WorldWideScience

Sample records for surface elevations mapped

  1. A Global Map of Coherent M2 Internal Tide Surface Elevations

    Science.gov (United States)

    Ray, R. D.; Zaron, E. D.

    2014-12-01

    Satellite altimetry reveals small surface waves, with elevations of order 1 cm or smaller, associated with internal tides in the deep ocean. The global satellite data provide an unprecedented picture of such waves, potentially yielding much information about the ocean interior. Accurate knowledge of these waves is also needed for de-tiding altimetry in certain sensitive applications, including the future SWOT mission. Several approaches have been initiated recently to map these tiny waves, usually with some reliance on hydrographic information (e.g., recent work by Dushaw et al., 2011). Here we explore the feasibility of a purely empirical approach which avoids assumptions about stratification or modal wavelengths. A global elevation map is constructed based on tidal analysis of Topex/Poseidon, Jason, ERS-2, Envisat and GFO data. Small (order 5 mm) residuals, with wavelengths much longer than the baroclinic tide, appear unless now-standard along-track high-pass filters are applied, but filtering is shown to cause serious loss of information for east-west propagating waves (given typical track patterns). The technique is probably infeasible for S2 because of Envisat's and ERS's sun-synchronous orbits. Independent data from Cryosat-2 is used to validate the results. Applying our internal-tide 'correction' to Cryosat-2 data confirms a small reduction in variance in expected locations of significant internal tides.

  2. Elevation data for floodplain mapping

    National Research Council Canada - National Science Library

    Committee on Floodplain Mapping Technologies; National Research Council; Division on Earth and Life Studies; National Research Council

    2007-01-01

    .... Elevation Data for Floodplain Mapping shows that there is sufficient two-dimensional base map imagery to meet FEMA's flood map modernization goals, but that the three-dimensional base elevation data...

  3. Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Howat, I. M.; Tscherning, C. C.

    2013-01-01

    ) and Kangerdlugssuaq (KL). We find that the main trunks of JI and KL lowered at rates of 30–35 and 7–20ma_1, respectively. The rates decreased inland. The corresponding errors were 0.3–5.2ma_1 for JI and 0.3–5.1ma_1 for KL, with errors increasing proportionally with distance from the altimeter paths....... that surface to extrapolate elevations away from altimeter flight lines. This reduces the DEM registration errors and fills the gap between the altimeter paths. We use data from ICESat and ATM as well as SPOT 5 DEMs from 2007 and 2008 and apply them to the outlet glaciers Jakobshavn Isbræ (JI...

  4. Iowa Bedrock Surface Elevation

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented...

  5. Elevation data for floodplain mapping

    National Research Council Canada - National Science Library

    Committee on Floodplain Mapping Technologies; National Research Council; Division on Earth and Life Studies; National Research Council

    2007-01-01

    Floodplain maps serve as the basis for determining whether homes or buildings require flood insurance under the National Flood Insurance Program run by the Federal Emergency Management Agency (FEMA). Approximately...

  6. USGS Elevation Contours Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Elevation Contours service from The National Map (TNM) consists of contours generated for the conterminous United States from 1- and 1/3 arc-second...

  7. Combination of hand mapping and automatic mapping to reveal the Miocene high elevation Pyrenean peneplain

    Science.gov (United States)

    Bosch, Gemma V.; Babault, Julien; Van Den Driessche, Jean

    2016-04-01

    A striking feature of the morphology of the Pyrenees is the occurrence of high-elevation, low-relief surfaces, which are interpreted as remnants of a single Miocene planation surface. Whether the original surface was uplifted or developed at high altitude is debated. This "Miocene Pyrenean peneplain" has been dissected by fluvial and glacial erosion during the Quaternary. Reworking by glacial erosion also provides new smooth surfaces such as glacial cirque floors that must not be confused with the remnants of the original planation surface. The later are convex-up landforms whereas glacial cirque floors are concave-up landforms. To reveal the Miocene high-elevation Pyrenean peneplain, we combined hand mapping and automatic mapping at the scale of the whole chain. From previous mapping in literature and from our own field work, we first perform a map of both the Miocene planation surface remnants and the Quaternary glacial cirque floors. Using Digital Elevation Models, numerical parameters were extracted from this map to characterize the two types of smooth surfaces. The slope is the parameter that helps to delimitate and differentiate the smooth surfaces from the rest of the Pyrenean topography. To distinguish between the two types of smooth surfaces we used the Topographic Index (TPI). This parameter is the difference between the elevation of a point and the mean elevation. Choosing the pertinent radius according to the scale of the landform to map, and the pertinent values interval, we can differentiate the planation surface (convex-up) from the glacial cirque floors (concave-up). A sensitivity test was performed to determine the best radius and the best interval for TPI and slope values to distinguish between the two types of smooth surfaces. Finally, we used a combination of slope values, TPI values and radius to determine automatically the high-elevation, low-relief surfaces in the entire Pyrenees. We verified in the field the presence of the newly mapped high-elevation

  8. Cokriging surface elevation and seismic refraction data for bedrock topography

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Doll, W.E.; Davis, R.K.; Hopkins, R.A.

    1992-01-01

    Analysis of seismic refraction data collected at a proposed site of the Advanced Neutron Source (ANS) Facility showed a strong correlation between surface and bedrock topography. By combining seismically determined bedrock elevation data with surface elevation data using cokriging, we were able to significantly improve our map of bedrock topography without collecting additional seismic data

  9. The National Map seamless digital elevation model specifications

    Science.gov (United States)

    Archuleta, Christy-Ann M.; Constance, Eric W.; Arundel, Samantha T.; Lowe, Amanda J.; Mantey, Kimberly S.; Phillips, Lori A.

    2017-08-02

    This specification documents the requirements and standards used to produce the seamless elevation layers for The National Map of the United States. Seamless elevation data are available for the conterminous United States, Hawaii, Alaska, and the U.S. territories, in three different resolutions—1/3-arc-second, 1-arc-second, and 2-arc-second. These specifications include requirements and standards information about source data requirements, spatial reference system, distribution tiling schemes, horizontal resolution, vertical accuracy, digital elevation model surface treatment, georeferencing, data source and tile dates, distribution and supporting file formats, void areas, metadata, spatial metadata, and quality assurance and control.

  10. Tanzania Elevation and Surface Characteristics

    Data.gov (United States)

    US Agency for International Development — The dataset displays Elevation, Slope, Aspect, Topographic Position Index, Terrain Ruggedness, and Roughness based on Shuttle Radar Topography Mission (SRTM) (3...

  11. Surface moving map industry survey

    Science.gov (United States)

    2009-08-01

    This industry survey provides an overview of the currently available surface moving map products, as of March, 2009. Thirteen manufactureres and six research organizations participated and provided descriptions of the information elements they depict...

  12. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-resolution Radarsat Antarctic Mapping Project (RAMP) Digital Elevation Model (DEM) combines topographic data from a variety of sources to provide consistent...

  13. Geodetic Imaging of Marsh Surface Elevation with Terrestrial Laser Scanning

    Science.gov (United States)

    Nguyen, C. T.; Starek, M. J.; Gibeaut, J. C.; Lord, A.

    2015-12-01

    The resilience of marshes to a rising sea is dependent on their elevation response. Given the level of precision required to measure minute changes in marsh elevation over time, survey methods have to be adapted to minimize impacts to the sediment surface. Current approaches include Surface Elevation Tables (SETs), which are used to monitor wetland surface change with respect to an in situ vertical benchmark. Although SETs have been proven as an effective technique to track subtle sedimentation rates (RTK GPS for comparison. Grand Bay in Mississippi USA is one of the most biologically productive estuarine ecosystems in the Gulf of Mexico. The study region is covered by dense and tall saw-grass that makes it a challenging environment for bare-earth mapping. For this survey, a Riegl VZ-400 TLS (1550 nm wavelength) was utilized. The system is capable of recording multiple returns per a transmitted pulse (up to 15) and provides full-waveform output for signal post-processing to extract returns. The objectives of the study are twofold: 1) examine impacts of TLS survey design, scan angle and scan density on marsh elevation mapping; 2) assess the capabilities of multiple-echo and full-waveform TLS data to extract the bare-earth surface below the dense vegetation. This presentation will present results of the study including the developed TLS survey protocol and data processing workflow, details on waveform and multi-echo approaches for ground point detection, and a discussion on error analysis and challenges for measuring marsh surface elevation with TLS.

  14. Vesta surface thermal properties map

    Science.gov (United States)

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  15. USGS Elevation Availability (NED) Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) National Elevation Data Set (NED)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Elevation Availability service from The National Map (TNM) shows the best available resolution of downloadable elevation data, and is updated approximately...

  16. Integrable mappings via rational elliptic surfaces

    International Nuclear Information System (INIS)

    Tsuda, Teruhisa

    2004-01-01

    We present a geometric description of the QRT map (which is an integrable mapping introduced by Quispel, Roberts and Thompson) in terms of the addition formula of a rational elliptic surface. By this formulation, we classify all the cases when the QRT map is periodic; and show that its period is 2, 3, 4, 5 or 6. A generalization of the QRT map which acts birationally on a pencil of K3 surfaces, or Calabi-Yau manifolds, is also presented

  17. Roosevelt Island Bedrock and Surface Elevations, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of bedrock and surface elevation readings taken by ground penetrating radar and Global Positioning System (GPS) on Roosevelt Island, an ice...

  18. Measuring the role of seagrasses in regulating sediment surface elevation.

    Science.gov (United States)

    Potouroglou, Maria; Bull, James C; Krauss, Ken W; Kennedy, Hilary A; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M; Githaiga, Michael N; Diele, Karen; Huxham, Mark

    2017-09-20

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other 'blue carbon' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  19. Measuring the role of seagrasses in regulating sediment surface elevation

    KAUST Repository

    Potouroglou, Maria

    2017-09-13

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other \\'blue carbon\\' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  20. Active Free Surface Density Maps

    Science.gov (United States)

    Çelen, S.

    2016-10-01

    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  1. Conformal mapping on Riemann surfaces

    CERN Document Server

    Cohn, Harvey

    2010-01-01

    The subject matter loosely called ""Riemann surface theory"" has been the starting point for the development of topology, functional analysis, modern algebra, and any one of a dozen recent branches of mathematics; it is one of the most valuable bodies of knowledge within mathematics for a student to learn.Professor Cohn's lucid and insightful book presents an ideal coverage of the subject in five pans. Part I is a review of complex analysis analytic behavior, the Riemann sphere, geometric constructions, and presents (as a review) a microcosm of the course. The Riemann manifold is introduced in

  2. Complete Surface Mapping of ICF Shells

    International Nuclear Information System (INIS)

    Stephens, R.B.; Olson, D.; Huang, H.; Gibson, J.B.

    2004-01-01

    Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. We have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r(θ, φ) surface map for accurate 3-D modeling of a shot

  3. COMPLETE SURFACE MAPPING OF ICF SHELLS

    International Nuclear Information System (INIS)

    STEPHENS, R.B.; OLSON, D.; HUANG, H.; GIBSON, J.B.

    2003-09-01

    OAK-B135 Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. they have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r(θ,ψ) surface map for accurate 3-D modeling of a shot

  4. Note on the surface wave due to the prescribed elevation

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 1. Note on the surface wave due to the prescribed elevation. Niranjan Das. Brief Reports Volume 62 Issue 1 January 2004 pp 135-142. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/pram/062/01/0135-0142 ...

  5. Note on the surface wave due to the prescribed elevation

    Indian Academy of Sciences (India)

    oscillatory motion with the increase of time, leaving behind the highest elevation initially. On the other hand in case of spiral cyclonic motion for which the sea surface experiences the elliptical pressure distribution, the motion diminishes as g the ac- celeration due to gravity diminishes and oscillates with the variation of time.

  6. The surface elevation table: marker horizon method for measuring wetland accretion and elevation dynamics

    Science.gov (United States)

    Callaway, John C.; Cahoon, Donald R.; Lynch, James C.

    2014-01-01

    Tidal wetlands are highly sensitive to processes that affect their elevation relative to sea level. The surface elevation table–marker horizon (SET–MH) method has been used to successfully measure these processes, including sediment accretion, changes in relative elevation, and shallow soil processes (subsidence and expansion due to root production). The SET–MH method is capable of measuring changes at very high resolution (±millimeters) and has been used worldwide both in natural wetlands and under experimental conditions. Marker horizons are typically deployed using feldspar over 50- by 50-cm plots, with replicate plots at each sampling location. Plots are sampled using a liquid N2 cryocorer that freezes a small sample, allowing the handling and measurement of soft and easily compressed soils with minimal compaction. The SET instrument is a portable device that is attached to a permanent benchmark to make high-precision measurements of wetland surface elevation. The SET instrument has evolved substantially in recent decades, and the current rod SET (RSET) is widely used. For the RSET, a 15-mm-diameter stainless steel rod is pounded into the ground until substantial resistance is achieved to establish a benchmark. The SET instrument is attached to the benchmark and leveled such that it reoccupies the same reference plane in space, and pins lowered from the instrument repeatedly measure the same point on the soil surface. Changes in the height of the lowered pins reflect changes in the soil surface. Permanent or temporary platforms provide access to SET and MH locations without disturbing the wetland surface.

  7. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    Science.gov (United States)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  8. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  9. Fermi surface mapping: Techniques and visualization

    Energy Technology Data Exchange (ETDEWEB)

    Rotenberg, E. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Denlinger, J. D. [Univ. of Wisconsin, Milwaukee, WI (United States); Kevan, S. D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Goodman, K. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mankey, G. J. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics

    1997-04-01

    Angle-resolved photoemission (ARP) of valence bands is a mature technique that has achieved spectacular success in band-mapping metals, semiconductors, and insulators. The purpose of the present study was the development of experimental and analytical techniques in ARP which take advantage of third generation light sources. Here the authors studied the relatively simple Cu surface in preparation for other metals. Copper and related metals themselves are of current interest, especially due to its role as an interlayer in spin valves and other magnetic heterostructures. A major goal of this study was the development of a systematic technique to quickly (i.e. in a few hours of synchrotron beamtime) measure the FS and separate it into bulk and surface FS`s. Often, one needs to avoid bulk features altogether, which one can achieve by carefully mapping their locations in k-space. The authors will also show how they systematically map Fermi surfaces throughout large volumes of k-space, and, by processing the resulting volume data sets, provide intuitive pictures of FS`s, both bulk and surface.

  10. Digital SAR Mosaic and Elevation Map of the Greenland Ice Sheet

    Data.gov (United States)

    National Aeronautics and Space Administration — The Digital SAR Mosaic and Elevation Map of the Greenland Ice Sheet CD-ROM combines the most detailed synthetic aperture radar (SAR) image mosaic available with the...

  11. Digital SAR Mosaic and Elevation Map of the Greenland Ice Sheet, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Digital SAR Mosaic and Elevation Map of the Greenland Ice Sheet CD-ROM combines the most detailed synthetic aperture radar (SAR) image mosaic available with the...

  12. Evaluation of Airborne Lidar Elevation Surfaces for Propagation of Coastal Inundation: The Importance of Hydrologic Connectivity

    Directory of Open Access Journals (Sweden)

    Sandra Poppenga

    2015-09-01

    Full Text Available Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2 that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas

  13. Digital elevation model production from scanned topographic contour maps via thin plate spline interpolation

    International Nuclear Information System (INIS)

    Soycan, Arzu; Soycan, Metin

    2009-01-01

    GIS (Geographical Information System) is one of the most striking innovation for mapping applications supplied by the developing computer and software technology to users. GIS is a very effective tool which can show visually combination of the geographical and non-geographical data by recording these to allow interpretations and analysis. DEM (Digital Elevation Model) is an inalienable component of the GIS. The existing TM (Topographic Map) can be used as the main data source for generating DEM by amanual digitizing or vectorization process for the contours polylines. The aim of this study is to examine the DEM accuracies, which were obtained by TMs, as depending on the number of sampling points and grid size. For these purposes, the contours of the several 1/1000 scaled scanned topographical maps were vectorized. The different DEMs of relevant area have been created by using several datasets with different numbers of sampling points. We focused on the DEM creation from contour lines using gridding with RBF (Radial Basis Function) interpolation techniques, namely TPS as the surface fitting model. The solution algorithm and a short review of the mathematical model of TPS (Thin Plate Spline) interpolation techniques are given. In the test study, results of the application and the obtained accuracies are drawn and discussed. The initial object of this research is to discuss the requirement of DEM in GIS, urban planning, surveying engineering and the other applications with high accuracy (a few deci meters). (author)

  14. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  15. Use of cokriging to estimate surface air temperature from elevation

    Science.gov (United States)

    Ishida, T.; Kawashima, S.

    1993-09-01

    Surface air temperature in central Japan was predicted from the temperature recordings from sensors in the Automated Meteorological Data Acquisition System (AMeDAS), using seven different procedures: the usual simple and universal kriging and cokriging estimators, the traditional regression analysis and the inverse distance weighted method. The cokriging estimator integrated digital elevation data as well as the air temperature readings. The performance of the procedures was evaluated and compared using cross-validation. The kriging estimator provided a better estimate than the traditional regression analysis that treated the data as spatially independent observations. The kriging estimate was also better than the inverse distance weighted method. Further improvement in the estimation accuracy was achieved by using cokriging procedures because of high correlation of air temperature with elevation. The accuracy of spatial prediction decreased due to nocturnal cooling in winter and daytime heating in summer. This decrease implies that a strong radiation balance at the surface, whether positive or negative, causes a relatively short-range variation in surface air temperature through the effects of local environments.

  16. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  17. A new, multi-resolution bedrock elevation map of the Greenland ice sheet

    Science.gov (United States)

    Griggs, J. A.; Bamber, J. L.; Grisbed Consortium

    2010-12-01

    Gridded bedrock elevation for the Greenland ice sheet has previously been constructed with a 5 km posting. The true resolution of the data set was, in places, however, considerably coarser than this due to the across-track spacing of ice-penetrating radar transects. Errors were estimated to be on the order of a few percent in the centre of the ice sheet, increasing markedly in relative magnitude near the margins, where accurate thickness is particularly critical for numerical modelling and other applications. We use new airborne and satellite estimates of ice thickness and surface elevation to determine the bed topography for the whole of Greenland. This is a dynamic product, which will be updated frequently as new data, such as that from NASA’s Operation Ice Bridge, becomes available. The University of Kansas has in recent years, flown an airborne ice-penetrating radar system with close flightline spacing over several key outlet glacier systems. This allows us to produce a multi-resolution bedrock elevation dataset with the high spatial resolution needed for ice dynamic modelling over these key outlet glaciers and coarser resolution over the more sparsely sampled interior. Airborne ice thickness and elevation from CReSIS obtained between 1993 and 2009 are combined with JPL/UCI/Iowa data collected by the WISE (Warm Ice Sounding Experiment) covering the marginal areas along the south west coast from 2009. Data collected in the 1970’s by the Technical University of Denmark were also used in interior areas with sparse coverage from other sources. Marginal elevation data from the ICESat laser altimeter and the Greenland Ice Mapping Program were used to help constrain the ice thickness and bed topography close to the ice sheet margin where, typically, the terrestrial observations have poor sampling between flight tracks. The GRISBed consortium currently consists of: W. Blake, S. Gogineni, A. Hoch, C. M. Laird, C. Leuschen, J. Meisel, J. Paden, J. Plummer, F

  18. Competing effects of surface albedo and orographic elevated heating on regional climate

    Science.gov (United States)

    Hu, Shineng; Boos, William R.

    2017-07-01

    All else being equal, a given atmospheric pressure level is thought to be warmer over a plateau than over surrounding nonelevated terrain because of orographic "elevated heating." However, elevated surfaces are also typically brighter due to reduced vegetation and increased ice cover. Here we assess the degree to which surface albedo compensates for orographic elevated heating. We confirm that land surface albedo generally increases with surface elevation in observations. Using a cloud system-resolving model, we show that increased surface albedo strongly compensates for orographic elevated heating in radiative-convective equilibrium. A nonelevated surface with the albedo of modern India would enter a runaway greenhouse regime without ventilation by monsoonal winds, while a surface with the albedo and elevation of Tibet would achieve a cooler radiative-convective equilibrium. Surface albedo changes may thus be just as important as surface elevation changes for the evolution of low-latitude regional climate throughout Earth's history.

  19. High Resolution Lidar Digital Elevation Models and Low Resolution Shaded Relief Maps of Antarctica from USGS, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Lidar high-resolution elevation digital elevation model data and low-resolution shaded relief maps of Antarctica are available for download from the U.S. Antarctic...

  20. Cancer Risk Map for the Surface of Mars

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2011-01-01

    We discuss calculations of the median and 95th percentile cancer risks on the surface of Mars for different solar conditions. The NASA Space Radiation Cancer Risk 2010 model is used to estimate gender and age specific cancer incidence and mortality risks for astronauts exploring Mars. Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated using the HZETRN/QMSFRG computer code, and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. In the transport of particles through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution is implemented to describe the spherically distributed atmospheric distance along the slant path at each elevation on Mars. The resultant directional shielding by Mars atmosphere at each elevation is coupled with vehicle and body shielding for organ dose estimates. Astronaut cancer risks are mapped on the global topography of Mars, which was measured by the Mars Orbiter Laser Altimeter. Variation of cancer risk on the surface of Mars is due to a 16-km elevation range, and the large difference is obtained between the Tharsis Montes (Ascraeus, Pavonis, and Arsia) and the Hellas impact basin. Cancer incidence risks are found to be about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for all astronauts and breast cancer risk for female astronauts. The number of safe days on Mars to be below radiation limits at the 95th percent confidence level is reported for several Mission design scenarios.

  1. Preliminary results of the ice_sheet_CCI round robin activity on the estimation of surface elevation changes

    DEFF Research Database (Denmark)

    Ticconi, F.; Fredenslund Levinsen, Joanna; Khvorostovsky, K.

    2013-01-01

    This work presents the first results of a research activity aiming to compare estimates of Surface Elevation Changes (SEC) over the Jakobshavn Isbræ basin (Greenland) using different repeat altimetry techniques and different sensors (laser vs. radar altimetry). The goal of this comparison...... is the identification of the best performing algorithm, in terms of accuracy, coverage and processing effort, for the generation of surface elevation change maps. The methods investigated here are the cross-over and repeat-track. The results of the inter-comparison are here reported and, from a first analysis......, it is found that both radar and laser altimetry resolve the surface elevation changes quite well, and that the problems found mainly in the coastal region and along the main trunk can be solved by combining the two methods. The comparison with airborne lidar data from the NASA ICEBridge and the ESA Cryo...

  2. Mapping three-dimensional geological features from remotely-sensed images and digital elevation models

    Science.gov (United States)

    Morris, Kevin Peter

    Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line

  3. Mapping elevations of tidal wetland restoration sites in San Francisco Bay: Comparing accuracy of aerial lidar with a singlebeam echosounder

    Science.gov (United States)

    Athearn, N.D.; Takekawa, John Y.; Jaffe, B.; Hattenbach, B.J.; Foxgrover, A.C.

    2010-01-01

    The southern edge of San Francisco Bay is surrounded by former salt evaporation ponds, where tidal flow has been restricted since the mid to late 1890s. These ponds are now the focus of a large wetland restoration project, and accurate measurement of current pond bathymetry and adjacent mud flats has been critical to restoration planning. Aerial light detection and ranging (lidar) has become a tool for mapping surface elevations, but its accuracy had rarely been assessed for wetland habitats. We used a singlebeam echosounder system we developed for surveying shallow wetlands to map submerged pond bathymetry in January of 2004 and compared those results with aerial lidar surveys in two ponds that were dry in May of 2004. From those data sets, we compared elevations for 5164 (Pond E9, 154 ha) and 2628 (Pond E14, 69 ha) echosounder and lidar points within a 0.375-m radius of each other (0.750-m diameter lidar spot size). We found that mean elevations of the lidar points were lower than the echosounder results by 5 ?? 0.1 cm in Pond E9 and 2 ?? 0.2 cm in Pond E14. Only a few points (5% in Pond E9, 2% in Pond E14) differed by more than 20 cm, and some of these values may be explained by residual water in the ponds during the lidar survey or elevation changes that occurred between surveys. Our results suggest that aerial lidar may be a very accurate and rapid way to assess terrain elevations for wetland restoration projects. ?? 2010 Coastal Education and Research Foundation.

  4. Reproducibility of crop surface maps extracted from Unmanned Aerial Vehicle (UAV) derived digital surface maps

    KAUST Repository

    Parkes, Stephen

    2016-10-25

    Crop height measured from UAVs fitted with commercially available RGB cameras provide an affordable alternative to retrieve field scale high resolution estimates. The study presents an assessment of between flight reproducibility of Crop Surface Maps (CSM) extracted from Digital Surface Maps (DSM) generated by Structure from Motion (SfM) algorithms. Flights were conducted over a centre pivot irrigation system covered with an alfalfa crop. An important step in calculating the absolute crop height from the UAV derived DSM is determining the height of the underlying terrain. Here we use automatic thresholding techniques applied to RGB vegetation index maps to classify vegetated and soil pixels. From interpolation of classified soil pixels, a terrain map is calculated and subtracted from the DSM. The influence of three different thresholding techniques on CSMs are investigated. Median Alfalfa crop heights determined with the different thresholding methods varied from 18cm for K means thresholding to 13cm for Otsu thresholding methods. Otsu thresholding also gave the smallest range of crop heights and K means thresholding the largest. Reproducibility of median crop heights between flight surveys was 4-6cm for all thresholding techniques. For the flight conducted later in the afternoon shadowing caused soil pixels to be classified as vegetation in key locations around the domain, leading to lower crop height estimates. The range of crop heights was similar for both flights using K means thresholding (35-36cm), local minimum thresholding depended on whether raw or normalised RGB intensities were used to calculate vegetation indices (30-35cm), while Otsu thresholding had a smaller range of heights and varied most between flights (26-30cm). This study showed that crop heights from multiple survey flights are comparable, however, they were dependent on the thresholding method applied to classify soil pixels and the time of day the flight was conducted.

  5. The impact of lidar elevation uncertainty on mapping intertidal habitats on barrier islands

    Science.gov (United States)

    Enwright, Nicholas M.; Wang, Lei; Borchert, Sinéad M.; Day, Richard H.; Feher, Laura C.; Osland, Michael J.

    2018-01-01

    While airborne lidar data have revolutionized the spatial resolution that elevations can be realized, data limitations are often magnified in coastal settings. Researchers have found that airborne lidar can have a vertical error as high as 60 cm in densely vegetated intertidal areas. The uncertainty of digital elevation models is often left unaddressed; however, in low-relief environments, such as barrier islands, centimeter differences in elevation can affect exposure to physically demanding abiotic conditions, which greatly influence ecosystem structure and function. In this study, we used airborne lidar elevation data, in situ elevation observations, lidar metadata, and tide gauge information to delineate low-lying lands and the intertidal wetlands on Dauphin Island, a barrier island along the coast of Alabama, USA. We compared three different elevation error treatments, which included leaving error untreated and treatments that used Monte Carlo simulations to incorporate elevation vertical uncertainty using general information from lidar metadata and site-specific Real-Time Kinematic Global Position System data, respectively. To aid researchers in instances where limited information is available for error propagation, we conducted a sensitivity test to assess the effect of minor changes to error and bias. Treatment of error with site-specific observations produced the fewest omission errors, although the treatment using the lidar metadata had the most well-balanced results. The percent coverage of intertidal wetlands was increased by up to 80% when treating the vertical error of the digital elevation models. Based on the results from the sensitivity analysis, it could be reasonable to use error and positive bias values from literature for similar environments, conditions, and lidar acquisition characteristics in the event that collection of site-specific data is not feasible and information in the lidar metadata is insufficient. The methodology presented in

  6. About New Maps of Surface Currents of the World Ocean

    Science.gov (United States)

    Nikitin, O. P.; Kasyanov, S. Yu.

    2018-01-01

    Using the example of the surface currents map constructed for the Northern Atlantic on the basis of data of modern observations by means of drifting buoys, it is shown that the previously published maps of ocean surface currents, based on ship drift data, have become outdated and require an update. The influence of the bottom relief on the directions of surface layer currents is shown.

  7. Towards large-scale mapping of urban three-dimensional structure using Landsat imagery and global elevation datasets

    Science.gov (United States)

    Wang, P.; Huang, C.

    2017-12-01

    The three-dimensional (3D) structure of buildings and infrastructures is fundamental to understanding and modelling of the impacts and challenges of urbanization in terms of energy use, carbon emissions, and earthquake vulnerabilities. However, spatially detailed maps of urban 3D structure have been scarce, particularly in fast-changing developing countries. We present here a novel methodology to map the volume of buildings and infrastructures at 30 meter resolution using a synergy of Landsat imagery and openly available global digital surface models (DSMs), including the Shuttle Radar Topography Mission (SRTM), ASTER Global Digital Elevation Map (GDEM), ALOS World 3D - 30m (AW3D30), and the recently released global DSM from the TanDEM-X mission. Our method builds on the concept of object-based height profile to extract height metrics from the DSMs and use a machine learning algorithm to predict height and volume from the height metrics. We have tested this algorithm in the entire England and assessed our result using Lidar measurements in 25 England cities. Our initial assessments achieved a RMSE of 1.4 m (R2 = 0.72) for building height and a RMSE of 1208.7 m3 (R2 = 0.69) for building volume, demonstrating the potential of large-scale applications and fully automated mapping of urban structure.

  8. GROUND SURFACE VISUALIZATION USING RED RELIEF IMAGE MAP FOR A VARIETY OF MAP SCALES

    Directory of Open Access Journals (Sweden)

    T. Chiba

    2016-06-01

    Full Text Available There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008 to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  9. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    Science.gov (United States)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  10. IceBridge UAF Lidar Profiler L1B Geolocated Surface Elevation Triplets

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge UAF Lidar Profiler L1B Geolocated Surface Elevation Triplets data set contains surface profiles of Alaska Glaciers acquired using the airborne...

  11. IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets (ILUTP2) data set contains surface range values for Antarctica and Greenland derived...

  12. IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets (ILUTP2) data set contains surface range values for Antarctica and Greenland derived...

