WorldWideScience

Sample records for surface emission coefficients

  1. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  2. Uranium plasma emission coefficient in the visible and near UV.

    Science.gov (United States)

    Mack, J. M., Jr.; Usher, J. L.; Schneider, R. T.; Campbell, H. D.

    1971-01-01

    Measurements of the specific emission coefficient in the near ultra-violet and visible region of a uranium arc plasma are reported. Spatial unfolding of the intensity profile is used to determine the emission coefficient in the spectral range of 2000 A to 6000 A. The uranium partial pressure is estimated to range between .001 and .01 atmosphere, and the corresponding temperature range is 5000 - 10,000 K.

  3. Carbon emission coefficient measurement of the coal-to-power energy chain in China

    International Nuclear Information System (INIS)

    Yu, Shiwei; Wei, Yi-Ming; Guo, Haixiang; Ding, Liping

    2014-01-01

    Highlights: • CO 2 emissions coefficient of the coal-energy chain in China is currently at 875 g/kW h −1 . • The emission coefficient is a relatively low level compared with other countries. • CO 2 is the main type of GHG emission and the most direct emission in the chain. • A great decline of potential energy use exists in the coal mining process of China compared with other countries. - Abstract: Coal-fired electricity generation has become the largest source of carbon emission in China. This study utilizes life-cycle assessment to assess the effect of carbon emissions and to calculate the coefficient of carbon emissions in coal-to-energy chains. Results show that the carbon emission coefficient of the coal-to-energy chain in China is 875 g/kW h −1 , which is a relatively low level compared with that of other countries. CO 2 is the main type of greenhouse gas emission and is the most abundant type of direct emission. China has to reduce electrical consumption in the coal-mining process to reduce carbon emissions in coal-to-energy chains. Moreover, China has to facilitate railway-line construction to improve the proportion of railway transportation to coal transportation

  4. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  5. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  6. Carbon emission coefficient measurement of the coal-to-power energy chain in China

    OpenAIRE

    Shiwei Yu; Yi-Ming Wei; Haixiang Guo; Liping Ding

    2012-01-01

    Coal-fired electricity generation has become the largest source of carbon emission in China. This study utilizes life-cycle assessment to assess the effect of carbon emissions and to calculate the coefficient of carbon emissions in coal-to-energy chains. Results show that the carbon emission coefficient of the coal-to-energy chain in China is 875 g/kW h-1, which is a relatively low level compared with that of other countries. CO2 is the main type of greenhouse gas emission and the most abunda...

  7. Reconstruction of emission coefficients for a non-axisymmetric coupling arc by algebraic reconstruction technique

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xiong Jun; Gao Hongming; Wu Lin

    2011-01-01

    A preliminary investigation of tomographic reconstruction of an asymmetric arc plasma has been carried out. The objective of this work aims at reconstructing emission coefficients of a non-axisymmetric coupling arc from measured intensities by means of an algebraic reconstruction technique (ART). In order to define the optimal experimental scheme for good quality with limited views, the dependence of the reconstruction quality on three configurations (four, eight, ten projection angles) are presented and discussed via a displaced Gaussian model. Then, the emission coefficients of a free burning arc are reconstructed by the ART with the ten-view configuration and an Abel inversion, respectively, and good agreement is obtained. Finally, the emission coefficient profiles of the coupling arc are successfully achieved with the ten-view configuration. The results show that the distribution of emission coefficient for the coupling arc is different from centrosymmetric shape. The ART is perfectly suitable for reconstructing emission coefficients of the coupling arc with the ten-view configuration, proving the feasibility and utility of the ART to characterize an asymmetric arc.

  8. Measurement of Dynamic Friction Coefficient on the Irregular Free Surface

    International Nuclear Information System (INIS)

    Yeom, S. H.; Seo, K. S.; Lee, J. H.; Lee, K. H.

    2007-01-01

    A spent fuel storage cask must be estimated for a structural integrity when an earthquake occurs because it freely stands on ground surface without a restriction condition. Usually the integrity estimation for a seismic load is performed by a FEM analysis, the friction coefficient for a standing surface is an important parameter in seismic analysis when a sliding happens. When a storage cask is placed on an irregular ground surface, measuring a friction coefficient of an irregular surface is very difficult because the friction coefficient is affected by the surface condition. In this research, dynamic friction coefficients on the irregular surfaces between a concrete cylinder block and a flat concrete slab are measured with two methods by one direction actuator

  9. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...... of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches. The roughness length corresponding to the usual Monin-Obukhov stability functions decreases with increasing wind...

  10. Rough surface mitigates electron and gas emission

    International Nuclear Information System (INIS)

    Molvik, A.

    2004-01-01

    Heavy-ion beams impinging on surfaces near grazing incidence (to simulate the loss of halo ions) generate copious amounts of electrons and gas that can degrade the beam. We measured emission coefficients of η e (le) 130 and η 0 ∼ 10 4 respectively, with 1 MeV K + incident on stainless steel. Electron emission scales as η e ∝ 1/cos(θ), where θ is the ion angle of incidence relative to normal. If we were to roughen a surface by blasting it with glass beads, then ions that were near grazing incidence (90 o ) on smooth surface would strike the rims of the micro-craters at angles closer to normal incidence. This should reduce the electron emission: the factor of 10 reduction, Fig. 1(a), implies an average angle of incidence of 62 o . Gas desorption varies more slowly with θ (Fig. 1(b)) decreasing a factor of ∼2, and along with the electron emission is independent of the angle of incidence on a rough surface. In a quadrupole magnet, electrons emitted by lost primary ions are trapped near the wall by the magnetic field, but grazing incidence ions can backscatter and strike the wall a second time at an azimuth where magnetic field lines intercept the beam. Then, electrons can exist throughout the beam (see the simulations of Cohen, HIF News 1-2/04). The SRIM (TRIM) Monte Carlo code predicts that 60-70% of 1 MeV K + ions backscatter when incident at 88-89 o from normal on a smooth surface. The scattered ions are mostly within ∼10 o of the initial direction but a few scatter by up to 90 o . Ion scattering decreases rapidly away from grazing incidence, Fig. 1(c ). At 62 deg. the predicted ion backscattering (from a rough surface) is 3%, down a factor of 20 from the peak, which should significantly reduce electrons in the beam from lost halo ions. These results are published in Phys. Rev. ST - Accelerators and Beams

  11. Surface temperature measurement using infrared radiometer. 1st Report. ; Radiosity coefficient and radiation temperature. Sekigaisen eizo sochi wo riyoshita jitsuyoteki ondo keisoku ni kansuru kenkyu. 1. ; Shado keisu to hosha ondo no kankei

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Y; Inagaki, T; Sekiya, M [Ibaraki University, Ibaraki (Japan). Faculty of Engineering

    1993-12-25

    As a part of the studies on practical surface temperature measurement by infrared radiometer, some basic characteristics of an infrared radiometer were studied by using three kinds of sensors with different detectable wave lengths. Specimens allowable for gray body approximation such as mortar, graphite and carbon fiber composite material were tested at a practical ambient temperature of 293 K. As a result, the difference between a radiation temperature in consideration of reflection and that derived from an emissivity increased with a decrease in emissivity, and the deviation of an emissivity derived from a radiosity coefficient increased at 20 K or less in difference between a specimen surface temperature and ambient one. Each radiosity coefficient measured by each sensor also fairly agreed with each other. The deviation of a radiosity coefficient was relatively small indicating a good agreement between theoretical and experimental data, while the difference between emissivity and radiosity coefficient deviations decreased with an increase in specimen surface temperature. 3 refs., 10 figs., 1 tab.

  12. Neoclassical transport coefficients for tokamaks with bean-shaped flux surfaces

    International Nuclear Information System (INIS)

    Chang, C.S.; Kaye, S.M.

    1990-11-01

    Simple analytic representations of the neoclassical transport coefficients for indented flux surfaces are presented. It is shown that a transport coefficient for an indented flux surface can be expressed in terms of a linear combination of the previously known transport coefficients for two nonindented flux surfaces. Numerical calculations based on actual equilibria from the PBX-M tokamak indicate that, even for modestly indented flux surfaces, the ion neoclassical thermal transport can be over a factor of two smaller than in a circular plasma with the same midplane radius or with the equivalent areas. 6 refs., 5 figs., 1 tab

  13. Carbon emission coefficient of power consumption in India: baseline determination from the demand side

    International Nuclear Information System (INIS)

    Nag, Barnali; Parikh, J.K.

    2005-01-01

    Substantial investments are expected in the Indian power sector under the flexibility mechanisms (CDM/JI) laid down in Article 12 of the Kyoto Protocol. In this context it is important to evolve a detailed framework for baseline construction in the power sector so as to incorporate the major factors that would affect the baseline values directly or indirectly. It is also important to establish carbon coefficients from electricity generation to help consider accurate project boundaries for numerous electricity conservation and DSM schemes. The objective of this paper is to provide (i) time series estimates of indirect carbon emissions per unit of power consumption (which can also be thought of as emission coefficient of power consumption) and (ii) baseline emissions for the power sector till 2015. Annual time series data on Indian electricity generating industry, for 1974-1998, has been used to develop emission projections till 2015. The impacts of generation mix, fuel efficiency, transmission and distribution losses and auxiliary consumption are studied in a Divisia decomposition framework and their possible future impacts on baseline emissions are studied through three scenarios of growth in power consumption. The study also estimates and projects the carbon emission coefficient per unit of final consumption of electricity that can be used for conducting cost benefit of emission reduction potential for several electricity conserving technologies and benchmarking policy models

  14. Mass transfer inside a flux hood for the sampling of gaseous emissions from liquid surfaces - Experimental assessment and emission rate rescaling

    Science.gov (United States)

    Prata, Ademir A.; Lucernoni, Federico; Santos, Jane M.; Capelli, Laura; Sironi, Selena; Le-Minh, Nhat; Stuetz, Richard M.

    2018-04-01

    This study assesses the mass transfer of compounds inside the US EPA flux hood, one of the enclosure devices most commonly employed for the direct measurement of atmospheric emissions from liquid surfaces in wastewater treatment plants (WWTPs). Experiments comprised the evaporation of water and the volatilisation of a range of volatile organic compounds (VOCs). Special attention was given to the evaluation of the mass transfer coefficients in the microenvironment created by the flux hood and the effects of concentration build up in the hood's headspace. The VOCs emission rates and the water evaporation rates generally increased with the sweep air flow rate, as did the mass transfer coefficients for all compounds. The emission of compounds whose volatilisation is significantly influenced by the gas phase was greatly affected by concentration build up, whereas this effect was not significant for liquid phase-controlled compounds. The gas-film mass transfer coefficient (kG) estimated inside the US EPA flux hood was of the same order as the respective kG reported in the literature for wind tunnel-type devices, but the emission rates measured by the flux hood can be expected to be lower, due to the concentration build-up. Compared against an emission model for the passive surfaces in WWTPs, the mass transfer of acetic acid (representing a gas phase-dominated compound) inside the US EPA flux hood was equivalent to conditions of wind speeds at 10 m height (U10) of 0.27, 0.51 and 0.99 m s-1, respectively, for sweep air flow rates of 2, 5 and 10 L min-1. On the other hand, for higher wind speeds, the emission rates of gas phase-controlled compounds obtained with the flux hood can be considerably underestimated: for instance, at U10 = 5 m s-1, the emission rates of acetic acid inside the flux hood would be approximately 23, 12 and 6 times lower than the emission rates in the field, for sweep air flow rates of 2, 5 and 10 L min-1, respectively. A procedure is presented in

  15. Electron emission at the rail surface

    International Nuclear Information System (INIS)

    Thornhill, L.; Battech, J.

    1991-01-01

    In this paper the authors examine the processes by which current is transferred from the cathode rail to the plasma armature in an arc-driven railgun. Three electron emission mechanisms are considered, namely thermionic emission, field-enhanced thermionic emission (or Schottky emission), and photoemission. The author's calculations show that the dominant electron emission mechanism depends, to a great extent, on the work function of the rail surface, the rail surface temperature, the electric field at the rail surface, and the effective radiation temperature of the plasma. For conditions that are considered to be typical of a railgun armature, Schottky emission is the dominant electron emission mechanism, providing current densities on the order of 10 9 A/m 2

  16. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  17. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    Science.gov (United States)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  18. Lorenz curve and Gini coefficient reveal hot spots and hot moments for nitrous oxide emissions

    Science.gov (United States)

    Identifying hot spots and hot moments of N2O emissions in the landscape is critical for monitoring and mitigating the emission of this powerful greenhouse gas. We propose a novel use of the Lorenz curve and Gini coefficient (G) to quantify the heterogeneous distribution of N2O emissions from a lands...

  19. CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient

    International Nuclear Information System (INIS)

    Mihálka, Peter; Matiašovský, Peter

    2016-01-01

    The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity of an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.

  20. Calculation of total cross sections and effective emission coefficients for B5+ collisions with ground-state and excited hydrogen

    International Nuclear Information System (INIS)

    Guzman, F; Errea, L F; Illescas, Clara; Mendez, L; Pons, B

    2010-01-01

    Classical and semiclassical calculations of nl-resolved charge exchange cross sections in B 5 + collisions with H(n i ) are performed to compute effective emission coefficients for the n = 7 → n = 6 transition in B 4 + for plasma conditions typical of the ASDEX-U tokamak. For n i = 1, the value of the emission coefficient is larger than that obtained from ADAS database by a factor of 2 at energies of 10 keV amu -1 , but no differences are found at energies above 50 keV amu -1 . For n i = 2, our calculation yields emission coefficients close to those derived from ADAS data from low to high impact energies. The emission coefficients corresponding to B 5 + + H(n i = 3) collisions are of the same order of magnitude as those for n i = 2.

  1. Secondary electron emission from textured surfaces

    Science.gov (United States)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  2. Surface behavior based on ion-induced secondary electron emission from semi-insulating materials in breakdown evolution

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Emrah; Karakoese, Sema [Department of Physics, Faculty of Sciences, Gazi University, 06500 Ankara (Turkey); Salamov, Bahtiyar G. [Department of Physics, Faculty of Sciences, Gazi University, 06500 Ankara (Turkey); Institute of Physics, National Academy of Science, 1143 Baku (Azerbaijan)

    2013-09-15

    This study focuses on analyses of secondary electron emission (SEE) at semiconductor surfaces when the sufficient conditions of space-time distribution occur. Experimental measurements and calculations with the approach of Townsend coefficients, which include the evaluations of ionization coefficient ({alpha}) and SEE coefficient ({gamma}) were performed in high-ohmic InP, GaAs, and Si semiconductor cathodes with argon and air environments in a wide range of E/N (300-10 000 Td). The direct calculations of {gamma} were carried out to determine the behavior of cold-semiconductor cathode current in a wide range of microgaps (45-525 {mu}m). Paschen curves are interpreted in the dependence of large pd range on breakdown voltage through {gamma} and {alpha}/N. Ion-induced secondary electrons exhibit the direct behaviors affecting the timescale of breakdown evolution in the vicinity of the Paschen minimum during the natural bombardment process with ions of semiconductor cathodes. Also, when {alpha}/N rapidly drops and the excitations of gas atoms densely occupy the gas volume, we determined that the photoelectric effect provides a growth for electron emission from semiconductor surfaces at the breakdown stage at the reduced values of E/N. At all pressures, the emission magnitudes of electrons liberated by semiconductor cathodes into vacuum are found as {gamma}{sub InP} > {gamma}{sub GaAs} > {gamma}{sub Si} in breakdown evolution. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Variability of emissivity and surface temperature over a sparsely vegetated surface

    International Nuclear Information System (INIS)

    Humes, K.S.; Kustas, W.P.; Moran, M.S.; Nichols, W.D.; Weltz, M.A.

    1994-01-01

    Radiometric surface temperatures obtained from remote sensing measurements are a function of both the physical surface temperature and the effective emissivity of the surface within the band pass of the radiometric measurement. For sparsely vegetated areas, however, a sensor views significant fractions of both bare soil and various vegetation types. In this case the radiometric response of a sensor is a function of the emissivities and kinetic temperatures of various surface elements, the proportion of those surface elements within the field of view of the sensor, and the interaction of radiation emitted from the various surface components. In order to effectively utilize thermal remote sensing data to quantify energy balance components for a sparsely vegetated area, it is important to examine the typical magnitude and degree of variability of emissivity and surface temperature for such surfaces. Surface emissivity measurements and ground and low-altitude-aircraft-based surface temperature measurements (8-13 micrometer band pass) made in conjunction with the Monsoon '90 field experiment were used to evaluate the typical variability of those quantities during the summer rainy season in a semiarid watershed. The average value for thermal band emissivity of the exposed bare soil portions of the surface was found to be approximately 0.96; the average value measured for most of the varieties of desert shrubs present was approximately 0.99. Surface composite emissivity was estimated to be approximately 0.98 for both the grass-dominated and shrub-dominated portions of the watershed. The spatial variability of surface temperature was found to be highly dependent on the spatial scale of integration for the instantaneous field of view (IFOV) of the instrument, the spatial scale of the total area under evaluation, and the time of day

  4. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Directory of Open Access Journals (Sweden)

    Kieruj Piotr

    2016-12-01

    Full Text Available This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples’ temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  5. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    Science.gov (United States)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  6. Plateau diffusion coefficient for arbitrary flux surface geometry

    International Nuclear Information System (INIS)

    Meier, H.K.; Hirshman, S.P.; Sigmar, D.J.; Lao, L.L.

    1981-03-01

    A relatively simple but accurate representation has been developed for magnetic flux surfaces; it is valid for finite β and it describes configurations with both ellipticity and D-shape. This representation has been applied to the computation of the diffusion coefficient in the plateau regime

  7. Surface-electronic-state effects in electron emission from the Be(0001) surface

    International Nuclear Information System (INIS)

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-01-01

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  8. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C. D. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Silkin, V. M. [Donostia International Physics Center, E-20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, Apartado 1072, E-20080 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain)

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  9. Field Measurements of PCB emissions from Building Surfaces Using a New Portable Emission Test Cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Haven, Rune; Gunnarsen, Lars Bo

    2016-01-01

    The purpose of the study was to measure PCB-emission rates from indoor surfaces on-site in contaminated buildings using a newly developed portable emission test cell. Emission rates were measured from six different surfaces; three untreated surfaces and three remediated surfaces in a contaminated...

  10. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    Science.gov (United States)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  11. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    International Nuclear Information System (INIS)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data

  12. Determining the surface roughness coefficient by 3D Scanner

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  13. Photoelectric emission from negative-electron-affinity diamond (111) surfaces: Exciton breakup versus conduction-band emission

    International Nuclear Information System (INIS)

    Bandis, C.; Pate, B.B.

    1995-01-01

    We have recently reported that bound electron-hole pairs (Mott-Wannier excitons) are the dominant source of photoelectron emission from specially prepared [''as-polished'' C(111)-(1x1):H] negative-electron-affinity diamond surfaces for near-band-gap excitation up to 0.5 eV above threshold [C. Bandis and B. B. Pate, Phys. Rev. Lett. 74, 777 (1995)]. It was found that photoexcited excitons transport to the surface, break up, and emit their electron. In this paper, we extend the study of exciton-derived emission to include partial yield (constant final-state) analysis as well as angular distribution measurements of the photoelectric emission. In addition, we find that exciton-derived emission does not always dominate. Photoelectric emission properties of the in situ ''rehydrogenated'' (111)-(1x1):H diamond surface are characteristically different than emission observed from the as-polished (111)-(1x1):H surface. The rehydrogenated surface has additional downward band bending as compared to the as-polished surface. In confirmation of the assignment of photoelectric yield to exciton breakup emission, we find a significant enhancement of the total electron yield when the downward band bending of the hydrogenated surface is increased. The functional form of the observed total electron yield demonstrates that, in contrast to the as-polished surface, conduction-band electrons are a significant component of the observed photoelectric yield from the in situ hydrogenated (111)-(1x1):H surface. Furthermore, electron emission characteristics of the rehydrogenated surface confirms our assignment of a Fan phonon-cascade mechanism for thermalization of excitons

  14. FTIR Emission spectroscopy of surfaces

    Science.gov (United States)

    Van Woerkom, P. C. M.

    A number of vibrational spectroscopic techniques are available For the study of surfaces, such as ATR, IR reflection-absorption, IR emission, etc. Infrared emission is hardly used, although interesting applications are possible now due to the high sensitivity of Fourier transform IR (FTIR) spectrometers. Two examples, where infrared emission measurements are very fruitful, will be given. One is the investigation of the curing behaviour of organic coatings, the other is the in situ study of heterogeneously catalyzed reactions. Undoubtedly, infrared emission measurements offer a number of specific advantages in some cases. Especially the less critical demands on the sample preparation are important.

  15. Measurement of integrated coefficients of ultracold neutron reflection from solid surfaces

    International Nuclear Information System (INIS)

    Golikov, V.V.; Kulagin, E.N.; Nikitenko, Yu.V.

    1985-01-01

    The method of measurement of the integrated coefficients of ultracold neutrons (UCN) reflection from solid surfaces is reported. A simple formula is suggested which expresses the integrated coefficients of UCN reflection from a given sample through the measured counting rate of the detector with and without strong absorber (polyethelene). The parameters are determined describing anisotropic and inhomogeneity properties of UCN reflection from Al, Mg, Pb, Zn, Mo, stainless steel, T and V are measured. The thickness of oxide layers is determined within the 5-10A accuracy limits from the experimental coefficients of UCN reflection from metals having on their surfaces the oxides with boundary velocity larger than that for the metal. It has been determined that the density of 5000 A layer of heavy ice freezed on aluminium is 0.83 +- 0.05 from the crystal ice density

  16. Surface spectral emissivity derived from MODIS data

    Science.gov (United States)

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  17. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    Science.gov (United States)

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  18. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  19. Surface renewal as a significant mechanism for dust emission

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2016-12-01

    Full Text Available Wind tunnel experiments of dust emissions from different soil surfaces are carried out to better understand dust emission mechanisms. The effects of surface renewal on aerodynamic entrainment and saltation bombardment are analyzed in detail. It is found that flow conditions, surface particle motions (saltation and creep, soil dust content and ground obstacles all strongly affect dust emission, causing its rate to vary over orders of magnitude. Aerodynamic entrainment is highly effective, if dust supply is unlimited, as in the first 2–3 min of our wind tunnel runs. While aerodynamic entrainment is suppressed by dust supply limits, surface renewal through the motion of surface particles appears to be an effective pathway to remove the supply limit. Surface renewal is also found to be important to the efficiency of saltation bombardment. We demonstrate that surface renewal is a significant mechanism affecting dust emission and recommend that this mechanism be included in future dust models.

  20. Influence of surface modification on friction coefficient of the titanium-elastomer couple.

    Science.gov (United States)

    Chladek, Wiesław; Hadasik, Eugeniusz; Chladek, Grzegorz

    2007-01-01

    This paper presents the results of a study of the friction coefficient of titanium-elastomer couple. The study was carried out with a view to potential future utilization of its results for constructing retentive elements of implanted prostheses. Changes in the friction force were recorded while removing titanium specimens placed between two silicone counter specimens made of Ufi Gel. The influence of the titanium specimen movement speed in relation that of to the counter specimens and the influence of clamping force on the friction force were assessed. Additionally, the surface roughness of titanium specimens differed; in one case, titanium was coated with polyethylene. The effect of introducing artificial saliva between the cooperating surfaces on the friction force and friction coefficient was analyzed as well. Based on the characteristics recorded, the possibilities of shaping the friction coefficient have been assessed, since it is the friction coefficient that determines effective operation of a friction couple through increasing the titanium specimen roughness. The artificial saliva being introduced between the specimens reduces considerably the friction coefficient through a change of the phenomenon model. An increase in the pressure force for the specimens of high roughness entails a reduction of the friction coefficient. The study carried out allows us to identify the roughness parameters, which in turn will enable obtaining the prescribed retention force for friction/membrane couplings.

  1. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    Science.gov (United States)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  2. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    Science.gov (United States)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  3. Experimental Study on the Tensile Strength and Linear Expansion Coefficient of Air Tunnel Terrazzo Surface

    Directory of Open Access Journals (Sweden)

    Boping Li

    2015-01-01

    Full Text Available At present, studies on the surface tension of air tunnel terrazzo under wind load and how regularly it is affected by temperature are relatively less, and the measured results of the thermal expansion coefficient of terrazzo have not yet been given. In this paper, based on the top terrazzo surface structure of the inner wall of the wind tunnel, the tensile performance tests of terrazzo surface layer are conducted, while the thermal expansion coefficient of the six terrazzo test blocks were tested. The tests and analysis show that the construction of terrazzo surface, based on the proposed construction process, can effectively guarantee the reliable cement performance for the binding layer between mortar and concrete base layer, terrazzo surface layer and the cement mortar layer. And the thermal expansion coefficient of terrazzo can be valued at 1.06e-5/ºC.

  4. Field emission from the surface of highly ordered pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Knápek, Alexandr, E-mail: knapek@isibrno.cz [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic); Sobola, Dinara; Tománek, Pavel [Department of Physics, FEEC, Brno University of Technology, Technická 8, Brno (Czech Republic); Pokorná, Zuzana; Urbánek, Michal [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic)

    2017-02-15

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  5. Field emission from the surface of highly ordered pyrolytic graphite

    International Nuclear Information System (INIS)

    Knápek, Alexandr; Sobola, Dinara; Tománek, Pavel; Pokorná, Zuzana; Urbánek, Michal

    2017-01-01

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  6. Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients

    Science.gov (United States)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua

    2018-04-01

    The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.

  7. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    Science.gov (United States)

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.

  8. Determination of surface tension coefficient of liquids by diffraction of light on capillary waves

    International Nuclear Information System (INIS)

    Nikolić, D; Nešić, Lj

    2012-01-01

    This paper describes a simple technique for determining the coefficient of the surface tension of liquids, based on laser light diffraction on capillary waves. Capillary waves of given frequency are created by an exciter needle acting on the surface of liquid and represent a reflective diffraction grating, the constant of which (the wavelength of capillary waves) can be determined based on a known incidence angle of light (grazing angle). We obtain the coefficient of the surface tension of liquids by applying the dispersion relation for capillary waves and analyze the difficulties that arise when setting up and conducting the experiment in detail. (paper)

  9. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement....... These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the “micropipette interfacial area-expansion method” was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion...... for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2 ± 0.8 × 10−6 cm2/s, showed excellent agreement with the result from an alternative method, “single microdroplet catching method”, to measure the diffusion coefficient from diffusion-controlled microdroplet...

  10. Current in heavy-current planar diode with discrete emission surface

    International Nuclear Information System (INIS)

    Belomyttsev, S.Ya.; Korovin, S.D.; Pegel', I.V

    1999-01-01

    Dependence of current in a high-current planar diode on the size of emission centres was studied. Essential effect of emission surface microstructure on the current value in the planar diode was demonstrated. It was determined that if the distance between the emitter essentially exceeded their size then current dependence on the ratio of size to the value of the diode gap was an exponential function with 3/2 index. Current dependence on voltage obeyed the exponential law with 3/2 index up to higher voltage values in the planar diode with discrete emission surface in contrast to the case of a planar diode with homogeneous emission surface [ru

  11. Electron emission during multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Meyer, F.W.; Zehner, D.M.

    1990-01-01

    Recent measurements of electron spectra for slow multicharged N ion-surface collisions are presented. The emphasis is on potential emission, i.e. the electron emission related to the neutralization of the ions. When using N ions that carry a K shell vacancy into the collision, characteristic K Auger electron emission from the projectiles is observed, as well as, for specific surfaces, target atom Auger transitions (resulting from vacancy transfer). Measurements of the intensity of these Auger transitions as a function of the time the ions spend above the surface can serve as a useful probe of the timescales characterizing the relevant neutralization processes. This technique is elucidated with the help of some computer simulations. It is shown that neutralization timescales required in the atomic ladder picture, in which neutralization takes place by resonant capture followed by purely intra-atomic Auger transitions, are too long to explain our experimental results. The introduction of additional neutralization/de-excitation mechanisms in the simulations leads to much better agreement with the experiments

  12. The surface emissions trap: a new approach in indoor air purification.

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2012-11-01

    A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Analytical solution for the normal emission portion of the averaged Yarkovsky-O'Keefe-Radzvieskii-Paddack coefficient for a single facet

    Science.gov (United States)

    Albuja, Antonella A.; Scheeres, Daniel J.

    2015-02-01

    The Yarkovsky-O'Keefe-Radzvieskii-Paddack (YORP) effect has been well studied for asteroids. This paper develops an analytic solution to find the normal emission YORP component for a single facet. The solution presented here does not account for self-shadowing or self-heating. The YORP coefficient for all facets can be summed together to find the total coefficient of the asteroid. The normal emission component of YORP has been shown to be the most important for asteroids and it directly affects the rate of change of the asteroid's spin period. The analytical solution found is a sole function of the facet's geometry and the obliquity of the asteroid. This solution is universal for any facet and its orientation. The behaviour of the coefficient is analysed with this analytical solution. The closed-form solution is used to find the total YORP coefficient for the asteroids Apollo and 1998 ML14 whose shape models are composed of different numbers of facets. The results are then compared to published results and those obtained through numerical quadrature for validation.

  14. Fast and reliable method for computing free-bound emission coefficients for hydrogenic ions

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, A; Canto, J

    1985-12-01

    An approximate formula for the computation of the free-bound emission coefficient for hydrogenic ions is presented. The approximation is obtained through a manipulation of the (free-bound) Gaunt factor which intentionally distinguish the dependence on frequency from the dependence on temperature and ionic composition. Numerical tests indicate that the derived formula is very precise, fast and easy to use, making the calculation of the free-bound contribution from an ionized region of varying temperature and ionic composition a very simple and time-saving task.

  15. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer

    International Nuclear Information System (INIS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-01-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests. (paper)

  16. Photon emission produced by particle-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Tolk, N.H.

    1976-02-01

    Visible, ultraviolet, and infrared optical emission results from low-energy (20 eV-10 keV) particle-surface collisions. Several distinct kinds of collision induced optical radiation are discussed which provide fundamental information on particle-solid collision processes. Line radiation arises from excited states of sputtered surface constituents and backscattered beam particles. This radiation uniquely identifies the quantum state of sputtered or reflected particles, provides a method for identifying neutral atoms sputtered from the surface, and serves as the basis for a sensitive surface analysis technique. Broadband radiation from the bulk of the solid is attributed to the transfer of projectile energy to the electrons in the solid. Continuum emission observed well in front of transition metal targets is believed to arise from excited atom clusters (diatomic, triatomic, etc.) ejected from the solid in the sputtering process. Application of sputtered atom optical radiation for surface and depth profile analysis is demonstrated for the case of submonolayer quantities of chromium on silicon and aluminum implanted in SiO 2

  17. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface

  18. Bremsstrahlung emission coefficient of a plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Pangborn, R.J.

    1976-01-01

    The leading (electron-ion, dipole) contribution to the bremsstrahlung spectrum of a Maxwellian plasma in a constant, uniform magnetic field is calculated. The plasma is assumed infinite and fully ionized. A simpler, more direct derivation of Kirchoff's Law for anisotropic media is presented. The plasma dispersion relation is then found using previously obtained expressions for the conductivity tensor (accurate to first order in collisional effects). From the dispersion the collisional damping, assumed small, is obtained and by means of Kirchoff's Law an expression for the bremsstrahlung emission coefficient is written. No terms of order (kappa 2 lambda 2 0 ) or higher are included. For wave frequencies large compared with the plasma and electron cyclotron frequencies (ω 2 much greater than ω 2 rho, ω 2 much greater than Ω 3 ) an expansion of the exact result is given accurate to fourth order in Ω/ω and ω rho/ω. The result is found to disagree with previous high frequency expressions. Analysis of the exact expression reveals that for certain frequencies and directions of propagation the emission spectrum exhibits a resonance quality. The results are presented in such fashion that for various magnetic field strengths the frequency of the resonant emission at arbitrary angle relative to the field is easily obtained. These phenomena arise due to the influence of the magnetic fieldon the dielectric properties of the plasma and not because of its effect on the binary collision process. A physical explanation of the results is presented

  19. Sustained frictional instabilities on nanodomed surfaces: Stick-slip amplitude coefficient

    DEFF Research Database (Denmark)

    Quignon, Benoit; Pilkington, Georgia A.; Thormann, Esben

    2013-01-01

    to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick-slip oscillations, σf, was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope......-defined nanodomes comprising densely packed prolate spheroids, of diameters ranging from tens to hundreds of nanometers. Our results show that the average lateral force varied linearly with applied load, as described by Amontons' first law of friction, although no direct correlation between the sample topographic...... properties and their measured friction coefficients was identified. Furthermore, all the nanodomed textures exhibited pronounced oscillations in the shear traces, similar to the classic stick-slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led...

  20. Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach

    Directory of Open Access Journals (Sweden)

    Sid-Ahmed Boukabara

    2018-04-01

    Full Text Available A variational inversion scheme is used to extract microwave emissivity spectra from brightness temperatures over a multitude of surface types. The scheme is called the Microwave Integrated Retrieval System and has been implemented operationally since 2007 at NOAA. This study focuses on the Advance Microwave Sounding Unit (AMSU/MHS pair onboard the NOAA-18 platform, but the algorithm is applied routinely to multiple microwave sensors, including the Advanced Technology Microwave Sounder (ATMS on Suomi-National Polar-orbiting Partnership (SNPP, Special Sensor Microwave Imager/Sounder (SSMI/S on the Defense Meteorological Satellite Program (DMSP flight units, as well as to the Global Precipitation Mission (GPM Microwave Imager (GMI, to name a few. The emissivity spectrum retrieval is entirely based on a physical approach. To optimize the use of information content from the measurements, the emissivity is extracted simultaneously with other parameters impacting the measurements, namely, the vertical profiles of temperature, moisture and cloud, as well as the skin temperature and hydrometeor parameters when rain or ice are present. The final solution is therefore a consistent set of parameters that fit the measured brightness temperatures within the instrument noise level. No ancillary data are needed to perform this dynamic emissivity inversion. By allowing the emissivity to be part of the retrieved state vector, it becomes easy to handle the pixel-to-pixel variation in the emissivity over non-oceanic surfaces. This is particularly important in highly variable surface backgrounds. The retrieved emissivity spectrum by itself is of value (as a wetness index for instance, but it is also post-processed to determine surface geophysical parameters. Among the parameters retrieved from the emissivity using this approach are snow cover, snow water equivalent and effective grain size over snow-covered surfaces, sea-ice concentration and age from ice

  1. Photoelectron emission from metal surfaces by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Faraggi, M. N.; Gravielle, M. S.; Silkin, V. M.

    2006-01-01

    Electron emission from metal surfaces produced by short laser pulses is studied within the framework of the distorted-wave formulation. The proposed approach, named surface-Volkov (SV) approximation, makes use of the band-structure based (BSB) model and the Volkov phase to describe the interaction of the emitted electron with the surface and the external electric field, respectively. The BSB model provides a realistic representation of the surface, based on a model potential that includes the main features of the surface band structure. The SV method is applied to evaluate the photoelectron emission from the valence band of Al(111). Angular and energy distributions are investigated for different parameters of the laser pulse, keeping in all cases the carrier frequency larger than the plasmon one

  2. Electron emission from insulator surfaces by ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Acuna, M; Gravielle, M S, E-mail: mario@iafe.uba.a, E-mail: msilvia@iafe.uba.a [Institutes de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2009-11-01

    Photoelectron emission from insulator surfaces induced by ultra-short laser pulses is studied within a time-dependent distorted wave method. The proposed approach combines the Volkov phase, which takes into account the laser interaction, with a simple representation of the unperturbed surface states, given by the Tight-binding method. The model is applied to evaluate the photoelectron emission from a LiF(001) surface, finding effects of interference produced by the crystal lattice.

  3. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    Science.gov (United States)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  4. Spectral emissivity of surface blackbody calibrators

    DEFF Research Database (Denmark)

    Clausen, Sønnik

    2007-01-01

    The normal spectral emissivity of commercial infrared calibrators is compared with measurements of anodized aluminum samples and grooved aluminum surfaces coated with Pyromark. Measurements performed by FTIR spectroscopy in the wavelength interval from 2 to 20 mu m and at temperatures between 5...

  5. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    Science.gov (United States)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  6. Terahertz emission from semi-insulating GaAs with octadecanthiol-passivated surface

    International Nuclear Information System (INIS)

    Wu, Xiaojun; Xu, Xinlong; Lu, Xinchao; Wang, Li

    2013-01-01

    Terahertz (THz) emission from octadecanthiol (ODT) passivated (1 0 0) surface of the semi-insulating GaAs was measured, and compared with those from the native oxidized and the fresh surfaces. It was shown that the self-assembled ODT monolayer can stabilize the GaAs (1 0 0) surface, and maintain a THz surface emission 1.4 times as efficient as the native oxidized surface under equal conditions. Surface passivation can reduce the built-in electric field in the depletion region of the GaAs (1 0 0), resulting in the suppression of the THz radiation to a different extent. Oxidation of GaAs surface reduces the THz amplitude mainly in the low-frequency region. These results indicate that GaAs can be made a more effective THz source by choosing molecular passivation technique. Conversely, the THz emission features such as polarity, amplitude, and phase from molecule-passivated surfaces may be used to characterize the attached molecules.

  7. Estimation of the friction coefficient between wheel and rail surface using traction motor behaviour

    International Nuclear Information System (INIS)

    Zhao, Y; Liang, B; Iwnicki, S

    2012-01-01

    The friction coefficient between a railway wheel and rail surface is a crucial factor in maintaining high acceleration and braking performance of railway vehicles thus monitoring this friction coefficient is important. Restricted by the difficulty in directly measuring the friction coefficient, the creep force or creepage, indirect methods using state observers are used more frequently. This paper presents an approach using a Kalman filter to estimate the creep force and creepage between the wheel and rail and then to identify the friction coefficient using the estimated creep force-creepage relationship. A mathematic model including an AC motor, wheel and roller is built to simulate the driving system. The parameters are based on a test rig at Manchester Metropolitan University. The Kalman filter is designed to estimate the friction coefficient based on the measurements of the simulation model. Series of residuals are calculated through the comparison between the estimated creep force and theoretical values of different friction coefficient. Root mean square values of the residuals are used in the friction coefficient identification.

