WorldWideScience

Sample records for surface energetic properties

  1. Energetic and Spatial Bonding Properties from Angular Distributions of Ultraviolet Photoelectrons: Application to the GaAs(110) Surface

    International Nuclear Information System (INIS)

    Fadley, C.S.; Fadley, C.S.; Van Hove, M.A.

    1997-01-01

    Angle-resolved ultraviolet photoemission spectra are interpreted by combining the energetics and spatial properties of the contributing states. One-step calculations are in excellent agreement with new azimuthal experimental data for GaAs(110). Strong variations caused by the dispersion of the surface bands permit an accurate mapping of the electronic structure. The delocalization of the valence states is discussed analogous to photoelectron diffraction. The spatial origin of the electrons is determined, and found to be strongly energy dependent, with uv excitation probing the bonding region. copyright 1997 The American Physical Society

  2. Modelling of energetic molecule-surface interactions

    International Nuclear Information System (INIS)

    Kerford, M.

    2000-09-01

    This thesis contains the results of molecular dynamics simulations of molecule-surface interactions, looking particularly at fullerene molecules and carbon surfaces. Energetic impacts of fullerene molecules on graphite create defect craters. The relationship between the parameters of the impacting molecule and the parameters of the crater axe examined and found to be a function of the energy and velocity of the impacting molecule. Less energetic fullerene molecules can be scattered from a graphite surface and the partitioning of energy after a scattering event is investigated. It is found that a large fraction of the kinetic energy retained after impact is translational energy, with a small fraction of rotational energy and a number of vibrational modes. At impact energies where the surface is not broken and at normal incidence, surface waves axe seen to occur. These waves axe used to develop a method of desorbing molecules from a graphite surface without damage to either the surface or the molecules being desorbed. A number of fullerene molecules are investigated and ways to increase the desorption yield are examined. It is found that this is a successful technique for desorbing large numbers of intact molecules from graphite. This technique could be used for desorbing intact molecules into a gas phase for mass spectrometric analysis. (author)

  3. Computational studies on energetic properties of nitrogen-rich ...

    Indian Academy of Sciences (India)

    Computational studies on energetic properties of nitrogen-rich energetic materials with ditetrazoles. LI XIAO-HONGa,b,∗ and ZHANG RUI-ZHOUa. aCollege of Physics and Engineering, Henan University of Science and Technology, Luoyang 471 003, China. bLuoyang Key Laboratory of Photoelectric Functional Materials, ...

  4. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  5. Energetics and magnetism of Co-doped GaN(0001) surfaces: A first-principles study

    International Nuclear Information System (INIS)

    Qin, Zhenzhen; Xiong, Zhihua; Chen, Lanli; Qin, Guangzhao

    2014-01-01

    A comprehensive first-principles study of the energetics, electronic, and magnetic properties of Co-doped GaN(0001) thin films are presented and the effect of surface structure on the magnetic coupling between Co atoms is demonstrated. It is found that Co atoms prefer to substitute the surface Ga sites in different growth conditions. In particular, a CoN/GaN interface structure with Co atoms replacing the first Ga layer is preferred under N-rich and moderately Ga-rich conditions, while CoGa x /GaN interface is found to be energetically stable under extremely Ga-rich conditions. It is worth noted that the antiferromagnetic coupling between Co atoms is favorable in clean GaN(0001) surface, but the existence of ferromagnetism would be expected to occur as Co concentration increased in Ga-bilayer GaN(0001) surface. Our study provides the theoretical understanding for experimental research on Co-doped GaN films and might promise the Co:GaN system potential applications in spin injection devices

  6. Interaction of energetic particles with polymer surfaces: surface morphology development and sputtered polymer-fragment ion analysis

    International Nuclear Information System (INIS)

    Michael, R.S.

    1987-01-01

    The core of this thesis is based on a series of papers that have been published or will soon be published in which the various processes taking place in the energetic particle-polymer surface interaction scene is investigated. Results presented show different developments on polymer surfaces when compared to the vast experimental data on energetic particle-metal surface interactions. The surface morphology development depends on the physical characteristics of the polymer. Sputtering yields of fluoropolymers were several orders higher than the sputtering yields of aliphatic and aromatic polymers. Depending on the chemical nature of the polymer, the surface morphology development was dependent upon the extent of radiation-damage accumulation. Fast Atom Bombardment Mass Spectrometry at low and high resolution was applied to the characterization of sputtered polymer fragment ions. Fragment ions and their intensities were used to identify polymer samples, observe radiation damage accumulation and probe polymer-polymer interface of a polymer-polymer sandwich structure. A model was proposed which attempts to explain the nature of processes involved in the energetic particle-polymer surface interaction region

  7. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    Science.gov (United States)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  8. Determining the energetics of vicinal perovskite oxide surfaces

    NARCIS (Netherlands)

    Wessels, W.A.; Bollmann, Tjeerd Rogier Johannes; Koster, Gertjan; Zandvliet, Henricus J.W.; Rijnders, Augustinus J.H.M.

    2017-01-01

    The energetics of vicinal SrTiO3(001) and DyScO3(110), prototypical perovskite vicinal surfaces, has been studied using topographic atomic force microscopy imaging. The kink formation and strain relaxation energies are extracted from a statistical analysis of the step meandering. Both perovskite

  9. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  10. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys

    International Nuclear Information System (INIS)

    Novakovic, R

    2011-01-01

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi 2 composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al 8 Cr 5 and CrNi 2 chemical complexes, respectively, as energetically favoured.

  11. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    Science.gov (United States)

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  12. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  13. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  14. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  15. The effect of stability treatmetn on the surface energetics of ...

    African Journals Online (AJOL)

    The effect of stability treatmetn on the surface energetics of inhalation grade lactose. IP Okoye. Abstract. No Abstract. Global Journal of Pure and Applied Physics Vol. 14 (1) 2008 pp.85-88. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  16. The ion environment near Europa and its role in surface energetics

    Science.gov (United States)

    Paranicas, C.; Ratliff, J. M.; Mauk, B. H.; Cohen, C.; Johnson, R. E.

    2002-03-01

    This paper gives the composition, energy spectra, and time variability of energetic ions measured just upstream of Europa. From 100 keV to 100 MeV, ion intensities vary by less than a factor of ~5 among Europa passes considered between 1997 and 2000. We use the data to estimate the radiation dose rate into Europa's surface for depths 0.01 mm - 1 m. We find that in a critical fraction of the upper layer on Europa's trailing hemisphere, energetic electrons are the principal agent for radiolysis, and their bremsstrahlung photon products, not included in previous studies, dominate the dose below about 1 m. Because ion bombardment is more uniform across Europa's surface, the radiation dose on the leading hemisphere is dominated by the proton flux. Differences exist between this calculation and published doses based on the E4 wake pass. For instance, proton doses presented here are much greater below 1 mm.

  17. Shape-dependent Surface Energetics of Nanocrystalline TiO2

    International Nuclear Information System (INIS)

    Park, T.J.; Wong, S.; Levchenko, A.A.; Zhou, H.; Navrotsky, A.

    2010-01-01

    We report the direct determination of surface enthalpies for nanophase TiO 2 anatase with different morphologies derived from drop solution calorimetry in a molten sodium molybdate (3Na 2 Ol·4MoO 3 ) solvent at 702 C. The energetics of surface hydration has been measured using a Calvet microcalorimeter coupled with a gas dosing system. The surface enthalpies of hydrated surfaces for anatase TiO 2 nanoparticles, nanowires and sea-urchin-like assemblies are 0.51 ± 0.05, 1.07 ± 0.28, and 1.29 ± 0.16 J m -2 , respectively, whereas those of anhydrous surfaces are 0.74 ± 0.04, 1.24 ± 0.28, and 1.41 ± 0.16 J m -2 , respectively. The trend in TiO 2 , which shows higher surface enthalpies for more complex nanostructures, is consistent with that reported in ZnO. The shape-dependent surface enthalpy at the nanoscale level is discussed in terms of exposed surface structures. The enthalpies of hydration appear to be similar for all morphologies.

  18. Shape-dependent Surface Energetics of Nanocrystalline TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.J.; Wong, S.; Levchenko, A.A.; Zhou, H.; Navrotsky, A.

    2010-10-21

    We report the direct determination of surface enthalpies for nanophase TiO{sub 2} anatase with different morphologies derived from drop solution calorimetry in a molten sodium molybdate (3Na{sub 2}Ol{center_dot}4MoO{sub 3}) solvent at 702 C. The energetics of surface hydration has been measured using a Calvet microcalorimeter coupled with a gas dosing system. The surface enthalpies of hydrated surfaces for anatase TiO{sub 2} nanoparticles, nanowires and sea-urchin-like assemblies are 0.51 {+-} 0.05, 1.07 {+-} 0.28, and 1.29 {+-} 0.16 J m{sup -2}, respectively, whereas those of anhydrous surfaces are 0.74 {+-} 0.04, 1.24 {+-} 0.28, and 1.41 {+-} 0.16 J m{sup -2}, respectively. The trend in TiO{sub 2}, which shows higher surface enthalpies for more complex nanostructures, is consistent with that reported in ZnO. The shape-dependent surface enthalpy at the nanoscale level is discussed in terms of exposed surface structures. The enthalpies of hydration appear to be similar for all morphologies.

  19. Surface Thermometry of Energetic Materials by Laser-Induced Fluorescence

    Science.gov (United States)

    1989-09-01

    at 34 yttrium- aluminum -garnet (Dy:YAG). The simplified energy diagram of Dy:YAG is shown in Fig. 1. Absorbed laser light (at 355 nrm) can 5 excite the...the thermometric technique on a surface similar to that of an energetic material, a thermal-setting plastic supplied by Buehler, Ltd., was employed...temperature over the temperature range of interest. The rare-earth ion dysprosium (Dy) doped into a yttrium- aluminum -garnet (YAG) crystal was I determined

  20. Thermodynamic and surface properties of liquid Co–Cr–Ni alloys

    International Nuclear Information System (INIS)

    Costa, C.; Delsante, S.; Borzone, G.; Zivkovic, D.; Novakovic, R.

    2014-01-01

    Highlights: • The liquid phases of Co–Cr, Co–Ni and Cr–Ni were modelled by the Quasi Chemical Approximation for regular solutions. • The excess Gibbs free energy of mixing of the liquid Co–Cr–Ni phase is estimated by the three thermodynamic models. • Prediction of structure can compensate the lack of structural data of Co–Cr, Co–Ni and Cr–Ni melts. • Thermodynamic modelling of the surface properties of Co–Cr–Ni melts. • Weak effects of short range ordering among nearest neighbours in Co–Cr, Co–Ni and Cr–Ni liquid alloys can be deduced. -- Abstract: Direct measurements of bulk and surface properties of liquid alloys at elevated temperatures are often technically difficult or even impossible, and therefore, theoretical models can be used to estimate missing property values. The energetics of mixing in liquid Co–Cr, Cr–Ni and Co–Ni systems has been analysed through the study of the concentration dependence of various thermodynamic, surface (surface tension and surface composition) and structural properties (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) by the first or the Quasi-Chemical Approximation (QCA) for regular solutions, developed by Bhatia and Singh, in the framework of statistical mechanical theory in conjunction with the Quasi-Lattice Theory (QLT). The results obtained for these binary systems have been extended to study the thermodynamics and surface properties of ternary Co–Cr–Ni liquid alloys

  1. A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

    International Nuclear Information System (INIS)

    Park, Soo Jin; Chang, Yong Hwan; Moon, Cheol Whan; Suh, Dong Hack; Im, Seung Soon; Kim, Yeong Cheol

    2010-01-01

    In this study, the atmospheric plasma treatment with He/O 2 was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix

  2. PHOSPHORUS FERTILIZATION AND HARVEST INTERVALS INFLUENCE ENERGETIC AND PHYSICAL PROPERTIES OF BRIQUETTES AND LARGE BRANCHES OF MATE

    Directory of Open Access Journals (Sweden)

    Delmar Santin

    Full Text Available ABSTRACT In mate crop, the commercial part consists of leaves and thin branches, while the large branches (LB are considered unused residues and left in the field, although they may have potential for use as energy. The objective of this paper was to evaluate the influence of phosphorus fertilization and harvest interval in productivity of mate large branches and in their physical and energetic properties, as well as in derived briquettes. In a seven-year-old plantation, doses of 0, 20, 40, 80, 160 and 320 kg.ha-1 of P2O5 were applied considering harvest intervals of 12, 18 and 24 months. Dry mass, average diameter, P content, and physical and energetic properties of LB were determined. With LB, after its transformation into particles and briquetting, physical and energetic properties were determined, as well as P availability in soil. The phosphorus fertilization increased LB productivity in larger harvest intervals, increasing the amount of energy produced per unit of area, but did not change basic density and gross calorific value of wood. Mate harvest intervals did not affect the apparent density and calorific value of briquettes produced by LB. LB harvested at intervals of 18 and 24 months produced wood with higher basic density and gross calorific value. LB or briquettes have adequate energetic and physical properties, being technically a plant residue with great potential for use as energy.

  3. Electronic and structural properties of TiB2: Bulk, surface, and nanoscale effects

    International Nuclear Information System (INIS)

    Volonakis, George; Tsetseris, Leonidas; Logothetidis, Stergios

    2011-01-01

    Titanium diboride (TiB 2 ), is a widely used hard material that comprises graphene-like layers of B and intercalated Ti atoms. Here we report the results of extensive first-principles calculations on key properties of bulk TiB 2 , TiB 2 surfaces, and TiB 2 nanocrystals (NCs). The computational approach is first validated based on the agreement between calculated structural and electronic properties of bulk TiB 2 and available experimental and theoretical data. We then obtain the formation energies for several surface cuts and use these values to construct TiB 2 NCs based on the Wulff theorem. Finally, we demonstrate by studying the adsorption of small molecules that hydrogen and oxygen adatoms can be attached through strongly exothermic chemisorption reactions on TiB 2 surfaces. Likewise, water molecules bind on various TiB 2 surfaces and NC facets, with an energetic preference for the latter. The results are relevant to applications that depend on reactivity-related TiB 2 properties, for example resistance to corrosion and interactions with water-based solutions.

  4. Theoretical studies of growth processes and electronic properties of nanostructures on surfaces

    Science.gov (United States)

    Mo, Yina

    Low dimensional nanostructures have been of particular interest because of their potential applications in both theoretical studies and industrial use. Although great efforts have been put into obtaining better understanding of the formation and properties of these materials, many questions still remain unanswered. This thesis work has focused on theoretical studies of (1) the growth processes of magnetic nanowires on transition-metal surfaces, (2) the dynamics of pentacene thin-film growth and island structures on inert surfaces, and (3) our proposal of a new type of semiconducting nanotube. In the first study, we elucidated a novel and intriguing kinetic pathway for the formation of Fe nanowires on the upper edge of a monatomic-layer-high step on Cu(111) using first-principles calculations. The identification of a hidden fundamental Fe basal line within the Cu steps prior to the formation of the apparent upper step edge Fe wire produces a totally different view of step-decorating wire structures and offers new possibilities for the study of the properties of these wires. Subsequent experiments with scanning tunneling microscopy unambiguously established the essential role of embedded Fe atoms as precursors to monatomic wire growth. A more general study of adatom behavior near transition-metal step edges illustrated a systematic trend in the adatom energetics and kinetics, resulted from the electronic interactions between the adatom and the surfaces. This work opens the possibility of controlled manufacturing of one-dimensional nanowires. In the second study, we investigated pentacene thin-films on H-diamond, H-silica and OH-silica surfaces via force field molecular dynamics simulations. Pentacene island structures on these surfaces were identified and found to have a 90-degree rotation relative to the structure proposed by some experimental groups. Our work may facilitate the design and control of experimental pentacene thin-film growth, and thus the development

  5. Dispersion Corrected Structural Properties and Quasiparticle Band Gaps of Several Organic Energetic Solids.

    Science.gov (United States)

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2015-06-18

    We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.

  6. Geometric and energetic considerations of surface fluctuations during ion transfer across the water-immiscible organic liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Karnes, John J.; Benjamin, Ilan, E-mail: benjamin@chemistry.ucsc.edu [Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 (United States)

    2016-07-07

    Molecular dynamics simulations and umbrella sampling free energy calculations are used to examine the thermodynamics, energetics, and structural fluctuations that accompany the transfer of a small hydrophilic ion (Cl{sup −}) across the water/nitrobenzene interface. By examining several constrained interface structures, we isolate the energetic costs of interfacial deformation and co-transfer of hydration waters during the ion transfer. The process is monitored using both energy-based solvation coordinates and a geometric coordinate recently introduced by Morita and co-workers to describe surface fluctuations. Our simulations show that these coordinates provide a complimentary description of the water surface fluctuations during the transfer and are necessary for elucidating the mechanism of the ion transfer.

  7. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  8. The role of energetic ions from plasma in the creation of nanostructured materials and stable polymer surface treatments

    International Nuclear Information System (INIS)

    Bilek, M.M.M.; Newton-McGee, K.; McKenzie, D.R.; McCulloch, D.G.

    2006-01-01

    Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment

  9. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  10. First-Principles Study on the Adsorption Properties of Transition-Metal Atoms on CaO(001) Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Byung Deok [University of Seoul, Seoul (Korea, Republic of); Jang, Young-Rok [Incheon National University, Incheon (Korea, Republic of)

    2017-03-15

    By using first-principles electronic-structure calculations based on the density functional theory, we systematically investigated the adsorption properties of transition-metal (TM) adatoms on CaO(001) surfaces. Optimized adsorption structures and energetics of TM adatoms on CaO(001) are reported for various adsorption structures. The results are different from those of TM adatoms on MgO(001). Concomitantly, this suggests different dynamical properties of TM adatoms on CaO(001) surfaces as compared with TM adatoms on MgO(001) surfaces. Also performed was an analysis of the electronic structures of the TM adatoms on CaO(001) by using the energy positions of the adsorbate states with respect to the valence band maximum of CaO. The results are discussed in connection with the charge states of the TM adatoms on doped CaO(001).

  11. RHEOLOGICAL PROPERTIES AND THE ENERGETIC VALUE OF WHEAT FLOUR SUBSTITUTED BY DIFFERENT SHARES OF WHITE AND BROWN RICE FLOUR

    Directory of Open Access Journals (Sweden)

    Nada Nikolić

    2011-09-01

    Full Text Available In order to produce dough with a lower gluten content, more enriched with rice components and satisfactory rheological properties, the rheological properties, energetic value and cake baking properties of wheat and white or brown rice flour in shares from 3 to 30% (w/w were investigated in this paper. The water absorption in wheat-rice flour mixtures was lower and decreased to 53.5% and 54.0% along with the increase of the white and the brown rice flour share, respectively, than in wheat flour, where it was 58.8%. In the dough made from rice flour, a gluten network had thinner filaments, about 2 and 1 μm in width for white and brown rice flour, respectively, compared to those in the dough from wheat flour only, where it was about 7 μm. The dough from rice flour had almost twice higher gelatinization maximum than the gelatinization maximum of the wheat flour only. The energetic values of the dough from rice flour were smaller than the energetic value of the wheat flour, for only 1.32%. Based on Cluster analysis, the white or brown rice flour share of 20% was pointed out.

  12. Energetical fly ashes – separation and utilization of metallic valuable components

    Directory of Open Access Journals (Sweden)

    Michalíková Františka

    2000-12-01

    Full Text Available In the contribution, methods of separating metals – Fe, Al, Ge from energetic wastes – fly ashes are presented along with further possibilities of utilization of particular valuable components for industrial purposes.In the contribution, properties of energetic wastes are presented influencing the contents, separability, and utilizability of metal-bearing valuable components. From among physical properties these are grain size distribution and surface area. Chemical properties are characterized by elements contained in combusted coal whose content after combustion is increased 2 to 4 times, depending on the content of ash and combustible matters in original coal. Mineralogical properties of energetic wastes are determined by the combustion process conditions in the course of which mineral novelties are produced in concentrations suitable for separation.In the contribution, methods of separation and utilization of metals such as Fe, Al, Ge are described. From literature information on the processing of Fe component, as well as from results of experiments made at the Department of Mineral Processing and Environmental Protection, Technical University of Kosice follows that the highest concentration and mass yield of the component can be obtained from black coal fly ashes produced in smelting boilers. The content of Al in Slovak energetic wastes is lower than the 30 % Al2O3 limit that conditions an economic technological processing. Only in the case of black coal fly ash from TEKO Kosice and EVO Vojany was the Al2O3 content of 32.93 %. Therefore, in an indirect way – by separating the residues of uncombusted coal and magnetite Fe – the content of Al in fly ash was increased.For Ge, a principle of selective sizing has been utilized.A complex utilization of energetic wastes, that is the separation of metallic components, elimination of particular metals and the subsequent treatment of nonmetallic residue, should be an effective solution in various

  13. Defect and structural imperfection effects on the electronic properties of BiTeI surfaces

    International Nuclear Information System (INIS)

    Fiedler, Sebastian; Seibel, Christoph; Lutz, Peter; Bentmann, Hendrik; Reinert, Friedrich; El-Kareh, Lydia; Bode, Matthias; Eremeev, Sergey V; Tereshchenko, Oleg E; Kokh, Konstantin A; Chulkov, Evgueni V; Kuznetsova, Tatyana V; Grebennikov, Vladimir I

    2014-01-01

    The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ∼100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability. (paper)

  14. Tuning electronic and magnetic properties of GaN nanosheets by surface modifications and nanosheet thickness.

    Science.gov (United States)

    Xiao, Meixia; Yao, Tingzhen; Ao, Zhimin; Wei, Peng; Wang, Danghui; Song, Haiyang

    2015-04-14

    Density-functional theory calculations are performed to investigate the effects of surface modifications and nanosheet thickness on the electronic and magnetic properties of gallium nitride (GaN) nanosheets (NSs). Unlike the bare GaN NSs terminating with polar surfaces, the systems with hydrogenated Ga (H-GaN), fluorinated Ga (F-GaN), and chlorinated Ga (Cl-GaN) preserve their initial wurtzite structures and exhibit ferromagnetic states. The abovementioned three different decorations on Ga atoms are energetically more favorable for thicker GaN NSs. Moreover, as the thickness increases, H-GaN and F-GaN NSs undergo semiconductor to metal and half-metal to metal transition, respectively, while Cl-GaN NSs remain completely metallic. The predicted diverse and tunable electronic and magnetic properties highlight the potential of GaN NSs for novel electronic and spintronic nanodevices.

  15. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  16. Changes in wetting and energetic properties of glass caused by deposition of different lipid layers

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, Monika [Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Maria-Curie Sklodowska University, 20-031 Lublin (Poland); Holysz, Lucyna, E-mail: lucyna.holysz@poczta.umcs.lublin.pl [Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Maria-Curie Sklodowska University, 20-031 Lublin (Poland)

    2010-06-15

    An investigation of wetting and energetic properties of different lipid layers deposited on the glass surface was carried out by contact angles measurements and determination of the apparent surface free energy. The topography of the lipid layers was also determined with the help of atomic force microscopy (AFM). Two synthetic phospholipids were chosen for these studies, having the same phosphatidylcholine headgroup bound to the apolar part composed either by two saturated chains (1,2-dipalmitoyl-sn-glycero-3-phospshocholine - DPPC) or two unsaturated chains (1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC) and one lipid (1,2,3-trihexadecanoyl-sn-glycerol - tripalmitoylglycerol - TPG). The lipid layers, from the 1st to the 5th statistical monolayer, were deposited on the glass surface from chloroform solutions by spreading. The apparent surface free energy of the deposited layers was determined by contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide), and then two concepts of interfacial interactions were applied. In the contact angle hysteresis approach (CAH) the apparent total surface free energy was calculated from the advancing and receding contact angles and surface tension of probe liquids. In the Lifshitz-van der Waals/acid-base approach (LWAB) the total surface free energy was calculated from the determined components of the energy, which were obtained from the advancing contact angles of the probe liquids only. Comparison of the results obtained by two approaches provided more information about the changes in the hydrophobicity/hydrophilicity of the layers depending on the number of monolayers and kind of the lipid deposited on the glass surface. It was found that the most visible changes in the surface free energy took place for the first two statistical monolayers irrespectively of the kind of the lipid used. Additionally, in all cases periodic oscillations from layer-to-layer in the lipid

  17. Investigations Of Powder Surface Properties Of Drug Substances ...

    African Journals Online (AJOL)

    In this study, Inverse Gas Chromatography (IGC) was used to characterize the surface energetics of different batches of two drug substances (Salmetrol Xinafoate, SX and Fluticasone Propionate, FP) manufactured under identical conditions. The results obtained demonstrate the potential of IGC technique to reveal ...

  18. Formation, Energetics, and Electronic Properties of Graphene Monolayer and Bilayer Doped with Heteroatoms

    Directory of Open Access Journals (Sweden)

    Yoshitaka Fujimoto

    2015-01-01

    Full Text Available Doping with heteroatoms is one of the most effective methods to tailor the electronic properties of carbon nanomaterials such as graphene and carbon nanotubes, and such nanomaterials doped with heteroatom dopants might therefore provide not only new physical and chemical properties but also novel nanoelectronics/optoelectronics device applications. The boron and nitrogen are neighboring elements to carbon in the periodic table, and they are considered to be good dopants for carbon nanomaterials. We here review the recent work of boron and nitrogen doping effects into graphene monolayer as well as bilayer on the basis of the first-principles electronic structure calculations in the framework of the density-functional theory. We show the energetics and the electronic properties of boron and nitrogen defects in graphene monolayer and bilayer. As for the nitrogen doping, we further discuss the stabilities, the growth processes, and the electronic properties associated with the plausible nitrogen defect formation in graphene which is suggested by experimental observations.

  19. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  20. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  1. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  2. Atomistic simulations of bulk, surface and interfacial polymer properties

    Science.gov (United States)

    Natarajan, Upendra

    In chapter I, quasi-static molecular mechanics based simulations are used to estimate the activation energy of phenoxy rings flips in the amorphous region of a semicrystalline polyimide. Intra and intermolecular contributions to the flip activation energy, the torsional cooperativity accompanying the flip, and the effect of the flip on the motion in the glassy bulk state, are looked at. Also, comparison of the weighted mean activation energy is made with experimental data from solid state NMR measurements; the simulated value being 17.5 kcal/mol., while the experimental value was observed to be 10.5 kcal/mol. Chapter II deals with construction of random copolymer thin films of styrene-butadiene (SB) and styrene-butadiene-acrylonitrile (SBA). The structure and properties of the free surfaces presented by these thin films are analysed by, the atom mass density profiles, backbone bond orientation function, and the spatial distribution of acrylonitrile groups and styrene rings. The surface energies of SB and SBA are calculated using an atomistic equation and are compared with experimental data in the literature. In chapter III, simulations of polymer-polymer interfaces between like and unlike polymers, specifically cis-polybutadiene (PBD) and atatic polypropylene (PP), are presented. The structure of an incompatible polymer-polymer interface, and the estimation of the thermodynamic work of adhesion and interfacial energy between different incompatible polymers, form the focus here. The work of adhesion is calculated using an atomistic equation and is further used in a macroscopic equation to estimate the interfacial energy. The interfacial energy is compared with typical values for other immiscible systems in the literature. The interfacial energy compared very well with interfacial energy values for a few other immiscible hydrocarbon pairs. In chapter IV, the study proceeds to look at the interactions between nonpolar and polar small molecules with SB and SBA thin

  3. The three-dimensional properties and energetics of radio-jet-driven outflows

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi; Stockton, Alan, E-mail: hsshih@ifa.hawaii.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawai' i 2680 Woodlawn Dr, Honolulu, HI 96822 (United States)

    2014-05-01

    Extended emission-line regions (EELRs), found around radio-loud sources, are likely outflows driven by one form of powerful active galactic nucleus (AGN) feedback mechanism. We seek to constrain the three-dimensional gas properties and the outflow energetics of the EELRs in this study. We used an integral field unit to observe EELRs around two samples of radio-loud AGNs with similar radio properties, but different orientations: a sample of quasars and a sample of radio galaxies. A morphological comparison suggests a scenario where the three-dimensional EELR gas distribution follows rough biconical shapes with wide opening angles. The average extent of the EELRs is ∼18.5 kpc. The estimated average mass of the EELRs, with reasonable assumptions for gas densities, is ∼3 × 10{sup 8} M {sub ☉}, and the average mass outflow rate is ∼30 M {sub ☉} yr{sup –1}. The EELRs around quasars and radio galaxies share similar kinematic properties. Both samples have velocity structures that display a range of complexities, they do not appear to correlate with the jet orientations, and both span a similar range of velocity dispersions. Around 30% of the detected EELRs show large-scale rotational motions, which may have originated from recent mergers involving gas-rich disk galaxies.

  4. Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces

    CERN Document Server

    Tratnik, H; Hilleret, Noël

    2005-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which in°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly in°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can a®ect the operation of the accelerator by modifying th...

  5. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.

    Science.gov (United States)

    Dionízio Moreira, M; Venezuela, P; Miwa, R H

    2010-07-16

    We performed an ab initio total energy investigation, within the density functional theory, of the energetic stability and the electronic properties of hydrogenated InAs/InP nanowire (NW) heterojunctions, as well as InAs and InP homojunctions composed of different structural arrangements, zinc-blend (zb) and wurtzite (w). For InAs/InP NW heterojunctions our results indicate that w and zb NW heterojunctions are quite similar, energetically, for thin NWs. We also examined the robustness of the abrupt interface through an atomic swap at the InAs/InP interface. Our results support the formation of abrupt (non-abrupt) interfaces in w (zb) InAs/InP heterojunctions. Concerning InAs/InP NW-SLs, our results indicate a type-I band alignment, with the energy barrier at the InP layers, in accordance with experimental works. For InAs or InP zb/w homojunctions, we also found a type-I band alignment for thin NWs, however, on increasing the NW diameter both InAs and InP homojunctions exhibit a type-II band alignment.

  6. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties

    International Nuclear Information System (INIS)

    Dionizio Moreira, M; Venezuela, P; Miwa, R H

    2010-01-01

    We performed an ab initio total energy investigation, within the density functional theory, of the energetic stability and the electronic properties of hydrogenated InAs/InP nanowire (NW) heterojunctions, as well as InAs and InP homojunctions composed of different structural arrangements, zinc-blend (zb) and wurtzite (w). For InAs/InP NW heterojunctions our results indicate that w and zb NW heterojunctions are quite similar, energetically, for thin NWs. We also examined the robustness of the abrupt interface through an atomic As↔P swap at the InAs/InP interface. Our results support the formation of abrupt (non-abrupt) interfaces in w (zb) InAs/InP heterojunctions. Concerning InAs/InP NW-SLs, our results indicate a type-I band alignment, with the energy barrier at the InP layers, in accordance with experimental works. For InAs or InP zb/w homojunctions, we also found a type-I band alignment for thin NWs, however, on increasing the NW diameter both InAs and InP homojunctions exhibit a type-II band alignment.