  13. 3D silicon breast surface mapping via structured light profilometry

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  14. A comparison of methods used in mapping of Pleistocene-bedrock unconformity: Conventional manual versus surface modeling

    Energy Technology Data Exchange (ETDEWEB)

    Weibel, C.P.; Abert, C.C.; Kempton, J.P. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01

    Surface modeling software packages allow geologists to model and map topographic and stratigraphic horizons. These map products, however, often differ from maps prepared without computerized mapping. The authors mapping of the Pleistocene-bedrock unconformity in east-central Illinois (1:100,000-scale), which includes the Mahomet paleovalley, illustrates this situation and demonstrates how both mapping methods, manual and computer, contribute to a better understanding of the paleovalley. A conventional hand-drawn map was constructed over a number of years by manually plotting and contouring bedrock elevations, primarily from water well logs, onto various county and local topographic bases. A computer-generated map of the same area was completed as part of a recent project to map the bedrock geology. It was prepared by carefully selecting data, which included geographic coordinates, unique well identification numbers, and bedrock elevations. Primary data sources were hydrocarbon exploration and storage wells. Digitizing the hand-drawn map allowed the two maps to be overlaid and compared. Several significant geomorphic features appeared on one map and not the other because of the use of different databases and inconsistent selection of data used for the hand-drawn map. The hand-drawn map appears more realistic, i.e., like a modern surface, because the mappers used their knowledge of geomorphic concepts in drawing the contours. Most of the data selection for the computer-generated map was completed prior to plotting of the map and therefore is less susceptible to bias interpretations. The computer-generated map, however, is less topographically realistic in areas where data are sparse because the extrapolation methods used to define the surface do not recognize geologic processes or bedrock lithology.

  15. Geomorphic Map of Worcester County, Maryland, Interpreted from a LIDAR-Based, Digital Elevation Model

    Science.gov (United States)

    Newell, Wayne L.; Clark, Inga

    2008-01-01

    A recently compiled mosaic of a LIDAR-based digital elevation model (DEM) is presented with geomorphic analysis of new macro-topographic details. The geologic framework of the surficial and near surface late Cenozoic deposits of the central uplands, Pocomoke River valley, and the Atlantic Coast includes Cenozoic to recent sediments from fluvial, estuarine, and littoral depositional environments. Extensive Pleistocene (cold climate) sandy dune fields are deposited over much of the terraced landscape. The macro details from the LIDAR image reveal 2 meter-scale resolution of details of the shapes of individual dunes, and fields of translocated sand sheets. Most terrace surfaces are overprinted with circular to elliptical rimmed basins that represent complex histories of ephemeral ponds that were formed, drained, and overprinted by younger basins. The terrains of composite ephemeral ponds and the dune fields are inter-shingled at their margins indicating contemporaneous erosion, deposition, and re-arrangement and possible internal deformation of the surficial deposits. The aggregate of these landform details and their deposits are interpreted as the products of arid, cold climate processes that were common to the mid-Atlantic region during the Last Glacial Maximum. In the Pocomoke valley and its larger tributaries, erosional remnants of sandy flood plains with anastomosing channels indicate the dynamics of former hydrology and sediment load of the watershed that prevailed at the end of the Pleistocene. As the climate warmed and precipitation increased during the transition from late Pleistocene to Holocene, dune fields were stabilized by vegetation, and the stream discharge increased. The increased discharge and greater local relief of streams graded to lower sea levels stimulated down cutting and created the deeply incised valleys out onto the continental shelf. These incised valleys have been filling with fluvial to intertidal deposits that record the rising sea

  16. On the distortion of elevation dependent warming signals by quantile mapping

    Science.gov (United States)

    Jury, Martin W.; Mendlik, Thomas; Maraun, Douglas

    2017-04-01

    Elevation dependent warming (EDW), the amplification of warming under climate change with elevation, is likely to accelerate changes in e.g. cryospheric and hydrological systems. Responsible for EDW is a mixture of processes including snow albedo feedback, cloud formations or the location of aerosols. The degree of incorporation of this processes varies across state of the art climate models. In a recent study we were preparing bias corrected model output of CMIP5 GCMs and CORDEX RCMs over the Himalayan region for the glacier modelling community. In a first attempt we used quantile mapping (QM) to generate this data. A beforehand model evaluation showed that more than two third of the 49 included climate models were able to reproduce positive trend differences between areas of higher and lower elevations in winter, clearly visible in all of our five observational datasets used. Regrettably, we noticed that height dependent trend signals provided by models were distorted, most of the time in the direction of less EDW, sometimes even reversing EDW signals present in the models before the bias correction. As a consequence, we refrained from using quantile mapping for our task, as EDW poses one important factor influencing the climate in high altitudes for the nearer and more distant future, and used a climate change signal preserving bias correction approach. Here we present our findings of the distortion of the EDW temperature change by QM and discuss the influence of QM on different statistical properties as well as their modifications.

  17. Surface Elevation Change of Transantarctic Outlet Glaciers using Historical Aerial Imagery and Structure-from-Motion Photogrammetry

    Science.gov (United States)

    Child, S. F.; Stearns, L. A.; Girod, L.

    2017-12-01

    Transantarctic Mountain outlet glaciers drain ice from the East Antarctic Ice Sheet to the Ross Ice Shelf and are generally considered to be stable. However, studies that assess these glaciers typically use data with coarse spatial resolutions (1 - 20 km) and span only the last 15 - 20 years. Here, we use trimetrogon aerial (TMA) photographs collected by the United States Geological Survey from 1960 - 1965 to create historical surface elevation maps. We construct elevations from both the vertical (0° nadir) and oblique photographs using MicMac, a Structure-from-Motion (SfM) software. With typical SfM processing, accurate ground control points (GCPs) are necessary for the best results; however, in situ GCPs are extremely sparse in Antarctica, so we manually identify GCPs using exposed rock outcrops in the WorldView imagery. The historical glacier surface elevations are then compared with present-day elevations derived from WorldView imagery. With this methodology, we assess how Transantarctic outlet glaciers have changed over 55 years. Recent studies indicate thinning of the eastern Ross Ice Shelf, where it borders the Transantarctic Mountains. With long-term records of glacier elevation change, we can differentiate whether ice shelf thinning is driven by changes in glacier or ocean dynamics. These results give us a better understanding of the long-term stability of East Antarctic outlet glaciers, which is essential in improving predictive models of ice sheet behavior.

  18. Pseudo-periodic maps and degeneration of Riemann surfaces

    CERN Document Server

    Matsumoto, Yukio

    2011-01-01

    The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen’s incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one-parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.

  19. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL...

  20. Mapping Topography Changes and Elevation Accuracies Using a Mobile Laser Scanner

    Directory of Open Access Journals (Sweden)

    Harri Kaartinen

    2011-03-01

    Full Text Available Laser measurements have been used in a fluvial context since 1984, but the change detection possibilities of mobile laser scanning (MLS for riverine topography have been lacking. This paper demonstrates the capability of MLS in erosion change mapping on a test site located in a 58 km-long tributary of the River Tenojoki (Tana in the sub-arctic. We used point bars and river banks as example cases, which were measured with the mobile laser scanner ROAMER mounted on a boat and on a cart. Static terrestrial laser scanner data were used as reference and we exploited a difference elevation model technique for describing erosion and deposition areas. The measurements were based on data acquisitions during the late summer in 2008 and 2009. The coefficient of determination (R2 of 0.93 and a standard deviation of error 3.4 cm were obtained as metrics for change mapping based on MLS. The root mean square error (RMSE of MLS‑based digital elevation models (DEM for non-vegetated point bars ranged between 2.3 and 7.6 cm after correction of the systematic error. For densely vegetated bank areas, the ground point determination was more difficult resulting in an RMSE between 15.7 and 28.4 cm.

  1. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

    Science.gov (United States)

    Bender, Adrian M.; Haeussler, Peter J.

    2017-05-04

    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  2. Towards a More Realistic Depiction of the Earth's Surface on Maps

    Science.gov (United States)

    Drachal, Jacek; Dębowska, Anna

    2014-06-01

    In 2000, the shuttle radar topography mission (SRTM) produced the most complete, highest resolution digital elevation model (DEM) of the Earth. These data were used to create global 3″ DEM and to correct 30″ DEM which are both available on the internet. After a careful survey in the Institute of Geodesy and Cartography, Poland, these elevation data were recognized as extremely valuable and worth developing a unique form of visualization. As a result, a new design of a physical map of Europe at scale of 1:10 million was developed. For depicting the shape of the terrain, an original modification of combined shaded relief was employed, to reveal all the nuances of elevation data. True colors of the Earth's surface represented on the map originated from MODIS satellite image. The combination of true colors and terrain features made a realistic map, showing the landscapes as if from a point above the Earth. The image of the terrain is extremely detailed as it is based on the abundance of data defining the elevation of each point of land.

  3. Field verification of ADCP surface gravity wave elevation spectra

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Peters, H.C.; Schroevers, M.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration technique to significantly reduce the influence of

  4. Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides surface elevation and ice thickness data for a portion of the Marie Byrd Land sector of West Antarctica, including the Ford Ranges, the...

  5. Ray-map migration of transmitted surface waves

    KAUST Repository

    Li, Jing

    2016-08-25

    Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.

  6. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  7. Challenges in Unmanned Aerial Vehicle Photogrammetry for Archaeological Mapping at High Elevations

    Science.gov (United States)

    Adams, J. A.; Wernke, S.

    2015-12-01

    Unmanned Aerial Vehicles (UAVs), especially multi-rotor vehicles, are becoming ubiquitous and their appeal for generating photogrammetry-based maps has grown. The options are many and costs have plummeted in last five years; however, many challenges persist with their deployment. We mapped the archaeological site Maw­chu Llacta, a settlement in the southern highlands of Peru (Figure 1). Mawchu Llacta is a planned colonial town built over a major Inka-era center in the high-elevation grasslands at ~4,000m asl. The "general resettlement of Indians" was a massive forced resettlement program, for which very little local-level documentation exists. Mawachu Llacta's excellently preserved architecture includes >500 buildings and hundreds of walls spread across ~13h posed significant mapping challenges. Many environmental factors impact UAV deployment. The air pressure at 4,100 m asl is dramatically lower than at sea level. The dry season diurnal temperature differentials can vary from 7°C to 22°C daily. High and hot conditions frequently occur from late morning to early afternoon. Reaching Mawchu Llacta requires hiking 4km with 400m of vertical gain over steep and rocky terrain. There is also no on-site power or secure storage. Thus, the UAV must be packable. FAA regulations govern US UAV deployments, but regulations were less stringent in Peru. However, ITAR exemptions and Peruvian customs requirements were required. The Peruvian government has established an importation and approval process that entails leaving the UAV at customs, while obtaining the necessary government approvals, both of which can be problematic. We have deployed the Aurora Flight Sciences Skate fixed wing ßUAV, an in-house fixed wing UAV based on the Skywalker X-5 flying wing, and a tethered 9 m3 capacity latex meteorological weather balloon. Development of an autonomous blimp/balloon has been ruled-out. A 3DR Solo is being assessed for excavation mapping.

  8. Mapping and Quantifying Surface Charges on Clay Nanoparticles.

    Science.gov (United States)

    Liu, Jun; Gaikwad, Ravi; Hande, Aharnish; Das, Siddhartha; Thundat, Thomas

    2015-09-29

    Understanding the electrical properties of clay nanoparticles is very important since they play a crucial role in every aspect of oil sands processing, from bitumen extraction to sedimentation in mature fine tailings (MFT). Here, we report the direct mapping and quantification of surface charges on clay nanoparticles using Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). The morphology of clean kaolinite clay nanoparticles shows a layered structure, while the corresponding surface potential map shows a layer-dependent charge distribution. More importantly, a surface charge density of 25 nC/cm(2) was estimated for clean kaolinite layers by using EFM measurements. On the other hand, the EFM measurements show that the clay particles obtained from the tailings demonstrate a reduced surface charge density of 7 nC/cm(2), which may be possibly attributed to the presence of various bituminous compounds residing on the clay surfaces.

  9. Control and perception of balance at elevated and sloped surfaces.

    Science.gov (United States)

    Simeonov, Peter I; Hsiao, Hongwei; Dotson, Brian W; Ammons, Douglas E

    2003-01-01

    Understanding roof-work-related risk of falls and developing low-cost, practical engineering controls for reducing this risk remain in high demand in the construction industry. This study investigated the effects of the roof work environment characteristics of surface slope, height, and visual reference on standing balance in construction workers. The 24 participants were tested in a laboratory setting at 4 slopes (0 degrees, 18 degrees, 26 degrees, and 34 degrees), 2 heights (0, 3 m), and 2 visual conditions (with and without visual references). Postural sway characteristics were calculated using center of pressure recordings from a force platform. Workers' perceptions of postural sway and instability were also evaluated. The results indicated that slope and height synergistically increased workers' standing postural instability. Workers recognized the individual destabilizing effects of slope and height but did not recognize the synergistic effect of the two. Visual references significantly reduced the destabilizing effects of height and slope. Actual and potential applications of this research include the use of temporary level work surfaces and proximal vertical reference structures as postural instability control measures during roofing work.

  10. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  11. Field Navigation Using Fuzzy Elevation Maps Built with Local 3D Laser Scans

    Directory of Open Access Journals (Sweden)

    Jorge L. Martínez

    2018-03-01

    Full Text Available The paper describes the case study of the mobile robot Andabata navigating on natural terrain at low speeds with fuzzy elevation maps (FEMs. To this end, leveled three-dimensional (3D point clouds of the surroundings are obtained by synchronizing ranges obtained from a 360 ∘ field of view 3D laser scanner with odometric and inertial measurements of the vehicle. Then, filtered point clouds are employed to produce FEMs and their corresponding fuzzy reliability masks (FRMs. Finally, each local FEM and its FRM are processed to choose the best motion direction to reach distant goal points through traversable areas. All these tasks have been implemented using ROS (Robot Operating System nodes distributed among the cores of the onboard processor. Experimental results of Andabata during non-stop navigation on an urban park are presented.

  12. Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica

    Directory of Open Access Journals (Sweden)

    Hyoungsig Cho

    2015-09-01

    Full Text Available A terrestrial Light Detection and Ranging (LIDAR system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1 a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2 co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP algorithm; and (3 a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM generated from the LIDAR scanning data was ±27.7 cm.

  13. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Science.gov (United States)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  14. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    Are low-relief high-elevation surfaces generally a result of uplift of flat surfaces formed close to sea-level or can they be formed "in situ" by climate dependent surface processes such as those associated with glaciation? This question is important to resolve in order to understand the geological...... as a function of mean annual air temperature and sediment thickness. This allows us to incorporate periglacial processes into a long-term landscape evolution model where surface elevation, sediment thickness, and climate evolve over time. With this model we are able to explore the slow feedbacks between...... periglacial erosion, sediment transport, and the evolving topography. We show that smooth peaks, convex hillslopes, and a few meters thick regolith cover at high elevation are emergent properties of the landscape evolution model. By varying climate and other model parameters, we discuss how the landscape...

  15. Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth

    Science.gov (United States)

    Whelan, K.R.T.; Smith, T. J.; Cahoon, D.R.; Lynch, J.C.; Anderson, G.H.

    2005-01-01

    We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0?4 m), the shallow root zone (0?0.35 m), and the full sediment profile (0?6 m) in response to site hydrology (daily river stage and groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0?0.35 m], middle zone [0.35?4 m], and bottom zone [4?6 m]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly with changes in soil elevation for the entire profile (Adjusted R2 5 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 5 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.

  16. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  17. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Adame, Maria Fernanda; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-02-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  18. The relation between Arctic sea ice surface elevation and draft: A case study using coincident AUV sonar and airborne scanning laser

    DEFF Research Database (Denmark)

    Doble, Martin J.; Skourup, Henriette; Wadhams, Peter

    2011-01-01

    Data are presented from a survey by airborne scanning laser profilometer and an AUV-mounted, upward looking swath sonar in the spring Beaufort Sea. The air-snow (surface elevation) and water-ice (draft) surfaces were mapped at 1 x 1 m resolution over a 300 x 300 m area. Data were separated...... into level and deformed ice fractions using the surface roughness of the sonar data. The relation (R = d/f) between draft, d, and surface elevation, f, was then examined. Correlation between top and bottom surfaces was essentially zero at full resolution, requiring averaging over patches of at least 11 m...... diameter to constrain the relation largely because of the significant error (similar to 15 cm) of the laser instrument. Level ice points were concentrated in two core regions, corresponding to level FY ice and refrozen leads, with variations in R attributed primarily to positive snow thickness variability...

  19. Surface mapping of magnetic hot stars. Theories versus observations

    Science.gov (United States)

    Kochukhov, O.

    2018-01-01

    This review summarises results of recent magnetic and chemical abundance surface mapping studies of early-type stars. We discuss main trends uncovered by observational investigations and consider reliability of spectropolarimetric inversion techniques used to infer these results. A critical assessment of theoretical attempts to interpret empirical magnetic and chemical maps in the framework of, respectively, the fossil field and atomic diffusion theories is also presented. This confrontation of theory and observations demonstrates that 3D MHD models of fossil field relaxation are successful in matching the observed range of surface magnetic field geometries. At the same time, even the most recent time-dependent atomic diffusion calculations fail to reproduce diverse horizontal abundance distributions found in real magnetic hot stars.

  20. Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping

    Science.gov (United States)

    Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.

    2014-12-01

    In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.

  1. Multi-channel Analysis of Passive Surface Waves (MAPS)

    Science.gov (United States)

    Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.

    2017-12-01

    Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be

  2. Quantification of morphological properties of terrace surface using digital elevation model and its application to stratigraphic correlation of terraces

    International Nuclear Information System (INIS)

    Yamamoto, Shinya; Hataya, Ryuta; Hamada, Takaomi

    2008-01-01

    Uplift estimation during late Quaternary is required for site selection of geological disposal facility of high level radioactive waste (NUMO, 2004). Terrace level and/or difference in elevation of terraces are good indicators of uplift. Therefore, a reliable method of terrace correlation and chronology is a key issues. Air-photograph interpretation is generally carried out in the early stage of a terrace investigation. However, a terrace classification often depends on the observer's qualitative interpretation. In order to improve objectivity of geomorphic investigation with air-photograph interpretation, we examine to quantify the morphological properties of terrace surface by some morphometric variables that are computed from Digital Elevation Model (DEM). In this study, four morphometric variables (average slope, average laplacian, remaining ratio of a terrace surface, and average depth of erosion) were calculated using data sets of terraces of which chronological data are clearly described. The relationship between these variables and terrace ages shows constant tendencies respond to the geomorphological process caused by the erosion. To examine capability of morphometric variables as an index of terrace correlation, regression analyses were carried out. The regression age estimated from morphometric variables allows to classify terraces in correct sequence, and the error with the observed age falls up to 100,000 years. In addition, to discuss appropriate quantities of DEM for terrace correlation, we used three different elevation data to create DEM: 1) aerial photogrammetry data; 2) airborne laser scanner data; 3) 1:25000-scale contour map. By comparing analysis results of each DEMs, we show suitable qualities of elevation data and DEM grid size to represent the degree of erosion correctly. (author)

  3. Contribution of body surface mapping to clinical outcome after surgical ablation of postinfarction ventricular tachycardia

    NARCIS (Netherlands)

    van Dessel, Pascal F.; van Hemel, Norbert M.; Groenewegen, Arne Sippens; de Bakker, Jacques M.; Linnebank, André C.; Defauw, Jo J.

    2002-01-01

    This article investigates the influence of body surface mapping on outcome of ventricular antiarrhythmic surgery. Preoperative mapping is advocated to optimize map-guided antiarrhythmic surgery of postinfarction ventricular tachycardia. We sequentially analyzed the results of catheter activation

  4. Surface elevation changes of the greenland ice sheet - results from ESA'S ice sheet CCI

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovky, Kirill; Meister, Rakia

    2013-01-01

    In order to ensure long-term climate data records for the Greenland Ice Sheet (GIS), ESA have launched the Climate Change Initiative (CCI). This work presents the preliminary steps towards the Ice Sheet CCI's surface elevation change (SEC) derivation using radar altimeter data. In order to find...

  5. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3

    Science.gov (United States)

    Johanna Riikonen; Kevin E. Percy; Minna Kivimaenpaa; Mark E. Kubiske; Neil D. Nelson; Elina Vapaavuori; David F. Karnosky

    2010-01-01

    Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 x ambient), O3 (1.2 x ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied...

  6. Surface elevation changes of the greenland ice sheet - results from ESA'S ice sheet CCI

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovky, Kirill; Meister, Rakia

    2013-01-01

    In order to ensure long-term climate data records for the Greenland Ice Sheet (GIS), ESA have launched the Climate Change Initiative (CCI). This work presents the preliminary steps towards the Ice Sheet CCI's surface elevation change (SEC) derivation using radar altimeter data. In order to find t...

  7. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    Science.gov (United States)

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  8. Mapping permeability over the surface of the Earth

    Science.gov (United States)

    Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

  9. Surface Mineralogy Mapping of Ceres from the Dawn Mission

    Science.gov (United States)

    McCord, T. B.; Zambon, F.

    2017-12-01

    Ceres' surface composition is of special interest because it is a window into the interior state and the past evolution of this dwarf planet. Disk-integrated telescopic spectral observations indicated that Ceres' surface is hydroxylated, similar to but not exactly the same as some of the carbonaceous chondrite classes of meteorites. Furthermore, Ceres' bulk density is low, indicating significant water content. The Dawn mission in orbit around Ceres, provided a new and larger set of observations on the mineralogy, molecular and elemental composition, and their distributions in association with surface features and geology. A set of articles was prepared, from which this presentation is derived, that is the first treatment of the entire surface composition of Ceres using the complete High Altitude Mapping Orbit (HAMO) Dawn Ceres data set and the calibrations from all the Dawn instruments. This report provides a current and comprehensive view of Ceres' surface composition and integrates them into general conclusions. Ceres' surface composition shows a fairly uniform distribution of NH4- and Mg-phyllosilicates, carbonates, mixed with a dark component. The widespread presence of phyllosilicates, and salts on Ceres' surface is indicative of the presence of aqueous alteration processes, which involved the whole dwarf planet. There is also likely some contamination by low velocity infall, as seen on Vesta, but it is more difficult to distinguish this infall from native Ceres material, unlike for the Vesta case.

  10. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    Science.gov (United States)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  11. Mapping surface soil moisture with L-band radiometric measurements

    Science.gov (United States)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1989-01-01

    A NASA C-130 airborne remote sensing aircraft was used to obtain four-beam pushbroom microwave radiometric measurements over two small Kansas tall-grass prairie region watersheds, during a dry-down period after heavy rainfall in May and June, 1987. While one of the watersheds had been burned 2 months before these measurements, the other had not been burned for over a year. Surface soil-moisture data were collected at the time of the aircraft measurements and correlated with the corresponding radiometric measurements, establishing a relationship for surface soil-moisture mapping. Radiometric sensitivity to soil moisture variation is higher in the burned than in the unburned watershed; surface soil moisture loss is also faster in the burned watershed.

  12. Unusual surface morphology from digital elevation models of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Ekholm, Simon; Keller, K.; Bamber, J.L.

    1998-01-01

    In this study of the North Greenland ice sheet, we have used digital elevation models to investigate the topographic signatures of a large ice flow feature discovered in 1993 and a unique surface anomaly which we believe has not been observed previously. The small scale topography of the flow...... feature is revealed in striking detail in a high-pass filtered elevation model. Furthermore, ice penetrating radar show that the sub-stream bed is rough with undulation amplitude increasing downstream. The new feature consists of two large depressions in the ice sheet connected by a long curving trench...

  13. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests

    Directory of Open Access Journals (Sweden)

    Heiko Balzter

    2015-11-01

    Full Text Available The European CORINE land cover mapping scheme is a standardized classification system with 44 land cover and land use classes. It is used by the European Environment Agency to report large-scale land cover change with a minimum mapping unit of 5 ha every six years and operationally mapped by its member states. The most commonly applied method to map CORINE land cover change is by visual interpretation of optical/near-infrared satellite imagery. The Sentinel-1A satellite carries a C-band Synthetic Aperture Radar (SAR and was launched in 2014 by the European Space Agency as the first operational Copernicus mission. This study is the first investigation of Sentinel-1A for CORINE land cover mapping. Two of the first Sentinel-1A images acquired during its ramp-up phase in May and December 2014 over Thuringia in Germany are analysed. 27 hybrid level 2/3 CORINE classes are defined. 17 of these were present at the study site and classified based on a stratified random sample of training pixels from the polygon-eroded CORINE 2006 map. Sentinel-1A logarithmic radar backscatter at HH and HV polarisation (May acquisition, VV and VH polarisation (December acquisition, and the HH image texture are used as input bands to the classification. In addition, a Digital Terrain Model (DTM, a Canopy Height Model (CHM and slope and aspect maps from the Shuttle Radar Topography Mission (SRTM are used as input bands to account for geomorphological features of the landscape. In future, elevation data will be delivered for areas with sufficiently high coherence from the Sentinel-1A Interferometric Wide-Swath Mode itself. When augmented by elevation data from radar interferometry, Sentinel-1A is able to discriminate several CORINE land cover classes, making it useful for monitoring of cloud-covered regions. A bistatic Sentinel-1 Convoy mission would enable single-pass interferometric acquisitions without temporal decorrelation.

  14. Explorations in topology map coloring, surfaces and knots

    CERN Document Server

    Gay, David

    2013-01-01

    Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigation

  15. Building Daily 30-meter Spatial Resolution Maps of Surface Water Bodies from MODIS Data Using a Novel Technique for Transferring Information Across Space and Time

    Science.gov (United States)

    Khandelwal, A.; Karpatne, A.; Kumar, V.

    2017-12-01

    In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.

  16. Establishment of digital 3D map based on discrete elevation point ...

    Indian Academy of Sciences (India)

    28

    Abstract: This study established a survey zone digital elevation model (DEM) using highly precise and regularly updated ... coordinates of several dunes with high-precision, this study establishes a digital elevation model ( DEM ) that can be used for ..... Transformation Define Projection”. The survey zone in this study was in ...

  17. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    Science.gov (United States)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  18. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960-2014

    NARCIS (Netherlands)

    Kuipers Munneke, P.; Ligtenberg, S. R M; Noël, B. P Y; Howat, I. M.; Box, J. E.; Mosley-Thompson, E.; McConnell, J. R.; Steffen, K.; Harper, J. T.; Das, S. B.; Van Den Broeke, M. R.

    2015-01-01

    Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes

  19. Potentiometric-surface map, 1993, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Tucci, P.; Burkhardt, D.J.

    1995-01-01

    The revised potentiometric surface map here, using mainly 1993 average water levels, updates earlier maps of this area. Water levels are contoured with 20-m intervals, with additional 0.5-m contours in the small-gradient area SE of Yucca Mountain. Water levels range from 728 m above sea level SE of Yucca to 1,034 m above sea level north of Yucca. Potentiometric levels in the deeper parts of the volcanic rock aquifer range from 730 to 785 m above sea level. The potentiometric surface can be divided into 3 regions: A small gradient area E and SE of Yucca, a moderate-gradient area on the west side of Yucca, and a large-gradient area to the N-NE of Yucca. Water levels from wells at Yucca were examined for yearly trends (1986-93) using linear least-squares regression. Of the 22 wells, three had significant positive trends. The trend in well UE-25 WT-3 may be influenced by monitoring equipment problems. Tends in USW WT-7 and USW WTS-10 are similar; both are located near a fault west of Yucca; however another well near that fault exhibited no significant trend

  20. Landing Site Selection and Surface Traverse Planning using the Lunar Mapping & Modeling Portal

    Science.gov (United States)

    Law, E.; Chang, G.; Bui, B.; Sadaqathullah, S.; Kim, R.; Dodge, K.; Malhotra, S.

    2013-12-01

    Introduction: The Lunar Mapping and Modeling Portal (LMMP), is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.), and to perform in-depth analyses to support lunar surface mission planning and system design for future lunar exploration and science missions. It has been widely used by many scientists mission planners, as well as educators and public outreach (e.g., Google Lunar XPRICE teams, RESOLVE project, museums etc.) This year, LMMP was used by the Lunar and Planetary Institute (LPI)'s Lunar Exploration internship program to perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution to research landing sites and surface pathfinding and traversal. Our talk will include an overview of LMMP, a demonstration of the tools as well as a summary of the LPI Lunar Exploration summer interns' experience in using those tools.

  1. Global permittivity mapping of the Martian surface from SHARAD

    Science.gov (United States)

    Castaldo, Luigi; Mège, Daniel; Gurgurewicz, Joanna; Orosei, Roberto; Alberti, Giovanni

    2017-03-01

    SHARAD is a subsurface sounding radar aboard NASA's Mars Reconnaissance Orbiter, capable of detecting dielectric discontinuities in the subsurface caused by compositional and/or structural changes. Echoes coming from the surface contain information on geometric properties at metre scale and on the permittivity of the upper layers of the Martian crust. A model has been developed to estimate the effect of surface roughness on echo power, depending on statistical parameters such as RMS height and topothesy. Such model is based on the assumption that topography can be characterized as a self-affine fractal, and its use allows the estimation of the dielectric properties of the first few metres of the Martian soil. A permittivity map of the surface of Mars is obtained, covering several large regions across the planet surface. The most significant correspondence with geology is observed at the dichotomy boundary, with high dielectric constant on the highlands side (7 to over 10) and lower on the lowlands side (3 to 7). Other geological correlations are discussed.

  2. Use of remotely sensed land surface temperature as a proxy for air temperatures at high elevations: Findings from a 5000 m elevational transect across Kilimanjaro

    Science.gov (United States)

    Pepin, N. C.; Maeda, E. E.; Williams, R.

    2016-09-01

    High elevations are thought to be warming more rapidly than lower elevations, but there is a lack of air temperature observations in high mountains. This study compares instantaneous values of land surface temperature (10:30/22:30 and 01:30/13:30 local solar time) as measured by Moderate Resolution Imaging Spectroradiometer MOD11A2/MYD11A2 at 1 km resolution from the Terra and Aqua platforms, respectively, with equivalent screen-level air temperatures (in the same pixel). We use a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m, one of the biggest elevational ranges in the world. There are substantial differences between LST and Tair, sometimes up to 20°C. During the day/night land surface temperature tends to be higher/lower than Tair. LST-Tair differences (ΔT) show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope which faces the morning Sun. Differences are larger in the dry seasons (JF and JJAS) and reduce in cloudy seasons. Healthier vegetation (as measured by normalized difference vegetation index) and increased humidity lead to reduced daytime surface heating above air temperature and lower ΔT, but these relationships weaken with elevation. At high elevations transient snow cover cools LST more than Tair. The predictability of ΔT therefore reduces. It will therefore be challenging to use satellite data at high elevations as a proxy for in situ air temperatures in climate change assessments, especially for daytime Tmax. ΔT is smaller and more consistent at night, so it will be easier to use LST to monitor changes in Tmin.

