the applicability of two new hydrogen/deuterium exchange (HX) electrospray ionization mass spectrometry (ESI-MS) methods for estimating protein folding energies. Both methods use the H/D exchange of globally protected amide protons (amide protons which are buried in the hydrophobic core) to elucidate protein folding energies. One method is a kinetic-based method and the other is equilibrium-based. The first method, the HX ESI-MS kinetic-based approach is conceptually identical to SUPREX (stability of unpurified proteins from rates of H/D exchange) method but is based on ESI-MS rather than MALDI-MS (matrix assisted laser desorption mass spectrometry). This method employs the time-dependence of H/D exchange using various denaturant concentrations to extract folding energies. Like SUPREX, this approach requires the assumption of EX2 exchange kinetics. The second method, which we call a protein equilibrium population snapshot (PEPS) by HX ESI-MS uses data collected only for a single time point (usually the shortest possible) to obtain a snapshot of the open and closed populations of the protein. The PEPS approach requires few assumptions in the derivation of the equations used for calculation of the folding energies. The extraction of folding energies from mass spectral data is simple and straightforward. The PEPS method is applicable for proteins that follow either EX1 or EX2 HX mechanisms. In our experiments the kinetic-based method produced less accurate and mGdHCl values for wild-type staphylococcal nuclease and mutants undergoing H/D exchange by EX1, as would be expected. Better results were obtained for ubiquitin which undergoes HX by an EX2 mechanism. Using the PEPS method we obtained and mGdHCl values that were in good agreement with literature values for both staphylococcal nuclease (EX1) and ubiquitin (EX2). We also show that the observation of straight lines in linear

  3. Evaluation of the thermal efficiency and a cost analysis of different types of ground heat exchangers in energy piles

    International Nuclear Information System (INIS)

    Yoon, Seok; Lee, Seung-Rae; Xue, Jianfeng; Zosseder, Kai; Go, Gyu-Hyun; Park, Hyunku

    2015-01-01

    Highlights: • We performed field TPT with W and coil-type GHEs in energy piles. • We evaluated heat exchange rates from TPT results. • Field TPT results were compared with numerical analysis. • Cost analysis with GSHP design method was conducted for each type of GHEs in energy piles. - Abstract: This paper presents an experimental and numerical study of the results of a thermal performance test using precast high-strength concrete (PHC) energy piles with W and coil-type ground heat exchangers (GHEs). In-situ thermal performance tests (TPTs) were conducted for four days under an intermittent operation condition (8 h on; 16 h off) on W and coil-type PHC energy piles installed in a partially saturated weathered granite soil deposit. In addition, three-dimensional finite element analyses were conducted and the results were compared with the four-day experimental results. The heat exchange rates were also predicted for three months using the numerical analysis. The heat exchange rate of the coil-type GHE showed 10–15% higher efficiency compared to the W-type GHE in the energy pile. However, in considering the cost for the installation of the heat exchanger and cement grouting the additional cost of W-type GHE in energy pile was 200–250% cheaper than coil-type GHE under the condition providing equivalent thermal performance. Furthermore, the required lengths of the W, 3U and coil-type GHEs in the energy piles were calculated based on the design process of Kavanaugh and Rafferty. The additional cost for the W and 3U types of GHEs were also 200–250% lower than that of the coil-type GHE. However, the required number of piles was much less with the coil-type GHE as compared to the W and 3U types of GHEs. They are advantageous in terms of the construction period, and further, selecting the coil-type GHE could be a viable option when there is a limitation in the number of piles in consideration of the scale of the building.

  4. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya [Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201308 (India)

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  5. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application.

    Science.gov (United States)

    Xia, Xinhui; Zhu, Changrong; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Ng, Chin Fan; Zhang, Hua; Fan, Hong Jin

    2014-02-26

    Metal sulfides are an emerging class of high-performance electrode materials for solar cells and electrochemical energy storage devices. Here, a facile and powerful method based on anion exchange reactions is reported to achieve metal sulfide nanoarrays through a topotactical transformation from their metal oxide and hydroxide preforms. Demonstrations are made to CoS and NiS nanowires, nanowalls, and core-branch nanotrees on carbon cloth and nickel foam substrates. The sulfide nanoarrays exhibit superior redox reactivity for electrochemical energy storage. The self-supported CoS nanowire arrays are tested as the pseudo-capacitor cathode, which demonstrate enhanced high-rate specific capacities and better cycle life as compared to the powder counterparts. The outstanding electrochemical properties of the sulfide nanoarrays are a consequence of the preservation of the nanoarray architecture and rigid connection with the current collector after the anion exchange reactions.

  6. Surface polyPEGylation of Eu{sup 3+} doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Heng, Chunning [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Huang, Qiang; Mao, Liucheng; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-03-31

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu{sup 3+} doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu{sup 3+} doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface

  7. Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau

    NARCIS (Netherlands)

    Chen, Xuelong; Su, Zhongbo; Ma, Y.; Yang, K.; Wang, B.