  7. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films

    International Nuclear Information System (INIS)

    Li, Xiaowei; Ke, Peiling; Lee, Kwang-Ryeol; Wang, Aiying

    2014-01-01

    The influence of incident angles of energetic carbon atoms (0–60°) on the structure and properties of diamond-like carbon (DLC) films was investigated by the molecular dynamics simulation using a Tersoff interatomic potential. The present simulation revealed that as the incident angles increased from 0 to 60°, the surface roughness of DLC films increased and the more porous structure was generated. Along the growth direction of DLC films, the whole system could be divided into four regions including substrate region, transition region, stable region and surface region except the case at the incident angle of 60°. When the incident angle was 45°, the residual stress was significantly reduced by 12% with little deterioration of mechanical behavior. The further structure analysis using both the bond angles and bond length distributions indicated that the compressive stress reduction mainly resulted from the relaxation of highly distorted C–C bond length. - Highlights: • The dependence of films properties on different incident angles was investigated. • The change of incident angles reduced the stress without obvious damage of density. • The stress reduction attributed to the relaxation of highly distorted bond length

  8. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO4 by sulfur surface modification

    International Nuclear Information System (INIS)

    Xu, Guigui; Zhong, Kehua; Zhang, Jian-Min; Huang, Zhigao

    2014-01-01

    We present a first-principles calculation for the electronic and Li-ion diffusion properties of the LiFePO 4 (010) surface modified by sulfur. The calculated formation energy indicates that the sulfur adsorption on the (010) surface of the LiFePO 4 is energetically favored. Sulfur is found to form Fe-S bond with iron. A much narrower band gap (0.67 eV) of the sulfur surface-modified LiFePO 4 [S-LiFePO 4 (010)] is obtained, indicating the better electronic conductive properties. By the nudged elastic band method, our calculations show that the activation energy of Li ions diffusion along the one-dimensional channel on the surface can be effectively reduced by sulfur surface modification. In addition, the surface diffusion coefficient of S-LiFePO 4 (010) is estimated to be about 10 −11 (cm 2 /s) at room temperature, which implies that sulfur modification will give rise to a higher Li ion carrier mobility and enhanced electrochemical performance

  9. Structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Mandru, Andrada-Oana; Wang, Kangkang [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California, Codigo Postal 22800 (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2015-11-15

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  10. The influence of preformed plasma on the surface-guided lateral transport of energetic electrons in ultraintense short laser–foil interactions

    International Nuclear Information System (INIS)

    Yuan, X H; Zheng, J; Liu, J L; Fang, Y; Sheng, Z M; Carroll, D C; Gray, R J; Brenner, C M; Coury, M; Tresca, O; Neely, D; McKenna, P; Chen, L M; Li, Y T; Zielbauer, B; Kühl, T

    2014-01-01

    The lateral transport patterns of energetic electrons in thin foil targets irradiated with relativistically intense, picosecond laser pulses with different peak-to-pedestal intensity contrast ratios are reported. For ‘low contrast’ pulses, a large current of energetic electrons is found to be transported along the target front surface, due to the formation of strong quasi-static electric and magnetic fields. This is distinctly different from the case with ‘high contrast’ pulses, where energetic electrons are spatially confined. Although this lateral transport reduces the efficiency of the laser energy coupling into ion and radiation production in the region of the laser focus, it can play an important role in directing energy transport in advanced fast ignition schemes involving hollow cone targets and also in heating the target (to generate states of warm dense matter) in regions far from the drive laser focus. (paper)

  11. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake

    KAUST Repository

    Xue, Dongxu

    2013-05-22

    A series of fcu-MOFs based on rare-earth (RE) metals and linear fluorinated/nonfluorinated, homo/heterofunctional ligands were targeted and synthesized. This particular fcu-MOF platform was selected because of its unique structural characteristics combined with the ability/potential to dictate and regulate its chemical properties (e.g., tuning of the electron-rich RE metal ions and high localized charge density, a property arising from the proximal positioning of polarizing tetrazolate moieties and fluoro-groups that decorate the exposed inner surfaces of the confined conical cavities). These features permitted a systematic gas sorption study to evaluate/elucidate the effects of distinctive parameters on CO2-MOF sorption energetics. Our study supports the importance of the synergistic effect of exposed open metal sites and proximal highly localized charge density toward materials with enhanced CO2 sorption energetics. © 2013 American Chemical Society.

  12. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  13. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  14. Ion beam application for improved polymer surface properties

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Lewis, M.B.; Mansur, L.K.

    1992-01-01

    Various polymeric materials were subjected to bombardment by different energetic ions with energies ranging from 200 to 1000 keV. Tests showed substantial improvements in hardness, wear resistance, oxidation resistance, resistance to chemicals, and electrical conductivity. The magnitude of property changes was strongly dependent upon ion species, energy, dose, and polymer structure. Both hardness and electrical conductivity increased with ion energy and dose. These properties were apparently related to the effectiveness of cross-linking. Ion species with a large electronic stopping cross-section are expected to produce more crosslinking. It is believed that the polymer property improvements are commensurate with the extent of crosslinking, which is responsible for the formation of three-dimensionally-connected, carbon-rich, rigid networks. 22 refs, 5 figs

  15. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  16. Microhydration effect on structural, energetic and light scattering properties of first branched interstellar molecule ( i-PrCN)

    OpenAIRE

    Chakraborty, Sumana; Routh, Swati; Krishnappa, Madhu

    2015-01-01

    In this work, we have focused on microsolvation of isopropyl cyanide (i-PrCN) as isopropyl cyanide has been recently detected in interstellar space and is of great importance from the astrochemical and bio-chemical point of view for its branching carbon chains. Such branches are needed for many molecules crucial to life, such as the amino acids that build proteins. The phenomenon of the formation of hydrogen bond affects structure, energetic and electric properties of microhydrated isopropyl ...

  17. Structure and energetics of bimetallic surface confined alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Roetter, Ralf T.; Engstfeld, Albert K.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany); Gross, Axel [Institute for Theoretical Chemistry, Ulm University (Germany)

    2009-07-01

    The atomic distribution in a number of A{sub x}B{sub 1-x}/B type surface alloys was determined by STM imaging with chemical contrast and statistically evaluated. Whereas in the systems Au{sub x}Pt{sub 1-x}/Pt(111), Ag{sub x}Pt{sub 1-x}/Pt(111), and Pd{sub x}Ru{sub 1-x}/Ru(0001) we find preferences for larger homoatomic aggregates, the atom distribution in Pt{sub x}Ru{sub 1-x}/Ru(0001) and Ag{sub x}Pd{sub 1-x}/Pd(111) is very close to a random one[1]. In Ag{sub x}Pd{sub 1-x}/Pd(111), our data show a small tendency towards clustering for x{sub Ag}<0.5, whereas at x{sub Ag}>0.5 this is reversed to a slight preference for heteroatomic neighborhoods. Based on these experimental results, we have derived effective cluster interaction energies for all surface alloys. These allow us to calculate phase diagrams for the surface alloys that we compare to predictions from theoretical work and to the behaviour of the corresponding bulk systems. We also discuss in how far the different atom distributions affect chemical and catalytic properties of the surface alloys.

  18. MULTI-SPACECRAFT ANALYSIS OF ENERGETIC HEAVY ION AND INTERPLANETARY SHOCK PROPERTIES IN ENERGETIC STORM PARTICLE EVENTS NEAR 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Li, G. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Mason, G. M., E-mail: rebert@swri.edu [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20273 (United States)

    2016-11-10

    We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinally separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.

  19. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  20. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces

    Science.gov (United States)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-04-01

    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  1. Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics

    Science.gov (United States)

    Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.

    1998-08-01

    High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.

  2. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  3. Energetic aspects of skeletal muscle contraction: implications of fiber types.

    Science.gov (United States)

    Rall, J A

    1985-01-01

    In this chapter fundamental energetic properties of skeletal muscles as elucidated from isolated muscle preparations are described. Implications of these intrinsic properties for the energetic characterization of different fiber types and for the understanding of locomotion have been considered. Emphasis was placed on the myriad of physical and chemical techniques that can be employed to understand muscle energetics and on the interrelationship of results from different techniques. The anaerobic initial processes which liberate energy during contraction and relaxation are discussed in detail. The high-energy phosphate (approximately P) utilized during contraction and relaxation can be distributed between actomyosin ATPase or cross-bridge cycling (70%) and the Ca2+ ATPase of the sacroplasmic reticulum (30%). Muscle shortening increases the rate of approximately P hydrolysis, and stretching a muscle during contraction suppresses the rate of approximately P hydrolysis. The economy of an isometric contraction is defined as the ratio of isometric mechanical response to energetic cost and is shown to be a fundamental intrinsic parameter describing muscle energetics. Economy of contraction varies across the animal kingdom by over three orders of magnitude and is different in different mammalian fiber types. In mammalian skeletal muscles differences in economy of contraction can be attributed mainly to differences in the specific actomyosin and Ca2+ ATPase of muscles. Furthermore, there is an inverse relationship between economy of contraction and maximum velocity of muscle shortening (Vmax) and maximum power output. This is a fundamental relationship. Muscles cannot be economical at developing and maintaining force and also exhibit rapid shortening. Interestingly, there appears to be a subtle system of unknown nature that modulates the Vmax and economy of contraction. Efficiency of a work-producing contraction is defined and contrasted to the economy of contraction

  4. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  5. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  6. Green colorants based on energetic azole borates.

    Science.gov (United States)

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel Method to Characterize and Model the Multiaxial Constitutive and Damage Response of Energetic Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshige, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rabbi, Md Fazle [Univ. of Texas, El Paso, TX (United States); Kaneshige, Michael J. [Univ. of Texas, El Paso, TX (United States); Mach, Robert [Univ. of Texas, El Paso, TX (United States); Catzin, Carlos A. [Univ. of Texas, El Paso, TX (United States); Stewart, Calvin M. [Univ. of Texas, El Paso, TX (United States)

    2017-12-01

    Simulant polymer bonded explosives are widely used to simulate the mechanical response of real energetic materials. In this paper, the fracture resistance of a simulant polymer bo nded explosive (PBX) is experimentally investigated. The simulant is composed of 80 wt.% soda lime glass beads (SLGB) and 20 wt.% high impact Polystyrene 825 (HIPS). Brazilian disk tests are performed to characterize the tensile and compressive properties. Fracture toughness and energy tests are performed in the semi - circular bending (SCB) configuration on 80, 81, 82, and 83 wt % SLGB compositions. Digital image correlation is performed to record the surface displacements and calculate surface strains during testing. The m icromechanical behavior of ductile and brittle fracture are evaluated using digital microscopy and scanning electron microscopy of the fracture surface. It is determined that (i) the manufacturing process produces a credible simulant of PBX properties, and (ii) the SCB test measures fracture resistance with a reasonable coefficient of variation.

  8. Structural, energetic and electrical properties of boron nitride nanotubes interacting with DMMP chemical agent

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, M. Darvish, E-mail: ganji_md@yahoo.com [Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of); Gholian, M.; Mohammadzadeh, S. [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2014-09-30

    Highlights: • ab initio DFT calculations were used for interaction of DMMP with BNNTs. • Full structural optimization was performed for several possible active sites. • Electronic structure of the energetically favorable complexes was analyzed. • The stability of the most stable complex was evaluated at ambient condition. • First-principles calculations showed that DMMP is strongly bound to the small diameter BNNTs. - Abstract: The adsorption of DMMP as an intoxicating chemical warfare agent onto the boron nitride nanotube has been investigated by using density functional theory calculations. Several active sites were considered for both interacting systems and full structural optimization was performed to accurately find the energetically favorable state. It is found that DMMP molecule prefers to be adsorbed strongly on the top site above the B atom of a (5, 0) BNNT with a binding energy of about −103.24 kJ mol{sup −1} and an O–B binding distance of 1.641 Å. We have performed a comparative investigation of BNNTs with different diameters and the results indicate that the DMMP adsorption ability for the side wall of the tubes significantly decreases for higher diameters BNNTs. Furthermore, the adsorption properties of DMMP molecule onto the BNNT have been investigated using the ab initio MD simulation at room temperature. Our result showed that BNNTs facilitates the DMMP detection at ambient conditions for practical applications.

  9. Suppression of tilting instability of a compact torus by energetic particle beams

    International Nuclear Information System (INIS)

    Nomura, Yasuyuki.

    1984-11-01

    It is shown that the tilting instability of a compact torus can be suppressed by toroidally circulating energetic particle beams. The stabilizing mechanism is based on the properties of the forced oscillation in the motion of beam particles in a plasma ring. The required beam current for the stabilization is estimated to be sufficiently small compared to the plasma current in the case that the angular velocity of beam particles is close to the betatron frequency. This stabilizing method is applied to a field reversed configuration. Effects of the plasma surface current and beam divergences are also examined. (author)

  10. Adsorption properties of AlN on Si(111) surface: A density functional study

    Science.gov (United States)

    Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting

    2018-04-01

    In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.

  11. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    Science.gov (United States)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  12. Oxygen vacancies in oxides studied by annihilation of mono-energetic positrons

    Energy Technology Data Exchange (ETDEWEB)

    Hugenschmidt, Christoph; Pikart, Philip [ZWE FRM II, Technische Universitaet Muenchen, Lichtenbergstrasse 1, 85747 Garching (Germany); Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Schreckenbach, Klaus [Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2009-07-01

    Oxygen vacancies play a fundamental role for the material properties of various oxides, e.g. charge carrier density in high-Tc superconductors, magnetic properties of diluted magnetic semiconductors or paramagnetic properties of SiO{sub 2}. In this study, open volume defects in (metal) oxides are investigated by Doppler-broadening spectroscopy (DBS) of the positron annihilation. More detailed information about the chemical surrounding at the positron annihilation site is gained by additional coincident DBS experiments, where a signature of positrons annihilating with electrons from oxygen is observed. The mono-energetic positron beam at NEPOMUC was used which allows depth dependent measurements, and hence the investigation of thin oxide layers. Recent results for metallic oxides such as ZnO are presented and compared with various non-metallic oxides such as amorphous and crystalline SiO{sub 2}, oxygen terminated Si-surface, and ice. The role of neutral and charged oxygen vacancies and the application of the positron annihilation technique to study oxygen vacancies will be discussed.

  13. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  14. Nanostructured energetic materials derived from sol-gel chemistry

    International Nuclear Information System (INIS)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-01-01

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm

  15. Strong non-radial propagation of energetic electrons in solar corona

    Science.gov (United States)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others

  16. Energetic properties of stellar pulsations across the Hertzsprung-Russell diagram

    Directory of Open Access Journals (Sweden)

    Daszyńska-Daszkiewicz Jadwiga

    2015-01-01

    Full Text Available I will review types of modes which are observed in stars with different masses and on various evolutionary stages. In particular, I will focus on energetic aspects of oscillation modes, i.e., excitation, distribution of kinetic energy, mode amplitude and lifetime.

  17. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  18. Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials

    Science.gov (United States)

    Piekiel, Nicholas William

    2012-01-01

    Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites and green organic energetics are two classes of EMs which have gained significant interest as they each have desirable properties over traditional explosives. These systems also possess downfalls, which…

  19. Resistive interchange mode destabilized by helically trapped energetic ions and its effects on energetic ions and bulk plasmas

    International Nuclear Information System (INIS)

    Du, X.D.; Toi, K.; Osakabe, M.

    2014-10-01

    A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)

  20. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  1. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  2. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  3. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  4. Aerial energetic residue data from JBER C4 testing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aerially-collected energetic residues from surface detonation of C4. This dataset is associated with the following publication: Walsh, M., B. Gullett, M. Walsh, M....

  5. The energetics of tetrahydrocarbazole aromatization over Pd(111): A computational analysis

    Science.gov (United States)

    Crawford, P.; Burch, R.; Hardacre, C.; Hindle, K. T.; Hu, P.; Rooney, D. W.

    2008-03-01

    The carbazole moiety is a component of many important pharmaceuticals including anticancer and anti-HIV agents and is commonly utilized in the production of modern polymeric materials with novel photophysical and electronic properties. Simple carbazoles are generally produced via the aromatization of the respective tetrahydrocarbazole (THCZ). In this work, density functional theory calculations are used to model the reaction pathway of tetrahydrocarbazole aromatization over Pd(111). The geometry of each of the intermediate surface species has been determined and how each structure interacts with the metal surface addressed. The reaction energies and barriers of each of the elementary surface reactions have also been calculated, and a detailed analysis of the energetic trends performed. Our calculations have shown that the surface intermediates remain fixed to the surface via the aromatic ring in a manner similar to that of THCZ. Moreover, the aliphatic ring becomes progressively more planer with the dissociation of each subsequent hydrogen atom. Analysis of the reaction energy profile has revealed that the trend in reaction barriers is determined by the two factors: (i) the strength of the dissociating ring-H bond and (ii) the subsequent gain in energy due to the geometric relaxation of the aliphatic ring.

  6. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.; Karlson, M. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Colin, J. J.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Magnfält, D.; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2016-04-14

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.

  7. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  8. Investigating the Effect of Nanoscale Changes on the Chemistry and Energetics of Nanocrystals with a Novel Photoemission Spectroscopy Methodology

    Science.gov (United States)

    Liao, Michael W.

    This dissertation explores the effect of nanometer-scale changes in structure on the energetics of photocatalytic and photovoltaic materials. Of particular interest are semiconductor nanocrystals (NCs), which have interesting chemical properties that lead to novel structures and applications. Chief among these properties are quantum confinement and the high surface area-to-volume ratio, which allow for chemical tuning of the energetics and structure of NCs. This tunable energetic landscape has led to increasing application of NCs in various areas of research, including solar energy conversion, light-emitting diode technologies, and photocatalysis. However, spectroscopic methods to determine the energetics of NCs have not been well developed, due to chemical complexities of relevant NCs such as polydispersity, capping ligand effects, core-shell structures, and other chemical modifications. In this work, we demonstrate and expand the utility of photoelectron spectroscopy (PES) to probe the energetics of NCs by considering the physical processes that lead to background and secondary photoemission to enhance photoemission from the sample of interest. A new methodology for the interpretation of UP spectra was devised in order to emphasize the minute changes to the UP spectra line shape that arise from nanoscopic changes to the NCs. We applied various established subtractions that correct for photon source satellites, secondary photoelectrons, and substrate photoemission. We then investigated the effect of ligand surface coverage on the surface chemistry and density of states at the top of valence band (VB). We systematically removed ligands by increasing numbers of purification steps for two diameters of NCs and found that doing so increased photoemission density at the top of the VB, which is due to undercoordinated surface atoms. Deeper VB structure was also altered, possibly due to reorganization of the atoms in the NC. Using the new UPS interpretation methodology

  9. The unusual properties of beryllium surfaces

    International Nuclear Information System (INIS)

    Stumpf, R.; Hannon, J.B.

    1994-01-01

    Be is a ''marginal metal.'' The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor's. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ''phase'' of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11 bar 20), a very open surface without important surface states. Be(11 bar 20) is the only clean s-p metal surface known to reconstruct (1 x 3 missing row reconstruction)

  10. Investigation of the imaging properties of inorganic scintillation screens using high energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice [TU Darmstadt (Germany); JWG Universitaet Frankfurt/Main (Germany); Forck, Peter; Sieber, Thomas [GSI Darmstadt (Germany); Ensinger, Wolfgang; Lederer, Stephan [TU Darmstadt (Germany); Kester, Oliver [JWG Universitaet Frankfurt/Main (Germany)

    2016-07-01

    Inorganic scintillation screens are a common diagnostics tool in heavy ion accelerators. In order to investigate the imaging properties of various screen materials, four different material compositions were irradiated at GSI, using protons up to Uranium ions as projectiles. Beams were extracted from SIS18 with high energy (300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was simultaneously recorded by two different optical setups to investigate light output, profile characteristics and emission spectra. It was observed, that fast extracted beams induce in general lower light output than slow extracted beams, while the light output per deposited energy decreases with atomic number. The analysis of the spectral emission as well as investigations with classical optical methods showed no significant defect-building in all materials, not even under irradiation with increasing beam intensity or over long time periods. The investigated scintillation screens can be considered as stable under irradiation with high energetic heavy ion pulses and are appropriate for beam diagnostics applications in future accelerator facilities like FAIR. Characteristic properties and application areas of the screens are presented in the poster.

  11. Investigation of Au/Au(100) film growth with energetic deposition by kinetic Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zhang Qingyu; Ma Tengcai; Pan Zhengying; Tang Jiayong

    2000-01-01

    The Au/Au(100) epitaxial growth with energetic deposition was simulated by using kinetic Monte Carlo method. The influences of energetic atoms on morphology and atomistic processes in the early stage of film growth were investigated. The reentrant layer-by-layer growth was observed in the temperature range of 450 K to 100 K. The authors found the energetic atoms can promote the nucleation and island growth in the early stages of film growth and enhance the smoothness of film surface at temperatures of film growth in 3-dimensional mode and in quasi-two-dimensional mode. The atomistic mechanism that promotes the nucleation and island growth and enhances the smoothness of film surface is discussed

  12. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  13. Type Ia Supernovae: Energetics, Neutronization and Nucleosynthesis

    International Nuclear Information System (INIS)

    Truran, James W.; Calder, Alan C.; Townsley, Dean M.; Seitenzahl, Ivo R.; Peng, Fang; Vladimirova, Natalia; Lamb, Donald Q.; Brown, Edward F.

    2007-01-01

    The utility of Type Ia supernovae, not simply as probes of the distance scale but also as a means of constraining the properties of dark energy, demands a significant improvement in theoretical predictions of their properties in outburst. To this end, we have given substantial effort to quantifying the energetics and nucleosynthesis properties of deflagration fronts in the interiors of the putative carbon-oxygen white dwarf progenitors of Type Ia thermonuclear supernovae. We briefly review some essential features of our flame model and its properties in this paper and discuss its implications both for our multidimensional numerical simulations of SNe Ia and for nucleosynthesis (specifically 56Ni production) in SNe Ia and Galactic chemical evolution

  14. The influence of anthropometric, kinematic and energetic variables and gender on swimming performance in youth athletes.

    Science.gov (United States)

    Morais, Jorge E; Garrido, Nuno D; Marques, Mário C; Silva, António J; Marinho, Daniel A; Barbosa, Tiago M

    2013-12-18

    (i) gender; (ii) performance and; (iii) gender versus performance interactions in young swimmers' anthropometric, kinematic and energetic variables. One hundred and thirty six young swimmers (62 boys: 12.76 ± 0.72 years old at Tanner stages 1-2 by self-evaluation; and 64 girls: 11.89 ± 0.93 years old at Tanner stages 1-2 by self-evaluation) were evaluated. Performance, anthropometrics, kinematics and energetic variables were selected. There was a non-significant gender effect on performance, body mass, height, arm span, trunk transverse surface area, stroke length, speed fluctuation, swimming velocity, propulsive efficiency, stroke index and critical velocity. A significant gender effect was found for foot surface area, hand surface area and stroke frequency. A significant sports level effect was verified for all variables, except for stroke frequency, speed fluctuation and propulsive efficiency. Overall, swimmers in quartile 1 (the ones with highest sports level) had higher anthropometric dimensions, better stroke mechanics and energetics. These traits decrease consistently throughout following quartiles up to the fourth one (i.e. swimmers with the lowest sports level). There was a non-significant interaction between gender and sports level for all variables. Our main conclusions were as follows: (i) there are non-significant differences in performance, anthropometrics, kinematics and energetics between boys and girls; (ii) swimmers with best performance are taller, have higher surface areas and better stroke mechanics; (iii) there are non-significant interactions between sports level and gender for anthropometrics, kinematics and energetics.

  15. Low temperature self-cleaning properties of superhydrophobic surfaces

    Science.gov (United States)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  16. Surface properties of functional polymer systems

    Science.gov (United States)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was

  17. Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.

    Science.gov (United States)

    Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I

    2018-02-12

    Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.

  18. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  19. Fractal dimension and energetic heterogeneity of gold-modified Al-Fe-Ce pilc's

    International Nuclear Information System (INIS)

    Carriazo, J.G.; Molina, R.; Moreno, S.

    2008-01-01

    This paper studies the energetic and topographical changes that occur on the surface of a series of clays pillared with the mixed Al-Fe-Ce system and on the surface of solids synthesized by the deposition of gold nanoparticles over these pillared clays. The energetic heterogeneity of the solids was analyzed by means of the distribution of the adsorption potential, while the variations in the fractal dimension were determined from the nitrogen adsorption isotherms at 77 K, using the equation proposed by Avnir-Jaroniec. Results show the generation of microporous structures with important topographical modifications indicating an increase in the roughness (fractal geometry) of the surface of the solids as a consequence of the pillaring, revealing a positive effect of cerium addition in the synthesis process and the possible formation of nanoparticles of iron species and gold on the surface of pillared clays. The solids were also analyzed by transmission electron microscopy (TEM), confirming the formation of nanoparticles on the surface.

  20. Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization.

    Science.gov (United States)

    Benson, Eric E; Zhang, Hanyu; Schuman, Samuel A; Nanayakkara, Sanjini U; Bronstein, Noah D; Ferrere, Suzanne; Blackburn, Jeffrey L; Miller, Elisa M

    2018-01-10

    We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS 2 ) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS 2 nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS 2 functionalized with the most electron donating functional group (p-(CH 3 CH 2 ) 2 NPh-MoS 2 ) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS 2 . The p-(CH 3 CH 2 ) 2 NPh-MoS 2 is more stable than unfunctionalized metallic MoS 2 and outperforms unfunctionalized metallic MoS 2 for continuous H 2 evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS 2 nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS 2 nanosheet. The functional groups preserve the metallic nature of the MoS 2 nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS 2 nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS 2 and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.

  1. New fluidized bed reactor for coating of energetic materials

    NARCIS (Netherlands)

    Abadjieva, E.; Huijser, T.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der

    2009-01-01

    The process of altering and changing the properties of the energetic materials by coating has been studied extensively by several scientific groups. According to the desired application different coating techniques have been developed and applied to achieve satisfactory results. Among the already

  2. Temperature dependence of nuclear surface properties

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1982-01-01

    Thermal properties of nuclear surface are investigated in a semi-infinite medium. Explicit analytical expression are given for the temperature dependence of surface thickness, surface energy and surface free energy. In this model the temperature effects depend critically on the nuclear incompressibility and on the shape of the effective mass at the surface. To illustrate the relevance of these effects we made an estimate of the temperature dependence of the fission barrier height. (orig.)

  3. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  4. Energetic Particles: From Sun to Heliosphere - and vice versa

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  5. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  6. Rapid comparison of properties on protein surface.

    Science.gov (United States)

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-10-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.

  7. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1999-09-01

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from  X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.Key words. Magnetospheric physics (magnetosheath; magnetotail boundary layers; storms and substorms

  8. Average nuclear surface properties

    International Nuclear Information System (INIS)

    Groote, H. von.

    1979-01-01

    The definition of the nuclear surface energy is discussed for semi-infinite matter. This definition is extended also for the case that there is a neutron gas instead of vacuum on the one side of the plane surface. The calculations were performed with the Thomas-Fermi Model of Syler and Blanchard. The parameters of the interaction of this model were determined by a least squares fit to experimental masses. The quality of this fit is discussed with respect to nuclear masses and density distributions. The average surface properties were calculated for different particle asymmetry of the nucleon-matter ranging from symmetry beyond the neutron-drip line until the system no longer can maintain the surface boundary and becomes homogeneous. The results of the calculations are incorporated in the nuclear Droplet Model which then was fitted to experimental masses. (orig.)

  9. Running Economy from a Muscle Energetics Perspective

    Directory of Open Access Journals (Sweden)

    Jared R. Fletcher

    2017-06-01

    Full Text Available The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun can be obtained with this approach. Erun is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of Erun from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting Erun are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics.

  10. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  11. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  12. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    Science.gov (United States)

    Bilek, Marcela M. M.

    2014-08-01

    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  13. Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.

    1989-01-01

    The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs

  14. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Tuning the acid/base properties of nanocarbons by functionalization via amination.

    Science.gov (United States)

    Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng

    2010-07-21

    The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic

  16. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  17. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  18. Roles of kinetics and energetics in the growth of AlN by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Im, I. H.; Minegishi, T.; Hanada, T.; Lee, S. W.; Cho, M. W.; Yao, T.; Oh, D. C.; Chang, J. H.

    2006-01-01

    The roles of kinetics and energetics in the growth processes of AlN on c-sapphire by plasma assisted molecular beam epitaxy are investigated by varying the growth rate from 1 to 31 A/min and the substrate temperature from 800 to 1000 .deg. C. The energetics is found to govern the growth of AlN in the low-growth rate region even at a low substrate temperature of 800 .deg. C owing to the enhanced residence time of adatoms, thereby increasing the surface migration length. As the growth rate increases, the growth tends to be governed by kinetics because of a reduction in the residence time of adatoms. Consequently, the surface roughness and crystal quality are greatly improved for the low-growth-rate case. In addition, the lattice strain relaxation is completed from the beginning of epitaxy for energetics-limiting growth while lattice strain relaxation is retarded for kinetics-limiting growth because of pre-existing partial strain relaxation. Energetics becomes more favorable as the substrate temperature is raised because of an increase in the surface diffusion length owing to an enhanced diffusion coefficient. Consequently high-crystal-quality AlN layers are grown under the energetics-limiting growth condition with a screw dislocation density of 7.4 x 10 8 cm -2 even for a thin 42-nm thick film.

  19. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  20. Pentacene Multilayers On Ag(111) Surface

    International Nuclear Information System (INIS)

    Mete, E.

    2010-01-01

    The structural profiles and electronic properties of pentacene (C 2 2H 1 4) multilayers on Ag(111) surface has been studied within the density functional theory (DFT) framework. We have performed first-principle total energy calculations based on the projector augmented wave (PAW) method to investigate the initial growth patterns of pentacene (Pn) on Ag(111) surface. In its bulk phase, pentacene crystallizes with a triclinic symmetry while a thin film phase having an orthorhombic unit cell is energetically less favorable by 0.12 eV/cell. Pentacene prefers to stay planar on Ag(111) surface and aligns perfectly along lattice vector (1,-1,0) without any molecular deformation at a height of 3.9 angstroms. At one monolayer (ML) coverage the separation between the molecular layer and the surface plane extends to 4.1 angstroms due to intermolecular interactions weakening surface-pentacene attraction. While the first ML remains flat, the molecules on a second full pentacene layer deposited on the surface rearrange so that they become skewed with respect to each other. This adsorption mode is energetically more preferable than the one for which the molecules form a flat pentacene layer by an energy difference similar to that obtained for bulk and thin film phases. Moreover, as new layers added, pentacenes assemble to maintain this skewness for 3 and 4 ML similar to its bulk phase while the first ML always remains flat. Therefore, our calculations indicate bulk-like initial stages for the growth pattern.

  1. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A.V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  2. Method and Apparatus for Creating a Topography at a Surface

    Science.gov (United States)

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  3. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  4. Spontaneous recovery of superhydrophobicity on nanotextured surfaces

    Science.gov (United States)

    Prakash, Suruchi; Xi, Erte; Patel, Amish J.