  3. Use of Digital Elevation Models to understand map landforms and history of the magmatism Khibiny Massif (Kola Peninsula, Russia)

    Science.gov (United States)

    Chesalova, Elena; Asavin, Alex

    2016-04-01

    This work presents an improved geomorphological methodology that uses 3D model of relief, remotely-sensed data, geological, geophysical maps and tools of Geographical Information Systems. On the basis of maps of 1: 50,000 and 1: 200,000 the Digital Elevation model (DEM) of Khibiny massif was developed. We used software ARC / INFO v10.2 ESRI. A DEM was used for analyzing landform by extracting the slope gradient, curvature, valley pro?les, slope, aspect and so on. The results were gradually re?ned from the interpretation of satellite imagery and geological map Geomorphological analysis will allow us to determine spatial regularities in inner massive construction. We try to found areas where gas emissions (CH4/H2) enrich, according to morphometry, geology, tectonic and other environments. The main regional blocks were de?ned by different morphological evidences: impression zone, similar to subsidence caldera; uplift zone, domed area (located in the highest part of massif and zone of intersection of main faults) and others. It says that there are the few stages in the development of the Khibiny massif. There is no common concept of the consequence of intrudes magmatic phases now. And we hope that our geomorphical analysis take a new evidences about this problems. Locations of the blocks' borders (tectonic zones) were recognized by lineament analysis of valleys and tectonic faults presented in relief. Erosion system is represented by valleys of 4 ranks. It inherits the zone of tectonic disturbances 3 groups of faults were recognized: 1) Global lineament system cross whole peninsula - existing before Khibiny massif intrusion; 2) Faults associated with the formation of the intrusive phases sequence and magma differentiation and with later collision history during magma cooling; 3) Crack system related to neotectonic process. We believed that if different magmatic phases intrude in similar tectonic environment, the common spatial system of faults will be formed. Really we

  4. Heat capacity mapping mission. [satellite for earth surface temperature measurement

    Science.gov (United States)

    Price, J. C.

    1978-01-01

    A Heat Capacity Mapping Mission (HCMM), part of a series of Applications Explorers Missions, is designed to provide data on surface heating as a response to solar energy input. The data is obtained by a two channel scanning radiometer, with one channel covering the visible and near-IR band between 0.5 and 1.1 micrometers, and the other covering the thermal-IR between 10.5 and 12.5 micrometers. The temperature range covered lies between 260 and 340 K, in 0.3 deg steps, with an accuracy at 280 K of plus or minus 0.5 K. Nominal altitude is 620 km, with a ground swath 700 km wide.

  5. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used

  6. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-12-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used.

  7. CryoSat-2 swath interferometric altimetry for mapping polar land ice terrain and elevation change

    Science.gov (United States)

    Gourmelen, N.; Escorihuela, M. J.; Foresta, L.; Shepherd, A.; Muir, A.; Hogg, A. E.; Roca, M.; Nagler, T.; Baker, S.; Drinkwater, M. R.

    2015-12-01

    Reference and repeat-observations of Glacier and Ice Sheet Margin (GISM) topography are critical to identify changes in ice thickness, provide estimates of mass gain or loss and thus quantify the contribution of the cryosphere to sea level change. The lack of such sustained observations was identified in the Integrated Global Observing Strategy (IGOS) Cryosphere Theme Report as a major shortcoming. Conventional altimetry measurements over GISMs exist, but coverage has been sparse and characterized by coarse ground resolution. Additionally, and more importantly, they proved ineffective in the presence of steep slopes, a typical feature of GISM areas. Since the majority of Antarctic and Greenland ice sheet mass loss is estimated to lie within 100 km from the coast, but only about 10% is surveyed, there is the need for more robust and dense observations of GISMs, in both time and space. The ESA Altimetry mission CryoSat aims at gaining better insight into the evolution of the Cryosphere. CryoSat's revolutionary design features a Synthetic Interferometric Radar Altimeter (SIRAL), with two antennas for interferometry. The corresponding SAR Interferometer (SARIn) mode of operation increases spatial resolution while resolving the angular origin of off-nadir echoes occurring over sloping terrain. The SARIn mode is activated over GISMs and the elevation for the Point Of Closest Approach (POCA) is a standard product of the CryoSat mission. Here we present, through a wide range of examples in Polar settings, a new approach for more comprehensively exploiting the SARIn mode of CryoSat and produce ice elevation and elevation change with enhanced spatial resolution compared to standard CryoSat elevation products. In this so-called CryoSat Swath SARIn (CSSARIn) approach, the signal beyond the POCA is analysed, leading to between 1 and 2 orders of magnitude more elevation measurements than conventional approaches, and providing elevation where conventional POCA fails. We will

  8. Using ground-based geophysics to rapidly and accurately map sub-surface acidity

    Science.gov (United States)

    Wong, Vanessa; Triantafilis, John; Johnston, Scott; Nhan, Terence; Page, Donald; Wege, Richard; Hirst, Phillip; Slavich, Peter

    2013-04-01

    Globally, large areas of coastal and estuarine floodplains are underlain by sulfidic sediments and acid sulfate soils (ASS). These soils can be environmentally hazardous due to their high acidity and large pool of potentially mobile metals. The floodplains are characterised by high spatial and temporal heterogeneity. On coastal floodplains, ASS are of moderate to high salinity, with salts derived mainly from either connate marine sources or oxidation of biogenic sulfides and the subsequent increases in soluble ions (e.g. SO42-) and acidity that follow oxidation. Enhanced acidity also increases the mobilisation of pH-sensitive trace metals such as Fe, Al, Mn, Zn and Ni and contributes to increasing apparent salinity. Ground-based geophysics using electromagnetic (EM) induction techniques have been used successfully and extensively to rapidly map soils for salinity management and precision agriculture. EM induction techniques measure apparent soil electrical conductivity (ECa), which is a function of salinity, clay content, water content, soil mineralogy and temperature to determine the spatial distribution of sub-surface conductivity. In this study, we used ECa as a proxy to map the surface and sub-surface spatial distribution of ASS and associated acidic groundwater. Three EM instruments were used, EM38, DUALEM-421 and EM34, which focus on different depth layers, in a survey of a coastal floodplain in eastern Australia. The EM surveys were calibrated with limited soil sampling and analysis (pH, EC, soluble and exchangeable salts and metals, particle size and titratable actual acidity (TAA)). Using fuzzy k-means clustering analysis, the EM38 and elevation data, from a digital elevation model, clearly identified three classes in the near-surface (0-2m) layers: i) levee soils, ii) fluvial sediment capping and iii) ASS (Fig. 4). Increasing the number of classes did not alter the classes identified. Joint inversion of the DUALEM-421 and EM34 data also identified

  9. SURFACE TEMPERATURE MAPS OF COMET 9P/TEMPEL 1 V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two-dimensional infrared thermal maps of the surface of comet 9P/Tempel 1. The maps were derived from three spatially resolved scans of the...

  10. Where’s the Ground Surface? – Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes

    Science.gov (United States)

    Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...

  11. Research note: Mapping spatial patterns in sewer age, material, and proximity to surface waterways to infer sewer leakage hotspots

    Science.gov (United States)

    Hopkins, Kristina G.; Bain, Daniel J.

    2018-01-01

    Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.

  12. The influence of changes in glacier extent and surface elevation on modeled mass balance

    Directory of Open Access Journals (Sweden)

    F. Paul

    2010-12-01

    Full Text Available Glaciers are widely recognized as unique demonstration objects for climate change impacts, mostly due to the strong change of glacier length in response to small climatic changes. However, glacier mass balance as the direct response to the annual atmospheric conditions can be better interpreted in meteorological terms. When the climatic signal is deduced from long-term mass balance data, changes in glacier geometry (i.e. surface extent and elevation must be considered as such adjustments form an essential part of the glacier reaction to new climatic conditions. In this study, a set of modelling experiments is performed to assess the influence of changes in glacier geometry on mass balance for constant climatic conditions. The calculations are based on a simplified distributed energy/mass balance model in combination with information on glacier extent and surface elevation for the years 1850 and 1973/1985 for about 60 glaciers in the Swiss Alps. The results reveal that over this period about 50–70% of the glacier reaction to climate change (here a one degree increase in temperature is "hidden" in the geometric adjustment, while only 30–50% can be measured as the long-term mean mass balance. For larger glaciers, the effect of the areal change is partly reduced by a lowered surface elevation, which results in a slightly more negative balance despite a potential increase of topographic shading. In view of several additional reinforcement feedbacks that are observed in periods of strong glacier decline, it seems that the climatic interpretation of long-term mass balance data is rather complex.

  13. Lunar Pole Illumination and Communications Maps Computed from GSSR Elevation Data

    Science.gov (United States)

    Bryant, Scott

    2009-01-01

    A Digital Elevation Model of the lunar south pole was produced using Goldstone Solar System RADAR (GSSR) data obtained in 2006.12 This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This Digital Elevation Model was used to compute average solar illumination and Earth visibility with 100 kilometers of the lunar south pole. The elevation data were converted into local terrain horizon masks, then converted into lunar-centric latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Estimates of Earth visibility were computed by integrating the area of the region bounding the Earth's motion that was below the horizon mask. Solar illumination and other metrics were computed similarly. Proposed lunar south pole base sites were examined in detail, with the best site showing yearly solar power availability of 92 percent and Direct-To-Earth (DTE) communication availability of about 50 percent. Similar analysis of the lunar south pole used an older GSSR Digital Elevation Model with 600-meter horizontal resolution. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.

  14. BuscaPic, detección de picos mediante realidad aumentada y el servicio Goggle Maps Elevation API

    OpenAIRE

    CISCAR BREITZLER, SEBASTIÁN VICENTE

    2016-01-01

    [ES] El proyecto a realizar trata de introducir el servicio de Goggle Maps Elevation para mejorar la detección de picos o montañas utilizando realidad aumentada. Se pretende mejorar la fiabilidad de los sensores de un dispositivo Android, especialmente el compás magnético y a la vez detectar la superposición de picos a partir de los valores de altura obtenidos mediante el servicio. Para todo ello se utilizará los datos obtenidos a partir de los sensores del dispositivo (GPS, compá...

  15. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    Science.gov (United States)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by

  16. Quantifying the spatial variability in critical zone architecture through surface mapping and near-surface geophysics

    Science.gov (United States)

    DiBiase, R.; Del Vecchio, J.; Mount, G.; Hayes, J. L.; Comas, X.; Guo, L.; Lin, H.; Zarif, F.; Forsythe, B.; Brantley, S. L.

    2016-12-01

    The composition and structure of Earth's surface and shallow subsurface control the flux of water, solutes, and sediment from hillslopes into rivers. Additionally, bedrock weathering profiles and the stratigraphy of soil and colluvium preserve a record of past surface processes. However, landscapes often exhibit heterogeneity in critical zone architecture that is difficult to capture with remote sensing and costly to characterize through direct measurement in soil pits or drill cores. Here we present results from a multifaceted approach to quantifying spatial variability in critical zone architecture using airborne lidar topography, surface mapping, and a suite of geophysical surveys. We focus on Garner Run, a first order sandstone catchment in the Susquehanna Shale Hills Critical Zone Observatory situated in the valley and ridge province of central Pennsylvania, 80 km southwest of the last glacial maximum ice limit. Results from lidar topographic analysis and detailed mapping of surface cover (e.g., soil versus boulder-mantled) reveal a pattern of relict periglacial landforms and deposits that vary depending on slope position and aspect. Additionally, a drill core taken from an unchanneled valley at the head of Garner Run indicates at least 9 meters of alternating sand- and boulder-rich colluvial fill sourced from adjacent hillslopes, indicating the potential preservation of multiple cycles of periglacial climate conditions. Through the use of shallow geophysical techniques, including cross-valley transects of seismic refraction, multiple frequency ground-penetrating radar (GPR), and electrical resistivity tomography (ERT), we image spatial patterns in subsurface architecture at a range of scales (10-1,000 m), and high spatial resolution (cm). Notably, despite challenging environmental conditions, there is agreement among diverse subsurface methods in highlighting aspect-dependent controls on weathering zone thickness that furthermore can be directly connected to

  17. The two-thumb technique using an elevated surface is preferable for teaching infant cardiopulmonary resuscitation.

    Science.gov (United States)

    Huynh, Trang K; Hemway, Rae Jean; Perlman, Jeffrey M

    2012-10-01

    To determine whether the two-thumb technique is superior to the two-finger technique for administering chest compressions using the floor surface and the preferred location for performing infant cardiopulmonary resuscitation (CPR) (ie, floor, table, or radiant warmer). Twenty Neonatal Resuscitation Program trained medical personnel performed CPR on a neonatal manikin utilizing the two-thumb vs two-finger technique, a compression to ventilation ratio of 30:2 for 2 minutes in random order on the floor, table, and radiant warmer. Compression depth favored the two-thumb over two-finger technique on the floor (27 ± 8 mm vs 23 ± 7), table (26 ± 7 mm vs 22 ± 7), and radiant warmer (29 ± 4 mm vs 23 ± 4) (all P CPR preferably using an elevated firm surface. Copyright © 2012 Mosby, Inc. All rights reserved.

  18. Improving surface stability of elevated spoil landforms using natural landform analogy and geological information

    Science.gov (United States)

    Emmerton, Bevan; Burgess, Jon; Esterle, Joan; Erskine, Peter; Baumgartl, Thomas

    2017-04-01

    Large-scale open cut mining in the Bowen Basin, Queensland, Australia has undergone an evolutionary process over the period of a few decades, transitioning from shallow mining depths, limited spoil elevation and pasture based rehabilitation to increased mining depths, escalating pre-stripping, elevated mesa-like landforms and native woody species rehabilitation. As a consequence of this development, the stabilisation of recent constructed landforms has to be assured through means other than the establishment of vegetative cover. Recent developments are the specific selection and partitioning of resilient fragmental spoil types for the construction of final landform surface. They can also be used as cladding resources for stabilizing steep erosive batters and this has been identified as a practical methodology that has the potential to significantly improve rehabilitation outcomes. Examples of improvements are an increase of the surface rock cover, roughness and infiltration and reducing inherent erodibility and runoff and velocity of surface flow. However, a thorough understanding of the properties and behavior of individual spoil materials disturbed during mining is required. Relevant information from published literature on the geological origins, lithology and weathering characteristics of individual strata within the Bowen Basin Coal Measures located in Queensland, Australia (and younger overlying weathered strata) has been studied, and related both to natural landforms and to the surface stability of major strata types when disturbed by mining. The resulting spoil classification developed from this study is based primarily on inherent geological characteristics and weathering behaviour of identifiable lithologic components, and as such describes the expected fragmental resilience likely within disturbed materials at Bowen Basin coal mines. The proposed classification system allows the allocation of spoil types to use categories which have application in pre

  19. Water surface elevation from the upcoming SWOT mission under different flows conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  20. Surface anatomy of the lip elevator muscles for the treatment of gummy smile using botulinum toxin.

    Science.gov (United States)

    Hwang, Woo-Sang; Hur, Mi-Sun; Hu, Kyung-Seok; Song, Wu-Chul; Koh, Ki-Seok; Baik, Hyoung-Seon; Kim, Seong-Taek; Kim, Hee-Jin; Lee, Kee-Joon

    2009-01-01

    To propose a safe and reproducible injection point for botulinum toxin-A (BTX-A) as a supplementary method for the treatment of gummy smile, as determined by assessment of the morphologic characteristics of three lip elevator muscles. A total of 50 hemi-faces from 25 adult cadavers (male 13, female 12; ages, 47 to 88 years) were used in this study. Topographic relations and the directions of the lip elevator muscles (ie, levator labii superioris [LLS], levator labii superioris alaeque nasi [LLSAN], and zygomaticus minor [ZMi]), were investigated. Possible injection points were examined through the study of predetermined surface landmarks. The insertion of the LLS was covered partially or entirely by the LLSAN and the ZMi, and the three muscles converged on the area lateral to the ala. The mean angle between the facial midline and each muscle vector was 25.8 +/- 4.8 degrees for the LLS, 55.7 +/- 6.4 degrees for the ZMi, and -20.2 +/- 3.2 degrees for the LLSAN; no significant differences were noted between male and female subjects or between left and right sides. The three vectors passed near a triangular region formed by three surface landmarks. The center of this triangle, named the "Yonsei point", was suggested as an appropriate injection point for BTX-A. The clinical effectiveness of the injection point was demonstrated in selected cases with or without orthodontic treatment. Under careful case selection, BTX-A may be an effective treatment alternative for patients with excessive gingival display caused by hyperactive lip elevator muscles.

  1. Impact of the surface characteristics on the quality of INSAR elevation data

    Science.gov (United States)

    Heidelmeyer, G.; Klingauf, U.

    2006-09-01

    Due to upcoming new data driven technologies in the aviation the impact of digital terrain data is growing conspicuously. Especially for ground near operations reliable terrain information is necessarily demanded. Based on modern earth observation technologies a new generation of elevation data is obtainable. However it shall be analysed how far data derived from remote sensing techniques like INSAR or LIDAR can be applied for aviation purposes. Formerly terrain data were represented in relation to the bare earth to obtain a "Digital Terrain Model" (DTM). For aviation purposes a "Digital Surface Model" (DSM) representing the real surface of the earth including all cover like vegetation and buildings is recommended. Due to the characteristics of active remote sensors the derived model always describes an in between of the two elevation representations. To satisfy the special requirements the Institute of Flight Systems and Automatic Control (FSR) at the Technische Universitaet Darmstadt is dealing with the determination of the influencing factors which affect the quality of the terrain models being appropriate to be used as a DSM. In order to enhance the integrity of the data a "safety buffer" is created to allow the applicability for dedicated applications (figure 1).

  2. Development of a GNSS Buoy for Monitoring Water Surface Elevations in Estuaries and Coastal Areas.

    Science.gov (United States)

    Lin, Yen-Pin; Huang, Ching-Jer; Chen, Sheng-Hsueh; Doong, Dong-Jiing; Kao, Chia Chuen

    2017-01-18

    In this work, a Global Navigation Satellite System (GNSS) buoy that utilizes a Virtual Base Station (VBS) combined with the Real-Time Kinematic (RTK) positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS) modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan). Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC) sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas.

  3. Groupoid extensions of mapping class representations for bordered surfaces

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Bene, Alex; Penner, Robert

    2009-01-01

    is called the Ptolemy groupoid. It is natural to try to extend representations of the mapping class group to the mapping class groupoid, i.e., to construct a homomorphism from the mapping class groupoid to the same target that extends the given representations arising from various choices of basepoint...

  4. Electrochemical removal of segregated silicon dioxide impurities from yttria stabilized zirconia surfaces at elevated temperatures

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2011-01-01

    Here we report on the electrochemical removal of segregated silicon dioxide impurities from Yttria Stabilized Zirconia (YSZ) surfaces at elevated temperatures studied under Ultra High Vacuum (UHV) conditions. YSZ single crystals were heated in vacuum by an applied 18kHz a.c. voltage using the ion....... This was demonstrated by silicon enrichment of a gold foil placed behind the YSZ crystal surface while annealed. The results suggest a fast way to clean YSZ for trace silicon dioxide impurities found in the bulk of the cleanest crystals commercially available....... conductivity of YSZ. The crystals were annealed in vacuum and atmospheres of water or oxygen from 10−5 mbar to 100mbar in the temperature range of 1100°C to 1275°C. The surface was after annealing analyzed by X-ray Photoelectron Spectroscopy (XPS) without exposing the crystal to atmosphere between annealing...... and XPS analysis. Silicon enrichment of the surface was only observed at oxygen and water vapor partial pressures above 25mbar and 10mbar, respectively. No silicon was observed on crystals annealed in vacuum and at oxygen and water vapor partial pressures below 10mbar. The YSZ seems to get partially...

  5. Heat capacity mapping mission (HCMM) thermal surface water mapping and its correlation to LANDSAT

    International Nuclear Information System (INIS)

    Colvocoresses, A.P.

    1980-03-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C

  6. Heat capacity mapping mission (HCMM) thermal surface water mapping and its correlation to LANDSAT

    Energy Technology Data Exchange (ETDEWEB)

    Colvocoresses, A.P.

    1980-03-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C.

  7. A coastal surface seawater analyzer for nitrogenous nutrient mapping

    Science.gov (United States)

    Masserini, Robert T.; Fanning, Kent A.; Hendrix, Steven A.; Kleiman, Brittany M.

    2017-11-01

    Satellite-data-based modeling of chlorophyll indicates that ocean waters in the mesosphere category are responsible for the majority of oceanic net primary productivity. Coastal waters, which frequently have surface chlorophyll values in the mesosphere range and have strong horizontal chlorophyll gradients and large temporal variations. Thus programs of detailed coastal nutrient surveys are essential to the study of the dynamics of oceanic net primary productivity, along with land use impacts on estuarine and coastal ecosystems. The degree of variability in these regions necessitates flexible instrumentation capable of near real-time analysis to detect and monitor analytes of interest. This work describes the development of a portable coastal surface seawater analyzer for nutrient mapping that can simultaneously elucidate with high resolution the distribution of nitrate, nitrite, and ammonium - the three principal nitrogenous inorganic nutrients in coastal systems. The approach focuses on the use of pulsed xenon flash lamps to construct an analyzer which can be adapted to any automated chemistry with fluorescence detection. The system has two heaters, on-the-fly standardization, on-board data logging, an independent 24 volt direct current power supply, internal local operating network, a 12 channel peristaltic pump, four rotary injection/selection valves, and an intuitive graphical user interface. Using the methodology of Masserini and Fanning (2000) the detection limits for ammonium, nitrite, and nitrate plus nitrite were 11, 10, and 22 nM, respectively. A field test of the analyzer in Gulf of Mexico coastal waters demonstrated its ability to monitor and delineate the complexity of inorganic nitrogen nutrient enrichments within a coastal system.

  8. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    Science.gov (United States)

    Cohen, Barbara A.

    2014-01-01

    Lunar Flashlight is an exciting new mission concept in preformulation studies for NASA's Advanced Exploration Systems (AES) by a team from the Jet Propulsion Laboratory, UCLA, and Marshall Space Flight Center. This innovative, low-cost concept will map the lunar south pole for volatiles and demonstrate several technological firsts, including being the first CubeSat to reach the Moon, the first mission to use an 80 m2 solar sail, and the first mission to use a solar sail as a reflector for science observations. The Lunar Flashlight mission spacecraft maneuvers to its lunar polar orbit and uses its solar sail as a mirror to reflect 50 kW of sunlight down into shaded polar regions, while the on-board spectrometer measures surface reflection and composition. The Lunar Flashlight 6U spacecraft has heritage elements from multiple cubesat systems. The deployable solar sail/reflector is based on previous solar sail experiments, scaled up for this mission. The mission will demonstrate a path where 6U CubeSats could, at dramatically lower cost than previously thought possible, explore, locate and estimate size and composition of ice deposits on the Moon. Locating ice deposits in the Moon's permanently shadowed craters addresses one of NASA's Strategic Knowledge Gaps (SKGs) to detect composition, quantity, distribution, form of water/H species and other volatiles associated with lunar cold traps. Polar volatile data collected by Lunar Flashlight could then ensure that targets for more expensive lander- and rover-borne measurements would include volatiles in sufficient quantity and near enough to the surface to be operationally useful.

  9. High-resolution digital elevation model and historical topographic maps of the Tisza River floodplain, the Great Hungarian Plain

    Science.gov (United States)

    Timár, G.; Mészáros, J.

    2009-04-01

    The Great Hungarian Plain (GHP), the central part of the Pannonian Basin, is one of the world’s most developed flatlands. The relief differences remain under 20 meters in the central area of the plain, especially in the wide floodplain of the Tisza River. After the flood control measurements of the river (1846-1930), newly built dykes cut the wider floodplain from the actual narrow floodway. Common knowledge of the historical inundation patterns has been almost lost. To obtain pieces of information about the possible flood extents, usage of high-resolution elevation models is a valuable option, as well as application of rectified historical topographic maps. The best available elevation model of the GHP is based on the vectorized 1:10,000 scale topographic maps of the Institute of Geodesy, Cartography and Remote Sensing of Hungary (FÃ-MI). The base contour interval is 1 meter but according to the very flat characteristics of the area, halving contours are commonly used. This contour density is definitely needed to get better elevaition models than the one of the SRTM, which shows only the general features of the flatland with remarkable errors at the forests. Historical topographic datasets, such as the ones compiled directly for the water control measures (triangulation: 1833-34; mapping until 1842 by Sámuel Lányi), as well as the First (1783-86) and Second (1857-61) Military Surveys can be rectified easiliy after understanding their geodetic basis. They show in surprising precisity the fine vertical structure of the river terraces and the historical inundation levels. These cartographic elements are of great value also for the necessary re-assessment of the flood control system.

  10. Flood Damage Analysis: First Floor Elevation Uncertainty Resulting from LiDAR-Derived Digital Surface Models

    Directory of Open Access Journals (Sweden)

    José María Bodoque

    2016-07-01

    Full Text Available The use of high resolution ground-based light detection and ranging (LiDAR datasets provides spatial density and vertical precision for obtaining highly accurate Digital Surface Models (DSMs. As a result, the reliability of flood damage analysis has improved significantly, owing to the increased accuracy of hydrodynamic models. In addition, considerable error reduction has been achieved in the estimation of first floor elevation, which is a critical parameter for determining structural and content damages in buildings. However, as with any discrete measurement technique, LiDAR data contain object space ambiguities, especially in urban areas where the presence of buildings and the floodplain gives rise to a highly complex landscape that is largely corrected by using ancillary information based on the addition of breaklines to a triangulated irregular network (TIN. The present study provides a methodological approach for assessing uncertainty regarding first floor elevation. This is based on: (i generation an urban TIN from LiDAR data with a density of 0.5 points·m−2, complemented with the river bathymetry obtained from a field survey with a density of 0.3 points·m−2. The TIN was subsequently improved by adding breaklines and was finally transformed to a raster with a spatial resolution of 2 m; (ii implementation of a two-dimensional (2D hydrodynamic model based on the 500-year flood return period. The high resolution DSM obtained in the previous step, facilitated addressing the modelling, since it represented suitable urban features influencing hydraulics (e.g., streets and buildings; and (iii determination of first floor elevation uncertainty within the 500-year flood zone by performing Monte Carlo simulations based on geostatistics and 1997 control elevation points in order to assess error. Deviations in first floor elevation (average: 0.56 m and standard deviation: 0.33 m show that this parameter has to be neatly characterized in order

  11. Reconstructing surface elevation changes for the Greenland Ice Sheet (1993-2013) and analysis of Zachariae Isstrom, northeast Greenland

    Science.gov (United States)

    Duncan, Kyle

    Previous studies investigating the velocity and elevation change records of the Greenland Ice Sheet (GrIS) revealed rapid and complex changes. It is therefore imperative to determine changes with both high spatial and temporal resolutions. By fusing multiple laser altimetry data sets, the Surface Elevation Reconstruction and Change (SERAC) program is capable of reconstructing surface elevation changes with high spatial and temporal resolution over the entire GrIS. The input data include observations from NASA's Ice, Cloud and land Elevation Satellite (ICESat) mission (2003-2009) as well as data collected by NASA's Airborne Topographic Mapper (ATM) (1993-2013) and Land, Vegetation and Ice Sensor (LVIS) (2007-2012) airborne laser altimetry systems. This study extends the record of surface elevation changes over the GrIS by adding 2012 and 2013 laser altimetry data to the previous 1993-2011 record. Extending the record leads to a new, more accurate and detailed altimetry record for 1993-2013. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Models (DEMs) are fused with laser altimetry data over Zachariae Isstrom, northeast Greenland to analyze surface elevation changes and associated thinning rates during 1978-2014. Little to no elevation change occurred over Zachariae Isstrom from 1978-1999, however, from 1999-2014 elevation changes near the calving front became increasingly negative and accelerated. Calving front position showed steady retreat and grounding line position has been retreating towards the interior of the ice sheet at an increasing rate from 2010-2014 when compared to the 1996-2010 period. The measured elevation changes near the calving front have brought a large portion of the glacier close to the height of flotation. If the current thinning trend continues this portion of the glacier will reach flotation within the next 2-5 years allowing for further retreat and increased vulnerability to retreat for sections of

  12. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    Science.gov (United States)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.

    2014-01-01

    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers

  13. Simultaneous Localization and Mapping for Planetary Surface Mobility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop localization and mapping technologies for planetary rovers....

  14. The impact of elevated CO2 on the energy and water balance over terrestrial surfaces

    Science.gov (United States)

    Roderick, Michael; Donohue, Randall; Yang, Yuting; McVicar, Tim

    2017-04-01

    When we think of the enhanced greenhouse effect, the tendency is to focus on the effects on near-surface air temperature and the consequence impacts. On that approach the underlying cause of the enhanced greenhouse effect, that is, increasing atmospheric CO2 tends to be ignored. But laboratory experiments have long shown that increasing CO2 has a large impact on vegetation gas exchange, by, for example, increasing water use efficiency of photosynthesis. This tends to be a forgotten factor in the meteorological and hydrologic sciences. In this talk we outline some key expected effects of atmospheric CO2 on leaf-, canopy- and catchment-scale fluxes and compare those expectations with both site- (e.g. FACE) and catchment-scale observations. We find the expected effects have been observed over undisturbed vegetation. However, we find the effects of elevated CO2 are more complex in disturbed vegetation that is actively regrowing, This finding suggests the disturbance history will be a key factor on the canopy- and catchment-scale responses to elevated CO2.

  15. Estimating Discharge, Depth and Bottom Friction in Sand Bed Rivers Using Surface Currents and Water Surface Elevation Observations

    Science.gov (United States)

    Simeonov, J.; Czapiga, M. J.; Holland, K. T.

    2017-12-01

    We developed an inversion model for river bathymetry estimation using measurements of surface currents, water surface elevation slope and shoreline position. The inversion scheme is based on explicit velocity-depth and velocity-slope relationships derived from the along-channel momentum balance and mass conservation. The velocity-depth relationship requires the discharge value to quantitatively relate the depth to the measured velocity field. The ratio of the discharge and the bottom friction enter as a coefficient in the velocity-slope relationship and is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. Completing the inversion requires an estimate of the bulk friction, which in the case of sand bed rivers is a strong function of the size of dune bedforms. We explored the accuracy of existing and new empirical closures that relate the bulk roughness to parameters such as the median grain size diameter, ratio of shear velocity to sediment fall velocity or the Froude number. For given roughness parameterization, the inversion solution is determined iteratively since the hydraulic roughness depends on the unknown depth. We first test the new hydraulic roughness parameterization using estimates of the Manning roughness in sand bed rivers based on field measurements. The coupled inversion and roughness model is then tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID.

  16. Full 2D observation of water surface elevation from SWOT under different flow conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  17. Raman mapping of intact biofilms on stainless steel surfaces

    Science.gov (United States)

    Each slide under the Raman Microscope was mapped for approximately 18.5 hours with a dimension of 36x36 that provides a greater result compared to doing a smaller dimension scan. The results from the Raman Mapping show the location and position of how the bacteria are growing scattered or straight a...

  18. Updating flood maps efficiently using existing hydraulic models, very-high-accuracy elevation data, and a geographic information system; a pilot study on the Nisqually River, Washington

    Science.gov (United States)

    Jones, Joseph L.; Haluska, Tana L.; Kresch, David L.