  8. A fast and reliable method for computing free-bound emission coefficients for hydrogenic ions

    International Nuclear Information System (INIS)

    Sarmiento, A.; Canto, J.

    1985-01-01

    An approximate formula for the computation of the free-bound emission coefficient for hydrogenic ions is presented. The approximation is obtained through a manipulation of the (free-bound) Gaunt factor which intentionally distinguish the dependence on frequency from the dependence on temperature and ionic composition. Numerical tests indicate that the derived formula is very precise, fast and easy to use, making the calculation of the free-bound contribution from an ionized region of varying temperature and ionic composition a very simple and time-saving task. (author)

  9. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  10. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  11. Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure

    International Nuclear Information System (INIS)

    Torvanger, A.

    1990-11-01

    In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs

  12. Sensitivity Analysis of the Surface Runoff Coefficient of HiPIMS in Simulating Flood Processes in a Large Basin

    Directory of Open Access Journals (Sweden)

    Yueling Wang

    2018-03-01

    Full Text Available To simulate flood processes at the basin level, the GPU-based High-Performance Integrated Hydrodynamic Modelling System (HiPIMS is gaining interest as computational capability increases. However, the difficulty of coping with rainfall input to HiPIMS reduces the possibility of acquiring a satisfactory simulation accuracy. The objective of this study is to test the sensitivity of the surface runoff coefficient in the HiPIMS source term in the Misai basin with an area of 797 km2 in south China. To achieve this, the basin was divided into 909,824 grid cells, to each of which a Manning coefficient was assigned based on its land use type interpreted from remote sensing data. A sensitivity analysis was conducted for three typical flood processes under four types of surface runoff coefficients, assumed a priori, upon three error functions. The results demonstrate the crucial role of the surface runoff coefficient in achieving better simulation accuracy and reveal that this coefficient varies with flood scale and is unevenly distributed over the basin.

  13. An experimental study of electron transfer and emission during particle-surface interactions

    International Nuclear Information System (INIS)

    McGrath, C.T.

    2000-09-01

    A new coincidence technique has been developed and used to study the secondary electron emission that arises during the interaction of ions with surfaces. This coincidence technique allows the secondary electron emission statistics due to the impact of singly, doubly and multiply charged ions on surfaces to be measured in coincidence with reflected particles, in specific charge states and with specific post-collision trajectories. This system has been used to study the impact of 8 keV H + ions on polycrystalline copper and aluminium targets. Under these conditions the potential emission contribution is negligible and the electron emission is almost entirely due to kinetic emission processes. The sub-surface contribution to the observed electron emission has been isolated using two newly developed models. These models provide valuable information about the depth and amount of surface penetration and on the probability for subsequent electron transport to the surface. The impact of 2 - 100 keV Xe q+ (q = 1 - 10) ions on polycrystalline copper has also been studied using this system. From the subsequent data the potential and kinetic contributions to secondary electron emission have been separated using a previously established model for potential emission. The resulting kinetic emission yield increases with increasing ion impact energy, consistent with current concepts on quasimolecular ionisation. For ions impacting at large incident angles evidence for sub-surface emission has also been observed. The degree of penetration increases with ion impact energy, consistent with current concepts on this effect. The formation of H - ions from incident H + ions has also been studied by measuring the secondary electron emission statistics in coincidence with reflected particles in specific final charge states. This preliminary data is consistent with a two-step process of Auger neutralisation followed by resonant electron capture to the affinity level. However this mechanism

  14. Is X-ray emissivity constant on magnetic flux surfaces?

    International Nuclear Information System (INIS)

    Granetz, R.S.; Borras, M.C.

    1997-01-01

    Knowledge of the elongations and shifts of internal magnetic flux surfaces can be used to determine the q profile in elongated tokamak plasmas. X-ray tomography is thought to be a reasonable technique for independently measuring internal flux surface shapes, because it is widely believed that X-ray emissivity should be constant on a magnetic flux surface. In the Alcator C-Mod tokamak, the X-ray tomography diagnostic system consists of four arrays of 38 chords each. A comparison of reconstructed X-ray contours with magnetic flux surfaces shows a small but consistent discrepancy in the radial profile of elongation. Numerous computational tests have been performed to verify these findings, including tests of the sensitivity to calibration and viewing geometry errors, the accuracy of the tomography reconstruction algorithms, and other subtler effects. We conclude that the discrepancy between the X-ray contours and the magnetic flux surfaces is real, leading to the conclusion that X-ray emissivity is not exactly constant on a flux surface. (orig.)

  15. Producing the surface structures with required properties with the help of concentrated fluxes of particles

    International Nuclear Information System (INIS)

    Li, I.P.; Rukhlyada, N.Ya.

    2005-01-01

    Pulsed plasma treatment has been proposed for modification of the surface layers of metal-matrix-porous cathodes and parts of electronic-vacuum devices. Surface plasma treatment leads to improvement of thermal emission properties of effective cathodes: work function decreases, secondary electron emission coefficient increases, and surface emission uniformity improves. With the help of pulse plasma, surface smoothing as well as formation of composite coatings can be done [ru

  16. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  17. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marbach, Johannes

    2012-09-20

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  18. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    International Nuclear Information System (INIS)

    Marbach, Johannes

    2012-01-01

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  19. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  20. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    Science.gov (United States)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  1. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  2. Experimental and Numerical Study on Effects of Airflow and Aqueous Ammonium Temperature on Ammonia Mass Transfer Coefficient

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, Peter V.; Zhang, Guoqiang

    2010-01-01

    greatly along the airflow direction on the emission surface. The average mass transfer coefficient increases with higher velocity and turbulence intensity. However, the mass transfer coefficient estimated by CFD simulation is consistently larger than the calculated one by the method using dissociation...... constant and Henry's constant models. In addition, the results show that the liquid-air temperature difference has little impact on the simulated mass transfer coefficient by CFD modeling, whereas the mass transfer coefficient increases with higher liquid temperature using the other method under...... the conditions that the liquid temperature is lower than the air temperature. Although there are differences of mass transfer coefficients between these two methods, the mass transfer coefficients determined by these two methods are significantly related....

  3. Field emission and high voltage cleaning of particulate contaminants on extended metallic surfaces

    International Nuclear Information System (INIS)

    Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    The vacuum insulation properties of extended metallic surfaces depends strongly on their cleanliness. The usual technique to reduce electronic field emission from such surfaces consists in exposing them to very high electric fields during limited periods of time. This kind of processing also reduces the occurrence of vacuum breakdown. The processing of the surface is generally believed to be due to a thermomechanical destruction of the emitting sites, initiated by the emission itself. Comparison of the electric forces vs adherence forces which act on dust particles lying on the surface shows that the processing could also be due simply to the mechanical removal of the dust particles, with a subsequent reduction of field emission from the contaminated surface. (author)

  4. Effects of fibre-form nanostructures on particle emissions from a tungsten surface in plasmas

    International Nuclear Information System (INIS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2012-01-01

    The effects of fibre-form nanostructure of a tungsten surface on both electron emission and sputtering in helium/argon plasmas are represented. Generally, a nano-fibre forest, the so-called ‘fuzz’, made of tungsten with helium gas inside is found to have the tendency of suppressing the particle emission substantially. The electron emission comes from the impact of high-energy primary electrons. In addition, a deeply biased tungsten target, which inhibits the influx of even energetic primary electrons, seems to produce an electron emission, and it may be suppressed on the way to nanostructure formation on the surface of the W target. Such an emission process is discussed here. The sputtering yield of the He-damaged tungsten surface with the fibre-form nanostructure depends on the surface morphology while the sputtering itself changes the surface morphology, so that the time evolutions of sputtering yield from the W surface with an originally well-developed nanostructure are found to show a minimum in sputtering yield, which is about a half for the fresh nanostructured tungsten and roughly one-fifth of the yield for the original flat normal tungsten surface. The surface morphology at that time is, for the first time, made clear with field emission scanning electron microscopy observation. The physical mechanism for the appearance of such a minimum in sputtering yield is discussed. (paper)

  5. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    International Nuclear Information System (INIS)

    Wang, Fuyuan; Cheng, Laifei; Zhang, Qing; Zhang, Litong

    2014-01-01

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density

  6. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fuyuan, E-mail: wangfy1986@gmail.com; Cheng, Laifei; Zhang, Qing, E-mail: zhangqing@nwpu.edu.cn; Zhang, Litong

    2014-09-15

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density.

  7. Self-affine roughness influence on the friction coefficient for rubbers onto solid surfaces

    NARCIS (Netherlands)

    Palasantzas, G

    2004-01-01

    In this paper we investigate the influence of self-affine roughness on the friction coefficient mu(f) of a rubber body under incomplete contact onto a solid surface. The roughness is characterized by the rms amplitude w, the correlation length xi, and the roughness exponent H. It is shown that with

  8. Effect of metallic and hyperbolic metamaterial surface on electric and magnetic dipole emission

    DEFF Research Database (Denmark)

    Ni, Xingjie; Naik, Gururaj V.; Kildishev, Alexander V.

    2010-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces.......Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces....

  9. Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Cacciato, G.; Grimaldi, M. G. [Dipartimento di Fisica ed Astronomia-Universitá di Catania, via S. Sofia 64, 95123 Catania, Italy and MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy)

    2014-02-28

    A 5 nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup −8}]exp[−(0.31±0.02(eV)/(at) )/kT] cm{sup 2}/s.

  10. Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions

    Science.gov (United States)

    Conley, A. J.; Westervelt, D. M.; Lamarque, J.-F.; Fiore, A. M.; Shindell, D.; Correa, G.; Faluvegi, G.; Horowitz, L. W.

    2018-03-01

    Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multicentury perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200 year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for northern hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of (0.0036, 0.0078). We examine global and regional responses in SO4 burdens, aerosol optical depths (AODs), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (United States), the temperature response is spread over the northern hemisphere with amplification of the temperature increase toward the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the ERF of U.S. SO2 emissions is found to differ from the models' sensitivity to radiative forcing of doubled CO2.

  11. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    Science.gov (United States)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  12. Image potential effect on the specular reflection coefficient of alkali ions scattered from a nickel surface at low energy

    International Nuclear Information System (INIS)

    Zemih, R.; Boudjema, M.; Benazeth, C.; Boudouma, Y.; Chami, A.C.

    2002-01-01

    The resonant charge exchange in the incoming path of alkali ions scattered at low energy from a polycrystalline nickel surface is studied by using the image effect occurring at glancing incidence (2-10 deg. from the surface plane) and for specular reflection. The part of the experimental artefacts (geometrical factor, surface roughness ...) is extracted from the reflection coefficient of almost completely neutralised projectiles (He + or Ne + ) compared with the coefficient obtained from numerical simulations (TRIM and MARLOWE codes). The present model explains very well the lowering of the reflection coefficient measured at grazing incidence (below 4 deg.). Furthermore, the optimised values of the charge fraction in the incoming path and the image potential are in agreement with the theoretical calculations in the case of Na + /Ni at 4 keV

  13. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.

  14. Application of a sawtooth surface to accelerator beam chambers with low electron emission rate

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Tsuchiya, M.; Nishidono, T.; Kato, N.; Satoh, N.; Endo, S.; Yokoyama, T.

    2003-01-01

    One of the latest problems in positron or proton accelerators is a single-beam instability due to an electron cloud around the beam. The instability, for an example, causes a beam size blow up of the positron beam and deteriorates the performance of the electron-positron collider. the seed of the electron cloud is the electrons emitted from the surface of the beam chamber, which consists of electrons due to the synchrotron radiation (photoelectrons) and sometimes those multiplied by the multipactoring. Suppressing the electron emission from the surface is, therefore, an essential way to cure the instability. Here a rough surface with a sawtooth structure (sawtooth surface) is proposed to reduce the electron emission from the surface of the beam chamber. A new rolling-tap method is developed for this study to make the sawtooth surface in a circular beam chamber with a length of several meters. The first experiment using a test chamber at a photon beam line of the KEK Photon Factory verifies its validity. The photoelectron emission from the sawtooth surface reduces by one order of magnitude compared to the usual smooth surface. In the second experiment under a bunched positron beam in the KEK B-Factory, however, the electron emission is comparable to that of a smooth surface and the behavior is quite different from the previous one. The reason is that the beam field excites the multipactoring of electrons and the decrease of the photoelectron emission by the sawtooth surface is wiped out. The sawtooth surface will be effective to reduce the electron emission under the situation with external magnetic fields or without strong beam fields where the electron multipactoring hardly occurs

  15. Henry’s Law Constant and Overall Mass Transfer Coefficient for Formaldehyde Emission from Small Water Pools under Simulated Indoor Environmental Conditions

    Science.gov (United States)

    The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....

  16. Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients

    Directory of Open Access Journals (Sweden)

    Yuejun Chen

    2018-02-01

    Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.

  17. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  18. Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

    Directory of Open Access Journals (Sweden)

    Nuria Duffo

    2009-06-01

    Full Text Available Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission, very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter.

  19. Uptake Coefficients of NO3 Radicals on Solid Surfaces of Sea-Salts

    Science.gov (United States)

    Gratpanche, F.; Sawerysyn, J.-P.

    1999-02-01

    Uptake coefficients of nitrate radicals (γ NO_3) have been measured by a technique involving a coated-wall flow tube with radical detection by E.P.R. spectrometry. The variation of NO3 concentration in the gas phase was followed indirectly by monitoring OH radicals produced by the titration reaction H + NO_3. The mean initial value of γ NO3 measured on solid NaCl surfaces was (1.7± 1.2)× 10-2) in the temperature range 258-301 K, while for solid NaBr surfaces the value was (0.11 ± 0.06) at 293 K. In each case, errors limits correspond to one standard deviation. For NaBr, a slight negative temperature dependence was observed over the investigated range, 243-293 K, which can be represented by γ_NO_3^NaBr = 1.6 ≤ft(begin{array}{l}+1.8 -0.9) × 10-3exp [(1210± 200)/T]. An analysis of the results shows that under some conditions the heterogeneous loss of nitrate radicals on sea-salt aerosol particles at ambient temperature could be competitive with their loss by homogeneous reaction in the marine troposphere at night. Les coefficients de capture des radicaux nitrate (γ NO_3) sur des surfaces de sels marins (NaCl et NaBr) ont été mesurés aux températures troposphériques en utilisant la technique du réacteur à écoulement à paroi recouverte couplée à un spectromètre de résonance paramagnétique électronique (R.P.E). La variation de la concentration en phase gazeuse des radicaux nitrate en présence des surfaces étudiées est suivie en mesurant le signal R.P.E des radicaux OH produits par la réaction de titrage H + NO3. Pour des températures comprises entre 258 et 301 K, la valeur moyenne du coefficient de capture initial (γ NO_3) sur des surfaces solides de NaCl est égal à (1.7± 1.2)× 10-2). Sur des surfaces solides de NaBr, (γ NO_3) est égal à (0.11 ± 0.06) à 293 K. L'incertitude correspond à une déviation standard. Par ailleurs, pour ce type de surfaces, une légère dépendance négative avec la température est observée dans la

  20. Comparison of the Friction-Loss Coefficient for the Gap of Two Contact Surfaces and a Crack

    International Nuclear Information System (INIS)

    Nam, Ho Yun; Choi, Byoung Hae; Kim, Jong Bum; Lee, Young Bum

    2011-01-01

    A leak-detection method has been developed by measuring the pressure variation between the inner and outer heat transfer tubes of a double-wall tube steam generator. An experiment was carried out to measure the leak rate in the gap between two surfaces pressed with a hydraulic press in order to simulate the phenomena, and a correlation was determined for the leak rate in a micro gap. However, in the correlation, the gap width and friction coefficient were coupled with the surface roughness, which affects the two parameters. The two parameters were separated using a surface-contact model to develop a correlation for the friction coefficient. The correlation was compared with the existing correlations used for crack analysis. Although the applied ranges of Reynolds numbers were different, the developed correlation for Reynolds numbers of 0.1.0.35 showed similar tendencies to existing correlations used for higher Reynolds numbers

  1. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  2. Identification of the Heat Transfer Coefficient at the Charge Surface Heated on the Chamber Furnace

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2017-06-01

    Full Text Available The inverse method was applied to determine the heat flux reaching the charge surface. The inverse solution was based upon finding the minimum of the error norm between the measured and calculated temperatures. The charge temperature field was calculated with the finite element method by solving the heat transfer equation for a square charge made of 15HM steel heated on all its surfaces. On the basis of the mean value of heat flux, the value of the heat transfer coefficient at each surface was determined depending on the surface temperature of the material heated.

  3. Combined measurement of surface, grain boundary and lattice diffusion coefficients on olivine bi-crystals

    Science.gov (United States)

    Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes

    2014-05-01

    Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA

  4. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  5. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  6. Carbon dioxide emission from raised bog surface after peat extraction

    Directory of Open Access Journals (Sweden)

    Turbiak Janusz

    2017-12-01

    Full Text Available Research on CO2 emission from a raised bog after completion of peat extraction was performed in 2011–2013. CO2 emissions were determined by the chamber method. Twenty years after the termination of peat extraction, the bog surface was almost entirely devoid of plants. CO2 emission from the bog varied depending on temperature and water conditions and was 418 mg·m−2·h−1 on average during the research period. CO2 losses on the raised bog were on average 19.7 Mg·ha−1·year−1 during the research period which corresponded to a carbon loss of 5.37 Mg·ha−1·year−1 or mineralisation of 9.6 Mg·ha−1·year−1 of organic mass of 56% carbon content. It is possible to reduce organic mass losses and CO2 emission to the atmosphere from the bog surface after peat extraction has been terminated by reconstruction of initial water conditions, i.e. retaining a high ground water level and restoration of aquatic plant communities.

  7. The stochastic distribution of available coefficient of friction for human locomotion of five different floor surfaces.

    Science.gov (United States)

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2014-05-01

    The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  9. Measurement of Turbulent Skin Friction Drag Coefficients Produced by Distributed Surface Roughness of Pristine Marine Coatings

    DEFF Research Database (Denmark)

    Zafiryadis, Frederik; Meyer, Knud Erik; Gökhan Ergin, F.

    drag coefficients as well as roughness Reynolds numbers for the various marine coatings across the range of Rex by fitting of the van Driest profile. The results demonstrate sound agreement with the present ITTC method for determining skin friction coefficients for practically smooth surfaces at low...... Reynolds numbers compared to normal operation mode for the antifouling coatings. Thus, better estimates for skin friction of rough hulls can be realised using the proposed method to optimise preliminary vessel design....

  10. Experimental rig to estimate the coefficient of friction between tire and surface in airplane touchdown simulations.

    Science.gov (United States)

    Li, Chengwei; Zhan, Liwei

    2015-08-01

    To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.

  11. Experimental Investigation of Convective Heat Transfer during Night Cooling with Different Ventilation Systems and Surface Emissivities

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    models for convection. In a full-scale test room, the heat transfer was investigated during 12 h of discharge by night-time ventilation. A total of 34 experiments have been performed, with different ventilation types (mixing and displacement), air change rates, temperature differences between the inlet...... air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations....... For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement...

  12. Surface magnetism studied by polarized light emission after He+ scattering

    NARCIS (Netherlands)

    Manske, J; Dirska, M; Lubinski, G; Schleberger, M; Narmann, A; Hoekstra, R

    Surface magnetism is studied by means of an ion beam of low energy (2-15 keV) scattered off the surface under grazing incidence conditions. During the scattering, a small fraction of the ions is neutralized into excited states which decay subsequently by light emission. The circular polarization of

  13. Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients

    Science.gov (United States)

    Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.

    2016-01-01

    We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.

  14. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  15. Some experimental data on accommodation coefficients for the noble ions on metal surfaces

    International Nuclear Information System (INIS)

    Gusev, K.I.; Rijov, Y.A.; Shkarban, I.I.

    1974-01-01

    Methods and results of experimental measurements of energy accommodation for Ar + , Kr + , and Xe + ions with initial energy E 0 - 100-500eV bombarding Cu, Mo, Ag and other (including Mo - monocrystal) foil target are presented. The angular dependencies for the energy accommodation coefficient are obtained within the range of angle phi=0+70 deg (phi is the angle between the target surface normal and the beam direction)

  16. Effect of surface contaminants on the light emission spectrum of LiF TLDs

    International Nuclear Information System (INIS)

    Abhold, M.E.

    1987-01-01

    Recent results show the differences between the light emissions spectra from LiF Thermoluminescent Dosimeters (TLDs) for gamma vs. alpha irradiations to be due to contaminants on the surface of the TLD. The light emission spectrum for thermal neutron irradiations was observed to be identical to that for a Cs-137 gamma irradiation in Harshaw TLD-100. Further experiments with surface treatments on TLD-100 indicate trace contaminants introduced by the standard methanol cleansing rinse in reagent grade methanol to have a substantial effect on the light emission spectrum for Am-241 alpha irradiations

  17. Effects of self-affine surface roughness on the friction coefficient of rubbers in the presence of a liquid interlayer

    NARCIS (Netherlands)

    Palasantzas, G; De Hosson, JTM

    2004-01-01

    In this article, we investigate how the friction coefficient is affected by the presence of a liquid layer in between a self-affine rough surface and a sliding rubber surface. The liquid layer will reduce energy dissipation from the small surface asperities and cavities of lateral sizes smaller than

  18. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  19. Tunable surface plasmon instability leading to emission of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii, E-mail: aiurov@chtm.unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Pan, Wei [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2015-08-07

    We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wave vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.

  20. Changes in the surface roughness and friction coefficient of orthodontic bracket slots before and after treatment.

    Science.gov (United States)

    Liu, Xiaomo; Lin, Jiuxiang; Ding, Peng

    2013-01-01

    In this study, we tested the surface roughness of bracket slots and the friction coefficient between the bracket and the stainless steel archwire before and after orthodontic treatment. There were four experimental groups: groups 1 and 2 were 3M new and retrieved brackets, respectively, and groups 3 and 4 were BioQuick new and retrieved brackets, respectively. All retrieved brackets were taken from patients with the first premolar extraction and using sliding mechanics to close the extraction space. The surface roughness of specimens was evaluated using an optical interferometry profilometer, which is faster and nondestructive compared with a stylus profilometer, and provided a larger field, needing no sample preparation, compared with atomic force microscopy. Orthodontic treatment resulted in significant increases in surface roughness and coefficient of friction for both brands of brackets. However, there was no significant difference by brand for new or retrieved brackets. These retrieval analysis results highlight the necessity of reevaluating the properties and clinical behavior of brackets during treatment to make appropriate treatment decisions. © Wiley Periodicals, Inc.

  1. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  2. Influence of Local Airflow on the Pollutant Emission from Indoor Building Surfaces

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter Vilhelm; Heiselberg, Per Kvols

    2001-01-01

    This article reports the results of an investigation, based on fundamental fluid dynamics and mass transfer theory, carried out to obtain a general understanding of the mechanisms involved in the emissions from building materials in ventilated rooms. In addition, a generally applicable method...... for the prediction of surface emissions is proposed. The work focused on the emission of vapours and gases and no particulate emissions were considered. The methods used were numerical calculations by computational fluid dynamics (CFD) and full-scale laboratory experiments. It was found that the emissions...

  3. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    Science.gov (United States)

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  4. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  5. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  6. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  7. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    Science.gov (United States)

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  8. Friction coefficient dependence on electrostatic tribocharging

    Science.gov (United States)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  9. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  10. Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels

    International Nuclear Information System (INIS)

    Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Multi-scale models were applied to assess the surface ozone changes in 2030. Several emission scenarios are considered, ranging from (a) a pessimistic anthropogenic emission increase to (b) an optimistic decrease of emissions, and including (c) a realistic scenario that assumes the implementation of control legislations [CLE]. The two extreme scenarios lead respectively to homogeneous global increase and decrease of surface ozone, whereas low and inhomogeneous changes associated with a slight global increase of ozone are found for the CLE scenario. Over western Europe, for the CLE scenario, the benefit of European emission reduction is significantly counterbalanced by increasing global ozone levels. Considering warmer conditions over Europe and future emission modifications, the human health exposure to surface ozone is found to be significantly worsened. (authors)

  11. Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dingke, E-mail: dingke.zhang@gmail.com, E-mail: shijianchen@gmail.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Chen, Shijian, E-mail: dingke.zhang@gmail.com, E-mail: shijianchen@gmail.com; Huang, Yingzhou; Zhang, Zhen [School of Physics, Chongqing University, Chongqing 401331 (China); Wang, Yanping; Ma, Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-01-14

    Optical losses associated with the metallic contacts necessary for charge injection are an obstacle to the development of electrically pumped organic lasers. In this work, we show that it is possible to overcome these losses by introducing surface plasmons (SPs) in a distributed feedback laser to enhance the lasing emission. We perform a detailed study of the SPs influence on the lasing emission. We experimentally show that enhanced lasing emission has been successfully achieved in the presence of a metal electrode. The laser emission is strongly dependent on the thickness of Ag layer. By optimizing the thickness of Ag layer, surface-plasmon-enhanced lasing emission has been achieved with much reduced thresholds and higher intensity. When the thickness of the Ag layer increases to 50 nm, the device exhibits ten-fold emission intensity and a fifth of excitation threshold comparing with Ag-free one. The finite-difference time-domain (FDTD) results show that large field intensity is built at the 4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran:/poly(9-vinylcarbazole)Ag interface, which could lead to a strong coupling between lasing and SPs, and consequently a much enhanced laser emission at the photon energy of around 2.02 eV (615 nm). Our FDTD simulations gave an explanation of the effects of the SPs on lasing operation in the periodic structures. The use of SPs would lead to a new class of highly efficient solid-state laser sources and provide a new path to achieve electrically pumped organic lasers.

  12. Improving the indoor air quality by using a surface emissions trap

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  13. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions

    DEFF Research Database (Denmark)

    Ni, X.; Naik, G. V.; Kildishev, A. V.

    2011-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data....

  14. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  15. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  16. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  17. EPMA-EDS surface measurements of interdiffusion coefficients between miscible metals in thin films

    International Nuclear Information System (INIS)

    Christien, F.; Pierson, J.F.; Hassini, A.; Capon, F.; Le Gall, R.; Brousse, T.

    2010-01-01

    A new technique is developed to study interdiffusion between two miscible metals. The technique is applied to the Ni-Pd system. It consists in measuring the change of apparent surface composition of a Pd substrate coated with an 800 nm Ni thin film during annealing at a given temperature. The measurement is carried out in-situ inside the chamber of a SEM (scanning electron microscope) by EPMA-EDS (electron probe microanalysis-energy dispersive X-ray spectroscopy). The experimental data are processed using a model that mixes the Fick's diffusion equations and the electron probe microanalysis equation. This process allows the determination of the mean interdiffusion coefficient at a given annealing temperature. The main advantages of the technique are the possible determination of interdiffusion coefficients in thin films and at very low temperature (down to 430 deg. C, i.e. ∼0.4 T m ), which is not achievable with other techniques conventionally used for the study of interdiffusion. The Ni-Pd mean interdiffusion coefficient is shown to follow an Arrhenius law (D-tilde c =6.32x10 -3 exp((178.8kJmol -1 )/(RT) )cm 2 s -1 ) between 430 deg. C and 900 deg. C, in relatively good agreement with previous interdiffusion measurements made on the Ni-Pd system at higher temperature.

  18. Electron emission and energy loss in grazing collisions of protons with insulator surfaces

    International Nuclear Information System (INIS)

    Gravielle, M. S.; Miraglia, J. E.; Aldazabal, I.; Arnau, A.; Ponce, V. H.; Aumayr, F.; Lederer, S.; Winter, H.

    2007-01-01

    Electron emission from LiF, KCl, and KI crystal surfaces during grazing collisions of swift protons is studied using a first-order distorted-wave formalism. Owing to the localized character of the electronic structure of these surfaces, we propose a model that allows us to describe the process as a sequence of atomic transitions from different target ions. Experimental results are presented for electron emission from LiF and KI and energy loss from KI surfaces. Calculations show reasonable agreement with these experimental data. The role played by the charge of the incident particle is also investigated

  19. Electron emission from MOS electron emitters with clean and cesium covered gold surface

    DEFF Research Database (Denmark)

    Nielsen, Gunver; Thomsen, Lasse Bjørchmar; Johansson, Martin

    2009-01-01

    MOS (metal-oxide-semiconductor) electron emitters consisting of a Si substrate, a SiO2 tunnel barrier and a Ti (1 nm)/Au(7 nm) top-electrode, with an active area of 1 cm(2) have been produced and studied with surface science techniques under UHV (ultra high vacuum) conditions and their emission...... characteristics have been investigated. It is known, that deposition of an alkali metal on the emitting surface lowers the work function and increases the emission efficiency. For increasing Cs coverages the surface has been characterized by X-ray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS...

  20. Mechanism of negative ion emission from surfaces of ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Zdeněk

    2012-01-01

    Roč. 606, 15-16 (2012), s. 1327-1330 ISSN 0039-6028 Institutional support: RVO:67985882 Keywords : Surface of ferroelectrics * Ion emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.838, year: 2012 http://www.sciencedirect.com/science/article/pii/S0039602812001525#gts0005

  1. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Surface and electron emission properties of hydrogen-free diamond-like carbon films investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Dongping; Zhang, Sam; Ong, S.-E.; Benstetter, Guenther; Du Hejun

    2006-01-01

    In this study, we have deposited hydrogen-free diamond-like carbon (DLC) films by using DC magnetron sputtering of graphite target at various r.f. bias voltages. Surface and nanoscale emission properties of these DLC films have been investigated using a combination of atomic force microscopy (AFM)-based nanowear tests and conducting-AFM, by simultaneously measuring the topography and the conductivity of the samples. Nanowear tests show that these DLC films are covered with the thin (1.5-2.0 nm) graphite-like layers at surfaces. Compared to the film bulk structure, the graphite-like surface layers are more conductive. The graphite-like surface layers significantly influence the electron emission properties of these films. Low-energy carbon species can be responsible for the formation of graphite-like surface layers. Nanoscale electron emission measurements have revealed the inhomogeneous emission nature of these films. The low-field emission from these films can be attributed to the existence of sp 2 -configured nanoclusters inside the films

  3. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  4. Electron emission from tungsten surface induced by neon ions

    Science.gov (United States)

    Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang; Liu, Xueliang; Xiao, Guoqing; Li, Fuli

    2014-04-01

    The electron emission from W surface induced by Neq+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for "trampoline effect".

  5. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  6. Laser method of acoustical emission control from vibrating surfaces

    Science.gov (United States)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  7. Greenhouse gas emissions from beef cattle pen surfaces in North Dakota.

    Science.gov (United States)

    Rahman, Shafiqur; Borhan, Md Saidul; Swanson, Kendall

    2013-01-01

    There is a global interest to quantify and mitigate greenhouse gas (GHG) (e.g. methane-CH4, nitrous oxide-N2O and carbon dioxide-CO2) emissions in animal feeding operations. The goal of this study was to quantify GHG emissions from the feedlot pen surface under North Dakota climatic conditions. In this study gaseous flux from the pen surfaces was generated using a custom-made wind tunnel at different times of the year (summer, fall, winter and spring). Gaseous fluxes (air samples) were drawn in the Tedlar bags using a vacuum chamber and gas concentrations were measured using a gas chromatograph within 24 h of sampling. The CH4 concentrations and flux rates (FRs) or flux among the months were not significantly different. Overall CH4, CO2 and N2O concentrations over a 7-month period were 2.66, 452 and 0.67 ppm, respectively. Estimated overall CH4, CO and N2O FRs were 1.32, 602 and 0.90 g m(-2) d(-1), respectively. Estimated emission rates using the wind tunnel were 38 g hd(-1) d(-1), 17 kg hd(-1) d(-1) and 26 g hd(-1) d(-1) for CH4, CO2 and N2O, respectively. The emission factors for GHG estimated in the research for North Dakota climate were the first of its kind, and these emission estimates can be used as a basis for planning and implementing management practices to minimize GHG emissions.

  8. AUTOJOM, Quadratic Equation Coefficient for Conic Volume, Parallelepipeds, Wedges, Pyramids. JOMREAD, Check of 3-D Geometry Structure from Quadratic Surfaces

    International Nuclear Information System (INIS)

    2005-01-01

    Nature of physical problem solved: AUTOJOM is a computer program that will generate the coefficients of any quadratic equation used to define conic volumes and also the coefficients of the planes needed to define parallelepipeds, wedges, and pyramids. JOMREAD is a computer code to check any 3D geometry composed of and constructed with quadratic surfaces

  9. Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kildemo, M.; Levinsen, Y. Inntjore; Le Roy, S.; Soenderga ring rd, E. [Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondlieim (Norway); Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondlieim, Norway and AB CERN, CH- 1211 Geneva 23 (Switzerland); Laboratoire Surface du Verre et Interfaces, UMR 125 Unite Mixte de Recherche CNRS/Saint-Gobain Laboratoire, 39 Quai Lucien Lefranc, F-93303 Aubervilliers Cedex (France)

    2009-09-15

    High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author's knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio, single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.

  10. Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces

    CERN Document Server

    Kildemo, M.; Le Roy, S.; Søndergård, E.

    2009-01-01

    High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author’s knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio, single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.

  11. The use of computational thermodynamics for the determination of surface tension and Gibbs-Thomson coefficient of multicomponent alloys

    Science.gov (United States)

    Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.

    2018-04-01

    The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.

  12. Electron emission from tungsten surface induced by neon ions

    International Nuclear Information System (INIS)

    Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Liu, Xueliang; Xiao, Guoqing; Li, Fuli; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang

    2014-01-01

    The electron emission from W surface induced by Ne q+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for ''trampoline effect''

  13. Investigation of sandwich material surface created by abrasive water jet (AWJ via vibration emission

    Directory of Open Access Journals (Sweden)

    P. Hreha

    2014-01-01

    Full Text Available The paper presents research a of abrasive waterjet cutting of heterogeneous “sandwich“ material with different Young modulus of elasticity of the cutted surface geometry by means of vibration emission. In order to confirm hypothetical assumptions about direct relation between vibration emission and surface quality an experiment in heterogeneous material consisting of stainless steel (DIN 1.4006 / AISI 410 and alloy AlCuMg2 has been provided.

  14. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    Science.gov (United States)

    Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; González-Marcos, Ana

    2015-02-01

    An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiOx and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF2 long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF2 percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θadv = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory stability in humid ambient for twelve months showed a slight decrease of WCA (4.4%) for this sample. The results of this study permit one to realize the effectiveness of using fluorinated precursors to avoid a significant decrease in the WCA when applying a precursor to anti-friction improvement.

  15. Reduction of Friction of Metals Using Laser-Induced Periodic Surface Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2015-10-01

    Full Text Available We report on the effect of femtosecond-laser-induced periodic surface structures (LIPSS on the tribological properties of stainless steel. Uniform periodic nanostructures were produced on AISI 304L (American Iron and Steel Institute steel grade steel surfaces using an 800-nm femtosecond laser. The spatial periods of LIPSS measured by field emission scanning electron microscopy ranged from 530 to 570 nm. The tribological properties of smooth and textured surfaces with periodic nanostructures were investigated using reciprocating ball-on-flat tests against AISI 440C balls under both dry and starved oil lubricated conditions. The friction coefficient of LIPSS covered surfaces has shown a lower value than that of the smooth surface. The induced periodic nanostructures demonstrated marked potential for reducing the friction coefficient compared with the smooth surface.

  16. Drag coefficient Variability and Thermospheric models

    Science.gov (United States)

    Moe, Kenneth

    Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag

  17. Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing.

    Science.gov (United States)

    Kim, Sumin

    2010-04-15

    This paper assesses the reproducibility of testing formaldehyde and TVOC emission behavior from wood flooring composites bonded by urea-formaldehyde resin at various manufacturing steps for surface finishing materials. The surface adhesion step of laminate flooring for this research was divided into two steps; HDF only and HDF with LPMs. In the case of engineered flooring, the manufacturing steps were divided into three steps; plywood only, fancy veneer bonded on plywood and UV coated on fancy veneer with plywood. Formaldehyde and VOCs emission decreased at the process of final surface finishing materials; LPMs were applied on the surface of HDF for laminate flooring. Although emissions increased when fancy veneer was bonded onto plywood in the case of engineered flooring, emission was dramatically reduced up to similar level with plywood only when final surface finishing; UV-curable coating was applied on fancy veneer. This study suggests that formaldehyde and VOCs emission from floorings can be controlled at manufacturing steps for surface finishing. 2009 Elsevier B.V. All rights reserved.

  18. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data

    International Nuclear Information System (INIS)

    Wan, Z.; Li, Z.L.

    1997-01-01

    The authors have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NEΔT) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4--0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10--12.5 microm IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2--3 K

  19. Nanometer-scale discernment of field emission from tungsten surface with single carbon monoxide molecule

    Science.gov (United States)

    Matsunaga, Soichiro; Suwa, Yuji; Katagiri, Souichi

    2017-12-01

    Unusual quantized beam fluctuations were found in the emission current from a cold-field emitter (CFE) operating in an extremely high vacuum of 10-10 Pa. To clarify the microscopic mechanism behind these fluctuations, we developed a new calculation method to evaluate the field emission from a heterogeneous surface under a strong electric field of 4 × 109 V/m by using the local potential distribution obtained by a first-principles calculation, instead of by using the work function. As a result of the first-principles calculations of a single molecule adsorbed on a tungsten surface, we found that dissociative adsorption of a carbon monoxide (CO) molecule enhances the emission current by changing the potential barrier in the area surrounding the C and O adatoms when these two atoms are placed at their most stable positions. It is also found that the migration of the O atom from the most stable position reduces the emission current. These types of enhancement and reduction of the emission current quantitatively explain the observed quantized fluctuations of the CFE emission current.