    2016-01-01

    Rough or textured hydrophobic surfaces are dubbed “superhydrophobic” due to their numerous desirable properties, such as water repellency and interfacial slip. Superhydrophobicity stems from an aversion of water for the hydrophobic surface texture, so that a water droplet in the superhydrophobic “Cassie state” contacts only the tips of the rough surface. However, superhydrophobicity is remarkably fragile and can break down due to the wetting of the surface texture to yield the “Wenzel state” under various conditions, such as elevated pressures or droplet impact. Moreover, due to large energetic barriers that impede the reverse transition (dewetting), this breakdown in superhydrophobicity is widely believed to be irreversible. Using molecular simulations in conjunction with enhanced sampling techniques, here we show that on surfaces with nanoscale texture, water density fluctuations can lead to a reduction in the free energetic barriers to dewetting by circumventing the classical dewetting pathways. In particular, the fluctuation-mediated dewetting pathway involves a number of transitions between distinct dewetted morphologies, with each transition lowering the resistance to dewetting. Importantly, an understanding of the mechanistic pathways to dewetting and their dependence on pressure allows us to augment the surface texture design, so that the barriers to dewetting are eliminated altogether and the Wenzel state becomes unstable at ambient conditions. Such robust surfaces, which defy classical expectations and can spontaneously recover their superhydrophobicity, could have widespread importance, from underwater operation to phase-change heat transfer applications. PMID:27140619

  5. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  6. Oleophobic properties of the step-and-terrace sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Sapphire is widely used in production of optical windows for various devices due to its mechanical and optical properties. However, during operation the surface can be affected by fats, oils, and other organic contaminations. Therefore, it is important to improve the oleophobic properties of sapphire windows. In this study, we investigate the interaction of a supersmooth sapphire surface with oleic acid droplets, which imitate human finger printing. It is established that chemical–mechanical polishing with additional annealing in air, which leads to the formation of an atomically smooth sapphire surface, makes it possible to significantly improve the oleophobic properties of the surface. The results are analyzed using the Ventsel–Deryagin homogeneous wetting model.

  7. Surface active properties of lipid nanocapsules.

    Directory of Open Access Journals (Sweden)

    Celia R A Mouzouvi

    Full Text Available Lipid nanocapsules (LNCs are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively, as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC that was 10-fold higher than the critical micellar concentration (CMC of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  8. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    Science.gov (United States)

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  9. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  10. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  11. Effect of Energetic Trapped Particles Produced by ICRF Wave Heating on Sawtooth Instability in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Choi, M.; Chan, V. S.; Chu, M. S.; Lao, L. L.; Pinsker, R. I.; Turnbull, A. D.; Jeon, Y. M.; Li, G.; Ren, Q.

    2007-01-01

    We evaluate the accuracy of the Porcelli sawtooth model using more realistic numerical models from the ORBIT-RF and GATO codes in DIII-D fast wave heating experiments. Simulation results confirm that the fast wave-induced energetic trapped particles may stabilize the sawtooth instability. The crucial kinetic stabilizing contribution strongly depends on both the experimentally reconstructed magnetic shear at the q = 1 surface and the calculated poloidal beta of energetic trapped particles inside the q = 1 surface

  12. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  13. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  14. Europa's surface radiation environment and considerations for in-situ sampling and biosignature detection

    Science.gov (United States)

    Nordheim, T.; Paranicas, C.; Hand, K. P.

    2017-12-01

    Jupiter's moon Europa is embedded deep within the Jovian magnetosphere and is thus exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. In particular, energetic charged particles are capable of affecting the uppermost layer of surface material on Europa, in some cases down to depths of several meters (Johnson et al., 2004; Paranicas et al., 2009, 2002). Examples of radiation-induced surface alteration include sputtering, radiolysis and grain sintering; processes that are capable of significantly altering the physical properties of surface material. Radiolysis of surface ices containing sulfur-bearing contaminants from Io has been invoked as a possible explanation for hydrated sulfuric acid detected on Europa's surface (Carlson et al., 2002, 1999) and radiolytic production of oxidants represents a potential source of energy for life that could reside within Europa's sub-surface ocean (Chyba, 2000; Hand et al., 2007; Johnson et al., 2003; Vance et al., 2016). Accurate knowledge of Europa's surface radiation environment is essential to the interpretation of space and Earth-based observations of Europa's surface and exosphere. Furthermore, future landed missions may seek to sample endogenic material emplaced on Europa's surface to investigate its chemical composition and to search for biosignatures contained within. Such material would likely be sampled from the shallow sub-surface, and thus, it becomes crucial to know to which degree this material is expected to have been radiation processed.Here we will present modeling results of energetic electron and proton bombardment of Europa's surface, including interactions between these particles and surface material. In addition, we will present predictions for biosignature destruction at different geographical locations and burial depths and discuss the implications of these results for surface sampling by future missions to Europa's surface.

  15. Influence of surface roughness on the friction property of textured surface

    OpenAIRE

    Yuankai Zhou; Hua Zhu; Wenqian Zhang; Xue Zuo; Yan Li; Jianhua Yang

    2015-01-01

    In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in ...

  16. Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces

    International Nuclear Information System (INIS)

    Chu, Yeon Yi; Seo, Bora; Kim, Jong Won

    2010-01-01

    We investigated the electrochemical properties of alkanethiol monolayers adsorbed on NPG surfaces by cyclic voltammetry and electrochemical impedance spectroscopy, and the results are compared to those on flat Au surfaces. The reductive desorption of alkanethiols on NPG surfaces is observed in more negative potential regions than that on flat Au surfaces due the stronger S-Au interaction on NPG surfaces. While the electron transfer through alkanethiol monolayers on flat Au surfaces occurs via a tunneling process through the monolayer films, the redox species can permeate through the monolayers on NPG surfaces to transfer the electrons to the Au surfaces. The results presented here will help to elucidate the intrinsic electrochemical properties of alkanethiol monolayers adsorbed on curved Au surfaces, particularly on the surface of AuNPs. Self-assembled monolayers (SAMs) of thiolate molecules on Au surfaces have been the subject of intensive research for the last few decades due to their unique physical and chemical properties. The well-organized surface structures of thiolate SAMs with various end-group functionalities can be further utilized for many applications in biology and nanotechnology. In addition to the practical applications, SAMs of thiolate molecules on Au surfaces also provide unique opportunities to address fundamental issues in surface chemistry such as self-organized surface structures, electron transfer behaviors, and moleculesubstrate interactions. Although there have been numerous reports on the fundamental physical and chemical properties of thiolate SAMs on Au surfaces, most of them were investigated on flat Au surfaces, typically on well-defined Au(111) surfaces

  17. Exploiting the flexibility and the polarization of ferroelectric perovskite surfaces to achieve efficient photochemistry and enantiospecificity

    Energy Technology Data Exchange (ETDEWEB)

    Rappe, Andrew [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2017-01-06

    This research project explored the catalytic properties of complex surfaces of functional materials. The PI used first-principles density functional theory (DFT) calculations to explore a tightly integrated set of properties. The physical properties of complex functional materials that influence surface chemistry were explored, including bulk and surface electric dipoles, and surface conductivity. The energetic, compositional, electronic, and chemical properties of the surfaces of these materials were explored in detail, and connections between material properties and chemical reactivity were established. This project led to 28 publications, including Nat. Comm., JACS, 3 PRL, 7 PRB, 2 ACS Nano, 2 Nano Lett., 4 JPCL, 2 JCP, Chem. Mater., ACS Appl. Mater. Interfaces, Phys. Rev. Appl., and a U.S. Patent on surface catalysts. The key accomplishments in this project involved work in six coordinated areas: pioneering ways to control bulk dipoles in order to dynamically affect catalysis, exploring novel ways of bringing charge to the surface for redox catalysis, nonstoichiometric surfaces offering new sites for heterogeneous catalysis, illustrating how surface catalysis responds to applied pressure, catalytic growth of carbon-based materials, and new computational methods allowing more accurate exploration of molecule-surface interactions

  18. Synthesis and evaluation of energetic materials

    Science.gov (United States)

    Santhosh, G.

    Over the years new generations of propellants and explosives are being developed. High performance and pollution prevention issues have become the subject of interest in recent years. Desired properties of these materials are a halogen-free, nitrogen and oxygen rich molecular composition with high density and a positive heat of formation. The dinitramide anion is a new oxy anion of nitrogen and forms salts with variety of metal, organic and inorganic cations. Particular interest is in ammonium dinitramide (ADN, NH4N(NO 2)2) which is a potentially useful energetic oxidizer. ADN is considered as one of the most promising substitutes for ammonium perchlorate (AP, NH4ClO4) in currently used composite propellants. It is unique among energetic materials in that it has no carbon or chlorine; its combustion products are not detrimental to the atmosphere. Unquestionable advantage of ADN over AP is the significant improvement in the performance of solid rocket motors by 5-15%. The present thesis is centered on the experimental results along with discussion of some of the most pertinent aspects related to the synthesis and characterization of few dinitramide salts. The chemistry, mechanism and kinetics of the formation of dinitramide salts by nitration of deactivated amines are investigated. The evaluation of the thermal and spectral properties along with the adsorption and thermal decomposition characteristics of the dinitramide salts are also explored in this thesis.

  19. Plasma Interaction and Energetic Particle Dynamics near Callisto

    Science.gov (United States)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.

  20. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  1. Electronic excitation of Ti atoms sputtered by energetic Ar+ and He+ from clean and monolayer oxygen covered surfaces

    International Nuclear Information System (INIS)

    Pellin, M.J.; Gruen, D.M.; Young, C.E.; Wiggins, M.D.; Argonne National Lab., IL

    1983-01-01

    Electronic excitation of Ti atoms ejected during energetic ion bombardment (Ar + , He + ) of well characterized clean and oxygen covered polycrystalline Ti metal surfaces has been determined. For states with 0 to 2 eV and 3 to 5.5 eV of electronic energy, static mode laser fluorescence spectroscopy (LFS) and static mode spontaneous fluorescence spectroscopy (SFS) were used respectively. These experiments which were carried out in a UHV ( -10 Torr) system equipped with an Auger spectrometer provide measurements of the correlation between oxygen coverage (0 to 3 monolayers) and the excited state distribution of sputtered Ti atoms. The experimentally determined electronic partition function of Ti atoms does not show an exponential dependence on energy (E) above the ground state but rather an E -2 or E -3 power law dependence. (orig.)

  2. Surface properties of semi-infinite Fermi systems

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1979-10-01

    A functional relation between the kinetic energy density and the total density is used to analyse the surface properties of semi-infinite Fermi systems. One find an explicit expression for the surface thickness in which the role of the infinite matter compressibility, binding energy and non-locality effects is clearly shown. The method, which holds both for nuclear and electronic systems (liquid metals), yields a very simple relation between the surface thickness and the surface energy

  3. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  4. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-01-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm 2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly-energetic

  5. Solar energetic particles and radio burst emission

    Czech Academy of Sciences Publication Activity Database

    Miteva, R.; Samwel, S. W.; Krupař, Vratislav

    2017-01-01

    Roč. 7 (2017), č. článku A37. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : solar energetic particles * solar radio burst emission * solar cycle Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/ articles /swsc/abs/2017/01/swsc170028/swsc170028.html

  6. Influence of an energetic-particle component on ballooning modes in an optimized stellarator

    International Nuclear Information System (INIS)

    Nuehrenberg, J.; Zheng, L.J.

    1993-01-01

    Besides quasi-helically symmetric configurations, which have particle drift properties analogous to tokamaks, a second interesting route for stellarator investigations is the choice of the optimized stellarator configuration, which has been adopted for the W7-X stellarator project. Of the many remarkably good properties of the optimized stellarator, two are mentioned here: One is the low geodesic curvature, which leads to a small Pfirsch-Schlueter current and fosters the MHD stability together with a vacuum field magnetic well; the other is that trapped energetic particles are well confined being reflected around the triangular cross section with maximum J - the second invariant. Maximum J configuration could be favorable for the stabilization of the low-frequency thermal-trapped-particle modes. On the other hand, for the energetic particles this means drift-reversal prevailing, and therefore the kinetic energy of the trapped energetic particles is destabilizing. Furthermore, when trapped energetic particles are drift-reversed, two β limits emerge: One is due to the ballooning modes, which relates to the Van Dam-Lee-Nelson limit for EBT; the other is due to the interchange modes. Nevertheless, these two theories predict that - when the core plasma β is high enough - stability may resume. The purpose of this work is to determine whether one of these two limits - the Van Dam-Lee-Nelson limit for ballooning modes - harms the optimized stellarator or not. (author) 12 refs., 1 fig

  7. Image-potential states on the metallic (111) surface of bismuth

    International Nuclear Information System (INIS)

    Muntwiler, Matthias; Zhu, X-Y

    2008-01-01

    An extended series (up to n=6, in quantum beats) of image-potential states (IPS) is observed in time-resolved two-photon photoelectron (TR-2PPE) spectroscopy of the Bi(111) surface. Although mainly located in the vacuum, these states probe various properties of the electronic structure of the surface as reflected in their energetics and dynamics. Based on the observation of IPS a projected gap in the surface normal direction is inferred in the region from 3.57 to 4.27 eV above the Fermi level. Despite this band gap, the lifetimes of the IPS are shorter than on comparable metals, which is an indication of the metallic character of the Bi(111) surface.

  8. Cluster-surface collisions: Characteristics of Xe55- and C20 - Si[111] surface bombardment

    International Nuclear Information System (INIS)

    Cheng, H.

    1999-01-01

    Molecular dynamics (MD) simulations are performed to study the cluster-surface collision processes. Two types of clusters, Xe 55 and C 20 are used as case studies of materials with very different properties. In studies of Xe 55 - Si[111] surface bombardment, two initial velocities, 5.0 and 10.0 km/s (normal to the surface) are chosen to investigate the dynamical consequences of the initial energy or velocity in the cluster-surface impact. A transition in the speed of kinetic energy propagation, from subsonic velocities to supersonic velocities, is observed. Energy transfer, from cluster translational motion to the substrate, occurs at an extremely fast rate that increases as the incident velocity increases. Local melting and amorphous layer formation in the surfaces are found via energetic analysis of individual silicon atoms. For C 20 , the initial velocity ranges from 10 to 100 km/s. The clusters are damaged immediately upon impact. Similar to Xe 55 , increase in the potential energy is larger than the increase in internal kinetic energy. However, the patterns of energy distribution are different for the two types of clusters. The energy transfer from the carbon clusters to Si(111) surface is found to be slower than that found in the Xe clusters. Fragmentation of the carbon cluster occurs when the initial velocity is greater than 30 km/s. At 10 km/s, the clusters show recrystallization at later times. The average penetration depth displays a nonlinear dependence on the initial velocity. Disturbance in the surface caused by C 20 is discussed and compared to the damage caused by Xe 55 . Energetics, structures, and dynamics of these systems are fully analyzed and characterized. copyright 1999 American Institute of Physics

  9. Evaluating non-stick properties of different surface materials for contact frying

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens

    2011-01-01

    to evaluate non-stick and cleaning properties of the coatings. In accordance with industry standards pancake was selected as the food model for the non-stick properties. The performance of different frying surfaces (stainless steel, aluminium, PTFE (polytetrafluoroethylene) and three ceramic coatings with two...... on their non-stick properties, so that the smoother surfaces gave a higher force of adhesion between pancake and surface....

  10. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  11. Mechanical properties of ion implanted ceramic surfaces

    International Nuclear Information System (INIS)

    Burnett, P.J.

    1985-01-01

    This thesis investigates the mechanisms by which ion implantation can affect those surface mechanical properties of ceramics relevant to their tribological behaviour, specifically hardness and indentation fracture. A range of model materials (including single crystal Si, SiC, A1 2 0 3 , Mg0 and soda-lime-silica glass) have been implanted with a variety of ion species and at a range of ion energies. Significant changes have been found in both low-load microhardness and indentation fracture behaviour. The changes in hardness have been correlated with the evolution of an increasingly damaged and eventually amorphous thin surface layer together with the operation of radiation-, solid-solution- and precipitation-hardening mechanisms. Compressive surface stresses have been shown to be responsible for the observed changes in identation fracture behaviour. In addition, the levels of surface stress present have been correlated with the structure of the surface layer and a simple quantitative model proposed to explain the observed stress-relief upon amorphisation. Finally, the effects of ion implantation upon a range of polycrystalline ceramic materials has been investigated and the observed properties modifications compared and contrasted to those found for the model single crystal materials. (author)

  12. Energetics and dynamics of excess electrons in simple fluids

    International Nuclear Information System (INIS)

    Space, B.

    1992-01-01

    Excess electronic dynamical and equilibrium properties are modeled in both polarizable and nonpolarizable noble gas fluids. Explicit dynamical calculations are carried out for excess electrons in fluid helium, where excess electronic eigenstates are localized. Energetics and dynamics are considered for fluids which span the entire range of polarizability present in the rare gases. Excess electronic eigenstates and eigenvalues are calculated for fluids of helium, argon and xenon. Both equilibrium and dynamical information is obtained from the calculation of these wavefunctions. A surface hopping trajectory method for studying nonadiabatic excess electronic relaxation in condensed systems is used to explore the nonadiabatic relaxation after photoexciting an equilibrated excess electron in dense fluid helium. The different types on nonadiabatic phenomena which are important in excess electronic relaxation are surveyed. The same surface hopping trajectory method is also used to study the rapid nonadiabatic relaxation after an excess electron is injected into unperturbed fluid helium. Several distinctively different relaxation processes, characterized by their relative importance at different times during the relaxation to a localized equilibrium state, are detailed. Though the dynamical properties of excess electrons under the conditions considered here have never been studied before, the behavior is remarkably similar to that observed in both experimental and theoretical studies of electron hydration dynamics, indicating that the processes described may be very general relaxation mechanisms for localization and trapping in fluids. Additionally, ground state energies of an excess electron, e 0 , are computed as a function of solvent density using model electron-atom pseudopotentials in fluid helium, argon, and xenon. The nonuniqueness of the pseudopotential description of electron-molecule interactions is demonstrated

  13. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  14. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  15. Effects of surface atomistic modification on mechanical properties of gold nanowires

    International Nuclear Information System (INIS)

    Sun, Xiao-Yu; Xu, Yuanjie; Wang, Gang-Feng; Gu, Yuantong; Feng, Xi-Qiao

    2015-01-01

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties

  16. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  17. Construction of an interatomic potential for zinc oxide surfaces by high-dimensional neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Artrith, Nongnuch; Morawietz, Tobias; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2011-07-01

    Zinc oxide (ZnO) is a technologically important material with many applications, e.g. in heterogeneous catalysis. For theoretical studies of the structural properties of ZnO surfaces, defects, and crystal structures it is necessary to simulate large systems over long time-scales with sufficient accuracy. Often, the required system size is not accessible by computationally rather demanding density-functional theory (DFT) calculations. Recently, artificial Neural Networks (NN) trained to first principles data have shown to provide accurate potential-energy surfaces (PESs) for condensed systems. We present the construction and analysis of a NN PES for ZnO. The structural and energetic properties of bulk ZnO and ZnO surfaces are investigated using this potential and compared to DFT calculations.

  18. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from 
    X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was

  19. Adsorption of F2C=CFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    International Nuclear Information System (INIS)

    Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-01-01

    Graphical abstract: - Highlights: • Adsorption of F 2 C=CFCl on TiO 2 unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F 2 C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol −1 depending on the anchor point. • Theory and experiment converge on the CF 2 moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO 2 ) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F 2 C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO 2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti 4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol −1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  20. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  1. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  2. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  3. Parametric surface and properties defined on parallelogrammic domain

    Directory of Open Access Journals (Sweden)

    Shuqian Fan

    2014-01-01

    Full Text Available Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufactura-bility (and its limitation in logarithmic spiral bevel gears is analyzed using precision forging and multi-axis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multi-axis freeform milling also need to be solved in a further study.

  4. Tribological properties of nanostripe surface structures-a design concept for improving tribological properties

    International Nuclear Information System (INIS)

    Miyake, K; Nakano, M; Korenaga, A; Mano, H; Ando, Y

    2010-01-01

    The tribological properties of nanostripe surface structures were investigated using a pin-on-plate tribometer in order to propose a design concept for improving the tribological properties. The authors used four kinds of nanostripe structures consisting of different combinations of materials (Fe-Au, C-SiC, Al-Al 2 O 3 and Al-Pt) fabricated by a process they had previously proposed. The frictional properties of the nanostripe structures depended on the materials that constituted the nanostripes. When the sliding direction in friction tests was parallel to the microgrooves, nanostripe structures remained on all surfaces even after friction tests. Based on the friction test results, the authors considered a design concept for nanostripe structures in tribological applications.

  5. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  6. Nanodiamond for tuning the properties of energetic composites.

    Science.gov (United States)

    Pichot, Vincent; Comet, Marc; Miesch, Julien; Spitzer, Denis

    2015-12-30

    Bismuth oxide (Bi2O3) particles were coated by detonation nanodiamonds. The resulting nanocomposite materials were mixed with an aluminum nanopowder (≈ 100 nm) to prepare nanothermites, with reduced sensitivity to friction and electrostatic discharge (ESD). The use of nanodiamond for this purpose is reported here for the first time. Their numerous qualities such as their small size, antifriction properties and thermal conductivity make them ideal candidates. Small amounts of detonation nanodiamonds allow obtaining impressive desensitization, making thus modified Bi2O3/Al nanothermite safe to handle. A composition containing around 1 wt.% of nanodiamond has a sensitivity threshold to friction superior to 100 N instead of 5 N for the thermite without nanodiamond. Furthermore, the sensitivity threshold to electrostatic discharge increases to 20 times when the nanodiamond content reaches 1.8 wt.%. The antifriction properties of nanodiamond limit the scratching of Bi2O3 surface by Al particles. The desensitization to ESD is observed for a sufficient coverage of the oxide particles (1.8 wt.% of ND), which restrains the effect of the melt dispersion mechanism of aluminum and prevents the mixing of the oxidizing and the reducing parts of the composites. A good reactivity of the thermite could be maintained for nanodiamond content up to 2.6 wt.%. The carburizing of aluminum coming on contact with nanodiamond during the thermite reaction could be evidenced by X-ray Diffraction and calorimetry measurements and also participates to the desensitization of the nanothermite. This kind of desensitization by using detonation nanodiamond can also be applied to other nanothermites having low sensitivity threshold to friction and ESD. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  8. Surface characterization of modern resin composites: a multitechnique approach.

    Science.gov (United States)

    Silikas, Nick; Kavvadia, Katerina; Eliades, George; Watts, David

    2005-04-01

    To characterize the surface properties of some modern resin composites employing a series of physicochemical methods. Specimens from three microhybrid (Palfique Estellite-PE, Z250 Filtek-ZF, Tetric Ceram-TC) and one nanofilled (Supreme Filtek-SF) conventionally photo-cured resin composites polished with Soflex disks were studied for the following properties: Surface chemical composition and degree of C=C conversion (FTIR), surface energetics (contact angles), surface texture (AFM), surface roughness (AFM, stylus profilometry) and gloss (60 degrees-, 20 degrees-angle specular gloss). Polar and non polar molecular groups were identified in all products including NH and CONH (SF, ZF, TC). SF and ZF demonstrated higher conversion than PE and TC (P 0.05) were found in critical surface tension, total work of adhesion and its polar and dispersion components, the latter being the highest in all products. AFM showed the smoothest surface texture in PE. The ranking of Sa, Sq, Ra and Rz roughness parameters was PEgloss measurements (PE, SF>ZF>TC, PTC, Pgloss differences. A positive correlation was found between Sa and Ra and a negative one between Sa and 20 degree-angle gloss.

  9. Diamond nanowires: fabrication, structure, properties, and applications.

    Science.gov (United States)

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  11. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  12. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  13. Screening in crystalline liquids protects energetic carriers in hybrid perovskites

    Science.gov (United States)

    Zhu, Haiming; Miyata, Kiyoshi; Fu, Yongping; Wang, Jue; Joshi, Prakriti; Niesner, Daniel; Williams, Kristopher; Jin, Song; Zhu, Xiaoyang

    Hybrid lead halide perovskites exhibit carrier properties that resemble those of pristine nonpolar semiconductors despite static and dynamic disorder, but how carriers are protected from efficient scattering with charged defects and optical phonons is unknown. Here, we reveal the carrier protection mechanism by comparing three single-crystal lead bromide perovskites: CH3NH3PbBr3, CH(NH2)2PbBr3, and CsPbBr3. We observed hot fluorescence emission from energetic carriers with 102 picosecond lifetimes in CH3NH3PbBr3 or CH(NH,SUB>2)2PbBr3, but not in CsPbBr3. The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling. Similar protections likely exist for band-edge carriers. The long-lived energetic carriers may enable hot-carrier solar cells with efficiencies exceeding the Shockley-Queisser limit. This work was supported by U.S. Department of Energy Grant ER46980, National Science Foundation, Grant DMR 1420634 (MRSEC), and Department of Energy Award DE-FG02-09ER46664.

  14. Study on penetration-induced initiation of energetic fragment

    Science.gov (United States)

    Qiao, Xiangxin; Xu, Heyang

    2017-09-01

    In order to investigate penetration-induced initiation of energetic fragment penetrating target, PTFE/Al (mass ratio 73.5/26.5) pressed and sintered into a Ф8mm × 8mm cylinder. To form energetic fragment, the cylinder was put into a closed container made by 35CrMnSiA. The container is 12mm long, 2mm thick. Energetic fragments were launched by a 14.5mm ballistic gun with a series of velocities and the penetrate process was simulated by AUTODYN-3D. The results show that the stress peak of energetic material exceed the initiation threshold, and energetic material will deflagrate, when energetic fragments impact velocity more than 800 m/s. The research results can provide reference for designs of energetic warhead.

  15. Energetics and Dynamics of Cu(001)-c(2x2)Cl steps

    NARCIS (Netherlands)

    van Dijk, F.R.; Zandvliet, Henricus J.W.; Poelsema, Bene

    2006-01-01

    The energetics of the step faceting transition of Cu(001) [copper (001) surface] upon Cl (chloride) adsorption in contact with HCl (hydrogen chloride) solution is modeled in terms of a solid-on-solid model that incorporates both nearest-neighbor and next-nearest-neighbor interactions. It is shown

  16. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    Science.gov (United States)

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.

  17. Energetics of Elementary Steps in Catalysis and Their Use to Search for New Catalysts

    Science.gov (United States)

    Wolcott, Christopher A.

    ) is a fairly new technique which allows one to probe the heats of formation of such adsorbates for the first time. In this thesis SCAC is used to study the dissociative adsorption of diiodomethane on Pt(111) to produce adsorbed -CH2 and -CH, and water on Fe 3O4(111) and NiO(111) to produce adsorbed -OH. This work expands the library of adsorbates on transition metal surfaces which has been studied by SCAC, and is among the first ever measurements of molecules on well-defined oxide surfaces using SCAC. These results are compared to density functional theory (DFT) calculations of adsorbate energetics, and their use as computational benchmarks is discussed. A new, universally-applicable method of data analysis for SCAC is also developed which allows for the extraction of heat data even in the presence of complex surface reaction/diffusion dynamics without any need for kinetic modeling as required in previous analysis methods, thus greatly expanding the versatility of SCAC. Finally a new method of computational catalyst screening is presented which uses the concept of degree of rate control to simplify calculations compared to the standard method developed by Jens Norskov's group. It greatly reduces the number of adsorbate energies needed to predict the reaction rate for a new catalyst, and provides greater accuracy when studying materials with similar properties to the reference catalyst used. The Norskov method is more robust when extended to materials that are dissimilar. The new method presented here is thus expected to be an important complimentary tool to Norskov's method for high-throughput computational screening. Taken together, the results presented in this dissertation show the importance of experimental measurements for guiding the development of fast quantum mechanical methods like DFT to more closely approach thru "chemical accuracy" in energetic prediction, and how one could use "chemically accurate" DFT energies to rapidly screen potential catalysts for

  18. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  19. Probing the conformational energetics of alkyl thiols on gold surfaces by means of a morphing/steering non-equilibrium tool.

    Science.gov (United States)

    Piserchia, Andrea; Zerbetto, Mirco; Frezzato, Diego

    2015-03-28

    In this work we show that a non-equilibrium statistical tool based on Jarzynski's equality (JE) can be applied to achieve a sufficiently accurate mapping of the torsion free energy, bond-by-bond, for an alkyl thiol ligand tethered to a gold surface and sensing the presence of the surrounding cluster of similar chains. The strength of our approach is the employment of a strategy to let grow the internal energetics of the whole system (namely, the "energy morphing" stage recently presented by us in J. Comput. Chem., 2014, 35, 1865-1881) before initiating the rotational steering, which yields accurate results in terms of statistical uncertainties and bias on the free energy profiles. The work is mainly methodological and illustrates the feasibility of this kind of inspection on nanoscale molecular clusters with conformational flexibility. The outcomes for the archetype of self-assembled-monolayers considered here, a regular pattern of 10-carbon alkyl thiols on an ideal gold surface, give information on the conformational mobility of the ligands. Notably, such information is unlikely to be obtained by means of standard equilibrium techniques or by conventional molecular dynamics simulations.

  20. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    Science.gov (United States)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    results using composition data at energies greater than 200 keV/nucl., showed that heavy ions within Saturn's inner magnetosphere dominated over protons, but that contrary to original suggestions that these ions were O+ , we now argue that they are instead N+ ions. With energetic N+ ions bombarding the icy satellite surfaces chemical reactions can occur at the end of the ion tracks and produce nitrogen oxides or other nitrogen containing molecules such that the radiology within the icy surfaces is driven by the impacting energetic nitrogen ions. These can accumulate over the lifetime of the Saturn system.

  1. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  2. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  3. Energetics of bacterial photosynthesis.

    Science.gov (United States)

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  4. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Lu Zixing; Zhang Cungang; Liu Qiang; Yang Zhenyu

    2011-01-01

    In this paper, surface effects on the mechanical behaviour of nanoporous materials are investigated using the theory of surface elasticity and Timoshenko beam theory based on the tetrakaidecahedron (or Kelvin) open-cell foam model. Meanwhile, the influence of surface elasticity and residual surface stress on the mechanical properties of nanoporous materials is discussed. In addition, the results derived from the theory of Euler-Bernoulli beam model are also provided for comparison. Theoretical results show that the effective Young's modulus of the nanoporous materials increases as the diameter of the strut decreases, but in contrast Poisson's ratio and the brittle collapse strength decrease with the diameter of the strut. The contribution of shear deformation to surface effects on elastic properties is more significant, while the surface effects on brittle collapse strength are not sensitive to shear deformation, and it can even be neglected. As the strut size increases, the present results can be reduced to the cases without considering surface effects, which verifies the efficiency of the present model to a certain extent.

  5. Near surface mechanical properties of optical single crystals and surface response to deterministic microgrinding

    Science.gov (United States)

    Randi, Joseph A., III

    2005-12-01

    This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the

  6. Simulation study of energetic ion distribution during combined NBI and ICRF heating in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Kasilov, V.