    2001-01-01

    A method of updating flood inundation maps at a fraction of the expense of using traditional methods was piloted in Washington State as part of the U.S. Geological Survey Urban Geologic and Hydrologic Hazards Initiative. Large savings in expense may be achieved by building upon previous Flood Insurance Studies and automating the process of flood delineation with a Geographic Information System (GIS); increases in accuracy and detail result from the use of very-high-accuracy elevation data and automated delineation; and the resulting digital data sets contain valuable ancillary information such as flood depth, as well as greatly facilitating map storage and utility. The method consists of creating stage-discharge relations from the archived output of the existing hydraulic model, using these relations to create updated flood stages for recalculated flood discharges, and using a GIS to automate the map generation process. Many of the effective flood maps were created in the late 1970?s and early 1980?s, and suffer from a number of well recognized deficiencies such as out-of-date or inaccurate estimates of discharges for selected recurrence intervals, changes in basin characteristics, and relatively low quality elevation data used for flood delineation. FEMA estimates that 45 percent of effective maps are over 10 years old (FEMA, 1997). Consequently, Congress has mandated the updating and periodic review of existing maps, which have cost the Nation almost 3 billion (1997) dollars. The need to update maps and the cost of doing so were the primary motivations for piloting a more cost-effective and efficient updating method. New technologies such as Geographic Information Systems and LIDAR (Light Detection and Ranging) elevation mapping are key to improving the efficiency of flood map updating, but they also improve the accuracy, detail, and usefulness of the resulting digital flood maps. GISs produce digital maps without manual estimation of inundated areas between

  19. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  20. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2005-08-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness.

  1. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness

  2. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    The sea surface temperature (SST) determined by remote sensing technique refers to the skin temperature of the sea surface, while the SST measured by conventional method employing a bucket thermometer gives the temperature of the water in the upper...

  3. Analysis of overdeepened valleys using the digital elevation model of the bedrock surface of Northern Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.

    2010-11-15

    Based on surface and borehole information, together with pre-existing regional and local interpretations, a 7,150 square kilometre Raster Digital Elevation Model (DEM) of the bedrock surface of northern Switzerland was constructed using a 25 m cell size. This model represents a further important step in the understanding of Quaternary sediment distribution and is open to a broad field of application and analysis, including hydrogeological, geotechnical and geophysical studies as well as research in the field of Pleistocene landscape evolution. An analysis of the overdeepened valleys in the whole model area and, more specifically in the Reuss area, shows that, in most cases, overdeepening is restricted to the areas covered by the Last Glaciation Maximum (LGM). However, at various locations relatively narrow overdeepened valleys outreach the tongue basins and the LGM ice shield limits. Therefore, an earlier and further-reaching glacial event has probably contributed significantly to the overdeepening of these valleys. No significant overdeepening has been identified downstream of Boettstein (Aare) and Kaiserstuhl (Rhine), although the ice extended considerably further downstream, at least during the most extensive glaciation. Except for the bedrock between Brugg and Boettstein, no overdeepened valleys are found significantly north of the outcrop of Mesozoic limestone of the Folded and Tabular Jura. A detailed analysis of the Reuss area shows that the Lake and Suhre valleys are separated from the Emmen-Gisikon Reuss valley basin by a significant bedrock barrier. The individual bedrock valleys are divided into several sub-basins, indicating a multiphase evolution of the valleys. Some of the swells or barriers separating the sub-basins coincide with known late LGM retreat stages. In the Suhre valley, an old fluvial valley floor with restricted overdeepened sections is documented. (author)

  4. Pure Surface Texture Mapping Technology and it's Application for Mirror Image

    Directory of Open Access Journals (Sweden)

    Wei Feng Wang

    2013-02-01

    Full Text Available Based on the study of pure surface texture mapping technology, pure texture surface rendering method is proposed. The method is combined pure surface texture rendering and view mirror, real-time rendering has an index of refraction, reflection, and the flow of water ripple effect. Through the experimental verification of the validity of the algorithm.

  5. Geomorphic Surface Maps of Northern Frenchman Flat, Nevada Test Site, Southern Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    Large-scale (1:6000) surficial geology maps of northern Frenchman Flat were developed in 1995 as part of comprehensive site characterization required to operate a low-level radioactive waste disposal facility in that area. Seven surficial geology maps provide fundamental data on natural processes and are the platform needed to reconstruct the Quaternary history of northern Frenchman Flat. Reconstruction of the Quaternary history provides an understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. Seven geomorphic surfaces (Units 1 through 7) are recognized, spanning from the early Quaternary to present time

  6. Surface Geophysical Measurements for Locating and Mapping Ice-Wedges

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Larsen, S.H.

    2012-01-01

    to test the applicability of DC electrical resistivity tomography (ERT) and Ground Penetrating Radar (GPR) to identifying and mapping ice-wedge occurrences. The site is located in Central West Greenland, and the ice-wedges are found in a permafrozen peat soil with an active layer of about 30 cm. ERT...

  7. REAL-TIME high-resolution urban surface water flood mapping to support flood emergency management

    Science.gov (United States)

    Guan, M.; Yu, D.; Wilby, R.

    2016-12-01

    Strong evidence has shown that urban flood risks will substantially increase because of urbanisation, economic growth, and more frequent weather extremes. To effectively manage these risks require not only traditional grey engineering solutions, but also a green management solution. Surface water flood risk maps based on return period are useful for planning purposes, but are limited for application in flood emergencies, because of the spatiotemporal heterogeneity of rainfall and complex urban topography. Therefore, a REAL-TIME urban surface water mapping system is highly beneficial to increasing urban resilience to surface water flooding. This study integrated numerical weather forecast and high-resolution urban surface water modelling into a real-time multi-level surface water mapping system for Leicester City in the UK. For rainfall forecast, the 1km composite rain radar from the Met Office was used, and we used the advanced rainfall-runoff model - FloodMap to predict urban surface water at both city-level (10m-20m) and street-level (2m-5m). The system is capable of projecting 3-hour urban surface water flood, driven by rainfall derived from UK Met Office radar. Moreover, this system includes real-time accessibility mapping to assist the decision-making of emergency responders. This will allow accessibility (e.g. time to travel) from individual emergency service stations (e.g. Fire & Rescue; Ambulance) to vulnerable places to be evaluated. The mapping results will support contingency planning by emergency responders ahead of potential flood events.

  8. Mapping surface wind speed in Andalusia (Southern Spain) based on residual kriging

    Science.gov (United States)

    Alsamamra, H.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Ruiz-Arias, J. A.; Lara-Fanego, V.; Luzon-Cuesta, R.; Tovar-Pescador, J.

    2010-09-01

    We analyze the ability of the ordinary and residual kriging methods to provide 1-km spatial resolution surface wind speed (SWS) maps for Andalusia (Southern Spain). A dataset of daily-mean SWS values measured at 135 meteorological stations and covering the period of 2001-2005 was used. Overall, the ordinary kriging methodology was found a useful interpolation technique to provide relatively fair estimates of the SWS values, with RMSE values of around 0.49 m/s (23.22%) for the annual data. Nevertheless, this method showed a poor performance in areas of relatively high or low wind speed values. It was found that this weakness of the ordinary kriging is solved, partially, by using the residual kriging method. Particularly, the inclusion of a set of topographic explanatory variables (namely: terrain roughness, elevation, cross-product of slope and aspect and distance to the coast) enabled to account for around 30% of spatial variability. The inclusion of the explanatory variables in the kriging procedure (residual kriging) substantially improved the estimates compared to the ordinary kriging, particularly, for the high and low wind speed estimates.

  9. Pre-LBA CABARE Mapped Land Surface and Vegetation Characteristics, Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface parameter digital maps of vegetation, soil, and topography were obtained for Rondonia, Brazil, covering the 5x5 degree region bounded by 13-8 degrees S and...

  10. Pre-LBA CABARE Mapped Land Surface and Vegetation Characteristics, Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Surface parameter digital maps of vegetation, soil, and topography were obtained for Rondonia, Brazil, covering the 5x5 degree region bounded by 13-8...

  11. Super-Resolution Mapping of Impervious Surfaces from Remotely Sensed Imagery with Points-of-Interest

    Directory of Open Access Journals (Sweden)

    Yuehong Chen

    2018-02-01

    Full Text Available The accurate mapping of impervious surfaces is of key significance for various urban applications. Usually, traditional methods extract the proportion image of impervious surfaces from remote sensing images; however, the proportion image cannot specify where the impervious surfaces spatially distribute within a pixel. Meanwhile, impervious surfaces often locate urban areas and have a strong correlation with the relatively new big (geodata points of interest (POIs. This study, therefore, proposed a novel impervious surfaces mapping method (super-resolution mapping of impervious surfaces, SRMIS by combining a super-resolution mapping technique and POIs to increase the spatial resolution of impervious surfaces in proportion images and determine the accurate spatial location of impervious surfaces within each pixel. SRMIS was evaluated using a 10-m Sentinel-2 image and a 30-m Landsat 8 Operational Land Imager (OLI image of Nanjing city, China. The experimental results show that SRMIS generated satisfactory impervious surface maps with better-classified image quality and greater accuracy than a traditional hard classifier, the two existing super-resolution mapping (SRM methods of the subpixel-swapping algorithm, or the method using both pixel-level and subpixel-level spatial dependence. The experimental results show that the overall accuracy increase of SRMIS was from 2.34% to 5.59% compared with the hard classification method and the two SRM methods in the first experiment, while the overall accuracy of SRMIS was 1.34–3.09% greater than that of the compared methods in the second experiment. Hence, this study provides a useful solution to combining SRM techniques and the relatively new big (geodata (i.e., POIs to extract impervious surface maps with a higher spatial resolution than that of the input remote sensing images, and thereby supports urban research.

  12. On Monin–Obukhov Scaling in and Above the Atmospheric Surface Layer: The Complexities of Elevated Scintillometer Measurements

    NARCIS (Netherlands)

    Braam, M.; Bosveld, F.C.; Moene, A.F.

    2012-01-01

    In scintillometry Monin–Obukhov similarity theory (MOST) is used to calculate the surface sensible heat flux from the structure parameter of temperature (CT2)(CT2) . In order to prevent saturation a scintillometer can be installed at an elevated level. However, in that case the observation level

  13. Surface kinetic temperature mapping using satellite spectral data in ...

    African Journals Online (AJOL)

    The result revealed that despite the limited topographic differences of the rift lakes and their proximity, the surface kinetic temperature difference is high, mainly due to groundwater and surface water fluxes. From thermal signature analysis two hot springs below the lake bed of Ziway were discovered. The various hot springs ...

  14. Calibration and Industrial Application of Instrument for Surface Mapping based on AFM

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Kofod, Niels; De Chiffre, Leonardo

    2002-01-01

    The paper describes the calibration and application of an integrated system for topographic characterisation of fine surfaces on large workpieces. The system, consisting of an atomic force microscope mounted on a coordinate measuring machine, was especially designed for surface mapping, i.......e., measurement and tiling of adjacent areas. A calibration procedure was proposed involving a glass artefact featuring chromium lines with different pitch distances, giving the possibility to identify the exact position of single surface areas. The calibrated system was used to surface map a hip joint prosthesis...

  15. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia

    Science.gov (United States)

    Krauss, K.W.; Cahoon, D.R.; Allen, J.A.; Ewel, K.C.; Lynch, J.C.; Cormier, N.

    2010-01-01

    Mangroves on Pacific high islands offer a number of important ecosystem services to both natural ecological communities and human societies. High islands are subjected to constant erosion over geologic time, which establishes an important source of terrigeneous sediment for nearby marine communities. Many of these sediments are deposited in mangrove forests and offer mangroves a potentially important means for adjusting surface elevation with rising sea level. In this study, we investigated sedimentation and elevation dynamics of mangrove forests in three hydrogeomorphic settings on the islands of Kosrae and Pohnpei, Federated States of Micronesia (FSM). Surface accretion rates ranged from 2.9 to 20.8 mm y-1, and are high for naturally occurring mangroves. Although mangrove forests in Micronesian high islands appear to have a strong capacity to offset elevation losses by way of sedimentation, elevation change over 61/2 years ranged from -3.2 to 4.1 mm y-1, depending on the location. Mangrove surface elevation change also varied by hydrogeomorphic setting and river, and suggested differential, and not uniformly bleak, susceptibilities among Pacific high island mangroves to sea-level rise. Fringe, riverine, and interior settings registered elevation changes of -1.30, 0.46, and 1.56 mm y-1, respectively, with the greatest elevation deficit (-3.2 mm y-1) from a fringe zone on Pohnpei and the highest rate of elevation gain (4.1 mm y-1) from an interior zone on Kosrae. Relative to sea-level rise estimates for FSM (0.8-1.8 mm y-1) and assuming a consistent linear trend in these estimates, soil elevations in mangroves on Kosrae and Pohnpei are experiencing between an annual deficit of 4.95 mm and an annual surplus of 3.28 mm. Although natural disturbances are important in mediating elevation gain in some situations, constant allochthonous sediment deposition probably matters most on these Pacific high islands, and is especially helpful in certain hydrogeomorphic zones

  16. Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation

    Directory of Open Access Journals (Sweden)

    Nico Mölg

    2017-10-01

    Full Text Available The application of structure-from-motion (SfM to generate digital terrain models (DTMs derived from different image sources has strongly increased, the major reason for this being that processing is substantially easier with SfM than with conventional photogrammetry. To test the functionality in a demanding environment, we applied SfM and conventional photogrammetry to archival aerial images from Zmuttgletscher, a mountain glacier in Switzerland, for nine dates between 1946 and 2005 using the most popular software packages, and compared the results regarding bundle adjustment and final DTM quality. The results suggest that by using SfM it is possible to produce DTMs of similar quality as with conventional photogrammetry. Higher point cloud density and less noise allow a higher ground resolution of the final DTM, and the time effort from the user is 3–6 times smaller, while the controls of the commercial software packages Agisoft PhotoScan (Version 1.2; Agisoft, St. Petersburg, Russia and Pix4Dmapper (Version 3.0; Pix4D, Lausanne, Switzerland are limited in comparison to ERDAS photogrammetry. SfM performs less reliably when few images with little overlap are processed. Even though SfM facilitates the largely automated production of high quality DTMs, the user is not exempt from a thorough quality check, at best with reference data where available. The resulting DTM time series revealed an average change in surface elevation at the glacier tongue of −67.0 ± 5.3 m. The spatial pattern of changes over time reflects the influence of flow dynamics and the melt of clean ice and that under debris cover. With continued technological advances, we expect to see an increasing use of SfM in glaciology for a variety of purposes, also in processing archival aerial imagery.

  17. An atlas of the smaller maps in orientable and nonorientable surfaces

    CERN Document Server

    Jackson, David

    2000-01-01

    Maps are beguilingly simple structures with deep and ubiquitous properties. They arise in an essential way in many areas of mathematics and mathematical physics, but require considerable time and computational effort to generate. Few collected drawings are available for reference, and little has been written, in book form, about their enumerative aspects. An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces is the first book to provide complete collections of maps along with their vertex and face partitions, number of rootings, and an index number for cross referencing. It provides an explanation of axiomatization and encoding, and serves as an introduction to maps as a combinatorial structure. The Atlas lists the maps first by genus and number of edges, and gives the embeddings of all graphs with at most five edges in orientable surfaces, thus presenting the genus distribution for each graph. Exemplifying the use of the Atlas, the authors explore two substantial conjectures with origins in ...

  18. Thermal inertia mapping. [for lithologic materials in earth surface

    Science.gov (United States)

    Kahle, A. B.; Gillespie, A. R.; Goetz, A. F. H.; Addington, J. D.

    1975-01-01

    A thermal model of the earth's surface has been developed and used to determine the thermal inertia of a test site in the Mojave Desert, California. The model, which includes meteorological heating terms as well as radiation and conduction heating terms, is used with remotely sensed surface temperature data to determine thermal inertia of materials. The thermal inertia is displayed in image form, and can aid in the differentiation of the various lithologic materials in the test site.

  19. Band mapping of surface states vs. adsorbate coverage

    International Nuclear Information System (INIS)

    Rotenberg, E.; Kevan, S.D.; Denlinger, J.D.; Chung, Jin-Wook

    1997-01-01

    The theory of electron bands, which arises from basic quantum mechanical principles, has been the cornerstone of solid state physics for over 60 years. Simply put, an energy band is an electron state in a solid whose energy varies with its momentum (similar to, but with a more complicated dependence than, how a free electron's energy is proportional to its momentum squared). Much attention over the last 15 years has been given to the study of band structure of surfaces and interfaces, especially as the applications of these two-dimensional systems have become increasingly important to industry and science. The ultraESCA endstation at beamline 7.01 at the Advanced Light Source was developed for very high-energy - (∼50 meV) and angular - ( 12 photons/sec) makes the detailed study of the evolution of bands possible. The authors are interested in learning how, when one forms a chemical bond between a metal and an overlaying atom or molecule, the resulting charge transfer to or from the adsorbate affects the surface bands. In some cases of interest, intermediate coverages lead to different band structure than at the extremes of clean and saturated surfaces. Surfaces of tungsten are particularly interesting, as their atomic geometry has been shown to be exquisitely sensitive to both the surface vibrational and electronic properties. In this study, the authors looked at the surface bands of tungsten ((110) surface), as a function both of coverage and mass of overlaying atoms. The adsorbed atoms were hydrogen and the alkali atoms lithium and cesium

  20. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  1. Prognostic Significance of Remote Myocardium Alterations Assessed by Quantitative Noncontrast T1 Mapping in ST-Segment Elevation Myocardial Infarction.

    Science.gov (United States)

    Reinstadler, Sebastian J; Stiermaier, Thomas; Liebetrau, Johanna; Fuernau, Georg; Eitel, Charlotte; de Waha, Suzanne; Desch, Steffen; Reil, Jan-Christian; Pöss, Janine; Metzler, Bernhard; Lücke, Christian; Gutberlet, Matthias; Schuler, Gerhard; Thiele, Holger; Eitel, Ingo

    2018-03-01

    This study assessed the prognostic significance of remote zone native T1 alterations for the prediction of clinical events in a population with ST-segment elevation myocardial infarction (STEMI) who were treated by primary percutaneous coronary intervention (PPCI) and compared it with conventional markers of infarct severity. The exact role and incremental prognostic relevance of remote myocardium native T1 mapping alterations assessed by cardiac magnetic resonance (CMR) after STEMI remains unclear. We included 255 consecutive patients with STEMI who were reperfused within 12 h after symptom onset. CMR core laboratory analysis was performed to assess left ventricular (LV) function, standard infarct characteristics, and native T1 values of the remote, noninfarcted myocardium. The primary endpoint was a composite of death, reinfarction, and new congestive heart failure within 6 months (major adverse cardiac events [MACE]). Patients with increased remote zone native T1 values (>1,129 ms) had significantly larger infarcts (p = 0.012), less myocardial salvage (p = 0.002), and more pronounced LV dysfunction (p = 0.011). In multivariable analysis, remote zone native T1 was independently associated with MACE after adjusting for clinical risk factors (p = 0.001) or other CMR variables (p = 0.007). In C-statistics, native T1 of remote myocardium provided incremental prognostic information beyond clinical risk factors, LV ejection fraction, and other markers of infarct severity (all p remote zone native T1 to a model of prognostic CMR parameters (ejection fraction, infarct size, and myocardial salvage index) led to net reclassification improvement of 0.82 (95% confidence interval: 0.46 to 1.17; p remote zone alterations by quantitative noncontrast T1 mapping provided independent and incremental prognostic information in addition to clinical risk factors and traditional CMR outcome markers. Remote zone alterations may thus represent a novel therapeutic target and a

  2. Face recognition based on depth maps and surface curvature

    Science.gov (United States)

    Gordon, Gaile G.

    1991-09-01

    This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.

  3. Mapping physicochemical surface modifications of flame-treated polypropylene

    Directory of Open Access Journals (Sweden)

    S. Farris

    2014-04-01

    Full Text Available The aim of this work was to investigate how the surface morphology of polypropylene (PP is influenced by the surface activation mediated by a flame obtained using a mixture of air and propane under fuel-lean (equivalence ratio φ = 0.98 conditions. Morphological changes observed on flamed samples with smooth (S, medium (M, and high (H degree of surface roughness were attributed to the combined effect of a chemical mechanism (agglomeration and ordering of partially oxidized intermediate-molecular-weight material with a physical mechanism (flattening of the original roughness by the flame’s high temperature. After two treatments, the different behavior of the samples in terms of wettability was totally reset, which made an impressive surface energy of ~43 mJ•m–2 possible, which is typical of more hydrophilic polymers (e.g., polyethylene terephthalate – PET. In particular, the polar component was increased from 1.21, 0.08, and 0.32 mJ•m–2 (untreated samples to 10.95, 11.20, and 11.17 mJ•m–2 for the flamed samples S, M, and H, respectively, an increase attributed to the insertion of polar functional groups (hydroxyl and carbonyl on the C–C backbone, as demonstrated by the X-ray photoelectron spectroscopy results.

  4. A surface elevation changes of the Greenland ice sheet from SARAL/AltiKa satellite radar altimeter

    DEFF Research Database (Denmark)

    Khvorostovsky, Kirill; Simonsen, Sebastian Bjerregaard

    Radar altimeter measurements from ERS, Envisat and Cryosat-2 ESA’s satellites have been used for study of the ice sheet elevation changes for more than two decades. The follow-on SARAL ISRO/CNES mission with the radar altimeter AltiKa on board was launched in February 2013 on the same orbit...... as Envisat. However, in contrast to the previous Ku-band radar altimeters, AltiKa operates in Ka-band (36.8 GHz) resulting in smaller footprint, better vertical resolution and decreased penetration of the signal in the snowpack. This work presents Greenland ice sheet surface elevation changes (SEC) derived...... from the first years of SARAL/AltiKa operation as part of the ESA’s Climate Change Initiative program, which addresses the GrIS as one of the Essential Climate Variables. Seasonal changes in elevation and radar altimeter waveform parameters are estimated using crossover and stacking methods...

  5. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production. Copyright © 2016 Elsevier Ltd. All rights

  6. Simulation of water-surface elevations for a hypothetical 100-year peak flow in Birch Creek at the Idaho National Engineering and Environmental Laboratory, Idaho

    International Nuclear Information System (INIS)

    Berenbrock, C.; Kjelstrom, L.C.

    1997-01-01

    Delineation of areas at the Idaho National Engineering and Environmental Laboratory that would be inundated by a 100-year peak flow in Birch Creek is needed by the US Department of Energy to fulfill flood-plain regulatory requirements. Birch Creek flows southward about 40 miles through an alluvium-filled valley onto the northern part of the Idaho National Engineering and Environmental laboratory site on the eastern Snake River Plain. The lower 10-mile reach of Birch Creek that ends in Birch Creek Playa near several Idaho National Engineering and Environmental Laboratory facilities is of particular concern. Twenty-six channel cross sections were surveyed to develop and apply a hydraulic model to simulate water-surface elevations for a hypothetical 100-year peak flow in Birch Creek. Model simulation of the 100-year peak flow (700 cubic feet per second) in reaches upstream from State Highway 22 indicated that flow was confined within channels even when all flow was routed to one channel. Where the highway crosses Birch Creek, about 315 cubic feet per second of water was estimated to move downstream--115 cubic feet per second through a culvert and 200 cubic feet per second over the highway. Simulated water-surface elevation at this crossing was 0.8 foot higher than the elevation of the highway. The remaining 385 cubic feet per second flowed southwestward in a trench along the north side of the highway. Flow also was simulated with the culvert removed. The exact location of flood boundaries on Birch Creek could not be determined because of the highly braided channel and the many anthropogenic features (such as the trench, highway, and diversion channels) in the study area that affect flood hydraulics and flow. Because flood boundaries could not be located exactly, only a generalized flood-prone map was developed

  7. On the Gauss Map of Surfaces of Revolution with Lightlike Axis in Minkowski 3-Space

    Directory of Open Access Journals (Sweden)

    Minghao Jin

    2013-01-01

    Full Text Available By studying the Gauss map G and Laplace operator Δh of the second fundamental form h, we will classify surfaces of revolution with a lightlike axis in 3-dimensional Minkowski space and also obtain the surface of Enneper of the 2nd kind, the surface of Enneper of the 3rd kind, the de Sitter pseudosphere, and the hyperbolic pseudosphere that satisfy condition ΔhG=ΛG, Λ being a 3×3 real matrix.

  8. Potential of hyperspectral imaging to assess the stability of mudflat surfaces by mapping sediment characteristics

    Science.gov (United States)

    Smith, Geoff; Thomson, Andrew; Moller, Iris; Kromkamp, Jacco

    2003-03-01

    This work assessed the suitability of hyperspectral data for estimating mudflat surface characteristics related to stability. Due to the inaccessibility of intertidal areas, precise ground-based measurements of mudflat stability are difficult to conduct. Remote sensing can provide full spatial coverage and non-intrusive measurement. As stability changes on mudflats are linked to subtle differences in mudflat surface characteristics, they can potentially be mapped by hyperspectral data. Hyperspectral images were collected along with near contemporary ground measurements. An unsupervised classification gave a map which confirmed that a channel bar was mainly sand whereas soft mud dominated an adjacent embayment. Multiple regression analysis was used to relate surface characteristics to hyperspectral data to construct regression equations. Erosion shear stress was estimated directly from the hyperspectral data and also by a relationship with the surface characteristics. The results of the thematic class map matched well with the known situation at the site during image acquisition. The maps of surface characteristics highlighted the additional information that can be extracted from hyperspectral data. Stability maps, based on the erosion shear stress, can be used as a basis for predicting the likely future behaviour in this dynamic environment and will be of use for coastal zone management.

  9. Re-discovering surface mass spectrometry: chemical mapping from micro to macro

    International Nuclear Information System (INIS)

    Lloyd, K.G.; O'Keefe, D.P.

    2004-01-01

    New developments in electronics, devices, micro-encapsulation, and other areas demand the ability to acquire molecularly-specific information from smaller and smaller features. ToF-SIMS provides molecularly-specific mass spectral data, but sufficient high-mass signal has historically been difficult to obtain from organic/polymeric surfaces in the point-mapping mode of operation. Use of chemometric data reduction methods and the development of heavier primary ion sources enhance and extend the chemical information in the mapping data. Large-area chemical mapping via sample stage rastering has also opened up new applications. This capability allows single-experiment mapping of large or multiple features, provides information on surface uniformity over end-use-relevant areas, and offers potential for combinatorial and other screening applications. Examples of these applications are presented

  10. The microstructure and surface hardness of Ti6Al4V alloy implanted with nitrogen ions at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vlcak, Petr, E-mail: petr.vlcak@fs.cvut.cz [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Cerny, Frantisek [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Drahokoupil, Jan [Department of Metals, Institute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Prague (Czech Republic); Sepitka, Josef [Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Tolde, Zdenek [Department of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic)

    2015-01-25

    Highlights: • The Ti6Al4V samples were implanted with 90 keV nitrogen ions. • The samples were annealed at 500 °C during the ion implantation process. • An elevated temperature increases the mobility of the atoms and the quantity of TiN. • The hardness showed a significant increase compared to room temperature implantation. - Abstract: The effect of an elevated temperature during nitrogen ion implantation on the microstructure and on the surface hardness of Ti6Al4V titanium alloy was examined. The implantation process was carried out at fluences of 1 ⋅ 10{sup 17}, 2.7 ⋅ 10{sup 17} and 6 ⋅ 10{sup 17} cm{sup −2} and at ion energy 90 keV. The implanted samples were annealed at 500 °C during the implantation process. X-ray diffraction analysis was performed to obtain a phase characterization and a phase quantification in the implanted sample surface. The surface hardness was investigated by nanoindentation testing, and the nitrogen depth distribution was measured by Rutherford Backscattering Spectroscopy. Elevated temperature led to increased formation of a TiN compound. It was found that a mixture of TiN and an α-Ti(+N) solid solution had a predominant amount of TiN for samples with fluence of 2.7 ⋅ 10{sup 17} cm{sup −2} or higher. Elevated temperature during ion implantation caused an increase in surface hardening more towards the depth of the substrate in comparison with room temperature implantation. The hardness showed a remarkably significant increase at a fluence of 1 ⋅ 10{sup 17} and 2.7 ⋅ 10{sup 17} cm{sup −2} compared to samples implanted at the same fluences and at room temperature. There is a discussion of such mechanisms that explain the observed hardening more towards the depth of the substrate, and the increase in hardness.

  11. A Chord Diagrammatic Presentation of the Mapping Class Group of a Once Bordered Surface

    DEFF Research Database (Denmark)

    Bene, Alex

    The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichm\\"uller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path...... groupoid of Teichm\\"uller space with a discrete set objects. In particular, it leads to an infinite, but combinatorially simple, presentation of the mapping class group of an orientable surface. In this note, we give a presentation of a full mapping class group equivariant subgroupoid of the Ptolemy...

  12. Waste-surface mapping of the Fernald K-65 silos using a structured light measurement system

    International Nuclear Information System (INIS)

    Burks, B.L.; DePiero, F.W.; Dinkins, M.A.; Rowe, J.C.; Selleck, C.B.; Jacoboski, D.L.

    1992-10-01

    A remotely operated surface-mapping measurement system was developed by the Robotics ampersand Process Systems Division at Oak Ridge National Laboratory for use in the K-65 waste-storage silos at Fernald, Ohio. The mapping system used three infrared line-generating laser diodes as illumination sources and three high-resolution, low-lux, calibrated, black-and-white, charge-coupled-device video cameras as receivers. These components were combined to form structured light source range and direction sensors with six different possible emitter-receiver pairs. A technology demonstration and predeployment tests were performed at Fernald using the empty Silo 4 into which was placed rectangular objects of known dimensions. These objects were scanned by the structured light sources to demonstrate functionality and verify that the system was giving sufficiently accurate range data in three dimensions. The structured light sources were deployed in Silos 1 and 2 to scan the waste surfaces. The resulting data were merged to create three-dimensional maps of those surfaces. A bentonite clay cap was placed over the waste surfaces and surface maps were obtained. The change in surface height before and after bentonite addition was utilized as a measure of clay cap thickness

  13. Regional quantitative analysis of cortical surface maps of FDG PET images

    CERN Document Server

    Protas, H D; Hayashi, K M; Chin Lung, Yu; Bergsneider, M; Sung Cheng, Huang

    2006-01-01

    Cortical surface maps are advantageous for visualizing the 3D profile of cortical gray matter development and atrophy, and for integrating structural and functional images. In addition, cortical surface maps for PET data, when analyzed in conjunction with structural MRI data allow us to investigate, and correct for, partial volume effects. Here we compared quantitative regional PET values based on a 3D cortical surface modeling approach with values obtained directly from the 3D FDG PET images in various atlas-defined regions of interest (ROIs; temporal, parietal, frontal, and occipital lobes). FDG PET and 3D MR (SPGR) images were obtained and aligned to ICBM space for 15 normal subjects. Each image was further elastically warped in 2D parameter space of the cortical surface, to align major cortical sulci. For each point within a 15 mm distance of the cortex, the value of the PET intensity was averaged to give a cortical surface map of FDG uptake. The average PET values on the cortical surface map were calcula...

  14. Conduction abnormalities in the right ventricular outflow tract in Brugada syndrome detected body surface potential mapping.