  20. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    largely depending on the test room. Several conversion methods for porous absorbers from the Sabine absorption coefficient to the random incidence absorption coefficient were suggested by considering the finite size of a test specimen and non-uniformly incident energy onto the specimen, which turned out...... resistivity optimization outperforms the surface impedance optimization in terms of the reproducibility....

  1. Effective dose rate coefficients for exposure to contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States); Bellamy, M.B.; Hiller, M.M.; Dewji, S.A. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Hertel, N.E. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Georgia Institute of Technology, Atlanta, GA (United States); Manger, R. [University of California San Diego, Department of Radiation Medicine and Applied Sciences, La Jolla, CA (United States)

    2017-08-15

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios. (orig.)

  2. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Fish, F.F.

    1991-01-01

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NO x formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m 2 ), high heat-transfer rates (up to 310 kW/m 2 ), high density of energy conversion (up to 8 MW/m 3 ), as well as ultra-low emissions (NO x and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  3. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  4. Friction coefficient and effective interference at the implant-bone interface.

    Science.gov (United States)

    Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E

    2015-09-18

    Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  6. Effect of the local morphology in the field emission properties of conducting polymer surfaces

    International Nuclear Information System (INIS)

    De Assis, T A; Borondo, F; Benito, R M; Losada, J C; Andrade, R F S; Miranda, J G V; De Souza, Nara C; De Castilho, C M C; De B Mota, F

    2013-01-01

    In this work, we present systematic theoretical evidence of a relationship between the point local roughness exponent (PLRE) (which quantifies the heterogeneity of an irregular surface) and the cold field emission properties (indicated by the local current density and the macroscopic current density) of real polyaniline (PANI) surfaces, considered nowadays as very good candidates in the design of field emission devices. The latter are obtained from atomic force microscopy data. The electric field and potential are calculated in a region bounded by the rough PANI surface and a distant plane, both boundaries held at distinct potential values. We numerically solve Laplace’s equation subject to appropriate Dirichlet’s condition. Our results show that local roughness reveals the presence of specific sharp emitting spots with a smooth geometry, which are the main ones responsible (but not the only) for the emission efficiency of such surfaces for larger deposition times. Moreover, we have found, with a proper choice of a scale interval encompassing the experimentally measurable average grain length, a highly structured dependence of local current density on PLRE, considering different ticks of PANI surfaces. (paper)

  7. Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses

    International Nuclear Information System (INIS)

    Acuna, M. A.; Gravielle, M. S.

    2011-01-01

    Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, while the influence of the crystal orientation was found to be negligible.

  8. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  9. Emissions of nitrous oxide and methane from surface and ground waters in Germany

    International Nuclear Information System (INIS)

    Hiessl, H.

    1993-01-01

    The paper provides a first estimation of the contribution of inland freshwater systems (surface waters and ground waters) to the emission of the greenhouse gases nitrous oxide and methane in Germany. These amounts are compared to other main sources for the emission of nitrous oxide and methane. (orig.) [de

  10. Experimental/Computational Approach to Accommodation Coefficients and its Application to Noble Gases on Aluminum Surface (Preprint)

    Science.gov (United States)

    2009-02-03

    computational approach to accommodation coefficients and its application to noble gases on aluminum surface Nathaniel Selden Uruversity of Southern Cahfornia, Los ...8217 ,. 0.’ a~ .......,..,P. • " ,,-0, "p"’U".. ,Po"D.’ 0.’P.... uro . P." FIG. 5: Experimental and computed radiometri~ force for argon (left), xenon

  11. An assessment of the land surface emissivity in the 8 - 12 micrometer window determined from ASTER and MODIS data

    Science.gov (United States)

    Schmugge, T.; Hulley, G.; Hook, S.

    2009-04-01

    The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region

  12. Seasonal Surface Spectral Emissivity Derived from Terra MODIS Data

    Science.gov (United States)

    Sun-Mack, Sunny; Chen, Yan; Minnis, Patrick; Young, DavidF.; Smith, William J., Jr.

    2004-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) Project is measuring broadband shortwave and longwave radiances and deriving cloud properties form various images to produce a combined global radiation and cloud property data set. In this paper, simultaneous data from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 11.0, and 12.0 m are used to derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of clear sky temperature in each channel determined by scene classification during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7- m radiances. A set of simultaneous equations is then solved to derive the emissivities. Global monthly emissivity maps are derived from Terra MODIS data while numerical weather analyses provide soundings for correcting the observed radiances for atmospheric absorption. These maps are used by CERES and other cloud retrieval algorithms.

  13. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  14. Enhanced flashover strength in polyethylene nanodielectrics by secondary electron emission modification

    Directory of Open Access Journals (Sweden)

    Weiwang Wang

    2016-04-01

    Full Text Available This work studies the correlation between secondary electron emission (SEE characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.

  15. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions

    International Nuclear Information System (INIS)

    Hariri, A; Sarikhani, S

    2014-01-01

    On the basis of a model of a geometrically dependent gain coefficient, the amplified spontaneous emission (ASE) spectral width was calculated analytically for the nearly resonant transition of ν ∼ ν 0 , and also numerically for a wide range of transition frequencies. For this purpose, the intensity rate equation was used under unsaturated and saturated conditions. For verifying the proposed model, reported measurements of the ASE energy versus the excitation length for a KrF laser were used. For the excitation length of l = 84 cm corresponding to single-path propagation, the ASE spectral width for the homogeneously broadened transition was calculated to be 6.28 Å, to be compared with the measured 4.1 Å spectral width reported for a KrF oscillator utilizing a two-mirror resonator. With the gain parameters obtained from the ASE energy measurements, the unsaturated and saturated gain coefficients for l = 84 cm were calculated to be 0.042 cm −1 and 0.014 cm −1 , respectively. These values of the gain coefficient are comparable to but slightly lower than the measured gain coefficient for laser systems of 80–100 cm excitation lengths reported from different laboratories. (letter)

  17. Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1994-01-01

    The resonant coherent interaction of an ion with an oriented crystal surface, under grazing-incidence conditions with respect to a special direction of the crystal, gives rise to electron loss to the continuum from electronic bound states of the ion. The calculations presented below predict large probabilities for electron emission due to this mechanism. The electrons are emitted with well defined energies, expressed in terms of the condition of resonance. Furthermore, the emission takes place around certain preferential directions, which are determined by both the latter condition and the symmetry of the surface lattice. Our calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with glancing angle of 0--2 mrad indicate a yield of emission close to 1. Using heavier projectiles, one obtains smaller yields, but still large enough to be measurable in some cases (e.g., ∼0.9 for 53 MeV B 4+ and an angle of incidence of 1 mrad). Besides, the initial bound state is energy shifted due to the interaction with both the crystal potential and the velocity-dependent image potential. This results in a slight shift of the peaks of emission, which suggests a possible spectroscopy for analyzing the dynamical interaction of electronic bound states with solid surfaces

  18. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    International Nuclear Information System (INIS)

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  19. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization.

    Science.gov (United States)

    Miao, Xiang; Qu, Dan; Yang, Dongxue; Nie, Bing; Zhao, Yikang; Fan, Hongyou; Sun, Zaicheng

    2018-01-01

    Multiple-color-emissive carbon dots (CDots) have potential applications in various fields such as bioimaging, light-emitting devices, and photocatalysis. The majority of the current CDots to date exhibit excitation-wavelength-dependent emissions with their maximum emission limited at the blue-light region. Here, a synthesis of multiple-color-emission CDots by controlled graphitization and surface function is reported. The CDots are synthesized through controlled thermal pyrolysis of citric acid and urea. By regulating the thermal-pyrolysis temperature and ratio of reactants, the maximum emission of the resulting CDots gradually shifts from blue to red light, covering the entire light spectrum. Specifically, the emission position of the CDots can be tuned from 430 to 630 nm through controlling the extent of graphitization and the amount of surface functional groups, COOH. The relative photoluminescence quantum yields of the CDots with blue, green, and red emission reach up to 52.6%, 35.1%, and 12.9%, respectively. Furthermore, it is demonstrated that the CDots can be uniformly dispersed into epoxy resins and be fabricated as transparent CDots/epoxy composites for multiple-color- and white-light-emitting devices. This research opens a door for developing low-cost CDots as alternative phosphors for light-emitting devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Qualitative internal surface roughness classification using acoustic emission

    International Nuclear Information System (INIS)

    Mohd Hafizi Zohari; Mohd Hanif Saad

    2009-04-01

    This paper describes a novel new nondestructive method of qualitative internal surface roughness classification for pipes utilizing Acoustic Emission (AE) signal. Two different flowrate are introduced in a pipe obstructed using normally available components (e.g.: valve). The AE signal at suitable location from the obstruction are obtained and the peak amplitudes, RMS amplitude and energy of the AE signal are obtained. A dimensionless number, the Bangi Number, AB, is then calculated as a ratio of the AE parameters (peak amplitude, RMS amplitude or energy) in low flowrate measurement compared to the AE parameters in high flowrate measurement. It was observed that the Bangi Number, AB obtained can then be used to successfully discriminate between rough and smooth internal surface roughness. (author)

  1. The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs-Thomson coefficient of aluminum based alloys

    International Nuclear Information System (INIS)

    Jacome, Paulo A.D.; Landim, Mariana C.; Garcia, Amauri; Furtado, Alexandre F.; Ferreira, Ivaldo L.

    2011-01-01

    Highlights: → Surface tension and the Gibbs-Thomson coefficient are computed for Al-based alloys. → Butler's scheme and ThermoCalc are used to compute the thermophysical properties. → Predictive cell/dendrite growth models depend on accurate thermophysical properties. → Mechanical properties can be related to the microstructural cell/dendrite spacing. - Abstract: In this paper, a solution for Butler's formulation is presented permitting the surface tension and the Gibbs-Thomson coefficient of Al-based binary alloys to be determined. The importance of Gibbs-Thomson coefficient for binary alloys is related to the reliability of predictions furnished by predictive cellular and dendritic growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the thermophysical properties assumed for the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled to a specific interface of a computational thermodynamics software in order to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Fe, Al-Ni, Al-Cu and Al-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

  2. Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Tuncay; Soganci, Ibrahim Murat; Nizamoglu, Sedat; Huyal, Ilkem Ozge; Mutlugun, Evren; Demir, Hilmi Volkan [Department of Physics, Department of Electrical and Electronics Engineering, Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander [Physical Chemistry/Electrochemistry Group, Technische Universitaet Dresden, Bergstr. 66b, Dresden 01062 (Germany)], E-mail: volkan@bilkent.edu.tr

    2008-08-15

    We propose and demonstrate the controlled modification and selective enhancement of surface-state emission in white-luminophor CdS nanocrystals (NCs) by plasmon-coupling them with proximal metal nanostructures. By carefully designing nano-Ag films to match their localized plasmon resonance spectrally with the surface-state emission peak of CdS NCs, we experimentally show that the surface-state emission is substantially enhanced in the visible wavelength, while the interband (band-edge) transition at the shorter wavelength far away from the plasmon resonance is simultaneously significantly suppressed. With such plasmon tuning and consequent strong plasmon coupling specifically for the surface-state transitions, the surface-state emission is made stronger than the band-edge emission. This corresponds to an enhancement factor of 12.7-fold in the ratio of the surface-state peak emission to the band-edge peak emission of the plasmon-coupled film sample compared with that in solution. Such a plasmonic engineering of surface-state emission in trap-rich CdS white nanoluminophors holds great promise for future solid-state lighting.

  3. Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling

    International Nuclear Information System (INIS)

    Ozel, Tuncay; Soganci, Ibrahim Murat; Nizamoglu, Sedat; Huyal, Ilkem Ozge; Mutlugun, Evren; Demir, Hilmi Volkan; Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander

    2008-01-01

    We propose and demonstrate the controlled modification and selective enhancement of surface-state emission in white-luminophor CdS nanocrystals (NCs) by plasmon-coupling them with proximal metal nanostructures. By carefully designing nano-Ag films to match their localized plasmon resonance spectrally with the surface-state emission peak of CdS NCs, we experimentally show that the surface-state emission is substantially enhanced in the visible wavelength, while the interband (band-edge) transition at the shorter wavelength far away from the plasmon resonance is simultaneously significantly suppressed. With such plasmon tuning and consequent strong plasmon coupling specifically for the surface-state transitions, the surface-state emission is made stronger than the band-edge emission. This corresponds to an enhancement factor of 12.7-fold in the ratio of the surface-state peak emission to the band-edge peak emission of the plasmon-coupled film sample compared with that in solution. Such a plasmonic engineering of surface-state emission in trap-rich CdS white nanoluminophors holds great promise for future solid-state lighting

  4. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    Science.gov (United States)

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  5. Emissions of Photonic Crystal Waveguides with Discretely Modulated Surfaces

    International Nuclear Information System (INIS)

    Dong-Hua, Tang; Li-Xue, Chen; Yan, Liu; Xiu-Dong, Sun; Wei-Qiang, Ding

    2009-01-01

    Transmission properties of photonic crystal (PC) waveguides with discretely modulated exit surfaces are investigated numerically using the unite-difference time-domain (FDTD) method. Unlike the case of periodically modulated surfaces, where the transmission beam tends to be a single and directional beam, when the exit surfaces are modulated only at several discrete points, the emission power tends to split into multiple and directional beams. We explain this phenomenon using a multiple point source interference model. Based on these results, we propose a 1-to-N beam splitter, and numerically realized high efficiency coupling between a PC sub-wavelength waveguide and three traditional dielectric waveguides with a total efficiency larger than 92%. This simple, easy fabrication, and controllable mechanism may find more potential applications in integrated optical circuits. (fundamental areas of phenomenology(including applications))

  6. Surface effects during exoelectron-emission of BeO ceramics

    International Nuclear Information System (INIS)

    Siegel, V.; Kirchner, H.H.

    1979-01-01

    Studying the behaviour of the two thermally stimulated exoelectron emission (TSEE) maxima of BeO ceramics at about 270 0 C und 325 0 C it can be shown that the TSEE maximum at 270 0 C is closely connected with adsorption and desorption processes occuring on the surface of the samples. In particular, this TSEE maximum is strongly influenced as well by donor-like behaviour of adsorbed hydrogen and lithium as by acceptor-like behaviour of alcohols and nitrides of the lithium. The detailed surface processes leading to the apperance or disapperance of the TSEE maximum at 270 0 C are discussed. (orig.) [de

  7. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1977-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount

  8. Slip safety risk analysis of surface properties using the coefficients of friction of rocks.

    Science.gov (United States)

    Çoşkun, Gültekin; Sarıışık, Gencay; Sarıışık, Ali

    2017-12-19

    This study was conducted to determine the most appropriate surface processing techniques (SPT), environmental conditions (EC) and surface roughness (SR) to minimize the risk of slipping when pedestrians walk on a floor covering of rocks barefoot and with shoes. Coefficients of friction (COFs) and values of SR were found using five different types of rocks, four SPT and two (ramp and pendulum) tests. Results indicate that the parameters which affect the COF values of rocks include SR, EC and SPT. Simple linear regression was performed to examine the relationship between the values of the COF and the SR. The value of the COF was identified as R 2  ≥ 0.864. Statistical results, which are based on experimental measurements, show that rocks are classified according to their safe use areas depending on their COF and SR values.

  9. The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs-Thomson coefficient of aluminum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jacome, Paulo A.D.; Landim, Mariana C. [Department of Mechanical Engineering, Fluminense Federal University, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil); Garcia, Amauri, E-mail: amaurig@fem.unicamp.br [Department of Materials Engineering, University of Campinas, UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil); Furtado, Alexandre F.; Ferreira, Ivaldo L. [Department of Mechanical Engineering, Fluminense Federal University, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil)

    2011-08-20

    Highlights: {yields} Surface tension and the Gibbs-Thomson coefficient are computed for Al-based alloys. {yields} Butler's scheme and ThermoCalc are used to compute the thermophysical properties. {yields} Predictive cell/dendrite growth models depend on accurate thermophysical properties. {yields} Mechanical properties can be related to the microstructural cell/dendrite spacing. - Abstract: In this paper, a solution for Butler's formulation is presented permitting the surface tension and the Gibbs-Thomson coefficient of Al-based binary alloys to be determined. The importance of Gibbs-Thomson coefficient for binary alloys is related to the reliability of predictions furnished by predictive cellular and dendritic growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the thermophysical properties assumed for the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled to a specific interface of a computational thermodynamics software in order to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Fe, Al-Ni, Al-Cu and Al-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

  10. Rapid radiological characterization method based on the use of dose coefficients

    International Nuclear Information System (INIS)

    Dulama, C.; Toma, Al.; Dobrin, R.; Valeca, M.

    2010-01-01

    Intervention actions in case of radiological emergencies and exploratory radiological surveys require rapid methods for the evaluation of the range and extent of contamination. When simple and homogeneous radionuclide composition characterize the radioactive contamination, surrogate measurements can be used to reduce the costs implied by laboratory analyses and to speed-up the process of decision support. A dose-rate measurement-based methodology can be used in conjunction with adequate dose coefficients to assess radionuclide inventories and to calculate dose projections for various intervention scenarios. The paper presents the results obtained for dose coefficients in some particular exposure geometries and the methodology used for deriving dose rate guidelines from activity concentration upper levels specified as contamination limits. All calculations were performed by using the commercial software MicroShield from Grove Software Inc. A test case was selected as to meet the conditions from EPA Federal Guidance Report no. 12 (FGR12) concerning the evaluation of dose coefficients for external exposure from contaminated soil and the obtained results were compared to values given in the referred document. The geometries considered as test cases are: contaminated ground surface; - infinite extended homogeneous surface contamination and soil contaminated to a depth of 15 cm. As shown by the results, the values agree within 50% relative difference for most of the cases. The greatest discrepancies were observed for depth contamination simulation and in the case of radionuclides with complicated gamma emission and this is due to the different approach from MicroShield and FGR12. A case study is presented for validation of the methodology, where both dose rate measurements and laboratory analyses were performed on an extended quasi-homogeneous NORM contamination. The dose rate estimations obtained by applying the dose coefficients to the radionuclide concentrations

  11. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  12. Fluxon induced surface resistance and field emission in niobium films at 1.5 GHz

    CERN Document Server

    Benvenuti, Cristoforo; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2001-01-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, a precursor of electron emission, is observed for the first time in a study using radiofrequency cavities operating at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect. (23 refs).

  13. Incorporation of velocity-dependent restitution coefficient and particle surface friction into kinetic theory for modeling granular flow cooling.

    Science.gov (United States)

    Duan, Yifei; Feng, Zhi-Gang

    2017-12-01

    Kinetic theory (KT) has been successfully used to model rapid granular flows in which particle interactions are frictionless and near elastic. However, it fails when particle interactions become frictional and inelastic. For example, the KT is not able to accurately predict the free cooling process of a vibrated granular medium that consists of inelastic frictional particles under microgravity. The main reason that the classical KT fails to model these flows is due to its inability to account for the particle surface friction and its inelastic behavior, which are the two most important factors that need be considered in modeling collisional granular flows. In this study, we have modified the KT model that is able to incorporate these two factors. The inelasticity of a particle is considered by establishing a velocity-dependent expression for the restitution coefficient based on many experimental studies found in the literature, and the particle friction effect is included by using a tangential restitution coefficient that is related to the particle friction coefficient. Theoretical predictions of the free cooling process by the classical KT and the improved KT are compared with the experimental results from a study conducted on an airplane undergoing parabolic flights without the influence of gravity [Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007 (2009)10.1209/0295-5075/86/60007]. Our results show that both the velocity-dependent restitution coefficient and the particle surface friction are important in predicting the free cooling process of granular flows; the modified KT model that integrates these two factors is able to improve the simulation results and leads to better agreement with the experimental results.

  14. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  15. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    Energy Technology Data Exchange (ETDEWEB)

    Sainz-García, Elisa, E-mail: elisa.sainzg@unirioja.es; Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es; Múgica-Vidal, Rodolfo, E-mail: rodolfo.mugica@alum.unirioja.es; González-Marcos, Ana, E-mail: ana.gonzalez@unirioja.es

    2015-02-15

    Highlights: • Coatings on thermoplastic elastomers by atmospheric pressure plasma jet. • Study of influence of APTES and FLUSI percentage on the coating's properties. • The best sample (AF{sub 75}) used 75% of APTES and 25% of FLUSI as precursor mixture. • Sample AF{sub 75} reduced a 51.5% the FC and increased a 4.4% the WCA. - Abstract: An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiO{sub x} and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF{sub 2} long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF{sub 2} percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θ{sub adv} = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory

  16. Surface trapping phenomena in thermionic emission generating l/f noise

    International Nuclear Information System (INIS)

    Stepanescu, A.

    1975-01-01

    A general expression of the power spectrum of''flicker noise'', involving stochastic trapping phenomena and calculated on the basis of a two parameter model, is applied in the case of thermoionic emission from cathode surface. The fluctuation of the work function over the cathode surface is interpreted as being due to a trapping process of foreign atoms by the cathode. Taking into account the very physical nature of the trapping mechanism, under self-consistent assumptions, a 1/f power spectrum is obtained in a certain range of frequency. The two parameter model removes some discrepancies involved in the preceding theories. (author)

  17. Surface modification by vacuum annealing for field emission from heavily phosphorus-doped homoepitaxial (1 1 1) diamond

    International Nuclear Information System (INIS)

    Yamada, Takatoshi; Nebel, Christoph E.; Somu, Kumaragurubaran; Shikata, Shin-ichi

    2008-01-01

    The relationship between field emission properties and C 1s core level shifts of heavily phosphorus-doped homoepitaxial (1 1 1) diamond is investigated as a function of annealing temperature in order to optimize surface carbon bonding configurations for device applications. A low field emission threshold voltage is observed from surfaces annealed at 800 deg. C for hydrogen-plasma treated surface, while a low field emission threshold voltage of wet-chemical oxidized surface is observed after annealing at 900 deg. C. The C 1s core level by X-ray photoelectron spectroscopy (XPS) showed a shoulder peak at 1 eV below the main peak over 800 and 900 deg. C annealing temperature for hydrogen-plasma treated and wet-chemical oxidized surfaces, respectively. When the shoulder peak intensity is less than 10% of the main peak intensity, lower threshold voltages are observed. This is due to the carbon-reconstruction which gives rise to a small positive electron affinity. By increasing annealing temperature, the shoulder peak ratios also increase, which indicates that a surface graphitization takes place. This leads to higher threshold voltages

  18. Influence of Nitrogen Flow Rate on Friction Coefficient and Surface Roughness of TiN Coatings Deposited on Tool Steel Using Arc Method

    Science.gov (United States)

    Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor

    In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.

  19. A study of emission property and microstructure of rare earth oxide-molybdenum cermet cathode materials made by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Jinshu; Li Hongyi; Yang Sa; Cui Ying; Zhou Meiling

    2004-01-01

    A fast sintering method, spark plasma sintering (SPS) was used for the synthesis of rare earth oxide-molybdenum cathode material. The secondary emission property, microstructure, and phase constitution of materials have been studied in this paper. The experimental results show that the maximum secondary emission coefficient of this material can be high to 3.84, much higher than that of rare earth oxide-molybdenum cathode made by traditional sintering method. The grain size is less than 1 μm and rare earth distributed evenly in the material. After the material was activated at 1600 deg. C, a 4 μm layer of rare earth oxide which leads to the high secondary emission coefficient of the material, is formed on the surface of the cathode

  20. Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.

    Science.gov (United States)

    Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2011-04-13

    We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.

  1. MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MYD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  2. MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MOD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  3. Variation of solubility, biokinetics and dose coefficient of industrial uranium oxides according to the specific surface area

    International Nuclear Information System (INIS)

    Chazel, V.; Houpert, P.; Ansorbolo, E.; Henge-Napoli, M.H.; Paquet, F.

    2000-01-01

    The in vitro solubility, absorption to blood, lung retention and dose coefficient of industrial UO 2 samples were studied as a function of the specific surface area (SSA) of the particles. An in vitro study has been carried out on two samples of industrial UO 4 to compare the results with those obtained with UO 2 . Ten UO 2 samples supplied by different fuel factories or research laboratories, presented specific surface areas from 1.00 to 4.45 m 2 .g -1 . The wide range of values of SSA was due to the different conditions of fabrication. Dissolution tests in cell culture medium made on these ten samples have shown that the solubility increased 2.5-fold when the SSA increased 1.7-fold. The same tendency has been found for UO 4 , a soluble compound, and for U 3 O 8 , a moderately soluble compound. Four in vivo experiments carried out on rats by intratracheal instillation of dust suspensions of UO 2 , have highlighted the decrease in lung retention and the increase of absorption to blood with the SSA. The experimental absorption parameters calculated from the in vivo data allowed specific dose coefficients to be obtained which decreased from 6.6 to 4.3 μSv.Bq -1 when the SSA increased from 1.60 to 3.08 m 2 .g -1 . Thus, the medical monitoring of workers at the workplace has to take into account any change in the fabrication process of the uranium compound which can affect the physiochemical properties and consequently the dose coefficient. (author)

  4. Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface.

    Science.gov (United States)

    Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo

    2016-03-21

    In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect.

  5. Effect of surface tension and coefficient of thermal expansion in 30 nm scale nanoimprinting with two flexible polymer molds

    International Nuclear Information System (INIS)

    Kim, Jae Kwan; Cho, Hye Sung; Jung, Ho-Sup; Suh, Kahp-Yang; Lim, Kipil; Kim, Ki-Bum; Choi, Dae-Geun; Jeong, Jun-Ho

    2012-01-01

    We report on nanoimprinting of polymer thin films at 30 nm scale resolution using two types of ultraviolet (UV)-curable, flexible polymer molds: perfluoropolyether (PFPE) and polyurethane acrylate (PUA). It was found that the quality of nanopatterning at the 30 nm scale is largely determined by the combined effects of surface tension and the coefficient of thermal expansion of the polymer mold. In particular, the polar component of surface tension may play a critical role in clean release of the mold, as evidenced by much reduced delamination or broken structures for the less polarized PFPE mold when patterning a relatively hydrophilic PMMA film. In contrast, such problems were not notably observed with a relatively hydrophobic PS film for both polymer molds. In addition, the demolding characteristic was also influenced by the coefficient of thermal expansion so that no delamination or uniformity problems were observed when patterning a UV-curable polymer film at room temperature. These results suggest that a proper polymeric mold material needs to be chosen for patterning polymer films under different surface properties and processing conditions, providing insights into how a clean demolding characteristic can be obtained at 30 nm scale nanopatterning. (paper)

  6. The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 – Part 2: Impact of surface emissions on O3 and its precursors

    Directory of Open Access Journals (Sweden)

    G. Osterman

    2009-06-01

    Full Text Available The impact of surface emissions on the zonal structure of tropical tropospheric ozone and carbon monoxide is investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions.Vertical ozone profiles from the Tropospheric Emission Spectrometer (TES and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ network show elevated concentrations of ozone over Indonesia and Australia (60–70 ppb in the lower troposphere against the backdrop of the well-known zonal "wave-one" pattern with ozone concentrations of (70–80 ppb centered over the Atlantic . Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT CO profiles (Jones et al., 2009. These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30–40% over Indonesia. The response of the free tropospheric chemical state to the changes in these emissions is investigated for ozone, CO, NOx, and PAN. Model simulations indicate that ozone over Indonesian/Australian is sensitive to regional changes in surface emissions of NOx but relatively insensitive to lightning NOx. Over sub-equatorial Africa and South America, free tropospheric NOx was reduced in response to increased surface emissions potentially muting ozone production.

  7. On application of ion-photon emission method in spectral analysis of surface of different materials

    International Nuclear Information System (INIS)

    Bazhin, A.I.; Buravlev, Yu.M.; Ryzhov, V.N.

    1983-01-01

    Possibilities of application of ion-photom emission (IPE) method for determining element composition of the aluminium bronzes surface and profiles of distribution of hydrogen and helium implanted in metals (Mon Wn Cun Aln OKh18N10T steel) by ion bombardment have been studied. As ion source duoplasmatron which permits to obtain ions of inert (helium, argon) and active (hydrogenn oxygen) gases with current density 0.1-1 mA/cm 2 in the beam and energy from 5 to 25 keV has been applied. The photomultiplier PEM-79 has been used as a detector of optical radiation arising in the course of ion bombardment of the sample. For spectra recording the two-coordinate recorder has been used. Calibration charts which permit to determine the concentration of the investigated elements with 3-5% accuracy are obtained. The method sensitivity depends on excitation energy of transition observed in the spectrum. By known volumetric element concentration in the sample one can determine its concentration on a sUrface without resorting to a calibration chart in the coUrse of target sputtering. It has been found that the target impurity sputtering coefficient becomes nonselective to their relatiVe content. At wide incidence angles of ion beam. In contrast to other excitation methods (arc, spark) the IPE method possesses locality which constitutes 1 μm at a quite simple method of ion beam focussing (single lens)

  8. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Skinner, C.H.; Suckewer, S.; Princeton Univ., NJ; Lee, W.

    1991-02-01

    Experimental evidence is presented for the change of Einstein's A-coefficients for spontaneous transitions from the upper laser level of an argon ion laser discharge due to the presence of the high-intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  9. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Lee, W.; Skinner, C.H.; Suckewer, S.

    1991-03-01

    Experimental evidence is presented for the change of Einstein's A- coefficients for spontaneous transitions from the upper laser level of argon ion laser discharge due to the presence of the high- intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  10. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    International Nuclear Information System (INIS)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J; Stewart, L; Dawes, J M

    2011-01-01

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  11. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    Energy Technology Data Exchange (ETDEWEB)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J [Centre for Quantum Science and Technology, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Stewart, L; Dawes, J M, E-mail: james.rabeau@mq.edu.au, E-mail: michael.steel@mq.edu.au [MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia)

    2011-07-15

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  12. Surface emission of InxGa1-xN epilayers under strong optical excitation

    International Nuclear Information System (INIS)

    Jiang, H.X.; Lin, J.Y.; Khan, M.A.; Chen, Q.; Yang, J.W.

    1997-01-01

    Effects of strong optical excitation on the properties of surface emission from an InGaN/GaN heterostructure grown by metal-organic chemical-vapor deposition have been investigated. An intriguing feature observed was that as the excitation intensity increased the surface emission spectrum evolved abruptly from a single dominating band to two dominating bands at a critical intensity. This phenomenon has a sharp phase transition or a switching character and can be accounted for by (i) the formation of an electron endash hole plasma state in the InGaN vertical cavity under strong optical excitation, (ii) the photoreflectance effect (variation of index of refraction with excitation intensity), and (c) the Fabry endash Pacute erot interference effect in the InGaN vertical cavity. These findings are expected to have impact on the design of the laser structures, in particular on the design of the vertical-cavity surface-emitting laser diodes based on III-nitride wide-band-gap semiconductors. copyright 1997 American Institute of Physics

  13. Impact of Future Emissions and Climate Change on Surface Ozone over China

    Science.gov (United States)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb

  14. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage.

    Science.gov (United States)

    Grad, S; Loparic, M; Peter, R; Stolz, M; Aebi, U; Alini, M

    2012-04-01

    Functional cartilage tissue engineering aims to generate grafts with a functional surface, similar to that of authentic cartilage. Bioreactors that stimulate cell-scaffold constructs by simulating natural joint movements hold great potential to generate cartilage with adequate surface properties. In this study two methods based on atomic force microscopy (AFM) were applied to obtain information about the quality of engineered graft surfaces. For better understanding of the molecule-function relationships, AFM was complemented with immunohistochemistry. Bovine chondrocytes were seeded into polyurethane scaffolds and subjected to dynamic compression, applied by a ceramic ball, for 1h daily [loading group 1 (LG1)]. In loading group 2 (LG2), the ball additionally oscillated over the scaffold, generating sliding surface motion. After 3 weeks, the surfaces of the engineered constructs were analyzed by friction force and indentation-type AFM (IT-AFM). Results were complemented and compared to immunohistochemical analyses. The loading type significantly influenced the mechanical and histological outcomes. Constructs of LG2 exhibited lowest friction coefficient and highest micro- and nanostiffness. Collagen type II and aggrecan staining were readily observed in all constructs and appeared to reach deeper areas in loaded (LG1, LG2) compared to unloaded scaffolds. Lubricin was specifically detected at the top surface of LG2. This study proposes a quantitative AFM-based functional analysis at the micrometer- and nanometer scale to evaluate the quality of cartilage surfaces. Mechanical testing (load-bearing) combined with friction analysis (gliding) can provide important information. Notably, sliding-type biomechanical stimuli may favor (re-)generation and maintenance of functional articular surfaces and support the development of mechanically competent engineered cartilage. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights

  15. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  16. Heat transfer coefficient between UO2 and Zircaloy-2

    International Nuclear Information System (INIS)

    Ross, A.M.; Stoute, R.L.

    1962-06-01

    This paper provides some experimental values of the heat-transfer coefficient between UO 2 and Zircaloy-2 surfaces in contact under conditions of interfacial pressure, temperature, surface roughness and interface atmosphere, that are relevant to UO 2 /Zircaloy-2 fuel elements operating in pressurized-water power reactors. Coefficients were obtained from eight UO 2 / Zircaloy-2 pairs in atmospheres of helium, argon, krypton or xenon, at atmosphere pressure and in vacuum. Interfacial pressures were varied from 50 to 550 kgf/cm 2 while surface roughness heights were in the range 0.2 x 10 -4 to 3.5 x 10 -4 cm. The effect on the coefficients of cycling the interfacial pressure, of interface gas pressure and of temperature were examined. The experimental values of the coefficients were used to test the predictions of expressions for the heat-transfer between two solids in contact. For the particular UO 2 / Zircaloy-2 pairs examined, numerical values were assigned to several parameters that related the surface roughnesses to either the radius of solid/solid contact spots or to the mean thickness of the interface voids and that accounted for the imperfect accommodation of the void gas on the test surfaces. (author)

  17. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    Science.gov (United States)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and

  18. The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy

    Science.gov (United States)

    Al Bosta, Mohannad M. S.; Ma, Keng-Jeng; Chien, Hsi-Hsin

    2013-09-01

    MAO ceramic coatings were prepared on aluminium 6061 surfaces at different treating durations (10, 20, ... 60 min), using alkali silicate electrolyte and pulsed bipolar current mode. The surface microstructures and properties were studied using SEM, XRD, EDX and a surface roughness tester. Image-Pro Plus and MATCH! softwares were used to analyze SEM micrographs and XRD results, respectively. The infrared emissivities of the ceramic coatings were measured at the 70 °C using FTIR spectrometer. We found a linear correlation between the volcano-like area and the surface roughness. The compositions and phases were associated with the volcano-like population and area. The curve of IR spectral emissivity was influenced by surface roughness, γ-alumina, sillimanite and cristobalite phases. The emissivity was enhanced by the surface roughness in the ranges 4.0-9.6 μm and 10.5-14.8 μm. In the range 7.0-8.0 μm, α-alumina and sillimanite phases enhanced the emissivity, while the cristobalite has a negative impact to the emissivity. A negative contributions were found for α-alumina in the region 9.6-16.0 μm and for the surface thickness in the region 15.0-16.0 μm. Overall, the average of long wave infrared (LWIR) emissivity ranged from 87.05% to 91.65%.

  19. Disparity of secondary electron emission in ferroelectric domains of YMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shaobo; Deng, S. Q.; Yuan, Wenjuan; Yan, Yunjie; Zhu, Jing, E-mail: jzhu@tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China); Li, J.; Li, J. Q. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-07-20

    The applications of multiferroic materials require our understanding about the behaviors of domains with different polarization directions. Taking advantage of the scanning electron microscope, we investigate the polar surface of single crystal YMnO{sub 3} sample in secondary electron (SE) mode. By slowing down the scanning speed of electron beam, the negative surface potential of YMnO{sub 3} can be realized, and the domain contrast can be correspondingly changed. Under this experimental condition, with the help of a homemade Faraday cup, the difference of intrinsic SE emission coefficients of antiparallel domains is measured to be 0.12 and the downward polarization domains show a larger SE emission ability. Our results indicate that the total SE emission of this material can be altered by changing the ratio of the antiparallel domains, which provide an avenue for device design with this kind of materials.

  20. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    Science.gov (United States)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  1. Secondary emission coefficient dependence on the angle of incidence of primary electrons on CsI and LiF layers. [0. 9 to 3 keV, mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shabel' nikova, A E; Yasnopol' skii, N L

    1976-08-01

    The angular dependence was studied of the secondary emission coefficient sigma for CsI and LiF dielectrics which have large sigma in conditions of normal incidence of primary electrons. Measurements were taken down to the angle of 85 deg for energies of primary electrons between 0.9 and 3 keV. In the whole range of angles a nonmonotonic angular dependence sigma is observed. The dependence shows itself particularly clearly for CsI at large energies of primary electrons. Such a behaviour is due to the decrease in the depth of yield of inelastically reflected electrons and to the increase in the inelastic reflection coefficient of the substance.

  2. Electron excitation coefficients of neutral and ionic levels of krypton in Townsend discharges

    International Nuclear Information System (INIS)

    Malovic, G.N.; Strinic, A.I.; Petrovic, Z.Lj.; Sadeghi, N.