    2006-01-01

    In the LHD, significant performances of ICRF heating (fundamental, minority heating regime) have been demonstrated and up to 500keV of energetic tail ions have been observed by fast neutral particle analysis (NPA). These measured results indicate a good property of energetic ion confinement in helical systems. From the 9th campaign of LHD experiment (FY2005) a new perpendicular NBI heating system (P<3MW) has been installed and an effective heating of perpendicularly injected beam ions by the higher harmonics ICRF heating is expected. ICRF heating generates highly energetic tail ions, which drift around the torus for a long time (typically on a collisional time scale). Thus, the behavior of these energetic ions is strongly affected by the characteristics of the drift motions, which depend on the magnetic field configuration. In particular, in a three-dimensional (3D) magnetic configuration, complicated drift motions of trapped particles would play an important role in the confinement of the energetic ions and the ICRF heating process. Therefore a global simulation of ICRF heating is necessary for the accurate modeling of the plasma heating process in a 3D magnetic configuration. In this paper we study the energetic ion distribution during combined NBI and 2nd harmonics ICRF heating in LHD using two global simulation codes: a full wave field solver TASK/WK and a drift kinetic equation solver GNET. GNET solves a linearized drift kinetic equation for energetic ions including complicated behavior of trapped particles in 5-D phase space. TASK/WM solves Maxwell's equation for RF wave electric field with complex frequency as a boundary value problem in the 3D magnetic configuration. (author)

  7. Surface properties of CNTs and their interaction with silica.

    Science.gov (United States)

    Sobolkina, Anastasia; Mechtcherine, Viktor; Bellmann, Cornelia; Khavrus, Vyacheslav; Oswald, Steffen; Hampel, Silke; Leonhardt, Albrecht

    2014-01-01

    In order to improve the embedding of carbon nanotubes (CNTs) in cement-based matrices, silica was deposited on the sidewall of CNTs by a sol-gel method. Knowledge of the conditions of CNTs' surfaces is a key issue in understanding the corresponding interaction mechanisms. In this study various types of CNTs synthesized using acetonitrile, cyclohexane, and methane were investigated with regard to their physicochemical surface properties. Significant differences in surface polarity as well as in the wetting properties of the CNTs, depending on the precursors used, were revealed by combining electro-kinetic potential and contact angle measurements. The hydrophobicity of CNTs decreases by utilising the carbon sources in the following order: cyclohexane, methane, and finally acetonitrile. The XPS analysis, applied to estimate the chemical composition at the CNT surface, showed nitrogen atoms incorporated into the tube structure by using acetonitrile as a carbon source. It was found that the simultaneous presence of nitrogen- and/or oxygen-containing sites with different acid-base properties increased the surface polarity of the CNTs, imparting amphoteric characteristics to them and improving their wetting behaviour. Regarding the silica deposition, strong differences in adsorption capacity of the CNTs were observed. The mechanism of silica adsorption through interfacial bond formation was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties

    Science.gov (United States)

    Nagpal, Prashant; Singh, Vivek; Ding, Yuchen

    2014-03-01

    Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.

  9. Surface properties of adsorption layers formed from triterpenoid and steroid saponins

    NARCIS (Netherlands)

    Pagureva, N.; Tcholakova, S.; Golemanov, K.; Denkov, N.; Pelan, E.; Stoyanov, S.D.

    2016-01-01

    Saponins are natural surfactants with non-trivial surface and aggregation properties which find numerous important applications in several areas (food, pharma, cosmetic and others). In the current paper we study the surface properties of ten saponin extracts, having different molecular structure

  10. Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties

    International Nuclear Information System (INIS)

    Sumant, A. V.; Grierson, D. S.; Carpick, R. W.; Gerbi, J. E.; Carlisle, J. A.; Auciello, O.

    2007-01-01

    We present a comprehensive study of surface composition and nanotribology for ultrananocrystalline diamond (UNCD) surfaces, including the influence of film nucleation on these properties. We describe a methodology to characterize the underside of the films as revealed by sacrificial etching of the underlying substrate. This enables the study of the morphology and composition resulting from the nucleation and initial growth of the films, as well as the characterization of nanotribological properties which are relevant for applications including micro-/nanoelectromechanical systems. We study the surface chemistry, bonding configuration, and nanotribological properties of both the topside and the underside of the film with synchrotron-based x-ray absorption near-edge structure spectroscopy to identify the bonding state of the carbon atoms, x-ray photoelectron spectroscopy to determine the surface chemical composition, Auger electron spectroscopy to further verify the composition and bonding configuration, and quantitative atomic force microscopy to study the nanoscale topography and nanotribological properties. The films were grown on SiO 2 after mechanically polishing the surface with detonation synthesized nanodiamond powder, followed by ultrasonication in a methanol solution containing additional nanodiamond powder. The sp 2 fraction, morphology, and chemistry of the as-etched underside are distinct from the topside, exhibiting a higher sp 2 fraction, some oxidized carbon, and a smoother morphology. The nanoscale single-asperity work of adhesion between a diamond nanotip and the as-etched UNCD underside is far lower than for a silicon-silicon interface (59.2±2 vs 826±186 mJ/m 2 , respectively). Exposure to atomic hydrogen dramatically reduces nanoscale adhesion to 10.2±0.4 mJ/m 2 , at the level of van der Waals' interactions and consistent with recent ab initio calculations. Friction is substantially reduced as well, demonstrating a direct link between the

  11. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  12. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  13. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    Science.gov (United States)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  14. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    International Nuclear Information System (INIS)

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai; Kim, Sang-Ho

    2014-01-01

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  15. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    Science.gov (United States)

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  16. Theory of magnetospheric hydromagnetic waves excited by energetic ring-current protons

    International Nuclear Information System (INIS)

    Chen, Liu; Hasegawa, Akira.

    1987-06-01

    A general theoretical formulation, allowing finite ion Larmor radii, general magnetic field geometries and plasma equilibria, has been developed to investigate excitations of magnetohydrodynamic (MHD) Alfven waves within the earth's magnetosphere by the storm-time energetic ring-current protons. In particular, it is found that for adiabatically injected protons, various predicted instability properties are consistent with satellite observations. 8 refs

  17. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  18. Papers of 4. Scientific-Technical Seminar: Material Study for Electric Power Stations and Energetics

    International Nuclear Information System (INIS)

    1997-01-01

    The research on the materials commonly used in electric power stations and energetics have been summarized in the course of the seminar. Especially a different kinds of steels have been investigated from the view point of their desirable mechanical and corrosion properties

  19. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD.Dynamic impact properties of race surfaces

  20. Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, J; Huang, Y [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 (United States); Ryu, S Y; Paik, U [Division of Materials Science and Engineering, Hanyang University, 17 Hangdang-dong, Sungdong-gu, Seoul 133-791 (Korea, Republic of); Hwang, K-C [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Rogers, J A, E-mail: y-huang@northwestern.edu, E-mail: jrogers@uiuc.edu [Department of Materials Science and Engineering, Frederick-Seitz Materials Research Laboratory and Beckman Institute, University of Illinois at Urbana-Champaign, Illinois 61801 (United States)

    2010-02-26

    A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.

  1. Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates

    International Nuclear Information System (INIS)

    Xiao, J; Huang, Y; Ryu, S Y; Paik, U; Hwang, K-C; Rogers, J A

    2010-01-01

    A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.

  2. Energetics and self-diffusion behavior of Zr atomic clusters on a Zr(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-09-15

    Using a molecular dynamics method and a modified analytic embedded atom potential, the energetic and the self-diffusion dynamics of Zr atomic clusters up to eight atoms on {alpha}-Zr(0 0 0 1) surface have been studied. The simulation temperature ranges from 300 to 1100 K and the simulation time varies from 20 to 40 ns. It's found that the heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center and the present diffusion coefficients for clusters exhibit an Arrhenius behavior. The Arrhenius relation of the single adatom can be divided into two parts in different temperature range because of their different diffusion mechanisms. The migration energies of clusters increase with increasing the number of atoms in cluster. The differences of the prefactors also come from the diverse diffusion mechanisms. On the facet of 60 nm, the heptamer can be the nuclei in the crystal growth below 370 K.

  3. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  4. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  5. Nanodiamond for tuning the properties of energetic composites

    International Nuclear Information System (INIS)

    Pichot, Vincent; Comet, Marc; Miesch, Julien; Spitzer, Denis

    2015-01-01

    Highlights: • Bismuth oxide (Bi 2 O 3 ) particles were successfully coated by detonation nanodiamond (DND). • Small DND contents strongly desensitize the Bi 2 O 3 /Al nanothermites to friction. • DNDs limit the electrostatic discharge sensitivity of the Bi 2 O 3 /Al nanothermites. • Desensitization can be mainly explained by the barrier role of the nanodiamonds. • Nanothermites sensitivity levels and flame propagation velocities are tuned by DND content. - Abstract: Bismuth oxide (Bi 2 O 3 ) particles were coated by detonation nanodiamonds. The resulting nanocomposite materials were mixed with an aluminum nanopowder (≈100 nm) to prepare nanothermites, with reduced sensitivity to friction and electrostatic discharge (ESD). The use of nanodiamond for this purpose is reported here for the first time. Their numerous qualities such as their small size, antifriction properties and thermal conductivity make them ideal candidates. Small amounts of detonation nanodiamonds allow obtaining impressive desensitization, making thus modified Bi 2 O 3 /Al nanothermite safe to handle. A composition containing around 1 wt.% of nanodiamond has a sensitivity threshold to friction superior to 100 N instead of 5 N for the thermite without nanodiamond. Furthermore, the sensitivity threshold to electrostatic discharge increases to 20 times when the nanodiamond content reaches 1.8 wt.%. The antifriction properties of nanodiamond limit the scratching of Bi 2 O 3 surface by Al particles. The desensitization to ESD is observed for a sufficient coverage of the oxide particles (1.8 wt.% of ND), which restrains the effect of the melt dispersion mechanism of aluminum and prevents the mixing of the oxidizing and the reducing parts of the composites. A good reactivity of the thermite could be maintained for nanodiamond content up to 2.6 wt.%. The carburizing of aluminum coming on contact with nanodiamond during the thermite reaction could be evidenced by X-ray Diffraction and

  6. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  7. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  8. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    2001-09-01

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  9. Broadband Study of GRB 091127: A Sub-energetic Burst at Higher Redshift?

    Science.gov (United States)

    Troja, E.; Sakamoto, T.; Guidorzi, C.; Norris, J. P.; Panaitescu, A.; Kobayashi, S.; Omodei, N.; Brown, J. C.; Burrows, D. N.; Evans, P. A.; Gehrels, N.; Marshall, F. E.; Mawson, N.; Melandri, A.; Mundell, C. G.; Oates, S. R.; Pal'shin, V.; Preece, R. D.; Racusin, J. L.; Steele, I. A.; Tanvir, N. R.; Vasileiou, V.; Wilson-Hodge, C.; Yamaoka, K.

    2012-12-01

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E γ < 3 × 1049 erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  10. BROADBAND STUDY OF GRB 091127: A SUB-ENERGETIC BURST AT HIGHER REDSHIFT?

    Energy Technology Data Exchange (ETDEWEB)

    Troja, E.; Sakamoto, T.; Brown, J. C.; Gehrels, N.; Marshall, F. E.; Racusin, J. L. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guidorzi, C. [Physics Department, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Norris, J. P. [Physics Department, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Panaitescu, A. [Space Science and Applications, MS D466, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kobayashi, S.; Mawson, N.; Melandri, A.; Mundell, C. G.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, CH41 1LD Birkenhead (United Kingdom); Omodei, N. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Burrows, D. N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Evans, P. A. [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Oates, S. R. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Pal' shin, V. [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Preece, R. D. [Department of Physics, University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); and others

    2012-12-10

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E{sub {gamma}} < 3 Multiplication-Sign 10{sup 49} erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  11. Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field

    National Research Council Canada - National Science Library

    Bunte, Steven

    2000-01-01

    To investigate the mechanical and other condensed phase properties of energetic materials using atomistic simulation techniques, the COMPASS force field has been expanded to include high-energy nitro functional groups...

  12. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  13. A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards

    International Nuclear Information System (INIS)

    BAER, MELVIN R.; DRUMHELLER, D.S.; MATHESON, E.R.

    1999-01-01

    The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample

  14. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  15. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  16. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  17. Investigations of surface related electronic properties in SmB6 and LaAlO3/SrTiO3 heterostructures

    Science.gov (United States)

    Adhikari, Sanjay

    This dissertation reports research performed on two types of two-dimensional. systems: SmB6 and LaAlO3/SrTiO3 (LAO/STO). SmB6 has been proposed to be. a topological Kondo insulator at low temperature. In order to understand carriers/. lattice dynamics and their interactions, femtosecond pump-probe spectroscopy. is performed in SmB6 single crystals and thin lms at variable temperatures. The. collective oscillation modes in GHz - THz and the change of carrier relaxations is. observed as a function of temperature. From the temperature dependent results. f 􀀀?d hybridization, opening of the hybridization gap, phonon bottleneck", and th. possible topological surface state formation is revealed. The topological surface state. should support helical Dirac dispersion with momentum-spin lockage. This dissertation. reports on current injection in SmB6 thin lm with circularly polarized light. at oblique incidence. This spin polarized photocurrent is concluded to be a direct. result of spin momentum lockage in SmB6. LAO/STO interface shows 2-dimensional electron gas (2DEG) at the interface. when the thickness of LAO is more than 3 unit cell. Carrier properties at the. LAO/STO interfaces are highly sensitive to the top surface termination of LAO. The spontaneous dissociation of water on LAO surface is systematically studied by. density functional theory and experimental surface characterizations. Extrinsic effects. from surface adsorbates were often ignored in the previous studies of the 2DEG. From the experiments, it is found that the dissociated water molecules, especially the. surface protons, strongly aect the interface density of states, electron distributions. and lattice distortions. The investigations also reveal the importance of additional. molecular water layers. These additional water layers, through hydrogen bonds, provide. an energetically feasible pathway for manipulating the surface-bonded protons. and thus, the interface electrical characteristics.

  18. Interactions of energetic particles and clusters with solids

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Benedek, R.

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and ''cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs

  19. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  20. Influence of surface roughness on the friction property of textured surface

    Directory of Open Access Journals (Sweden)

    Yuankai Zhou

    2015-02-01

    Full Text Available In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in the computation. The numerical simulation results suggest that there is an optimum dimensionless surface roughness, and near this value, the maximum load-bearing capacity can be achieved. The load-bearing capacity is determined by the surface texture, the surface roughness, and the interaction between them. To get information of friction coefficient, the experiments were conducted. This experiment was used to evaluate the simulation. The experimental results show that for the frequency of 4 and 6 Hz, friction coefficient decreases at first and then increases with decreasing surface roughness, which indicates that there exists the optimum region of surface roughness leading to the best friction reduction effect, and it becomes larger when area fractions increase from 2% to 10%. The experimental results agree well with the simulation results.

  1. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  2. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    Science.gov (United States)

    Hrubý, Jan; Duška, Michal

    2014-03-01

    We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated) and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics equations in the conservative form. Thermodynamic properties of dry steam and liquid water are formulated in terms of special thermodynamic potentials and all properties are obtained as analytical derivatives. For the surface tension, the IAPWS formula is used. The interfacial internal energy is derived from the surface tension and it is used in the energy balance. Unlike common models, the present one provides real (contrary to perfect gas approximation) properties of steam and water and reflects the energetic effects due to the surface tension. The equations are based on re-fitting the reference formulation IAPWS-95 and selected experimental data. The mathematical structure of the equations is optimized for fast computation.

  3. A new numerical technique to design satellite energetic electron detectors

    CERN Document Server

    Tuszewski, M G; Ingraham, J C

    2002-01-01

    Energetic charged particles trapped in the magnetosphere are routinely detected by satellite instruments. However, it is generally difficult to extract quantitative energy and angular information from such measurements because the interaction of energetic electrons with matter is rather complex. Beam calibrations and Monte-Carlo (MC) simulations are often used to evaluate a flight instrument once it is built. However, rules of thumb and past experience are common tools to design the instrument in the first place. Hence, we have developed a simple numerical procedure, based on analytical probabilities, suitable for instrumental design and evaluation. In addition to the geometrical response, the contributions of surface backscattering, edge penetration, and bremsstrahlung radiation are estimated. The new results are benchmarked against MC calculations for a simple test case. Complicated effects, such as the contribution of the satellite to the instrumental response, can be estimated with the new formalism.

  4. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  5. Excitation of internal kink modes by trapped energetic beam ions

    International Nuclear Information System (INIS)

    Chen, L.; White, R.B.; Rosenbluth, M.N.

    1983-10-01

    Energetic trapped particles are shown to have a destabilizing effect on the internal kink mode in tokamaks. The plasma pressure threshold for the mode is lowered by the particles. The growth rate is near the ideal magnetohydrodynamic value, but the frequency is comparable to the trapped particle precission frequency. A model for the instability cycle gives stability properties, associated particle losses, and neutron emissivity consistent with the fishbone events observed in PDX

  6. Investigation of the surface adsorption and biotribological properties of mucins

    DEFF Research Database (Denmark)

    Madsen, Jan Busk

    to a surface. However, in other instances the inverse properties are desirable. Mucins are found on epithelial surfaces throughout the body and are a key component of the mucus barrier. Here, they facilitate friction reduction, thus lowering the impact of physical abrasions, but they also act as a physical...... charge due to the oligosaccharides being capped by negatively charged species such as sialic acid or sulphate groups. Mucins display phenotypic diversion according to their expression site. This is most pronounced in the oligosaccharide composition of the central domains. The amphiphilic nature of mucins...... and their aqueous lubrication properties have led to them being proposed as possible biocompatible lubricants. In this thesis, we investigate the biotribological properties of two commercially available mucins on the soft, elastomeric and hydrophobic surface of PDMS under different conditions. Due to the presence...

  7. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  8. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  9. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  10. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  12. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    International Nuclear Information System (INIS)

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  13. Engineering interfacial properties of organic semiconductors through soft-contact lamination and surface functionalization

    Science.gov (United States)

    Shu, Andrew Leo

    Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of

  14. Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach

    Directory of Open Access Journals (Sweden)

    Ioan G. Pop

    2017-05-01

    Full Text Available The paper combines original concepts about eco-energetic systems, in a transdisciplinary sustainable context. Firstly, it introduces the concept of M.E.N. (Mega-Eco-Nega-Watt, the eco-energetic paradigm based on three different but complementary ecological economic spaces: the Megawatt as needed energy, the Ecowatt as ecological energy, and the Negawatt as preserved energy. The paper also deals with the renewable energies and technologies in the context of electrical energy production. Secondly, in the context of the M.E.N. eco-energetic paradigm, comprehensive definitions are given about eco-energetic systems and for pollution. Thirdly, the paper introduces a new formula for the eco-energetic efficiency which correlates the energetic efficiency of the system and the necessary newly defined ecological coefficient. The proposed formula for eco-energetic efficiency enables an interesting form of relating to different situations in which the input energy, output energy, lost energy, and externalities involved in an energetic process, interact to produce energy in a specific energetic system, in connection with the circular resilient economy model. Finally, the paper presents an original energetic diagram to explain different channels to produce electricity in a resilience regime, with high eco-energetic efficiency from primary external energetic sources (gravitation and solar sources, fuels (classical and radioactive, internal energetic sources (geothermal, volcanoes and other kind of sources. Regardless the kind of energetic sources used to obtain electricity, the entire process should be sustainable in what concerns the transdisciplinary integration of the different representative spheres as energy, socio-economy, and ecology (environment.

  15. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  16. Correlation properties of surface and percolation transfer of electrons

    International Nuclear Information System (INIS)

    Bakunin, O.G.

    2002-01-01

    In this work was received equation, connecting correlatively properties of surface with electrons distribution function. Usually for equilibrium is necessary a large number of collisions. Collisions are 'destroying' correlations. In case rare collisions large importance have correlations and 'memory' effects. Non-Markov's character of emitting particles by surface lead to strongly nonequilibrium condition of 'gas'. Here kinetic equation of diffusive form does not apply. Classical kinetic equation are described only conditions near to equilibrium. This work offers to use ideas anomal diffusion in phase-space. The correlation properties of surface describe by correlations of velocities of emitting electrons: B(t). We offer to use functional equation for probability collision instead of kinetic equation: ∫ 0 ν 0 W noncoll F(ν) dv = 1 - B(t). This functional allow to consider 'memory' effects. It is important for consideration of electrons and clusters near surfaces. Distribution function become direct connected with correlations. In classical Kubo-Mory theory of transfer is necessary to get nondivergences integral: D ∝ ∫ 0 ∞ B(t). In considering case we can use even 'power function'. It was used 'slow' correlation function as Kohlraush in calculations. The information about kinetics and correlations properties are containing in one functional equation. It was received solution of this equation in form Levy function: F(ν) ∝ 1/ν α exp(-1/ν). The solution of this form can not be get with help asymptotic methods of kinetic theory. Asymptotics of solution have scale-invariant character F(V) ∝ 1/V α . This indicate on fractal properties phase-space. (author)

  17. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  18. Deformation behaviour induced by point defects near a Cu(0 0 1) surface

    International Nuclear Information System (INIS)

    Said-Ettaoussi, M.; Jimenez-Saez, J.C.; Perez-Martin, A.M.C.; Jimenez-Rodriguez, J.J.

    2004-01-01

    In order to attain a satisfactory understanding of many of the properties of metallic surfaces, it is necessary to take into account the distorting effect of self-interstitials and vacancies. The present work is focused on the study of the behaviour of neighbouring atoms around point defects. The conjugate gradient method with an empiric many-body potential has been used to study the point defect-surface interaction. Point defects have been generated at several depths under a Cu(0 0 1) surface and then the whole system driven to the minimum energy state. The displacement field has been obtained in the vicinity to the defect. An energetic analysis is also carried out calculating formation and migration energies

  19. Effects on energetic impact of atomic clusters with surfaces

    International Nuclear Information System (INIS)

    Popok, V.N.; Vuchkovich, S.; Abdela, A.; Campbell, E.E.B.

    2007-01-01

    A brief state-of-the-art review in the field of cluster ion interaction with surface is presented. Cluster beams are efficient tools for manipulating agglomerates of atoms providing control over the synthesis as well as modification of surfaces on the nm-scale. The application of cluster beams for technological purposes requires knowledge of the physics of cluster-surface impact. This has some significant differences compared to monomer ion - surface interactions. The main effects of cluster-surface collisions are discussed. Recent results obtained in experiments on silicon surface nanostructuring using keV-energy implantation of inert gas cluster ions are presented and compared with molecular dynamics simulations. (authors)

  20. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2013-09-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  1. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  2. Electrochemical properties of ion implanted silicon

    International Nuclear Information System (INIS)

    Pham minh Tan.

    1979-11-01

    The electrochemical behaviour of ion implanted silicon in contact with hydrofluoric acid solution was investigated. It was shown that the implanted layer on silicon changes profoundly its electrochemical properties (photopotential, interface impedance, rest potential, corrosion, current-potential behaviour, anodic dissolution of silicon, redox reaction). These changes depend strongly on the implantation parameters such as ion dose, ion energy, thermal treatment and ion mass and are weakly dependent on the chemical nature of the implantation ion. The experimental results were evaluated and interpreted in terms of the semiconductor electrochemical concepts taking into account the interaction of energetic ions with the solid surface. The observed effects are thus attributed to the implantation induced damage of silicon lattice and can be used for profiling of the implanted layer and the electrochemical treatment of the silicon surface. (author)

  3. Hydrogen molecules inside fullerene C70: quantum dynamics, energetics, maximum occupancy, and comparison with C60.

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko; Lawler, Ronald; Turro, Nicholas J

    2010-07-21

    Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60). These calculations provide a quantitative description of the ground-state properties, energetics, and the translation-rotation (T-R) zero-point energies (ZPEs) of the nanoconfined p-H(2) molecules and of the spatial distribution of two p-H(2) molecules in the cavity of C(70). The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H(2) molecules in C(70) but has a high positive value when the third H(2) is added, implying that at most two H(2) molecules can be stabilized inside C(70). By the same criterion, in the case of C(60), only the endohedral complex with one H(2) molecule is energetically stable. Our results are consistent with the fact that recently both (H(2))(n)@C(70) (n = 1, 2) and H(2)@C(60) were prepared, but not (H(2))(3)@C(70) or (H(2))(2)@C(60). The ZPE of the coupled T-R motions, from the DMC calculations, grows rapidly with the number of caged p-H(2) molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H(2)@C(70) and 52% for (p-H(2))(2)@C(70). Consequently, the T-R ZPE represents a major component of the energetics of the encapsulated H(2) molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H(2))(3)@C(70) is destabilized and increases by 66% the

  4. Effects of surface properties on droplet formation inside a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy

    2004-11-01

    Micro-fluidic devices offer a unique method of creating and controlling droplets on small length scales. A microfluidic device is used to study the effects of surface properties on droplet formation of a 2-phase flow system. Four phase diagrams are generated to compare the dynamics of the 2 immiscible fluid system (silicone oil and water) inside microchannels with different surface properties. Results show that the channel surface plays an important role in determining the flow patterns and the droplet formation of the 2-phase fluid system.

  5. A new approach to the retrieval of surface properties from earthshine measurements

    Energy Technology Data Exchange (ETDEWEB)

    Spurr, R.J.D. E-mail: rspurr@cfa.harvard.edu

    2004-01-01

    Instruments such as the MODIS and MISR radiometers on EOS AM-1, and POLDER on ADEOS have been deployed for the remote sensing retrieval of surface properties. Typically, retrieval algorithms use linear combinations of semi-empirical bidirectional reflectance distribution function (BRDF) kernels to model surface reflectance. The retrieval proceeds in two steps; first, an atmospheric correction relates surface BRDF to top-of-atmosphere (TOA) reflectances, then regression is used to establish the linear coefficients used in the kernel combination. BRDF kernels may also depend on a number of physical or empirical non-linear parameters (e.g. ocean wind speed for a specular BRDF); such parameters are usually assumed known. A major source of error in this retrieval comes from lack of knowledge of planetary boundary layer (PBL) aerosol properties. In this paper, we present a different approach to surface property retrieval. For the radiative transfer simulations, we use the discrete ordinate LIDORT model, which has the capability to generate simultaneous fields of radiances and weighting functions in a multiply scattering multi-layer atmosphere. Surface-atmosphere coupling due to multiple scattering and reflection effects is treated in full; the use of an atmospheric correction is not required. Further, it is shown that sensitivities of TOA reflectances to both linear and non-linear surface BRDF parameters may be established directly by explicit analytic differentiation of the discrete ordinate radiative transfer equations. Surface properties may thus be retrieved directly and conveniently from satellite measurements using standard non-linear fitting methods. In the fitting for BRDF parameters, lower-boundary aerosol properties can either be retrieved as auxiliary parameters, or they can be regarded as forward model parameter errors. We present examples of simulated radiances and surface/aerosol weighting functions for combinations of multi-angle measurements at several

  6. A new approach to the retrieval of surface properties from earthshine measurements

    International Nuclear Information System (INIS)

    Spurr, R.J.D.

    2004-01-01

    Instruments such as the MODIS and MISR radiometers on EOS AM-1, and POLDER on ADEOS have been deployed for the remote sensing retrieval of surface properties. Typically, retrieval algorithms use linear combinations of semi-empirical bidirectional reflectance distribution function (BRDF) kernels to model surface reflectance. The retrieval proceeds in two steps; first, an atmospheric correction relates surface BRDF to top-of-atmosphere (TOA) reflectances, then regression is used to establish the linear coefficients used in the kernel combination. BRDF kernels may also depend on a number of physical or empirical non-linear parameters (e.g. ocean wind speed for a specular BRDF); such parameters are usually assumed known. A major source of error in this retrieval comes from lack of knowledge of planetary boundary layer (PBL) aerosol properties. In this paper, we present a different approach to surface property retrieval. For the radiative transfer simulations, we use the discrete ordinate LIDORT model, which has the capability to generate simultaneous fields of radiances and weighting functions in a multiply scattering multi-layer atmosphere. Surface-atmosphere coupling due to multiple scattering and reflection effects is treated in full; the use of an atmospheric correction is not required. Further, it is shown that sensitivities of TOA reflectances to both linear and non-linear surface BRDF parameters may be established directly by explicit analytic differentiation of the discrete ordinate radiative transfer equations. Surface properties may thus be retrieved directly and conveniently from satellite measurements using standard non-linear fitting methods. In the fitting for BRDF parameters, lower-boundary aerosol properties can either be retrieved as auxiliary parameters, or they can be regarded as forward model parameter errors. We present examples of simulated radiances and surface/aerosol weighting functions for combinations of multi-angle measurements at several

  7. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  8. Dielectric properties of DNA oligonucleotides on the surface of silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: bagraev@mail.ioffe.ru [St. Petersburg Polytechnic University (Russian Federation); Chernev, A. L. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation); Klyachkin, L. E. [St. Petersburg Polytechnic University (Russian Federation); Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Emel’yanov, A. K.; Dubina, M. V. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)

    2016-10-15

    Planar silicon nanostructures that are formed as a very narrow silicon quantum well confined by δ barriers heavily doped with boron are used to study the dielectric properties of DNA oligonucleotides deposited onto the surface of the nanostructures. The capacitance characteristics of the silicon nanostructures with oligonucleotides deposited onto their surface are determined by recording the local tunneling current–voltage characteristics by means of scanning tunneling microscopy. The results show the possibility of identifying the local dielectric properties of DNA oligonucleotide segments consisting of repeating G–C pairs. These properties apparently give grounds to correlate the segments with polymer molecules exhibiting the properties of multiferroics.

  9. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.

    Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  10. Nanodiamond for tuning the properties of energetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Pichot, Vincent, E-mail: vincent.pichot@isl.eu; Comet, Marc, E-mail: marc.comet@isl.eu; Miesch, Julien, E-mail: julien.miesch@isl.eu; Spitzer, Denis, E-mail: denis.spitzer@gmail.eu

    2015-12-30

    Highlights: • Bismuth oxide (Bi{sub 2}O{sub 3}) particles were successfully coated by detonation nanodiamond (DND). • Small DND contents strongly desensitize the Bi{sub 2}O{sub 3}/Al nanothermites to friction. • DNDs limit the electrostatic discharge sensitivity of the Bi{sub 2}O{sub 3}/Al nanothermites. • Desensitization can be mainly explained by the barrier role of the nanodiamonds. • Nanothermites sensitivity levels and flame propagation velocities are tuned by DND content. - Abstract: Bismuth oxide (Bi{sub 2}O{sub 3}) particles were coated by detonation nanodiamonds. The resulting nanocomposite materials were mixed with an aluminum nanopowder (≈100 nm) to prepare nanothermites, with reduced sensitivity to friction and electrostatic discharge (ESD). The use of nanodiamond for this purpose is reported here for the first time. Their numerous qualities such as their small size, antifriction properties and thermal conductivity make them ideal candidates. Small amounts of detonation nanodiamonds allow obtaining impressive desensitization, making thus modified Bi{sub 2}O{sub 3}/Al nanothermite safe to handle. A composition containing around 1 wt.% of nanodiamond has a sensitivity threshold to friction superior to 100 N instead of 5 N for the thermite without nanodiamond. Furthermore, the sensitivity threshold to electrostatic discharge increases to 20 times when the nanodiamond content reaches 1.8 wt.%. The antifriction properties of nanodiamond limit the scratching of Bi{sub 2}O{sub 3} surface by Al particles. The desensitization to ESD is observed for a sufficient coverage of the oxide particles (1.8 wt.% of ND), which restrains the effect of the melt dispersion mechanism of aluminum and prevents the mixing of the oxidizing and the reducing parts of the composites. A good reactivity of the thermite could be maintained for nanodiamond content up to 2.6 wt.%. The carburizing of aluminum coming on contact with nanodiamond during the thermite reaction could

  11. Parametric surface and properties defined on parallelogrammic domain

    OpenAIRE

    Shuqian Fan; Jinsong Zou; Mingquan Shi

    2014-01-01

    Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not b...