    Science.gov (United States)

    Guillem, Maria S; Climent, Andreu M; Millet, Jose; Berne, Paola; Ramos, Rafael; Brugada, Josep; Brugada, Ramon

    2010-01-01

    Brugada syndrome (BrS) causes sudden death in patients with structurally normal hearts. Manifestation of BrS in the ECG is dynamical and most patients do not show unequivocal signs of the syndrome during ECG screening. We have obtained 67-lead body surface potential mapping recordings of 25 patients with BrS and analyzed their spatial distribution of surface potentials during ventricular activation. Six patients presented spontaneous type I ECGs during the recording. These patients showed non-dipolarities in isopotential maps at the right ventricular outflow tract (RVOT) region during the development of terminal R waves in right precordial leads. Same finding was observed in 95% of BrS patients not presenting a type I ECG. Conduction delay in the RVOT may be a consistent finding in BrS patients that can be identified by Body Surface Potential Mapping.

  15. Elevation and forest clearing effects on foraging differ between surface--and subterranean--foraging army ants (Formicidae: Ecitoninae).

    Science.gov (United States)

    Kumar, Anjali; O'Donnell, Sean

    2009-01-01

    1. Forest fragmentation often results in a matrix of open areas mixed with patches of forest. Both biotic and abiotic factors can affect consumer species' ability to utilize the altered habitat, especially for species that range over large areas searching for prey. 2. Army ants (Formicidae: Ecitoninae) are highly mobile top predators in terrestrial Neotropical ecosystems. Army ant foraging behaviour is influenced by forest clearing at lowland sites, and clearing can reduce army ant population persistence. 3. Because high temperatures are implicated in hindering above-ground army ant foraging, we predicted that forest clearing effects on army ant foraging would be reduced at higher (cooler) elevations in montane forest. We also predicted that subterranean foraging, employed by some army ant species, would buffer them from the negative effects of forest clearing. 4. We quantified the foraging rates of above-ground and underground foraging army ants at eight sites along an elevational gradient from 1090 to 1540 m a.s.l. We asked whether these two foraging strategies cause a difference in the ability of army ants to forage in open matrix areas relative to elevationally matched forested habitats, and whether elevation predicts open area vs. forest foraging rate differences. 5. As predicted, army ants that forage above-ground had lower foraging rates in open areas, but the open area vs. forest difference declined with elevation. In contrast, underground foragers were not affected by habitat type, and underground foraging rates increased with elevation. Ground surface temperatures were higher in open areas than forested areas. Temperatures declined with elevation, and temperature differences between open and forested areas decreased with elevation. 6. We conclude that army ants that forage above-ground may be restricted to forested areas due to a thermal tolerance threshold, but that they are released from this limitation at higher elevations. We further suggest that

  16. Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera.

    Directory of Open Access Journals (Sweden)

    Joost W van Dam

    Full Text Available Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F'(m, while elevated temperatures (>30 °C, only 2 °C above current average summer temperatures were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (F(v/F(m, interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced F(v/F(m and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥ 1 µg L(-1. The mixture toxicity model of Independent Action (IA described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures.

  17. Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera.

    Science.gov (United States)

    van Dam, Joost W; Negri, Andrew P; Mueller, Jochen F; Altenburger, Rolf; Uthicke, Sven

    2012-01-01

    Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII) inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte) of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F'(m)), while elevated temperatures (>30 °C, only 2 °C above current average summer temperatures) were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (F(v)/F(m)), interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced F(v)/F(m) and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥ 1 µg L(-1)). The mixture toxicity model of Independent Action (IA) described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures.

  18. Surface peptide mapping of protein I and protein III of four strains of Neisseria gonorrhoeae

    International Nuclear Information System (INIS)

    Judd, R.C.

    1982-01-01

    Whole cells and isolated outer membranes (OMs) of four strains of gonococci were surface radioiodinated with either lactoperoxidase or Iodogen (Pierce Chemical Co., Rockford, Ill.). These preparations were solubilized in sodium dodecyl sulfate and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Surface-radioiodinated protein I (PI) and PIII bands were excised from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and digested with alpha-chymotrypsin, and the resultant 125 I-peptide fragments were resolved by high-voltage electrophoresis and thin-layer chromatography (i.e., surface peptide mapping). Radioemitting peptidic fragments were visualized by autoradiography. Results demonstrated that the PI molecule of each gonococcal strain studied had unique iodinatable peptides exposed on the surface of whole cells and OMs, whereas PIIIs appeared to have the same portion of the molecule exposed on the surface of bacteria or OMs, regardless of the gonococcal strain from which they were isolated. Many more radiolabeled peptides were seen in surface peptide maps of PIs from radiolabeled OMs than in those from radioiodinated whole cells, whereas different peptidic fragments were seen in the surface peptide maps of PIIIs from radiolabeled OMs than were seen in those from radiolabeled whole cells. These data suggest that PI may contribute strain-specific antigenic determinants and PIII may contribute cross-reactive determinants and that the surface exposure of PI and PIII is different in isolated OMs than in the OM of intact gonococci

  19. Exercise body surface mapping in patients with left ventricular hypertrophy; Comparison with stress thallium scans (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hidenori; Hagiwara, Hidenori; Ihara, Keiko; Shiraki, Teruo; Yamanari, Hiroshi; Matsubara, Katashi; Saito, Daiji; Tsuji, Takao; Haraoka, Shoichi (Okayama Univ. (Japan). School of Medicine)

    1989-09-01

    To evaluate exercise-induced myocardial ischemia in patients with electrocardiographic evidence of left ventricular hypertrophy (LVH), including ST{center dot}T changes, body surface maps (QRST area maps) were recorded using 87 lead points before and after exercise. The patterns of the subtraction QRST area maps (S-maps) were compared with the findings of stress thallium (Tl) scans in 31 patients with hypertrophic cardiomyopathy and in five with essential hypertension. All 18 patients whose S-maps revealed changes less than -40 {mu}VS or only an increase over the anterior chest region showed no positive findings on the stress Tl scans. However, there were clearly positive findings on stress Tl scans in eight (89%) of nine patients whose S-maps revealed changes greater than -40 {mu}VS over a wide precordial region or in six (67%) of nine patients whose S-maps revealed increases over the anterior chest region and had accompanying changes greater than -40 {mu}VS somewhere over the precordial region. These results suggested that exercise QRST area maps could differentiate exercise-induced myocardial ischemia from LVH with ST{center dot}T changes. (author).

  20. Surface Water and Flood Extent Mapping, Monitoring, and Modeling Products and Services for the SERVIR Regions

    Science.gov (United States)

    Anderson, Eric

    2016-01-01

    SERVIR is a joint NASA - US Agency for International Development (USAID) project to improve environmental decision-making using Earth observations and geospatial technologies. A common need identified among SERVIR regions has been improved information for disaster risk reduction and in specific surface water and flood extent mapping, monitoring and forecasting. Of the 70 SERVIR products (active, complete, and in development), 4 are related to surface water and flood extent mapping, monitoring or forecasting. Visit http://www.servircatalog.net for more product details.

  1. The Gauss Map of Complete Minimal Surfaces with Finite Total Curvature

    Directory of Open Access Journals (Sweden)

    PEDRO A. HINOJOSA

    2013-11-01

    Full Text Available In this paper we are concerned with the image of the normal Gauss map of a minimal surface immersed in ℝ3 with finite total curvature. We give a different proof of the following theorem of R. Osserman: The normal Gauss map of a minimal surface immersed in ℝ3 with finite total curvature, which is not a plane, omits at most three points of2 Moreover, under an additional hypothesis on the type of ends, we prove that this number is exactly 2.

  2. Improved mapping of flood extent and flood depth using space based SAR data in combination with very high resolution digital elevation data

    Science.gov (United States)

    Zwenzner, H.

    2009-04-01

    Due to their capability to present a synoptic view of the spatial extent of floods, remote sensing technology, and especially synthetic aperture radar (SAR) systems, have been successfully applied for flood mapping and monitoring applications during the past decades. However, the quality and accuracy of the flood masks and derived flood parameters highly depend on the geometric precision of the satellite data as well as on the classification accuracy of the derived water mask. The incorporation of high resolution elevation data from LiDAR measurements for example can help to improve the plausibility and reliability of the flood masks. On the basis of the improved flood masks more sophisticated parameters such as inundation depth can be derived. A cross section approach is presented that allows the dynamic fitting of the position of the flood mask profiles according to the underlying terrain information from the DEM. The method was tested on the River Severn (UK), for which TerraSAR-X stripmap data with 3 meters pixel spacing acquired during the 2007 summer flood are used in combination with a LiDAR DEM of 2 meters pixel size. Initially, the cross sections were established perpendicularly to the major flow direction along the 7 km reach of the River Severn. The profile spacing was set to 50 meters. For each cross section profile the water level was extracted at the position of the left and the right border of the flood. On the basis of the longitudinal profile, which contains the sequence of all cross section profiles, a moving average was applied on the water levels in order to get a smooth water surface and to reduce single outliers. However, in case of obvious irregularities in the water levels illustrated in the longitudinal profile and caused by misclassification the respective cross-sections had to be excluded from further analysis. It must be taken into account, that the approach is mainly affected by possible classification errors in the dimension of more

  3. A novel algorithm for delineating wetland depressions and mapping surface hydrologic flow pathways using LiDAR data

    Science.gov (United States)

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...

  4. The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights

    Science.gov (United States)

    Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.; hide

    2012-01-01

    The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.

  5. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data

    OpenAIRE

    Ugur Avdan; Gordana Jovanovska

    2016-01-01

    Land surface temperature is an important factor in many areas, such as global climate change, hydrological, geo-/biophysical, and urban land use/land cover. As the latest launched satellite from the LANDSAT family, LANDSAT 8 has opened new possibilities for understanding the events on the Earth with remote sensing. This study presents an algorithm for the automatic mapping of land surface temperature from LANDSAT 8 data. The tool was developed using the LANDSAT 8 thermal infrared sensor Band ...

  6. Low Elevation Coastal Zone (LECZ) Urban-Rural Population Estimates, Global Rural-Urban Mapping Project (GRUMP), Alpha Version

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low Elevation Coastal Zone (LECZ) Urban-Rural Estimates consists of country-level estimates of urban, rural and total population and land area country-wide and...

  7. Low Elevation Coastal Zone (LECZ) Urban-Rural Population Estimates, Global Rural-Urban Mapping Project (GRUMP), Alpha Version

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low Elevation Coastal Zone (LECZ) Urban-Rural Population Estimates consists of country-level estimates of urban, rural and total population and land area...

  8. Dipyridamole Body Surface Potential Mapping: Noninvasive Differentiation of Syndrome X from Coronary Artery Disease

    Czech Academy of Sciences Publication Activity Database

    Boudík, F.; Anger, Z.; Aschermann, M.; Vojáček, J.; Tomečková, Marie

    2002-01-01

    Roč. 35, č. 3 (2002), s. 181-191 ISSN 0022-0736 R&D Projects: GA MZd IZ4038 Keywords : body surface potential mapping * dipyridamole * coronary artery disease * syndrome X Subject RIV: BD - Theory of Information Impact factor: 0.599, year: 2002

  9. Integration Over Curves and Surfaces Defined by the Closest Point Mapping

    Science.gov (United States)

    2015-04-01

    3 Numerical simulations In this section we investigate the convergence of our numerical integration using simple Riemann sum over uniform Cartesian...be considered integration of functions defined on suitable hypercubes, periodically extended. In such settings, simple Riemann sums on Cartesian grids... Integration over curves and surfaces defined by the closest point mapping Catherine Kublik∗ and Richard Tsai† Abstract We propose a new formulation

  10. Mapping surface flow in low gradient areas with thermal remote sensing

    DEFF Research Database (Denmark)

    Prinds, Christian; Petersen, Rasmus Jes; Greve, Mogens Humlekrog

    Thermal infrared (TIR) imagery has long been used for mapping groundwater-surface water interactions and mainly for locating areas of groundwater seepage in lakes and shorelines (Rundquist et al. 1985, Banks et al. 1996). In this study, we used the method for locating discharge from tile drains...

  11. Surface melt effects on Cryosat-2 elevation retrievals in the ablation zone of the Greenland ice sheet

    Science.gov (United States)

    Slater, T.; McMillan, M.; Shepherd, A.; Leeson, A.; Cornford, S. L.; Hogg, A.; Gilbert, L.; Muir, A. S.; Briggs, K.

    2017-12-01

    Over the past two decades, there has been an acceleration in the rate of mass losses from the Greenland ice sheet. This acceleration is, in part, attributed to an increasingly negative surface mass balance (SMB), linked to increasing melt water runoff rates due to enhanced surface melting. Understanding the past, present and future evolution in surface melting is central to ongoing monitoring of ice sheet mass balance and, in turn, to building realistic future projections. Currently, regional climate models are commonly used for this purpose, because direct in-situ observations are spatially and temporally sparse due to the logistics and resources required to collect such data. In particular, modelled SMB is used to estimate the extent and magnitude of surface melting, which influences (1) many geodetic mass balance estimates, and (2) snowpack microwave scattering properties. The latter is poorly understood and introduces uncertainty into radar altimeter estimates of ice sheet evolution. Here, we investigate the changes in CryoSat-2 waveforms and elevation measurements caused by the onset of surface melt in the summer months over the ablation zone of the Greenland ice sheet. Specifically, we use CryoSat-2 SARIn mode data acquired between 2011 and 2016, to characterise the effect of high variability in surface melt during this period, and to assess the associated impact on estimates of ice mass balance.

  12. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    Science.gov (United States)

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.

  13. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS

    Science.gov (United States)

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  14. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  15. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified

  16. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    Science.gov (United States)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated

  19. Recent near-surface wind directions inferred from mapping sand ripples on Martian dunes

    Science.gov (United States)

    Liu, Zac Yung-Chun; Zimbelman, James R.

    2015-11-01

    The High Resolution Imaging Science Experiment (HiRISE) provides the capability to obtain orbital images of Mars that are of sufficient resolution to record wind ripple patterns on the surfaces of sand dunes. Ripple patterns provide valuable insights into aeolian erosion and deposition on Earth and Mars. In this study, we develop a systematic mapping procedure to examine sand ripple orientations and create surface process maps to evaluate the recent wind flow over the dunes, as well as the interplay of wind and dune shape. By carefully examining the morphology of the dunes and the location of grainflow and grainfall on dune slipfaces, the recent near-surface wind direction (short-term wind) can be identified. Results from the analysis of three dune fields on the floors of craters west of Hellas Basin show regional N, NW, SE, and ESE wind directions. In the three adjacent dune fields, surface process and flow maps suggest a complex wind pattern. The comparison of short-term wind with dune-constructing wind (long-term wind) shows NE and ESE winds may be persistent at least for the past thousands of years. The results also show that the orientation of inferred wind direction on linear dunes is correlated with the crestlines, which suggest that form-flow interaction may take place. The results of local wind flow documentation should improve Martian surface wind modeling and advance our understanding of sand transport, as well as the rates of sand mobility on both Mars and Earth.

  20. Maps of the topography of water surface levels in the Danube Delta, between the main branches

    Directory of Open Access Journals (Sweden)

    BONDAR Constantin

    2016-12-01

    Full Text Available Within the project “Hydrological Monitoring of Wetland Areas Using SAR Techniques (Hydro-SAR”, concluded by the TERRASIGNA (Romania with the European Space Agency (ESA, the task of GeoEcoMar was to track and check the correlation of data provided by InSAR techniques with ground observations and measurements in the Danube Delta. Activities in the field and laboratory enabled elaboration of maps of vector fields for the water flow directions on the Danube Delta territory, based on the relief of the water surface levels at 450, 400, 350, 300, 250, 200, 150, 100, 50 and 0 cm, measured at Tulcea hydrologic station. In order to elaborate the maps of water surface levels, the altimetric stability of hydrometric gauges from the Danube Delta territorry was checked by establishing the Earth crust subsidence in each gauge location. Interpretation of recorded data shows a relative low subsidence rate for the location of the hydrometric gauge in Tulcea (observations recorded for the period 1858-2013 selected as hydrometric reference point, with the origin of the zero of the gauge situated at 0.57 m altitude relative to the Black Sea – Sulina reference system. The paper presents isoline maps of the water surface levels on the surface of the Danube Delta between the main distributaries (Chilia – Sulina – Sf. Gheorghe, for the above mentioned water surface levels.

  1. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    Science.gov (United States)

    Manakos, Ioannis; Chatzopoulos-Vouzoglanis, Konstantinos; Petrou, Zisis I.; Filchev, Lachezar; Apostolakis, Antonis

    2015-01-01

    The National Geomatics Center of China (NGCC) produced Global Land Cover (GlobalLand30) maps with 30 m spatial resolution for the years 2000 and 2009-2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009-2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m) orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  2. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    Directory of Open Access Journals (Sweden)

    Ioannis Manakos

    2014-12-01

    Full Text Available The National Geomatics Center of China (NGCC produced Global Land Cover (GlobalLand30 maps with 30 m spatial resolution for the years 2000 and 2009–2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009–2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  3. Evaluating near-surface soil moisture using Heat Capacity Mapping Mission data

    Science.gov (United States)

    Heilman, J. L.; Moore, D. G.

    1982-01-01

    Four dates of Heat Capacity Mapping Mission (HCMM) data were analyzed in order to evaluate HCMM thermal data use in estimating near-surface soil moisture in a complex agricultural landscape. Because of large spatial and temporal ground cover variations, HCMM radiometric temperatures alone did not correlate with soil water content. The radiometric temperatures consisted of radiance contributions from different canopies and their respective soil backgrounds. However, when surface soil temperatures were empirically estimated from HCMM temperatures and percent cover of each pixel, a highly significant correlation was obtained between the estimated soil temperatures and near-surface soil water content.

  4. DNA self-assembly on graphene surface studied by SERS mapping

    DEFF Research Database (Denmark)

    Botti, Sabina; Rufoloni, Alessandro; Laurenzi, Susanna

    2016-01-01

    The self-assembly of double-stranded DNA (dsDNA) segments on two variations of graphene surfaces having nano-platelets with different lateral sizes and thicknesses was investigated using surface enhanced Raman spectroscopy (SERS) and electrical impedance spectroscopy (EIS) techniques. Due...... nano-platelets. Results from the EIS analysis supported the SERS findings and confirmed that SERS mapping is a reliable method for a rapid monitoring of the procedures used to interface DNA with graphene surfaces. The present study, linking DNA anchoring morphology to the conductive properties of nano...

  5. Hydrolytic Stability of 3-Aminopropylsilane Coupling Agent on Silica and Silicate Surfaces at Elevated Temperatures

    DEFF Research Database (Denmark)

    Okhrimenko, Denis; Budi, Akin; Ceccato, Marcel

    2017-01-01

    in coupling efficiency, thus decreasing the product quality and the mechanical strength of the polymer-inorganic material interface. Therefore, a better understanding of the chemical state and stability of APS on inorganic surfaces is needed. In this work, we investigated APS adhesion on silica wafers...... and compared its properties with those on complex silicate surfaces such as those used by industry (mineral fibers and fiber melt wafers). The APS was deposited from aqueous and organic (toluene) solutions and studied with surface sensitive techniques, including X-ray photoelectron spectroscopy (XPS), atomic......- and laboratory-scale APS deposition methods and increasing adhesion and stability, thus increasing the quality and effectiveness of materials where APS is used as a coupling agent....

  6. Frontiers in Non-invasive Cardiac Mapping: Rotors in Atrial Fibrillation - Body Surface Frequency-Phase Mapping

    Science.gov (United States)

    Atienza, Felipe; Climent, Andreu M; Guillem, María S; Berenfeld, Omer

    2017-01-01

    Experimental and clinical data demonstrate that atrial fibrillation (AF) maintenance in animals and groups of patients depends on localized reentrant sources localized primarily to the pulmonary veins (PVs) and the left atrium (LA) posterior wall in the case of paroxysmal AF but elsewhere, including the right atrium (RA), in the case of persistent AF. Moreover, AF can be eliminated by directly ablating AF-driving sources or "rotors," that exhibit high-frequency, periodic activity. The RADAR-AF randomized trial demonstrated that an ablation procedure based on a more target-specific strategy aimed at eliminating high frequency sites responsible for AF maintenance is as efficacious as and safer than empirically isolating all the PVs. In contrast to the standard ECG, global atrial noninvasive frequency analysis allows non-invasive identification of high-frequency sources before the arrival at the electrophysiology laboratory for ablation. Body surface potential map (BSPM) replicates the endocardial distribution of DFs with localization of the highest DF (HDF) and can identify small areas containing the high-frequency sources. Overall, BSPM had a sensitivity of 75% and specificity of 100% for capturing intracardiac EGMs as having LA-RA DF gradient. However, raw BSPM data analysis of AF patterns of activity showed incomplete and instable reentrant patterns of activation. Thus, we developed an analysis approach whereby a narrow band-pass filtering allowed selecting the electrical activity projected on the torso at the HDF, which stabilized the projection of rotors that potentially drive AF on the surface. Consequently, driving reentrant patterns (“rotors”) with spatiotemporal stability during >70% of the AF time could be observed noninvasibly after HDF-filtering. Moreover, computer simulations found that the combination of BSPM phase mapping with DF analysis enabled the discrimination of true rotational patterns even during the most complex AF. Altogether, these

  7. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    Science.gov (United States)

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land

  8. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter

    2018-04-01

    Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

  9. Detection of surface elevation changes using an unmanned aerial vehicle on the debris-free Storbreen glacier in Norway

    Science.gov (United States)

    Kraaijenbrink, Philip; Andreassen, Liss; Immerzeel, Walter

    2016-04-01

    Recent studies have shown that the application of unmanned aerial vehicles (UAVs) has great potential to investigate the dynamic behavior of glaciers. The studies have successfully deployed UAVs over generally contrast-rich surfaces of debris-covered glaciers and highly crevassed bare ice glaciers. In this study, the potential of UAVs in glaciology is further exploited, as we use a fixed-wing UAV over the largely snow-covered Storbreen glacier in Norway in September 2015. The acquired UAV-imagery was processed into accurate digital elevation models and image mosaics using a Structure from Motion workflow. Georeferencing of the data was obtained by ingesting ground control points into the workflow that were accurately measured with a differential global navigation satellite system (DGNSS). Geodetic accuracy was determined by comparison with DGNSS surface profiles and stake positions that were measured on the same day. The processed data were compared with a LIDAR survey and airborne imagery acquisition from September and October 2009 to examine mass loss patterns and glacier retreat. Results show that the UAV is capable of producing high-quality elevation models and image mosaics for the low-contrast snow-covered Storbreen at unprecedented detail. The accuracy of the output product is lower when compared to contrast-rich debris-covered glaciers, but still considerably more accurate than spaceborne data products. Comparison with LIDAR data shows a spatially heterogeneous downwasting pattern of about 0.75 m a-1 over 2009-2015 for the upper part of Storbreen. The lower part exhibits considerably more downwasting in the range of 0.9-2.1 m a-1. We conclude that UAVs can be valuable for surveys of snow-covered glaciers to provide sufficient accurate elevation models and image mosaics, and we recommend the use of UAVs for the routine monitoring of benchmark glaciers such as Storbreen.

  10. Planetary maps - Passports for the mind

    International Nuclear Information System (INIS)

    Anderson, C.M.

    1990-01-01

    The various types of planetary maps are reviewed. Included are basic descriptions of planimetric, topographic, geologic, and digital maps. It is noted that planimetric maps are pictorial representations of a planet's round surface flattened into a plane, such as controlled photomosaic maps and shaded relief maps. Topographic maps, those usually made with data from altimeters and stereoscopic images, have contour lines indicating the shapes and elevations of landforms. Geologic maps carry additional information about landforms, such as rock types, the processes that formed them, and their relative ages. The International Astronomical Union nomenclature system is briefly discussed, pointing out that the Union often assigns themes to areas to be mapped

  11. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise.

    Science.gov (United States)

    Krauss, Ken W; Cormier, Nicole; Osland, Michael J; Kirwan, Matthew L; Stagg, Camille L; Nestlerode, Janet A; Russell, Marc J; From, Andrew S; Spivak, Amanda C; Dantin, Darrin D; Harvey, James E; Almario, Alejandro E

    2017-04-21

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr -1 ), with surface elevation change of 4.2-11.0 mm yr -1 compared with 1.5-7.2 mm yr -1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  12. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise

    Science.gov (United States)

    Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.

    2017-01-01

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  13. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  14. Interface pressure mapping pilot study to select surfaces that effectively redistribute pediatric occipital pressure.

    Science.gov (United States)

    Higer, Samantha; James, Thomas

    2016-02-01

    The aim of this pilot study was to better inform clinical decisions to prevent pediatric occipital pressure ulcers with quantitative data to choose an appropriate reactive support surface. A commercially available capacitive pressure mapping system (XSENSOR, X3 Medical Seat System, Calgary, Canada) was used to evaluate a standard pediatric mattress and four commercially available pressure-redistributing support surfaces. The pressure mapping system was validated for use in the pediatric population through studies on sensitivity, accuracy, creep, and repeatability. Then, a pilot pressure mapping study on healthy children under 6 years old (n = 22) was performed to determine interface pressure and pressure distribution between the occipital region of the skull and each surface: standard mattress, gel, foam, air and fluidized. The sensor was adequate to measure pressure generated by pediatric occipital loading, with 0.5-9% error in accuracy in the 25-95 mmHg range. The air surface had the lowest mean interface pressure (p pressure index (PPI), defined as the peak pressure averaged over four sensels, (p pressure for mattress, foam, fluidized, gel, and air materials were 24.8 ± 4.42, 24.1 ± 1.89, 19.4 ± 3.25, 17.9 ± 3.10, and 14.2 ± 1.41 mmHg, respectively. The air surface also had the most homogenous pressure distribution, with the highest mean to PPI ratio (p surfaces (p surface was the most effective pressure-redistributing material for pediatric occipital pressure as it had the lowest interface pressure and a homogeneous pressure distribution. This implies effective envelopment of the bony prominence of the occiput and increasing contact area to decrease peak pressure points. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  15. Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace-Beltrami embedding space.

    Science.gov (United States)

    Gahm, Jin Kyu; Shi, Yonggang

    2018-05-01

    Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Mineral Physicochemistry based Geoscience Products for Mapping the Earth's Surface and Subsurface

    Science.gov (United States)

    Laukamp, C.; Cudahy, T.; Caccetta, M.; Haest, M.; Rodger, A.; Western Australian Centre of Excellence3D Mineral Mapping

    2011-12-01

    Mineral maps derived from remotes sensing data can be used to address geological questions about mineral systems important for exploration and mining. This paper focuses on the application of geoscience-tuned multi- and hyperspectral sensors (e.g. ASTER, HyMap) and the methods to routinely create meaningful higher level geoscience products from these data sets. The vision is a 3D mineral map of the earth's surface and subsurface. Understanding the physicochemistry of rock forming minerals and the related diagnostic absorption features in the visible, near, mid and far infrared is a key for mineral mapping. For this, reflectance spectra obtained with lab based visible and infrared spectroscopic (VIRS) instruments (e.g. Bruker Hemisphere Vertex 70) are compared to various remote and proximal sensing techniques. Calibration of the various sensor types is a major challenge with any such comparisons. The spectral resolution of the respective instruments and the band positions are two of the main factors governing the ability to identify mineral groups or mineral species and compositions of those. The routine processing method employed by the Western Australian Centre of Excellence for 3D Mineral Mapping (http://c3dmm.csiro.au) is a multiple feature extraction method (MFEM). This method targets mineral specific absorption features rather than relying on spectral libraries or the need to find pure endmembers. The principle behind MFEM allows us to easily compare hyperspectral surface and subsurface data, laying the foundation for a seamless and accurate 3-dimensional mineral map. The advantage of VIRS techniques for geoscientific applications is the ability to deliver quantitative mineral information over multiple scales. For example, C3DMM is working towards a suite of ASTER-derived maps covering the Australian continent, scheduled for publication in 2012. A suite of higher level geoscience products of Western Australia (e.g. AlOH group abundance and composition) are now

  17. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...

  18. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  19. Functional mapping of cell surface proteins with localized stimulation of single cells

    Science.gov (United States)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  20. Mapping Protein Binding Sites and Conformational Epitopes Using Cysteine Labeling and Yeast Surface Display.

    Science.gov (United States)

    Najar, Tariq Ahmad; Khare, Shruti; Pandey, Rajesh; Gupta, Satish K; Varadarajan, Raghavan

    2017-03-07

    We describe a facile method for mapping protein:ligand binding sites and conformational epitopes. The method uses a combination of Cys scanning mutagenesis, chemical labeling, and yeast surface display. While Ala scanning is widely used for similar purposes, often mutation to Ala (or other amino acids) has little effect on binding, except at hotspot residues. Many residues in physical contact with a binding partner are insensitive to substitution with Ala. In contrast, we show that labeling of Cys residues in a binding site consistently abrogates binding. We couple this methodology to yeast surface display and deep sequencing to map conformational epitopes targeted by both monoclonal antibodies and polyclonal sera as well as a protein:ligand binding site. The method does not require purified protein, can distinguish buried and exposed residues, and can be extended to other display formats, including mammalian cells and viruses, emphasizing its wide applicability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  2. A Novel Sensory Mapping Design for Bipedal Walking on a Sloped Surface

    Directory of Open Access Journals (Sweden)

    Chiao-Min Wu

    2012-10-01

    Full Text Available This paper presents an environment recognition method for bipedal robots using a time-delay neural network. For a robot to walk in a varying terrain, it is desirable that the robot can adapt to any environment encountered in real-time. This paper aims to develop a sensory mapping unit to recognize environment types from the input sensory data based on an artificial neural network approach. With the proposed sensory mapping design, a bipedal walking robot can obtain real-time environment information and select an appropriate walking pattern accordingly. Due to the time-dependent property of sensory data, the sensory mapping is realized by using a time-delay neural network. The sensory data of earlier time sequences combined with current sensory data are sent to the neural network. The proposed method has been implemented on the humanoid robot NAO for verification. Several interesting experiments were carried out to verify the effectiveness of the sensory mapping design. The mapping design is validated for the uphill, downhill and flat surface cases, where three types of environment can be recognized by the NAO robot online.

  3. Heat Capacity Mapping Mission (HCMM) thermal surface water mapping and its correlation to LANDSAT. [Lake Anna, Virginia

    Science.gov (United States)

    Colvocoresses, A. P. (Principal Investigator)

    1980-01-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C.

  4. Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping.

    OpenAIRE

    Suckau, D; Mak, M; Przybylski, M

    1992-01-01

    Aminoacetylation of lysine residues and the modification of arginine by 1,2-cyclohexanedione to N7,N8-(dihydroxy-1,2-cyclohexylidene)arginine were used for probing the surface topology of hen-eggwhite lysozyme as a model protein. The molecular identification of lysine and arginine modification sites was provided by molecular weight determinations of modified and unmodified tryptic peptide mixtures (peptide mapping) using 252Cf plasma desorption mass spectrometry. At conditions of limited chem...