    2006-01-01

    In this paper, we present experimental results for excitation coefficients of krypton atoms to several Kr and Kr + excited levels for E/N (electric field to gas particle number density ratio usually in units of Townsend, 1 Td = 10 -21 V m 2 ) values from 7 x 10 -20 V m 2 to above 1 x 10 -17 V m 2 . The data have been obtained in two different parallel plate self-sustained Townsend discharge drift tubes. The spatial distribution of the emission intensities were recorded and then normalized to give excitation coefficients at the anode, by using the electron flux at this point. The values of these coefficients are placed on an absolute scale by using a standard tungsten ribbon lamp calibrated against a primary blackbody radiation standard. The ionization rates at different E/N are obtained from the spatial emission profiles. The data for atomic krypton levels 2p 2 , 2p 3 , 2p 5 , 2p 6 , 2p 7 , 2p 8 , 3p 5 and 3p 6 (in Paschen notation) were converted to excitation coefficients by using quenching coefficients from the literature. The emission coefficients of eight 4s 2 4p 4 ( 3 P)5p levels of Kr + have also been measured for E/N values from about 1 x 10 -18 V m 2 up to nearly 8 x 10 -18 V m 2

  3. The influence of surface modification on sound absorption coefficient of albizzia wood absorber

    Science.gov (United States)

    Diharjo, Kuncoro; Prabowo, Anditya E.; Jamasri, Suharty, Neng Sri

    2017-01-01

    The purpose of this research is to investigate the influence of surface modification to sound absorption on absorber based albizia wood and kenaf fiber. The absorber was produced using the albizia wood as main materials, and the kenaf fiber was used as acoustic fill. The albizia wood used for producing the absorber was cut in the transverse direction so that its surface had good porosity. The size of specimens had 100 mm in diameter and 40 mm in thickness. The configuration of resonator cavities was 30 mm in diameter and 20 mm in depth, and each resonator was completed with a neck hole of the resonator. The types of surface modification were the addition of screen printing ink, fabric (with and without neck hole), and vinyl-wallpaper (with and without neck hole). According to ISO 10534-2, the absorber specimens were tested using two microphones impedance tube with random noise source to get the curve of noise absorption coefficient (NAC) for each specimen. The result shows that both unmodified absorber and absorber modified with screen printing ink have the similar characteristic of NAC and they are feasible to be used as an absorber in conversation rooms. The addition of fabric and vinyl-wallpaper as cover on the absorber surface give the positive effect of the air gap, and it increases the NAC in low frequency (100-400 Hz). However, the covers decrease the NAC in high frequency (400-1,400 Hz). The holes on the fabric and wallpaper covers give the improvement of NAC.

  4. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... automatic detection of optimal process endpoint allow intelligent process control, creating fundamental elements in development of robust fully automated RAP process for its widespread industrial application....... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  5. Optical emission from low-energy ion-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Thomas, E.W.; Van der Weg, W.F.; Tolk, N.H.

    1977-01-01

    Impact of energetic heavy particles on surfaces gives rise to emission of optical radiation from reflected particles, sputtered particles and also from excited states of the solid. The present status of research in this area is reviewed with emphasis on understanding the basic mechanisms which give rise to formation of excited states. The spectral line shape from ejected atoms may be analyzed to provide information on the distribution of speeds and directions of the excited species; the line intensity provides a measure of the probability for creating the state. Formation of excited species is related both to the collision processes within the solid and also to the interaction of the recoiling ejected species with the target surface. Most ejected species are atomic but important examples of ejected molecules are also discussed. Luminescence induced in the solid itself is related to recombination of electron hole pairs and is related significantly to the presence of defects

  6. Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: predictable boundary layer concentrations and emission rates.

    Science.gov (United States)

    Schripp, Tobias; Salthammer, Tunga; Fauck, Christian; Bekö, Gabriel; Weschler, Charles J

    2014-10-01

    The description of emission processes of volatile and semi-volatile organic compounds (VOCs and SVOCs) from building products requires a detailed understanding of the material and the air flow conditions at the surface boundary. The mass flux between the surface of the material and air depends on the mass transfer coefficient (hm) through the boundary layer, the gas phase concentration of the target compound immediately adjacent to the material (y0), and the gas-phase concentration in bulk air (y(t)). In the present study emission experiments were performed in two chambers of quite different sizes (0.25 m(3) and 55 m(3)), and, in the larger chamber, at two different temperatures (23°C and 30°C). The emitting material was latex wall paint that had been doped with two plasticizers, diethylphthalate (DEP) and di-n-butylphthalate (DnBP). The phthalate content in the paint was varied in the small chamber experiment to evaluate the impact of the initial concentration in the bulk material (C0) on the emission rate. Boundary layer theory was applied to calculate hm for the specific phthalates from the Sherwood number (Sh) and the diffusion coefficient (Dair). Then y0 was determined based on the bulk gas-phase concentration at steady state (y¯). For both, DEP and DnBP, the y0 obtained was lower than the respective saturation vapor pressure (Ps). Furthermore, for both phthalates in latex paint, the material/air partition coefficient (C0/y0) was close in value to the octanol/air partition coefficient (KOA). This study provides a basis for designing phthalate emitting reference materials that mimic the emission behavior of common building materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    Science.gov (United States)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the

  8. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  9. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  10. Experimental evaluation of heat transfer coefficients between radiant ceiling and room

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2009-01-01

    The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements. The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions...... of occupancy of an office or residential building. Internal gains were therefore simulated using heated cylinders and heat losses using cooled surfaces. Evaluations were developed by means of experimental tests in an environmental chamber. Heat transfer coefficient may be expressed separately for radiation...

  11. SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST

    International Nuclear Information System (INIS)

    Richterová, I.; Němeček, Z.; Beránek, M.; Šafránková, J.; Pavlů, J.

    2012-01-01

    Electrons impinging on a target can release secondary electrons and/or they can be scattered out of the target. It is well established that the number of escaping electrons per primary electron depends on the target composition and dimensions, the energy, and incidence angle of the primary electrons, but there are suggestions that the target's shape and surface roughness also influence the secondary emission. We present a further modification of the model of secondary electron emission from dust grains which is applied to non-spherical grains and grains with defined surface roughness. It is shown that the non-spherical grains give rise to a larger secondary electron yield, whereas the surface roughness leads to a decrease in the yield. Moreover, these effects can be distinguished: the shape effect is prominent for high primary energies, whereas the surface roughness predominantly affects the yield at the low-energy range. The calculations use the Lunar Highlands Type NU-LHT-2M simulant as a grain material and the results are compared with previously published laboratory and in situ measurements.

  12. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    Science.gov (United States)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  13. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs

    Science.gov (United States)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj

    2017-06-01

    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is

  14. Conversion of time-varying Stokes coefficients into mass anomalies at the Earth's surface considering the Earth's oblateness

    Science.gov (United States)

    Ditmar, Pavel

    2018-02-01

    Time-varying Stokes coefficients estimated from GRACE satellite data are routinely converted into mass anomalies at the Earth's surface with the expression proposed for that purpose by Wahr et al. (J Geophys Res 103(B12):30,205-30,229, 1998). However, the results obtained with it represent mass transport at the spherical surface of 6378 km radius. We show that the accuracy of such conversion may be insufficient, especially if the target area is located in a polar region and the signal-to-noise ratio is high. For instance, the peak values of mean linear trends in 2003-2015 estimated over Greenland and Amundsen Sea embayment of West Antarctica may be underestimated in this way by about 15%. As a solution, we propose an updated expression for the conversion of Stokes coefficients into mass anomalies. This expression is based on the assumptions that: (i) mass transport takes place at the reference ellipsoid and (ii) at each point of interest, the ellipsoidal surface is approximated by the sphere with a radius equal to the current radial distance from the Earth's center ("locally spherical approximation"). The updated expression is nearly as simple as the traditionally used one but reduces the inaccuracies of the conversion procedure by an order of magnitude. In addition, we remind the reader that the conversion expressions are defined in spherical (geocentric) coordinates. We demonstrate that the difference between mass anomalies computed in spherical and ellipsoidal (geodetic) coordinates may not be negligible, so that a conversion of geodetic colatitudes into geocentric ones should not be omitted.

  15. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  16. Secondary ion emission from metal surfaces bombarded by 0.5-10 keV protons and hydrogens

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yano, Syukuro

    1978-01-01

    Secondary ion emission coefficients by bombardment of 0.5 - 10 keV protons K 11 and atomic hydrogens K 01 on copper, stainless steel, molybdenum and evaporated gold surfaces have been measured in a moderate vacuum. Results are summarized as follows; 1) There is no significant difference between K 11 and K 01 . 2) Differences in K 11 and K 11 between different samples of the same material and between the sample before baking-out and the same sample after baking-out are of the order of several tens of percent. 3) The incident particle energy E sub(max) at which K 11 and K 01 have the maximum value lies in the keV region, and increases with the target mass. According to the fact that E sub(max) differs substantially from the energy at which the elastic stopping power has the maximum value, a characteristic length l is introduced and calculated to be of the order of hundreds of A; the factor exp (-x/l) represents the degree of contribution of collision at depth x to K 11 or K 01 . (author)

  17. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  18. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The Role of Meteorology and Surface Condition to Multi-Decadal Variations of Dust Emission in Sahara and Sahel

    Science.gov (United States)

    Kim, D.; Chin, M.; Diehl, T. L.; Bian, H.; Brown, M. E.; Remer, L. A.; Stockwell, W. R.

    2014-12-01

    North Africa is the world's largest dust source region influencing regional and global climate, human health, and even the local economy. However North Africa as a dust source is not uniform but it consists of the arid region (Sahara) and the semi-arid region (Sahel) with emission rates depending on meteorological and surface conditions. Several recent studies have shown that dust from North Africa seems to have a decreasing trend in the past three decades. The goal of this study is to better understand the controlling factors that determine the change of dust in North Africa using observational data and model simulations. First we analyze surface bareness conditions determined from a long-term satellite observed Normalized Difference Vegetation Index for 1980-2008. Then we examine the key meteorological variables of precipitation and surface winds. Modeling experiments were conducted using the NASA Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which has been recently updated with a dynamic dust source function. Using the method we separate the dust originating from the Sahel from that of the Sahara desert. We find that the surface wind speed is the most dominant factor affecting Sahelian dust emission while vegetation has a modulating effect. We will show regional differences in meteorological variables, surface conditions, dust emission, and dust distribution and address the relationships among meteorology, surface conditions, and dust emission/loading in the past three decades (1980-2008).

  20. Coefficient of Friction Between Carboxymethylated Hyaluronic Acid-Based Polymer Films and the Ocular Surface.

    Science.gov (United States)

    Colter, Jourdan; Wirostko, Barbara; Coats, Brittany

    2017-12-01

    Hyaluronic acid-based polymer films are emerging as drug-delivery vehicles for local and continuous drug administration to the eye. The highly lubricating hyaluronic acid increases comfort, but displaces films from the eye, reducing drug exposure and efficacy. Previous studies have shown that careful control of the surface interaction of the film with the eye is critical for improved retention. In this study, the frictional interaction of a carboxymethylated, hyaluronic acid-based polymer (CMHA-S) with and without methylcellulose was quantified against ovine and human sclera at three axial loads (0.3, 0.5, and 0.7 N) and four sliding velocities (0.3, 1.0, 10, and 30 mm/s). Static coefficients of friction significantly increased with rate (P Friction became more rate-dependent when methylcellulose was added to CMHA-S. Kinetic coefficient of friction was not affected by rate, and averaged 0.15 ± 0.1. Methylcellulose increased CMHA-S static and kinetic friction by 60% and 80%, respectively, but was also prone to wear during testing. These data suggest that methylcellulose can be used to create a friction differential on the film, but a potentially increased degradation rate with the methylcellulose must be considered in the design.

  1. Surface and Bulk Characteristics of Cesium Iodide (CsI) coated Carbon (C) Fibers for High Power Microwave (HPM) Field Emission Cathodes

    Science.gov (United States)

    Vlahos, Vasilios; Morgan, Dane; Booske, John H.; Shiffler, Don

    2008-11-01

    CsI coated C fibers [1] are promising field emission cathodes for HPM applications. Ab initio computational modeling has shown that atomically-thin CsI coatings reduce the work function of C substrates by a surface dipole mechanism [2]. Characterization measurements of the composition and morphology of the CsI-coated C fibers are underway for determining the properties and characteristics of the following important regions of the fiber: (i) the surface on the tip of the fiber where the majority of electron emission is believed to occur, (ii) the surface covering the body of the fiber and its role on the emission properties of the system, and (iii) the interior volume of the fiber and its effects on the CsI surface re-supply process and rate. The results will be interpreted in terms of surface electronic properties and theoretical electron emission models. [1]D. Shiffler, et al., Phys. Plasmas 11 (2004) 1680. [2]V.Vlahos et al., Appl. Phys. Lett. 91 (2007) 144102.

  2. N2O emission from plant surfaces - light stimulated and a global phenomenon.

    Science.gov (United States)

    Mikkelsen, Teis; Bruhn, Dan; Ambus, Per

    2017-04-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed. Literature: Mikkelsen TN, Bruhn D & Ambus P. (2016). Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth. Progress in Botany, DOI 10.1007/124_2016_10. Bruhn D, Albert KR, Mikkelsen TN & Ambus P. (2014). UV-induced N2O emission from plants. Atmospheric Environment 99, 206-214.

  3. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    Science.gov (United States)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  4. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    Science.gov (United States)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  5. Using satellite data to guide emission control strategies for surface ozone pollution

    Science.gov (United States)

    Jin, X.; Fiore, A. M.

    2017-12-01

    Surface ozone (O3) has adverse effects on public health, agriculture and ecosystems. As a secondary pollutant, ozone is not emitted directly. Ozone forms from two classes of precursors: NOx and VOCs. We use satellite observations of formaldehyde (a marker of VOCs) and NO2 (a marker of NOx) to identify areas which would benefit more from reducing NOx emissions (NOx-limited) versus areas where reducing VOC emissions would lead to lower ozone (VOC-limited). We use a global chemical transport model (GEOS-Chem) to develop a set of threshold values that separate the NOx-limited and VOC-limited conditions. Combining these threshold values with a decadal record of satellite observations, we find that U.S. cities (e.g. New York, Chicago) have shifted from VOC-limited to NOx-limited ozone production regimes in the warm season. This transition reflects the NOx emission controls implemented over the past decade. Increasing NOx sensitivity implies that regional NOx emission control programs will improve O3 air quality more now than it would have a decade ago.

  6. CFD simulation of direct contact condensation with ANSYS CFX using surface renewal theory based heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2013-07-01

    Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)

  7. Inverse modelling estimates of N2O surface emissions and stratospheric losses using a global dataset

    Science.gov (United States)

    Thompson, R. L.; Bousquet, P.; Chevallier, F.; Dlugokencky, E. J.; Vermeulen, A. T.; Aalto, T.; Haszpra, L.; Meinhardt, F.; O'Doherty, S.; Moncrieff, J. B.; Popa, M.; Steinbacher, M.; Jordan, A.; Schuck, T. J.; Brenninkmeijer, C. A.; Wofsy, S. C.; Kort, E. A.

    2010-12-01

    Nitrous oxide (N2O) levels have been steadily increasing in the atmosphere over the past few decades at a rate of approximately 0.3% per year. This trend is of major concern as N2O is both a long-lived Greenhouse Gas (GHG) and an Ozone Depleting Substance (ODS), as it is a precursor of NO and NO2, which catalytically destroy ozone in the stratosphere. Recently, N2O emissions have been recognised as the most important ODS emissions and are now of greater importance than emissions of CFC's. The growth in atmospheric N2O is predominantly due to the enhancement of surface emissions by human activities. Most notably, the intensification and proliferation of agriculture since the mid-19th century, which has been accompanied by the increased input of reactive nitrogen to soils and has resulted in significant perturbations to the natural N-cycle and emissions of N2O. There exist two approaches for estimating N2O emissions, the so-called 'bottom-up' and 'top-down' approaches. Top-down approaches, based on the inversion of atmospheric measurements, require an estimate of the loss of N2O via photolysis and oxidation in the stratosphere. Uncertainties in the loss magnitude contribute uncertainties of 15 to 20% to the global annual surface emissions, complicating direct comparisons between bottom-up and top-down estimates. In this study, we present a novel inversion framework for the simultaneous optimization of N2O surface emissions and the magnitude of the loss, which avoids errors in the emissions due to incorrect assumptions about the lifetime of N2O. We use a Bayesian inversion with a variational formulation (based on 4D-Var) in order to handle very large datasets. N2O fluxes are retrieved at 4-weekly resolution over a global domain with a spatial resolution of 3.75° x 2.5° longitude by latitude. The efficacy of the simultaneous optimization of emissions and losses is tested using a global synthetic dataset, which mimics the available atmospheric data. Lastly, using real

  8. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  9. Revised spatially distributed global livestock emissions

    Science.gov (United States)

    Asrar, G.; Wolf, J.; West, T. O.

    2015-12-01

    Livestock play an important role in agricultural carbon cycling through consumption of biomass and emissions of methane. Quantification and spatial distribution of methane and carbon dioxide produced by livestock is needed to develop bottom-up estimates for carbon monitoring. These estimates serve as stand-alone international emissions estimates, as input to global emissions modeling, and as comparisons or constraints to flux estimates from atmospheric inversion models. Recent results for the US suggest that the 2006 IPCC default coefficients may underestimate livestock methane emissions. In this project, revised coefficients were calculated for cattle and swine in all global regions, based on reported changes in body mass, quality and quantity of feed, milk production, and management of living animals and manure for these regions. New estimates of livestock methane and carbon dioxide emissions were calculated using the revised coefficients and global livestock population data. Spatial distribution of population data and associated fluxes was conducted using the MODIS Land Cover Type 5, version 5.1 (i.e. MCD12Q1 data product), and a previously published downscaling algorithm for reconciling inventory and satellite-based land cover data at 0.05 degree resolution. Preliminary results for 2013 indicate greater emissions than those calculated using the IPCC 2006 coefficients. Global total enteric fermentation methane increased by 6%, while manure management methane increased by 38%, with variation among species and regions resulting in improved spatial distributions of livestock emissions. These new estimates of total livestock methane are comparable to other recently reported studies for the entire US and the State of California. These new regional/global estimates will improve the ability to reconcile top-down and bottom-up estimates of methane production as well as provide updated global estimates for use in development and evaluation of Earth system models.

  10. Effect of heat and mass transfer coefficients on the performance of automotive catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, T. [Michigan Univ., Dept. of Mechanical Engineering, Dearborn, MI (United States)

    2003-06-01

    This paper numerically investigates the role of heat and mass transfer coefficients on the performance of automotive catalytic converters, which are employed to reduce engine exhaust emissions. The pollutant conversion performance of a converter is influenced by a number of physical and chemical processes that take place in gaseous and solid phases as the exhaust gases flow through the catalyst. A quantitative predictive understanding of these complex catalyst processes involving flow dynamics, heterogeneous surface reactions and heat and mass transport mechanisms is important in improving the converter design. The role of convective transport phenomena becomes important at high temperature when the mass transfer becomes rate-limiting to an increasing extent. The objective of the present study is to elucidate the influence of convective heat and mass transfer coefficients (mechanisms). The mathematical model considers the conservation of mass, momentum and energy in both gaseous and solid phases. In addition to the heterogeneous surface reactions, the model also takes into account the adsorption/desorption of oxygen in the catalyst during non-stoichiometric composition of air/fuel mixtures. The governing equations are solved by an implicit scheme using a successive line under a relaxation method. The converter performance under the transient conditions as simulated by the US Federal Test Procedure (US-FTP) is analysed. (Author)

  11. New external convective heat transfer coefficient correlations for isolated low-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Emmel, M. G.; Mendes, N. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Abadie, M. O. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Laboratoire d' Etude des Phenomenes de Transfert Appliques au batiment (LEPTAB), University of La Rochelle, La Rochelle (France)

    2007-07-01

    Building energy analyses are very sensitive to external convective heat transfer coefficients so that some researchers have conducted sensitivity calculations and proved that depending on the choice of those coefficients, energy demands estimation values can vary from 20% to 40%. In this context, computational fluid dynamics calculations have been performed to predict convective heat transfer coefficients at the external surfaces of a simple shape low-rise building. Effects of wind velocity and orientation have been analyzed considering four surface-to-air temperature differences. Results show that the convective heat transfer coefficient value strongly depends on the wind velocity, that the wind direction has a notable effect for vertical walls and for roofs and that the surface-to-air temperature difference has a negligible effect for wind velocity higher than 2 m/s. External convective heat transfer coefficient correlations are provided as a function of the wind free stream velocity and wind-to-surface angle. (author)

  12. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    Science.gov (United States)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  13. Cold collisions of SH- with He: Potential energy surface and rate coefficients

    Science.gov (United States)

    Bop, C. T.; Trabelsi, T.; Hammami, K.; Mogren Al Mogren, M.; Lique, F.; Hochlaf, M.

    2017-09-01

    Collisional energy transfer under cold conditions is of great importance from the fundamental and applicative point of view. Here, we investigate low temperature collisions of the SH- anion with He. We have generated a three-dimensional potential energy surface (PES) for the SH-(X1Σ+)-He(1S) van der Waals complex. The ab initio multi-dimensional interaction PES was computed using the explicitly correlated coupled cluster approach with simple, double, and perturbative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. The PES presents two minima located at linear geometries. Then, the PES was averaged over the ground vibrational wave function of the SH- molecule and the resulting two-dimensional PES was incorporated into exact quantum mechanical close coupling calculations to study the collisional excitation of SH- by He. We have computed inelastic cross sections among the 11 first rotational levels of SH- for energies up to 2500 cm-1. (De-)excitation rate coefficients were deduced for temperatures ranging from 1 to 300 K by thermally averaging the cross sections. We also performed calculations using the new PES for a fixed internuclear SH- distance. Both sets of results were found to be in reasonable agreement despite differences existing at low temperatures confirming that accurate predictions require the consideration of all internal degrees of freedom in the case of molecular hydrides. The rate coefficients presented here may be useful in interpreting future experimental work on the SH- negative ion colliding with He as those recently done for the OH--He collisional system as well as for possible astrophysical applications in case SH- would be detected in the interstellar medium.

  14. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    Science.gov (United States)

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  15. Rear surface light emission measurements from laser-produced shock waves in clear and Al-coated polystyrene targets

    Science.gov (United States)

    McLean, E. A.; Deniz, A. V.; Schmitt, A. J.; Stamper, J. A.; Obenschain, S. P.; Lehecka, T.; Mostovych, A. N.; Seely, J.

    1999-08-01

    The Nike KrF laser, with its very uniform focal distributions, has been used at intensities near 10 14 W/cm 2 to launch shock waves in polystyrene targets. The rear surface visible light emission differed between clear polystyrene (CH) targets and targets with a thin (125 nm) Al coating on the rear side. The uncoated CH targets showed a relatively slowly rising emission followed by a sudden fall when the shock emerges, while the Al-coated targets showed a rapid rise in emission when the shock emerges followed by a slower fall, allowing an unambiguous determination of the time the shock arrived at the rear surface. A half-aluminized target allowed us to observe this difference in a single shot. The brightness temperature of both the aluminized targets and the non-aluminized targets was slightly below but close to rear surface temperature predictions of a hydrodynamic code. A discussion of preheat effects is given.

  16. Calculation of the net emission coefficient of an air thermal plasma at very high pressure

    International Nuclear Information System (INIS)

    Billoux, T; Cressault, Y; Teulet, Ph; Gleizes, A

    2012-01-01

    The aim of this paper is to present an accurate evaluation of the phenomena appearing for high pressure air plasmas supposed to be in local thermodynamic equilibrium (LTE). In the past, we already calculated the net emission coefficient for air mixtures at atmospheric pressure and for temperatures up to 30kK (molecular contribution being restricted to 10kK). Unfortunately, the existence of high pressures does not allow us to use this database due to the non-ideality of the plasma (Viriel and Debye corrections, energy cut-off ...), and due to the significant shifts of molecular reactions towards upper temperatures. Consequently, this paper proposes an improvement of our previous works with a consideration of high pressure corrections in the composition algorithm in order to take into account the pressure effects, and with a new calculation of all the contributions of the plasma radiation (atomic lines and continuum, molecular continuum, and molecular bands) using an updated database. A particular attention is paid to calculate the contribution of all the major molecular band systems to the radiation: O 2 (Schumann–Runge), N 2 (VUV, 1st and 2nd positive), NO (IR, β, γ, δ, element of ) and N 2 + (1st negative and Meinel). The discrete atomic lines and molecular bands radiation including the overlapping are calculated by a line-by-line method up to 30kK and 100 bar. This updated database is validated in the case of optically thin plasmas and pressure of 1bar by the comparison of our integrated emission strength with the published results. Finally, this work shows the necessity to extend the molecular radiation database up to 15kK at high pressure (bands and continuum) since their corresponding contributions could not be neglected at high temperature.

  17. Low-Computation Strategies for Extracting CO2 Emission Trends from Surface-Level Mixing Ratio Observations

    Science.gov (United States)

    Shusterman, A.; Kim, J.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    Global momentum is building for drastic, regulated reductions in greenhouse gas emissions over the coming decade. With this increasing regulation comes a clear need for increasingly sophisticated monitoring, reporting, and verification (MRV) strategies capable of enforcing and optimizing emissions-related policy, particularly as it applies to urban areas. Remote sensing and/or activity-based emission inventories can offer MRV insights for entire sectors or regions, but are not yet sophisticated enough to resolve unexpected trends in specific emitters. Urban surface monitors can offer the desired proximity to individual greenhouse gas sources, but due to the densely-packed nature of typical urban landscapes, surface observations are rarely representative of a single source. Most previous efforts to decompose these complex signals into their contributing emission processes have involved inverse atmospheric modeling techniques, which are computationally intensive and believed to depend heavily on poorly understood a priori estimates of error covariance. Here we present a number of transparent, low-computation approaches for extracting source-specific emissions estimates from signals with a variety of nearfield influences. Using observations from the first several years of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), we demonstrate how to exploit strategic pairings of monitoring "nodes," anomalous wind conditions, and well-understood temporal variations to hone in on specific CO2 sources of interest. When evaluated against conventional, activity-based bottom-up emission inventories, these strategies are seen to generate quantitatively rigorous emission estimates. With continued application as the BEACO2N data set grows in time and space, these approaches offer a promising avenue for optimizing greenhouse gas mitigation strategies into the future.

  18. Low temperature rate coefficients of the H + CH(+) → C(+) + H2 reaction: New potential energy surface and time-independent quantum scattering.

    Science.gov (United States)

    Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry

    2015-09-21

    The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.

  19. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-01-01

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  20. Interregional differences of coal carbon dioxide emissions in China

    International Nuclear Information System (INIS)

    Chen, Jiandong; Cheng, Shulei; Song, Malin; Wang, Jia

    2016-01-01

    Coal is one of the main fuel sources in China. This paper sheds light on the evolution of China's interregional differences in CO 2 emissions from coal by constructing a Gini coefficient and decoupling elasticity index for emissions from 1997 to 2012 and explains why emission differences deviate from economic growth differences. The study decomposed the Gini coefficient of CO 2 emissions from coal by source, incremental source, and region. It also divided the decoupling elasticity of carbon emissions into two components: effects of environmental expenditure and effects of emission reduction policy. The findings of the study are as follows: First, interregional differences in China's overall CO 2 emissions from coal are characterized by periodic fluctuation. Second, the differences in emissions from raw coal, the concentration effect of emissions, and the emission differences within regions are the three main factors in the overall difference changes in coal's carbon emissions in China. Last but not least, the decoupling between provincial CO 2 emissions from coal and economic growth is on the whole weak. Based on the above findings, the author offers four suggestions for emission reduction. - Highlights: •We focus on interregional differences in China's coal carbon dioxide emissions. •We construct an emission decoupling elasticity index. •Expenditure on environmental protection is the intermediate variable for the index. •We use the Gini coefficient to decompose emissions by source and incremental source. •Interregional emission and economic growth differences deviate due to govt. policy.

  1. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  2. The EUMETSAT OSI SAF near 50 GHz sea ice emissivity model

    Directory of Open Access Journals (Sweden)

    Rasums T. Tonboe

    2013-02-01

    Full Text Available A sea ice thermal microwave emission model for 50 GHz was developed under EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSI SAF programme. The model is based on correlations between the surface brightness temperature at 18, 36 and 50 GHz. The model coefficients are estimated using simulated data from a combined thermodynamic and emission model. The intention with the model is to provide a first guess sea ice surface emissivity estimate for atmospheric temperature sounding applications in the troposphere in numerical weather prediction (NWP models assimilating Advanced Microwave Sounding Unit (AMSU and Special Sensor Microwave Imager/Sounder (SSMIS data. The spectral gradient ratio is defined as the difference over the sum of the SSMIS brightness temperatures at 18 and 36 GHz vertical linear polarisation (GR1836. The GR1836 is related to the emissivity at the atmospheric temperature sounding channels at around 50 GHz. Furthermore, the brightness temperatures and the polarisation ratio (PR at the neighbouring 18, 36 and 50 GHz channels are highly correlated. Both the gradient ratio at 18 and 36 GHz and the PR at 36 GHz measured by SSMIS are input into the model predicting the 50 GHz emissivity for horizontal and vertical linear polarisations and incidence angles between 0° and 60° The simulated emissivity is compared to the emissivity derived with alternative methods. The fit to real AMSU observations is investigated using the different emissivity estimates for simulating the observations with atmospheric data from a regional weather prediction model.

  3. Monte Carlo calculation of secondary electron emission from carbon-surface by obliquely incident particles

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1990-01-01

    Incidence angle dependences of secondary electron emission from a carbon surface by low energy electron and hydrogen atom are calculated using Monte Carlo simulations on the kinetic emission model. The calculation shows very small increase or rather decrease of the secondary electron yield with oblique incidence. It is explained in terms of not only multiple elastic collisions of incident particles with the carbon atoms but also small penetration depth of the particles comparable with the escape depth of secondary electrons. In addition, the two types of secondary electron emission are distinguished by using the secondary electron yield statistics; one is the emission due to trapped particles in the carbon, and the other is that due to backscattered particles. The high-yield component of the statistics on oblique incidence is more suppressed than those on normal incidence. (author)

  4. Transition absorption as a mechanism of surface photoelectron emission from metals

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Protsenko, Igor E.; Ikhsanov, Renat Sh

    2015-01-01

    Transition absorption of a photon by an electron passingthrough a boundary between two media with different permit-tivities is described both classically and quantum mechani-cally. Transition absorption is shown to make a substantialcontribution to photoelectron emission at a metal....../semicon-ductor interface in nanoplasmonic systems, and is put forth asa possible microscopic mechanism of the surface photoelec-tric effect in photodetectors and solar cells containing plas-monic nanoparticles....

  5. Estimation of internal heat transfer coefficients and detection of rib positions in gas turbine blades from transient surface temperature measurements

    International Nuclear Information System (INIS)

    Heidrich, P; Wolfersdorf, J v; Schmidt, S; Schnieder, M

    2008-01-01

    This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.

  6. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Green, J.B. [Oak Ridge National Lab., TN (United States)

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  7. Fourier emission infrared microspectrophotometer for surface analysis. I - Application to lubrication problems

    Science.gov (United States)

    Lauer, J. L.; King, V. W.

    1979-01-01

    A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.

  8. Quenching of Einstein A-Coefficients in plasmas and lasers

    International Nuclear Information System (INIS)

    Suckewer, S.; Princeton Univ., NJ

    1991-03-01

    The coefficient of spontaneous emission (Einstein A-coefficient) is considered to be one of the basic constants of a given transition in atom or ion. The formula for the Einstein A-coefficient was derived in the pioneering works of Weisskopf and Wigner (WW) based on Dirac's theory of light. More recently, however, it was noted in several papers that the rate of spontaneous radiative decay can deviate significantly from the WW expression in certain conditions, for example in a laser cavity. A different type of change in A- coefficients was inferred from measurements of changes in the intensity branching ratio of spectral lines in a plasma. A change of branching ratio of up to a factor of 10 was observed in CIV for 3p-3s (580.1--581.2nm) and 3p-2s (31.2-nm) transitions when the electron density changed from approximately N e ∼ 1 x 10 18 to 5 x 10 18 cm -3 . This effect was also observed in CIII and NV. An initial theoretical approach to the problem based on the integration of the Schroedinger equation with the ion Coulomb potential modified by the electron cloud within the Debye radius was unsuccessfully in predicting the experimental observations. The effect of quenching of spontaneous emission coefficients was observed also in an Ar-ion laser as a function of the intracavity power density (photon density) for lines originating from the same upper level as the lasing line. Measurements of these line profiles absorption for different lasing conditions and related discussions are also presented. 14 refs., 6 figs

  9. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  10. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  11. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    International Nuclear Information System (INIS)

    Tong Wang

    2002-01-01

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radio frequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ∼140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ∼140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ∼140 MV

  12. Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India); Suryawanshi, Sachin R.; More, M.A. [Department of Physics, Savitribai Phule Pune University, Pune, 411007 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai, 40085 (India); Sinha, Sucharita [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India)

    2017-02-28

    Highlights: • Array of self assembled micro-protrusions have been generated on stainless steel surfaces by femtosecond pulsed laser irradiation. • Density of the formed micro-protrusions is ∼5.6 × 105 protrusions/cm{sup 2}. • Laser treated surface is mainly composed of iron oxide and cementite phases. • Micro-structured sample has shown good field emission properties – low turn on field, high field enhancement factor and stable emission current. - Abstract: This paper reports our results on femtosecond (fs) pulsed laser induced surface micro/nano structuring of stainless steel 304 (SS 304) samples and their characterization in terms of surface morphology, formed material phases on laser irradiation and field emission studies. Our investigations reveal that nearly uniform and dense array of hierarchical micro-protrusions (density: ∼5.6 × 10{sup 5} protrusions/cm{sup 2}) is formed upon laser treatment. Typical tip diameters of the generated protrusions are in the range of 2–5 μm and these protrusions are covered with submicron sized features. Grazing incidence X-ray diffraction (GIXRD) analysis of the laser irradiated sample surface has shown formation mainly of iron oxides and cementite (Fe{sub 3}C) phases in the treated region. These laser micro-structured samples have shown good field emission properties such as low turn on field (∼4.1 V/μm), high macroscopic field enhancement factor (1830) and stable field emission current under ultra high vacuum conditions.

  13. Surprisingly small HONO emissions from snow surfaces at Browning Pass, Antarctica

    Directory of Open Access Journals (Sweden)

    H. J. Beine

    2006-01-01

    Full Text Available Measured Fluxes of nitrous acid at Browning Pass, Antarctica were very low, despite conditions that are generally understood as favorable for HONO emissions, including: acidic snow surfaces, an abundance of NO3- anions in the snow surface, and abundant UV light for NO3- photolysis. Photochemical modeling suggests noon time HONO fluxes of 5–10 nmol m-2 h-1; the measured fluxes, however, were close to zero throughout the campaign. The location and state of NO3- in snow is crucial to its reactivity. The analysis of soluble mineral ions in snow reveals that the NO3- ion is probably present in aged snows as NaNO3. This is peculiar to our study site, and we suggest that this may affect the photochemical reactivity of NO3-, by preventing the release of products, or providing a reactive medium for newly formed HONO. In fresh snow, the NO3- ion is probably present as dissolved or adsorbed HNO3 and yet, no HONO emissions were observed. We speculate that HONO formation from NO3- photolysis may involve electron transfer reactions of NO2 from photosensitized organics and that fresh snows at our site had insufficient concentrations of adequate organic compounds to favor this reaction.

  14. Low emissivity insulating glazing materials: principle and examples; Les vitrages isolants a basse emissivite: principe et exemples

    Energy Technology Data Exchange (ETDEWEB)

    Prost, A. [Saint-Gobain Recherche, 93 - Aubervilliers (France)

    1996-12-31

    One of the stakes of flat glass industry is the limitation of thermal losses from indoor to outdoor through glass walls (K coefficient) in order to increase energy savings. Thermal insulation performances of a double glazing can be reinforced by the application of a highly reflective (low emissive) film with respect to thermal infrared radiation. The low emissive character is obtained with the use of surface-deposited materials that can be described using the Drude model: vacuum pulverization of metals, and vacuum pulverization or pyrolysis deposition of doped semi-conductor oxides. (J.S.)

  15. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    OpenAIRE

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Ob...

  16. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Directory of Open Access Journals (Sweden)

    Chang-Lin Chiang

    2016-01-01

    Full Text Available The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO, aluminum oxide coated FTO (Al2O3/FTO and magnesium oxide coated FTO (MgO/FTO were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  17. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chang-Lin, E-mail: CLChiang@itri.org.tw; Li, Chia-Hung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Zeng, Hui-Kai [Department of Electronic Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li 320, Taiwan (China); Li, Jung-Yu, E-mail: JY-Lee@itri.org.tw; Chen, Shih-Pu; Lin, Yi-Ping [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Hsieh, Tai-Chiung; Juang, Jenh-Yih, E-mail: jyjuang@cc.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2016-01-15

    The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  18. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  19. Modeled Trends in Impacts of Landing and Takeoff Aircraft Emissions on Surface Air-Quality in U.S for 2005, 2010 and 2018

    Science.gov (United States)

    Vennam, L. P.