  12. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  13. Superhydrophobic properties induced by sol-gel routes on copper surfaces

    Science.gov (United States)

    Raimondo, M.; Veronesi, F.; Boveri, G.; Guarini, G.; Motta, A.; Zanoni, R.

    2017-11-01

    Superhydrophobic surfaces are attracting increasing attention in different fields such as energy, transportation, building industry and electronics, as they exhibit many interesting properties such as high water repellence, anti-fogging, anti-corrosion, anti-fouling and self-cleaning abilities. Here, superhydrophobic nanostructured hybrid materials obtained by depositing alumina nanoparticles on copper surfaces via dip coating in Al2O3 sol are presented. Two different preparation routes were explored, based on either an alcoholic or an aqueous Al2O3 sol, and the resulting wetting properties were compared. Wettability measurements showed that when the alcoholic sol is used superhydrophobicity is attained, with values of water contact angle very close to the upper limit of 180°, while highly hydrophobic coatings are obtained with the aqueous sol. These findings were further supported by electron microscopy and X-ray photoelectron spectroscopy, which revealed that the surface layer deposited on Cu is more homogenous and richer in alumina nanoparticles when the alcoholic sol was used. Durability of the superhydrophobic coating was assessed by performing ageing tests in chemically aggressive environments. A remarkable resistance is displayed by the superhydrophobic coating in acid environment, while alkaline conditions severely affect its properties. Such behaviors were investigated by XPS and FE-SEM measurements, which disclosed the nature of the surface reactions under the different conditions tested. The present results underline that a thorough investigation of surface morphology, chemical composition and wetting properties reveals their strongly connection and helps optimizing the combination of substrate nanostructuring and suitable chemical coating for an improved durability in different aggressive environments.

  14. Effects of high-temperature gas dealkalization on surface mechanical properties of float glass

    Science.gov (United States)

    Senturk, Ufuk

    The surface topography, and the near-surface structure and mechanical property changes on float glass, that was treated in atmospheres containing SOsb2, HCl, and 1,1 difluoroethane (DFE) gases, at temperatures in the glass transition region, were studied. Structure was investigated using surface sensitive infrared spectroscopy techniques (attenuated total reflectance (ATR) and diffuse reflectance (DRIFT)) and the topography was evaluated using atomic force microscopy (AFM). The results obtained from the two FTIR methods were in agreement with each other. Mechanical property characteristics of the surface were determined by measuring microhardness using a recording microindentation set-up. A simple analysis performed on the three hardness calculation methods-LVH, LVHsb2, and Lsb2VH-indicated that LVH and LVHsb2 are less effected by measurement errors and are better suited for the calculation of hardness. Contact damage characteristics of the treated glass was also studied by monitoring the crack initiation behavior during indentation, using acoustic emission. The results of the studies, aiming for the understanding of the structure, topography, and hardness property changes indicate that the treatment parameters-temperature, time, and treatment atmosphere conditions-are significant factors influencing these properties. The analysis of these results suggest a relation to exist between the three properties. This relation is used in understanding the surface mechanical properties of the treated float glasses. The difference in the thermal expansion coefficients between the dealkalized surface and bulk, the nature of surface structure changes, structural relaxation, surface water content, and glass transformation temperature are identified as the major factors having an influence on the properties. A model connecting these features is suggested. A difference in the structure, hardness, and topography on the air and tin sides of float glass is also shown to exist. The

  15. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites.

    Science.gov (United States)

    Espino-Pérez, Etzael; Bras, Julien; Almeida, Giana; Plessis, Cédric; Belgacem, Naceur; Perré, Patrick; Domenek, Sandra

    2018-03-01

    Nanocomposites are an opportunity to increase the performance of polymer membranes by fine-tuning their morphology. In particular, the understanding of the contribution of the polymer matrix/nanofiller interface to the overall transport properties is key to design membranes with tailored selective and adsorptive properties. In that aim, cellulose nanocrystals (CNC)/polylactide (PLA) nanocomposites were fabricated with chemically designed interfaces, which were ensuring the compatibility between the constituents and impacting the mass transport mechanism. A detailed analysis of the mass transport behaviour of different permeants in CNC/PLA nanocomposites was carried out as a function of their chemical affinity to grafted CNC surfaces. Penetrants (O 2 and cyclohexane), which were found to slightly interact with the constituents of the nanocomposites, provided information on the small tortuosity effect of CNC on diffusive mass transport. The mass transport of water (highly interacting with CNC) and anisole (interacting only with designed CNC surfaces) exhibited non-Fickian, Case II behaviour. The water vapour caused significant swelling of the CNC, which created a preferential pathway for mass transport. CNC surface grafting could attenuate this phenomenon and decrease the water transport rate. Anisole, an aromatic organic vapour, became reversibly trapped at the specifically designed CNC/PLA interface, but without any swelling or creation of an accelerated pathway. This caused the decrease of the overall mass transport rate. The latter finding could open a way to the creation of materials with specifically designed barrier properties by designing nanocomposites interfaces with specific interactions towards permeants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2015-07-15

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  17. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2015-07-01

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  18. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces

    International Nuclear Information System (INIS)

    Skarmoutsou, A; Charitidis, C A; Gnanappa, A K; Tserepi, A; Gogolides, E

    2012-01-01

    Oxygen plasma-induced surface modification of polymethylmethacrylate (PMMA), under plasma conditions favouring (maximizing) roughness formation, has been shown to create textured surfaces of roughness size and morphology dependent on the plasma-treatment time and subsequent morphology stabilization procedure. Superhydrophobic or superhydrophilic surfaces can thus be obtained, with potential applications in antireflective self-cleaning surfaces, microfluidics, wetting–dewetting control, anti-icing etc, necessitating determination of their mechanical properties. In this study, nanoindentation is used to determine the reduced modulus and hardness of the surface, while nanoscratch tests are performed to measure the coefficient of friction. The data are combined to assess the wear behaviour of such surfaces as a first guide for their practical applications. Short-time plasma treatment slightly changes mechanical, tribological and wear properties compared to untreated PMMA. However, a significant decrease in the reduced modulus and hardness and an increase in the coefficient of friction are observed after long plasma-treatment times. The C 4 F 8 plasma deposited thin hydrophobic layer on the polymeric surfaces (untreated and treated) reveals good adhesion, while its mechanical properties are greatly influenced by the substrate; it is also found that it effectively protects the polymeric surfaces, reducing plastic deformation. (paper)

  19. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  20. Surface morphology, structural and electrical properties of RF ...

    Indian Academy of Sciences (India)

    5

    electrical properties of RF sputtered ITO thin films deposited onto Si(100). .... scanning electron microscopy (SEM) surface images are shown along with the cross- ..... annealing effect”, J. of Alloys and Compounds 509, (2011) 6072-6076.

  1. Effects of a Chitosan Coating Layer on the Surface Properties and Barrier Properties of Kraft Paper

    Directory of Open Access Journals (Sweden)

    Shanhui Wang

    2016-01-01

    Full Text Available Biodegradable chitosan can be applied as a coating on the surface of kraft paper in order to improve its barrier properties against water vapor and air. The food packaging industry can benefit from the addition of chitosan to its current packaging, and in turn reduce pollution from plastic packaging plants. This paper discusses the film formation of chitosan, the permeability of paper coated with a chitosan layer, and the influence on the paper’s surface and barrier properties under different process conditions. SEM (scanning electron microscope, AFM (atomic force microscope, ATR-FTIR (Fourier transmission infrared spectroscope with attenuated total reflection, and PDA (penetration dynamics analysis were used to analyze the properties of chitosan’s film formation and permeability. A controlled experiment showed that the chitosan layer was smoother than the surface of the uncoated kraft paper, had better film formation, and that there was no chitosan penetration through the kraft paper. The barrier properties against water vapor were strongest when there was a higher concentration of chitosan solution at the optimum pH, stirring speed, and those with a thicker coating on the kraft paper.

  2. Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)

    Science.gov (United States)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki

    2007-03-01

    Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.

  3. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  4. The effect of thermal vibrations of lattice atoms on the scattering of low energetic ions (2-10keV)

    International Nuclear Information System (INIS)

    Poelsema, B.; Boers, A.L.

    1977-01-01

    An introduction to the study of solid state surfaces by analyzing the scattering behavior of low energetic noble gas ions is given. Attention is paid to thermal vibrations of the surface atoms. The scattering of Ar and Kr ions on a Cu monocrystal is discussed as an example

  5. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  6. The Charged Particle Environment on the Surface of Mars induced by Solar Energetic Particles - Five Years of Measurements with the MSL/RAD instrument

    Science.gov (United States)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.

  7. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers

    International Nuclear Information System (INIS)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A. Umran; Ottaviani, Maria Francesca

    2016-01-01

    Highlights: • Differently carcinogenic zeolite fibers were investigated combining physico-chemical methods. • For the first time, zeolite fibers were studied by means of the EPR technique using different spin probes. • The structural properties and the adsorption capability are function of different types and distributions of adsorption sites. • The interacting ability of erionite is higher than that of other fibrous zeolites. • The surface interacting properties may be related with the carcinogenicity of the zeolite fibers. - Abstract: Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si–O–Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.

  8. A theoretical study of molecular structure, optical properties and bond activation of energetic compound FOX-7 under intense electric fields

    Science.gov (United States)

    Tao, Zhiqiang; Wang, Xin; Wei, Yuan; Lv, Li; Wu, Deyin; Yang, Mingli

    2017-02-01

    Molecular structure, vibrational and electronic absorption spectra, chemical reactivity of energetic compound FOX-7, one of the most widely used explosives, were studied computationally in presence of an electrostatic field of 0.01-0.05 a.u. The Csbnd N bond, which usually triggers the decomposition of FOX-7, is shortened/elongated under a parallel/antiparallel field. The Csbnd N bond activation energy varies with the external electric field, decreasing remarkably with the field strength in regardless of the field direction. This is attributed to two aspects: the bond weakening by the field parallel to the Csbnd N bond and the stabilization effect on the transition-state structure by the field antiparallel to the bond. The variations in the structure and property of FOX-7 under the electric fields were further analyzed with its distributional polarizability, which is dependent on the charge transfer characteristics through the Csbnd N bond.

  9. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  10. First-principles study of the (0001)-MgB2 surface finished in Mg and B

    International Nuclear Information System (INIS)

    Segura, Sully; Martínez, Jairo Arbey Rodríguez; Moreno-Armenta, María Guadalupe

    2014-01-01

    We present a study based on Density Functional Theory (DFT) of the volume and two surfaces (0001) of MgB 2 , one of them terminated in Mg and the other one terminated in B. Each one of the surface was relaxed and their electronic properties were determined. From calculation of the enthalpy of formation we found that the Mg-terminated surface is energetically favored. The bands seem to present a formation similar to the Dirac's cone as that are presented in graphene, but in MgB 2 is above of the Fermi level. In the three cases, volume and the two surfaces, the behaviour is boron-metallic, because there are strong presence of B orbital's in the neighborhood of the Ferm level

  11. Modification of Ultra-High Vacuum Surfaces Using Free Radicals

    CERN Document Server

    Vorlaufer, G

    2002-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption of surface adsorbates are usually the factors which determine pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchrotron radiation and bombardment by energetic ions and electrons, surface properties like the molecular desorption yield or secondary electron yield can strongly influence the performance of the accelerator. Well-established treatment methods like vacuum bake-out or glow-discharge cleaning have been successfully applied in the past to condition ultra-high vacuum surfaces, but these methods are sometimes difficult to carry out, for example if the vacuum chambers are not accessible. In this work, an alternative treatment method is investigated. This method is based on the strong chemical reactivity of free radicals, electrically neutral fragments of molecules. Free radicals (in the case of this work, nitrogen and oxygen radi...

  12. Impact of surface energy on the shock properties of granular explosives

    Science.gov (United States)

    Bidault, X.; Pineau, N.

    2018-01-01

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  13. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  14. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  15. Papers of 5. Scientific-Technical Seminar: Material Study for Electric Power Stations and Energetics

    International Nuclear Information System (INIS)

    1998-01-01

    The review of material research designed for energetic use has been done. The special emphasis have been put on the steels and alloys with desirable mechanical and corrosion properties in high temperature and pressure conditions. The methods for testing and non-destructive diagnostics of materials and welded joints have been also presented and discussed

  16. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    Science.gov (United States)

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may

  17. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  18. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  19. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    Directory of Open Access Journals (Sweden)

    Hrubý Jan

    2014-03-01

    Full Text Available We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics equations in the conservative form. Thermodynamic properties of dry steam and liquid water are formulated in terms of special thermodynamic potentials and all properties are obtained as analytical derivatives. For the surface tension, the IAPWS formula is used. The interfacial internal energy is derived from the surface tension and it is used in the energy balance. Unlike common models, the present one provides real (contrary to perfect gas approximation properties of steam and water and reflects the energetic effects due to the surface tension. The equations are based on re-fitting the reference formulation IAPWS-95 and selected experimental data. The mathematical structure of the equations is optimized for fast computation.

  20. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, Wilma K.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.; van Ooij, W.J.

    2009-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  1. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, W.K.; Datta, R.N.; Talma, A.G.; Noordermeer, J.W.M.; van Ooij, W.J.

    2011-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  2. Adsorption of F{sub 2}C=CFCl on TiO{sub 2} nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Nicola, E-mail: tasinato@unive.it; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-10-30

    Graphical abstract: - Highlights: • Adsorption of F{sub 2}C=CFCl on TiO{sub 2} unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F{sub 2}C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol{sup −1} depending on the anchor point. • Theory and experiment converge on the CF{sub 2} moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO{sub 2}) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F{sub 2}C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO{sub 2} nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti{sup 4+} of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol{sup −1} according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  3. Use of neutrals backscattering for studying the vibrational properties of solid surfaces

    International Nuclear Information System (INIS)

    Lapujoulade, J.

    1975-01-01

    The neutrals (rare gases) elastic scattering may be used for studying some interesting properties of surfaces. However, an analysis of inelastic phenomena is mostly to be performed when vibrational properties of metallic surfaces are investigated. The dispersion relation of surface phonons has not yet been experimentally obtained from neutrals backscattering from solid surfaces, but the quasi-elastic scattering of helium should give this information on condition that velocity measurements are refined in view of directly obtained the distribution function rather than its moments and determining the preponderance of one-phonon transitions, or obtaining a detailed description of many-phonon exchanges [fr

  4. Simulating polar bear energetics during a seasonal fast using a mechanistic model.

    Directory of Open Access Journals (Sweden)

    Paul D Mathewson

    Full Text Available In this study we tested the ability of a mechanistic model (Niche Mapper™ to accurately model adult, non-denning polar bear (Ursus maritimus energetics while fasting during the ice-free season in the western Hudson Bay. The model uses a steady state heat balance approach, which calculates the metabolic rate that will allow an animal to maintain its core temperature in its particular microclimate conditions. Predicted weight loss for a 120 day fast typical of the 1990s was comparable to empirical studies of the population, and the model was able to reach a heat balance at the target metabolic rate for the entire fast, supporting use of the model to explore the impacts of climate change on polar bears. Niche Mapper predicted that all but the poorest condition bears would survive a 120 day fast under current climate conditions. When the fast extended to 180 days, Niche Mapper predicted mortality of up to 18% for males. Our results illustrate how environmental conditions, variation in animal properties, and thermoregulation processes may impact survival during extended fasts because polar bears were predicted to require additional energetic expenditure for thermoregulation during a 180 day fast. A uniform 3°C temperature increase reduced male mortality during a 180 day fast from 18% to 15%. Niche Mapper explicitly links an animal's energetics to environmental conditions and thus can be a valuable tool to help inform predictions of climate-related population changes. Since Niche Mapper is a generic model, it can make energetic predictions for other species threatened by climate change.

  5. Simulating polar bear energetics during a seasonal fast using a mechanistic model.

    Science.gov (United States)

    Mathewson, Paul D; Porter, Warren P

    2013-01-01

    In this study we tested the ability of a mechanistic model (Niche Mapper™) to accurately model adult, non-denning polar bear (Ursus maritimus) energetics while fasting during the ice-free season in the western Hudson Bay. The model uses a steady state heat balance approach, which calculates the metabolic rate that will allow an animal to maintain its core temperature in its particular microclimate conditions. Predicted weight loss for a 120 day fast typical of the 1990s was comparable to empirical studies of the population, and the model was able to reach a heat balance at the target metabolic rate for the entire fast, supporting use of the model to explore the impacts of climate change on polar bears. Niche Mapper predicted that all but the poorest condition bears would survive a 120 day fast under current climate conditions. When the fast extended to 180 days, Niche Mapper predicted mortality of up to 18% for males. Our results illustrate how environmental conditions, variation in animal properties, and thermoregulation processes may impact survival during extended fasts because polar bears were predicted to require additional energetic expenditure for thermoregulation during a 180 day fast. A uniform 3°C temperature increase reduced male mortality during a 180 day fast from 18% to 15%. Niche Mapper explicitly links an animal's energetics to environmental conditions and thus can be a valuable tool to help inform predictions of climate-related population changes. Since Niche Mapper is a generic model, it can make energetic predictions for other species threatened by climate change.

  6. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.

    Science.gov (United States)

    Glatz, Brittany; Sarupria, Sapna

    2018-01-23

    Ice is ubiquitous in nature, and heterogeneous ice nucleation is the most common pathway of ice formation. How surface properties affect the propensity to observe ice nucleation on that surface remains an open question. We present results of molecular dynamics studies of heterogeneous ice nucleation on model surfaces. The models surfaces considered emulate the chemistry of kaolinite, an abundant component of mineral dust. We investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching and hydrogen bonding are necessary but not sufficient conditions for observing ice nucleation at these surfaces. We correlate this behavior to the orientations sampled by the metastable supercooled water in contact with the surfaces. We find that ice is observed in cases where water molecules not only sample orientations favorable for bilayer formation but also do not sample unfavorable orientations. This distribution depends on both surface-water and water-water interactions and can change with subtle modifications to the surface properties. Our results provide insights into the diverse behavior of ice nucleation observed at different surfaces and highlight the complexity in elucidating heterogeneous ice nucleation.

  7. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available and microstructure of the surface without affecting the bulk properties of the material. The process involves melting the substrate surface and injecting the powder of the alloying material into the melt pool. Process parameters such as laser power, beam spot size...

  8. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  9. CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface

    Science.gov (United States)

    Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei

    2015-10-01

    Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.

  10. ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Connaughton, Valerie [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Briggs, Michael S.; Burns, Eric, E-mail: adam.m.goldstein@nasa.gov [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States)

    2016-02-10

    We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate the probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.

  11. Microphase separated structure and surface properties of fluorinated polyurethane resin

    International Nuclear Information System (INIS)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K.

    2000-01-01

    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  12. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  13. A semi-analytical foreshock model for energetic storm particle events inside 1 AU

    Directory of Open Access Journals (Sweden)

    Vainio Rami

    2014-02-01

    Full Text Available We have constructed a semi-analytical model of the energetic-ion foreshock of a CME-driven coronal/interplanetary shock wave responsible for the acceleration of large solar energetic particle (SEP events. The model is based on the analytical model of diffusive shock acceleration of Bell (1978, appended with a temporal dependence of the cut-off momentum of the energetic particles accelerated at the shock, derived from the theory. Parameters of the model are re-calibrated using a fully time-dependent self-consistent simulation model of the coupled particle acceleration and Alfvén-wave generation upstream of the shock. Our results show that analytical estimates of the cut-off energy resulting from the simplified theory and frequently used in SEP modelling are overestimating the cut-off momentum at the shock by one order magnitude. We show also that the cut-off momentum observed remotely far upstream of the shock (e.g., at 1 AU can be used to infer the properties of the foreshock and the resulting energetic storm particle (ESP event, when the shock is still at small distances from the Sun, unaccessible to the in-situ observations. Our results can be used in ESP event modelling for future missions to the inner heliosphere, like the Solar Orbiter and Solar Probe Plus as well as in developing acceleration models for SEP events in the solar corona.

  14. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    International Nuclear Information System (INIS)

    Vilchis-Granados, J.; Granados-Correa, F.; Barrera-Díaz, C.E.

    2013-01-01

    This work examines the surface fractal dimensions (D f ) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N 2 -physisorption measurements. Surface fractal dimensions were determined using single N 2 -adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D f values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  15. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    Science.gov (United States)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  16. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  17. Energetic Mapping of Ni Catalysts by Detailed Kinetic Modeling

    DEFF Research Database (Denmark)

    Bjørgum, Erlend; Chen, De; Bakken, Mari G.

    2005-01-01

    Temperature-programmed desorption (TPD) of CO has been performed on supported and unsupported nickel catalysts. The unsupported Ni catalyst consists of a Ni(14 13 13) single crystal which has been studied under ultrahigh vacuum conditions. The desorption energy for CO at low CO surface coverage...... was found to be 119 kJ/mol, and the binding energy of C to the Ni(111) surface of the crystal was 703 kJ/mol. The supported catalysts consist of nickel supported on hydrotalcite-like compounds with three different Mg2+/Al3+ ratios. The experimental results show that for the supported Ni catalysts TPD of CO...... precursor seems to result in more steplike sites, kinks, and defects for carbon monoxide dissociation. A detailed kinetic modeling of the TPO results based on elementary reaction steps has been conducted to give an energetic map of supported Ni catalysts. Experimental results from the ideal Ni surface fit...

  18. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    Science.gov (United States)

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011

  19. Relation between surface properties of thin composite films and osteoblast behaviour in vitro

    International Nuclear Information System (INIS)

    Polak, B; Olkowski, R; Kobiela, T; Lewandowska-Szumiel, M; Fabianowski, W

    2007-01-01

    Si supports for cell culture were modified using poly(acrylic acid) (PAA) and bentonite in order to obtain 'sandwich'-like structures. A layer of PAA cast from water solution was followed with a bentonite layer also cast from water dispersion, then another PAA layer and so on up to six layers. The prepared surfaces had different physical and chemical properties like thickness, topography and elasticity. Chemical composition was characterized by Raman spectroscopy. The elastic properties and topography of modified sandwich-like surfaces were evaluated using nanoindentation and atomic force microscopy measurements. In the next step bone cells were cultured on such modified surfaces composed of one to six layers. The influence of the substrate surface properties on the growth and behaviour of human bone derived cells (HBDC) was studied. The influence of surface topography, elasticity and chemical composition on cells is discussed

  20. Computational Study on Substituted s-Triazine Derivatives as Energetic Materials

    Directory of Open Access Journals (Sweden)

    Vikas D. Ghule

    2012-01-01

    Full Text Available s-Triazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores s-triazine derivatives in which different -NO2, -NH2 and -N3 substituted azoles are attached to the triazine ring via C-N linkage. The density functional theory is used to predict geometries, heats of formation and other energetic properties. Among the designed compounds, -N3 derivatives show very high heats of formation. The densities for designed compounds were predicted by using the crystal packing calculations. Introduction of -NO2 group improves density as compared to -NH2 and -N3, their order of increasing density can be given as NO2>N3>NH2. Analysis of the bond dissociation energies for C-NO2, C-NH2 and C-N3 bonds indicates that substitutions of the -N3 and -NH2 group are favorable for enhancing the thermal stability of s-triazine derivatives. The nitro and azido derivatives of triazine are found to be promising candidates for the synthetic studies.

  1. Gas morphology and energetics at the surface of PDRs : New insights with Herschel observations of NGC 7023

    NARCIS (Netherlands)

    Joblin, C.; Pilleri, P.; Montillaud, J.; Fuente, A.; Gerin, M.; Berne, O.; Ossenkopf, V.; Le Bourlot, J.; Teyssier, D.; Goicoechea, J. R.; Le Petit, F.; Roellig, M.; Akyilmaz, M.; Benz, A. O.; Boulanger, F.; Bruderer, S.; Dedes, C.; France, K.; Guesten, R.; Harris, A.; Klein, T.; Kramer, C.; Lord, S. D.; Martin, P. G.; Martin-Pintado, J.; Mookerjea, B.; Okada, Y.; Phillips, T. G.; Rizzo, J. R.; Simon, R.; Stutzki, J.; van der Tak, F.; Yorke, H. W.; Steinmetz, E.; Jarchow, C.; Hartogh, P.; Honingh, C. E.; Siebertz, O.; Caux, E.; Colin, B.

    2010-01-01

    Context. We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field. Aims: Using Herschel/HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC

  2. Duty-cycle and energetics of remnant radio-loud AGN

    Science.gov (United States)

    Turner, Ross J.

    2018-05-01

    Deriving the energetics of remnant and restarted active galactic nuclei (AGNs) is much more challenging than for active sources due to the complexity in accurately determining the time since the nucleus switched-off. I resolve this problem using a new approach that combines spectral ageing and dynamical models to tightly constrain the energetics and duty-cycles of dying sources. Fitting the shape of the integrated radio spectrum yields the fraction of the source age the nucleus is active; this, in addition to the flux density, source size, axis ratio, and properties of the host environment, provides a constraint on dynamical models describing the remnant radio source. This technique is used to derive the intrinsic properties of the well-studied remnant radio source B2 0924+30. This object is found to spend 50_{-12}^{+14} Myr in the active phase and a further 28_{-5}^{+6} Myr in the quiescent phase, have a jet kinetic power of 3.6_{-1.7}^{+3.0}× 10^{37} W, and a lobe magnetic field strength below equipartition at the 8σ level. The integrated spectra of restarted and intermittent radio sources are found to yield a `steep-shallow' shape when the previous outburst occurred within 100 Myr. The duty-cycle of B2 0924+30 is hence constrained to be δ < 0.15 by fitting the shortest time to the previous comparable outburst that does not appreciably modify the remnant spectrum. The time-averaged feedback energy imparted by AGNs into their host galaxy environments can in this manner be quantified.

  3. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: amanov_a@yahoo.com [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of); Cho, In-Sik [R& D Group, Mbrosia Co., Ltd., Asan 336-708 (Korea, Republic of); Pyun, Young-Sik [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • A nanostructured surface was produced by UNSM technique. • Porosities were eliminated from the surface by UNSM technique. • Extremely high hardness obtained at the top surface after UNSM treatment. • Friction and wear behavior was improved by UNSM technique. • Resistance to scratch behavior was improved by UNSM technique. - Abstract: A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  4. Range and energetics of charge hopping in organic semiconductors

    Science.gov (United States)

    Abdalla, Hassan; Zuo, Guangzheng; Kemerink, Martijn

    2017-12-01

    The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the material's initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.

  5. Thermodynamic and surface properties of Sb–Sn and In–Sn liquid ...

    Indian Academy of Sciences (India)

    properties through the activity coefficients of the alloy components in the bulk. .... In the model for studying surface properties, a statistical mechanical approach .... experimental values of Scc(0) determined by fitting the experimental activity ...

  6. Segregation and redistribution of end-of-process energetic materials

    International Nuclear Information System (INIS)

    McCabe, R.A.; Cummins, B.; Gonzalez, M.A.

    1993-03-01

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ''want ads.'' The system was developed and implemented to promote waste minimization and pollution prevention at LLNL

  7. Road-surface properties affecting rates of energy dissipation from vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Igwe, E.A. [Department of Civil Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ayotamuno, M.J.; Okparanma, R.N. [Department of Agricultural and Environmental Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ogaji, S.O.T.; Probert, S.D. [School of Engineering, Cranfield University, Bedfordshire Mk43 OAL (United Kingdom)

    2009-09-15

    The rates of energy that moving vehicles dissipate to road surfaces as well as noise emissions and their propensities for pitting (and hence their repair costs per year) all depend upon the structural properties of these surfaces. Thus, to increase the strength of bituminous concrete (i.e. a typical flexible road-surface) has been one of the major recent aims in highway engineering. The present study explored techniques that will increase these strength properties by modifying the material, using rubber latex, through rubberization and hence, improve the strength of the flexible trafficked surface when in contact with vehicles. At the optimal design asphalt (i.e. bitumen) content of 4.68%, the successive addition of various percentages of the rubber latex produced a design value of 1.65% rubber content, which increased the stability of the roadway from 1595 to 2639 N (i.e. an 65.5% increase) and the density from 2447 to 2520.8 kg/m{sup 3} (i.e. a 3.02% increase). This shows that the addition of rubber latex to bituminous concrete (a flexible road-surface) increased sustainability and the strength (in terms of stability and density). Similarly, the air voids and voids in the mineral aggregate (VMA) were reduced by introducing latex from 4.22% to 3.45% (i.e. a 17.06% reduction) and 16.25% to 13.43% (i.e. an 17.4% reduction), respectively. Whereas, the reduction in voidage volume added strength to the bituminous concrete by increasing its stability and density, the reduction in VMA had no positive impact on the strength properties of the flexible road-surface. (author)

  8. Design, development and applications of novel techniques for studying surface mechanical properties

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1989-01-01

    Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.

  9. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  10. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  11. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye Huanchun; Breizman, B.N.

    1992-01-01

    The linear response of energetic particles of the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width; when the banana width Δ b is much larger than the mode thickness Δ m , we obtain a new compact expression for the linear power transfer. When Δ m /Δ b m /Δ b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balanced-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (vertical strokev parallel vertical stroke=v A ) is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (vertical strokev parallel vertical stroke=v A /(2l-1) with l≥2) is substantially reduced. (orig.)

  12. Energetics of swimming by the ferret: consequences of forelimb paddling.

    Science.gov (United States)

    Fish, Frank E; Baudinette, Russell V

    2008-06-01

    The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.

  13. Source Characterization Model (SCM): A Predictive Capability for the Source Terms of Residual Energetic Materials from Burning and/or Detonation Activities

    National Research Council Canada - National Science Library

    Brown, Robert C; Kolb, Charles E; Conant, John A; Zhang, John; Dussault, David M; Rush, Tamera L; Conway, Brooke E; Morris, James W; Touma, Joe

    2004-01-01

    .... Detonation of energetic materials produces a wide range of air and surface pollutants, including carbon monoxide, nitrogen oxides, volatile organic compounds, acid gases, and particulate matter...

  14. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  15. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  16. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.

    Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  17. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  18. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  19. Investigation of some properties of Nylon-6 surface treated by corona discharge in helium

    International Nuclear Information System (INIS)

    Dumitrascu, N.; Surdu, S.; Popa, Gh.; Raileanu, D.

    1996-01-01

    In this work an easy and less expensive method of treatment has been used by corona discharge. This allows to modify the surface properties and especially to improve the compatibility of polymers with biological tissue. The Nylon-6 as a test material was chosen. A scanning electron microscope to visualize the morphology of the morphology of the surface and an IR spectrophotometer able to identify the amide groups and other as well, have been used. Morphology of the treated surface by corona discharge emphasis an etching an etching and/or a crosslinking of amorphous domains, generally important to improve the properties as wetting, dyeing, adhesion, etc. Over all treated surface there is significant blood compatible properties without the need of heparinization of surface. The treated surface influences the biological behaviour of micro-organisms, respectively, that surface is a favourable medium for division of cells and may increase their lifetime. (authors)

  20. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    Science.gov (United States)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  1. Transport properties of high-temperature superconductors: Surface vs bulk effect

    International Nuclear Information System (INIS)

    Burlachkov, L.; Koshelev, A.E.; Vinokur, V.M.