  5. Exercise body surface potential mapping in single and multiple coronary artery disease

    International Nuclear Information System (INIS)

    Montague, T.J.; Witkowski, F.X.; Miller, R.M.; Johnstone, D.E.; MacKenzie, R.B.; Spencer, C.A.; Horacek, B.M.

    1990-01-01

    Body surface ST integral maps were recorded in 36 coronary artery disease (CAD) patients at: rest; peak, angina-limited exercise; and, 1 and 5 min of recovery. They were compared to maps of 15 CAD patients who exercised to fatigue, without angina, and eight normal subjects. Peak exercise heart rates were similar (NS) in all groups. With exercise angina, patients with two and three vessel CAD had significantly (p less than 0.05) greater decrease in the body surface sum of ST integral values than patients with single vessel CAD. CAD patients with exercise fatigue, in the absence of angina, had decreased ST integrals similar (NS) to patients with single vessel CAD who manifested angina and the normal control subjects. There was, however, considerable overlap among individuals; some patients with single vessel CAD had as much exercise ST integral decrease as patients with three vessel CAD. All CAD patients had persistent ST integral decreases at 5 min of recovery and there was a direct correlation of the recovery and peak exercise ST changes. Exercise ST changes correlated, as well, with quantitative CAD angiographic scores, but not with thallium perfusion scores. These data suggest exercise ST integral body surface mapping allows quantitation of myocardium at ischemic risk in patients with CAD, irrespective of the presence or absence of ischemic symptoms during exercise. A major potential application of this technique is selection of CAD therapy guided by quantitative assessment of ischemic myocardial risk

  6. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  7. Map of natural gamma radiation in Spain: radiometric characterization of different types of surfaces

    International Nuclear Information System (INIS)

    Suarez Mahou, E.; Fernandez Amigot, J.A.; Botas Medina, J.

    1997-01-01

    The gamma radioactivity flowing from ground and rocks is due to the presence in these of uranium, thorium and potassium-40. The method of radiometric characterization depends on the purpose of the undertaking. Radiometric characterization can be realized on big surfaces (tens or hundreds of square kilometres studied on a national scale), medium size surfaces (50 to 1000 square kilometres, for example, in epidemiological or biological studies in areas with a determined radiometric background) small surfaces of less than 50 square kilometres (industrial sites, pre-operational studies, etc.). This article considers aspects of radiometric characterization on surfaces of interest and describes the contribution of the MARNA (Natural Provisional Radiation Map of Spain) Project selection and radiometric characterization

  8. Groundwater withdrawals 1976, 1990, and 2000--10 and land-surface-elevation changes 2000--10 in Harris, Galveston, Fort Bend, Montgomery, and Brazoria Counties, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.

    2013-01-01

    The study area comprising Harris County and parts of Galveston, Fort Bend, Montgomery, and Brazoria Counties in southeastern Texas forms part of one of the largest areas of land-surface-elevation change in the United States. Land-surface-elevation change in the study area primarily is caused by the withdrawal of groundwater. Groundwater withdrawn from the Chicot and Evangeline aquifers has been the primary source of water for municipal supply, industrial and commercial use, and irrigation in the study area. Groundwater withdrawals cause compaction of clay and silt layers abundant in the aquifers, which has in turn resulted in the widespread, substantial land-surface-elevation changes in the region with increased flooding. To estimate land-surface-elevation changes, the U.S. Geological Survey (USGS), in cooperation with the Harris-Galveston Subsidence District (HGSD), documented land-surface-elevation changes in the study area that occurred during 2000–10 and 2005–10 based on elevation data measured by 11 USGS borehole-extensometer sites, a National Geodetic Survey Continuously Operating Reference Station, and Global Positioning System Port-A-Measure (PAM) sites operated by the HGSD and the Fort Bend Subsidence District. Groundwater withdrawals in the study area also were documented for 1976, 1990, and 2000–10.

  9. Elevating your elevator talk

    Science.gov (United States)

    An important and often overlooked item that every early career researcher needs to do is compose an elevator talk. The elevator talk, named because the talk should not last longer than an average elevator ride (30 to 60 seconds), is an effective method to present your research and yourself in a clea...

  10. A New Method to Estimate Changes in Glacier Surface Elevation Based on Polynomial Fitting of Sparse ICESat—GLAS Footprints

    Directory of Open Access Journals (Sweden)

    Tianjin Huang

    2017-08-01

    Full Text Available We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona’nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method.

  11. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    Science.gov (United States)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  12. Prediction of the shape of inline wave force and free surface elevation using First Order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe

    2017-01-01

    In design of substructures for offshore wind turbines, the extreme wave loads which are of interest in Ultimate Limit States are often estimated by choosing extreme events from linear random sea states and replacing them by either stream function wave theory or the NewWave theory of a certain...... as the free surface elevation time series. The discrepancies between the FORM results and the measurements is found to be a result of more nonlinearity in the selected events than second order and negligence of the drag forces above still water level in the present analysis. This paper is one step toward more...... precise prediction of extreme wave shape and loads. Ultimately such waves can be used in the design process of offshore structures. The approach can be generalized to fully nonlinear models....

  13. De novo biofilm community assembly from tap water source communities favors Nitrotoga over Nitrospira under elevated nitrite surface loading

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    -through biofilm system to continuous immigration from a tap water metacommunity while applying different nitrite surface loading rates. After 63 days of operation, we extracted biofilms and analyzed the community composition via Illumina MiSeq targeting the 16S rRNA gene. Previous studies have shown...... in the metacommunity, Nitrotoga and Nitrospira were found at near equal abundances, in the biofilm community, elevated nitrite loading strongly selected for Nitrotoga over Nitrospira. The biofilms were also significantly different in their alpha-diversity (p... of the biofilm community decreased significantly (p=0.004) compared to the metacommunity. These observations indicate that the selection towards Nitrotoga and Nitrospira dominated community assembly under different nitrite loadings. Lastly, we compared our observations of community composition...

  14. [Responses of rice growth and development to elevated near-surface layer ozone (O3) concentration: a review].

    Science.gov (United States)

    Yang, Lian-xin; Wang, Yu-long; Shi, Guang-yao; Wang, Yun-xia; Zhu, Jian-guo

    2008-04-01

    Ozone (O3) is recognized as one of the most important air pollutants. At present, the worldwide average tropospheric O3 concentration has been increased from an estimated pre-industrial level of 38 nl L(-1) (25-45 nl L(-1), 8-h summer seasonal average) to approximately 50 nl L(-1) in 2000, and to 80 nl L(-1) by 2100 based on most pessimistic projections. Oryza sativa L. (rice) is the most important grain crop in the world, and thus, to correctly evaluate how the elevated near-surface layer O3 concentration will affect the growth and development of rice is of great significance. This paper reviewed the chamber (including closed and open top chamber)-based studies about the effects of atmospheric ozone enrichment on the rice visible injury symptoms, photosynthesis, water relationship, phenology, dry matter production and allocation, leaf membrane protective system, and grain yield and its components. Further research directions in this field were discussed.

  15. Effects of rapid, high-dose, elevated temperature ion implantation on the microstructure and tribology of ferrous surfaces

    Science.gov (United States)

    Williamson, D. L.; Wei, R.; Wilbur, P. J.

    1991-05-01

    High-current, broad-beam ion implantation at 60 keV using a relatively simple system produces elevated target temperatures and results in remarkable enhancements in the wear resistance of ferrous materials compared to lower implantation temperatures. Effects of N, C and O implantation into AISI 304 stainless steel at 200 and 400°C on the microstructure and tribology are evaluated by conversion electron Mössbauer spectroscopy, X-ray diffraction, and a specially designed pin-on-disc tribotester. C and N implantation at 400°C yields unusually thick layers of austenite containing high concentrations of C and N in interstitial solid solution thereby accounting for the enhanced mechanical properties. O implantation at 400°C results in Fe 2O 3-like oxide rather than O in solid solution so a dispersion strengthening of the surface layer is suggested.

  16. Probing and mapping the binding sites on streptavidin imprinted polymer surface

    International Nuclear Information System (INIS)

    Duman, Memed

    2014-01-01

    Molecular imprinting is an effective technique for preparing recognition sites which act as synthetic receptors on polymeric surfaces. Herein, we synthesized MIP surfaces with specific binding sites for streptavidin and characterized them at nanoscale by using two different atomic force microscopy (AFM) techniques. While the single molecule force spectroscopy (SMFS) reveals the unbinding kinetics between streptavidin molecule and binding sites, simultaneous topography and recognition imaging (TREC) was employed, for the first time, to directly map the binding sites on streptavidin imprinted polymers. Streptavidin modified AFM cantilever showed specific unbinding events with an unbinding force around 300 pN and the binding probability was calculated as 35.2% at a given loading rate. In order to prove the specificity of the interaction, free streptavidin molecules were added to AFM liquid cell and the binding probability was significantly decreased to 7.6%. Moreover, the recognition maps show that the smallest recognition site with a diameter of around ∼ 21 nm which corresponds to a single streptavidin molecule binding site. We believe that the potential of combining SMFS and TREC opens new possibilities for the characterization of MIP surfaces with single molecule resolution under physiological conditions. - Graphical abstract: Simultaneous Topography and RECognition (TREC) imaging is a novel characterization technique to reveal binding sites on molecularly imprinted polymer surfaces with single molecule resolution under physiological conditions. - Highlights: • Highly specific streptavidin printed polymer surfaces were synthesized. • Unbinding kinetic rate of single streptavidin molecule was studied by SMFS. • The distribution of binding pockets was revealed for the first time by TREC imaging. • TREC showed that the binding pockets formed nano-domains on MIP surface. • SMFS and TREC are powerful AFM techniques for characterization of MIP surfaces

  17. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    Science.gov (United States)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  18. Staff Recall Travel Time for ST Elevation Myocardial Infarction Impacted by Traffic Congestion and Distance: A Digitally Integrated Map Software Study.

    Science.gov (United States)

    Cole, Justin; Beare, Richard; Phan, Thanh G; Srikanth, Velandai; MacIsaac, Andrew; Tan, Christianne; Tong, David; Yee, Susan; Ho, Jesslyn; Layland, Jamie

    2017-01-01

    Recent evidence suggests hospitals fail to meet guideline specified time to percutaneous coronary intervention (PCI) for a proportion of ST elevation myocardial infarction (STEMI) presentations. Implicit in achieving this time is the rapid assembly of crucial catheter laboratory staff. As a proof-of-concept, we set out to create regional maps that graphically show the impact of traffic congestion and distance to destination on staff recall travel times for STEMI, thereby producing a resource that could be used by staff to improve reperfusion time for STEMI. Travel times for staff recalled to one inner and one outer metropolitan hospital at midnight, 6 p.m., and 7 a.m. were estimated using Google Maps Application Programming Interface. Computer modeling predictions were overlaid on metropolitan maps showing color coded staff recall travel times for STEMI, occurring within non-peak and peak hour traffic congestion times. Inner metropolitan hospital staff recall travel times were more affected by traffic congestion compared with outer metropolitan times, and the latter was more affected by distance. The estimated mean travel times to hospital during peak hour were greater than midnight travel times by 13.4 min to the inner and 6.0 min to the outer metropolitan hospital at 6 p.m. ( p  travel time can predict optimal residence of staff when on-call for PCI.

  19. Reconstruction of Sub-Surface Velocities from Satellite Observations Using Iterative Self-Organizing Maps

    Science.gov (United States)

    Chapman, Christopher; Charantonis, Anastase

    2017-04-01

    A new method based on modified self-organizing maps is presented for the reconstruction of deep ocean current velocities from surface information provided by satellites. This method takes advantage of local correlations in the data-space to improve the accuracy of the reconstructed deep velocities. No assumptions regarding the structure of the water column, nor the underlying dynamics of the flow field, are made. Using satellite observations of surface velocity, sea-surface height and sea-surface temperature, as well as observations of the deep current velocity from autonomous Argo floats to train the map, we are able to reconstruct realistic high-resolution velocity fields at a depth of 1000m. Validation reveals promising results, with a speed root mean squared error of approximately 2.8cm/s, more than a factor of two smaller than competing methods, and direction errors consistently smaller than 30 degrees. The shortcomings of this method will be discussed, as well as recent work to extend the method to produce a fully 3D reconstruction of the interior temperature and velocity fields.

  20. Accuracy Analysis of a Robotic Radionuclide Inspection and Mapping System for Surface Contamination

    International Nuclear Information System (INIS)

    Mauer, Georg F.; Kawa, Chris

    2008-01-01

    The mapping of localized regions of radionuclide contamination in a building can be a time consuming and costly task. Humans moving hand-held radiation detectors over the target areas are subject to fatigue. A contamination map based on manual surveys can contain significant operator-induced inaccuracies. A Fanuc M16i light industrial robot has been configured for installation on a mobile aerial work platform, such as a tall forklift. When positioned in front of a wall or floor surface, the robot can map the radiation levels over a surface area of up to 3 m by 3 m. The robot's end effector is a commercial alpha-beta radiation sensor, augmented with range and collision avoidance sensors to ensure operational safety as well as to maintain a constant gap between surface and radiation sensors. The accuracy and repeatability of the robotically conducted contamination surveys is directly influenced by the sensors and other hardware employed. This paper presents an in-depth analysis of various non-contact sensors for gap measurement, and the means to compensate for predicted systematic errors that arise during the area survey scans. The range sensor should maintain a constant gap between the radiation counter and the surface being inspected. The inspection robot scans the wall surface horizontally, moving down at predefined vertical intervals after each scan in a meandering pattern. A number of non-contact range sensors can be employed for the measurement of the gap between the robot end effector and the wall. The nominal gap width was specified as 10 mm, with variations during a single scan not to exceed ± 2 mm. Unfinished masonry or concrete walls typically exhibit irregularities, such as holes, gaps, or indentations in mortar joints. These irregularities can be sufficiently large to indicate a change of the wall contour. The responses of different sensor types to the wall irregularities vary, depending on their underlying principles of operation. We explored

  1. MAPPING OF PLANETARY SURFACE AGE BASED ON CRATER STATISTICS OBTAINED BY AN AUTOMATIC DETECTION ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. L. Salih

    2016-06-01

    Full Text Available The analysis of the impact crater size-frequency distribution (CSFD is a well-established approach to the determination of the age of planetary surfaces. Classically, estimation of the CSFD is achieved by manual crater counting and size determination in spacecraft images, which, however, becomes very time-consuming for large surface areas and/or high image resolution. With increasing availability of high-resolution (nearly global image mosaics of planetary surfaces, a variety of automated methods for the detection of craters based on image data and/or topographic data have been developed. In this contribution a template-based crater detection algorithm is used which analyses image data acquired under known illumination conditions. Its results are used to establish the CSFD for the examined area, which is then used to estimate the absolute model age of the surface. The detection threshold of the automatic crater detection algorithm is calibrated based on a region with available manually determined CSFD such that the age inferred from the manual crater counts corresponds to the age inferred from the automatic crater detection results. With this detection threshold, the automatic crater detection algorithm can be applied to a much larger surface region around the calibration area. The proposed age estimation method is demonstrated for a Kaguya Terrain Camera image mosaic of 7.4 m per pixel resolution of the floor region of the lunar crater Tsiolkovsky, which consists of dark and flat mare basalt and has an area of nearly 10,000 km2. The region used for calibration, for which manual crater counts are available, has an area of 100 km2. In order to obtain a spatially resolved age map, CSFDs and surface ages are computed for overlapping quadratic regions of about 4.4 x 4.4 km2 size offset by a step width of 74 m. Our constructed surface age map of the floor of Tsiolkovsky shows age values of typically 3.2-3.3 Ga, while for small regions lower (down to

  2. A wafer mapping technique for residual stress in surface micromachined films

    International Nuclear Information System (INIS)

    Schiavone, G; Murray, J; Smith, S; Walton, A J; Desmulliez, M P Y; Mount, A R

    2016-01-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements. (paper)

  3. Subpixel urban impervious surface mapping: the impact of input Landsat images

    Science.gov (United States)

    Deng, Chengbin; Li, Chaojun; Zhu, Zhe; Lin, Weiying; Xi, Li

    2017-11-01

    Due to the heterogeneity of urban environments, subpixel urban impervious surface mapping is a challenging task in urban environmental studies. Factors, such as atmospheric correction, climate conditions, seasonal effect, urban settings, substantially affect fractional impervious surface estimation. Their impacts, however, have not been well studied and documented. In this research, we performed direct and comprehensive examinations to explore the impacts of these factors on subpixel estimation when using an effective machine learning technique (Random Forest) and provided solutions to alleviate these influences. Four conclusions can be drawn based on the repeatable experiments in three study areas under different climate conditions (humid continental, tropical monsoon, and Mediterranean climates). First, the performance of subpixel urban impervious surface mapping using top-of-atmosphere (TOA) reflectance imagery is comparable to, and even slightly better than, the surface reflectance imagery provided by U.S. Geological Services in all seasons and in all testing regions. Second, the effect of images with leaf-on/off season varies, and is contingent upon different climate regions. Specifically, humid continental areas may prefer the leaf-on imagery (e.g., summer), while the tropical monsoon and Mediterranean regions seem to favor the fall and winter imagery. Third, the overall estimation performance in the humid continental area is somewhat better than the other regions. Finally, improvements can be achieved by using multi-season imagery, but the increments become less obvious when including more than two seasons. The strategy and results of this research could improve and accommodate regional/national subpixel land cover mapping using Landsat images for large-scale environmental studies.

  4. Surface temperature variations as measured by the Heat Capacity Mapping Mission

    Science.gov (United States)

    Price, J. C.

    1979-01-01

    The AEM-1 satellite, the Heat Capacity Mapping Mission, has acquired high-quality thermal infrared data at times of day especially suited for studying the earth's surface and the exchange of heat and moisture with the atmosphere. Selected imagery illustrates the considerable variability of surface temperature in and around cities, in the dry southwestern United States, in the Appalachian Mountains, and in agricultural areas. Through simplifying assumptions, an analytic experience is derived that relates day/night temperature differences to the near-surface layer (thermal inertia) and to meteorological factors. Analysis of the result suggests that, in arid regions, estimates of relative thermal inertia may be inferred, whereas, in agricultural areas, a hydrologic interpretation is possible.

  5. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-10-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively; and this is done for the first time on a global basis, even for less active areas. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  6. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data

    Directory of Open Access Journals (Sweden)

    Ugur Avdan

    2016-01-01

    Full Text Available Land surface temperature is an important factor in many areas, such as global climate change, hydrological, geo-/biophysical, and urban land use/land cover. As the latest launched satellite from the LANDSAT family, LANDSAT 8 has opened new possibilities for understanding the events on the Earth with remote sensing. This study presents an algorithm for the automatic mapping of land surface temperature from LANDSAT 8 data. The tool was developed using the LANDSAT 8 thermal infrared sensor Band 10 data. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, for the first case, the standard deviation was 2.4°C, and for the second case, it was 2.7°C. For future studies, the tool should be refined with in situ measurements of land surface temperature.

  7. Numerical Inversion of SRNF Maps for Elastic Shape Analysis of Genus-Zero Surfaces.

    Science.gov (United States)

    Laga, Hamid; Xie, Qian; Jermyn, Ian H; Srivastava, Anuj

    2017-12-01

    Recent developments in elastic shape analysis (ESA) are motivated by the fact that it provides a comprehensive framework for simultaneous registration, deformation, and comparison of shapes. These methods achieve computational efficiency using certain square-root representations that transform invariant elastic metrics into euclidean metrics, allowing for the application of standard algorithms and statistical tools. For analyzing shapes of embeddings of in , Jermyn et al. [1] introduced square-root normal fields (SRNFs), which transform an elastic metric, with desirable invariant properties, into the metric. These SRNFs are essentially surface normals scaled by square-roots of infinitesimal area elements. A critical need in shape analysis is a method for inverting solutions (deformations, averages, modes of variations, etc.) computed in SRNF space, back to the original surface space for visualizations and inferences. Due to the lack of theory for understanding SRNF maps and their inverses, we take a numerical approach, and derive an efficient multiresolution algorithm, based on solving an optimization problem in the surface space, that estimates surfaces corresponding to given SRNFs. This solution is found to be effective even for complex shapes that undergo significant deformations including bending and stretching, e.g., human bodies and animals. We use this inversion for computing elastic shape deformations, transferring deformations, summarizing shapes, and for finding modes of variability in a given collection, while simultaneously registering the surfaces. We demonstrate the proposed algorithms using a statistical analysis of human body shapes, classification of generic surfaces, and analysis of brain structures.

  8. Mapping Regional Impervious Surface Distribution from Night Time Light: The Variability across Global Cities

    Science.gov (United States)

    Lin, M.; Yang, Z.; Park, H.; Qian, S.; Chen, J.; Fan, P.

    2017-12-01

    Impervious surface area (ISA) has become an important indicator for studying urban environments, but mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime light data is (NTL) and Resolution Imaging Spectroradiometer (MODIS) are the major remote sensing data source for regional ISA mapping. A single regression relationship between fractional ISA and NTL or various index derived based on NTL and MODIS vegetation index (NDVI) data was established in many previous studies for regional ISA mapping. However, due to the varying geographical, climatic, and socio-economic characteristics of different cities, the same regression relationship may vary significantly across different cities in the same region in terms of both fitting performance (i.e. R2) and the rate of change (Slope). In this study, we examined the regression relationship between fractional ISA and Vegetation Adjusted Nighttime light Urban Index (VANUI) for 120 randomly selected cities around the world with a multilevel regression model. We found that indeed there is substantial variability of both the R2 (0.68±0.29) and slopes (0.64±0.40) among individual regressions, which suggests that multilevel/hierarchical models are needed for accuracy improvement of future regional ISA mapping .Further analysis also let us find the this substantial variability are affected by climate conditions, socio-economic status, and urban spatial structures. However, all these effects are nonlinear rather than linear, thus could not modeled explicitly in multilevel linear regression models.

  9. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    Science.gov (United States)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  10. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Barna, B.A.; Johnson, J.A.

    1981-01-01

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  11. Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study

    Science.gov (United States)

    de Lima, João L. M. P.; Abrantes, João R. C. B.; Silva, Valdemir P.; de Lima, M. Isabel P.; Montenegro, Abelardo A. A.

    2014-01-01

    Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915

  12. Mapping soil surface macropores using infrared thermography: an exploratory laboratory study.

    Science.gov (United States)

    de Lima, João L M P; Abrantes, João R C B; Silva, Valdemir P; de Lima, M Isabel P; Montenegro, Abelardo A A

    2014-01-01

    Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume).

  13. Objective analysis of surface wind regimes over Israel using self-organizing maps

    Science.gov (United States)

    Berkovic, Sigalit

    2017-04-01

    The surface wind across Israel is studied using the method of Self Organizing maps (SOMs). Emphasis is made on identifying the characteristic diurnal patterns at the synoptic hours during the winter months. The investigation is made by analyzing surface wind measurements from 53 Israel Meteorological Service (IMS) stations during 2006-2012. The relation between surface wind patterns and synoptic variables (temperature, specific humidity, geopotential height and synoptic wind) is obtained from calculation of averages of these variables according to the surface wind SOMs classification. The synoptic data is derived from ECMWF ERA40 data. Under winter lows the flow over Israel is westerly with high steadiness (>0.8) and intensity (4-10 m/s). Under winter highs the flow over northern Israel is easterly with high steadiness (>0.8) and intensity. Wind intensity is proportional to the pressure gradient. Under transitional pressure gradients, the flow is determined by the local topography and the diurnal heating, its steadiness is relatively low and its intensity weakens. The wind regimes are in agreement with previous subjective and semi-objective classification studies of surface flow under the frequent synoptic classes. The ability to reconstruct subjective knowledge by an objective algorithm is crucial for future statistical climatological analysis and applications over Israel.

  14. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    Science.gov (United States)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; hide

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  15. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    Science.gov (United States)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  16. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature

    Science.gov (United States)

    Marques da Silva, J. R.; Damásio, C. V.; Sousa, A. M. O.; Bugalho, L.; Pessanha, L.; Quaresma, P.

    2015-06-01

    Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: "thermal integral over air temperature (accumulated degree-days)". The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.

  17. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    Directory of Open Access Journals (Sweden)

    Yan An

    2016-01-01

    Full Text Available In this study, principal component analysis (PCA and a self-organising map (SOM were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong, covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  18. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery

    Science.gov (United States)

    Yang, Limin; Huang, Chengquan; Homer, Collin G.; Wylie, Bruce K.; Coan, Michael

    2003-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning, and resource management, require current and accurate geospatial data of urban impervious surfaces. We developed an approach to quantify urban impervious surfaces as a continuous variable by using multisensor and multisource datasets. Subpixel percent impervious surfaces at 30-m resolution were mapped using a regression tree model. The utility, practicality, and affordability of the proposed method for large-area imperviousness mapping were tested over three spatial scales (Sioux Falls, South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United States). Average error of predicted versus actual percent impervious surface ranged from 8.8 to 11.4%, with correlation coefficients from 0.82 to 0.91. The approach is being implemented to map impervious surfaces for the entire United States as one of the major components of the circa 2000 national land cover database.

  19. Map showing flood and surface water information in the Sugar House quadrangle, Salt Lake County, Utah

    Science.gov (United States)

    Van Horn, Richard; Fields, F.K.

    1974-01-01

    In the past man has built on land that might be covered by floodwaters, with little consideration of the consequences. The result has been disastrous to those in the path of floodwaters and has cost the loss of thousands of lives and untold billions of dollars in property damage in the United States. Salt Lake County, of which the Sugar House quadrangle is a part, has had many floods in the past and can be expected to have more in the future. Construction has taken place in filled or dried-up marshes and lakes, in spring areas, and even in stream channels. Lack of prior knowledge of these and other forms of surface water (water at the surface of the ground) can increase construction and maintenance costs significantly.The map shows the area that probably will be covered by floods at least once in every 100 years on the long-term average (unit IRF, intermediate regional flood), the area that probably will be covered by floods from the worst possible combination of very wet weather and high streamflow reasonably expected of the area (unit SPF, standard project flood), the mapped extent of streamflow by channel shifting or flooding in the past 5,000 years (unit fa), and the probable maximum extent of damaging flash floods and mudflows from small valleys in the Wasatch Range. The map also shows the location of water at the surface of the ground: lakes, streams, springs, weep holes, canals, and reservoirs. Lakes and marshes that existed within the past 100 years, but now are drained, filled, or dried up, are also shown.The following examples show that the presence of water can be desirable or undesirable, depending on how the water occurs. Floods, the most spectacular form of surface water, may result in great property damage and loss of life. Lakes normally are beneficial, in that they may support plant growth and provide habitats for fish and other wildlife, provide water for livestock, and can be used for recreation. Springs may or may not be desirable: they may

  20. Urban ventilation corridors mapping using surface morphology data based GIS analysis

    Science.gov (United States)

    Wicht, Marzena; Wicht, Andreas; Osińska-Skotak, Katarzyna

    2017-04-01

    This paper describes deriving the most appropriate method for mapping urban ventilation corridors, which, if properly designed, reduce heat stress, air pollution and increase air quality, as well as increase the horizontal wind speed. Urban areas are - in terms of surface texture - recognized as one of the roughest surfaces, which results in wind obstruction and decreased ventilation of densely built up areas. As urban heat islands, private household and traffic emissions or large scale industries occur frequently in many cities, both in temperate and tropical regions. A proper ventilation system has been suggested as an appropriate mitigation mean [1] . Two concepts of morphometric analyses of the urban environment are used on the example of Warsaw, representing a dense, urban environment, located in the temperate zone. The utilized methods include firstly a roughness mapping calculation [2] , which analyses zero plane displacement height (zd) and roughness length (z0) and their distribution for the eight (inter-)cardinal wind directions and secondly a grid-based frontal area index mapping approach [3] , which uses least cost path analysis. Utilizing the advantages and minimizing the disadvantages of those two concepts, we propose a hybrid approach. All concepts are based on a 3D building database obtained from satellite imagery, aided by a cadastral building database. Derived areas (ventilation corridors), that facilitate the ventilation system, should be considered by the local authorities as worth preserving, if not expanding, in order to improve the air quality in the city. The results also include designation of the problematic areas, which greatly obscure the ventilation and might be investigated as to reshape or rebuilt to introduce the air flow in particularly dense areas like city centers. Keywords: roughness mapping; GIS; ventilation corridors; frontal area index Rizwan, A. M., Dennis, L. Y., & Chunho, L. I. U. (2008). A review on the generation

  1. Elevated surface temperature depresses survival of banner-tailed kangaroo rats: will climate change cook a desert icon?

    Science.gov (United States)

    Moses, Martin R; Frey, Jennifer K; Roemer, Gary W

    2012-01-01

    Modest increases in global temperature have been implicated in causing population extirpations and range shifts in taxa inhabiting colder environs and in ectotherms whose thermoregulation is more closely tied to environmental conditions. Many arid-adapted endotherms already experience conditions at their physiological limits, so it is conceivable that they could be similarly affected by warming temperatures. We explored how climatic variables might influence the apparent survival of the banner-tailed kangaroo rat (Dipodomys spectabilis), a rodent endemic to the Chihuahuan Desert of North America and renowned for its behavioral and physiological adaptations to arid environments. Relative variable weight, strength of variable relationships, and other criteria indicated that summer, diurnal land surface temperature (SD_LST) was the primary environmental driver of apparent survival in these arid-adapted rodents. Higher temperatures had a negative effect on apparent survival, which ranged from 0.15 (SE = 0.04) for subadults to 0.50 (SE = 0.07) for adults. Elevated SD_LST may negatively influence survival through multiple pathways, including increased water loss and energy expenditure that could lead to chronic stress and/or hyperthermia that could cause direct mortality. Land surface temperatures are predicted to increase by as much 6.5°C by 2099, reducing apparent survival of adults to ~0.15 in some regions of the species' range, possibly causing a shift in their distribution. The relationship between SD_LST and survival suggests a mechanism whereby physiological tolerances are exceeded resulting in a reduction to individual fitness that may ultimately cause a shift in the species' range over time.

  2. Data Assimilation of AirSWOT and Synthetically Derived SWOT Observations of Water Surface Elevation in a Multichannel River

    Science.gov (United States)

    Altenau, E. H.; Pavelsky, T.; Andreadis, K.; Bates, P. D.; Neal, J. C.