    2014-12-01

    Understanding the present-day impacts of aircraft emissions on surface air quality is essential to plan potential mitigation policies for future growth. Stringent regulation on mobile source-related emissions in the recent past coupled with anticipated rise in the growth in aviation activity can increase the relative impacts of aviation-attributable surface air quality if adequate measures for reducing aviation emissions are not implemented. Though aircraft emissions during in-flight mode (at upper altitudes) contribute a significant (70 - 80%) proportion of the total aviation emissions, landing and takeoff (LTO) related emissions can have immediate impact on surface air quality, as most of the large airports are located in urban areas, specifically those that are designated in nonattainment for O3 and/or PM2.5. In this study, we modeled impacts of aircraft emissions during LTO cycles on surface air quality using the latest version of the CMAQ model for two contemporary years (2005, 2010) and one future year (2018). For this regional scale modeling study, we used highly resolved aircraft emissions from the FAA's Aviation Environmental Design Tool (AEDT), meteorology from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) downscaled with the WRF model, dynamically varying chemical boundary conditions from the CAM-Chem global model (which also used the same AEDT emissions but at the global scale), and spatio-temporally resolved lightning NOx emissions estimated using National Lightning Detection Network (NLDN) flash density data. We evaluated our model results with air quality observations from surface-based networks and in-situ aircraft observation data for the contemporary years. We will present results from model evaluation using this enhanced modeling system, as well as the trajectories in aviation- related air quality (focusing on O3, NO2 and PM2.5) for the three modeling years considered in this study. These findings will help plan

  20. Denitrifiers in the surface zone are primarily responsible for the nitrous oxide emission of dairy manure compost

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Koki, E-mail: k_maeda@affrc.go.jp [Dairy Research Division, National Agricultural Research Center for Hokkaido Region, National Agricultural and Food Research Organization, 1 Hitsujigaoka, Sapporo 062-8555 (Japan); Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Toyoda, Sakae [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Hanajima, Dai [Dairy Research Division, National Agricultural Research Center for Hokkaido Region, National Agricultural and Food Research Organization, 1 Hitsujigaoka, Sapporo 062-8555 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2013-03-15

    Highlights: ► Nitrous oxide (N{sub 2}O) productions of each compost zones were compared. ► The pile surface emitted significant fluxes of N{sub 2}O. ► The isotopic signature of N{sub 2}O from surface and NO{sub 2}{sup −} amended core were different. ► The denitrifying gene abundance was significantly higher in pile surface than the pile core. -- Abstract: During the dairy manure composting process, significant nitrous oxide (N{sub 2}O) emissions occur just after the pile turnings. To understand the characteristics of this N{sub 2}O emission, samples were taken from the compost surface and core independently, and the N{sub 2}O production was monitored in laboratory incubation experiments. Equal amounts of surface and core samples were mixed to simulate the turning, and the {sup 15}N isotope ratios within the molecules of produced N{sub 2}O were analyzed by isotopomer analysis. The results showed that the surface samples emitted significant levels of N{sub 2}O, and these emissions were correlated with NO{sub x}{sup −}-N accumulation. Moreover, the surface samples and surface-core mixed samples incubated at 30 °C produced N{sub 2}O with a low site preference (SP) value (−0.9 to 7.0‰) that was close to bacteria denitrification (0‰), indicating that denitrifiers in the surface samples are responsible for this N{sub 2}O production. On the other hand, N{sub 2}O produced by NO{sub 2}{sup −}-amended core samples and surface samples incubated at 60 °C showed unrecognized isotopic signatures (SP = 11.4–20.3‰). From these results, it was revealed that the N{sub 2}O production occurring just after the turnings was mainly derived from bacterial denitrification (including nitrifier denitrification) of NO{sub x}{sup −}-N under mesophilic conditions, and surface denitrifying bacteria appeared to be the main contributor to this process.

  1. Absorption coefficients of silicon: A theoretical treatment

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  2. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  3. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    Thanh, L.D.; Sprik, R.

    2015-01-01

    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients

  4. The activity of {gamma}-emitters as measured by ionisation chambers the determination of the specific emission coefficient {gamma} for some radio-elements (1961); Mesure de l'activite des emetteurs {gamma} par chambre d'ionisation. Determination du coefficient specifique d'emission {gamma} de quelques radioelements (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The object of this work is to study techniques of measurement using the gamma ionisation chamber, making it possible either to measure the activities of radioactive sources, or to determine the specific emission coefficient {gamma} (or the coefficient K) of a given radioelement. The ionisation chambers studied belong to two categories: graphites cavity-chambers, and 4 {pi} {gamma} chambers. For the cavity-chamber measurements, the different correction factors of which account must be taken have been calculated, in particular the geometric and hygrometric corrections. The absorption and auto-absorption corrections have led to the introduction of the notion of the 'effective energy {gamma}' of a radioelement. In the case of 4 {pi} {gamma} chambers, it has been shown that appropriately shaped electrodes make it possible to improve their performances. One of the chambers described permits the measurement of {beta} emitters using the associated Bremsstrahlung. In order to measure the K coefficient of some radioelements, it has been found useful a 4 {pi} {gamma} chamber with graphite walls, the measurement being carried out by comparison with a radium standard. The validity of the method was checked with radioelements for whom the K coefficient values are well-known ({sup 24}Na, {sup 60}Co, {sup 131}I, {sup 198}Au). For other radioelements, the following values were obtained (expressed in r cm{sup 3} mc{sup -1} h{sup -1}): {sup 51}Cr: 0,18; {sup 56}Mn: 8,8; {sup 65}Zn: 3,05; {sup 124}Sb: 9,9; {sup 134}Cs: 9,3; {sup 137}Cs: 3,35; {sup 141}Ce: 0,46; {sup 170}Tm: 0,023; {sup 192}Ir: 24,9; {sup 203}Hg: 1,18; These values have been corrected for the contribution to the dose of the fluorescent radiation which may be emitted by the source, except in the case of Tm{sup 170}. In the last part of this work, the performances of the different electro-metric devices used were compared. (author) [French] Le but de ce travail est d'etudier les techniques de mesure par chambre d

  5. Measurement of distribution coefficients of U series radionuclides on soils under shallow land environment (2). pH dependence of distribution coefficients

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiaki; Takebe, Shinichi; Ogawa, Hiromichi; Inagawa, Satoshi; Sasaki, Tomozou

    2001-01-01

    In order to study sorption behavior of U series radionuclides (Pb, Ra, Th, Ac, Pa and U) under aerated zone environment (loam-rain water system) and aquifer environment (sand-groundwater system) for safety assessment of U bearing waste, pH dependence of distribution coefficients of each element has been obtained. The pH dependence of distribution coefficients of Pb, Ra, Th, Ac and U was analyzed by model calculation based on aqueous speciation of each element and soil surface charge characteristics, which is composed of a cation exchange capacity and surface hydroxyl groups. From the model calculation, the sorption behavior of Pb, Ra, Th, Ac and U could be described by a combination of cation exchange reaction and surface-complexation model. (author)

  6. Study of luminous emissions associated to electron emissions in radiofrequency cavities; Etude des emissions lumineuses associees aux emissions electroniques dans les cavites hyperfrequences

    Energy Technology Data Exchange (ETDEWEB)

    Maissa, S

    1996-11-26

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author) 102 refs.

  7. Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH4 → H2O + CH3 on an ab Initio-Based Potential Energy Surface.

    Science.gov (United States)

    Li, Jun; Guo, Hua

    2018-03-15

    Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.

  8. Numerical study of effects of accommodation coefficients on slip phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Jae; Kwon, Oh Joon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    An unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. The present flow solver was applied to the simulation of flows around an axisymmetric hollow cylinder in a Mach 10.4 free stream, known as Calspan-UB Research Center (CUBRC) Run 14 case, and the velocity slip and the temperature jump on the cylinder surface were investigated. The effect of tangential momentum and thermal accommodation coefficients used in the Maxwell condition was also investigated by adjusting their values. The results show that the reverse flow region is developed on the body surface due to the interaction between the shock and the boundary layer. Also, the shock impingement makes pressure high. The flow properties on the surface agree well with the experimental data, and the velocity slip and the temperature jump vary consistently with the local Knudsen number change. The accommodation coefficients affect the slip phenomena and the size of the flow region. The slip phenomena become larger when both tangential momentum and thermal accommodation coefficients are decreased. However, the range of the reverse flow region decreases when the momentum accommodation coefficient is decreased. The characteristics of the momentum and thermal accommodation coefficients also are overlapped when they are altered together.

  9. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    KAUST Repository

    Li, Xiaohang

    2015-12-14

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaNmultiple-quantum well(MQW)heterostructuresgrown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm2. Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQWheterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaNheterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaNheterostructuresgrown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers(VCSELs).

  10. Friction coefficient of skin in real-time.

    Science.gov (United States)

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  11. NOx removal from vehicle emissions by functionality surface of asphalt road

    International Nuclear Information System (INIS)

    Chen Meng; Liu Yanhua

    2010-01-01

    This paper reported the potential of heterogeneous photocatalysis as an advanced oxidation technology for NO x removal from vehicle emissions by using TiO 2 as a photocatalyst immobilized on the surface of asphalt road. Based on asphalt road material porous characteristic, we utilized permeability technology to make asphalt nano-TiO 2 to be environmental protection materials. And then using scanning electron microscope, we observed the penetrating effect of TiO 2 . The effect of surface friction, humidity and light intensity on NO x removal had been systematically investigated by the use of TiO 2 immobilized on the surface of asphalt road as photocatalytic environmental protection materials. In addition, the decontaminating effect was tested by contrast test in TiO 2 spraying section with non-spraying section, while the productions were used in road environment. Results of experiment revealed that decontaminating rate of the productions ranged from 6% to 12% this kind of photochemical catalysis environmental protection material has good environment purification function.

  12. Local emission spectroscopy of surface micrograins in A{sup III}B{sup V} semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, N. D., E-mail: ndzhukov@rambler.ru; Gluhovskoy, E. G.; Mosiyash, D. S. [Saratov State University (Russian Federation)

    2016-07-15

    The density-of-states spectra and the parameters of levels of electron states in locally chosen surface micrograins of indium antimonide and arsenide and gallium arsenide are studied with a tunneling electron microscope in the field-emission mode of measurements. By correlating the current–voltage characteristics with the formula for the probability of emission via levels, the activation energies of the levels (ψ) and the lifetimes of electrons at the levels (τ) are determined. Two types of levels for electron localization are identified. These are levels in the micrograin bulk (ψ ≈ 0.75, 1.15, and 1.59 eV for n-InSb, n-InAs, and n-GaAs, respectively; τ ~ 10{sup –8}–10{sup –7} s) and in the surface region of an i-InSb micrograin (ψ ~ 0.73, 1.33, 1.85, 2.15, 5.1 eV; τ ≈ 5 × 10{sup –8}–3 × 10{sup –7} s). A physical model involving the Coulomb-interaction-induced localization of light electrons and their size quantization determined by the electron effective mass, energy, and concentration and by the surface curvature of the micrograin is proposed.

  13. Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data

    Science.gov (United States)

    Li, Jing; Li, Chengcai; Zhao, Chunsheng

    2018-03-01

    Although the temporal changes in aerosol properties have been widely investigated, the majority of studies has focused on average conditions without much emphasis on the extremes. However, the latter can be more important in terms of human health and climate change. This study uses a previously validated, quality-controlled visibility dataset to investigate the long-term trends (expressed in terms of relative changes) in extreme surface aerosol extinction coefficient (AEC) over China and compares them with the median trends. Two methods are used to independently evaluate the trends, which arrive at consistent results. The signs of extreme and median trends are generally coherent, whereas their magnitudes show distinct spatial and temporal differences. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for northwest China and the North China Plain. In the 1990s, AEC over northeast and northwest China started to decline while the rest of the country still exhibited an increase. The extreme trends continued to dominate in the south while they yielded to the mean trend in the north. After the year 2000, the extreme trend became weaker than the mean trend overall in terms of both the magnitude and significance level. The annual trend can be primarily attributed to winter and fall trends. The results suggest that the decadal changes in pollution in China may be governed by different mechanisms. Synoptic conditions that often result in extreme air quality changes might have dominated in the 1980s, whereas emission increase might have been the main factor for the 2000s.

  14. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    Science.gov (United States)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  15. Characterization of Emissions and Residues from Simulations of the Deepwater Horizon Surface Oil Burns

    Science.gov (United States)

    The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent...

  16. Electron work function of stepped tungsten surfaces

    International Nuclear Information System (INIS)

    Krahl-Urban, B.

    1976-03-01

    The electron work function of tungsten (110) vicinal faces was measured with the aid of thermionic emission, and its dependence on the crystallographic orientation and the surface structure was investigated. The thermionic measurements were evaluated with the aid of the Richardson plot. The real temperature of the emitting tungsten faces was determined with an accuracy of +- 0.5% in the range between 2,200 and 2,800 K. The vicinal faces under investigation have been prepared with an orientation exactness of +- 15'. In the tungsten (110) vicinal faces under investigation, a strong dependence of the temperature coefficient d PHI/dT of the work function on the crystallographic orientation was found. A strong influence of the edge structure as well as of the step density on the temperature coefficient was observed. (orig./HPOE) [de

  17. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    International Nuclear Information System (INIS)

    Sharma, Suresh C.; Gupta, Neha

    2015-01-01

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations

  18. Structural dynamics of fore-crisis area on a heat emission surface of a fuel element's

    International Nuclear Information System (INIS)

    Sharaevskij, I.G.; Fialko, N.M.; Sharaevskaya, E.I.

    2011-01-01

    The known theoretical and experimental data regarding the nature of dry spots evolution are reviewed and the idea regarding the mechanism of heat emission from the heated surface in fore-crisis area are defined more precisely.

  19. Spectral characterization of surface emissivities in the thermal infrared

    Science.gov (United States)

    Niclòs, Raquel; Mira, Maria; Valor, Enric; Caselles, Diego; García-Santos, Vicente; Caselles, Vicente; Sánchez, Juan M.

    2015-04-01

    Thermal infrared (TIR) remote sensing trends to hyperspectral sensors on board satellites in the last decades, e.g., the current EOS-MODIS and EOS-ASTER and future missions like HyspIRI, ECOSTRESS, THIRSTY and MISTIGRI. This study aims to characterize spectrally the emissive properties of several surfaces, mostly soils. A spectrometer ranging from 2 to 16 μm, D&P Model 102, has been used to measure samples with singular spectral features, e.g. a sandy soil rich in gypsum sampled in White Sands (New Mexico, USA), salt samples, powdered quartz, and powdered calcite. These samples were chosen for their role in the assessment of thermal emissivity of soils, e.g., the calcite and quartz contents are key variables for modeling TIR emissivities of bare soils, along with soil moisture and organic matter. Additionally, the existence of large areas in the world with abundance of these materials, some of them used for calibration/validation activities of satellite sensors and products, makes the chosen samples interesting. White Sands is the world's largest gypsum dune field encompassing 400 km^2; the salt samples characterize the Salar of Uyuni (Bolivia), the largest salt flat in the world (up to 10,000 km^2), as well as the Jordanian and Israeli salt evaporation ponds at the south end of the Dead Sea, or the evaporation lagoons in Aigües-Mortes (France); and quartz is omnipresent in most of the arid regions of the world such as the Algodones Dunes or Kelso Dunes (California, USA), with areas around 700 km2 and 120 km^2, respectively. Measurements of target leaving radiance, hemispherical radiance reflected by a diffuse reflectance panel, and the radiance from a black body at different temperatures were taken to obtain thermal spectra with the D&P spectrometer. The good consistency observed between our measurements and laboratory spectra of similar samples (ASTER and MODIS spectral libraries) indicated the validity of the measurement protocol. Further, our study showed the

  20. Ion-impact secondary emission in negative corona with photoionization

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2017-03-01

    Full Text Available A corona discharge measurement system and simulation model are presented to investigate the effects of photoionization and ion-impact secondary emission process in negative corona discharge. The simulation results obtained is shown good agreement with experimental observations. Distribution of electron density along the symmetry axis at three critical moments is shown and the role of photoionization in negative corona discharge is clearly explained. Moreover, the current pulses are also presented under different secondary emission coefficients and the effect of the secondary emission coefficient is discussed.

  1. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  2. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    Science.gov (United States)

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  3. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    Science.gov (United States)

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  4. New limb-darkening coefficients for modeling binary star light curves

    Science.gov (United States)

    Van Hamme, W.

    1993-01-01

    We present monochromatic, passband-specific, and bolometric limb-darkening coefficients for a linear as well as nonlinear logarithmic and square root limb-darkening laws. These coefficients, including the bolometric ones, are needed when modeling binary star light curves with the latest version of the Wilson-Devinney light curve progam. We base our calculations on the most recent ATLAS stellar atmosphere models for solar chemical composition stars with a wide range of effective temperatures and surface gravitites. We examine how well various limb-darkening approximations represent the variation of the emerging specific intensity across a stellar surface as computed according to the model. For binary star light curve modeling purposes, we propose the use of a logarithmic or a square root law. We design our tables in such a manner that the relative quality of either law with respect to another can be easily compared. Since the computation of bolometric limb-darkening coefficients first requires monochromatic coefficients, we also offer tables of these coefficients (at 1221 wavelength values between 9.09 nm and 160 micrometer) and tables of passband-specific coefficients for commonly used photometric filters.

  5. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  6. Analysis of Field Emission of Fabricated Nanogap in Pd Strips for Surface Conduction Electron-Emitter Displays

    Science.gov (United States)

    Lo, Hsiang-Yu; Li, Yiming; Tsai, Chih-Hao; Pan, Fu-Ming

    2008-04-01

    We study the field emission (FE) property of a nanometer-scale gap structure in a palladium strip, which was fabricated by hydrogen absorption under high-pressure treatment. A vigorous cracking process could be accompanied by extensive atomic migration during the hydrogen treatment. A three-dimensional finite-difference time-domain particle-in-cell method is adopted to simulate the electron emission in a surface-conduction electron-emitter display (SED) device. Examinations of conducting characteristics, FE efficiency, the local field around the emitter, and the current density on the anode plate with one FE emitter are conducted. The image of a light spot is successfully produced on a phosphor plate, which implies that the explored electrode with nanometer separation possesses a potential SED application. Experimental observation and numerical simulation show that the proposed structure can be used as a surface conduction electron emitter and has a high FE efficiency with low turn-on voltage and a different electron emission mechanism. This study benefits the advanced SED design for a new type of electron source.

  7. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control

    Directory of Open Access Journals (Sweden)

    Magdalena Penkała

    2018-01-01

    Full Text Available Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions are one of the primary sources of particulate matter (PM in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.

  8. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  9. Einstein A and B coefficients for a black hole

    International Nuclear Information System (INIS)

    Bekenstein, J.D.; Meisels, A.

    1977-01-01

    By quantum calculations in a classical background geometry, Hawking has shown that an isolated black hole emits thermal radiation spontaneously. Starting from Hawking's expectation value for the number of quanta emitted per mode, and using methods from statistical thermodynamics, one of us calculated earlier the probability distribution for the number of quanta per mode outgoing from a black hole placed in a thermal radiation bath. By the same methods we show here that this probability is not simply the combination of that for Hawking's spontaneous emission and that for pure scattering. From this we infer the existence of stimulated emission in all modes, even those which do not superradiate. We derive the probability that m quanta go out in a given mode when precisely n are incident. It satisfies a symmetry condition originally given by Hartle and Hawking for a special case. For all modes the average number of outgoing quanta contains a contribution from stimulated emission which shows up as a negative contribution to the effective absorptivity GAMMA. The situation is analogous to that for opacity in the theory of radiative transport. Superradiance occurs for modes in which the negative contribution dominates the pure absorptivity. We identify the Einstein A and B coefficients for a black hole. The B coefficients satisfy the usual relation from atomic physics with the role of degeneracy factor played by the exponential of black-hole entropy. This agrees with the statistical interpretation of this quantity in terms of internal black-hole configurations. The relation between the B coefficients suggests time reversibility of the radiative aspect of a black hole. This supports Hawking's view that a black hole and a white hole are essentially the same thing

  10. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    Science.gov (United States)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  11. Characterization of wildfire NOx emissions using MODIS fire radiative power and OMI tropospheric NO2 columns

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2011-06-01

    Full Text Available We use observations of fire radiative power (FRP from the Moderate Resolution Imaging Spectroradiometer~(MODIS and tropospheric NO2 column measurements from the Ozone Monitoring Instrument (OMI to derive NO2 wildfire emission coefficients (g MJ−1 for three land types over California and Nevada. Retrieved emission coefficients were 0.279±0.077, 0.342±0.053, and 0.696±0.088 g MJ−1 NO2 for forest, grass and shrub fuels, respectively. These emission coefficients reproduce ratios of emissions with fuel type reported previously using independent methods. However, the magnitude of these coefficients is lower than prior estimates. While it is possible that a negative bias in the OMI NO2 retrieval over regions of active fire emissions is partly responsible, comparison with several other studies of fire emissions using satellite platforms indicates that current emission factors may overestimate the contributions of flaming combustion and underestimate the contributions of smoldering combustion to total fire emissions. Our results indicate that satellite data can provide an extensive characterization of the variability in fire NOx emissions; 67 % of the variability in emissions in this region can be accounted for using an FRP-based parameterization.

  12. Kinetic electron emission from highly oriented pyrolytic graphite surfaces induced by singly charged ions

    CERN Document Server

    Cernusca, S; Winter, H; Aumayr, F; Loerincik, J; Sroubek, Z

    2002-01-01

    We present total electron yields determined by current measurements for normal impact of H sup + , H sub 2 sup + , H sub 3 sup + , C sup + , N sup + and O sup + ions (E<=10 keV) on a clean highly oriented pyrolytic graphite surface. The kinetic energy of the projectiles has been varied from near threshold up to 10 keV. By comparing the results to similar data obtained for a polycrystalline Au surface the role of different target properties for kinetic electron emission can be analysed.

  13. Electron-impact excitation rate-coefficients and polarization of subsequent emission for Ar"+ ion

    International Nuclear Information System (INIS)

    Dipti; Srivastava, Rajesh

    2016-01-01

    Electron impact excitation in Ar"+ ions has been studied by using fully relativistic distorted wave theory. Calculations are performed to obtain the excitation cross-sections and rate-coefficients for the transitions from the ground state 3p"5 (J=3/2) to fine-structure levels of excited states 3p"44s, 3p"44p, 3p"45s, 3p"45p, 3p"43d and 3p"44d. Polarization of the radiation following the excitation has been calculated using the obtained magnetic sub-level cross-sections. Comparison of the present rate-coefficients is also done with the previously reported theoretical results for some unresolved fine structure transitions. - Highlights: • Fully relativistic distorted wave theory has been used to study the excitation of fine-structure states of Ar"+. • We have calculated electron-impact excitation cross-sections for the wide range of incident electron energies. • Electron impact excitation rate-coefficients are calculated as a function of electron temperature. • Polarization of photons emitted following the decay of the excited fine-structure states are also reported.

  14. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure.

    Science.gov (United States)

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).

  15. Experimental study of matrix carbon field-emission cathodes and computer aided design of electron guns for microwave power devices, exploring these cathodes

    International Nuclear Information System (INIS)

    Grigoriev, Y.A.; Petrosyan, A.I.; Penzyakov, V.V.; Pimenov, V.G.; Rogovin, V.I.; Shesterkin, V.I.; Kudryashov, V.P.; Semyonov, V.C.

    1997-01-01

    The experimental study of matrix carbon field-emission cathodes (MCFECs), which has led to the stable operation of the cathodes with current emission values up to 100 mA, is described. A method of computer aided design of TWT electron guns (EGs) with MCFEC, based on the results of the MCFEC emission experimental study, is presented. The experimental MCFEC emission characteristics are used to define the field gain coefficient K and the cathode effective emission area S eff . The EG program computes the electric field upon the MCFEC surface, multiplies it by the K value and uses the Fowler Nordheim law and the S eff value to calculate the MCFEC current; the electron trajectories are computed as well. copyright 1997 American Vacuum Society

  16. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    International Nuclear Information System (INIS)

    Li, Xiaohang; Xie, Hongen; Ponce, Fernando A.; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D.

    2015-01-01

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaN multiple-quantum well (MQW) heterostructures grown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm 2 . Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQW heterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaN heterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaN heterostructures grown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers (VCSELs)

  17. Effects of hot electron emission on a low-conductivity tetracyanoethylene polymer layer including studies of the corrugation of the film surface

    International Nuclear Information System (INIS)

    Lorenz, K.L.; Mousa, M.S.

    2003-01-01

    The effect of strong field electron emission (FEE) on a tetracyanoethylene (TCNE) polymer layer was studied by Field Ion Microscopy (FIM) using TCNE and Ne as the imaging gases. The TCNE polymer was formed on each tungsten tip by radical polymerisation before FEE. The FIM images show field emission spots all over the surface of the tip. The FEM images show a random distribution of several field emission areas at the onset of FEE. After sometime at a current of about 1 μA, there is a transition to higher currents at the same voltage, in which the electron emission pattern changes to have only one emitting area. After this transition, two different types of FIM images were observed, depending on the imaging gas that was used. Neon FIM images at low tip voltages show spots in the areas where the electron emission current was greatest, and at much higher voltages these images show emission from other areas with lower surface corrugation. However, the FIM images with TCNE as the imaging gas do not show any differences between the areas with and without electron emission. The FIM images remain as before FEE, which can be explained by the formation of a new polymer by the reaction of the surface layer with the imaging gas. It is assumed that chemically reactive fragments at the polymer/vacuum interface, which are needed for the polymerisation reaction, are formed by pyrolysis and sputtering processes during FEE

  18. Natural emissions under future climate condition and their effects on surface ozone in the Yangtze River Delta region, China

    Science.gov (United States)

    Xie, Min; Shu, Lei; Wang, Ti-jian; Liu, Qian; Gao, Da; Li, Shu; Zhuang, Bing-liang; Han, Yong; Li, Meng-meng; Chen, Pu-long

    2017-02-01

    The natural emissions of ozone precursors (NOx and VOCs) are sensitive to climate. Future climate change can impact O3 concentrations by perturbing these emissions. To better estimate the variation of natural emissions under different climate conditions and understand its effect on surface O3, we model the present and the future air quality over the Yangtze River Delta (YRD) region by running different simulations with the aid of the WRF-CALGRID model system that contains a natural emission module. Firstly, we estimate the natural emissions at present and in IPCC A1B scenario. The results show that biogenic VOC emission and soil NOx emission over YRD in 2008 is 657 Gg C and 19.1 Gg N, respectively. According to climate change, these emissions in 2050 will increase by 25.5% and 11.5%, respectively. Secondly, the effects of future natural emissions and meteorology on surface O3 are investigated and compared. It is found that the variations in meteorological fields can significantly alter the spatial distribution of O3 over YRD, with the increases of 5-15 ppb in the north and the decreases of -5 to -15 ppb in the south. However, only approximately 20% of the surface O3 increases caused by climate change can be attributed to the natural emissions, with the highest increment up to 2.4 ppb. Finally, Ra (the ratio of impacts from NOx and VOCs on O3 formation) and H2O2/HNO3 (the ratio between the concentrations of H2O2 and HNO3) are applied to study the O3 sensitivity in YRD. The results show that the transition value of H2O2/HNO3 will turn from 0.3 to 0.5 in 2008 to 0.4-0.8 in 2050. O3 formation in the YRD region will be insensitive to VOCs under future climate condition, implying more NOx need to be cut down. Our findings can help us understand O3 variation trend and put forward the reasonable and effective pollution control policies in these famous polluted areas.

  19. Chemical analysis of industrial scale deposits by combined use of correlation coefficients with emission line detection of laser induced breakdown spectroscopy spectra

    International Nuclear Information System (INIS)

    Siozos, P.; Philippidis, A.; Hadjistefanou, M.; Gounarakis, C.; Anglos, D.

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the mineral composition of various industrial scale samples. The aim of the study has been to investigate the capacity of LIBS to provide a fast, reliable analytical tool for carrying out routine analysis of inorganic scales, potentially on site, as a means to facilitate decision making concerning scale removal procedures. LIBS spectra collected in the range of 200–660 nm conveyed information about the metal content of the minerals. Via a straightforward analysis based on linear correlation of LIBS spectra it was possible to successfully discriminate scale samples into three main groups, Fe-rich, Ca-rich and Ba-rich, on the basis of correlation coefficients. By combining correlation coefficients with spectral data collected in the NIR, 860–960 nm, where sulfur emissions are detected, it became further possible to discriminate sulfates from carbonates as confirmed by independent analysis based on Raman spectroscopy. It is emphasized that the proposed LIBS-based method successfully identifies the major mineral or minerals present in the samples classifying the scales into relevant groups hence enabling process engineers to select appropriate scale dissolution strategies. - Highlights: • LIBS was used to determine the mineral composition of industrial scale samples. • Three groups of inorganic scales were identified: Ca rich, Ba rich and Fe rich. • A method that combines correlation coefficients and line detection is proposed. • The method successfully identifies the main mineral, or minerals, in the samples. • The results were compared with results obtained by use of Raman analysis

  20. Simultaneous and multi-point measurement of ammonia emanating from human skin surface for the estimation of whole body dermal emission rate.

    Science.gov (United States)

    Furukawa, Shota; Sekine, Yoshika; Kimura, Keita; Umezawa, Kazuo; Asai, Satomi; Miyachi, Hayato

    2017-05-15

    Ammonia is one of the members of odor gases and a possible source of odor in indoor environment. However, little has been known on the actual emission rate of ammonia from the human skin surface. Then, this study aimed to estimate the whole-body dermal emission rate of ammonia by simultaneous and multi-point measurement of emission fluxes of ammonia employing a passive flux sampler - ion chromatography system. Firstly, the emission fluxes of ammonia were non-invasively measured for ten volunteers at 13 sampling positions set in 13 anatomical regions classified by Kurazumi et al. The measured emission fluxes were then converted to partial emission rates using the surface body areas estimated by weights and heights of volunteers and partial rates of 13 body regions. Subsequent summation of the partial emission rates provided the whole body dermal emission rate of ammonia. The results ranged from 2.9 to 12mgh -1 with an average of 5.9±3.2mgh -1 per person for the ten healthy young volunteers. The values were much greater than those from human breath, and thus the dermal emission of ammonia was found more significant odor source than the breath exhalation in indoor environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Wettability and friction coefficient of micro-magnet arrayed surface

    Science.gov (United States)

    Huang, Wei; Liao, Sijie; Wang, Xiaolei

    2012-01-01

    Surface coating is an important part of surface engineering and it has been successfully used in many applications to improve the performance of surfaces. In this paper, magnetic arrayed films with different thicknesses were fabricated on the surface of 316 stainless steel disks. Controllable colloid - ferrofluids (FF) was chosen as lubricant, which can be adsorbed on the magnetic surface. The wettability of the micro-magnet arrayed surface was evaluated by measuring the contract angle of FF drops on surface. Tribological experiments were carried out to investigate the effects of magnetic film thickness on frictional properties when lubricated by FF under plane contact condition. It was found that the magnetic arrayed surface with thicker magnetic films presented larger contract angle. The frictional test results showed that samples with thicker magnetic films could reduce friction and wear more efficiently at higher sliding velocity under the lubrication of FF.

  2. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  3. The activity of γ-emitters as measured by ionisation chambers the determination of the specific emission coefficient γ for some radio-elements (1961)

    International Nuclear Information System (INIS)

    Engelmann, J.

    1962-06-01

    The object of this work is to study techniques of measurement using the gamma ionisation chamber, making it possible either to measure the activities of radioactive sources, or to determine the specific emission coefficient γ (or the coefficient K) of a given radioelement. The ionisation chambers studied belong to two categories: graphites cavity-chambers, and 4 π γ chambers. For the cavity-chamber measurements, the different correction factors of which account must be taken have been calculated, in particular the geometric and hygrometric corrections. The absorption and auto-absorption corrections have led to the introduction of the notion of the 'effective energy γ' of a radioelement. In the case of 4 π γ chambers, it has been shown that appropriately shaped electrodes make it possible to improve their performances. One of the chambers described permits the measurement of β emitters using the associated Bremsstrahlung. In order to measure the K coefficient of some radioelements, it has been found useful a 4 π γ chamber with graphite walls, the measurement being carried out by comparison with a radium standard. The validity of the method was checked with radioelements for whom the K coefficient values are well-known ( 24 Na, 60 Co, 131 I, 198 Au). For other radioelements, the following values were obtained (expressed in r cm 3 mc -1 h -1 ): 51 Cr: 0,18; 56 Mn: 8,8; 65 Zn: 3,05; 124 Sb: 9,9; 134 Cs: 9,3; 137 Cs: 3,35; 141 Ce: 0,46; 170 Tm: 0,023; 192 Ir: 24,9; 203 Hg: 1,18; These values have been corrected for the contribution to the dose of the fluorescent radiation which may be emitted by the source, except in the case of Tm 170 . In the last part of this work, the performances of the different electro-metric devices used were compared. (author) [fr

  4. The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus

    Science.gov (United States)

    Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team

    2017-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S

  5. Surface emission of quark gluon plasma at RHIC and LHC

    International Nuclear Information System (INIS)

    Xiang Wenchang; Wan Renzhou; Zhou Daicui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor P AALHS ∼0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC. (authors)

  6. Study of luminous emissions associated to electron emissions in radiofrequency cavities

    International Nuclear Information System (INIS)

    Maissa, S.

    1996-01-01

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author)

  7. The Use of Satellite Data to Relate Waterbody Surface Area and Temperature to Greenhouse Gas Emissions Across a Subarctic Landscape

    Science.gov (United States)

    Herrick, C.; Palace, M. W.; Wik, M.; Burke, S. A.; Varner, R. K.

    2017-12-01

    High latitude lakes and ponds are significant sources of methane (CH4) and carbon dioxide (CO2) emission. Increased near-surface air temperature has linked these water bodies to large increases in methane emissions due to longer ice-free seasons, impacting climate change and further changing air temperature as a feedback mechanism. The impacts of changes in lake surface temperatures cannot be assessed until we know more about the baseline mechanistic biogeochemical controls that influence these emissions. Using a combination of image-based atmospheric corrections and image fusion models, thermal data from Landsat and MODIS satellites were used to characterize the temperature regimes of artic lakes in northern Sweden. This analysis provides insight into the temporal attributes of individual lakes in regard to temperature shifts and variability, as well as provides a rich temporal dataset where in situ temperature data is unavailable. Field-based measurements of temperature and associated methane release were used for calibration and correlation. This enabled the creation of emissions estimates over the broader pan-arctic landscape, including inter-seasonal and inter-annual variabilities. The result is a multi-year snapshot of temperature and emissions, allowing for future estimates of greenhouse gas emissions.

  8. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MOD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  9. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  10. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MOD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  11. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  12. The influence of surface stress on dislocation emission from sharp and blunt cracks in f.c.c. metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob

    2000-01-01

    We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable with res......We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable...... with respect to the emission of a dislocation from the crack tip, whereas for all other metals studied the sharp crack is unstable. This result cannot be explained by existing criteria for the intrinsic ductile/brittle behaviour of crack tips, but is probably caused by surface stresses. When the crack...... is no longer atomically sharp dislocation emission becomes easier in all the studied metals. The effect is relatively strong; the critical stress intensity factor for emission to occur is reduced by up to 20%. This behaviour appears to be caused by the surface stress near the crack tip. The surface stress...

  13. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  14. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency

    International Nuclear Information System (INIS)

    Luong, M.

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics (β, A e ) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  15. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Linjun [Zhejiang Univ. of Technology, Hangzhou (China). College of Mechanical Engineering; Xue, Guohong; Zhang, Ming [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China)

    2017-11-15

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  16. Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

    International Nuclear Information System (INIS)

    Xie, Linjun

    2017-01-01

    The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

  17. Fuel-to-cladding heat transfer coefficient into reactor fuel element

    International Nuclear Information System (INIS)

    Lassmann, K.

    1979-01-01

    Models describing the fuel-to-cladding heat transfer coefficient in a reactor fuel element are reviewed critically. A new model is developed with contributions from solid, fluid and radiation heat transfer components. It provides a consistent description of the transition from an open gap to the contact case. Model parameters are easily available and highly independent of different combinations of material surfaces. There are no restrictions for fast transients. The model parameters are fitted to 388 data points under reactor conditions. For model verification another 274 data points of steel-steel and aluminium-aluminium interfaces, respectively, were used. The fluid component takes into account peak-to-peak surface roughnesses and, approximatively, also the wavelengths of surface roughnesses. For minor surface roughnesses normally prevailing in reactor fuel elements the model asymptotically yields Ross' and Stoute's model for the open gap, which is thus confirmed. Experimental contact data can be interpreted in very different ways. The new model differs greatly from Ross' and Stoute's contact term and results in better correlation coefficients. The numerical algorithm provides an adequate representation for calculating the fuel-to-cladding heat transfer coefficient in large fuel element structural analysis computer systems. (orig.) [de

  18. Light emission from sputtered or backscattered atoms on tungsten surfaces under ion irradiation

    International Nuclear Information System (INIS)

    Sakai, Yasuhiro; Nogami, Keisuke; Kato, Daiji; Sakaue, Hiroyuki A.; Kenmotsu, Takahiko; Furuya, Kenji; Motohashi, Kenji

    2013-01-01

    We measured the intensity of light emission from sputtered atoms on tungsten surfaces under the irradiations of Kr"+ ion and Ar"+ ion, as a function of the perpendicular distance from the surface. Using the analysis of decay curve, we estimated the mean vertical velocity component in direction normal to the surface. We found that the estimated mean velocity had much differences according to the excited state. For example, although the estimated mean vertical velocity component normal to the surface from the 400.9 nm line((5d"5(6S)6p "7p_4→(5d"5(6S)6s "7S_3 transition) was 5.6±1.7 km/sec, that from the 386.8 nm line((5d"4(6S)6p "7D_4→(5d"5(6S)6s "7S_4 transition) was 2.8±1.0 km/sec. However, for different projectiles and energies, we found no remarkable changes in the velocity. (author)

  19. Gaseous elemental mercury (GEM emissions from snow surfaces in northern New York.

    Directory of Open Access Journals (Sweden)

    J Alexander Maxwell

    Full Text Available Snow surface-to-air exchange of gaseous elemental mercury (GEM was measured using a modified Teflon fluorinated ethylene propylene (FEP dynamic flux chamber (DFC in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2 hr(-1 to 9.89 ng m(-2 hr(-1. For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  20. Gaseous elemental mercury (GEM) emissions from snow surfaces in northern New York.