    1996-01-01

    We investigate surface-related transport properties of high-temperature superconductors. We find the mean vortex velocity under applied transport current determined by the activation energies for vortex penetration and exit through the Bean-Livingston barrier. We determine the current distribution between the surfaces of superconductor and the field and current dependencies of the transport activation energies. For a three-dimensional superconductor the transport activation energy, U s 3D , is found to decrease with the external field, H, and transport current, J, as U s 3D ∝H -1/2 and U s 3D ∝J -1/2 , respectively. In the quasi-two-dimensional compounds, U s 2D decays logarithmically with field and current. The interplay between the surface and the bulk contributions to the transport properties, such as current-voltage characteristics, is discussed. copyright 1996 The American Physical Society

  2. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  3. EB surface sterilization of food material

    International Nuclear Information System (INIS)

    Kaneko, H.; Mizutani, A.; Kato, K.; Nishikimi, T.; Taniguchi, S.

    2001-01-01

    In this paper, we introduce a food irradiation with low energetic, lower than 300keV, electrons (so-called SOFT ELECTRON) as a rather new method of food sterilization. It is also a physical sterilization method, and free from the problems mentioned above. Low energetic electrons have small penetration power (50-200micron) through raw materials, and by selecting a proper energy of electrons we can sterilize only the surfaces or skins of target materials

  4. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  5. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  6. Surface modification and electrochemical properties of activated carbons for supercapacitor electrodes

    Science.gov (United States)

    Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing

    2015-12-01

    Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.

  7. Influence of surface oxidation on the radiative properties of ZrB{sub 2}-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: lncaep@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Xing, Pifeng; Li, Cui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Peng [School of Material Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Jin, Xinxin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Zhang, Xinghong [Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001 (China)

    2017-07-01

    Highlights: • Surface component affected radiative properties of ZrB{sub 2}-SiC composites significantly. • Emissivity in long-wave range gradually increased with the thickness of oxide scale. • The surface temperature had a little effect on radiative properties of composites. • Influence of surface roughness on emissivity could be negligible. • Covering the surface with glass is a method for improving radiative properties. - Abstract: The spectral emissivities of ZrB{sub 2}-20 vol.% SiC composites with various surface components of ZrB{sub 2}/SiC (ZS1), silica-rich glass (ZS2) and porous zirconia (ZS3) were measured using infrared spectrometer in the wavelength range from 2.5 to 25.0 μm. The relationship between surface oxidation (associated with surface component, thickness of oxide scale, testing temperature as well as roughness) and the radiative properties of ZrB{sub 2}-SiC composites were investigated systematically. Surface component affected the radiative properties of composites significantly. The total emissivity of ZS1 varied from 0.22 to 0.81 accompanied with surface oxidation in the temperature range 300–900 °C. The emissivity of ZS2 was about 1.5 times as that of ZS3 under the same testing conditions. The oxide scale on specimen surface enhanced the radiative properties especially in terms of short-wave range, and the emissivity in the long-wave range gradually increased with the thickness of oxide scale within a certain range. The influence of testing temperature and surface roughness was also investigated. The testing temperature had a little effect on radiative properties, whereas effect of surface roughness could be negligible.

  8. Surface transport properties of Fe-based superconductors: The influence of degradation and inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Plecenik, T.; Gregor, M.; Sobota, R.; Truchly, M.; Satrapinskyy, L.; Kus, P.; Plecenik, A. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Kurth, F.; Holzapfel, B.; Iida, K. [Institute for Metallic Materials, IFW Dresden, P. O. Box 270116, D-01171 Dresden (Germany)

    2013-07-29

    Surface properties of Co-doped BaFe{sub 2}As{sub 2} epitaxial superconducting thin films were inspected by X-ray photoelectron spectroscopy, scanning spreading resistance microscopy (SSRM), and point contact spectroscopy (PCS). It has been shown that surface of Fe-based superconductors degrades rapidly if being exposed to air, what results in suppression of gap-like structure on PCS spectra. Moreover, SSRM measurements revealed inhomogeneous surface conductivity, what is consistent with strong dependence of PCS spectra on contact position. Presented results suggest that fresh surface and small probing area should be assured for surface sensitive measurements like PCS to obtain intrinsic properties of Fe-based superconductors.

  9. An expert system to characterize the surface morphological properties according to their functionalities

    International Nuclear Information System (INIS)

    Bigerelle, M; Mathia, T; Iost, A; Correvits, T; Anselme, K

    2011-01-01

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  10. An expert system to characterize the surface morphological properties according to their functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Bigerelle, M [Laboratoire Roberval, UMR 6253, UTC/CNRS, UTC Centre de Recherches de Royallieu BP 20529, 60205 Compiegne France stol BS1 6BE (United Kingdom); Mathia, T [Laboratoire de Tribologie et Dynamique des Systemes, UMR 5513, Ecole Centrale de Lyon, 36 Av Guy de Collongue, 69134 Ecully Cedex (France); Iost, A [Laboratoire de Mecanique de Lille, UMR CNRS 8107, Arts et Metiers ParisTech - Lille, 8, boulevard Louis XIV 59046 Lille (France); Correvits, T [Laboratoire de Metrologie. Arts et Metiers ParisTech, ENSAM, 8 boulevard Louis XIV, 59046 LILLE Cedex (France); Anselme, K, E-mail: maxence.bigerelle@utc.fr [Institut De Sciences Des Materiaux De Mulhouse, CNRS LRC 7228, 15, rue Jean Starcky, Universite De Haute-Alsace, BP 2488, 68057 Mulhouse (France)

    2011-08-19

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  11. LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Vourlidas, A.; Raouafi, N. E.; Haggerty, D. K.; Ho, G. C.; Anderson, B. J. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Gómez-Herrero, R. [Space Research Group, Physics and Mathematics Department, University of Alcalá, Alcalá de Henares, E-28871 (Spain); Dresing, N. [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany); Riley, P. [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2016-03-01

    We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2014 February 25 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. These include spacecraft located near Earth; the twin Solar TErrestrial RElations Observatory spacecraft, STEREO-A and STEREO-B, located at ∼1 au from the Sun 153° west and 160° east of Earth, respectively; the MErcury Surface Space ENvironment GEochemistry and Ranging mission (at 0.40 au and 31° west of Earth); and the Juno spacecraft (at 2.11 au and 48° east of Earth). Although the footpoints of the field lines nominally connecting the Sun with STEREO-A, STEREO-B and near-Earth spacecraft were quite distant from each other, an intense high-energy SEP event with Fe-rich prompt components was observed at these three locations. The extent of the extreme-ultraviolet wave associated with the solar eruption generating the SEP event was very limited in longitude. However, the white-light shock accompanying the associated coronal mass ejection extended over a broad range of longitudes. As the shock propagated into interplanetary space it extended over at least ∼190° in longitude. The release of the SEPs observed at different longitudes occurred when the portion of the shock magnetically connected to each spacecraft was already at relatively high altitudes (≳2 R{sub ⊙} above the solar surface). The expansion of the shock in the extended corona, as opposite to near the solar surface, determined the SEP injection and SEP intensity-time profiles at different longitudes.

  12. Energetic policies 2005-2030

    International Nuclear Information System (INIS)

    2008-01-01

    This power point exhibition shows the following topics: energy analysis, production and use, supply and demand, consumption, energy sources, energetic prospective of Uruguay country, medium and long term perspectives.

  13. Energetics study of West African dust haze

    International Nuclear Information System (INIS)

    Omotosho, J.B.

    1988-10-01

    The causes of the large and often persistent negative anomalies of equivalent potential temperature observed in the 900-700 hpa layer and which occurs in association with dust haze outbreaks over Kano in winter is investigated. Energetics results indicate that the primary mechanism for such anomalies is the horizontal transport of drier and, to a lesser extent, colder air at the upper levels by eddy motions, with consequent destabilization of the atmospheric boundary layer over the station. This is suggested as the mobilization mechanism responsible for raising dust from the surface over the Bilma/Faya-Largeau source region much further poleward. Temperature inversions were also found to be more pronounced during dust spells than in clear periods. (author). 18 refs, 6 figs, 2 tabs

  14. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  15. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    Science.gov (United States)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  16. Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando

    2015-10-21

    The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.

  17. Surface electrical properties of stainless steel fibres: An AFM-based study

    International Nuclear Information System (INIS)

    Yin, Jun; D’Haese, Cécile; Nysten, Bernard

    2015-01-01

    Highlights: • Surface electrical conductivity of stainless steel fibre is measured and mapped by CS-AFM. • Surface potential of stainless steel fibre is measured and mapped by KPFM. • Surface electronic properties are governed by the chromium oxide passivation layer. • Electron tunnelling through the passivation layer is the dominant mechanisms for conduction. - Abstract: Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I–V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I–V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport

  18. Clustering and segregation of small vacancy clusters near tungsten (0 0 1) surface

    Science.gov (United States)

    Duan, Guohua; Li, Xiangyan; Xu, Yichun; Zhang, Yange; Jiang, Yan; Hao, Congyu; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Wang, Zhiguang

    2018-01-01

    Nanoporous metals have been shown to exhibit radiation-tolerance due to the trapping of the defects by the surface. However, the behavior of vacancy clusters near the surface is not clear which involves the competition between the self-trapping and segregation of small vacancy clusters (Vn) nearby the surface. In this study, we investigated the energetic and kinetic properties of small vacancy clusters near tungsten (0 0 1) surface by combining molecular statics (MS) calculations and object Kinetic Monte Carlo (OKMC) simulations. Results show that vacancies could be clustered with the reduced formation energy and migration energy of the single vacancy around a cluster as the respective energetic and kinetic driving forces. The small cluster has a migration energy barrier comparable to that for the single vacancy; the migration energy barriers for V1-5 and V7 are 1.80, 1.94, 2.17, 2.78, 3.12 and 3.11 eV, respectively. Clusters and become unstable near surface (0 0 1) and tend to dissociate into the surface. At the operation temperature of 1000 K, the single vacancy, V2, 2 V 3 V3 and V4 were observed to segregate to the surface within a time of one hour. Meanwhile, larger clusters survived near the surface, which could serve as nucleating center for voids near the surface. Our results suggest that under a low radiation dose, surface (0 0 1) could act as a sink for small vacancy clusters, alleviating defect accumulation in the material under a low radiation dose. We also obtained several empirical expressions for the vacancy cluster formation energy, binding energy, and trapping radius as a function of the number of vacancies in the cluster.

  19. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  20. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  1. Enhancing Reactivity in Structural Energetic Materials

    Science.gov (United States)

    Glumac, Nick

    2017-06-01

    In many structural energetic materials, only a small fraction of the metal oxidizes, and yet this provides a significant boost in the overall energy release of the system. Different methodologies to enhance this reactivity include alloying and geometric modifications of microstructure of the reactive material (RM). In this presentation, we present the results of several years of systematic study of both chemical (alloy) and mechanical (geometry) effects on reactivity for systems with typical charge to case mass ratios. Alloys of aluminum with magnesium and lithium are considered, as these are common alloys in aerospace applications. In terms of geometric modifications, we consider surface texturing, inclusion of dense additives, and inclusion of voids. In all modifications, a measurable influence on output is observed, and this influence is related to the fragment size distribution measured from the observed residue. Support from DTRA is gratefully acknowledged.

  2. The quest for greater chemical energy storage in energetic materials: Grounding expectations

    Science.gov (United States)

    Lindsay, C. Michael; Fajardo, Mario E.

    2017-01-01

    It is well known that the performance of modern energetic materials based on organic chemistry has plateaued, with only ˜ 40% improvements realized over the past half century. This fact has stimulated research on alternative chemical energy storage schemes in various U.S. government funded "High Energy Density Materials" (HEDM) programs since the 1950's. These efforts have examined a wide range of phenomena such as free radical stabilization, metallic hydrogen, metastable helium, polynitrogens, extended molecular solids, nanothermites, and others. In spite of the substantial research investments, significant improvements in energetic material performance have not been forthcoming. This paper discusses the lessons learned in the various HEDM programs, the different degrees of freedom in which to store energy in materials, and the fundamental limitations and orders of magnitude of the energies involved. The discussion focuses almost exclusively on the topic of energy density and only mentions in passing other equally important properties of explosives and propellants such as gas generation and reaction rate.

  3. Confinement properties of 2D porous molecular networks on metal surfaces

    International Nuclear Information System (INIS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-01-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article

  4. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.

    Science.gov (United States)

    Mikucki, Michael; Zhou, Y C

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  5. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Heijden, Antoine E.D.M. van der; Creyghton, Yves L.M.; Marino, Emanuela; Bouma, Richard H.B.; Scholtes, Gert J.H.G.; Duvalois, Willem [TNO Defence, Security and Safety, P. O. Box 45, 2280 AA Rijswijk (Netherlands); Roelands, Marc C.P.M. [TNO Science and Industry, P. O. Box 342, 7300 AH Apeldoorn (Netherlands)

    2008-02-15

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive containing these energetic materials becomes. The application of submicron or nanometric energetic materials is generally considered to further decrease the sensitiveness of explosives. In order to assess the product quality of energetic materials, a range of analytical techniques is available. Recent attempts within the Reduced-sensitivity RDX Round Robin (R4) have provided the EM community a better insight into these analytical techniques and in some cases a correlation between product quality and shock initiation of plastic bonded explosives containing (RS-)RDX was identified, which would provide a possibility to discriminate between conventional and reduced sensitivity grades. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Energetic matrix of Rio de Janeiro State, Brazil - 1994/2004

    International Nuclear Information System (INIS)

    1996-01-01

    This book has been structured into three parts and three appendices. In the first part, named Energetic matrix of Rio de Janeiro State, the most important economic and social aspects of the State and the methodology for elaboration of economic and energetic scenarios has been detailed. In the second part, an analysis of seven consumption sectors components of the energetic matrix structure ( industrial, transports, residential, commercial, energetic, agriculture and cattle-breeding, non energetic) has been performed, with the objective of providing information on the present status and future prospects of energy consumption by sectors up to 2004. Finally, in the third part, the energy supply of Rio de Janeiro State for the consumption sectors has been discussed

  7. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine.

    Science.gov (United States)

    Panahi, Yunes; Mohammadhosseini, Majid; Nejati-Koshki, Kazem; Abadi, Azam Jafari Najaf; Moafi, Hadi Fallah; Akbarzadeh, Abolfazl; Farshbaf, Masoud

    2017-02-01

    Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties. © Georg Thieme Verlag KG Stuttgart · New York.

  8. ONSETS AND SPECTRA OF IMPULSIVE SOLAR ENERGETIC ELECTRON EVENTS OBSERVED NEAR THE EARTH

    International Nuclear Information System (INIS)

    Kontar, Eduard P.; Reid, Hamish A. S.

    2009-01-01

    Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energetic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of nonuniform plasma, collisions, and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of (1) a spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, (2) apparent early onset of low-energy electron injection, and (3) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in nonuniform plasma of a single accelerated electron population with an initial power-law spectrum.

  9. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-05-10

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can be observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe . Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:10{sup 4}. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.

  10. Ionic liquids influence on the surface properties of electron beam irradiated wood

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Doroftei, Florica; Parparita, Elena; Vasile, Cornelia [“Petru Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department, 41A Gr. Ghica Voda Alley, Iasi (Romania)

    2014-09-30

    Highlights: • Wood veneers impregnated with three imidazolium-based ionic liquids and irradiated with electron beam were studied by FTIR-ATR, SEM/EDX, AFM, contact angle and image analysis. • ILs preserve the surface properties of the wood (surface energy, roughness, color) upon irradiation, in comparison with the reference wood, but the surface composition is changed by treatment with IL-s, mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. • Under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface. - Abstract: In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface.

  11. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  12. Energetic magnetospheric protons in the plasma depletion layer

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  13. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  14. GAP pre-polymer, as an energetic binder and high performance additive for propellants and explosives: A review

    Directory of Open Access Journals (Sweden)

    Mehmet S. Eroglu

    2017-08-01

    Full Text Available In preparation of energetic composite formulations, functionally terminated pre-polymers have been used as binder. After physically mixing the pre-polymers with oxidizing components, metallic fuel, burning rate modifier and other minor ingredients, they are cured with a suitable curing agent to provide physical and chemical stability. These pre-polymers could be functionalized with carboxyl, epoxide or hydroxyl groups at varying average chain functionalities. For carboxyl-terminated pre-polymers, an epoxy functional curing agents could be used. If the pre-polymer possesses hydroxyl groups, isocyanate functional curing agents are the most suitable curing agents in terms of easy and efficient processing. Glycidyl azide polymer (GAP is one of the well-known low-molecular weight energetic liquid pre-polymer, which was developed to use as energetic binder, high performance additive and gas generator for high performance smokeless composite propellant and explosive formulations. Linear or branched GAP can be synthesized by nucleophilic substitution reaction of corresponding poly(epichlorohydrin (PECH with sodium azide through replacement of chloromethyl groups of PECH with pendant energetic azido-methyl groups on the polyether main chain. Positive heat of formation (+957 kJ/kg enables exothermic and rapid decomposition of GAP producing fuel rich gases. Its polyether main chain provides GAP with relatively low glass transition temperature (Tg= - 48 oC and presence of hydroxyl functional groups allows it to have easy processing in curing with isocyanate curing agents to form covalently crosslinked polyurethane structure. These outstanding properties of GAP enable it to be used as energetic polymeric binder and high performance additive in preparation of energetic materials and low vulnerable explosives.

  15. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Harnisch, Jennifer Anne [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  16. Surface science an introduction

    CERN Document Server

    Hudson, John

    1991-01-01

    The whole field of surface science is covered in this work. Starting with a description of the structure and thermodynamics of clean surfaces, the book goes on to discuss kinetic theory of gases and molecular beam formation. This is followed by a largesection on gas-surface interactions, and another major section on energetic particle-surface interactions. The final chapter provides the background to crystal nucleation and growth. The approach adopted is interdisciplinary and slanted towards theexperimental side, with practical analytical techniques being used to illustrate general princi

  17. STRUCTURAL AND PHYSICOCHEMICAL SURFACE-PROPERTIES OF SERRATIA-MARCESCENS STRAINS

    NARCIS (Netherlands)

    VANDERMEI, HC; COWAN, MM; GENET, MJ; ROUXHET, PG; BUSSCHER, HJ

    1992-01-01

    Serratia marcescens is an important pathogen with noteworthy hydrophobicity characteristics as assessed by microbial adhesion to hydrocarbons. However, the present knowledge on the surface characteristics of S. marcescens strains does not include physicochemical properties relevant for adhesion such

  18. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  19. A comparison of reflectance properties on polymer micro-structured functional surface

    DEFF Research Database (Denmark)

    Regi, Francesco; Li, Dongya; Nielsen, Jannik Boll

    In this study, a functional micro-structure surface [1] has been developed as a combination of arrays of micro ridges. The scope of the surface is to achieve specific directional optical properties: that is, under constrained lighting, maximizing the reflectance from a certain viewing direction, ...

  20. The Modeling of Coupled Electromagnetic-Thermo-Mechanical Laser Interactions and Microstructural Behavior of Energetic Aggregates

    Science.gov (United States)

    2015-01-01

    analytical Beer - Lambert absorption profile to model laser heating of pure energetic crystals without considering any EM wave propagation effects...temperature. These aggregates were studied using both an analytical distribution for laser heating following Beer - Lambert absorption and the full EM finite...surface (ysurface - y) and material absorption coefficient, α, following a Beer - Lambert absorption relation given by , = !()

  1. properties of anthraquinone

    African Journals Online (AJOL)

    The electrochemical and energetic properties of a carbon paste electrode. (CPE) Containing ... 9,10-Anthraquinone is the most energy-rich anodic material known [1,2]). ... Ethiop. 1995, 9(2). G.S.T.P4 and a SEFRAM chart recorder was used.

  2. Surface, dynamic and structural properties of liquid Al-Ti alloys

    International Nuclear Information System (INIS)

    Novakovic, R.; Giuranno, D.; Ricci, E.; Tuissi, A.; Wunderlich, R.; Fecht, H.-J.; Egry, I.

    2012-01-01

    The systems containing highly reactive element such as Ti are the most difficult to be determined experimentally and therefore, it is often necessary to estimate the missing values by theoretical models. The thermodynamic data of the Al-Ti system are scarce, its phase diagram is still incomplete and there are very few data on the thermophysical properties of Al-Ti melts. The study on surface, dynamic and static structural properties of liquid Al-Ti alloys has been carried out within the framework of the Compound Formation Model. In spite of the experimental difficulties, the surface tension of liquid Al-2 at.%Ti alloy has been measured over a temperature range by the pinned drop method.

  3. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    International Nuclear Information System (INIS)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C

    2011-01-01

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size (∼5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  4. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C, E-mail: albertto@pitt.edu [Department of Mechanical Engineering and Materials Science and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-02-11

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size ({approx}5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  5. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    Science.gov (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  6. Aerosol particle charger and an SO2 reactor using energetic electrons

    International Nuclear Information System (INIS)

    Davis, R.H.

    1984-01-01

    Two properties of energetic electrons in gas, their high specific ionization and their production of radicals and other chemically active specie, have promising applications to the cleanup of flue gas from coal combustion. The copious ionization has been used in a test particle charger to electrically charge 1 and 3 μm particles for subsequent removal by electrostatic precipitation. Particle charge greater than 5 times the theoretical ionic charging value for 1 μm particles have been observed in a bi-electrode electron beam precharger in which the beam energy is matched with the electrode spacing. In another test device, pulsed streamer coronas have been used to release and to energize electrons which promote gas phase chemical reactions and remote sulfur dioxide from humid air with high efficiency. The energized electrons produce oxidant radicals and chemically active specie which convert the SO 2 into sulfuric acid mist. While reported separately here, the two applications of energetic electrons may be amenable to combination in an integrated system for the combined treatment of flue gas

  7. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    Science.gov (United States)

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  8. Comparison between radical- and energetic ion-induced growth of SiCxNy films in plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Afanasyev-Charkin, I.V.; Nastasi, M.

    2004-01-01

    Ternary SiC x N y compounds are materials with some remarkable properties such as high oxidation resistance and high hardness. In this work we compare the properties of SiC x N y films obtained using radio-frequency (rf) and pulsed glow discharge (PGD) plasmas with combinations of SiH 4 , C 2 H 2 , N 2 , and Ar source gases. The pulsed voltage used for the rf deposition was 200 V and for the PGD deposition it was 4 kV. During the rf growth, the growth takes place mostly by attaching neutral radicals to form chemical bonds. In the PGD method, the deposition takes place by subplantation and surface activation by energetic ions. We show that in the case of low-energy RF deposition, a high relative number of C-N bonds with sp 3 hybridization is formed and very few Si-C bonds can be observed. Apparently the growth of carbon nitride and silicon nitride networks takes place independently. This indicates that SiH 3 radicals attach to the dangling bonds of silicon and nitrogen, whereas C 2 H radicals attach to the dangling bonds of carbon and nitrogen. During pulsed glow discharge deposition, bonds between all three components are formed apparently by means of subplantation and damage-induced disorder. The hardness of the PGD films exceed that of the RF films, showing that to form a dense SiC x N y film one has to either supply energy during the growth of the films by heating the substrate, as in the case of chemical vapor deposition or by using energetic ions

  9. Synthesis and properties of crystalline thin film of antimony trioxide on the Si(1 0 0) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yasir, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kuzmin, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Punkkinen, M.P.J.; Mäkelä, J.; Tuominen, M.; Dahl, J. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Laukkanen, P., E-mail: pekka.laukkanen@utu.fi [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kokko, K. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2015-09-15

    Highlights: • Formation of crystalline phase of Sb{sub 2}O{sub 3} on Si(1 0 0) is demonstrated. • STM and STS characterizations of the grown Sb{sub 2}O{sub 3} film are presented. • STS results elucidate the band gap of Sb{sub 2}O{sub 3}. • Ab initio calculations reveal energetically favored Sb{sub 2}O{sub 3} surface structures. - Abstract: Atomic-scale understanding and processing of the surface and interface properties of antimony trioxide (Sb{sub 2}O{sub 3}) are essential to the development of nanoscale Sb{sub 2}O{sub 3} materials for various applications, such as photocatalysts, transparent conducting oxides, optical coatings, dielectric films, and fire retardants. Lack of atomically well-defined, crystalline Sb{sub 2}O{sub 3} templates has however hindered atomic resolution characterization of the Sb{sub 2}O{sub 3} properties. We report the preparation of crystalline Sb{sub 2}O{sub 3} thin films on the Si(1 0 0) substrate with a simple process by oxidizing Sb-covered Si(1 0 0) in proper conditions. Physical properties of the synthesized films have been elucidated by low-energy electron diffraction, scanning tunneling microscopy and spectroscopy, and ab initio calculations. The spectroscopic results show that the band gap of Sb{sub 2}O{sub 3} is 3.6 eV around the gamma point (i.e. Γ). Calculations reveal energetically favored Sb{sub 2}O{sub 3}(1 0 0) surface structures. The findings open a new path for the atomic-scale research of Sb{sub 2}O{sub 3}.

  10. Electronic properties of adsorbates and clean surfaces of metals and semiconductors

    International Nuclear Information System (INIS)

    Lecante, J.

    1980-01-01

    This paper surveys recent progress in experimental studies on electronic properties of adsorbates and clean metal surfaces. Electron spectroscopy and particularly angle resolved photoelectron spectroscopy appears to be a very powerful tool to get informations on electronic levels of adsorbates or clean surfaces. Moreover this technique may also give informations about the atomic geometry of the surface. Experimental investigation about surface plasmons, surface states, core level shifts are presented for clean surfaces. As examples of adsorbate covered surfaces two typical cases are chosen: two dimensional band structure and oriented molecules. Finally the photoelectron diffraction may be used for surface structure determination either in the case of an adsorbate or a clean metal surface [fr

  11. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  12. Improvement of carbon fiber surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  13. Ab initio investigation of the surface properties of austenitic Fe-Ni-Cr alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rák, Zs., E-mail: zrak@ncsu.edu; Brenner, D.W.

    2017-04-30

    Highlights: • The trend in the surface energies of austenitic stainless steels is: (111) < (100) < (110). • On the (111) orientation Ni segregates to the surface and Cr segregates into the bulk. • The surface stability of the alloys in contact with water decrease with temperature and pH. - Abstract: The surface energetics of two austenitic stainless steel alloys (Type 304 and 316) and three Ni-based alloys (Alloy 600, 690, and 800) are investigated using theoretical methods within the density functional theory. The relative stability of the low index surfaces display the same trend for all alloys; the most closely packed orientation and the most stable is the (111), followed by the (100) and the (110) surfaces. Calculations on the (111) surfaces using various surface chemical and magnetic configurations reveal that Ni has the tendency to segregate toward the surface and Cr has the tendency to segregate toward the bulk. The magnetic frustration present on the (111) surfaces plays an important role in the observed segregation tendencies of Ni and Cr. The stability of the (111) surfaces in contact with aqueous solution are evaluated as a function of temperature, pH, and concentration of aqueous species. The results indicate that the surface stability of the alloys decrease with temperature and pH, and increase slightly with concentration. Under conditions characteristic to an operating pressurized water reactor, the Ni-based alloy series appears to be of better quality than the stainless steel series with respect to corrosion resistance and release of aqueous species when in contact with aqueous solutions.

  14. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  15. Energetic conditions promoting top-down control of prey by predators.

    Directory of Open Access Journals (Sweden)

    Kristin N Marshall

    Full Text Available Humans remove large amounts of biomass from natural ecosystems, and large bodied high trophic level animals are especially sensitive and vulnerable to exploitation. The effects of removing top-predators on food webs are often difficult to predict because of limited information on species interaction strengths. Here we used a three species predator-prey model to explore relationships between energetic properties of trophodynamic linkages and interaction strengths to provide heuristic rules that indicate observable energetic conditions that are most likely to lead to stable and strong top-down control of prey by predator species. We found that strong top-down interaction strengths resulted from low levels of energy flow from prey to predators. Strong interactions are more stable when they are a consequence of low per capita predation and when predators are subsidized by recruitment. Diet composition also affects stability, but the relationship depends on the form of the functional response. Our results imply that for generalist satiating predators, strong top-down control on prey is most likely for prey items that occupy a small portion of the diet and when density dependent recruitment is moderately high.

  16. Investigation of CVD graphene topography and surface electrical properties

    International Nuclear Information System (INIS)

    Wang, Rui; Pearce, Ruth; Gallop, John; Patel, Trupti; Pollard, Andrew; Hao, Ling; Zhao, Fang; Jackman, Richard; Klein, Norbert; Zurutuza, Amaia

    2016-01-01

    Combining scanning probe microscopy techniques to characterize samples of graphene, a selfsupporting, single atomic layer hexagonal lattice of carbon atoms, provides far more information than a single technique can. Here we focus on graphene grown by chemical vapour deposition (CVD), grown by passing carbon containing gas over heated copper, which catalyses single atomic layer growth of graphene on its surface. To be useful for applications the graphene must be transferred onto other substrates. Following transfer it is important to characterize the CVD graphene. We combine atomic force microscopy (AFM) and scanning Kelvin probe microscopy (SKPM) to reveal several properties of the transferred film. AFM alone provides topographic information, showing ‘wrinkles’ where the transfer provided incomplete substrate attachment. SKPM measures the surface potential indicating regions with different electronic properties for example graphene layer number. By combining AFM and SKPM local defects and impurities can also be observed. Finally, Raman spectroscopy can confirm the structural properties of the graphene films, such as the number of layers and level of disorder, by observing the peaks present. We report example data on a number of CVD samples from different sources. (paper)

  17. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  18. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  19. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    Science.gov (United States)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  20. First-principles study of the surface properties of U-Mo system

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    2018-02-01

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo and gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.

  1. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  2. Nuclear energetics all over the world

    International Nuclear Information System (INIS)

    Wojcik, T.

    2000-01-01

    The actual state and tendencies of nuclear power further development for different world regions have been presented and discussed. The problem of safety of energetic nuclear reactors, radioactive waste management and related problems have been discussed in respect of regulations in different countries. The economical aspects of nuclear energetics in comparison with different fossil fuel power plants exploitation costs has been presented as well. The official state of international organizations (IAEA, WANO, HASA etc.) have been also shown in respect to subject presented

  3. Studies of energetic ion confinement during fishbone events in PDX

    International Nuclear Information System (INIS)

    Strachan, J.D.; Grek, B.; Heidbrink, W.; Johnson, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; McGuire, K.

    1984-11-01

    The 2.5-MeV neutron emission from the beam-target d(d,n,) 3 He fusion reaction has been examined for all PDX deuterium plasmas which were heated by deuterium neutral beams. The magnitude of the emission was found to scale classically and increase with T/sub e//sup 3/2/ as expected when electron drag is the primary energy degradation mechanism. The time evolution of the neutron emission through fishbone events was measured and used to determine the confinement properties of the energetic beam ions. Many of the experimental results are predicted by the Mode Particle Pumping theory

  4. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    Science.gov (United States)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  5. Inverse gas chromatography as a method for determination of surface properties of binding materials

    Science.gov (United States)

    Yu, Jihai; Lu, Xiaolei; Yang, Chunxia; Du, Baoli; Wang, Shuxian; Ye, Zhengmao

    2017-09-01

    Inverse gas chromatography (IGC) is a promising measurement technique for investigating the surface properties of binding materials, which are the major influence element for the adsorption performance of superplasticizer. In this work, using the IGC method, blast furnace slag (BFS), sulphoaluminate cement (SAC) and portland cement (P·O) are employed to systematically evaluate the corresponding dispersive component (γsd), specific surface free energy (γsab), and acid-base properties. The obtained results show that γsd contributes to a major section of the surface free energy in the three binding materials, suggesting they are of a relatively low polarity. Compared to the two kinds of cements, the BFS possesses the highest dispersive and specific surface free energies (the values are 45.01 mJ/m2 and 11.68 mJ/m2, respectively), and also exhibits a wider distribution range of γsd, indicating their surfaces are heterogeneous. For acid-base properties, the results indicate the surfaces of three samples are basic in nature. In addition, the adsorption investigation shows that per unit surface of BFS adsorbs the most superplasticizer molecules, which indicates the higher surface free energies is beneficial to the superplasticizer adsorption.