    2017-12-01

    Multichannel rivers continue to be challenging features to quantify, especially at regional and global scales, which is problematic because accurate representations of such environments are needed to properly monitor the earth's water cycle as it adjusts to climate change. It has been demonstrated that higher-complexity, 2D models outperform lower-complexity, 1D models in simulating multichannel river hydraulics at regional scales due to the inclusion of the channel network's connectivity. However, new remote sensing measurements from the future Surface Water and Ocean Topography (SWOT) mission and it's airborne analog AirSWOT offer new observations that can be used to try and improve the lower-complexity, 1D models to achieve accuracies closer to the higher-complexity, 2D codes. Here, we use an Ensemble Kalman Filter (EnKF) to assimilate AirSWOT water surface elevation (WSE) measurements from a 2015 field campaign into a 1D hydrodynamic model along a 90 km reach of Tanana River, AK. This work is the first to test data assimilation methods using real SWOT-like data from AirSWOT. Additionally, synthetic SWOT observations of WSE are generated across the same study site using a fine-resolution 2D model and assimilated into the coarser-resolution 1D model. Lastly, we compare the abilities of AirSWOT and the synthetic-SWOT observations to improve spatial and temporal model outputs in WSEs. Results indicate 1D model outputs of spatially distributed WSEs improve as observational coverage increases, and improvements in temporal fluctuations in WSEs depend on the number of observations. Furthermore, results reveal that assimilation of AirSWOT observations produce greater error reductions in 1D model outputs compared to synthetic SWOT observations due to lower measurement errors. Both AirSWOT and the synthetic SWOT observations significantly lower spatial and temporal errors in 1D model outputs of WSEs.

  3. A Surface Soil Radioactivity Mapping Has Been Carried Out at Muria Peninsula, Central Java

    International Nuclear Information System (INIS)

    Soepradto-Tjokrokardono; Nasrun-Syamsul; Supardjo-AS; Djodi-R-Mappa; Kurnia-Setyawan W

    2004-01-01

    The air of this mapping is to gain exposure dose value of the soil surface of Muria Peninsula. Central Java, in the area of 75 km radius from Ujung Lemah Abang. Lemah Abang is the proposed site of the first indonesian nuclear Power Plant. A radioactivity data obtained in 1995/1996 to 1998/1999 researches has been used for input data. For further analysis, a conversation factor multiplication is applied. This conversation factor is obtained from linear regression equation of the relationship between radioactivity and exposure values gained from re-measured randomly 44 points which are representative for high, medium, and low radiation areas obtained in 1995/1996 to 1998/1999 activities and it taking soil samples. The conversation data result is being constructed of the Surface Exposure Dose Map of Muria Peninsula. Those data show that the exposure dose of northern slope of Muria Volcano is relatively higher than that of southern slope, it means be harmonizing to the soil sample radioactivity values. The maximum radioactivity value of the soil samples is 3,56.10 -2 Bq/gram (α radiation), 8,22.10 -1 Bq/gram (β radiation) and 6,20.10 -1 Bq/gram (γ radiation) and the minimum values are 4,44 10 -3 Bq/gram (α radiation), 1,50. 10 -1 Bq/gram (β radiation) and 4,09. 10 -2 Bq/gram (γ radiation). (author)

  4. Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing

    Science.gov (United States)

    Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne

    2004-01-01

    The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.

  5. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties.

    Science.gov (United States)

    Xie, Hui; Zhang, Hao; Hussain, Danish; Meng, Xianghe; Song, Jianmin; Sun, Lining

    2017-03-21

    We report high-resolution multiparametric kelvin probe force microscopy (MP-KPFM) measurements for the simultaneous quantitative mapping of the contact potential difference (CPD) and nanomechanical properties of the sample in single-pass mode. This method combines functionalities of the force-distance-based atomic force microscopy and amplitude-modulation (AM) KPFM to perform measurements in single-pass mode. During the tip-sample approach-and-retract cycle, nanomechanical measurements are performed for the retract part of nanoindentation, and the CPD is measured by the lifted probe with a constant tip-sample distance. We compare the performance of the proposed method with the conventional KPFMs by mapping the CPD of multilayer graphene deposited on n-doped silicon, and the results demonstrate that MP-KPFM has comparable performance to AM-KPFM. In addition, the experimental results of a custom-fabricated polymer grating with heterogeneous surfaces validate the multiparametric imaging capability of the MP-KPFM. This method can have potential applications in finding the inherent link between nanomechanical properties and the surface potential of the materials, such as the quantification of the electromechanical response of the deformed piezoelectric materials.

  6. Explore the Spatial-Temporal Interrelation between Groundwater and Surface Water by Self-Organizing Map

    Science.gov (United States)

    Chen, I. T.; Chang, L. C.; Chang, F. J.

    2016-12-01

    Groundwater is one of important water resources in Taiwan. Due to the indirect impacts of changes in rainfall characteristics and geomorphological limitation on groundwater recharge, it is imperative to investigate the variation of groundwater resources for making effective management strategies on groundwater resources. This study investigated the spatio-temporal interactive mechanism between surface water and groundwater over the whole river basin by using the self-organizing map (SOM). The Gaoping River basin in Taiwan is the study case and its long-term regional data sets are used for analysis. By applying the self-organizing map (SOM) technology, the variation of groundwater level and topology distribution characteristics can distinctly appear in temporal and spatial way. The results showed: (1) The trend of groundwater movement is from the east area to the west area. In the east area, the groundwater easily recharged from precipitation and discharged to streams since its high permeability is high. There are different types of water movement in the four aquifers. (2) In the second and third aquifers, the seasonal variations of groundwater are larger than others. (3) The spatio-temporal variations of surface water and groundwater were nicely classified by using the SOM model. The level variations of spatial distribution and seasonal variations have been comprehensively linked, which visually displayed topology characteristics of each classification of groundwater level.

  7. Transport processes associated with the initial elevated concentrations of Chernobyl radioactivity in surface air in the United States

    International Nuclear Information System (INIS)

    Larsen, R.J.; Haagenson, P.L.; Reiss, N.M.

    1989-01-01

    Elevated concentrations of radioactivity from the Chernobyl accident were encountered in the surface air over the United States along the east coast and in the north-west on 9 and 10 May 1986. The nearly simultaneous arrival of radioactive debris at widely separated locations resulted from different paths being taken by the debris released at different times during the course of the accident. Debris released during the explosion at the Chernobyl reactor was transported across the Arctic, within the lower troposphere, and zonally across Asia and the North Pacific Ocean, within the mid-troposphere. This debris descended into the planetary boundary layer along the east coast of the US. The descent was associated with a quasi-stationary cyclone located over the western North Atlantic Ocean. Debris that had a different composition of radioactivity was released from the damaged reactor during the week immediately following the initial explosion. This debris was then transported zonally across Asia and the North Pacific Ocean within the planetary boundary layer and lower troposphere and was swept into the north-western US. (author)

  8. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy

    KAUST Repository

    Shearer, Melinda J.

    2018-02-01

    Nanomaterials are interesting for a variety of applications, such as optoelectronics and photovoltaics. However, they often have spatial heterogeneity, i.e. composition change or physical change in the topography or structure, which can lead to varying properties that would influence their applications. New techniques must be developed to understand and correlate spatial heterogeneity with changes in electronic properties. Here we highlight the technique of surface photovoltage-Kelvin probe force microscopy (SPV-KFM), which is a modified version of non-contact atomic force microscopy capable of imaging not only the topography and surface potential, but also the surface photovoltage on the nanoscale. We demonstrate its utility in probing monolayer WSe2-MoS2 lateral heterostructures, which form an ultrathin p-n junction promising for photovoltaic and optoelectronic applications. We show surface photovoltage maps highlighting the different photoresponse of the two material regions as a result of the effective charge separation across this junction. Additionally, we study the variations between different heterostructure flakes and emphasize the importance of controlling the synthesis and transfer of these materials to obtain consistent properties and measurements.

  9. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    Science.gov (United States)

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  10. Mapping the impact of climate change on surface recession of carbonate buildings in Europe.

    Science.gov (United States)

    Bonazza, Alessandra; Messina, Palmira; Sabbioni, Cristina; Grossi, Carlota M; Brimblecombe, Peter

    2009-03-01

    Climate change is currently attracting interest at both research and policy levels. However, it is usually explored in terms of its effect on agriculture, water, industry, energy, transport and health and as yet has been insufficiently addressed as a factor threatening cultural heritage. Among the climate parameters critical to heritage conservation and expected to change in the future, precipitation plays an important role in surface recession of stone. The Lipfert function has been taken under consideration to quantify the annual surface recession of carbonate stone, due to the effects of clean rain, acid rain and dry deposition of pollutants. The present paper provides Europe-wide maps showing quantitative predictions of surface recession on carbonate stones for the 21st century, combining a modified Lipfert function with output from the Hadley global climate model. Chemical dissolution of carbonate stones, via the karst effect, will increase with future CO(2) concentrations, and will come to dominate over sulfur deposition and acid rain effects on monuments and buildings in both urban and rural areas. During the present century the rainfall contribution to surface recession is likely to have a small effect, while the increase in atmospheric CO(2) concentration is shown to be the main factor in increasing weathering via the karst effect.

  11. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    with formation of water flow and water storage. The major changes are formed as a result of imposing of the intensity fields on a soil surface and its field capillary infiltration rate. Excess of the first intensity over the second in each point of soil surface leads to formation of a layer of intensity of water not infiltrated in soil. Thus generate the new field of vectors of intensity which can consist of vertically directed vector of speed of evaporation, a quasi horizontal vector of intensity of a surface water flow and quasi vertical vector of intensity of a preferential flow directed downwards. Principal cause of excess of irrigation water application intensity over capillary infiltration rate can be on the one hand spatial non-uniformity of irrigation water application, and with other spatial variability of capillary infiltration rate, connected with spatial variability of water storage in the top layers of soil. As a result the spatial redistribution of irrigation water over irrigated filed forms distortions of ideal model of irrigation water storage in root zone of soil profile. The major differences consist in increasing of water storage in the depressions of a relief of an irrigated field and accordingly in their reduction on elevated zones of a relief, as well as losses of irrigation water outside of boundaries of a root zone of an irrigated field, in vertical, and horizontal directions. One of key parameters characterizing interaction between irrigation technology and soil state an irrigated field are intensity of water application, intensity and volume of a capillary infiltration, the water storage in root zone at the moment of infiltration starting and a topography of an irrigated field. Fnalyzing of spatial links between these characteristics a special research had been carried out on irrigated by sprinkler machine called Fregate at alfalfa field during the summer of 2012. This research carried out at experimental farm of the research institute Volg

  12. ON THE GAUSS MAP OF RULED SURFACES OF TYPE II IN 3-DIMENSIONAL PSEUDO-GALILEAN SPACE

    Directory of Open Access Journals (Sweden)

    Alper Osman Öğrenmis

    2013-02-01

    Full Text Available In this paper, ruled surfaces of type II in a three-dimensional Pseudo-Galilean space are given. By studying its Gauss map and Laplacian operator, we obtain a classification of ruled surfaces of type II in a three-dimensional Pseudo-Galilean space.

  13. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  14. An improved method for Multipath Hemispherical Map (MHM) based on Trend Surface Analysis

    Science.gov (United States)

    Wang, Zhiren; Chen, Wen; Dong, Danan; Yu, Chao

    2017-04-01

    Among various approaches developed for detecting the multipath effect in high-accuracy GNSS positioning, Only MHM (Multipath Hemispherical Map) and SF (Sidereal Filtering) can be implemented to real-time GNSS data processing. SF is based on the time repeatability of satellites which just suitable for static environment, while the spatiotemporal repeatability-based MHM is applicable not only for static environment but also for dynamic carriers with static multipath environment such as ships and airplanes, and utilizes much smaller number of parameters than ASF. However, the MHM method also has certain defects. Since the MHM take the mean of residuals from the grid as the filter value, it is more suitable when the multipath regime is medium to low frequency. Now existing research data indicate that the newly advanced Sidereal Filtering (ASF) method perform better with high frequency multipath reduction than MHM by contrast. To solve the above problem and improve MHM's performance on high frequency multipath, we combined binary trend surface analysis method with original MHM model to effectively analyze particular spatial distribution and variation trends of multipath effect. We computed trend surfaces of the residuals within a grid by least-square procedures, and chose the best results through the moderate successive test. The enhanced MHM grid was constructed from a set of coefficients of the fitted equation instead of mean value. According to the analysis of the actual observation, the improved MHM model shows positive effect on high frequency multipath reduction, and significantly reduced the root mean square (RMS) value of the carrier residuals. Keywords: Trend Surface Analysis; Multipath Hemispherical Map; high frequency multipath effect

  15. A next generation altimeter for mapping the sea surface height variability: opportunities and challenges

    Science.gov (United States)

    Fu, Lee-Lueng; Morrow, Rosemary

    2016-07-01

    The global observations of the sea surface height (SSH) have revolutionized oceanography since the beginning of precision radar altimetry in the early 1990s. For the first time we have continuous records of SSH with spatial and temporal sampling for detecting the global mean sea level rise, the waxing and waning of El Niño, and the ocean circulation from gyres to ocean eddies. The limit of spatial resolution of the present constellation of radar altimeters in mapping SSH variability is approaching 100 km (in wavelength) with 3 or more simultaneous altimetric satellites in orbit. At scales shorter than 100 km, the circulation contains substantial amount of kinetic energy in currents, eddies and fronts that are responsible for the stirring and mixing of the ocean, especially from the vertical exchange of the upper ocean with the deep. A mission currently in development will use the technique of radar interferometry for making high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT promises the detection of SSH at scales approaching 15 km, depending on the sea state. SWOT will make SSH measurement over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. A conventional radar altimeter will provide measurement along the nadir. This is an exploratory mission with applications in oceanography and hydrology. The increased spatial resolution offers an opportunity to study ocean surface processes to address important questions about the ocean circulation. However, the limited temporal sampling poses challenges to map the evolution of the ocean variability that changes rapidly at the small scales. The measurement technique and the development of the mission will be presented with emphasis on its science program with outlook on the opportunities and challenges.

  16. Changes in canopy cover alter surface air and forest floor temperature in a high-elevation red spruce (Picea rubens Sarg.) forest

    Science.gov (United States)

    Johnny L. Boggs; Steven G. McNulty

    2010-01-01

    The objective of this study is to describe winter and summer surface air and forest floor temperature patterns and diurnal fluctuations in high-elevation red spruce (Picea rubens Sarg.) forests with different levels of canopy cover. In 1988, a series of 10- x 10-meter plots (control, low nitrogen [N] addition, and high nitrogen addition) were...

  17. EVALUATION MODEL FOR PAVEMENT SURFACE DISTRESS ON 3D POINT CLOUDS FROM MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Aoki

    2012-07-01

    Full Text Available This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS. The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments’ specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  18. Mapping Biophysical Parameters for Land Surface Modeling over the Continental US Using MODIS and Landsat

    Directory of Open Access Journals (Sweden)

    Lahouari Bounoua

    2015-01-01

    Full Text Available In terms of the space cities occupy, urbanization appears as a minor land transformation. However, it permanently modifies land’s ecological functions, altering its carbon, energy, and water fluxes. It is therefore necessary to develop a land cover characterization at fine spatial and temporal scales to capture urbanization’s effects on surface fluxes. We develop a series of biophysical vegetation parameters such as the fraction of photosynthetically active radiation, leaf area index, vegetation greenness fraction, and roughness length over the continental US using MODIS and Landsat products for 2001. A 13-class land cover map was developed at a climate modeling grid (CMG merging the 500 m MODIS land cover and the 30 m impervious surface area from the National Land Cover Database. The landscape subgrid heterogeneity was preserved using fractions of each class from the 500 m and 30 m into the CMG. Biophysical parameters were computed using the 8-day composite Normalized Difference Vegetation Index produced by the North American Carbon Program. In addition to urban impact assessments, this dataset is useful for the computation of surface fluxes in land, vegetation, and urban models and is expected to be widely used in different land cover and land use change applications.

  19. Mapping the surface of Escherichia coli peptide deformylase by NMR with organic solvents.

    Science.gov (United States)

    Byerly, Douglas W; McElroy, Craig A; Foster, Mark P

    2002-07-01

    Identifying potential ligand binding sites on a protein surface is an important first step for targeted structure-based drug discovery. While performing control experiments with Escherichia coli peptide deformylase (PDF), we noted that the organic solvents used to solubilize some ligands perturbed many of the same resonances in PDF as the small molecule inhibitors. To further explore this observation, we recorded (15)N HSQC spectra of E. coli peptide deformylase (PDF) in the presence of trace quantities of several simple organic solvents (acetone, DMSO, ethanol, isopropanol) and identified their sites of interaction from local perturbation of amide chemical shifts. Analysis of the protein surface structure revealed that the ligand-induced shift perturbations map to the active site and one additional surface pocket. The correlation between sites of solvent and inhibitor binding highlights the utility of organic solvents to rapidly and effectively validate and characterize binding sites on proteins prior to designing a drug discovery screen. Further, the solvent-induced perturbations have implications for the use of organic solvents to dissolve candidate ligands in NMR-based screens.

  20. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins.

    Science.gov (United States)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 ma.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4(+) and Ca(2+), whereas the main anion was HCO3(-), which constituted approximately 69% of the anions, followed by NO3(-), SO4(2-) and Cl(-). Data analysis suggested that Na(+), Cl(-) and K(+) were derived from the long-range transport of marine aerosols. Ca(2+), Mg(2+) and HCO3(-) were related to rock and soil dust contributions and the NO3(-) and SO4(2-) concentrations were derived from anthropogenic sources. Furthermore, NH4(+) was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from -1.9 to -23.2‰ in δ(18)O, and from -0.8 to -174‰ in δ(2)H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha(-1) y(-1)) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3(-) concentrations in the surface waters

  1. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    International Nuclear Information System (INIS)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-01-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH 4 + and Ca 2+ , whereas the main anion was HCO 3 − , which constituted approximately 69% of the anions, followed by NO 3 − , SO 4 2− and Cl − . Data analysis suggested that Na + , Cl − and K + were derived from the long-range transport of marine aerosols. Ca 2+ , Mg 2+ and HCO 3 − were related to rock and soil dust contributions and the NO 3 − and SO 4 2− concentrations were derived from anthropogenic sources. Furthermore, NH 4 + was derived from gaseous NH 3 scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ 18 O, and from − 0.8 to − 174‰ in δ 2 H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha −1 y −1 ) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO 3

  2. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  3. A continuous map of near-surface S-wave attenuation in New Zealand

    Science.gov (United States)

    Van Houtte, Chris; Ktenidou, Olga-Joan; Larkin, Tam; Holden, Caroline

    2018-04-01

    Quantifying the near-surface attenuation of seismic waves at a given location can be important for seismic hazard analysis of high-frequency ground motion. This study calculates the site attenuation parameter, κ0, at 41 seismograph locations in New Zealand. Combined with results of a previous study, a total of 46 κ0 values are available across New Zealand. The results compare well with previous t* studies, revealing high attenuation in the volcanic arc and forearc ranges, and low attenuation in the South Island. However, for site-specific seismic hazard analyses, there is a need to calculate κ0 at locations away from a seismograph location. For these situations, it is common to infer κ0 from weak correlations with the shear wave velocity in the top 30 m, VS30, or to adopt an indicative regional value. This study attempts to improve on this practice. Geostatistical models of the station-specific κ0 data are developed, and continuous maps are derived using ordinary kriging. The obtained κ0 maps can provide a median κ0 and its uncertainty for any location in New Zealand, which may be useful for future site-specific seismic hazard analyses.

  4. VALIDATION OF SPACEBORNE RADAR SURFACE WATER MAPPING WITH OPTICAL sUAS IMAGES

    Directory of Open Access Journals (Sweden)

    J. Li-Chee-Ming

    2015-08-01

    Full Text Available The Canada Centre for Remote Sensing (CCRS has over 40 years of experience with airborne and spaceborne sensors and is now starting to use small Unmanned Aerial Systems (sUAS to validate products from large coverage area sensors and create new methodologies for very high resolution products. Wetlands have several functions including water storage and retention which can reduce flooding and provide continuous flow for hydroelectric generation and irrigation for agriculture. Synthetic Aperture Radar is well suited as a tool for monitoring surface water by supplying acquisitions irrespective of cloud cover or time of day. Wetlands can be subdivided into three classes: open water, flooded vegetation and upland which can vary seasonally with time and water level changes. RADARSAT‐2 data from the Wide-Ultra Fine, Spotlight and Fine Quad-Pol modes has been used to map the open water in the Peace‐Athabasca Delta, Alberta using intensity thresholding. We also use spotlight modes for higher resolution and the fully polarimetric mode (FQ for polarimetric decomposition. Validation of these products will be done using a low altitude flying sUAS to generate optical georeferenced images. This project provides methodologies which could be used for flood mapping as well as ecological monitoring.

  5. Surface Modification of Austenitic Stainless Steels by High-Flux Elevated-Temperature Nitrogen-Ion Implantation.

    Science.gov (United States)

    Ozturk, Orhan

    Nitrogen diffusivity is found to be enhanced under unusual N ion beam conditions used for modification of fcc AISI 304 stainless steel surfaces. The unusual conditions also lead to the development of various near-surface microstructures and enhanced mechanical properties. The relative importance of ion energy and current density on N penetration was studied in order to help understand the enhanced N diffusivity. The role of residual stresses in the N implanted layers was also investigated. The N beam conditions included: (1) ion beam energies from 0.4 to 60 keV; (2) beam current densities from 0.1 to 5 mA/cm^2; (3) an elevated substrate temperature of 400^ circC; (4) implantation times of 10 to 30 minutes. Mossbauer spectroscopy and x-ray diffraction (XRD) were used to characterize the near-surface N ion implanted microstructures. Supplemental data were obtained by Auger electron spectroscopy, scanning electron microscopy (SEM), magneto-optic Kerr effect (MOKE) and electron probe micro-analysis (EPMA) on selected samples. A metastable, fcc, high-N phase (gamma _{N}) is found to be generally produced in fcc 304 SS for all ion energies and current densities at 400^circC. The gamma_{N} was found to be either paramagnetic or magnetic in nature depending on the N content. With a low-energy, high-flux N beam, magnetic gamma_{N} was found to be ferromagnetic at room temperature. The N contents and depths were found to depend on the grain orientation relative to the ion beam direction for low -energy, high-flux conditions. The N was found to diffuse deeper in the (200) oriented grains compared to the (111) oriented grains and the N contents were significantly higher in the (200) planes relative to the (111) planes. Post-implantation annealing experiments showed that the magnetic gamma_{N} phase was destabilized as a result of annealing it at 400^circC, thereby resulting in thicker and predominantly paramagnetic gamma _{N} layers with less N in solution and less lattice

  6. Statistical mapping and 3-D surface plots in phytoplankton analysis of the Balkhash Lake (Kazakhstan

    Directory of Open Access Journals (Sweden)

    Krupa Elena

    2018-01-01

    Full Text Available Phytoplankton of the Balkhash Lake was represented by 91 species with average abundance of 1,002.4 mln. ind. m−3 and average biomass of 0.853 g m−3 in summer 2004. Maps of spatial distribution revealed that phytoplankton abundance was confined within the near-estuary sections of the rivers. Correlation analysis and 3D Surface Plots showed that the average mass of the algal cell decreased with increased phytoplankton abundance, species richness, and Shannon Bi index values. Synchronicity of the spatial dynamics of W-Clarke and Δ-Shannon values evidenced the possibility of obtaining information on the structure of communities by both calculated and graphical methods.

  7. Detailed mapping of surface units on Mars with HRSC color data

    Science.gov (United States)

    Combe, J.-Ph.; Wendt, L.; McCord, T. B.; Neukum, G.

    2008-09-01

    Introduction: Making use of HRSC color data Mapping outcrops of clays, sulfates and ferric oxides are basis information to derive the climatic, tectonic and volcanic evolution of Mars, especially the episodes related to the presence of liquid water. The challenge is to resolve spatially the outcrops and to distinguish these components from the globally-driven deposits like the iron oxide-rich bright red dust and the basaltic dark sands. The High Resolution Stereo Camera (HRSC) onboard Mars-Express has five color filters in the visible and near infrared that are designed for visual interpretation and mapping various surface units [1]. It provides also information on the topography at scale smaller than a pixel (roughness) thanks to the different geometry of observation for each color channel. The HRSC dataset is the only one that combines global coverage, 200 m/pixel spatial resolution or better and filtering colors of light. The present abstract is a work in progress (to be submitted to Planetary and Space Science) that shows the potential and limitations of HRSC color data as visual support and as multispectral images. Various methods are described from the most simple to more complex ones in order to demonstrate how to make use of the spectra, because of the specific steps of processing they require [2-4]. The objective is to broaden the popularity of HRSC color data, as they could be used more widely by the scientific community. Results prove that imaging spectrometry and HRSC color data complement each other for mapping outcrops types. Example regions of interest HRSC is theoretically sensitive to materials with absorption features in the visible and near-infrared up to 1 μm. Therefore, oxide-rich red dust and basalts (pyroxenes) can be mapped, as well as very bright components like water ice [5, 6]. Possible detection of other materials still has to be demonstrated. We first explore regions where unusual mineralogy appears clearly from spectral data. Hematite

  8. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  9. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  10. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  11. Mapping global surface water inundation dynamics using synergistic information from SMAP, AMSR2 and Landsat

    Science.gov (United States)

    Du, J.; Kimball, J. S.; Galantowicz, J. F.; Kim, S.; Chan, S.; Reichle, R. H.; Jones, L. A.; Watts, J. D.

    2017-12-01

    A method to monitor global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.84, pretrievals showed favourable classification accuracy for water (commission error 31.84%; omission error 28.08%) and land (commission error 0.82%; omission error 0.99%) and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics, potentially benefiting hydrological monitoring, flood assessments, and global climate and carbon modeling.

  12. Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin

    Directory of Open Access Journals (Sweden)

    Mustafa Tüfekçioğlu

    2016-10-01

    Full Text Available Sheet erosion, one of the most important types of water erosion, takes place on the top soil as tiny soil layer movement that affects lake and stream ecosystem. This type of erosion is very important because the productive soil layer on the top soil can be lost in a very short period of time. The goal of this study was to quantify the amount of surface (sheet and rill soil erosion, and to identify areas under high erosion risk within the study area at Yusufeli province in Artvin by using RUSLE erosion methodology. As a result of the study it was found that the average annual potential soil loss by surface erosion was 3.6 ton ha-1yr-1. Additionally, the maps produced and conclusions reached by the study revealed that the areas of high erosion risk were identified spatially and measures to control erosion on some of these high risk areas can be possible with appropriate erosion control techniques.

  13. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery

    Directory of Open Access Journals (Sweden)

    Fangfang Yao

    2015-09-01

    Full Text Available Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI. Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.

  14. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    Science.gov (United States)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  15. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  16. ESA ice sheet CCI: derivation of the optimal method for surface elevation change detection of the Greenland ice sheet – round robin results

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovsky, Kirill; Ticconi, F.

    2015-01-01

    For more than two decades, radar altimetry missions have provided continuous elevation estimates of the Greenland ice sheet (GrIS). Here, we propose a method for using such data to estimate ice-sheet-wide surface elevation changes (SECs). The final data set will be based on observations acquired...... from the European Space Agency’s Environmental Satellite (ENVISAT), European Remote Sensing (ERS)-1 and -2, CryoSat-2, and, in the longer term, Sentinel-3 satellites. In order to find the best-performing method, an intercomparison exercise has been carried out in which the scientific community...... was asked to provide their best SEC estimates as well as feedback sheets describing the applied method. Due to the hitherto few radar-based SEC analyses as well as the higher accuracy of laser data, the participants were asked to use either ENVISAT radar or ICESat (Ice, Cloud, and land Elevation Satellite...

  17. Automated mapping of impervious surfaces in urban and suburban areas: Linear spectral unmixing of high spatial resolution imagery

    Science.gov (United States)

    Yang, Jian; He, Yuhong

    2017-02-01

    Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.

  18. Satellite surface salinity maps to determine fresh water fluxes in the Arctic Ocean

    Science.gov (United States)

    Gabarro, Carolina; Estrella, Olmedo; Emelianov, Mikhail; Ballabrera, Joaquim; Turiel, Antonio

    2017-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) are also a key ingredient of the thermohaline circulation. Recent observational studies have documented changes in upper Arctic Ocean hydrography [1, 2]. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, have the objective to measure soil moisture over the continents and sea surface salinity over the oceans [3]. However, SMOS is also making inroads in Cryospheric science, as the measurements of thin ice thickness and sea ice concentration. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, such sensitivity is rather low, even lower at cold waters [4]: 90% of ocean SSS values span a range of brightness temperatures of just 5K. This implies that the SMOS SSS retrieval requires a high performance of the MIRAS interferometric radiometer [5]. New algorithms, recently developed at the Barcelona Expert Center (BEC) to improve the quality of SMOS measurements [6], allow for the first time to derive cold-water SSS maps from SMOS data, and to observe the variability of the SSS in the higher north Atlantic and the Arctic Ocean. In this work, we will provide an assessment of the quality of these new SSS Arctic maps, and we will illustrate their potential to monitor the impact on ocean state of the discharges from the main rivers to the Arctic Ocean. Moreover

  19. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, Raffaella, E-mail: balestrini@irsa.cnr.it [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Polesello, Stefano [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Sacchi, Elisa [Department of Earth and Environmental Sciences, University of Pavia and IGG-CNR, Via Ferrata 1, 27100 Pavia (Italy)

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH{sub 4}{sup +} and Ca{sup 2+}, whereas the main anion was HCO{sub 3}{sup −}, which constituted approximately 69% of the anions, followed by NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and Cl{sup −}. Data analysis suggested that Na{sup +}, Cl{sup −} and K{sup +} were derived from the long-range transport of marine aerosols. Ca{sup 2+}, Mg{sup 2+} and HCO{sub 3}{sup −} were related to rock and soil dust contributions and the NO{sub 3}{sup −} and SO{sub 4}{sup 2−} concentrations were derived from anthropogenic sources. Furthermore, NH{sub 4}{sup +} was derived from gaseous NH{sub 3} scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ{sup 18}O, and from − 0.8 to − 174‰ in δ{sup 2}H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha{sup −1} y{sup −1

  20. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  1. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    Science.gov (United States)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  2. Global Distribution of Shallow Water on Mars: Neutron Mapping of Summer-Time Surface by HEND/Odyssey

    Science.gov (United States)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Boynton, W.; Hamara, D.; Shinohara, C.; Saunders, R. S.; Drake, D.

    2003-01-01

    Orbital mapping of induced neutrons and gamma-rays by Odyssey has recently successfully proven the applicability of nuclear methods for studying of the elementary composition of Martian upper-most subsurface. In particular, the suite of Gamma-Ray Spectrometer (GRS) has discovered the presence of large water-ice rich regions southward and northward on Mars. The data of neutron mapping of summer-time surface are presented below from the Russian High Energy Neutron Spectrometer (HEND), which is a part of GRS suite. These maps represent the content of water in the soil for summer season at Southern and Northern hemispheres, when the winter deposit of CO2 is absent on the surface. The seasonal evolution of CO2 coverage on Mars is the subject of the complementary paper.

  3. 30 CFR 77.1200 - Mine map.

    Science.gov (United States)

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Maps § 77.1200 Mine... boundary lines of the active areas of the mine; (c) Contour lines passing through whole number elevations...