    Science.gov (United States)

    Maxwell, J Alexander; Holsen, Thomas M; Mondal, Sumona

    2013-01-01

    Snow surface-to-air exchange of gaseous elemental mercury (GEM) was measured using a modified Teflon fluorinated ethylene propylene (FEP) dynamic flux chamber (DFC) in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg) vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2) hr(-1) to 9.89 ng m(-2) hr(-1). For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  1. Characteristics of radiation temperature and radiosity coefficient by means of infrared radiometer. Sekigai hoshakei ni yoru zairyo hyomen no hosha tokusei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Y; Kaminaga, F [Ibaraki University, Ibaraki (Japan). Faculty of Engineering; Ishii, T; Sato, K [Ibaraki University, Ibaraki (Japan); Kurokawa, T [NEC San-ei Instrumentsu Ltd., Tokyo (Japan)

    1991-12-25

    A radiation thermometer was applied to the measurement and analysis of radiation temperature of the material surface. In this paper, the characteristics of the radiation temperature and the radiosity coefficient of gray body materials are investigatied. An infrared radiometer was used, which detects radiation energy in the region between 8 and 13{mu}m of wavelength. This infared radiometer has a Hg-Cd-Te photon radiation sensor. The variation of emissivity was measured for the four kinds of non-metalic materials, i.e., graphite, carbon fiber composite, Si-SiC ceramic, and black paint spread on an aluminum plate. As a result, the relationship between material temperature and radiation energy was made clear. Furthermore, the space-dependent variation of the radiation temperature and the radiosity coefficient was derived from the two-dimensional CRT image of the infrared radiometer. Consequently, the emmisivity variation gave a maximum for the carbon fiber composite surface rich in irregularity, and decreased in the order of graphite, Si-SiC, and black paint. 7 refs., 15 figs.

  2. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.

    Science.gov (United States)

    Nuño, N; Groppetti, R; Senin, N

    2006-11-01

    Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. When the coefficient of friction is used in finite element analysis, it is used for the debonded stem-cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3-0.4, measured in the present study, is appropriate in finite element models.

  3. Electrom emission from slow highly charged ions interacting with a metal surface

    International Nuclear Information System (INIS)

    Aumayr, F.; Kurz, H.; Toeglhofer, K.; Winter, H.

    1992-01-01

    Recent progress in investigating electron emission from slow highly charged ions approaching a metal surface is discussed. In particular, new informations on generation and decay of transient multiply excited ''hollow atoms'' developing during these processes have been gained from measurement of the statistics of emitted electrons (ES). ES and precise total electron yields derived from the former have been measured for normal incidence of slow (impact velocity 1/15.10 4 ms -1 ) multicharged ions N q+ (q≤6), Ne q+ (q≤10), Ar q+ (q≤16), Kr q+ (q≤10), Xe q+ (q≤10) and I q+ (q≤25) on clean polycrystalline gold. A classical over-barrier approach as recently introduced by Burgdoerfer et al. 1991 has been extended and successfully applied to model the measured impact-velocity dependences of total electron yields. In this way contributions from different electron emission mechanisms could be identified. (orig.)

  4. Sensitivity Analysis of Different Infiltration Equations and Their Coefficients under Various Initial Soil Moisture and Ponding Depth

    Directory of Open Access Journals (Sweden)

    ali javadi

    2015-06-01

    Full Text Available Infiltration is a complex process that changed by initial moisture and water head on the soil surface. The main objective of this study was to estimate the coefficients of infiltration equations, Kostiakov-Lewis, Philip and Horton, and evaluate the sensitivity of these equations and their coefficients under various initial conditions (initial moisture soil and boundary (water head on soil surface. Therefore, one-and two-dimensional infiltration for basin (or border irrigation were simulated by changing the initial soil moisture and water head on soil surface from irrigation to other irrigation using the solution of the Richards’ equation (HYDRUS model. To determine the coefficients of infiltration equations, outputs of the HYDRUS model (cumulative infiltration over time were fitted using the Excel Solver. Comparison of infiltration sensitivity equations and their coefficients in one-and two-dimensional infiltration showed infiltration equations and their sensitivity coefficients were similar function but quantitatively in most cases sensitive two-dimensional equations and their coefficients were greater than one dimension. In both dimensions the soil adsorption coefficient Philip equation as the sensitive coefficient and Horton equation as the sensitive equation under various initial moisture soil and water head on soil surface were identified.

  5. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    KAUST Repository

    Li, Xiaohang; Xie, Hongen; Ponce, Fernando A.; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D.

    2015-01-01

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaNmultiple-quantum well(MQW)heterostructuresgrown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a

  6. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Nielsen, Michael Grøndahl; Albrektsen, Ole

    2010-01-01

    Amplification of surface plasmon polaritons (SPPs) in planar metal-dielectric structure through stimulated emission is investigated using leakage-radiation microscopy configuration. The gain medium is a thin polymethylmethacrylate layer doped with lead-sulphide nanocrystals emitting at near-infrared...

  7. A Combined Model of Charging of the Surface and Bulk of a Dielectric Target by Electrons with the Energies 10-30 keV

    Science.gov (United States)

    Zykov, V. M.; Neiman, D. A.

    2018-04-01

    A physico-mathematical model of the processes of radiation-induced charging of dielectric materials with open surfaces, irradiated with monoenergetic electrons in the energy range 10-30 keV, is described. The model takes into account the relationship between the processes of surface and bulk charging for the given conditions of the experimental design, which accounts for the effect of anomalously long charging of dielectrics after the incident energy of primary electrons during charging is reduced to below the second critical energy for the secondary electronic emission coefficient. The initial fast phase of charging a high-resistivity dielectric material (Al2O3) is investigated. It is shown that as the incident electron energy is approaching the second critical energy during charging, the secondary electronic emission is partially suppressed due to negative charging of the open surface of the dielectric and formation of a near-surface inversion electrical field retarding the electronic emission yield.

  8. Atmospheric emissions of methyl isothiocyanate and chloropicrin following soil fumigation and surface containment treatment in bare-root forest nurseries

    Science.gov (United States)

    D. Wang; J. Juzwik; S.W. Fraedrich; K. Spokas; Y. Zhang; W.C. Koskinen

    2005-01-01

    Methylisothiocyanate (MITC) and chloropicrin (CP) are alternatives to methyl bromide for soil fumigation. However, surface transport of MITC emission has been cited as the cause for seedling damage in adjacent fields at several bare-root forest-tree nurseries. Field experiments were conducted at nurseries to measure air emissions of MITC and CP after fumigation....

  9. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Song XM

    2009-01-01

    Full Text Available Abstract The Pt nanoparticles (NPs, which posses the wider tunable localized-surface-plasmon (LSP energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors.

  10. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Science.gov (United States)

    Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.

    2018-03-01

    Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.

  11. The activity of {gamma}-emitters as measured by ionisation chambers the determination of the specific emission coefficient {gamma} for some radio-elements (1961); Mesure de l'activite des emetteurs {gamma} par chambre d'ionisation. Determination du coefficient specifique d'emission {gamma} de quelques radioelements (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The object of this work is to study techniques of measurement using the gamma ionisation chamber, making it possible either to measure the activities of radioactive sources, or to determine the specific emission coefficient {gamma} (or the coefficient K) of a given radioelement. The ionisation chambers studied belong to two categories: graphites cavity-chambers, and 4 {pi} {gamma} chambers. For the cavity-chamber measurements, the different correction factors of which account must be taken have been calculated, in particular the geometric and hygrometric corrections. The absorption and auto-absorption corrections have led to the introduction of the notion of the 'effective energy {gamma}' of a radioelement. In the case of 4 {pi} {gamma} chambers, it has been shown that appropriately shaped electrodes make it possible to improve their performances. One of the chambers described permits the measurement of {beta} emitters using the associated Bremsstrahlung. In order to measure the K coefficient of some radioelements, it has been found useful a 4 {pi} {gamma} chamber with graphite walls, the measurement being carried out by comparison with a radium standard. The validity of the method was checked with radioelements for whom the K coefficient values are well-known ({sup 24}Na, {sup 60}Co, {sup 131}I, {sup 198}Au). For other radioelements, the following values were obtained (expressed in r cm{sup 3} mc{sup -1} h{sup -1}): {sup 51}Cr: 0,18; {sup 56}Mn: 8,8; {sup 65}Zn: 3,05; {sup 124}Sb: 9,9; {sup 134}Cs: 9,3; {sup 137}Cs: 3,35; {sup 141}Ce: 0,46; {sup 170}Tm: 0,023; {sup 192}Ir: 24,9; {sup 203}Hg: 1,18; These values have been corrected for the contribution to the dose of the fluorescent radiation which may be emitted by the source, except in the case of Tm{sup 170}. In the last part of this work, the performances of the different electro-metric devices used were compared. (author) [French] Le but de ce travail est d'etudier les techniques de mesure par

  12. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    Science.gov (United States)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  13. Emission properties of aluminium-lithium alloy

    International Nuclear Information System (INIS)

    Bondarenko, G.G.; Shishkov, A.V.

    1995-01-01

    High secondary emission properties at comparatively low operation temperatures were obtained when investigating aluminum-lithium alloy Al - 2.2 mass % Li. The maximal value of the coefficient of secondary electron emission for alloy, activated under optimal conditions, is achieved at comparatively low energy of primary electrons, equal to 600 eV. Low value of the first critical potential (15 ± 2 eV) was obtained. It is important for operation of secondary emission cathodes. 12 refs.; 4 figs

  14. [Determination of a Friction Coefficient for THA Bearing Couples].

    Science.gov (United States)

    Vrbka, M; Nečas, D; Bartošík, J; Hartl, M; Křupka, I; Galandáková, A; Gallo, J

    2015-01-01

    The wear of articular surfaces is considered one of the most important factors limiting the life of total hip arthroplasty (THA). It is assumed that the particles released from the surface of a softer material induce a complex inflammatory response, which will eventually result in osteolysis and aseptic loosening. Implant wear is related to a friction coefficient which depends on combination of the materials used, roughness of the articulating surfaces, internal clearance, and dimensions of the prosthesis. The selected parameters of the bearing couples tested were studied using an experimental device based on the principle of a pendulum. Bovine serum was used as a lubricant and the load corresponded to a human body mass of 75 kg. The friction coefficient was derived from a curve of slowdown of pendulum oscillations. Roughness was measured with a device working on the principle of interferometry. Clearance was assessed by measuring diameters of the acetabular and femoral heads with a 3D optical scanner. The specimens tested included unused metal-on-highly cross-linked polyethylene, ceramic-on-highly cross-linked polyethylene and ceramic-on-ceramic bearing couples with the diameters of 28 mm and 36 mm. For each measured parameter, an arithmetic mean was calculated from 10 measurements. 1) The roughness of polyethylene surfaces was higher by about one order of magnitude than the roughness of metal and ceramic components. The Protasul metal head had the least rough surface (0.003 μm). 2) The ceramic-on-ceramic couples had the lowest clearance. Bearing couples with polyethylene acetabular liners had markedly higher clearances ranging from 150 μm to 545 μm. A clearance increased with large femoral heads (up to 4-fold in one of the couple tested). 3) The friction coefficient was related to the combination of materials; it was lowest in ceramic-on-ceramic surfaces (0.11 to 0.12) and then in ceramic-on-polyethylene implants (0.13 to 0.14). The friction coefficient is

  15. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission

    International Nuclear Information System (INIS)

    De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell'Aglio, M.; De Pascale, O.

    2014-01-01

    In this paper the use of metallic nanoparticles (NPs) for improving Laser Induced Breakdown Spectroscopy (LIBS) is discussed. In the case of conductors an emission signal enhancement up to 1–2 orders of magnitude was obtained depositing NPs on the sample surface by drying a micro-drop of colloidal solution. The basic mechanisms of Nanoparticle Enhanced LIBS (NELIBS) were studied and the main causes of this significantly large enhancement were found to be related to the effect of NPs on the laser ablation process, in terms of a faster and more efficient production of seed electrons with respect to conventional LIBS. The characteristics of NELIBS-produced plasma were investigated by emission spectroscopy and spectrally resolved images. In spite of similar plasma parameters, the NELIBS plasma was found to have larger emission volume and longer persistence than the LIBS one. A method to determine NP concentration and size was also proposed, which involved depositing NPs on non-interacting substrates, and proved the feasibility of LIBS as a fast detection tool for a preliminary characterization of NPs. - Highlights: • Effect of NPs on sample surface enables instantaneous field emission. • More efficient ablation • LIBS emission enhancement up to 1–2 orders of magnitude • Possibility of NP characterization in terms of concentration and size

  16. The Combined ASTER MODIS Emissivity over Land (CAMEL Part 1: Methodology and High Spectral Resolution Application

    Directory of Open Access Journals (Sweden)

    E. Eva Borbas

    2018-04-01

    Full Text Available As part of a National Aeronautics and Space Administration (NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments Land Surface Temperature and Emissivity project, the Space Science and Engineering Center (UW-Madison and the NASA Jet Propulsion Laboratory (JPL developed a global monthly mean emissivity Earth System Data Record (ESDR. This new Combined ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer and MODIS (Moderate Resolution Imaging Spectroradiometer Emissivity over Land (CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UW BF and the JPL ASTER Global Emissivity Dataset Version 4 (GEDv4. The dataset includes monthly global records of emissivity and related uncertainties at 13 hinge points between 3.6–14.3 µm, as well as principal component analysis (PCA coefficients at 5-km resolution for the years 2000 through 2016. A high spectral resolution (HSR algorithm is provided for HSR applications. This paper describes the 13 hinge-points combination methodology and the high spectral resolutions algorithm, as well as reports the current status of the dataset.

  17. Measurement and modeling of interface heat transfer coefficients

    International Nuclear Information System (INIS)

    Rollett, A.D.; Lewis, H.D.; Dunn, P.S.

    1985-01-01

    The results of preliminary work on the modeling and measurement of the heat transfer coefficients of metal/mold interfaces is reported. The system investigated is the casting of uranium in graphite molds. The motivation for the work is primarily to improve the accuracy of process modeling of prototype mold designs at the Los Alamos Foundry. The evolution in design of a suitable mold for unidirectional solidification is described, illustrating the value of simulating mold designs prior to use. Experiment indicated a heat transfer coefficient of 2 kW/m 2 /K both with and without superheat. It was possible to distinguish between solidification due to the mold and that due to radiative heat loss. This permitted an experimental estimate of the emissivity, epsilon = 0.2, of the solidified metal

  18. Ion-induced emission of charged particles from solid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Borgesen, P.; Schou, J.; Sorensen, H.

    1980-01-01

    Measurements have been made of the emission of both positive and negative particles from solid hydrogen and deuterium for normal incidence of H + , H + 2 , H + 3 , D 2 H + , D + 3 and He + ions up to 10 keV. For positive particles the emission coefficient increased with increasing energy of incidence to reach a value of 0.08 per atom for 10 keV H + onto hydrogen. Apparently the positive particles are sputtered ones. The negative particles emitted are predominantly electrons. The emission coefficient per incident atom as a function of the velocity of the incident particle agress fairly well with results published earlier for incidence of hydrogen and deuterium ions. However, systematic differences of up to 10% are now observed between the coefficients for the different types of ions. (orig.)

  19. An eight-legged tactile sensor to estimate coefficient of static friction.

    Science.gov (United States)

    Wei Chen; Rodpongpun, Sura; Luo, William; Isaacson, Nathan; Kark, Lauren; Khamis, Heba; Redmond, Stephen J

    2015-08-01

    It is well known that a tangential force larger than the maximum static friction force is required to initiate the sliding motion between two objects, which is governed by a material constant called the coefficient of static friction. Therefore, knowing the coefficient of static friction is of great importance for robot grippers which wish to maintain a stable and precise grip on an object during various manipulation tasks. Importantly, it is most useful if grippers can estimate the coefficient of static friction without having to explicitly explore the object first, such as lifting the object and reducing the grip force until it slips. A novel eight-legged sensor, based on simplified theoretical principles of friction is presented here to estimate the coefficient of static friction between a planar surface and the prototype sensor. Each of the sensor's eight legs are straight and rigid, and oriented at a specified angle with respect to the vertical, allowing it to estimate one of five ranges (5 = 8/2 + 1) that the coefficient of static friction can occupy. The coefficient of friction can be estimated by determining whether the legs have slipped or not when pressed against a surface. The coefficients of static friction between the sensor and five different materials were estimated and compared to a measurement from traditional methods. A least-squares linear fit of the sensor estimated coefficient showed good correlation with the reference coefficient with a gradient close to one and an r(2) value greater than 0.9.

  20. [Methodical approaches to evaluation of air pollution by emissions of motor vehicles in population areas].

    Science.gov (United States)

    Lyapkalo, A A; Dement'ev, A A; Tsurgan, A M

    2014-01-01

    There are results of comparative analysis of air pollution by emissions of motor vehicles in the residential districts of Ryazan via different methodical approaches. Emissions were calculated regarding analysis of the traffic intensity on the elements of the city traffic network. Relative emissions, equivalent relative emissions and relative coefficient of emission hazard were calculated for each district. Rating of the comparing districts was done according to the pollution level using the above-mentioned indices. Gorodskaya Roscha was detected as the most polluted district. The most informative approach was comparison of the residential districts according to the equivalent relative emissions and relative coefficient of emission hazard.

  1. The significance level and repeatability for isotope-temperature coefficient of precipitation in China

    International Nuclear Information System (INIS)

    Wang Dongsheng; Wang Jinglan

    2003-01-01

    The good linear relationship with significance level α = 0.01 exists between isotope in precipitation and surface air temperature with multi-year average in 32 stations of China, and the yearly δD-temperature coefficient = 3.1‰/1℃ and the yearly δ 18 O-temperature coefficient = 0.36‰/1℃, and its determination coefficient R 2 = 0.67 and 0.64 respectively. So the isotope-temperature coefficient with yearly average can serve as the temperature yearly measure. But the monthly average isotope-temperature coefficient in each station is variable according to both of space and time, and its repeatability is determined by the meteorological regimes. According to the monthly isotope-temperature coefficient (B) and the coefficient of determination (R 2 ) and its α, all of China can be zoned the following three belts: (1) In the North Belt, B>O, R 2 ≈ 0.3-0.65, α = 0.01, the relation between monthly isotope in precipitation and surface air temperature (RMIT) belongs to a direct correlation and is closer in 99% probability; (2) In the South Belt, Bcoefficient with both of yearly average and monthly average and its statistical attribution is site-specific, it may be used to reconstruct past surface air temperatures or to diagnose regional climate models. (authors)

  2. Surface temperature measurement using infrared radiometer. 2nd Report. Applicability of pseudo gray body approximation. Sekitaisen eizo sochi wo riyoshita jitsuyoteki ondo keisoku ni kansuru kenkyu. 2. Giji Haiiro kinji no tekiyosei

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, T; Sekiya, M; Ishibashi, H; Okamoto, Y [Ibaraki University, Ibaraki (Japan). Faculty of Engineering; Kurokawa, K [NEC Corp., Tokyo (Japan)

    1994-06-25

    Establishment of a simple and reasonable technique and its application to the metallic surface in addition to the nonmetallic surface in the room-temperature measurement using infrared picture equipment have been studied. It was found, as published in the previous paper, in the investigation of radiation temperature, radiosity coefficient, their wave-length dependence and the dispersiveness of these parameters about the surfaces of various kinds of material that the assumption of gray body approximation does not hold in the surfaces of metal and part of nonmetal. In the present work, applicability of pseudo-gray body approximation to the metal surface in a system surrounded by black body surfaces was studied in consideration of directivity of emissivity and reflectance while, in actual, a measuring angle of 15 degrees giving a small directivity effect was used based on experimental results. As in the previous paper, three kinds of sensors different in the detectable wave-length range were used to evaluate the radiation temperature, emissivity, radiosity coefficient, and their dispersiveness. The experimental results proved the applicability of pseudo-gray body approximation. 3 refs., 18 figs., 2 tabs.

  3. Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod

    Science.gov (United States)

    Smagin, A. V.; Dolgikh, A. V.; Karelin, D. V.

    2016-04-01

    The results of quantitative assessment and modeling of carbon dioxide emission from urban pedolithosediments (cultural layer) in the central part of Velikii Novgorod are discussed. At the first stages after the exposure of the cultural layer to the surface in archaeological excavations, very high CO2 emission values reaching 10-15 g C/(m2 h) have been determined. These values exceed the normal equilibrium emission from the soil surface by two orders of magnitude. However, they should not be interpreted as indications of the high biological activity of the buried urban sediments. A model based on physical processes shows that the measured emission values can be reliably explained by degassing of the soil water and desorption of gases from the urban sediments. This model suggests the diffusion mechanism of the transfer of carbon dioxide from the cultural layer into the atmosphere; in addition, it includes the equations to describe nonequilibrium interphase interactions (sorption-desorption and dissolution-degassing of CO2) with the first-order kinetics. With the use of statistically reliable data on physical parameters—the effective diffusion coefficient as dependent on the aeration porosity, the effective solubility, the Henry constant for the CO2 sorption, and the kinetic constants of the CO2 desorption and degassing of the soil solution—this model reproduces the experimental data on the dynamics of CO2 emission from the surface of the exposed cultural layer obtained by the static chamber method.

  4. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil

    Science.gov (United States)

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.

    2012-12-01

    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  5. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.

    1999-09-01

    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  6. A comparison of roughness parameters and friction coefficients of aesthetic archwires.

    Science.gov (United States)

    Rudge, Philippa; Sherriff, Martyn; Bister, Dirk

    2015-02-01

    Compare surface roughness of 'aesthetic' nickel-titanium (NiTi) archwires with their dynamic frictional properties. Archwires investigated were: four fully coated tooth coloured [Forestadent: Biocosmetic (FB) and Titanol Cosmetic (FT); TOC Tooth Tone (TT); and Hawley Russell Coated Superelastic NiTi (HRC)]; two partially coated tooth coloured [DB Euroline Microcoated (DB) and TP Aesthetic NiTi (TP)]; two rhodium coated [TOC Sentalloy (TS) and Hawley Russell Rhodium Coated Superelastic NiTi (HRR)]; and two controls: stainless steel [Forestadent Steel (FS)] and NiTi archwire [Forestadent Titanol Superelastic (FN)]. Surface roughness [profilometry (Rugosurf)] was compared with frictional coefficients for archwire/bracket/ligature combinations (n = 10). Analysis of variance, Sidak's multiple comparison of means, and Spearman's correlation coefficient were used for analysis. Roughness coefficients were from low to high: FB; FN; TT; FS; TS; HRR; FT; DB; TP; HRC. Friction coefficients were from low to high: TP; FS; FN; HRR; FT; DB; FB; HRC; TS; TT. Coated archwires generally exhibited higher friction than uncoated controls. TP had the lowest friction but this was not statistically significant (P < 0.05). Friction of tooth coloured coated archwires were significantly different for some wires. Spearman's correlation did not demonstrate consistency between surface roughness (R a) and dynamic friction. Aesthetic archwires investigated had either low surface roughness or low frictional resistance but not both properties simultaneously. Causes for friction are likely to be multifactorial and do not appear to be solely determined by surface roughness (measured by profilometry). For selecting the most appropriate aligning archwire, both surface roughness and frictional resistance need to be considered. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Temperature dependence of photon-enhanced thermionic emission from GaAs surface with nonequilibrium Cs overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, A.G. [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation); Alperovich, V.L., E-mail: alper@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation)

    2017-02-15

    Highlights: • Electronic properties of Cs/GaAs surface are studied at elevated temperatures. • Heating to ∼100 °C strongly affects photoemission current and surface band bending. • For θ < 0.4 ML photoemission current relaxation is due to band bending. • A spectral proof of the PETE process is obtained at Cs/GaAs thermal cycling. - Abstract: The temperature influence on the Cs/GaAs surface electronic properties, which determine the photon-enhanced thermionic emission (PETE), is studied. It was found that heating to moderate temperatures of about 100 °C leads to substantial changes in the magnitude and shape of Cs coverage dependences of photoemission current and surface band bending, along with the changes of relaxation kinetics after Cs deposition. A spectral proof of the PETE process is obtained under thermal cycling of the Cs/GaAs surface with 0.45 monolayer (ML) of Cs.

  8. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    Science.gov (United States)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  9. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Directory of Open Access Journals (Sweden)

    I. Leifer

    2018-03-01

    Full Text Available Methane (CH4 inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne–surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL and combines downwind trace gas concentration anomaly (plume above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX – the Alpha Jet Atmospheric eXperiment and mobile surface (collected by AMOG – the AutoMObile trace Gas – Surveyor data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV floor into the Sierra Nevada (0.1–2.2 km altitude, validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10–20 km downwind, highlighting the importance of the experimental design.

  10. Rain effect on Aquarius L-band Emissivity and Backscatter Model Functions

    Science.gov (United States)

    Tang, W.; Yueh, S. H.; Fore, A.; Neumann, G.; Hayashi, A.

    2012-12-01

    Remote sensing of sea surface salinity (SSS) is being performed by Aquarius and SMOS missions, which are using L-band radiometry to sense the microwave emissions from sea surfaces. To enable accurate SSS retrieval, it is essential to correct the impact of sea surface roughness on L-band brightness temperatures. In addition, the impact of rain has to be carefully assessed and accounted for. Although the atmospheric attenuation caused by raindrops are likely negligible at 1.4GHz, other factors must be considered because they may have indirect but important contribution to the surface roughness and consequently L-band brightness temperatures. For example, the wind speed dependent roughness correction will be corrupted when rain striking the water, creating rings, stalks, and crowns from which the signal scatters. It is also unknown how long the freshwater stays at surface while through the oceanic mixing process at various regions over global oceans. We collocated the Aquarius L-band data with various wind products, including SSM/I, NCEP, ASCAT and WindSAT, as well as the SSM/I and WindSAT rain products. During the first four months of Aquarius mission, near 1.9 million pixels are identified under rain conditions by either SSM/I or WindSAT. We derived the L-band emissivity and backscatter geophysical model functions (GMF), parameterized by SSM/I and NCEP winds for rain-free conditions. However, the residual ocean surface emissivity (the Aquarius measured minus the rain-free model predictions) reveals profound resemblance with global precipitation pattern. In region dominated by rain, e.g. ITCZ, northern hemisphere storm track, and Indian Ocean partially under the influence of summer monsoon, the GMF built using rain free data underestimates excess emissivity about 0.5 to 1 K. The dependence of residual of emissivity and backscatter is shown as a function of wind speed and rain rate. A modified GMF is developed including rain rate as one of the parameters. Due to

  11. Electron emission during interactions of multicharged N and Ar ions with Au(110) and Cu(001) surfaces

    International Nuclear Information System (INIS)

    Meyer, F.W.; Overbury, S.H.; Havener, C.C.; Zeijlmans van Emmichoven, P.A.; Burgdoerfer, J.; Zehner, D.M.

    1991-01-01

    We report measurements of energy distributions of electrons emitted during interactions 10q-keV N 6+ , and Ar q+ (q=7,8,9) ions with Au(110) and Cu(001) surfaces at grazing angles. The electron energy distributions have been measured as a function of angle of incidence, observation angle, and target-crystal azimuth. For both Au and Cu targets, the projectile KLL Auger peak observed for the case of the N 6+ projectiles is seen to consist of two components whose intensities have strikingly different dependences on incident perpendicular velocity. The main component of the KLL peak is attributed to subsurface electron emission and is modeled using a Monte Carlo simulation of the projectile trajectories in the bulk. The second component, observed only for the smallest incident perpendicular velocities, is attributed to above-surface KLL Auger electron emission and is modeled using computer simulations of the resonance neutralization-autoionization cascade that occurs prior to projectile penetration of the surface. In the case of the Au target, NNV and NVV transitions, attributed to vacancy transfer from the projectile K shell to the N shell of Au, are also observed. The Monte Carlo simulation of the subsurface contribution to the electron emission is able to reproduce the observed angle-of-incidence dependence of both the projectile and the target Auger electron intensities. In addition, it shows reasonable agreement with the observed dependences of the projectile KLL intensity on observation angle and crystal azimuth

  12. Negative ion emission at field electron emission from amorphous (alpha-C:H) carbon

    CERN Document Server

    Bernatskij, D P; Ivanov-Omskij, V I; Pavlov, V G; Zvonareva, T K

    2001-01-01

    The study on the electrons field emission from the plane cathode surface on the basis of the amorphous carbon film (alpha-C:H) is carried out. The methodology, making it possible to accomplish simultaneously the registration of the emission currents and visually observe the distribution of the emission centers on the plane emitter surface is developed. The analysis of the oscillograms indicated that apart from the proper electron constituent the negative ions of hydrogen (H sup - and H sub 2 sup -), carbon (C sup -) and hydrocarbon (CH sub n sup -) are observed. The ions emission is connected with the processes of formation and degradation of the local emission centers

  13. Changes in Electrokinetic Coupling Coefficients of Granite under Triaxial Deformation

    Directory of Open Access Journals (Sweden)

    Osamu Kuwano

    2012-01-01

    Full Text Available Electrokinetic phenomena are believed to be the most likely origin of electromagnetic signals preceding or accompanying earthquakes. The intensity of the source current due to the electrokinetic phenomena is determined by the fluid flux and the electrokinetic coupling coefficient called streaming current coefficient; therefore, how the coefficient changes before rupture is essential. Here, we show how the electrokinetic coefficients change during the rock deformation experiment up to failure. The streaming current coefficient did not increase before failure, but continued to decrease up to failure, which is explained in terms of the elastic closure of capillary. On the other hand, the streaming potential coefficient, which is the product of the streaming current coefficient and bulk resistivity of the rock, increased at the onset of dilatancy. It may be due to change in bulk resistivity. Our result indicates that the zeta potential of the newly created surface does not change so much from that of the preexisting fluid rock interface.

  14. Energy and complex industrial systems environmental emissions data reporting and acquisition

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Hamilton, L.D.

    1987-07-01

    The Joint International Atomic Energy Agency (IAEA), UNEP and WHO Project on Assessing and Managing Health and Environmental risks from Energy and Other Complex Technologies intends to complile emissions data for mportant energy systems and other complex technologies from a wide variety of countries. To facilitate data generation and compilation, this report: outlines data reporting protocols; identifies potential information sources; demonstrates how to estimate coefficients; presents some compiled US emission coefficients or criteria air pollutants for some energy process; and, compares national air emission standards for electricity generating plants in OECD member countries. 27 refs., 2 fis., 1 tabs

  15. MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG V041

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYD11C2.041 dataset was decommissioned as of March 1, 2018. Users are encouraged to use Version 6 of MODIS/Aqua Land Surface Temperature and Emissivity Daily L3...

  16. The Diagnosis of Plasma Parameters in Surface Alloying Technique by Optical Emission Spectrometry

    International Nuclear Information System (INIS)

    Fu Yabo; Zhang Yuefei; Chen Qiang; Zhang Guangqiu; Gao Yuan; Wang Jianzhong; Kui Xiaoyun

    2006-01-01

    Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH 4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1.71x10 15 /cm 3 to 6.64x10 15 /cm 3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma

  17. Dependence of sputtering coefficient on ion dose

    International Nuclear Information System (INIS)

    Colligon, J.S.; Patel, M.H.

    1977-01-01

    The sputtering coefficient of polycrystalline gold bombarded by 10-40 keV Ar + ions had been measured as a function of total ion dose and shown to exhibit oscillations in magnitude between 30 and 100%. Possible experimental errors which would give rise to such an oscillation have been considered, but it is apparent that these factors are unable to explain the measurements. It is proposed that a change in the Sublimation Energy associated with either bulk damage or formation of surface topographical features arising during ion bombardment may be responsible for the observed variations in sputtering coefficient. (author)

  18. Tailoring of quantum dot emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings.

    Science.gov (United States)

    Margapoti, Emanuela; Gentili, Denis; Amelia, Matteo; Credi, Alberto; Morandi, Vittorio; Cavallini, Massimiliano

    2014-01-21

    We report on the tailoring of quantum dot (QD) emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Ag nanoparticles (NPs) with CdSe QDs embedded in a polymeric matrix are spatially organised in mesoscopic rings and coupled in a tuneable fashion by breath figure formation. The mean distance between NPs and QDs and consequently the intensity of QD photoluminescence, which is enhanced by the coupling of surface plasmons and excitons, are tuned by acting on the NP concentration.

  19. Effect of electrostatic field on dynamic friction coefficient of pistachio

    Directory of Open Access Journals (Sweden)

    M. H Aghkhani

    2016-04-01

    Full Text Available Introduction: Separation and grading of agricultural products from the production to supply, has notable importance. The separation can be done based on physical, electrical, magnetic, optical properties and etc. It is necessary for any development of new systems to study enough on the properties and behavior of agricultural products. Some characteristics for separation are size (length, width and thickness, hardness, shape, density, surface roughness, color, speed limit, aerodynamic properties, electrical conductivity, elasticity and coefficient of static friction point. So far, the friction properties of agricultural products used in the separating process, but the effect of electrostatic charging on static and dynamic coefficients of friction for separation had little attention. The aim of this study was to find out the interactions between electrostatic and friction properties to find a way to separate products that separation is not possible with conventional methods or not sufficiently accurate. In this paper, the separation of close and smiley pistachios by electrostatic charging was investigated. Materials and Methods: Kallehghoochi pistachio cultivar has the top rank in production in Iran. Therefore, it was used as a sample. The experimental design that used in this study, had moisture content at three levels (24.2, 14.5 and 8.1 percent, electric field intensity at three levels (zero, 4000 and 7000 V, speed of movement on the surface at three levels (1300, 2500 and 3300 mm per minute, friction surface (galvanized sheet iron, aluminum and flat rubber and pistachio type at two levels (filled splits and closed that was measured and analyzed in completely randomized factorial design. A friction measuring device (built in Ferdowsi University of Mashhad used to measure the friction force. It has a removable table that can move in two directions with adjustable speed. The test sample put into the vessel with internal dimensions of 300 × 150

  20. Investigation of PTFE transfer films by infrared emission spectroscopy and phase-locked ellipsometry

    Science.gov (United States)

    Lauer, James L.; Bunting, Bruce G.; Jones, William R., Jr.

    1988-01-01

    When a PTFE sheet was rubbed unidirectionally over a smooth surface of stainless steel an essentially monomolecular transfer film was formed. by ellipsometric and emission infrared spectroscopic techniques it was shown that the film was 10 to 15 A thick and birefringent. From the intensity differences of infrared bands obtained with a polarizer passing radiation polarized in mutually perpendicular planes, it was possible to deduce transfer film orientation with the direction of rubbing. After standing in air for several weeks the transfer films apparently increased in thickness by as much as threefold. At the same time both the index of refraction and the absorption index decreased. Examination of the surfaces by optical and electron microscopies showed that the films had become porous and flaky. These observations were consistent with previous tribological measurements. The coefficients of friction decreased with the formation of the transfer film but increased again as the film developed breaks. The applicability of the ellipsometric and polarized infrared emission techniques to the identification of monomolecular tribological transfer films of polymers such as PTFE has been demonstrated.

  1. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    Science.gov (United States)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  2. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    Science.gov (United States)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  3. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  4. Commentary Relative to the Emission Spectrum of the Solar Atmosphere: Further Evidence for a Distinct Solar Surface

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere and corona of the Sun represent tenuous regions which are characterized by numerous optically thin emission lines in the ultraviolet and X-ray bands. When observed from the center of the solar disk outward, these emission lines experience modest brightening as the limb is approached. The intensity of many ultraviolet and X-ray emission lines nearly doubles when observation is extended just beyond the edge of the disk. These findings indicate that the solar body is opaque in this frequency range and that an approximately two fold greater region of the solar atmosphere is being sampled outside the limb. These observations provide strong support for the presence of a distinct solar surface. Therefore, the behavior of the emission lines in this frequency range constitutes the twenty fifth line of evidence that the Sun is comprised of condensed matter

  5. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    Science.gov (United States)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  6. Determination of the Static Friction Coefficient from Circular Motion

    Science.gov (United States)

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-01-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s[superscript-1], and the…

  7. Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Directory of Open Access Journals (Sweden)

    C. Liousse

    2010-10-01

    Full Text Available African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin and Banizoumbou (Niger AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable.

  8. Design of a hybrid emissivity domestic electric oven

    Science.gov (United States)

    Isik, Ozgur; Onbasioglu, Seyhan Uygur

    2017-10-01

    In this study, the radiative properties of the surfaces of an electric oven were investigated. Using experimental data related to an oven-like enclosure, a novel combination of surface properties was developed. Three different surface emissivity combinations were analysed experimentally: low-emissivity, high emissivity (black-coated), and hybrid emissivity. The term "hybrid emissivity design" here corresponds to an enclosure with some high emissive and some low-emissive surfaces. The experiments were carried out according to the EN 50304 standard. When a brick (load) was placed in the enclosure, the view factors between its surfaces were calculated with the Monte Carlo method. These and the measured surface temperatures were then used to calculate the radiative heat fluxes on the surfaces of the load. The three different models were compared with respect to energy consumption and baking time. The hybrid model performed best, with the highest radiative heat transfer between the surfaces of the enclosure and the load and minimum heat loss from the cavity. Thus, it was the most efficient model with the lowest energy consumption and the shortest baking time. The recent European Union regulation regarding the energy labelling of domestic ovens was used.

  9. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...... of blackbody sources are estimated with an uncertainty of 0.2-2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen. (C) 1996 Optical Society of America...... measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures...

  10. Secondary electron emission from metals and semi-conductor compounds

    International Nuclear Information System (INIS)

    Ono, Susumu; Kanaya, Koichi

    1979-01-01

    Attempt was made to present the sufficient solution of the secondary electron yield of metals and semiconductor compounds except insulators, applying the free electron scattering theory to the absorption of secondary electrons generated within a solid target. The paper is divided into the sections describing absorption coefficient and escape depth, quantitative characteristics of secondary yield, angular distribution of secondary electron emission, effect of incident angle to secondary yield, secondary electron yield transmitted, and lateral distribution of secondary electron emission, besides introduction and conclusion. The conclusions are as follows. Based on the exponential power law for screened atomic potential, secondary electron emission due to both primary and backscattered electrons penetrating into metallic elements and semi-conductive compounds is expressed in terms of the ionization loss in the first collision for escaping secondary electrons. The maximum yield and the corresponding primary energy can both consistently be derived as the functions of three parameters: atomic number, first ionization energy and backscattering coefficient. The yield-energy curve as a function of the incident energy and the backscattering coefficient is in good agreement with the experimental results. The energy dependence of the yield in thin films and the lateral distribution of secondary yield are derived as the functions of the backscattering coefficient and the primary energy. (Wakatsuki, Y.)