  6. Role of molecular properties of ulvans on their ability to elaborate antiadhesive surfaces.

    Science.gov (United States)

    Gadenne, Virginie; Lebrun, Laurent; Jouenne, Thierry; Thebault, Pascal

    2015-03-01

    Antiadhesive properties of polysaccharides (such ulvans) once immobilized on a surface are described in the literature but the parameters governing their antifouling properties are not yet well identified. In the present study, the relationship between molecular parameters of ulvans and the inhibition of bacterial adhesion was investigated. To this aim, various ulvans were grafted on silicon wafers under two different experimental immobilization conditions. Results showed that the experimental immobilization conditions and the polysaccharides molecular weight led to specific layer conformations which exhibited a key role in the surface antiadhesive properties. © 2014 Wiley Periodicals, Inc.

  7. Surface properties of SmB{sub 6} from X-ray photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heming, Nadine; Treske, Uwe; Knupfer, Martin; Koitzsch, Andreas [Institute for Solid State Research, IFW Dresden (Germany); Buechner, Bernd [Institute for Solid State Research, IFW Dresden (Germany); Institut fuer Festkoerperphysik, TU Dresden (Germany); Inosov, Dmytro [Institut fuer Festkoerperphysik, TU Dresden (Germany); Shitsevalova, Natalya Y.; Filipov, Volodymyr B. [Institute for Problems of Material Science, Kiev (Ukraine); Kraus, Stephan [BESSY II, Berlin (Germany)

    2015-07-01

    The mixed valence compound SmB{sub 6} has been well known for its anomalous low temperature resistivity behavior for decades: At temperatures below 50 K, SmB{sub 6} transmutes from a metal to an insulator but shows residual resistivity for temperatures less than 5 K. Renewed interest in this material comes from theoretical proposals, predicting topological protected surface states making this compound the prime candidate for the new material class of ''Topological Kondo Insulators''. Indeed, elaborate transport experiments have evidenced that the residual conductivity occurs only at the surface. However, it is generally well known that the surface of f-systems undergoes valence changes and reconstructions, which may also influence the surface properties of this material. Applying surface sensitive soft X-ray photoemission spectroscopy, we have investigated the surface properties of freshly cleaved SmB{sub 6} single crystals at 15 K monitoring the Sm valance, the chemical state of boron as well as the surface stoichiometry, and also the development of these over time and with increased temperature: We have found that the surface shows an unexpected complexity stemming from both intrinsic and extrinsic changes.

  8. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2013-01-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v CME or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v CME , and TR and TD increase with both v CME and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v CME and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v CME and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  9. Energetic certification in Europe

    International Nuclear Information System (INIS)

    1998-01-01

    At community level the problem of energy quality control in a building was introduced by EEC recommendation n. 93/76 in 1993. In this item are reported some notes on energetic certification in European countries [it

  10. Nanotextured Si surfaces derived from block-copolymer self-assembly with superhydrophobic, superhydrophilic, or superamphiphobic properties

    DEFF Research Database (Denmark)

    Telecka, Agnieszka; Li, Tao; Ndoni, Sokol

    2018-01-01

    by oxygen plasma treatment. The different texture and surface chemistry configurations are characterized with respect to their wetting properties with water, alkanes and organic oils. While, both nano-pillar and nano-hole surfaces feature excellent superhydrophobic properties with water contact angles (WCAs......) exceeding 170 degrees and roll-off angles below 5 degrees, only the nano-pillar surfaces exhibit convincing superhydrophilicity with WCAs below 5 degrees. The repellency of low surface tension liquids known as amphiphobicity is demonstrated for the nano-hoodoo surfaces....

  11. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye, Huanchun; Breizman, B.N.

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width triangle b is much larger than the mode thickness triangle m , we obtain a new compact expression for the linear power transfer. When triangle m /triangle b much-lt 1, the banana orbit effect reduces the power transfer by a factor of triangle m /triangle b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (|υ parallel | = υ A is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (|υ parallel |) = υ A /(2 ell - 1) with ell ≥ 2) is substantially reduced. 10 refs

  12. Incipient motion in gravel bed rivers due to energetic turbulent flow events

    Science.gov (United States)

    Valyrakis, Manousos

    2013-04-01

    This contribution reviews recent developments and contributions in the field of incipient motion and entrainment of coarse sediment grains due to the action of near bed turbulent flows. Specifically, traditional shear based spatio-temporally averaged concepts and instantaneous stress tensor criteria are contrasted to the newly proposed flow event based impulse and energy criteria. The energy criterion, suggests that only sufficiently energetic turbulent events can remove a particle from its resting position on the bed surface and result on its entrainment downstream. While the impulse and energy criteria are interconnected through the energy-impulse equation, the later appears to be more versatile and appropriate for generalising to sediment transport. These flow event based criteria have a sound physical basis for describing the intermittent character of particle entrainment as inherited by near boundary turbulence at near threshold conditions. These criteria can be derived from fundamental laws of physics such as Newtonian classical mechanics and the Lagrange equations respectively. The energetic events that are capable of performing geomorphic work at the scale of individual particles are shown to follow a power law, meaning that more energetic events (capable of removing larger stones) are expected to occur less frequently. In addition, this paper discusses the role of the coefficient of energy transfer efficiency introduced in the energy equation for particle entrainment. A preliminary investigation from analysis of a series of mobile grain flume experiments illustrates that different signatures of turbulence or sequence of flow structures may have different effectiveness towards particle transport. Characteristic cases of specific energetic flow events and the associated particle response are shown and classified with regard to the time required for complete entrainment. Finally these findings are commented with respect to the implications for sediment

  13. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  14. Effect of surface physical and chemical properties on interaction and annihilation mechanisms of positrons

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.; Levin, B.M.; Shantarovich, V.P.

    1982-01-01

    The possibility of positron use is illustrated, to investigate physical and chemical properties of the surface, by a number of effects found by the authors while studying the interaction and annihilation of β + -decay positrons in highly-dispersed heterogeneous systems positronium formation and ortho-para conversion close to the surface of metal particles in a dielectric matrix, postronium oxidation by proton centers on the surface of an aluminosilicate catalyst). The ways, new in the main, are revealed to study the properties of the surface by the technique of monochromatic positron beams of low energy

  15. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  16. Effect of Leaf Surface Chemical Properties on Efficacy of Sanitizer for Rotavirus Inactivation

    Science.gov (United States)

    Fuzawa, Miyu; Ku, Kang-Mo; Palma-Salgado, Sindy Paola; Nagasaka, Kenya; Feng, Hao; Juvik, John A.; Sano, Daisuke; Shisler, Joanna L.

    2016-01-01

    ABSTRACT The use of sanitizers is essential for produce safety. However, little is known about how sanitizer efficacy varies with respect to the chemical surface properties of produce. To answer this question, the disinfection efficacies of an oxidant-based sanitizer and a new surfactant-based sanitizer for porcine rotavirus (PRV) strain OSU were examined. PRV was attached to the leaf surfaces of two kale cultivars with high epicuticular wax contents and one cultivar of endive with a low epicuticular wax content and then treated with each sanitizer. The efficacy of the oxidant-based sanitizer correlated with leaf wax content as evidenced by the 1-log10 PRV disinfection on endive surfaces (low wax content) and 3-log10 disinfection of the cultivars with higher wax contents. In contrast, the surfactant-based sanitizer showed similar PRV disinfection efficacies (up to 3 log10) that were independent of leaf wax content. A statistical difference was observed with the disinfection efficacies of the oxidant-based sanitizer for suspended and attached PRV, while the surfactant-based sanitizer showed similar PRV disinfection efficacies. Significant reductions in the entry and replication of PRV were observed after treatment with either disinfectant. Moreover, the oxidant-based-sanitizer-treated PRV showed sialic acid-specific binding to the host cells, whereas the surfactant-based sanitizer increased the nonspecific binding of PRV to the host cells. These findings suggest that the surface properties of fresh produce may affect the efficacy of virus disinfection, implying that food sanitizers should be carefully selected for the different surface characteristics of fresh produce. IMPORTANCE Food sanitizer efficacies are affected by the surface properties of vegetables. This study evaluated the disinfection efficacies of two food sanitizers, an oxidant-based sanitizer and a surfactant-based sanitizer, on porcine rotavirus strain OSU adhering to the leaf epicuticular surfaces of

  17. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    Science.gov (United States)

    2014-02-01

    availabilities of their respective food sources (bacteria and fungi ), were also unaffected-or-increasing in soil with CL-20 treatments. This is...ENERGETIC MATERIALS EFFECTS ON ESSENTIAL SOIL PROCESSES: DECOMPOSITION OF ORCHARD...GRASS (DACTYLIS GLOMERATA) LITTER IN SOIL CONTAMINATED WITH ENERGETIC MATERIALS ECBC-TR-1199 Roman G. Kuperman Ronald T. Checkai Michael Simini

  18. The Energetics of Economics (Money as access to Energy)

    OpenAIRE

    Ternyik, Stephen I.

    2013-01-01

    Money is being portrayed as temporal access to energy and a new methodical approach to the energetics of the human economy is introduced.The economic evolution of world system energetics is put into the historical focus of all global monetary civilization, reaching back to Sumerian city states.This long wave energetics of human economic action clearly points to the biophysical boundaries of the globalized monetary production economy which is also based on natural law.The future perspective of...

  19. Interaction in the large energetic companies in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Janevski, Risto

    1999-01-01

    After disintegration of former power energetic system of Yugoslavia 1991, the Republic of Macedonia has faced enormous problems in the energetic field. It was necessary to realize all options in order to secure enough electric power for normal economic capacities function. In that course a direct involvement of five large companies, which represent very significant energetic subjects, will largely determine the future energetic conditions and circumstances in our country. These are the following companies: P.E. Electric Power Company Of Macedonia; OKTA Crude Oil Refinery; Heat Power Company; HEK Jugohrom; Fenimak. The paper presents the electric power consumption of these macro energetic companies during the period 1991-1998

  20. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis.

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Kok, Jan; Bachmann, Herwig

    2018-05-09

    Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Influence of the step properties on submonolayer growth of Ge and Si at the Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Romanyuk, Konstantin

    2009-10-21

    preferred steps direction resulting into different islands shapes. The symmetry of the properties of the different step directions can determine the symmetry of the 2D islands. The growth shape of reconstructed 2D islands (nanostructures) on reconstructed surfaces can deviate from the internal symmetry of the substrate and the island. An analysis of the symmetry of the combined system of reconstructed substrate and island can deduce predictions for the island growth shape. It was found experimentally that the shape of two-dimensional (2D) Si or Ge islands has a lower symmetry than the threefold symmetry of the underlying Si(111) substrate if Bi is used as a surfactant during growth. Arrow-shaped or rhomb-shaped 2D islands were observed by scanning tunneling microscopy. This symmetry breaking was explained by a mutual shift between the surface reconstructions present on the substrate and on the islands. The mutual shift results into different step structure for initially symmetry related step directions. Using the kinematic Wulff construction the growth velocities of the steps could be determined from the island shape if the nucleation center had been located by a marker technique. The structural stability of 2D SiGe nanostructures was studied by scanning tunneling microscopy (STM). The formation of pits with a diameter of 2 - 30 nm in one atomic layer thick Ge stripes was observed. The unanticipated pit formation occurs due to an energetically driven motion of the Ge atoms out of the Ge stripe towards the Si terminated step edge followed by an entropy driven GeSi intermixing at the step edge. The pit formation can be also used for nanostructuring. Using conditions at which pit formation is enhanced the fabrication of freestanding GeSi stipes with single digit nanometer width is possible. Continuous {proportional_to} 8 nm wide freestanding GeSi wires have been fabricated by pit coalescence. (orig.)

  2. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    Science.gov (United States)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  3. Spectroscopic study on variations in illite surface properties after acid-base titration.

    Science.gov (United States)

    Liu, Wen-xin; Coveney, R M; Tang, Hong-xiao

    2003-07-01

    FT-IR, Raman microscopy, XRD, 29Si and 27Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid-base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al-Si complexes, preferable to Al(OH)3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si-O and Al-O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between (IV)Al and (VI)Al species in 27Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid-leaching silicic acid and aluminum ions should be considered in the model description of surface acid-base properties of the aqueous illite.

  4. Properties of Red Sea coastal currents

    KAUST Repository

    Churchill, J.H.

    2014-02-14

    Properties of coastal flows of the central Red Sea are examined using 2 years of velocity data acquired off the coast of Saudi Arabia near 22 °N. The tidal flow is found to be very weak. The strongest tidal constituent, the M2 tide, has a magnitude of order 4 cm s−1. Energetic near-inertial and diurnal period motions are observed. These are surface-intensified currents, reaching magnitudes of >10 cm s−1. Although the diurnal currents appear to be principally wind-driven, their relationship with the surface wind stress record is complex. Less than 50% of the diurnal current variance is related to the diurnal wind stress through linear correlation. Correlation analysis reveals a classical upwelling/downwelling response to the alongshore wind stress. However, less than 30% of the overall sub-inertial variance can be accounted for by this response. The action of basin-scale eddies, impinging on the coastal zone, is implicated as a primary mechanism for driving coastal flows.

  5. Observations of Energetic Particle Escape at the Magnetopause: Early Results from the MMS Energetic Ion Spectrometer (EIS)

    Science.gov (United States)

    Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, David Gary; Giles, Barbara L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; hide

    2016-01-01

    Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.

  6. Seeded Reaction Waves in Composites: Fast Structure Transforming Materials that Respond to Energetic Stimuli

    Science.gov (United States)

    2016-10-21

    change in the structure of the capsule system . The temperatures at which the capsules undergo transformation are in accordance with the results in DSC...Structure- Transforming Materials that Respond to Energetic Stimuli Sb. GRANT NUMBER N00014-13-1-0170 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd...encapsulated super- cooled fluids into a polymer matrix allows for rapid changes in mechanical properties. Frontal polymerization within a microvascular

  7. Quinquennial National Program (1990-1994) for the Energetic Modernization

    International Nuclear Information System (INIS)

    1990-01-01

    The Mexican Energetics Sector currently has the eighth possition regarding reserves of hydrocarbons and the sixth regarding oil production, the installed capacity in electricity matters is among the first 20 of the world. The Program established first, a general balance of the situation in which the energetics sector lays today. It also points out the strategic role that this sector holds, as well an on the solutions to the problems faced. This Program establishes the objectives pursued by the energetics sector and that are as follows: to guarantee enough supply of energetics, to strenghten the link between the energetics sector and economy, society and environmental protection, to consolidate an energetics sector that is more current and better integrated. This Program presents the proposal to tend to five priorities: productivity, saving and effective use of energy, financing of the development and expansion of the offer, to diversify sources, as well as an efficient participation in international markets. In the chapter the effort regarding supply and demand of energy, it is evident that the effort made to expand the offer must be great, facing the total demand of energy demonstrated by the figures. For 1994 this demmand is of 31 - 36 % greater to that observed in 1988. Lastly, two statistic documents are enclosed, one historic, with general pointers of the sector, and another with the basic variables for national energy balance

  8. Influence of the surface roughness on the fatigue properties in ausferritic ductile irons (ADI

    Directory of Open Access Journals (Sweden)

    Svenningsson Roger

    2014-06-01

    Full Text Available Heat treatment of cast ductile iron (DI to ausferritic ductile iron (ADI is known to increase fatigue properties. However, the surface roughness of the cast material is also of significant importance. In this investigation, test rods with seven different surface qualities were cast from the same melt i.e. with same chemical composition. The surfaces of the test rods were varied by a number of parameters; grain size of the moulding sand, coated or non-coated mould surfaces, as-cast or machined and polished, shot peened or not. In addition, a reference material in conventional DI was cast and tested. All eight series were subjected to high-cycle fatigue bending tests. The results show that surface defects, such as micro porosity and minor inclusions drastically decrease the fatigue properties. For some ADI materials the stress amplitude limit was actually lower compared to the non-heat treated DI. The machined, polished and shot-peened material demonstrated the best fatigue properties, which is as expected.

  9. Modifying surface properties of diamond-like carbon films via nanotexturing

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Portal-Marco, S; Rubio-Roy, M; Bertran, E; Andujar, J L [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain); Oncins, G [Serveis CientIfico-Tecnics, Universitat de Barcelona, c/ Marti i Franques s/n, 08028 Barcelona (Spain); Vallve, M A; Ignes-Mullol, J, E-mail: corberoc@hotmail.com [SOC and SAM Group, IN2UB, Departament de Quimica Fisica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain)

    2011-10-05

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres ({approx}300 nm) on monocrystalline silicon ({approx}5 cm{sup 2}) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  10. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  11. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  12. Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations.

    Science.gov (United States)

    Andrés, Juan; Gracia, Lourdes; Gouveia, Amanda Fernandes; Ferrer, Mateus Meneghetti; Longo, Elson

    2015-10-09

    Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and α-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.

  13. Changes in surface properties caused by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    This report outlines various aspects of ion implantation. Major features of ion implantation are described first, focusing on the structure of ion implantation equipment and some experimental results of ion implantation into semiconductors. Distribution of components in ion-implantated layers is then discussed. The two major features of ion implantation in relation to the distribution of implanted ions are: (1) high controllability of addition of ions to a surface layer and (2) formation of a large number of lattice defects in a short period of time. Application of ion implantation to metallic materials is expected to permit the following: (1) formation of a semi-stable alloy surface layer by metallic ion implantation, (2) formation of a semi-stable ceramic surface layer or buried layer by non-metallic ion implantation, and (3) formation of a buried layer by combined implementation of a different metallic ion and non-metallic ion. Ion implantation in carbon materials, polymers and ceramics is discussed next. The last part of the report is dedicated to macroscopic properties of an ion-implanted layer, centering on surface modification, formation of a conductive surface layer, and tribology. (Nogami, K.) 60 refs

  14. The energetic significance of cooking.

    Science.gov (United States)

    Carmody, Rachel N; Wrangham, Richard W

    2009-10-01

    While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.

  15. A population of highly energetic transient events in the centres of active galaxies

    Science.gov (United States)

    Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J.; Meikle, W. P. S.; Bruce, A.; Harmanen, J.; Hutton, S. J.; Inserra, C.; Kangas, T.; Pastorello, A.; Reynolds, T.; Romero-Cañizales, C.; Smith, K. W.; Valenti, S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2017-12-01

    Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of 2.3 × 1052 erg. The slow evolution of its light curve and persistently narrow spectral lines over ˜ 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.

  16. Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.

    Science.gov (United States)

    Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor

    2013-06-03

    Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A single molecule approach for measuring the transport properties and energetics of membrane proteins in heterogeneous planar bio-mimetic assemblies

    Science.gov (United States)

    Poudel, Kumud Raj

    proteins. This deliberate contrast was created in order to provide a complete outlook into the transport properties and energetics of these crucial biological components in planar, heterogeneous bio-mimetic assemblies.

  18. Sawteeth stabilization by energetic trapped ions

    International Nuclear Information System (INIS)

    Samain, A.; Edery, D.; Garbet, X.; Roubin, J.P.

    1991-01-01

    The analysis of a possible stabilization of sawteeth by a population of energetic ions is performed by using the Lagrangian of the electromagnetic perturbation. It is shown that the trapped component of such a population has a small influence compared to that of the passing component. The stabilization threshold is calculated assuming a non linear regime in the q=1 resonant layer. The energetic population must create a stable tearing structure if the average curvature effect on thermal particles in the layer is small. However, this effect decreases the actual threshold

  19. Energetic protons at Mars. Interpretation of SLED/Phobos-2 observations by a kinetic model

    International Nuclear Information System (INIS)

    Kallio, E.; Alho, M.; Jarvinen, R.; Dyadechkin, S.; McKenna-Lawlor, S.; Afonin, V.V.

    2012-01-01

    Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs) from the Sun can penetrate close to the planet (under some circumstances reaching the surface). On 13 March 1989 the SLED instrument aboard the Phobos- 2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8RM). In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3- D self-consistent hybrid model (HYB-Mars) where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1) a flux enhancement near the inbound bow shock, (2) the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3) the energy dependency of the flux enhancement near the bow shock and (4) how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars-solar wind interaction significantly modulated the Martian energetic particle environment. (orig.)

  20. Energetic protons at Mars. Interpretation of SLED/Phobos-2 observations by a kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, E.; Alho, M.; Jarvinen, R.; Dyadechkin, S. [Finnish Meteorological Institute, Helsinki (Finland); McKenna-Lawlor, S. [Space Technology Ireland, Maynooth, Co. Kildare (Ireland); Afonin, V.V. [Space Research Institute, Moscow (Russian Federation)

    2012-07-01

    Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs) from the Sun can penetrate close to the planet (under some circumstances reaching the surface). On 13 March 1989 the SLED instrument aboard the Phobos- 2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8RM). In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3- D self-consistent hybrid model (HYB-Mars) where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1) a flux enhancement near the inbound bow shock, (2) the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3) the energy dependency of the flux enhancement near the bow shock and (4) how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars-solar wind interaction significantly modulated the Martian energetic particle environment. (orig.)

  1. Physical properties of the martian surface from the Viking 1 lander: preliminary results

    International Nuclear Information System (INIS)

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II; Scott, R.E.; Spitzer, C.R.

    1976-01-01

    The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface

  2. Very energetic photons at HERA

    International Nuclear Information System (INIS)

    Bawa, A.C.; Krawczyk, M.

    1991-01-01

    We show that every energetic photons in the backward direction can be produced in deep inelastic Compton scattering at HERA. Assuming a fixed energy of 9 GeV for the initial photons and 820 GeV for the protons a high rate is found for the production of final photons with a transverse momentum equal to 5 GeV/c and energy between 40 GeV and 300 GeV. These energetic photons arise mainly from the scattering of the soft gluonic constituents of the initial photon with quarks from the proton. They are produced in the backward direction in coincidence with a photon beam jet of energy ∝ 9 GeV in the forward direction. (orig.)

  3. Pseudopotentials for calculating the bulk and surface properties of solids

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1983-01-01

    A survey is presented describing research in condensed matter physics using pseudopotentials to calculate electronic, structural, and vibrational properties of solids. Semiconductors are emphasized, and both bulk and surface calculations are discussed. (author) [pt

  4. From surfaces to magnetic properties: special section dedicated to Juan Rojo

    Science.gov (United States)

    Mascaraque, A.; Rodríguez de la Fuente, O.; González-Barrio, Miguel A.

    2013-12-01

    Surface physics and magnetism, in particular the connection between surface defects, reduced dimensionality or size, crystal structure, electronic density of states and the mechanical and magnetic properties of solids, were always at the core of Juan Rojo's scientific interest and output. Both fields seem to meet at the nanoscale, a privileged playing field which is ideal for testing theoretical concepts, exploring new physics or probing a wealth of new, stunning and unheard-of applications. Upon reducing size or dimensionality, either in bulk systems or in thin films, surfaces and surface effects are telling. Thus, for instance, an ultra-thin coating can make nanoparticles of non-magnetic materials exhibit magnetic behaviour; or atomic steps can modify the local mechanical properties of a metallic single crystal. In this special section there are eight invited papers by disciples and close collaborators of Juan Rojo, that cover an ample spectrum of the above mentioned topics. The first paper, by Palacio et al, investigates the temperature and oxygen partial pressure conditions for FeO mono- and bi-layer growth on Ru(0001). The following paper, by Cortés-Gil et al, reports on the dramatic change in the electric resistivity of the manganite perovskite (La0.5Ca0.5)z MnO3 as a function of Ca content, an effect related to the removal of a charge-ordered state and a magnetic transition. Baeza et al study biomaterials for bone cancer treatment and skeletal reinforcing, as well as targeted magnetic nanoparticles used for intracell hyperthermia in cancer therapies. In the following paper, Marcano et al, assisted by a multi-technique approach, revisit the extraordinarily rich magnetic phase diagram of the Kondo system CeNi1- x Cux down to 100 mK temperatures. The magnetic field dependence of the martensitic transition temperature of the meta-magnetic shape memory alloy Ni50Mn34.5In15.5 in a crystalline and amorphous phase, in fields up to 13 T, is the subject of the paper

  5. Study of energetic dependence of LiF TLDs for photons

    International Nuclear Information System (INIS)

    Cavalieri, Tassio A.; Antunes, Paula C.G.; Paiva, Fabio; Branco, Isabela S.; Sena, Michelle K.S.; Siqueira, Paulo T.D.; Yoriyaz, Helio

    2015-01-01

    The LiF TLDs are widely used for photon dosimetry. However, in the most case the energetic dependence of these TLDs are not taken into account. This work is a preliminary study of energetic photon dependence in LiF TLD (TLD 700, enriched with 7 Li). For this study it was utilized a methodology already used in others works that seek understand the dependence energetic of TLD. It was utilized three different X-ray spectrum and a 137 Cs source; Beyond the calculus utilized in previous works, it was built the calibration curve for each spectrum to see the difference in dosimetry that the energetic dependence could cause. (author)

  6. Study of energetic dependence of LiF TLDs for photons

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, Tassio A.; Antunes, Paula C.G.; Paiva, Fabio; Branco, Isabela S.; Sena, Michelle K.S.; Siqueira, Paulo T.D.; Yoriyaz, Helio, E-mail: tcavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The LiF TLDs are widely used for photon dosimetry. However, in the most case the energetic dependence of these TLDs are not taken into account. This work is a preliminary study of energetic photon dependence in LiF TLD (TLD 700, enriched with {sup 7}Li). For this study it was utilized a methodology already used in others works that seek understand the dependence energetic of TLD. It was utilized three different X-ray spectrum and a {sup 137}Cs source; Beyond the calculus utilized in previous works, it was built the calibration curve for each spectrum to see the difference in dosimetry that the energetic dependence could cause. (author)

  7. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  8. Surface Properties of Squalene/Meibum Films and NMR Confirmation of Squalene in Tears

    Directory of Open Access Journals (Sweden)

    Slavyana Ivanova

    2015-09-01

    Full Text Available Squalene (SQ possesses a wide range of pharmacological activities (antioxidant, drug carrier, detoxifier, hydrating, emollient that can be of benefit to the ocular surface. It can come in contact with human meibum (hMGS; the most abundant component of the tear film lipid layer as an endogenous tear lipid or from exogenous sources as eyelid sebum or pharmaceuticals. The aims of this study were to determine (i if SQ is in tear lipids and (ii its influence on the surface properties of hMGS films. Heteronuclear single quantum correlation NMR confirmed 7 mol % SQ in Schirmer’s strips extracts. The properties of SQ/hMGS pseudo-binary films at the air/water interface were studied with Langmuir surface balance, stress-relaxation dilatational rheology and Brewster angle microscopy. SQ does not possess surfactant properties. When mixed with hMGS squalene (i localized over the layers’ thinner regions and (ii did not affect the film pressure at high compression. Therefore, tear SQ is unlikely to instigate dry eye, and SQ can be used as a safe and “inert” ingredient in formulations to protect against dry eye. The layering of SQ over the thinner film regions in addition to its pharmacological properties could contribute to the protection of the ocular surface.

  9. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  10. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    Science.gov (United States)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  11. Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Syberg, Susanne

    2012-01-01

    -I) on surface properties and osteoblasts response. Three different RG-Is from apple and lupin pectins were modified and coated on amino-functionalized tissue culture polystyrene plates (aminated TCPS). Surface properties were evaluated by scanning electron microscopy, contact angle measurement, atomic force...... microscopy, and X-ray photoelectron spectroscopy. The effects of nanocoating on proliferation, matrix formation and mineralization, and expression of genes (real-time PCR) related to osteoblast differentiation and activity were tested using human osteoblast-like SaOS-2 cells. It was shown that RG-I coatings...

  12. Enzymatic Treatments to Improve Mechanical Properties and Surface Hydrophobicity of Jute Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Aixue Dong

    2016-02-01

    Full Text Available Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2’-azino-bis-(3-ethylthiazoline-6-sulfonate (ABTS and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.

  13. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  14. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  15. Energetic particle pressure in intense ESP events

    Science.gov (United States)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-09-01

    We study three intense energetic storm particle (ESP) events in which the energetic particle pressure PEP exceeded both the pressure of the background thermal plasma Pth and the pressure of the magnetic field PB. The region upstream of the interplanetary shocks associated with these events was characterized by a depression of the magnetic field strength coincident with the increase of the energetic particle intensities and, when plasma measurements were available, a depleted solar wind density. The general feature of cosmic-ray mediated shocks such as the deceleration of the upstream background medium into which the shock propagates is generally observed. However, for those shocks where plasma parameters are available, pressure balance is not maintained either upstream of or across the shock, which may result from the fact that PEP is not included in the calculation of the shock parameters.

  16. The monodromy property for K3 surfaces allowing a triple-point-free model

    DEFF Research Database (Denmark)

    Jaspers, Annelies Kristien J

    2017-01-01

    The aim of this thesis is to study under which conditions K3 surfaces allowing a triple-point-free model satisfy the monodromy property. This property is a quantitative relation between the geometry of the degeneration of a Calabi-Yau variety X and the monodromy action on the cohomology of...... X: a Calabi- Yau variety X satisfies the monodromy property if poles of the motivic zeta function ZX,ω(T) induce monodromy eigenvalues on the cohomology of X. Let k be an algebraically closed field of characteristic 0, and set K = k((t)). In this thesis, we focus on K3 surfaces over K allowing a triple-point...... is very precise, which allows to use a combination of geometrical and combinatorial techniques to check the monodromy property in practice. The first main result is an explicit computation of the poles of ZX,ω(T) for a K3 surface X allowing a triple-point-free model and a volume form ! on X. We show that...

  17. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  18. Hypothesis for the mechanism of negative ion production in the surface-plasma negative hydrogen ion source

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1975-01-01

    An analysis of the surface-plasma negative hydrogen ion source has shown that the tungsten cathode supports approximately a monolayer of cesium. The backscattering of protons from the cathode as energetic neutrals and the subsequent backscattering of these neutrals from the anode provides for a flux of energetic atoms incident upon the cathode which is comparable to the ion flux. A hypothesis is proposed for the generation of negative ions during the collision of these energetic atoms with the cathode. Several mechanisms for negative ion production by proton collision with the surface are discussed. (U.S.)

  19. Spontaneous Energy Concentration in Energetic Molecules, Interfaces and Composites: Response to Ultrasound and THz Radiation

    Science.gov (United States)

    2015-12-21

    crystals or crystalline composites. One crystal had a slippery surface coating and the other did not. The coated ammonium nitrate , RDX and PBX...vibrational spectroscopies and time-resolved thermal imaging microscopy. 15. SUBJECT TERMS Ultrasound, THz radiation, energetic materials, hot spots, energy...studying fast processes at interfaces. 3. At the level of bulk materials, we developed a high-speed thermal imaging microscope apparatus.15󈧔

  20. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    Peltola, Timo Hannu Tapani

    2014-01-01

    A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching to measurements of silicon strip detectors. However, the model does not provide the expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's...