    2013-01-01

    Surface solar radiation is an important parameter in surface energy balance models and in estimation of evapotranspiration. This study developed a DEM based radiation model to estimate instantaneous clear sky solar radiation for surface energy balance system to obtain accurate energy absorbed by the

  8. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  9. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    Science.gov (United States)

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  10. Characterization of land surface energy fluxes in a tropical lowland rice paddy

    Science.gov (United States)

    Chatterjee, Dibyendu; Tripathi, Rahul; Chatterjee, Sumanta; Debnath, Manish; Shahid, Mohammad; Bhattacharyya, Pratap; Swain, Chinmaya Kumar; Tripathy, Rojalin; Bhattacharya, Bimal K.; Nayak, Amaresh Kumar

    2018-04-01

    A field experiment was conducted in 2015 to study the land surface energy fluxes from tropical lowland rice paddy in eastern India with an objective to determine the mass, momentum, and energy exchange rates between rice paddies and the atmosphere. All the land surface energy fluxes were measured by eddy covariance (EC) system (make Campbell Scientific) in dry season (DS, 1-125 Julian days), dry fallow (DF, 126-181 Julian days), wet season (WS, 182-324 Julian days), and wet fallow (WF, 325-365 Julian days). The rice was cultivated in dry season (January-May) and wet season (July-November) in low wet lands and the ground is kept fallow during the remainder of the year. Results showed that albedo varied from 0.09 to 0.24 and showed positive value from morning 6:00 h until evening 18:00 h. Mean soil temperature (T g) was highest in DF, while the skin temperature (T s) was highest in WS. Average Bowen ratio (B) ranged from 0.21 to 0.64 and large variation in B was observed during the fallow periods as compared to the cropping seasons. The magnitude of aerodynamic, canopy, and climatological resistances increased with the progress of cropping season and their magnitudes decreased during the end of both cropping seasons and found minimum during the fallow periods. At a constant vapor pressure deficit (VPD) at 0.16, 0.18, 0.15, and 0.43 kPa, latent heat flux (LE) initially increased, but later it tended to level off with an increase in VPD. The actual evapotranspiration (ETa) during both the cropping seasons was higher than the fallow period. This study can be used as a source of default values for many land surface energy fluxes which are required in various meteorological or air-quality models for rice paddies. A larger imbalance of energy was observed during the wet season as the energy is stored and perhaps advected in the fresh water.

  11. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material samp...... resistances decrease for increasing airflow velocity above the boundary layer of the material surface. The measured resistances are somewhat smaller than the ones esti-mated by use of the Lewis relation....

  12. Open inquiry-based learning experiences: a case study in the context of energy exchange by thermal radiation

    International Nuclear Information System (INIS)

    PERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" data-affiliation=" (UOPPERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" >Pizzolato, Nicola; PERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" data-affiliation=" (UOPPERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" >Fazio, Claudio; PERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" data-affiliation=" (UOPPERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" >Battaglia, Onofrio Rosario

    2014-01-01

    An open inquiry (OI)-based teaching/learning experience, regarding a scientific investigation of the process of energy exchange by thermal radiation, is presented. A sample of upper secondary school physics teachers carried out this experience at the University of Palermo, Italy, in the framework of ESTABLISH, a FP7 European Project aimed at promoting and developing inquiry-based science education. The teachers had the opportunity to personally experience an OI-based learning activity, with the aim of exploring the pedagogical potentialities of this teaching approach to promote both the understanding of difficult concepts and a deeper view of scientific practices. The teachers were firstly engaged in discussions concerning real-life problematic situations, and then stimulated to design and carry out their own laboratory activities, aimed at investigating the process of energy exchange by thermal radiation. A scientific study on the energy exchange between a powered resistor and its surrounding environment, during the heating and cooling processes, was designed and performed. Here we report the phases of this experiment by following the teachers' perspective. A structured interview conducted both before and after the OI experience allowed us to analyze and point out the teachers' feedback from a pedagogical point of view. The advantages and limits of an OI-based approach to promote the development of more student-centred inquiry-oriented teaching strategies are finally discussed. (paper)

  13. U.S. Navy Surface Ship Fleet: Propulsion Energy Evaluation, and Identification of Cost Effective Energy Enhancement Devices

    National Research Council Canada - National Science Library

    Cusanelli, Dominic S; Karafiath, Gabor

    2006-01-01

    .... Navy surface ship fleet was prepared. This information was used to identify eleven U.S. Navy surface ship classes as candidates for consideration with regard to retrofit of energy enhancement devices...

  14. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  15. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications - Surface energy characteristics and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kanakasabai, P.; Vijay, P.; Deshpande, Abhijit P.; Varughese, Susy [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2011-02-01

    Ionic polymers, their blends and composites are considered potential candidates for application as electrolytes in fuel cells. While developing new materials for membranes, it is important to understand the interactions of these electrolytic materials with electrodes/catalysts and with reactants/products. Some of these interactions can be understood by estimating the surface energy and wettability of the membrane materials. In this work, polyvinyl alcohol with varying degrees of sulfonation and its blend with sulfonated poly(ether ether ketone) are prepared and studied for their wettability characteristics using goniometry. The surface energy and its components are estimated using different approaches and compared. Properties such as the ion-exchange capacity, the proton conductivity and the water sorption/desorption behaviour are also investigated to understand the relationship with wettability and surface energy and its components. Among the different methods, the van Oss acid-base and the modified Berthelot approaches yield comparable estimates for the total surface energy. (author)

  16. The calculation of surface free energy based on embedded atom method for solid nickel