  11. Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties

    Science.gov (United States)

    Nagpal, Prashant; Singh, Vivek; Ding, Yuchen

    2014-03-01

    Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.

  12. Priority hazardous substances for the aquatic environment: critical evaluation of the emission factor method for the indirect estimate of the loads

    International Nuclear Information System (INIS)

    Azzellino, A.; Vismara, R.

    2005-01-01

    The European Water Framework Directive require to the EU Member States the knowledge of the priority hazardous pollutant contamination levels. Regional basin management plans (according to Italian laws D.Lgs 152/99 and to D.M. 367/03) generally include a review about the status of water contamination to respond to the Eu legislation prescriptions. However, since the actual monitoring activity of the water contamination is expensive and also extremely difficult in terms of analytical sensitivity, the most of these reviews has been prepared by using indirect emission coefficient estimates derived form literature. It is well known that such emission coefficients have been rarely proved fully reliable; moreover such an approach gives no information about the variability affecting the emission estimates. Aim of this work was to use the data contained into the emission EPER-INES database, european database which contains the IPPC Directive emission declarations, to define emission coefficients more reliable than literature coefficients. The presented results, even though based on a limited number of observations and referring the most only to heavy metals, confirm the scarce affidability of the emission factor method and show remarkable discrepancies (mostly under- but also over-estimations of about ten-fold) of these emission estimates from the actual emission data of the IPPC declarations. These results allow also to evaluate the not negligible variability that affects the definition of emission coefficients [it

  13. The Role of Intrinsic and Surface States on the Emission Properties of Colloidal CdSe and CdSe/ZnS Quantum Dots

    Directory of Open Access Journals (Sweden)

    Morello Giovanni

    2007-01-01

    Full Text Available AbstractTime Resolved Photoluminescence (TRPL measurements on the picosecond time scale (temporal resolution of 17 ps on colloidal CdSe and CdSe/ZnS Quantum Dots (QDs were performed. Transient PL spectra reveal three emission peaks with different lifetimes (60 ps, 460 ps and 9–10 ns, from the bluest to the reddest peak. By considering the characteristic decay times and by comparing the energetic separations among the states with those theoretically expected, we attribute the two higher energy peaks to ± 1Uand ± 1L bright states of the fine structure picture of spherical CdSe QDs, and the third one to surface states emission. We show that the contribution of surface emission to the PL results to be different for the two samples studied (67% in the CdSe QDs and 32% in CdSe/ZnS QDs, confirming the decisive role of the ZnS shell in the improvement of the surface passivation.

  14. Methods for calculating dose conversion coefficients for terrestrial and aquatic biota

    International Nuclear Information System (INIS)

    Ulanovsky, A.; Proehl, G.; Gomez-Ros, J.M.

    2008-01-01

    Plants and animals may be exposed to ionizing radiation from radionuclides in the environment. This paper describes the underlying data and assumptions to assess doses to biota due to internal and external exposure for a wide range of masses and shapes living in various habitats. A dosimetric module is implemented which is a user-friendly and flexible possibility to assess dose conversion coefficients for aquatic and terrestrial biota. The dose conversion coefficients have been derived for internal and various external exposure scenarios. The dosimetric model is linked to radionuclide decay and emission database, compatible with the ICRP Publication 38, thus providing a capability to compute dose conversion coefficients for any nuclide from the database and its daughter nuclides. The dosimetric module has been integrated into the ERICA Tool, but it can also be used as a stand-alone version

  15. Predamage threshold electron emission from insulator and semiconductor surfaces

    International Nuclear Information System (INIS)

    Siekhaus, W.J.; Kinney, J.H.; Milam, D.

    1985-01-01

    Predamage electron emission shows a dependence on fluence, bandgap and wavelength consistent with multiphoton excitation across the bandgap and inconsistent with avalanche ionization and thermionic emission models. The electron emission scales with pulselength as 1/√T. 6 references, 8 figures, 1 table

  16. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  17. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.

    Science.gov (United States)

    Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi

    2018-03-30

    Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2  h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2  h -1 ; no coal-fire area 19 and 32 ng m -2  h -1 ; and backfilling area 53 ng m -2  h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.

  18. Measuring the Coefficient of Friction of a Small Floating Liquid Marble.

    Science.gov (United States)

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-12-02

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The "capillary charge" model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle.

  19. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  20. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Science.gov (United States)

    Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław

    2017-10-01

    The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  1. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Directory of Open Access Journals (Sweden)

    Nadolny Zbigniew

    2017-01-01

    Full Text Available The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal. In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  2. Emission of perfluoroalkyl carboxylic acids (PFCA) from heated surfaces made of polytetrafluoroethylene (PTFE) applied in food contact materials and consumer products.

    Science.gov (United States)

    Schlummer, Martin; Sölch, Christina; Meisel, Theresa; Still, Mona; Gruber, Ludwig; Wolz, Gerd

    2015-06-01

    Polytetrafluoroethylene (PTFE) has been widely discussed as a source of perfluorooctanoic acid (PFOA), which has been used in the production of fluoropolymers. PTFE may also contain unintended perfluoroalkyl carboxylic acids (PFCAs) caused by thermolysis of PTFE, which has been observed at temperatures above 300°C. Common PTFE coated food contact materials and consumer goods are operated at temperatures above 200°C. However, knowledge on possible emissions of PFCAs is limited. Therefore, it was the aim of this study to investigate and evaluate the emission of PFCAs from PTFE coated products with both, normal use and overheating scenarios. Four pans, claimed to be PFOA free, and nine consumer products were investigated. At normal use conditions (PTFE surfaces were trapped for 1h. Overheating scenarios (>260°C) recorded emissions during a 30min heating of empty pans on a stove. Emissions were analyzed by LC-ESI-MS. Results indicate the emission of PFCAs, whereas no perfluorinated sulfonic acids were traced. At normal use conditions total emissions of PFCAs accounted for 4.75ng per hour. Overheated pans, however, released far higher amounts with up to 12190ng PFCAs per hour at 370°C. Dominating contributors where PFBA and PFOA at normal use and PFBA and PFPeA during overheating. Temperature seems to be the main factor controlling the emission of PFCAs. A worst case estimation of human exposure revealed that emissions of PFCAs from heated PTFE surfaces would be far below the TDI of 1500ng PFOA per kg body weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-01

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India (the Indo-Gangetic plain, central India, south India, and northwest India), southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Météorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest

  4. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    Science.gov (United States)

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  5. Radiation damages of material surfaces by plasma emission in thermonuclear devices. Methods of study of surface phenomena and simulation effect of thermonuclear plasma

    International Nuclear Information System (INIS)

    Rybalko, V.F.

    1978-01-01

    Phenomena that can introduce a controlling contribution into the erosion of the first wall surface in thermonuclear reactor are reviewed. Considered are the main characteristics of the physical disintegration: dependence of the disintegration coefficient upon the energy and the incidence angle of the bombarding particles, upon the atomic number of the material of the target and the type of bombarding particles. Stressed is the lack of reliable data on the disintegration of materials by light ions, which are of a maximum interest in relation to the controlled thermonuclear synthesis. The chemical disintegration and some regularities of it for the carbon-hydrogen and carbon-oxygen systems are discussed briefly. Listed are the main properties of blistering and its contribution to the erosion of crystalline surfaces

  6. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water.

    Science.gov (United States)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-02-15

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10 -6 cm 2 /s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10 -6 cm 2 /s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Semi-empirical model for heat transfer coefficient in liquid metal turbulent flow

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-01-01

    The heat transfer by forced convection in a metal liquid turbulent flow for circular ducts is analyzed. An analogy between the momentum and heat in the wall surface, is determined, aiming to determine an expression for heat transfer coefficient in function of the friction coefficient. (E.G.) [pt

  8. The Yaws handbook of vapor pressure Antoine coefficients

    CERN Document Server

    Yaws, Carl L

    2015-01-01

    Increased to include over 25,000 organic and inorganic compounds, The Yaws Handbook of Vapor Pressure: Antoine Coefficients, 2nd Edition delivers the most comprehensive and practical database source for today's petrochemical. Understanding antoine coefficients for vapor pressure leads to numerous critical engineering applications such as pure components in storage vessels, pressure relief valve design, flammability limits at the refinery, as well as environmental emissions from exposed liquids, making data to efficiently calculate these daily challenges a fundamental need. Written by the world's leading authority on chemical and petrochemical data, The Yaws Handbook of Vapor Pressure simplifies the guesswork for the engineer and reinforces the credibility of the engineer's calculations with a single trust-worthy source. This data book is a must-have for the engineer's library bookshelf. Increase compound coverage from 8,200 to over 25,000 organic and inorganic compounds, including sulfur and hydrocarbons Sol...

  9. Emission Spectrum Property of Modulated Atom-Field Coupling System

    International Nuclear Information System (INIS)

    Gao Yun-Feng; Feng Jian; Li Yue-Ke

    2013-01-01

    The emission spectrum of a two-level atom interacting with a single mode radiation field in the case of periodic oscillation coupling coefficient is investigated. A general expression for the emission spectrum is derived. The numerical results for the initial field in pure number stare are calculated. It is found that the effect of the coupling coefficient modulation on the spectral structure is very obvious in the case of a low modulation frequency and larger amplitude when the initial field is vacuum, which is potentially useful for exploring a modulated light source. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Land Surface Temperature and Emissivity Separation from Cross-Track Infrared Sounder Data with Atmospheric Reanalysis Data and ISSTES Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Ze Zhang

    2017-01-01

    Full Text Available The Cross-track Infrared Sounder (CrIS is one of the most advanced hyperspectral instruments and has been used for various atmospheric applications such as atmospheric retrievals and weather forecast modeling. However, because of the specific design purpose of CrIS, little attention has been paid to retrieving land surface parameters from CrIS data. To take full advantage of the rich spectral information in CrIS data to improve the land surface retrievals, particularly the acquisition of a continuous Land Surface Emissivity (LSE spectrum, this paper attempts to simultaneously retrieve a continuous LSE spectrum and the Land Surface Temperature (LST from CrIS data with the atmospheric reanalysis data and the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES algorithm. The results show that the accuracy of the retrieved LSEs and LST is comparable with the current land products. The overall differences of the LST and LSE retrievals are approximately 1.3 K and 1.48%, respectively. However, the LSEs in our study can be provided as a continuum spectrum instead of the single-channel values in traditional products. The retrieved LST and LSEs now can be better used to further analyze the surface properties or improve the retrieval of atmospheric parameters.

  11. Near Infrared Multispectral Mapping of Venus Supports the Hypothesis that Tessera Plateau Material was Formed in the Presence of Surface Water

    Science.gov (United States)

    Mueller, N. T.; Tsang, C.; Nunes, D. C.; Helbert, J.; Dyar, M. D.; Smrekar, S. E.

    2017-12-01

    The VIRTIS instrument on Venus Express observed surface thermal emission from the surface. Studies of 1020nm data showed that tessera plateaus, intensely tectonically deformed highlands that predate most other terrains, have significantly lower thermal emission than other highlands. Lower thermal emission could be due either to lower surface emissivity, supporting the hypothesis that tessera are analogous to continental crust on Earth, or to a bias of Magellan altimetry, which does not fully resolve the topographic relief of tessera terrain. To eliminate this ambiguity, we additionally investigate the spectral windows at 1100 and 1180nm. Data are reduced to surface emissivity using an atmospheric radiative transfer model to account for atmospheric scattering and absorption/emission. Magellan altimetry was used to model atmospheric column height and surface temperature. The model uses a binary (collision-induced) absorption coefficient for each window. It fits absolute radiance and gradient with surface elevation reasonably well, although there are indications that the assumed adiabatic temperature lapse rate is not appropriate globally. The 1100nm band has a relatively low signal-to-noise ratio at the latitudes of the tessera plateaus, but Alpha Regio is visible in both the 1020 and the 1180nm band. The difference in emissivity between Alpha and the adjacent corona Eve, which has a similar elevation as Alpha, is 3.6% at 1020nm, but only 2% at 1180nm. The altimetry bias equivalent to the 1020nm deviation is 230 m, while the equivalent is only 70m at 1180nm. An altimetry bias therefore cannot fully explain the observations, and there must be a real difference in emissivity. The observations are consistent with the hypothesis that Alpha Regio has a more felsic composition. The emissivity spectra of granites at Venus temperatures are lower than those of basalt at 1020nm, but the difference decreases or vanishes towards the 1180nm window. The most plausible explanation

  12. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry

    Science.gov (United States)

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-01

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  13. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  14. Influence of temperature on the emission of di-(2-ethylhexyl)phthalate (DEHP) from PVC flooring in the emission cell FLEC.

    Science.gov (United States)

    Clausen, Per Axel; Liu, Zhe; Kofoed-Sørensen, Vivi; Little, John; Wolkoff, Peder

    2012-01-17

    Emissions of di-(2-ethylhexyl) phthalate (DEHP) from one type of polyvinylchloride (PVC) flooring with approximately 13% (w/w) DEHP as plasticizer were measured in the Field and Laboratory Emission Cell (FLEC). The gas-phase concentrations of DEHP versus time were measured at air flow rate of 450 mL·min(-1) and five different temperatures: 23 °C, 35 °C, 47 °C, 55 °C, and 61 °C. The experiments were terminated two weeks to three months after steady-state was reached and the interior surface of the FLECs was rinsed with methanol to determine the surface concentration of DEHP. The most important findings are (1) DEHP steady-state concentrations increased greatly with increasing temperature (0.9 ± 0.1 μg·m(-3), 10 ± 1 μg·m(-3), 38 ± 1 μg·m(-3), 91 ± 4 μg·m(-3), and 198 ± 5 μg·m(-3), respectively), (2) adsorption to the chamber walls decreased greatly with increasing temperature (measured partition coefficient between FLEC air and interior surface are: 640 ± 146 m, 97 ± 20 m, 21 ± 5 m, 11 ± 2 m, and 2 ± 1 m, respectively), (3) gas-phase DEHP concentration in equilibrium with the vinyl flooring surface is close to the vapor pressure of pure DEHP, and (4) with an increase of temperature in a home from 23 to 35 °C, the amount of DEHP in the gas- and particle-phase combined is predicted to increase almost 10-fold. The amount in the gas-phase increases by a factor of 24 with a corresponding decrease in the amount on the airborne particles.

  15. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction.

    Science.gov (United States)

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-05-18

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs.

  16. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    Science.gov (United States)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  17. Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

    KAUST Repository

    Bonito, Andrea; DeVore, Ronald A.; Nochetto, Ricardo H.

    2013-01-01

    Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.

  18. Coefficients of resistance to cold-air-drainage winds on a grass-covered slope

    International Nuclear Information System (INIS)

    Komoda, H.; Kobayashi, T.; Mori, M.; Kaneko, T.

    2006-01-01

    The cold-air-drainage (CAD) wind is one of the most familiar local winds in Japan. It is driven by the surplus of density, or the deficit of potential temperature produced by radiative cooling in the surface air layer on a slope, and is resisted by the ground surface and the surrounding atmosphere. The coefficients of resistance of the ground surface and the surrounding atmosphere change with the CAD wind speed. The observations made on a grass-covered slope of Mt. Kuju showed that the resistance exerted by the surrounding atmosphere was much larger than that by the ground surface, and the sum of two coefficients of resistance decreased by one order of magnitude when the CAD wind speed exceeded some critical value

  19. Nondestructive detection of surface flaws in materials by infrared thermography

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Eto, Motokuni; Hoshiya, Taiji; Okamoto, Yoshizo

    1999-01-01

    Infrared thermography is one of the useful remote sensing techniques applied to the nondestructive detection of surface flaws in materials. Radiation temperatures of the specimen surface and surrounding walls as well as the difference in them are crucial factors to detect surface flaws from thermal images, and it is essential that these factors be properly evaluated beforehand in order to detect the flaws by infrared thermography. In this study, the radiation temperature of nuclear graphite specimens heated uniformly was measured by infrared thermography to evaluate the radiation characteristics such as emissivity, radiosity coefficient and variation of radiation temperature. The influence of the temperature difference between the test specimen and its surroundings on the limit of detection of pinhole flaws was discussed on the basis of the thermal images of graphite specimen with surface flaws. It was found that the thermal image of a small flaw was clearly visible with increase in the temperature difference. (author)

  20. Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients

    Science.gov (United States)

    McCabe, Gregory J.; Hay, Lauren E.; Bock, Andy; Markstrom, Steven L.; Atkinson, R. Dwight

    2015-01-01

    Monthly calibrated values of the Hamon PET coefficient (C) are determined for 109,951 hydrologic response units (HRUs) across the conterminous United States (U.S.). The calibrated coefficient values are determined by matching calculated mean monthly Hamon PET to mean monthly free-water surface evaporation. For most locations and months the calibrated coefficients are larger than the standard value reported by Hamon. The largest changes in the coefficients were for the late winter/early spring and fall months, whereas the smallest changes were for the summer months. Comparisons of PET computed using the standard value of C and computed using calibrated values of C indicate that for most of the conterminous U.S. PET is underestimated using the standard Hamon PET coefficient, except for the southeastern U.S.

  1. Microwave remote sensing: Active and passive. Volume 2 - Radar remote sensing and surface scattering and emission theory

    Science.gov (United States)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1982-01-01

    The fundamental principles of radar backscattering measurements are presented, including measurement statistics, Doppler and pulse discrimination techniques, and associated ambiguity functions. The operation of real and synthetic aperture sidelooking airborne radar systems is described, along with the internal and external calibration techniques employed in scattering measurements. Attention is given to the physical mechanisms responsible for the scattering emission behavior of homogeneous and inhomogeneous media, through a discussion of surface roughness, dielectric properties and inhomogeneity, and penetration depth. Simple semiempirical models are presented. Theoretical models involving greater mathematical sophistication are also given for extended ocean and bare soil surfaces, and the more general case of a vegetation canopy over a rough surface.

  2. Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber.

    Science.gov (United States)

    Gallego, E; Perales, J F; Roca, F J; Guardino, X

    2014-02-01

    Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain. The two main objectives of the study were the evaluation of the performance of the chamber setup in typical measurement conditions and the determination of the emission rates of 60 different VOC from that industrial landfill, generating a valuable database that can be useful in future studies related to industrial landfill management. Triplicate samples were taken in five selected sampling points. VOC were sampled dynamically using multi-sorbent bed tubes (Carbotrap, Carbopack X, Carboxen 569) connected to SKC AirCheck 2000 pumps. The analysis was performed by automatic thermal desorption coupled with a capillary gas chromatograph/mass spectrometry detector. The emission rates of sixty VOC were calculated for each sampling point in an effort to characterize surface emissions. To calculate average, minimum and maximum emission values for each VOC, the results were analyzed by three different methods: Global, Kriging and Tributary area. Global and Tributary area methodologies presented similar values, with total VOC emissions of 237 ± 48 and 222 ± 46 g day(-1), respectively; however, Kriging values were lower, 77 ± 17 gd ay(-1). The main contributors to the total emission rate were aldehydes (nonanal and decanal), acetic acid, ketones (acetone), aromatic hydrocarbons and alcohols. Most aromatic hydrocarbon (except benzene, naphthalene and methylnaphthalenes) and aldehyde emission rates exhibited strong correlations with the rest of VOC of their family, indicating a possible common source of these compounds. B:T ratio obtained from the emission rates of the studied landfill suggested that the factors that regulate aromatic hydrocarbon distributions in the landfill emissions are different from the ones

  3. Measurement of PCB emissions from building surfaces using a novel portable emission test cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Gunnarsen, Lars Bo; Andersen, Helle Vibeke

    2016-01-01

    Polychlorinated biphenyls (PCBs) were used in building materials like caulks and paints from 1930 e1970s and in some cases that caused elevated PCB concentrations in the indoor air at levels considered harmful to occupant health. PCBs are semivolatile organic compounds and capable of spreading from...... and there is a need to prioritise remediation measures on different materials. An inexpensive and portable emission test cell was developed to resemble indoor conditions in relation to the area specific ventilation rate. Emissions were measured using the test cell in the laboratory on freshly made PCB paint. Further......, the chamber was used for determining emissions from PCB-containing building materials in the field as well as remediated walls. The measurements showed that sorption of PCBs to chamber walls was insignificant after 2-4 days of exposure to the source. Over a period of two weeks emission rates did not change...

  4. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses

    Science.gov (United States)

    Hulley, G. C.; Malakar, N.; Islam, T.

    2017-12-01

    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  5. The role of surface and deep-level defects on the emission of tin oxide quantum dots

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Vijay; Som, S; Ntwaeaborwa, O M; Swart, H C; Neethling, J H; Lee, Mike

    2014-01-01

    This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO 2 QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO 2 phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO 2 QDs is discussed with the help of an energy band diagram. (paper)

  6. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part II – Technological formula and value of diffusion coefficient

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2017-03-01

    Full Text Available The completed research presented in the first part of the article has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing. On the basis of these data simulations were carried out to examine the behaviour of zinc diffusion coefficient D in the galvanized coating. The adopted model of zinc coating growth helped to explain the cases of excessive growth of the intermetallic phases in this type of coating. The paper analyzes covered the relationship between the roughness and phase composition of the top layer of product and the thickness and kinetics of zinc coating growth referred to individual sub-layers of the intermetallic phases.Roughness and phase composition in the surface layer of product were next related to the diffusion coefficient D examined in respective sublayers of the intermetallic phases.

  7. Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing?

    Science.gov (United States)

    Stinchcombe, John R; Agrawal, Aneil F; Hohenlohe, Paul A; Arnold, Stevan J; Blows, Mark W

    2008-09-01

    The use of regression analysis has been instrumental in allowing evolutionary biologists to estimate the strength and mode of natural selection. Although directional and correlational selection gradients are equal to their corresponding regression coefficients, quadratic regression coefficients must be doubled to estimate stabilizing/disruptive selection gradients. Based on a sample of 33 papers published in Evolution between 2002 and 2007, at least 78% of papers have not doubled quadratic regression coefficients, leading to an appreciable underestimate of the strength of stabilizing and disruptive selection. Proper treatment of quadratic regression coefficients is necessary for estimation of fitness surfaces and contour plots, canonical analysis of the gamma matrix, and modeling the evolution of populations on an adaptive landscape.

  8. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    Science.gov (United States)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  9. Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.

    Science.gov (United States)

    Yates, S R; Knuteson, J; Ernst, F F; Zheng, W; Wang, Q

    2008-12-01

    A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.

  10. Comparison of distributed vortex receptivity coefficients at excitation of 3D TS-waves in presence and absence of surface waviness and pressure gradient

    Science.gov (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Mischenko, D. A.; Fedenkova, A. A.

    2016-10-01

    The paper is devoted to quantitative experimental investigation of effective mechanisms of excitation of 3D TS instability waves due to distributed boundary layer receptivity to free-stream vortices. Experiments carried out in a self-similar boundary layer with Hartree parameter βH = -0.115 and concentrated on studying two receptivity mechanisms connected with distributed scattering of 3D unsteady free-stream vortices both on the natural boundary layer nonuniformity (smooth surface) and on 2D surface nonuniformity (waviness). Obtained quantitative characteristics (distributed receptivity coefficients) are compared directly with those obtained in Blasius boundary layer. It is found that the adverse pressure gradient leads to reduction of efficiency of the vortex-roughness receptivity mechanism.

  11. Radiative Forcing from Emissivity Response in Polar Regions

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  12. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    Science.gov (United States)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    Atmospheric mineral dust has a wide range of impacts, including the transport of elements in geochemical cycles, health hazards from small particles, and climate forcing via the reflection of sunlight from dust particles. In particular, the mineral dust component of climate forcing is one of the most uncertain elements in the IPCC climate forcing summary. Mineral dust is also an important component of geochemical cycles. For instance, dust inputs to the ocean potentially affect the iron cycle by stimulating natural iron fertilization, which could then modify climate via the biological pump. Also dust can transport nutrients over long distances and fertilize nutrient-poor regions, such as island ecosystems or the Amazon rain forest. However, there are still many uncertainties in quantifying dust emissions from source regions. One factor that influences dust emission is surface roughness and texture, since a weak, unconsolidated surface texture is more easily ablated by wind than a strong, hard crust. We are investigating the impact of processes such as precipitation, groundwater evaporation, and wind on surface roughness in a playa dust source region. We find that water has a significant influence on surface roughness. We utilize ESA's Advanced Synthetic Aperture Radar (ASAR) instrument to measure roughness in the playa. A map of roughness indicates where the playa surface is smooth (on the scale of centimeters) and potentially very strong, and where it is rough and might be more sensitive to disturbance. We have analyzed approximately 40 ASAR observations of the Black Rock Desert from 2007-2011. In general, the playa is smoother and more variable over time relative to nearby areas. There is also considerable variation within the playa. While the playa roughness maps changed significantly between summers and between observations during the winters, over the course of each summer, the playa surface maintained essentially the same roughness pattern. This suggests that

  13. Investigation of Influence of Surface Nanoparticle on Emission Properties of Scandia-Doped Dispenser Cathodes

    Science.gov (United States)

    Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan

    2013-06-01

    The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.

  14. Flexible Ag-C60 nano-biosensors based on surface plasmon coupled emission for clinical and forensic applications.

    Science.gov (United States)

    Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah

    2015-10-14

    The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.

  15. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales

    International Nuclear Information System (INIS)

    Frölicher, Thomas L; Paynter, David J

    2015-01-01

    The transient climate response to cumulative carbon emissions (TCRE) is a highly policy-relevant quantity in climate science. The TCRE suggests that peak warming is linearly proportional to cumulative carbon emissions and nearly independent of the emissions scenario. Here, we use simulations of the Earth System Model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to show that global mean surface temperature may increase by 0.5 °C after carbon emissions are stopped at 2 °C global warming, implying an increase in the coefficient relating global warming to cumulative carbon emissions on multi-centennial timescales. The simulations also suggest a 20% lower quota on cumulative carbon emissions allowed to achieve a policy-driven limit on global warming. ESM estimates from the Coupled Model Intercomparison Project Phase 5 (CMIP5–ESMs) qualitatively agree on this result, whereas Earth System Models of Intermediate Complexity (EMICs) simulations, used in the IPCC 5th assessment report to assess the robustness of TCRE on multi-centennial timescales, suggest a post-emissions decrease in temperature. The reason for this discrepancy lies in the smaller simulated realized warming fraction in CMIP5–ESMs, including GFDL ESM2M, than in EMICs when carbon emissions increase. The temperature response to cumulative carbon emissions can be characterized by three different phases and the linear TCRE framework is only valid during the first phase when carbon emissions increase. For longer timescales, when emissions tape off, two new metrics are introduced that better characterize the time-dependent temperature response to cumulative carbon emissions: the equilibrium climate response to cumulative carbon emissions and the multi-millennial climate response to cumulative carbon emissions. (letter)

  16. Regulation of the friction coefficient of articular cartilage by TGF-beta1 and IL-1beta.

    Science.gov (United States)

    DuRaine, Grayson; Neu, Corey P; Chan, Stephanie M T; Komvopoulos, Kyriakos; June, Ronald K; Reddi, A Hari

    2009-02-01

    Articular cartilage functions to provide a low-friction surface for joint movement for many decades of life. Superficial zone protein (SZP) is a glycoprotein secreted by chondrocytes in the superficial layer of articular cartilage that contributes to effective boundary lubrication. In both cell and explant cultures, TGF-beta1 and IL-1beta have been demonstrated to, respectively, upregulate and downregulate SZP protein levels. It was hypothesized that the friction coefficient of articular cartilage could also be modulated by these cytokines through SZP regulation. The friction coefficient between cartilage explants (both untreated and treated with TGF-beta1 or IL-1beta) and a smooth glass surface due to sliding in the boundary lubrication regime was measured with a pin-on-disk tribometer. SZP was quantified using an enzyme-linked immunosorbant assay and localized by immunohistochemistry. Both TGF-beta1 and IL-1beta treatments resulted in the decrease of the friction coefficient of articular cartilage in a location- and time-dependent manner. Changes in the friction coefficient due to the TGF-beta1 treatment corresponded to increased depth of SZP staining within the superficial zone, while friction coefficient changes due to the IL-1beta treatment were independent of SZP depth of staining. However, the changes induced by the IL-1beta treatment corresponded to changes in surface roughness, determined from the analysis of surface images obtained with an atomic force microscope. These findings demonstrate that the low friction of articular cartilage can be modified by TGF-beta1 and IL-1beta treatment and that the friction coefficient depends on multiple factors, including SZP localization and surface roughness.

  17. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  18. Experiments on Evaporative Emissions in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    In many new buildings the indoor air quality is affected by emissions of volatile organic compounds (VOCs) from building materials. The emission process may be controlled either by diffusion inside the material or evaporation from the surface but it always involves mass transfer across the boundary...... layer at the surface-air-interface. Experiments at different velocity levels were performed in a full-scale ventilated chamber to investigate the influence of local airflow on the evaporative emission from a surface. The experiments included velocity measurements in the flow over the surface...

  19. A carbon emissions reduction index: Integrating the volume and allocation of regional emissions

    International Nuclear Information System (INIS)

    Chen, Jiandong; Cheng, Shulei; Song, Malin; Wu, Yinyin

    2016-01-01

    Highlights: • We build a carbon emissions reduction index (CERI). • The aim is to quantify the pressure on policymakers to reduce emissions. • Scale-related effects and carbon emissions allocations are included in the CERI. • Different standards of carbon emissions allocations are also considered. • We decompose the Gini coefficient to evaluate the effects of three factors. - Abstract: Given the acceleration of global warming and rising greenhouse gas emissions, all countries are facing the harsh reality of the need to reduce carbon emissions. In this study, we propose an index to quantify the pressure faced by policymakers to reduce such emissions, termed the carbon emissions reduction index. This index allows us to observe the effect of carbon emissions volume on the pressure faced by policymakers and study the impact of optimizing interregional carbon emissions on reducing this pressure. In addition, we account for several carbon emissions standards in constructing the index. We conclude that the variation in the index is likely to be attributable to carbon emissions volume, regional ranking, and population (population can also be replaced by GDP, resource endowment, or other factors). In addition, based on empirical data on the world’s largest emitter of carbon dioxide (China), this study analyzes the evolution of pressure to reduce emissions on a country’s policymakers. The results show that the growing volume and unsuitable allocation of carbon emissions from 1997 to 2012 imposed increasing pressure on the Chinese government in this regard. In addition, reductions in carbon emissions volume and regional ranking are primary factors that impact pressure on policymakers.

  20. Impact of surface morphology on the properties of light emission in InGaN epilayers

    Science.gov (United States)

    Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2018-05-01

    Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.

  1. Apparent Coefficient of Friction of Wheat on Denim.

    Science.gov (United States)

    Schwab, Charles V

    2017-07-31

    Calculation of the extraction force for a grain entrapment victim requires a coefficient of friction between the grain and the surface of the victim. Because denim is a common fabric for the work clothes that cover entrapment victims, the coefficient of friction between grain and denim becomes necessary. The purpose of this research was to calculate the apparent coefficient of friction of wheat on denim fabric using a proven procedure. The expectation is to improve the current understanding of conditions that influence extraction forces for victims buried in wheat. The apparent coefficient of friction of wheat on denim fabric was calculated to be 0.167 with a standard deviation of ±0.013. The wheat had a moisture content of 10.7% (w.b.) and bulk density of 778.5 kg m-3. The apparent coefficient of friction of wheat on denim was not significantly affected by pull speeds of 0.004, 0.008, and 0.021 mm s-1 nor normal grain pressures of 3.2, 4.8, 6.3, 7.9, and 11.1 kPa. This is a beginning of understanding the conditions that influence the extraction forces for grain entrapment victims. Copyright© by the American Society of Agricultural Engineers.

  2. Influence of roughness parameters on coefficient of friction under ...

    Indian Academy of Sciences (India)

    S¯adhan¯a Vol. 33, Part 3, June 2008, pp. ... Surface texture and thus roughness parameters influence coefficient of friction during sliding. ..... tural irregularities and complexities of the natural system, fractal is widely used to explain the natural ...

  3. Extinction Coefficient of Gold Nanostars.

    Science.gov (United States)

    de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-07-30

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

  4. Surface emissions of heat, water and GHGs from a NYC greenroof

    Science.gov (United States)

    McGillis, W. R.; Jacobson, G.; Culligan, P.; Gaffin, S.; Carson, T.; Marasco, D.; Hsueh, D.; Rella, C.

    2012-04-01

    The budgets of heat, water, and GHGs from greenroofs in New York City, needed for adaptation and sustainable policy and infrastructure strategies, requires an accurate measure of their surface emissions. A high speed, Cavity Ring-Down Spectroscopy (CRDS) based analyzer for measuring carbon dioxide (CO2), methane (CH4) and water (H2O) and an ultrasonic wind and temperature anemometer for measuring heat and momentum is used to assess greenroof performance during seasonal, diurnal, and episodic weather conditions. The flux instrument has proven capable of raw 10 Hz precision (one standard deviation) better than 110 parts-per-billion (ppbv) for carbon dioxide, better than 3 ppbv for methane and better than 6 ppmv +0.3% of reading for water vapor. In the water and heat budget, comparison and reconciliation of greenroof evapotranspiration (ET) using micrometeorological techniques, water balance, and heat balance was conducted. The water balance (month timescales), the heat balance (week timescale) show agreement to the micrometeorological surface ET (hour timescale). By using boundary layer flux measurements of ET, the fundamental performance of greenroofs on climate and weather conditions can be explored. These boundary layer measured surface fluxes provide critical information on the physiology of the built environment in New York City. Faced with sewage failures due to water management and exacerbated heating, the accurate assessment of greenroof performance on high spatial and temporal scales in required for the urban environment. Results will be presented and discussed.

  5. [Study on plasma temperature of a large area surface discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Tong, Guo-Liang; Zhang, Yu; Zhou, Bin

    2014-04-01

    A large area surface discharge was realized in air/argon gas mixture by designing a discharge device with water electrodes. By using optical emission spectrum, the variations of the molecular vibrational temperature, the mean energy of electron, and the electronic excitation temperature as a function of the gas pressure were studied. The nitrogen molecular vibrational temperature was calculated according to the emission line of the second positive band system of the nitrogen molecule (C3 pi(u) --> B 3 pi(g)). The electronic excitation temperature was obtained by using the intensity ratio of Ar I 763.51 nm (2P(6) --> 1S(5)) to Ar I 772.42 nm (2P(2) --> 1S(3)). The changes in the mean energy of electron were studied by the relative intensity ratio of the nitrogen molecular ion 391.4 nm to nitrogen 337.1 nm. It was found that the intensity of emission spectral line increases with the increase in the gas pressure, meanwhile, the outline and the ratios of different spectral lines intensity also change. The molecular vibrational temperature, the mean energy of electron, and the electronic excitation temperature decrease as the gas pressure increases from 0.75 x 10(5) Pa to 1 x 10(5) Pa.

  6. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    Science.gov (United States)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  7. Estimation of methane emission rate changes using age-defined waste in a landfill site.

    Science.gov (United States)

    Ishii, Kazuei; Furuichi, Toru

    2013-09-01

    Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35×10(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34×10(5)t-CO(2)/y). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Estimation of radon emanation coefficient for soil and flyash

    International Nuclear Information System (INIS)

    Sahu, S.K.; Swarnkar, M.; Ajmal, P.Y.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Since terrestrial materials include radium ( 226 Ra) originating from the decay of uranium ( 238 U), all such materials release radon ( 222 Rn) to varying degrees. When a radium atom decays to radon, the energy generated is strong enough to send the radon atom a distance of about 40 nanometers-this is known as alpha recoil. For a radon atom to escape the radium atom must be within the recoil distance from the grain surface of flyash or soil and the direction of recoil must send the radon atom toward the outside of the grain. Therefore, all of the radon atoms generated by the radium contained in flyash or soil grain are actually not released into pore spaces and mobilized. The fraction of radon atoms generated from radium decay that are released from into flyash or soil pore space is defined as the radon emanation coefficient or emanating power, of the material. Grain size and shape are two of the important factors that control the radon emanation coefficient because they determine in part how much uranium and radium is near enough to the surface of the grain to allow the newly-formed radon to escape into a pore space. In a porous medium, where the radon is in radioactive equilibrium with its parent radium, the emanation coefficient is given by the expression: where C 0 is the undiluted radon activity concentration in the pores of the medium, and C Ra is the radium activity concentration of the sample. The 226 Ra activity concentration of the flyash and soil sample were determined by using the g-spectrometry. C 0 was determined by the can experiment using LR-115 for flyash and soil samples. The C 0 values for flyash and soil samples were found to be 245.7 Bq/m 3 and 714.3 Bq/m 3 respectively. The radon emanation coefficient for flyash was found to be 0.0024 while that for soil was 0.0092. Therefore the soil sample was found to be four times higher radon emanation coefficient than flyash which is in line with the results reported in the literatures. This may suggest

  9. Correlation of CVD Diamond Electron Emission with Film Properties

    Science.gov (United States)

    Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.

    1996-03-01

    Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.