  1. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  2. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  3. Structural and electronic properties of low-index stoichiometric BiOI surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn

    2017-06-01

    As promising photocatalyst driven by visible-light, BiOI has attracted more and more attention in the past years. However, the surface structure and properties of BiOI that is the most important place for the photocatalytic have not been investigated in details. To this end, density functional theory was performed to calculate the structural and electronic properties of four low-index stoichiometric surfaces of BiOI. It is found that the relaxation of the low-index BiOI surfaces are relatively small, especially the (001) surface. Thus, the surface energies of BiOI are very relatively small. Moreover, there are a few surface states below the bottom of conduction band in the first layer except the (001) surface, which maybe capture the photo-excited carriers. In all of the most stable terminated planes, all the dangling bonds are cleaved from the broken Bi-O bonds. In the case of (001) surface, the dangling bond density of Bi atoms for the (001) surface is zero per square nano. Therefore, the (001) surface is thermodynamically lowest-energy surface of BiOI, and it is the predominant surface (51.4%). As a final remark, the dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. Finally, the equilibrium morphology of BiOI was also proposed and provided, which is determined through the Wulff construction. These results will help us to better understand the underlying photocatalytic mechanism that is related to BiOI surfaces, and provide theoretical support for some experimental studies about BiOI-based photocatalyst in future. - Highlights: • Four low-index BiOI surfaces have been calculated by DFT method. • The relaxations of the low-index BiOI surfaces are relatively small. • There are a few surface states below the bottom of conduction band in the first layer. • The dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. • The thermodynamic

  4. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  5. Effect of processing history on the surface interfacial properties of budesonide in carrier-based dry-powder inhalers.

    Science.gov (United States)

    Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert

    2013-08-01

    Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.

  6. A thermal spike analysis of low energy ion activated surface processes

    International Nuclear Information System (INIS)

    Gilmore, G.M.; Haeri, A.; Sprague, J.A.

    1989-01-01

    This paper reports a thermal spike analysis utilized to predict the time evolution of energy propagation through a solid resulting from energetic particle impact. An analytical solution was developed that can predict the number of surface excitations such as desorption, diffusion or chemical reaction activated by an energetic particle. The analytical solution is limited to substrates at zero Kelvin and to materials with constant thermal diffusivities. These limitations were removed by developing a computer numerical integration of the propagation of the thermal spike through the solid and the subsequent activation of surface processes

  7. Effect of Physical Property and Surface Morphology of Copper Foil at Electrodeposition Parameter

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Gyu; Park, Il Song; Lee, Man Hyung; Seol, Kyeong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-06-15

    The effect of additives, current density and plated temperature on the surface morphology and physical property, during copper electrodeposition on polyimide (PI) film was investigated. Two kinds of additives, Cl and leveler (additive B), were used in this study. Electrochemical experiments were performed in conjunction with SEM, XRD and four-point probe to characterize the morphology and mechanical characteristics of copper electrodeposited in the presence of the additives. The surface roughness, crystal growth orientation and resistivity was controlled by the concentration of additive B. High resistivity and lower peel strength were observed on the surface of the copper layer electroplated in the electrolyte without additive B. However, a uniform surface, lower resistivity and high flexibility were obtained with a combination of 20 ppm Cl and 100 ppm additive B. Large particles were observed on the surface of the copper layer electroplated using a current density of 25 mA/cm{sup 2}, but a uniform surface and lower resistivity were obtained using a current density of 10 mA/cm{sup 2}. One of the required important properties of FCCL is flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density, rather than a high current density. Moreover, a reasonable current density is 20 mA/cm{sup 2}, considering the productivity and mechanical properties of copper foil.

  8. Energetic assessment of soybean biodiesel obtainment in West ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Energetic outputs added up to 3,003.75 MJ and energy balance was 57,132.54 MJ. ... biodiesel, the study was divided into three stages: soybean farming, ... considering energetic consumptions with labor, seeds, diesel oil, ... model MF 283(4X2 TDA), power 63.2 kW (86 cv) in the engine, board weight.

  9. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    Science.gov (United States)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  10. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    International Nuclear Information System (INIS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-01-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 10 17 ions/cm 2 . The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, Cr x C y phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties

  11. Handling sticky Resin by Stingless Bees: Adhesive Properties of Surface Structures

    Directory of Open Access Journals (Sweden)

    MARKUS GASTAUER

    2013-09-01

    Full Text Available Many Stingless Bees (Hymenoptera: Meliponini like Tetragonisca angustula collect resin to defend their nests against intruders like ants or Robber Bees. Small portions of resin are attached to intruders bodies and extremities causing their immobilization. It has been observed that resin is removed easily from the bee's mandible but adheres strongly to the intruder's cuticle. We tested the hypothesis that resin sticks lesser to the mandibles of Stingless Bees than to the surface of intruders due to special surface structures or adhesive properties of these structures. The surface structures of the mandible of T. angustula and the trochanter of Camponotus sericeiventris were studied by scanning electron microscopy. To measure adhesion properties, selected surfaces were fixed on a fine glass pin and withdrawn from a glass tip covered with resin. The deformation of the glass pin indicates adhesion forces operating between the resin and the selective surface. The absolute value of the forces is computed from the glass pin's stiffness. It has been shown that resin sticks more to the smooth mandible of the bee than to the structured trochanter of the ant. A new hypothesis to be tested says that the bees might lubricate their mandibles with nectar or honey to reduce the resin's adhesion temporarily.

  12. Density functional calculation of electronic surface structure and Fe adsorption on ZnO (0001) and (000 anti 1)

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sougata; Jasper-Toennies, Torben; Hack, Michael; Pehlke, Eckhard [Institut fuer Theoretische Physik und Astrophysik, Universitaet Kiel (Germany)

    2011-07-01

    The structure and electronic properties of the ZnO(0001) and ZnO(000 anti 1) surfaces as studied by density functional calculations are presented. The stability of the surface has already been investigated by various groups. The electronic surface band structure, however, in particular the existence of surface states and the differences between experimental band dispersion for both terminations, still appears to pose open problems. To address these issues, we compare Kohn Sham band structures and electrostatic potentials close to the surface for the relaxed (1 x 1)-surface, (2 x 2) vacancy reconstructions, and surfaces with pits. In particular the effect of the bending of the electrostatic potential at the surface on the eigenstates is quantified. Comparing the adsorption energies of Fe atoms for various adsorption sites on ZnO(000 anti 1), the fcc hollow position turned out to be energetically favorable. The oxidation state of the Fe atom is derived from the projected density of states.

  13. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    Science.gov (United States)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  14. PREFACE: Nanostructured surfaces

    Science.gov (United States)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  15. Streaming reversal of energetic particles in the magnetotail during a substorm

    Science.gov (United States)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  16. Energetic Ion Loss Diagnostic for the Wendelstein 7-AS Stellarator

    International Nuclear Information System (INIS)

    Darrow, D. S.; Werner, A.; Weller, A.

    2000-01-01

    A diagnostic to measure the loss of energetic ions from the Wendelstein 7-AS (W7-AS) stellarator has been built. It is capable of measuring losses of both neutral beam ions and energetic ions arising from ion cyclotron resonant heating. The probe can measure losses of both clockwise and counterclockwise-going energetic ions simultaneously, and accepts a wide range of pitch angles in both directions. Initial measurements by the diagnostic are reported

  17. Energetics of hydrogen bonding in proteins: a model compound study.

    OpenAIRE

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-...

  18. Reaction path of energetic materials using THOR code

    Science.gov (United States)

    Durães, L.; Campos, J.; Portugal, A.

    1998-07-01

    The method of predicting reaction path, using THOR code, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using HL EoS. The code allows the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, calculated and discussed—pure Ammonium Nitrate and its based explosive ANFO, and Nitromethane—because their equivalence ratio is respectively lower, near and greater than the stoicheiometry. Predictions of reaction path are in good correlation with experimental values, proving the validity of proposed method.

  19. The energetics and structure of nickel clusters: Size dependence

    International Nuclear Information System (INIS)

    Cleveland, C.L.; Landman, U.

    1991-01-01

    The energetics of nickel clusters over a broad size range are explored within the context of the many-body potentials obtained via the embedded atom method. Unconstrained local minimum energy configurations are found for single crystal clusters consisting of various truncations of the cube or octahedron, with and without (110) faces, as well as some monotwinnings of these. We also examine multitwinned structures such as icosahedra and various truncations of the decahedron, such as those of Ino and Marks. These clusters range in size from 142 to over 5000 atoms. As in most such previous studies, such as those on Lennard-Jones systems, we find that icosahedral clusters are favored for the smallest cluster sizes and that Marks' decahedra are favored for intermediate sizes (all our atomic systems larger than about 2300 atoms). Of course very large clusters will be single crystal face-centered-cubic (fcc) polyhedra: the onset of optimally stable single-crystal nickel clusters is estimated to occur at 17 000 atoms. We find, via comparisons to results obtained via atomistic calculations, that simple macroscopic expressions using accurate surface, strain, and twinning energies can usefully predict energy differences between different structures even for clusters of much smaller size than expected. These expressions can be used to assess the relative energetic merits of various structural motifs and their dependence on cluster size

  20. Dynamic fracture and hot-spot modeling in energetic composites

    Science.gov (United States)

    Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol

    2018-02-01

    Defects such as cracks, pores, and particle-matrix interface debonding affect the sensitivity of energetic materials by reducing the time-to-ignition and the threshold pressure to initiate an explosion. Frictional sliding of preexisting cracks is considered to be one of the most important causes of localized heating. Therefore, understanding the dynamic fracture of crystalline energetic materials is of extreme importance to assess the reliability and safety of polymer-bonded explosives. Phase field damage model simulations, based on the regularization of the crack surface as a diffuse delta function, are used to describe crack propagation in cyclotetramethylene-tetranitramine crystals embedded in a Sylgard matrix. A thermal transport model that includes heat generation by friction at crack interfaces is coupled to the solution of crack propagation. 2D and 3D dynamic compression simulations are performed with different boundary velocities and initial distributions of cracks and interface defects to understand their effect on crack propagation and heat generation. It is found that, at an impact velocity of 400 m/s, localized damage at the particle-binder interface is of key importance and that the sample reaches temperatures high enough to create a hot-spot that will lead to ignition. At an impact velocity of 10 m/s, preexisting cracks advanced inside the particle, but the increase of temperature will not cause ignition.

  1. Simulations of the atomic structure, energetics, and cross slip of screw dislocations in copper

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Jacobsen, Karsten Wedel; Leffers, Torben

    1997-01-01

    Using nanoscale atomistic simulations it has been possible to address the problem of cross slip of a dissociated screw dislocation in an fee metal (Cu) by a method not suffering from the limitations imposed by elasticity theory. The focus has been on different dislocation configurations relevant...... linear-elasticity theory showing recombination or repulsion of the partials near the free surface. Such recombination at the free surface might be important in the context of cross slip because it allows the creation of the above-mentioned energetically favorable constriction alone. In addition we...... to monitor the annihilation process, thereby determining the detailed dislocation reactions during annihilation....

  2. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  3. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  4. Continuous engineering of nano-cocrystals for medical and energetic applications

    Science.gov (United States)

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-10-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

  5. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  6. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-09-01

    Full Text Available Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric substances (EPS are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the role of EPS, we measured the adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of Acidithiobacillus ferrooxidans and chalcopyrite by an atomic force microscope (AFM before and after EPS removal. Surface properties of these cells were assessed by measurements of the contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR and acid-base titration. Bacterial attachment to chalcopyrite was monitored for 140 min. The results indicate that the EPS control the surface properties of the cells. In addition, the surface properties are decisive for adhesion. The adhesion forces and the amounts of attached cells decreased dramatically after removing EPS, which was not dependent on the preculture.

  7. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  8. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  9. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    Science.gov (United States)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  10. Surface-defect induced modifications in the optical properties of α-MnO_2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO_2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO_2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO_6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn"3"+) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO_2. These studies suggest that

  11. Energetic Particle Loss Estimates in W7-X

    Science.gov (United States)

    Lazerson, Samuel; Akaslompolo, Simppa; Drevlak, Micheal; Wolf, Robert; Darrow, Douglass; Gates, David; W7-X Team

    2017-10-01

    The collisionless loss of high energy H+ and D+ ions in the W7-X device are examined using the BEAMS3D code. Simulations of collisionless losses are performed for a large ensemble of particles distributed over various flux surfaces. A clear loss cone of particles is present in the distribution for all particles. These simulations are compared against slowing down simulations in which electron impact, ion impact, and pitch angle scattering are considered. Full device simulations allow tracing of particle trajectories to the first wall components. These simulations provide estimates for placement of a novel set of energetic particle detectors. Recent performance upgrades to the code are allowing simulations with > 1000 processors providing high fidelity simulations. Speedup and future works are discussed. DE-AC02-09CH11466.

  12. Energetic Cost of Subacute Chlorpyrifos Intoxication in the German Cockroach (Dictyoptera: Blattellidae)

    DEFF Research Database (Denmark)

    Nielsen, Søren Achim; Jensen, Karl-Martin Vagn; Kristensen, Michael

    2006-01-01

    The energetic cost of a sublethal treatment with chlorpyrifos was estimated by use of direct microcalorimetry to measure metabolic heat in susceptible and resistant strains of the German cockroach Blattella germanica L. Moreover, one of the detoxifcation enzyme systems known to be involved...... in detoxifcation of chlorpyrifos, glutathione-S-transferase, was measured. Individual cockroaches were exposed for 20 min on a glass-surfaces treated with 1.14 ...  g/cm2 of chlorpyrifos. There was no difference in glutathione-S-transferase activity of susceptible or resistant strains after the treatment. The heat...

  13. Computational design of surfaces, nanostructures and optoelectronic materials

    Science.gov (United States)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  14. Automatic shading effects on the energetic performance of building systems; Efeito do sombreamento automatico no desempenho de sistemas prediais

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Racine Tadeu Araujo

    1997-12-31

    This thesis develops a theoretic-experimental study dealing with the effects of an automatic shading device on the energetic performance of a dimmable lighting system and a cooling equipment. Some equations related to fenestration optical and thermal properties are rebuilt, while some others are created, under a theoretical approach. In order to collect field data, the energy demand-and other variables - was measured in two distinct stories, with the same fenestration features, of the Test Tower. New data was gathered after adding an automatic shading device to the window of one story. The comparison of the collected data allows the energetic performance evaluation of the shading device. (author) 136 refs., 55 figs., 6 tabs.

  15. Automatic shading effects on the energetic performance of building systems; Efeito do sombreamento automatico no desempenho de sistemas prediais

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Racine Tadeu Araujo

    1996-12-31

    This thesis develops a theoretic-experimental study dealing with the effects of an automatic shading device on the energetic performance of a dimmable lighting system and a cooling equipment. Some equations related to fenestration optical and thermal properties are rebuilt, while some others are created, under a theoretical approach. In order to collect field data, the energy demand-and other variables - was measured in two distinct stories, with the same fenestration features, of the Test Tower. New data was gathered after adding an automatic shading device to the window of one story. The comparison of the collected data allows the energetic performance evaluation of the shading device. (author) 136 refs., 55 figs., 6 tabs.

  16. Biogas - energetical and environmental point of view

    International Nuclear Information System (INIS)

    Skele, A.; Upitis, A.; Kristapsons, M.; Goizevskis, O.; Ziemelis, I.

    2003-01-01

    Energy sector has been one of the most important priorities since reestablishment of independence of Latvia. The deficiency of energy resources in Latvia has created a need to assess all the possibilities to utilise all possibilities to utilise all the energy resources, including the biological ones, to motivate the trends in the development of energetic in Latvia. A huge non-utilised reserve in Latvia is methane fermentation of organic agricultural and municipal residue and sewage from food industry. The organic mass of solid and liquid waste of different origin and its energetic potential for rural region have been investigated. The work deals with an integrated system of the utilisation of agricultural waste with the anaerobic (biogas) and the thermal processes. Presently the anaerobic waste utilisation, in combination with the production of biogas and organic fertiliser, is considered as one of the energetically most efficient and environment-friendly ways of organic fertiliser utilisation (authors)

  17. Effect of surface roughness scattering on the transport properties of a 2DEG

    International Nuclear Information System (INIS)

    Yarar, Z.

    2004-01-01

    In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for various auto-correlation functions. Gaussian, exponential and Lorentzian auto-correlation functions are used to represent surface roughness. Poisson and Schrodinger equations are solved self consistently at the hetero interface to find the energy levels, the wave functions corresponding to each level and electron concentrations at each level. Using these wave functions and the auto-correlation functions mentioned above, the scattering rates due to surface roughness are calculated. Scattering rates resulting from acoustic and optical phonons are also calculated. These rates are used to study the transport properties of the two dimensional electrons using ensemble Monte Carlo method at various temperatures. Emphasis is given to the effect of surface roughness scattering on the transport properties of the electrons

  18. Energetic protons at Mars: interpretation of SLED/Phobos-2 observations by a kinetic model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2012-11-01

    Full Text Available Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs from the Sun can penetrate close to the planet (under some circumstances reaching the surface. On 13 March 1989 the SLED instrument aboard the Phobos-2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8 RM. In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3-D self-consistent hybrid model (HYB-Mars where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1 a flux enhancement near the inbound bow shock, (2 the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3 the energy dependency of the flux enhancement near the bow shock and (4 how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars–solar wind interaction significantly modulated the Martian energetic particle environment.

  19. [Clinical and microbiological study regarding surface antibacterial properties of bioactive dental materials].

    Science.gov (United States)

    Târcă, T; Bădescu, Aida; Topoliceanu, C; Lăcătuşu, St

    2010-01-01

    In the new era of dentistry the coronal restoration materials must possess "bio-active" features represented by fluor ions release, chemical adhesion and antibacterial agents. Our study aims to determine the surface antibacterial properties of glassionomer cements and compomers. The study group included 64 patients with high cariogenic risk with 80 teeth with acute and chronic dental caries affecting proximal and occlusal dental surfaces. The teeth with cariogenic lesions were restored with zinc-oxide-eugenol (n=20), glassionomer cement GC Fuji Triage (n=20), glassionomer cement modified with resins Fuji II LC (n=20), compomer Dyract (n=20). DENTOCULT SM test (Orion Diagnostica, Finland) was used for bacterial analyses. The samples from bacterial biofilm were collected from the restorated dental surfaces (study group) and intact enamel surfaces (control group). The recorded data were processed using non-parametrical statistical tests. The lowest mean value of bacterial indices was recorded for glassionomer cement Fuji Triage (0.4), and Fuji II LC (1.2), material with highest surface antibacterial properties. The highest value (1.5) was recorded for compomer Dyract. The Kruskal-Wallis test proves the significant statistical differences between the three bioactive materials. The materials with bioactive features have the ability to inhibate the growth of Streptococcus mutans in bacterial biofilm to the surfaces of coronal restoration.

  20. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  1. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    Science.gov (United States)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  2. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  3. Surface alloy formation by adsorption of holmium on Ag/Mo(112) bimetallic surfaces

    Science.gov (United States)

    Kołaczkiewicz, Jan; Oleksy, Czesław

    2018-03-01

    Work function change measurements, low energy electron diffraction (LEED) and density functional theory (DFT) are used to determine the structures formed on Ag/Mo(112) bimetallic surfaces upon deposition of 0.5 monolayer (ML) of holmium. As the bimetallic surfaces, we have chosen the Mo(112) substrate covered with 1 or 2 ML of Ag. Such surfaces have the same symmetry as the Mo(112) face but different electronic properties. LEED experiment indicates that the c(2 × 2) structure is formed on (1 ML Ag)/Mo(112) bimetallic surface upon deposition of 0.5 ML of Ho. DFT calculations show that a type of Ag-Ho surface alloy is formed, with Ho atoms 0.6 Å below the distorted layer of Ag. This is neither a substitutional nor a subsurface alloy. It is found that the adsorption structure formed on the (2 ML Ag)/Mo(112) bimetallic surface depends on the annealing temperature. After deposition of 0.5 ML of Ho at 300 K, the LEED pattern of p(2 × 2) symmetry is observed. Annealing of the overlayer at 640 K irreversibly changes the p(2 × 2) pattern into a pattern of c(2 × 2) type. The results of DFT computations show that the c(2 × 2) structure of the Ag-Ho surface alloy is energetically most favorable. In this structure, 0.5 ML of Ho is between the two monolayers of Ag, and the symmetry of the topmost layer is changed. The work function change calculated for the c(2 × 2) structure is in a good agreement with the measured value (0.22 eV). The results show that adsorption of Ho on the Ag/Mo(112) bimetallic surfaces is substantially different than on the clean Mo(112).

  4. Chemistry and structure of giant molecular clouds in energetic environments

    Science.gov (United States)

    Anderson, Crystal Nicole

    2016-09-01

    Throughout the years many studies on Galactic star formation have been conducted. This resulted in the idea that giant molecular clouds (GMCs) are hierarchical in nature with substructures spanning a large range of sizes. The physical processes that determine how molecular clouds fragment, form clumps/cores and then stars depends strongly on both recent radiative and mechanical feed- back from massive stars and, on longer term, from enhanced cooling due to the buildup of metals. Radiative and mechanical energy input from stellar populations can alter subsequent star formation over a large part of a galaxy and hence is relevant to the evolution of galaxies. Much of our knowledge of star formation on galaxy wide scales is based on scaling laws and other parametric descriptions. But to understand the overall evolution of star formation in galaxies we need to watch the feedback processes at work on giant molecular cloud (GMC) scales. By doing this we can begin to answer how strong feedback environments change the properties of the substructure in GMCs. Tests of Galactic star formation theory to other galaxies has been a challenging process due to the lack of resolution with current instruments. Thus, only the nearest galaxies allow us to resolve GMCs and their substructures. The Large Magellanic Cloud (LMC), is one of the closest low metallicity dwarf galaxies (D˜ 50 kpc) and is close enough that current instruments can resolve the sub- structure of its GMCs to molecular gas tracers (e.g. HCO+, HCN, HNC, CS, C2H, N2H+) detected in the LMC at 1.5-40 pc scales and in NGC 5253 at 40 pc scales. I then compare the molecular gas detections to the Central Molecular Zone in our Galaxy. Dense molecular gas was detected in all of the sources. For the regions in the LMC, molecular lines of CS, N2H+, C 2H, HNC, HCO+ and HCN were all detected in N159W and N113 while only HCN, HCO+, HNC, and C2H were detected in 30Dor-10. Toward NGC 5253 only HCO+, HCN, C2H and CS were detected. I

  5. Investigation of the Effects of Marble Material Properties on the Surface Quality

    Directory of Open Access Journals (Sweden)

    Sümeyra Cevheroğlu Çıra

    2018-01-01

    Full Text Available This study aims to investigate the effects of material properties of marble on surface roughness and glossiness. For this purpose, four types of limestones were investigated. Physicomechanical properties of samples were determined through laboratory measurements. Mineralogical and petrographical characterizations were made using thin-section analysis. X-ray fluorescence (XRF semiquantitative method was used for chemical analysis. Six different grinding-polishing tests for each marble unit were done under fixed operational conditions using the same abrasive series. Relationship between the material properties and the surface quality was investigated. Although the polishing-grinding tests were conducted under the same operational conditions, different levels of roughness and glossiness were observed on different samples. Data obtained from the study proved that the main cause of this difference is textural and chemical composition variations of the marble specimen. Moreover, statistical evaluations showed that porosity, uniaxial compressive strength, and indirect tensile strength have strong effects on the surface roughness and glossiness of the marble specimen. The presence of an inverse relationship between the glossiness and roughness levels was determined as the result of this study as well.

  6. Energetic ions and electrons and their acceleration processes in the magnetotail

    International Nuclear Information System (INIS)

    Scholer, M.

    1984-01-01

    Observations of energetic particle fluxes in the geomagnetic tail show that these particles exhibit a bursty appearance on all time scales. Often, however, the bursty appearance is merely due to multiple entries and exits of the spacecraft into and out of the plasma sheet which always contains varying fluxes of energetic particles. Observations of the suprathermal and high-energy component of the plasma sheet are discussed, and observations are presented of energetic particle bursts in the plasma sheet proper, which may be due to a locally ongoing acceleration process. Also discussed are energetic particle phenomena occurring near the edge of the plasma sheet, either during thinning or during recovery. Some recent results from the ISEE 3 deep tail mission bearing on energetic particle acceleration are presented, and the present status of the theory of particle acceleration within the magnetotail is briefly reviewed. 40 references

  7. Starting of H9ANFNb(P91) steel tubing production for energetics in domestic steel-works; Uruchomienie w krajowych hutach produkcji rur ze stali H9AMFNb(P91) przeznaczonych dla energetyki

    Energy Technology Data Exchange (ETDEWEB)

    Wiedermann, J. [Instytut Metalurgii Zelaza, Gliwice (Poland); Bieniek, K. [Huta Jednosc, Siemianowice Slaskie (Poland); Pogoda, K. [Huta Batory, Chorzow (Poland)

    1996-12-31

    The results of primary investigations and attempt of ferritic steel H9AMFNb production in domestic steel-works have been reported. The prototype series of tubes for energetic boilers have been tested and their mechanical properties determined. It has been found the applicability of the material for use in energetics. 9 refs, 4 figs, 3 tabs.

  8. Recent progress of hybrid simulation for energetic particles and MHD

    International Nuclear Information System (INIS)

    Todo, Y.

    2013-01-01

    Several hybrid simulation models have been constructed to study the evolution of Alfven eigenmodes destabilized by energetic particles. Recent hybrid simulation results of energetic particle driven instabilities are presented in this paper. (J.P.N.)

  9. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  10. Experimental study on surface properties of the PMMA used in high power spark gaps

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang

    2017-10-01

    This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  11. On the Size Dependence of Molar and Specific Properties of Independent Nano-phases and Those in Contact with Other Phases

    Science.gov (United States)

    Kaptay, George

    2018-05-01

    Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.

  12. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  13. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    OpenAIRE

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surface...

  14. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  15. The influence of surface functionalisation on the electrical properties and thermal stability of nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Joseph O; Li, Pei; Chaudhary, Aysha; Edgington, Robert; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology and the Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2014-10-07

    Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material. However, to date there has been little investigation of the electrical properties of this material. Due to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND, verified using Fourier transform infrared spectroscopy, are shown to strongly influence the electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also displayed so-called “surface conductivity,” a property displayed by hydrogen-terminated bulk diamond films, whilst O-NDs display properties high resistivity. These results indicate that under the correct conditions ND layers can display similar electrical properties to “bulk” diamond thin films.

  16. Prospective Symbiosis of Green Chemistry and Energetic Materials.

    Science.gov (United States)

    Kuchurov, Ilya V; Zharkov, Mikhail N; Fershtat, Leonid L; Makhova, Nina N; Zlotin, Sergey G

    2017-10-23

    A global increase in environmental pollution demands the development of new "cleaner" chemical processes. Among urgent improvements, the replacement of traditional hydrocarbon-derived toxic organic solvents with neoteric solvents less harmful for the environment is one of the most vital issues. As a result of the favorable combination of their unique properties, ionic liquids (ILs), dense gases, and supercritical fluids (SCFs) have gained considerable attention as suitable green chemistry media for the preparation and modification of important chemical compounds and materials. In particular, they have a significant potential in a specific and very important area of research associated with the manufacture and processing of high-energy materials (HEMs). These large-scale manufacturing processes, in which hazardous chemicals and extreme conditions are used, produce a huge amount of hard-to-dispose-of waste. Furthermore, they are risky to staff, and any improvements that would reduce the fire and explosion risks of the corresponding processes are highly desirable. In this Review, useful applications of almost nonflammable ILs, dense gases, and SCFs (first of all, CO 2 ) for nitration and other reactions used for manufacturing HEMs are considered. Recent advances in the field of energetic (oxygen-balanced and hypergolic) ILs are summarized. Significant attention is paid to the SCF-based micronization techniques, which improve the energetic performance of HEMs through an efficient control of the morphology and particle size distribution of the HEM fine particles, and to useful applications of SCFs in HEM processing that makes them less hazardous. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Magnetic and surface properties of Fe-Nb (Mo, V)-Cu-B-Si ribbons

    International Nuclear Information System (INIS)

    Butvinova, B.; Butvin, P.; Svec, P. Sr.; Matko, I.; Svec, P.; Janickovic, D.; Kadlecikova, M.

    2014-01-01

    The rapidly quenched Finemet (FeNbCuBSi) ribbons prepared by planar flow casting of the melt are very variable to obtain very good soft-magnetic properties. An appropriate thermal treatment leading to ultra-fine grain structure enables to attain such properties as desired for practical use. Increasing Fe percentage to the detriment of non-magnetic components lifts saturation induction above 1.3 T, preserves low coercivity and makes the alloy even cheaper to suit its mass production for use in power electronics. Apart from the plenty of benefits the ribbons show some risks. One of them is macroscopic heterogeneity, which often manifests via differences between surfaces and interior of a ribbon [3]. The surfaces squeeze (by in-plane force) the interior of many such ribbons and if engaged in magnetoelastic interaction, the force affects the resulting magnetic anisotropy [4]. Current research shows that changes of hysteresis loop shape come rather from surface crystallization and not from oxides namely in positively magnetostrictive alloys FeNbCuBSi known as low- Si Finemets. The object of this work is to verify whether the substitution of another element instead of Nb (usually incorporated as the grain-growth blocker) can change surface properties and affects the resulting magnetic properties. We chose V and Mo instead of Nb. Oxides, oxyhydroxides and a possible squeezing layer was looked for after higher temperature annealing which ensures partially nanocrystalline structure. (authors)

  18. DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS?

    International Nuclear Information System (INIS)

    Seripienlert, A.; Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2010-01-01

    In recent observations by the Advanced Composition Explorer, the intensity of solar energetic particles exhibits sudden, large changes known as dropouts. These have been explained in terms of turbulence or a flux tube structure in the solar wind. Dropouts are believed to indicate filamentary magnetic connection to a localized particle source near the solar surface, and computer simulations of a random-phase model of magnetic turbulence have indicated a spatial association between dropout features and local trapping boundaries (LTBs) defined for a two-dimensional (2D) + slab model of turbulence. Previous observations have shown that dropout features are not well associated with sharp magnetic field changes, as might be expected in the flux tube model. Random-phase turbulence models do not properly treat sharp changes in the magnetic field, such as current sheets, and thus cannot be tested in this way. Here, we explore the properties of a more realistic magnetohydrodynamic (MHD) turbulence model (2D MHD), in which current sheets develop and the current and magnetic field have characteristic non-Gaussian statistical properties. For this model, computer simulations that trace field lines to determine magnetic connection from a localized particle source indicate that sharp particle gradients should frequently be associated with LTBs, sometimes with strong 2D magnetic fluctuations, and infrequently with current sheets. Thus, the 2D MHD + slab model of turbulent fluctuations includes some realistic features of the flux tube view and is consistent with the lack of an observed association between dropouts and intense magnetic fields or currents.

  19. A DIRECT METHOD TO DETERMINE THE PARALLEL MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES WITH ADIABATIC FOCUSING

    International Nuclear Information System (INIS)

    He, H.-Q.; Wan, W.

    2012-01-01

    The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.

  20. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...