  10. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction

    Science.gov (United States)

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-01-01

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs. PMID:27213374

  11. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  12. Method for measurement of emissivity and absorptivity of highly reflective surfaces from 20 K to room temperatures

    Czech Academy of Sciences Publication Activity Database

    Králík, Tomáš; Musilová, Věra; Hanzelka, Pavel; Frolec, Jiří

    2016-01-01

    Roč. 53, č. 2 (2016), s. 743-753 ISSN 0026-1394 R&D Projects: GA ČR(CZ) GA14-07397S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : absorptivity * emissivity * radiative heat transfer * metallic surfaces * cryogenics * uncertainty evaluation Subject RIV: BJ - Thermodynamics Impact factor: 3.411, year: 2016

  13. The influence of ion bombardment on emission properties of carbon materials

    International Nuclear Information System (INIS)

    Chepusov, Alexander; Komarskiy, Alexander; Kuznetsov, Vadim

    2014-01-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  14. The influence of ion bombardment on emission properties of carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Chepusov, Alexander, E-mail: chepusov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Komarskiy, Alexander, E-mail: aakomarskiy@gmail.com [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Kuznetsov, Vadim, E-mail: kuznetsov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation)

    2014-07-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  15. Geopotential coefficient determination and the gravimetric boundary value problem: A new approach

    Science.gov (United States)

    Sjoeberg, Lars E.

    1989-01-01

    New integral formulas to determine geopotential coefficients from terrestrial gravity and satellite altimetry data are given. The formulas are based on the integration of data over the non-spherical surface of the Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. Formulas for the solution of the gravimetric boundary value problem are derived.

  16. Transfer coefficient models for escherichia coli O157:H7 on contacts between beef tissue and high-density polyethylene surfaces.

    Science.gov (United States)

    Flores, Rolando A; Tamplin, Mark L; Marmer, Benne S; Phillips, John G; Cooke, Peter H

    2006-06-01

    Risk studies have identified cross-contamination during beef fabrication as a knowledge gap, particularly as to how and at what levels Escherichia coli O157:H7 transfers among meat and cutting board (or equipment) surfaces. The objectives of this study were to determine and model transfer coefficients (TCs) between E. coli O157:H7 on beef tissue and high-density polyethylene (HDPE) cutting board surfaces. Four different transfer scenarios were evaluated: (i) HDPE board to agar, (ii) beef tissue to agar, (iii) HDPE board to beef tissue to agar, and (iv) beef tissue to HDPE board to agar. Also, the following factors were studied for each transfer scenario: two HDPE surface roughness levels (rough and smooth), two beef tissues (fat and fascia), and two conditions of the initial beef tissue inoculation with E. coli O157:H7 (wet and dry surfaces), for a total of 24 treatments. The TCs were calculated as a function of the plated inoculum and of the cells recovered from the first contact. When the treatments were compared, all of the variables evaluated interacted significantly in determining the TC. An overall TC-per-treatment model did not adequately represent the reduction of the cells on the original surface after each contact and the interaction of the factors studied. However, an exponential model was developed that explained the experimental data for all treatments and represented the recontamination of the surfaces with E. coli O157:H7. The parameters for the exponential model for cross-contamination with E. coli O157:H7 between beef tissue and HDPE surfaces were determined, allowing for the use of the resulting model in quantitative microbial risk assessment.

  17. X-ray emission from hot plasma

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Kato, Takako.

    1979-01-01

    X-ray emission from hot plasmas is discussed with a critical review of different theories. The results given in the present paper are complementary to those given by Kato in the sense that the present paper is introductory to the paper by Kato. The contents of the present paper are; 1. Introduction 2. Ionization and Recombination Rate Coefficients 3. Relative Abundances of Ions 4. Intensity and Spectra of Radiation 5. Comparison with Earlier Results 6. Emission and Absorption Lines (author)

  18. A hierarchical estimator development for estimation of tire-road friction coefficient.

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    Full Text Available The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  19. A hierarchical estimator development for estimation of tire-road friction coefficient.

    Science.gov (United States)

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  20. Heat transfer coefficient for lead matrixing in disposal containers for used reactor fuel

    International Nuclear Information System (INIS)

    Mathew, P.M.; Taylor, M.; Krueger, P.A.

    1985-02-01

    In the Canadian Nuclear Fuel Waste Management Program, metal matrices with low melting points are being evaluated for their potential to provide support for the shell of disposal containers for used fuel, and to act as an additional barrier to the release of radionuclides. The metal matrix would be incorporated into the container by casting. To study the heat transfer processes during solidification, a steady-state technique was used, involving lead as the cast metal, to determine the overall heat transfer coefficient between the lead and some of the candidate container materials. The existence of an air gap between the cast lead and the container material appeared to control the overall heat transfer coefficient. The experimental observations indicated that the surface topography of the container material influences the heat transfer and that a smoother surface results in a greater heat transfer than a rough surface. The experimental results also showed an increasing heat transfer coefficient with increasing temperature difference across the container base plates; a model developed to base-plate bending can explain the observed results

  1. Surface transport in plasma-balls

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Bhattacharya, Jyotirmoy [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Kundu, Nilay [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211019 (India)

    2016-06-06

    We study the surface transport properties of stationary localized configurations of relativistic fluids to the first two non-trivial orders in a derivative expansion. By demanding that these finite lumps of relativistic fluid are described by a thermal partition function with arbitrary stationary background metric and gauge fields, we are able to find several constraints among surface transport coefficients. At leading order, besides recovering the surface thermodynamics, we obtain a generalization of the Young-Laplace equation for relativistic fluid surfaces, by considering a temperature dependence in the surface tension, which is further generalized in the context of superfluids. At the next order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent bulk transport coefficients previously known, a generic localized configuration is characterized by 3 additional surface transport coefficients, one of which may be identified with the surface modulus of rigidity. Finally, as an application, we study the effect of temperature dependence of surface tension on some explicit examples of localized fluid configurations, which are dual to certain non-trivial black hole solutions via the AdS/CFT correspondence.

  2. Diffusion Coefficient in the Zinc Coating Shaped on the Surface of Cast Iron and Steel Alloys

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2015-06-01

    Full Text Available The article presents the method to assess the diffusion coefficient D in the sub-layer of intermetallic phases formed during hot-dip galvanizing “Armco” iron and ductile cast iron EN-GJS-500-7. Hot-dip galvanizing is one of the most popular forms of long-term protection of Fe-C alloys against corrosion. The process for producing a protective layer of sufficient quality is closely related to diffusion of atoms of zinc and iron. The simulation consist in performed a hot-dip galvanizing in laboratory condition above Fe-C alloys, in the Department of Engineering of Cast Alloys and Composites. Galvanizing time ranged from 15 to 300 seconds. Then metallographic specimens were prepared, intermetallic layers were measured and diffusion coefficient (D were calculated. It was found that the diffusion coefficient obtained during hot-dip galvanizing “Armco” iron and zinc is about two orders of magnitude less than the coefficient obtained on ductile cast iron EN-GJS-500-7.

  3. Microscopic work function anisotropy and surface chemistry of 316L stainless steel using photoelectron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, N., E-mail: nick.barrett@cea.fr [CEA, IRAMIS, SPEC, LENSIS, F-91191 Gif-sur-Yvette (France); Renault, O. [CEA, LETI, Minatec Campus, F-38054 Grenoble Cedex 09 (France); Lemaître, H. [Université de Cergy-Pontoise, Rue d’Eragny, Neuville sur Oise, 95 031 Cergy-Pontoise (France); Surface Dynamics Laboratory, Institut for Fysik og Astronomi Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C (Denmark); Bonnaillie, P. [CEA, DEN, DANS, DMN, SRMP, F-91191 Gif-sur-Yvette (France); Barcelo, F. [CEA, DEN, DANS, DMN, SRMA, LA2M, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DANS, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Wang, M.; Corbel, C. [Laboratoire des Solides Irradis, Ecole Polytechnique, route de Saclay, F-91128 Palaiseau (France)

    2014-08-15

    Highlights: • PEEM and EBSD study of spatial variations in local work function of 316L steel. • Correlation between work function and crystal grain orientation at the surface of 316L steel. • Spatially resolved chemistry of residual oxide layer. - Abstract: We have studied the variation in the work function of the surface of sputtered cleaned 316L stainless steel with only a very thin residual oxide surface layer as a function of grain orientation using X-ray photoelectron emission microscopy (XPEEM) and Electron Backscattering Diffraction. The grains are mainly oriented [1 1 1] and [1 0 1]. Four distinct work function values spanning a 150 meV energy window are measured. Grains oriented [1 1 1] have a higher work function than those oriented [1 0 1]. From core level XPEEM we deduce that all grain surfaces are Cr enriched and Ni depleted whereas the Cr/Fe ratio is similar for all grains. The [1 1 1] oriented grains show evidence for a Cr{sub 2}O{sub 3} surface oxide and a higher concentration of defective oxygen sites.

  4. 2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum

    Science.gov (United States)

    Wang, Hongguang; Zhang, Jianwei; Li, Yongdong; Lin, Shu; Zhong, Pengfeng; Liu, Chunliang

    2018-04-01

    With the introduction of an external circuit model and a gas desorption model, the surface flashover on the plane insulator-vacuum interface perpendicular to parallel electrodes is simulated by a Particle-In-Cell method. It can be seen from simulations that when the secondary electron emission avalanche (SEEA) occurs, the current sharply increases because of the influence of the insulator surface charge on the cathode field emission. With the introduction of the gas desorption model, the current keeps on increasing after SEEA, and then the feedback of the external circuit causes the voltage between the two electrodes to decrease. The cathode emission current decreases, while the anode current keeps growing. With the definition that flashover occurs when the diode voltage drops by more than 20%, we obtained the simulated flashover voltage which agrees with the experimental value with the use of the field enhancement factor β = 145 and the gas molecule desorption coefficient γ=0.25 . From the simulation results, we can also see that the time delay of flashover decreases exponentially with voltage. In addition, from the gas desorption model, the gas density on the insulator surface is found to be proportional to the square of the gas desorption rate and linear with time.

  5. Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics

    Science.gov (United States)

    Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu

    2017-07-01

    The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.

  6. Path coefficient analysis of zinc dynamics in varying soil environment

    International Nuclear Information System (INIS)

    Rattan, R.K.; Phung, C.V.; Singhal, S.K.; Deb, D.L.; Singh, A.K.

    1994-01-01

    Influence of soil properties on labile zinc, as measured by diethylene-triamine pentaacetic acid (DTPA) and zinc-65, and self-diffusion coefficients of zinc was assessed on 22 surface soil samples varying widely in their characteristics following linear regression and path coefficient analysis techniques. DTPA extractable zinc could be predicted from organic carbon status and pH of the soil with a highly significant coefficient of determination (R 2 =0.84 ** ). Ninety seven per cent variation in isotopically exchangeable zinc was explained by pH, clay content and cation exchange capacity (CEC) of soil. The self-diffusion coefficients (DaZn and DpZn) and buffer power of zinc exhibited exponential relationship with soil properties, pH being the most dominant one. Soil properties like organic matter, clay content etc. exhibited indirect effects on zinc diffusion rates via pH only. (author). 13 refs., 6 tabs

  7. Impact of the 2008 Global Recession on Air Quality over the United States: Implications for Surface Ozone Levels from Changes in NOx Emissions

    Science.gov (United States)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-01-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  8. Secondary ion emission from cleaned surfaces bombarded by 100 MeV accelerator beams at the GSI Darmstadt

    International Nuclear Information System (INIS)

    Wien, K.; Becker, O.; Guthier, W.; Knippelberg, W.; Koczon, P.

    1988-01-01

    The 1.4 MeV/n beam facility for the UNILAC/GSI has been used to study secondary ion emission from surfaces cleaned under UHV conditions by ion etching or cleaving of crystals. The desorption phenomena observed by means of TOF mass spectrometry can be classified as follows: (1) Clean metal surfaces emit metal ions being ejected by atomic collisions cascades. Electronic excitation of surface states seems to support ionization. (2) The desorption of contaminants adsorbed at the metal surface is strongly correlated with the electronic energy loss of the projectiles - even, if the content of impurities is very low. (3) Ion formation at the epitaxial surface of fluoride crystals as CaF 2 , MgF 2 and NaF is initiated by the electronic excitation of the crystal. At high beam energies the mass spectrum is dominated by a series of cluster ions. These cluster ions disappear below a certain energy deposit threshold, whereas small atomic ions are observed over the whole energy range

  9. Modelling the impact of sanitation, population growth and urbanization on human emissions of Cryptosporidium to surface waters—a case study for Bangladesh and India

    Science.gov (United States)

    Vermeulen, Lucie C.; de Kraker, Jelske; Hofstra, Nynke; Kroeze, Carolien; Medema, Gertjan

    2015-09-01

    Cryptosporidium is a protozoan parasite that can cause diarrhoea. Human faeces are an important source of Cryptosporidium in surface waters. We present a model to study the impact of sanitation, urbanization and population growth on human emissions of Cryptosporidium to surface waters. We build on a global model by Hofstra et al (2013 Sci. Total Environ. 442 10-9) and zoom into Bangladesh and India as illustrative case studies. The model is most sensitive to changes in oocyst excretion and infection rate, and to assumptions on the share of faeces reaching the surface water for different sanitation types. We find urban centres to be hotspots of human Cryptosporidium emissions. We estimate that 53% (Bangladesh) and 91% (India) of total emissions come from urban areas. 50% of oocysts come from only 8% (Bangladesh) and 3% (India) of the country area. In the future, population growth and urbanization may further deteriorate water quality in Bangladesh and India, despite improved sanitation. Under our ‘business as usual’ (‘sanitation improvements’) scenario, oocyst emissions will increase by a factor 2.0 (1.2) for India and 2.9 (1.1) for Bangladesh between 2010 and 2050. Population growth, urbanization and sanitation development are important processes to consider for large scale water quality modelling.

  10. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  11. Practical methods to define scattering coefficients in a room acoustics computer model

    DEFF Research Database (Denmark)

    Zeng, Xiangyang; Christensen, Claus Lynge; Rindel, Jens Holger

    2006-01-01

    of obtaining the data becomes quite time consuming thus increasing the cost of design. In this paper, practical methods to define scattering coefficients, which is based on an approach of modeling surface scattering and scattering caused by limited size of surface as well as edge diffraction are presented...

  12. Estimation of the heat transfer coefficient in melt spinning process

    International Nuclear Information System (INIS)

    Tkatch, V I; Maksimov, V V; Grishin, A M

    2009-01-01

    Effect of the quenching wheel velocity in the range 20.7-26.5 m/s on the cooling rate as well as on the structure and microtopology of the contact surfaces of the glass-forming FeNiPB melt-spun ribbons has been experimentally studied. Both the values of the cooling rate and heat transfer coefficient at the wheel-ribbon interface estimated from the temperature vs. time curves recorded during melt spinning runs are in the ranges (1.6-5.2)x10 6 K/s and (2.8-5.2)x10 5 Wm -2 K -1 , respectively, for ribbon thicknesses of 31.4-22.0 μm. It was found that the density of the air pockets at the underside surface of ribbons decreases while its average depth remains essentially unchanged with the wheel velocity. Using the surface quality parameters the values of the heat transfer coefficient in the areas of direct ribbon-wheel contact were evaluated to be ranging from 5.75 to 6.65x10 5 Wm -2 K -1 .

  13. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Science.gov (United States)

    Spracklen, D. V.; Carslaw, K. S.; Merikanto, J.; Mann, G. W.; Reddington, C. L.; Pickering, S.; Ogren, J. A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S. G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R. M.; Talbot, R.; Sun, J.

    2010-05-01

    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm-3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm-3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation

  14. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro/nano-channel : heat flux predictions using combined molecular dynamics and Monte Carlo techniques

    NARCIS (Netherlands)

    Gaastra - Nedea, S.V.; Steenhoven, van A.A.; Markvoort, A.J.; Spijker, P.; Giordano, D.

    2014-01-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and

  15. Field electron emission spectrometer combined with field ion/electron microscope as a field emission laboratory

    International Nuclear Information System (INIS)

    Shkuratov, S.I.; Ivanov, S.N.; Shilimanov, S.N.

    1996-01-01

    The facility, combining the field ion microscope, field electron emission microscope and field electron emission spectrometer, is described. Combination of three methodologies makes it possible to carry out the complete cycle of emission studies. Atom-plane and clean surface of the studied samples is prepared by means of field evaporation of the material atom layers without any thermal and radiation impact. This enables the study of atom and electron structure of clean surface of the wide range materials, the study whereof through the field emission methods was previously rather difficult. The temperature of the samples under study changes from 75 up to 2500 K. The energy resolution of the electron analyzer equals 30 MeV. 19 refs., 10 figs

  16. Carbon dioxide emissions from the electricity sector in major countries: a decomposition analysis.

    Science.gov (United States)

    Li, Xiangzheng; Liao, Hua; Du, Yun-Fei; Wang, Ce; Wang, Jin-Wei; Liu, Yanan

    2018-03-01

    The electric power sector is one of the primary sources of CO 2 emissions. Analyzing the influential factors that result in CO 2 emissions from the power sector would provide valuable information to reduce the world's CO 2 emissions. Herein, we applied the Divisia decomposition method to analyze the influential factors for CO 2 emissions from the power sector from 11 countries, which account for 67% of the world's emissions from 1990 to 2013. We decompose the influential factors for CO 2 emissions into seven areas: the emission coefficient, energy intensity, the share of electricity generation, the share of thermal power generation, electricity intensity, economic activity, and population. The decomposition analysis results show that economic activity, population, and the emission coefficient have positive roles in increasing CO 2 emissions, and their contribution rates are 119, 23.9, and 0.5%, respectively. Energy intensity, electricity intensity, the share of electricity generation, and the share of thermal power generation curb CO 2 emissions and their contribution rates are 17.2, 15.7, 7.7, and 2.8%, respectively. Through decomposition analysis for each country, economic activity and population are the major factors responsible for increasing CO 2 emissions from the power sector. However, the other factors from developed countries can offset the growth in CO 2 emissions due to economic activities.

  17. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission.

    Science.gov (United States)

    Kim, Sumin

    2009-01-01

    The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring using the natural tannin form bark in the wood. The natural wattle tannin adhesive were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. PVAc was added to the natural tannin adhesive to increase viscosity of tannin adhesive for surface bonding. For tannin/PVAc hybrid adhesives, 5%, 10%, 20% and 30% of PVAc to the natural tannin adhesives were added. tannin/PVAc hybrid adhesives showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method), field and laboratory emission cell (FLEC) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial the natural tannin adhesive and tannin/PVAc hybrid adhesives. By desiccator method and FLEC, the formaldehyde emission level of each adhesive showed the similar tendency. All adhesives satisfied the E(1) grade (below 1.5 mg/L) and E(0) grade (below 0.5 mg/L) with UV coating. VOC emission results by FLEC and VOC analyzer were different with the formaldehyde emission results. TVOC emission was slightly increased as adding PVAc.

  18. Determination of heat transfer coefficient for an interaction of sub-cooled gas and metal

    International Nuclear Information System (INIS)

    Sidek, Mohd Zaidi; Kamarudin, Muhammad Syahidan

    2016-01-01

    Heat transfer coefficient (HTC) for a hot metal surface and their surrounding is one of the need be defined parameter in hot forming process. This study has been conducted to determine the HTC for an interaction between sub-cooled gas sprayed on a hot metal surface. Both experiments and finite element have been adopted in this work. Initially, the designated experiment was conducted to obtain temperature history of spray cooling process. Then, an inverse method was adopted to calculate the HTC value before we validate in a finite element simulation model. The result shows that the heat transfer coefficient for interaction of subcooled gas and hot metal surface is 1000 W/m 2 K. (paper)

  19. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting

  20. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  1. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.

    Science.gov (United States)

    Kolasa-Wiecek, Alicja

    2015-04-01

    The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption. Copyright © 2015. Published by Elsevier B.V.

  2. Functional possibilities of organosilicon coatings on the surface of CsI-based scintillators

    CERN Document Server

    Andryustchenko, L A; Goriletsky, V I; Zaslavsky, B G; Zosim, D I; Charkina, T A; Trefilova, L N; Renker, D; Ritt, S; Mzhavia, D A

    2002-01-01

    It has been shown that a thin film (15+-5 mu m) based on organosilicon coating applied to all surface of CsI and CsI(Tl) scintillators excluding the output window, can combine the following functions: (1) covering from atmospheric effects; (2) scintillation light convertor of luminescence towards the region of higher spectral sensitivity of the photoreceiver and (3) ancillary surface for performance of operations on changing the light collection coefficient without the risk to exceed limited size tolerations. Wavelength-shifting coating effect on radiation hardness of pure CsI is discussed. After irradiation a new absorption bands appear in the range 250-300 nm mainly. So, contrary to the 310 nm emission, the energy losses for converted light remain the same.

  3. Dependence of secondary electron emission on the incident angle and the energy of primary electrons bombarding bowl-structured beryllium surfaces

    International Nuclear Information System (INIS)

    Kawata, Jun; Ohya, Kaoru.

    1994-01-01

    A Monte Carlo simulation of the secondary electron emission from beryllium is combined with a model of bowl structure for surface roughness, for analyzing the difference between the electron emissions for normal and oblique incidences. At normal incidence, with increasing the roughness parameter H/W, the primary energy E pm at which the maximum electron yield occurs becomes higher, and at more than the E pm , the decrease in the yield is slower; where H and W are the depth and width of the bowl structure, respectively. The dispersion of incident angle to the microscopic surface causes a small increase in the yield at oblique incidence, whereas the blocking of primary electrons from bombarding the bottom of the structure causes an opposite trend. The strong anisotropy in the polar angular distribution with respect to the azimuthal angle is calculated at oblique incidence. (author)

  4. Electron Emission by N6+ Ions Scattered at a Magnetized Iron Surface

    International Nuclear Information System (INIS)

    Solleder, B.; Lemell, C.; Burgdoerfer, J.; Tokesi, K.

    2006-01-01

    Complete text of publication follows. Magnetized materials are of considerable interest in the electronics industry (hard discs, spintronics, etc.). A detailed understanding of the properties of magnetized surfaces is therefore important to optimize technical applications. In the last decades, different experimental techniques have been developed to probe spin effects in magnetized materials. In this work the spin polarization of electrons emitted during the impact of N 6+ ions on a magnetized Fe surface is investigated. We study potential emission (PE) of electrons as well as secondary electron (SE) production and transport in the target with the help of Monte Carlo (MC) simulations. Spin dependence of electron transfer processes and of transport in the solid are included. Fig. 1 shows the results of our simulation for the energy distribution and spin polarization of emitted electrons in comparison with experimental data of Pfandzelter et al. [1] for the interaction of N 6+ ions with magnetized Fe. Electrons with energies higher than 200 eV are predominantly PE electrons, emitted close to the surface via autoionization (AI), Auger capture (AC) and Auger deexcitation (AD) channels. Low energy electrons are dominated by promoted, autoionized, and secondary electrons. The polarization of above surface electrons is determined by the high of the potential barrier separating projectile and target. At large distances, the barrier drops only slightly below the Fermi edge and enables transitions of electrons from this part of the band structure which has about 50% polarization. These electrons are transferred to high n states feeding promotion and AI processes between high lying states. Electrons emitted by these processes therefore reflect the polarization near the Fermi edge. Close to the surface, the barrier is low enough to allow for electron capture from the entire conduction band. K-Auger electrons are emitted in immediate vicinity of the surface and therefore mirror

  5. Modeling and data analysis of the NASA-WSTF frictional heating apparatus - Effects of test parameters on friction coefficient

    Science.gov (United States)

    Zhu, Sheng-Hu; Stoltzfus, Joel M.; Benz, Frank J.; Yuen, Walter W.

    1988-01-01

    A theoretical model is being developed jointly by the NASA White Sands Test Facility (WSTF) and the University of California at Santa Barbara (UCSB) to analyze data generated from the WSTF frictional heating test facility. Analyses of the data generated in the first seconds of the frictional heating test are shown to be effective in determining the friction coefficient between the rubbing interfaces. Different friction coefficients for carobn steel and Monel K-500 are observed. The initial condition of the surface is shown to affect only the initial value of the friction coefficient but to have no significant influence on the average steady-state friction coefficient. Rotational speed and the formation of oxide film on the rotating surfaces are shown to have a significant effect on the friction coefficient.

  6. [Study on Square Super-Lattice Pattern with Surface Discharge in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Niu, Xue-jiao; Dong, Li-fang; Liu, Ying; Wang, Qian; Feng, Jian-yu

    2016-02-01

    Square super-lattice pattern with surface discharge consisting of central spots and dim spots is firstly observed in the mixture of argon and air by using a dielectric barrier discharge device with water electrodes. By observing the image, it is found that the central spot is located at the centriod of its surrounding four dim spots. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The brightness of the central spot and is quite different from that of the dim spot, which indicates that the plasma states of the central spot and the dim spot may be differentiated. The optical emission spectrum method is used to further study the several plasma parameters of the central spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³ IIg) are measured, from which the molecule vibration temperatures of the central spot and the dim spot are calculated respectively. The broadening of spectral line 696.57 nm (2P₂-->1S₅) is used to study the electron densities of the central spot and the dim spot. It is found that the molecule vibration temperature and electron density of the dim spot are higher than those of the central spot in the same argon content The molecule vibration temperature and electron density of the central spot and the dim spot increase with the argon content increasing from 90% to 99.9%. The surface discharge induced by the volume discharge (VD) has the determinative effect on the formation of the dim spot The experimental results above play an important role in studying the formation mechanism of surface discharg&of square super-lattice pattern with surface discharge. In addition, the studies exert an influence on the application of surface discharge and volume discharge in different fields.

  7. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 1. Monte-Carlo simulation of laser fluence distribution at the beam axis beneath the surface of a turbid medium

    International Nuclear Information System (INIS)

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-01-01

    A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)

  8. Simultaneous study of sputtering and secondary ion emission of binary Fe-based alloys

    International Nuclear Information System (INIS)

    Riadel, M.M.; Nenadovic, T.; Perovic, B.

    1976-01-01

    The sputtering and secondary ion emission of binary Fe-based alloys of simple phase diagrams have been studied simultaneously. A series FeNi and FeCr alloys in the concentration range of 0-100% have been bombarded by 4 keV Kr + ions in a secondary ion mass spectrometer. The composition of the secondary ions has been analysed and also a fraction of the sputtered material has been collected and analysed by electron microprobe. The surface topography of the etched samples has been studied by scanning electron microscope. The relative sputtering coefficients of the metals have been determined, and the preferential sputtering of the alloying component of lower S have been proved. The etching pictures of samples are in correlation with the sputtering rates. Also the degree of secondary ionization has been calculated from the simultaneously measured ion emission and sputtering data. α + shows the change in the concentration range of the melting point minimum. This fact emphasizes the connection between the physico-chemical properties of alloys and their secondary emission process. From the dependence of the emitted homo- and hetero-cluster ions, conclusions could be shown concerning the production mechanism of small metallic aggregates

  9. Amontonian frictional behaviour of nanostructured surfaces.

    Science.gov (United States)

    Pilkington, Georgia A; Thormann, Esben; Claesson, Per M; Fuge, Gareth M; Fox, Oliver J L; Ashfold, Michael N R; Leese, Hannah; Mattia, Davide; Briscoe, Wuge H

    2011-05-28

    With nanotextured surfaces and interfaces increasingly being encountered in technological and biomedical applications, there is a need for a better understanding of frictional properties involving such surfaces. Here we report friction measurements of several nanostructured surfaces using an Atomic Force Microscope (AFM). These nanostructured surfaces provide well defined model systems on which we have tested the applicability of Amontons' laws of friction. Our results show that Amontonian behaviour is observed with each of the surfaces studied. However, no correlation has been found between measured friction and various surface roughness parameters such as average surface roughness (R(a)) and root mean squared (rms) roughness. Instead, we propose that the friction coefficient may be decomposed into two contributions, i.e., μ = μ(0) + μ(g), with the intrinsic friction coefficient μ(0) accounting for the chemical nature of the surfaces and the geometric friction coefficient μ(g) for the presence of nanotextures. We have found a possible correlation between μ(g) and the average local slope of the surface nanotextures. This journal is © the Owner Societies 2011

  10. Study of the microwave emissivity characteristics over Gobi Desert

    International Nuclear Information System (INIS)

    Yubao, Qiu; Lijuan, Shi; Wenbo, Wu

    2014-01-01

    The microwave emissivity represents the capacity of the thermal radiation of the surface, and it is the significant parameter for understanding the geophysical processes such as surface energy budget and surface radiation. Different land covers have different emissivity properties, and the Gobi Desert in Central Asia seriously impact the sandstorms occur and develop in China, because of its special geographical environment and surface soil characteristics. In this study half-month averaged microwave emissivity from March 2003 to February 2004 over the Gobi Desert has been estimated. Emissivities in this area at different frequencies, polarization and their seasonal variations are discussed respectively. The results showed that emissivity polarization difference decrease as the frequency increases, and the polarization difference is large (0.03–0.127). The H polarization emissivity increases with increasing frequency, but the V-polarized microwave emissivity is reduced with increasing frequency because of the body scattering. In winter, emissivity decreases sharply in snow covered area, especially for higher frequencies (such as 89GHz). In addition, we compared emissivity with MODIS NDVI data at the same time in the Gobi Desert, and the results indicate that NDVI derived the good negative correlation with microwave emissivity polarization difference at 37GHz

  11. Evaluation of Contact Heat Transfer Coefficient and Phase Transformation during Hot Stamping of a Hat-Type Part

    Science.gov (United States)

    Kim, Heung-Kyu; Lee, Seong Hyeon; Choi, Hyunjoo

    2015-01-01

    Using an inverse analysis technique, the heat transfer coefficient on the die-workpiece contact surface of a hot stamping process was evaluated as a power law function of contact pressure. This evaluation was to determine whether the heat transfer coefficient on the contact surface could be used for finite element analysis of the entire hot stamping process. By comparing results of the finite element analysis and experimental measurements of the phase transformation, an evaluation was performed to determine whether the obtained heat transfer coefficient function could provide reasonable finite element prediction for workpiece properties affected by the hot stamping process. PMID:28788046

  12. Space-Charge-Limited Emission Models for Particle Simulation

    Science.gov (United States)

    Verboncoeur, J. P.; Cartwright, K. L.; Murphy, T.

    2004-11-01

    Space-charge-limited (SCL) emission of electrons from various materials is a common method of generating the high current beams required to drive high power microwave (HPM) sources. In the SCL emission process, sufficient space charge is extracted from a surface, often of complicated geometry, to drive the electric field normal to the surface close to zero. The emitted current is highly dominated by space charge effects as well as ambient fields near the surface. In this work, we consider computational models for the macroscopic SCL emission process including application of Gauss's law and the Child-Langmuir law for space-charge-limited emission. Models are described for ideal conductors, lossy conductors, and dielectrics. Also considered is the discretization of these models, and the implications for the emission physics. Previous work on primary and dual-cell emission models [Watrous et al., Phys. Plasmas 8, 289-296 (2001)] is reexamined, and aspects of the performance, including fidelity and noise properties, are improved. Models for one-dimensional diodes are considered, as well as multidimensional emitting surfaces, which include corners and transverse fields.

  13. Optical emissions from oxygen atom reactions with adsorbates

    Science.gov (United States)

    Oakes, David B.; Fraser, Mark E.; Gauthier-Beals, Mitzi; Holtzclaw, Karl W.; Malonson, Mark; Gelb, Alan H.

    1992-12-01

    Although most optical materials are inert to the ambient low earth orbit environment, high velocity oxygen atoms will react with adsorbates to produce optical emissions from the ultraviolet into the infrared. The adsorbates arise from chemical releases or outgassing from the spacecraft itself. We have been investigating kinetic and spectral aspects of these phenomenon by direct observation of the 0.2 to 13 micrometers chemiluminescence from the interaction of a fast atomic oxygen beam with a continuously dosed surface. The dosing gases include fuels, combustion products and outgassed species such as unsymmetrical dimethylhydrazine (UDMH), NO, H2O and CO. The surface studied include gold and magnesium fluoride. In order to relate the results to actual spacecraft conditions these phenomena have been explored as a function of O atom velocity, dosant flux and substrate temperature. UDMH dosed surfaces exhibit spectra typical (wavelength and intensity) of carbonaceous surfaces. The primary emitters are CO, CO2, and OH. H2O dosed surfaces are dominated by OH and /or H2O emission while CO dosed surfaces are dominated by CO and CO2 emissions. The nitric oxide dosed surface produces a glow from 0.4 to 5.4 micrometers due to NO2* continuum emission. The emission was observed to increase by a factor of two upon cooling the surface from 20 degree(s)C to -35 degree(s)C.

  14. Auger emission from solid surfaces bombarded with ions

    International Nuclear Information System (INIS)

    Grizzi, Oscar.

    1986-01-01

    The Auger electron emission from Be, Na, Mg, Al and Si bombarded with 0,5-20 KeV noble gas ions is studied. Sharp structures of the Auger electron spectra of Na and Be were identified. A Monte Carlo program was adapted to simulate the colision cascade in the solid, inner shell excitations and Auger decays. From the comparision of experimental and simulated Auger intensities, the relative role of symmetric and asymmetric collisions in Be K- and Al L-shell excitation were evaluated. In the case of Be, the discussion of the exciting processes to higher projectile energies was extended. To this end, the simulation to early measurements of Be K X-ray yields was applied. From this analysis, information about the variations of the fluorescence yield and outer-shell occupation numbers of Be with projectile energy was obtained. The study of the shape of the sharp Auger structures and their dependence with the energy and incidence projectile angle gives information about the collisional processes, inner hole lifetimes and Auger decays. From the evaluation of the energy and angular distribution of the excited sputtered atoms and the interaction between them and the metallic-surface, the energy shift distributions in the Auger energies were obtained. From the comparison of these distributions with the experimental atomic peaks, the main causes of the broadening of these peaks were determined. (M.E.L.) [es

  15. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Directory of Open Access Journals (Sweden)

    Botean Adrian - Ioan

    2018-01-01

    Full Text Available This paper aims determining the linear thermal expansion coefficient (CTE of polylactic acid (PLA using an optical method for measuring deformations called digital image correlation method (DIC. Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE for the copper cylinder on the surface of which are placed the two discs of PLA.

  16. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Science.gov (United States)

    Botean, Adrian-Ioan

    2018-02-01

    This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.

  17. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    Science.gov (United States)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  18. Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells

    Science.gov (United States)

    Yu, Zhenzhong; Li, Qiang; Fan, Qigao; Zhu, Yixin

    2018-05-01

    We demonstrate surface-plasmon (SP) enhanced light emission from InGaN/GaN near ultraviolet (NUV) multiple quantum wells (MQWs) using Ag thin films and nano-particles (NPs). Two types of Ag NP arrays are fabricated on the NUV-MQWs, one is fabricated on p-GaN layer with three different sizes of about 120, 160 and 240 nm formed by self-assembled process, while the other is embedded close to the MQWs. In addition, the influence of the surface plasmon polariton (SPP) and localized surface plasmon (LSP) in NUV-MQWs has been investigated by photoluminescence (PL) measurement. Both PL measurements and theoretical simulation results show that the NUV light would be extracted more effectively under LSP mode than that of SPP mode. The highest enhancement of PL intensity is increased by 324% for the sample with NPs embedded in etched p-GaN near the MQWs as compared with the bare MQWs, also is about 1.24 times higher than the MQW sample covered with Ag NPs on the surface, indicating strong surface scattering and SP coupling between Ag NPs and NUV-MQWs.

  19. A new approach to estimate fugitive methane emissions from coal mining in China

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yiwen, E-mail: juyw03@163.com [Key Laboratory of Computational Geodynamics of Chinese Academy Sciences, Beijing 100049 (China); College of Earth Science, University of Chinese Academy Sciences, Beijing 100049 (China); Sun, Yue [Key Laboratory of Computational Geodynamics of Chinese Academy Sciences, Beijing 100049 (China); College of Earth Science, University of Chinese Academy Sciences, Beijing 100049 (China); Sa, Zhanyou [Department of Safety Engineering, Qingdao Technological University, Qingdao 266520 (China); Pan, Jienan [School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000 (China); Wang, Jilin [School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116 (China); Hou, Quanlin; Li, Qingguang; Yan, Zhifeng [Key Laboratory of Computational Geodynamics of Chinese Academy Sciences, Beijing 100049 (China); College of Earth Science, University of Chinese Academy Sciences, Beijing 100049 (China); Liu, Jie [Department of Safety Engineering, Qingdao Technological University, Qingdao 266520 (China)

    2016-02-01

    Developing a more accurate greenhouse gas (GHG) emissions inventory draws too much attention. Because of its resource endowment and technical status, China has made coal-related GHG emissions a big part of its inventory. Lacking a stoichiometric carbon conversion coefficient and influenced by geological conditions and mining technologies, previous efforts to estimate fugitive methane emissions from coal mining in China has led to disagreeing results. This paper proposes a new calculation methodology to determine fugitive methane emissions from coal mining based on the domestic analysis of gas geology, gas emission features, and the merits and demerits of existing estimation methods. This new approach involves four main parameters: in-situ original gas content, gas remaining post-desorption, raw coal production, and mining influence coefficient. The case studies in Huaibei–Huainan Coalfield and Jincheng Coalfield show that the new method obtains the smallest error, + 9.59% and 7.01% respectively compared with other methods, Tier 1 and Tier 2 (with two samples) in this study, which resulted in + 140.34%, + 138.90%, and − 18.67%, in Huaibei–Huainan Coalfield, while + 64.36%, + 47.07%, and − 14.91% in Jincheng Coalfield. Compared with the predominantly used methods, this new one possesses the characteristics of not only being a comparably more simple process and lower uncertainty than the “emission factor method” (IPCC recommended Tier 1 and Tier 2), but also having easier data accessibility, similar uncertainty, and additional post-mining emissions compared to the “absolute gas emission method” (IPCC recommended Tier 3). Therefore, methane emissions dissipated from most of the producing coal mines worldwide could be more accurately and more easily estimated. - Highlights: • Propose a new method to estimate fugitive methane emissions from coal mining. • New method has accurate prediction for CMM emissions without activity data updating. • Mining

  20. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, A. N.; Loyalka, S. K. [University of Missouri, Columbia, MO (United States); Izaguirre, E. W. [University of Missouri, Columbia, MO (United States); Baylor Scott & White Health, Temple, TX (United States)

    2015-06-15

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensity spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the