  4. Single-Frame Terrain Mapping Software for Robotic Vehicles

    Science.gov (United States)

    Rankin, Arturo L.

    2011-01-01

    This software is a component in an unmanned ground vehicle (UGV) perception system that builds compact, single-frame terrain maps for distribution to other systems, such as a world model or an operator control unit, over a local area network (LAN). Each cell in the map encodes an elevation value, terrain classification, object classification, terrain traversability, terrain roughness, and a confidence value into four bytes of memory. The input to this software component is a range image (from a lidar or stereo vision system), and optionally a terrain classification image and an object classification image, both registered to the range image. The single-frame terrain map generates estimates of the support surface elevation, ground cover elevation, and minimum canopy elevation; generates terrain traversability cost; detects low overhangs and high-density obstacles; and can perform geometry-based terrain classification (ground, ground cover, unknown). A new origin is automatically selected for each single-frame terrain map in global coordinates such that it coincides with the corner of a world map cell. That way, single-frame terrain maps correctly line up with the world map, facilitating the merging of map data into the world map. Instead of using 32 bits to store the floating-point elevation for a map cell, the vehicle elevation is assigned to the map origin elevation and reports the change in elevation (from the origin elevation) in terms of the number of discrete steps. The single-frame terrain map elevation resolution is 2 cm. At that resolution, terrain elevation from 20.5 to 20.5 m (with respect to the vehicle's elevation) is encoded into 11 bits. For each four-byte map cell, bits are assigned to encode elevation, terrain roughness, terrain classification, object classification, terrain traversability cost, and a confidence value. The vehicle s current position and orientation, the map origin, and the map cell resolution are all included in a header for each

  5. Body surface mapping of ectopic left and right ventricular activation. QRS spectrum in patients without structural heart disease

    NARCIS (Netherlands)

    SippensGroenewegen, A.; Spekhorst, H.; van Hemel, N. M.; Kingma, J. H.; Hauer, R. N.; Janse, M. J.; Dunning, A. J.

    1990-01-01

    The value of simultaneous 62-lead electrocardiographic recordings in localizing the site of origin of ectopic ventricular activation in a structurally normal heart was assessed by examining body surface QRS integral maps in 12 patients during left and right ventricular (LV and RV) pacing at 182

  6. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    Science.gov (United States)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  7. Self-organizing adaptive map: autonomous learning of curves and surfaces from point samples.

    Science.gov (United States)

    Piastra, Marco

    2013-05-01

    Competitive Hebbian Learning (CHL) (Martinetz, 1993) is a simple and elegant method for estimating the topology of a manifold from point samples. The method has been adopted in a number of self-organizing networks described in the literature and has given rise to related studies in the fields of geometry and computational topology. Recent results from these fields have shown that a faithful reconstruction can be obtained using the CHL method only for curves and surfaces. Within these limitations, these findings constitute a basis for defining a CHL-based, growing self-organizing network that produces a faithful reconstruction of an input manifold. The SOAM (Self-Organizing Adaptive Map) algorithm adapts its local structure autonomously in such a way that it can match the features of the manifold being learned. The adaptation process is driven by the defects arising when the network structure is inadequate, which cause a growth in the density of units. Regions of the network undergo a phase transition and change their behavior whenever a simple, local condition of topological regularity is met. The phase transition is eventually completed across the entire structure and the adaptation process terminates. In specific conditions, the structure thus obtained is homeomorphic to the input manifold. During the adaptation process, the network also has the capability to focus on the acquisition of input point samples in critical regions, with a substantial increase in efficiency. The behavior of the network has been assessed experimentally with typical data sets for surface reconstruction, including suboptimal conditions, e.g. with undersampling and noise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire.

    Science.gov (United States)

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H

    2013-10-03

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells throughout the mouse hematopoietic system and illustrate its utility for revealing important biological insights. The comprehensive single cell data set permits mapping of the mouse hematopoietic stem cell differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Multi-pollutant surface objective analyses and mapping of air quality health index over North America.

    Science.gov (United States)

    Robichaud, Alain; Ménard, Richard; Zaïtseva, Yulia; Anselmo, David

    2016-01-01

    Air quality, like weather, can affect everyone, but responses differ depending on the sensitivity and health condition of a given individual. To help protect exposed populations, many countries have put in place real-time air quality nowcasting and forecasting capabilities. We present in this paper an optimal combination of air quality measurements and model outputs and show that it leads to significant improvements in the spatial representativeness of air quality. The product is referred to as multi-pollutant surface objective analyses (MPSOAs). Moreover, based on MPSOA, a geographical mapping of the Canadian Air Quality Health Index (AQHI) is also presented which provides users (policy makers, public, air quality forecasters, and epidemiologists) with a more accurate picture of the health risk anytime and anywhere in Canada and the USA. Since pollutants can also behave as passive atmospheric tracers, they provide information about transport and dispersion and, hence, reveal synoptic and regional meteorological phenomena. MPSOA could also be used to build air pollution climatology, compute local and national trends in air quality, and detect systematic biases in numerical air quality (AQ) models. Finally, initializing AQ models at regular time intervals with MPSOA can produce more accurate air quality forecasts. It is for these reasons that the Canadian Meteorological Centre (CMC) in collaboration with the Air Quality Research Division (AQRD) of Environment Canada has recently implemented MPSOA in their daily operations.

  10. Arm and wrist surface potential mapping for wearable ECG rhythm recording devices: a pilot clinical study

    Science.gov (United States)

    Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.

    2013-06-01

    This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.

  11. High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gardner, J.N.; Lavine, A.; Vaniman, D.; WoldeGabriel, G.

    1998-06-01

    In this report the authors document results of high-precision geologic mapping in the vicinity of TA-55 that has been done to identify parts of the southern portion of the Rendija Canyon Fault, or any other faults, with the potential for seismic surface rupture. To assess the potential for surface rupture at TA-55, an area of approximately 3 square miles that includes the Los Alamos County Landfill and Twomile, Mortandad, and Sandia Canyons has been mapped in detail. Map units are mostly cooling or flow units within the Tshirege Member (1.2 Ma) of the Bandelier Tuff. Stratigraphic markers that are useful for determining offsets in the map area include a distinct welding break at or near the cooling Unit 2-Unit 3 contact, and the Unit 3-Unit 4 contact. At the County Landfill the contact between the Tshirege Member of the Bandelier Tuff and overlying Quaternary alluvium has also been mapped. The mapping indicates that there is no faulting in the near-surface directly below TA-55, and that the closest fault is about 1500 feet west of the Plutonium Facility. Faulting is more abundant on the western edge of the map area, west of TA-48 in uppermost Mortandad Canyon, upper Sandia Canyon, and at the County Landfill. Measured vertical offsets on the faults range from 1 to 8 feet on mapped Bandelier Tuff contacts. Faulting exposed at the Los Alamos County Landfill has deformed a zone over 1000 feet wide, and has a net vertical down-to-the-west displacement of at least 15 feet in the Bandelier Tuff. Individual faults at the landfill have from less than 1 foot to greater than 15 feet of vertical offset on the Bandelier Tuff. Most faults in the landfill trend N-S, N20W, or N45E. Results of the mapping indicate that the Rendija Canyon Fault does not continue directly south to TA-55. At present, the authors have insufficient data to connect faulting they have mapped to areas of known faulting to the north or south of the study area

  12. Surface Water Mapping from Suomi NPP-VIIRS Imagery at 30 m Resolution via Blending with Landsat Data

    Directory of Open Access Journals (Sweden)

    Chang Huang

    2016-07-01

    Full Text Available Monitoring the dynamics of surface water using remotely sensed data generally requires both high spatial and high temporal resolutions. One effective and popular approach for achieving this is image fusion. This study adopts a widely accepted fusion model, the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, for blending the newly available coarse-resolution Suomi NPP-VIIRS data with Landsat data in order to derive water maps at 30 m resolution. The Pan-sharpening technique was applied to preprocessing NPP-VIIRS data to achieve a higher-resolution before blending. The modified Normalized Difference Water Index (mNDWI was employed for mapping surface water area. Two fusion alternatives, blend-then-index (BI or index-then-blend (IB, were comparatively analyzed against a Landsat derived water map. A case study of mapping Poyang Lake in China, where water distribution pattern is complex and the water body changes frequently and drastically, was conducted. It has been revealed that the IB method derives more accurate results with less computation time than the BI method. The BI method generally underestimates water distribution, especially when the water area expands radically. The study has demonstrated the feasibility of blending NPP-VIIRS with Landsat for achieving surface water mapping at both high spatial and high temporal resolutions. It suggests that IB is superior to BI for water mapping in terms of efficiency and accuracy. The finding of this study also has important reference values for other blending works, such as image blending for vegetation cover monitoring.

  13. CosmoQuest - Mapping Surface Features Across the Inner Solar System

    Science.gov (United States)

    Grier, Jennifer A.; Richardson, Matthew; Gay, Pamela L.; Lehan, Cory; Owens, Ryan; Robbins, Stuart J.; DellaGiustina, Daniella; Bennett, Carina; Runco, Susan; Graff, Paige

    2017-10-01

    The CosmoQuest Virtual Research Facility allows research scientists to work together with citizen scientists in ‘big data’ investigations. Some research requires the examination of vast numbers of images - partnering with engaged and trained citizen scientists allows for that research to be completed in a thorough and timely manner. The techniques used by CosmoQuest to collect impact crater data have been validated to ensure robustness (Robbins et al., 2014), and include software tools that accurately identify crater clusters, and multiple crater identifications. CosmoQuest has current or up-and-coming projects that span much of the inner solar system. “Moon Mappers” gives the public a chance to learn about the importance of cratered surfaces, and investigate factors that effect the identification and measurement of impact craters such as incidence angle. In the “Mars Mappers” program citizens map small craters in valley networks. These will be used to estimate times of ancient water flow. In “Mercury Mappers” the public learns about other issues related to crater counting, such as secondaries. On Mercury, secondaries appear to dominate counts up to 10km. By mapping these craters, we will be able to better understand the maximum diameter of secondaries relative to the parent primary. The public encounters Vesta in “Vesta Mappers,” a project that contributes data to the overall crater counting efforts on that body. Asteroid investigations do not end there - the OSIRIS-REx team is collaborating with CosmoQuest to create a science campaign to generate boulder and crater counting datasets of the asteroid Bennu. This “Bennu Mappers” project will inform the final selection of the sample return site. The Earth is the target for the “Image Detective” project, which uses the 2 million images returned from crewed space flight. These images are rich in information about our changing Earth, as well as phenomena like aurora. Citizens tag these images

  14. Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps

    Science.gov (United States)

    Chen, I.-Ting; Chang, Li-Chiu; Chang, Fi-John

    2018-01-01

    In this study, we propose a soft-computing methodology to visibly explore the spatio-temporal groundwater variations of the Kuoping River basin in southern Taiwan. The self-organizing map (SOM) is implemented to investigate the interactive mechanism between surface water and groundwater over the river basin based on large high-dimensional data sets coupled with their occurrence times. We find that extracting the occurrence time from each 30-day moving average data set in the clustered neurons of the SOM is a crucial step to learn the spatio-temporal interaction between surface water and groundwater. We design 2-D Topological Bubble Map to summarize all the groundwater values of four aquifers in a neuron, which can visibly explore the major features of the groundwater in the vertical direction. The constructed SOM topological maps nicely display that: (1) the groundwater movement, in general, extends from the eastern area to the western, where groundwater in the eastern area can be easily recharged from precipitation in wet seasons and discharged into streams during dry seasons due to the high permeability in this area; (2) the water movements in the four aquifers of the study area are quite different, and the seasonal variations of groundwater in the second and third aquifers are larger than those of the others; and (3) the spatial distribution and seasonal variations of groundwater and surface water are comprehensively linked together over the constructed maps to present groundwater characteristics and the interrelation between groundwater and surface water. The proposed modeling methodology not only can classify the large complex high-dimensional data sets into visible topological maps to effectively facilitate the quantitative status of regional groundwater resources but can also provide useful elaboration for future groundwater management.

  15. The Exponential Map of the Group of Area-Preserving Diffeomorphisms of a Surface with Boundary

    Science.gov (United States)

    Benn, James; Misiołek, Gerard; Preston, Stephen C.

    2018-03-01

    We prove that the Riemannian exponential map of the right-invariant L 2 metric on the group of volume-preserving diffeomorphisms of a two-dimensional manifold with a nonempty boundary is a nonlinear Fredholm map of index zero.

  16. Using dose-surface maps to predict radiation-induced rectal bleeding: a neural network approach

    Science.gov (United States)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2009-09-01

    The incidence of late-toxicities after radiotherapy can be modelled based on the dose delivered to the organ under consideration. Most predictive models reduce the dose distribution to a set of dose-volume parameters and do not take the spatial distribution of the dose into account. The aim of this study was to develop a classifier predicting radiation-induced rectal bleeding using all available information on the dose to the rectal wall. The dose was projected on a two-dimensional dose-surface map (DSM) by virtual rectum-unfolding. These DSMs were used as inputs for a classification method based on locally connected neural networks. In contrast to fully connected conventional neural nets, locally connected nets take the topology of the input into account. In order to train the nets, data from 329 patients from the RT01 trial (ISRCTN 47772397) were split into ten roughly equal parts. By using nine of these parts as a training set and the remaining part as an independent test set, a ten-fold cross-validation was performed. Ensemble learning was used and 250 nets were built from randomly selected patients from the training set. Out of these 250 nets, an ensemble of expert nets was chosen. The performances of the full ensemble and of the expert ensemble were quantified by using receiver-operator-characteristic (ROC) curves. In order to quantify the predictive power of the shape, ensembles of fully connected conventional neural nets based on dose-surface histograms (DSHs) were generated and their performances were quantified. The expert ensembles performed better than or equally as well as the full ensembles. The area under the ROC curve for the DSM-based expert ensemble was 0.64. The area under the ROC curve for the DSH-based expert ensemble equalled 0.59. This difference in performance indicates that not only volumetric, but also morphological aspects of the dose distribution are correlated to rectal bleeding after radiotherapy. Thus, the shape of the dose

  17. Using dose-surface maps to predict radiation-induced rectal bleeding: a neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Florian; Gulliford, Sarah L; Webb, Steve; Partridge, Mike [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT (United Kingdom)], E-mail: florian.buttner@icr.ac.uk

    2009-09-07

    The incidence of late-toxicities after radiotherapy can be modelled based on the dose delivered to the organ under consideration. Most predictive models reduce the dose distribution to a set of dose-volume parameters and do not take the spatial distribution of the dose into account. The aim of this study was to develop a classifier predicting radiation-induced rectal bleeding using all available information on the dose to the rectal wall. The dose was projected on a two-dimensional dose-surface map (DSM) by virtual rectum-unfolding. These DSMs were used as inputs for a classification method based on locally connected neural networks. In contrast to fully connected conventional neural nets, locally connected nets take the topology of the input into account. In order to train the nets, data from 329 patients from the RT01 trial (ISRCTN 47772397) were split into ten roughly equal parts. By using nine of these parts as a training set and the remaining part as an independent test set, a ten-fold cross-validation was performed. Ensemble learning was used and 250 nets were built from randomly selected patients from the training set. Out of these 250 nets, an ensemble of expert nets was chosen. The performances of the full ensemble and of the expert ensemble were quantified by using receiver-operator-characteristic (ROC) curves. In order to quantify the predictive power of the shape, ensembles of fully connected conventional neural nets based on dose-surface histograms (DSHs) were generated and their performances were quantified. The expert ensembles performed better than or equally as well as the full ensembles. The area under the ROC curve for the DSM-based expert ensemble was 0.64. The area under the ROC curve for the DSH-based expert ensemble equalled 0.59. This difference in performance indicates that not only volumetric, but also morphological aspects of the dose distribution are correlated to rectal bleeding after radiotherapy. Thus, the shape of the dose

  18. SU-E-J-193: Application of Surface Mapping in Detecting Swallowing for Head-&-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D; Xie, X; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2015-06-15

    Purpose: Recent evidence is emerging that long term swallowing function may be improved after radiotherapy for head-&-neck cancer if doses are limited to certain swallowing structures. Immobilization of patients with head-&-neck cancer is typically done with a mask. This mask, however, doesn’t limit patient swallowing. Patient voluntary or involuntary swallowing may introduce significant tumor motion, which can lead to suboptimal delivery. In this study, we have examined the feasibility of using surface mapping technology to detect patient swallowing during treatment and evaluated its magnitude. Methods: The C-RAD Catalyst system was used to detect the patient surface map. A volunteer lying on the couch was used to simulate the patient under treatment. A virtual marker was placed near the throat and was used to monitor the swallowing action. The target motion calculated by the Catalyst system through deformable registration was also collected. Two treatment isocenters, one placed close to the throat and the other placed posterior to the base-of-tongue, were used to check the sensitivity of surface mapping technique. Results: When the patient’s throat is not in the shadow of the patient’s chest, the Catalyst system can clearly identify the swallowing motion. In our tests, the vertical motion of the skin can reach to about 5mm. The calculated target motion can reach up to 1 cm. The magnitude of this calculated target motion is more dramatic when the plan isocenter is closer to the skin surface, which suggests that the Catalyst motion tracking technique is more sensitive to the swallowing motion with a shallower isocenter. Conclusion: Surface mapping can clearly identify patient swallowing during radiation treatment. This information can be used to evaluate the dosimetric impact of the involuntary swallowing. It may also be used to potentially gate head-&-neck radiation treatments. A prospective IRB approved study is currently enrolling patients in our

  19. CMR Native T1 Mapping Allows Differentiation of Reversible Versus Irreversible Myocardial Damage in ST-Segment-Elevation Myocardial Infarction: An OxAMI Study (Oxford Acute Myocardial Infarction).

    Science.gov (United States)

    Liu, Dan; Borlotti, Alessandra; Viliani, Dafne; Jerosch-Herold, Michael; Alkhalil, Mohammad; De Maria, Giovanni Luigi; Fahrni, Gregor; Dawkins, Sam; Wijesurendra, Rohan; Francis, Jane; Ferreira, Vanessa; Piechnik, Stefan; Robson, Matthew D; Banning, Adrian; Choudhury, Robin; Neubauer, Stefan; Channon, Keith; Kharbanda, Rajesh; Dall'Armellina, Erica

    2017-08-01

    CMR T1 mapping is a quantitative imaging technique allowing the assessment of myocardial injury early after ST-segment-elevation myocardial infarction. We sought to investigate the ability of acute native T1 mapping to differentiate reversible and irreversible myocardial injury and its predictive value for left ventricular remodeling. Sixty ST-segment-elevation myocardial infarction patients underwent acute and 6-month 3T CMR, including cine, T2-weighted (T2W) imaging, native shortened modified look-locker inversion recovery T1 mapping, rest first pass perfusion, and late gadolinium enhancement. T1 cutoff values for oedematous versus necrotic myocardium were identified as 1251 ms and 1400 ms, respectively, with prediction accuracy of 96.7% (95% confidence interval, 82.8% to 99.9%). Using the proposed threshold of 1400 ms, the volume of irreversibly damaged tissue was in good agreement with the 6-month late gadolinium enhancement volume ( r =0.99) and correlated strongly with the log area under the curve troponin ( r =0.80) and strongly with 6-month ejection fraction ( r =-0.73). Acute T1 values were a strong predictor of 6-month wall thickening compared with late gadolinium enhancement. Acute native shortened modified look-locker inversion recovery T1 mapping differentiates reversible and irreversible myocardial injury, and it is a strong predictor of left ventricular remodeling in ST-segment-elevation myocardial infarction. A single CMR acquisition of native T1 mapping could potentially represent a fast, safe, and accurate method for early stratification of acute patients in need of more aggressive treatment. Further confirmatory studies will be needed. © 2017 The Authors.

  20. Temperate forest impacts on maritime snowpacks across an elevation gradient: An assessment of the snow surface energy balance and airborne lidar derived forest structure

    Science.gov (United States)

    Roth, T. R.; Nolin, A. W.

    2016-12-01

    Temperate forests modify snow evolution patterns both spatially and temporally relative to open areas. Dense, warm forests both impede snow accumulation through increased canopy snow interception and increase sub-canopy longwave energy inputs onto the snow surface. These process modifications vary in magnitude and duration depending on climatic, topographic and forest characteristics. Here we present results from a four year study of paired forested and open sites at three elevations, Low - 1150 m, Mid - 1325 m and High - 1465 m. Snowpacks are deeper and last up to 3-4 weeks longer at the Low and Mid elevation Open sites relative to the adjacent Forest sites. Conversely, at the High Forest site, snow is retained 2-4 weeks longer than the Open site. This change in snowpack depth and persistence is attributed to deposition patterns at higher elevations and forest structure differences that alter the canopy interception efficiency and the sub-canopy energy balance. Canopy interception efficiency (CIE) in the Low and Mid Forest sites, over the duration of the study were 79% and 76% of the total event snowfall, whereas CIE was 31% at the High Forest site. Longwave radiation in forested environments is the primary energy component across each elevation band due to the warm winter environment and forest presence, accounting for 82%, 88%, and 59% of the energy balance at the Low, Mid, and High Forest sites, respectively. High wind speeds in the High elevation Open site significantly increases the turbulent energy and creates preferential snowfall deposition in the nearby Forest site. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.

  1. Geared-elevator flutter study. [wind tunnel tests of transonic flutter effects on control surfaces of supersonic transport tail assemblies, conducted in a NASA-Langley transonic wind tunnel

    Science.gov (United States)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    An experimental and analytical study was made of the transonic flutter characteristics of a supersonic transport tail assembly model having an all-movable, horizontal tail with a geared elevator. Two model configurations, namely, one with a gear-elevator (2.8 to 1.0 gear ratio) and one with locked-elevator (1.0 to 1.0 gear ratio), were flutter tested in the Langley transonic dynamics tunnel with an empennage cantilever-mounted on a sting. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter dynamic pressure boundaries for both configurations were nearly flat over a Mach number range from 0.9 to 1.1. Flutter calculations (mathematical models) were made for the geared-elevator configuration using three subsonic lifting-surface methods. In one method, the elevator was treated as a discrete surface, and in the other two methods, the stabilizer and elevator were treated as a single warped-surface with the primary difference between these two methods being in the mathematical implementation used. A comparison of the experimental and analytical results shows that the discrete-elevator method predicted best the experimental flutter dynamic pressure level. However, the single warped-surface methods predicts more closely the experimental flutter frequencies and Mach number trends.

  2. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-06-01

    Full Text Available Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems.

  3. SAFARI 2000 AVHRR-derived Land Surface Temperature Maps, Africa, 1995-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Land Surface Temperature (LST) is a key indicator of land surface states, and can provide information on surface-atmosphere heat and mass fluxes, vegetation water...

  4. SAFARI 2000 AVHRR-derived Land Surface Temperature Maps, Africa, 1995-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Land Surface Temperature (LST) is a key indicator of land surface states, and can provide information on surface-atmosphere heat and mass fluxes,...

  5. THE DEVELOPMENT OF 3D SUB-SURFACE MAPPING SCHEME AND ITS APPLICATION TO MARTIAN LOBATE DEBRIS APRONS

    Directory of Open Access Journals (Sweden)

    H. Baik

    2017-07-01

    Full Text Available The Shallow Subsurface Radar (SHARAD, a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO, has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs. From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  6. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    Science.gov (United States)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  7. A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation

    Science.gov (United States)

    Musa, Z. N.; Popescu, I.; Mynett, A.

    2015-09-01

    Hydrological data collection requires deployment of physical infrastructure like rain gauges, water level gauges, as well as use of expensive equipment like echo sounders. Many countries around the world have recorded a decrease in deployment of physical infrastructure for hydrological measurements; developing countries especially have less of this infrastructure and, where it exists, it is poorly maintained. Satellite remote sensing can bridge this gap, and has been applied by hydrologists over the years, with the earliest applications in water body and flood mapping. With the availability of more optical satellites with relatively low temporal resolutions globally, satellite data are commonly used for mapping of water bodies, testing of inundation models, precipitation monitoring, and mapping of flood extent. Use of satellite data to estimate hydrological parameters continues to increase due to use of better sensors, improvement in knowledge of and utilization of satellite data, and expansion of research topics. A review of applications of satellite remote sensing in surface water modelling, mapping and parameter estimation is presented, and its limitations for surface water applications are also discussed.

  8. Development of a silicon drift detector array: an x-ray fluorescence spectrometer for remote surface mapping

    Science.gov (United States)

    Gaskin, Jessica A.; Carini, Gabriella A.; Chen, Wei; De Geronimo, Gianluigi; Elsner, Ronald F.; Keister, Jeffrey W.; Kramer, Georgiana; Li, Zheng; Ramsey, Brian D.; Rehak, Pavel; Siddons, D. Peter

    2009-08-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  9. Development of a Silicon Drift Detector Array: An X-ray Fluorescence Spectrometer for Remote Surface Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Gaskin, J.A.; De Geronimo, G.; Carini, G.A.; Chen, W.; Elsner, R.F.; Kramer, G.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-09-11

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  10. Development of a Silicon Drift Detector Array: An X-ray Fluorescence Spectrometer for Remote Surface Mapping

    International Nuclear Information System (INIS)

    Gaskin, J.A.; De Geronimo, G.; Carini, G.A.; Chen, W.; Elsner, R.F.; Kramer, G.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-01-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  11. Synergistic use of optical and InSAR data for urban impervious surface mapping: A case study in Hong Kong

    Science.gov (United States)

    Jiang, L.; Liao, M.; Lin, H.; Yang, L.

    2009-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning and watershed resource management, require accurate and up‐to‐date geospatial data of urban impervious surfaces. In this study, the potential of the synergistic use of optical and InSAR data in urban impervious surface mapping at the sub‐pixel level was investigated. A case study in Hong Kong was conducted for this purpose by applying a classification and regression tree (CART) algorithm to SPOT 5 multispectral imagery and ERS‐2 SAR data. Validated by reference data derived from high‐resolution colour‐infrared (CIR) aerial photographs, our results show that the addition of InSAR feature information can improve the estimation of impervious surface percentage (ISP) in comparison with using SPOT imagery alone. The improvement is especially notable in separating urban impervious surface from the vacant land/bare ground, which has been a difficult task in ISP modelling with optical remote sensing data. In addition, the results demonstrate the potential to map urban impervious surface by using InSAR data alone. This allows frequent monitoring of world's cities located in cloud‐prone and rainy areas.

  12. The geometric Cauchy problem for surfaces with Lorentzian harmonic Gauss maps

    DEFF Research Database (Denmark)

    Brander, David; Svensson, Martin

    2013-01-01

    The geometric Cauchy problem for a class of surfaces in a pseudo-Riemannian manifold of dimension 3 is to find the surface which contains a given curve with a prescribed tangent bundle along the curve. We consider this problem for constant negative Gauss curvature surfaces (pseudospherical surfaces...

  13. Results of the measurement survey of elevation and environmental media in surface impoundments 3513 (B) and 3524 (A) at Oak Ridge National Laboratory, Oak Ridge, TN

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.E.; Rose, D.A.; Brown, K.S.; Coe, R.H.C. III; Lawrence, J.D.; Winton, W.

    1998-07-01

    A measurement survey of the elevation and environmental media in impoundments 3513 (B) and 3524 (A) at the Oak Ridge National Laboratory (ORNL) was conducted during April 1998. The investigation was performed by the Measurement Applications and Development Group of the Life Sciences Division of ORNL at the request of Bechtel Jacobs Company. Measurement activities were conducted at selected locations in order to determine the depth and appearance of the sediment and describe the clay underlying the impoundments prior to remediation. The survey was a follow-up to a previous elevation survey. The survey included the following: collection of sediment/clay cores from selected locations in each impoundment; measurement and documentation of the elevation at the water surface, at the top of sediment, at the top of clay, and at the bottom of each core; visual inspection of each core by a soil scientist to confirm the presence of clay and not material such as fly ash and soda lime compacted over the last 50 years; measurement and documentation of the background beta-gamma radiation level at the time and location of collection of each core, the highest beta-gamma level along the sediment portion of each core, and the highest beta-gamma level along the clay portion of each core; measurement and documentation of the length of the clay and of the sediment portion of each core; photographic documentation of each core; and replacement of each core in the impoundment.

  14. Results of the measurement survey of elevation and environmental media in surface impoundments 3513 (B) and 3524 (A) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Murray, M.E.; Rose, D.A.; Brown, K.S.; Coe, R.H.C. III; Lawrence, J.D.; Winton, W.

    1998-07-01

    A measurement survey of the elevation and environmental media in impoundments 3513 (B) and 3524 (A) at the Oak Ridge National Laboratory (ORNL) was conducted during April 1998. The investigation was performed by the Measurement Applications and Development Group of the Life Sciences Division of ORNL at the request of Bechtel Jacobs Company. Measurement activities were conducted at selected locations in order to determine the depth and appearance of the sediment and describe the clay underlying the impoundments prior to remediation. The survey was a follow-up to a previous elevation survey. The survey included the following: collection of sediment/clay cores from selected locations in each impoundment; measurement and documentation of the elevation at the water surface, at the top of sediment, at the top of clay, and at the bottom of each core; visual inspection of each core by a soil scientist to confirm the presence of clay and not material such as fly ash and soda lime compacted over the last 50 years; measurement and documentation of the background beta-gamma radiation level at the time and location of collection of each core, the highest beta-gamma level along the sediment portion of each core, and the highest beta-gamma level along the clay portion of each core; measurement and documentation of the length of the clay and of the sediment portion of each core; photographic documentation of each core; and replacement of each core in the impoundment

  15. Inactivation of Avian Influenza Viruses on Porous and Non-porous Surfaces is Enhanced by Elevating Absolute Humidity.

    Science.gov (United States)

    Guan, J; Chan, M; VanderZaag, A

    2017-08-01

    This study was to evaluate the effect of absolute humidity (AH), a combined factor of temperature and relative humidity (RH), on inactivation of avian influenza viruses (AIVs) on surfaces. Suspensions of the H9N2 or H6N2 AIV were deposited onto carrier surfaces that were either porous (pine wood) or non-porous (stainless steel, synthetic rubber and glass). The inoculated carriers were incubated at 23, 35 or 45°C with 25% or 55% RH for up to 28 days. After incubation, virus was recovered and quantified by chicken embryo assays. The time required to obtain a log 10 reduction in virus infectivity (D-value) was estimated using a linear regression model. At AH of 5.2 g/m 3 (23°C & 25% RH), both viruses survived up to 14 days on the porous surface and for at least 28 days on the non-porous surfaces. The corresponding D-values for H9N2 and H6N2 were 1.49 and 6.90 days on the porous surface and 7.81 and 12.5 days on the non-porous surfaces, respectively. In comparison, at AH of 9.9 g/m 3 (35°C & 25% RH) or 11.3 g/m 3 (23°C & 55% RH), the D-values for H9N2 and H6N2 dropped to ≤0.76 day on the porous surface and to ≤1.81 days on the non-porous surfaces. As the AH continued to rise from 11.3 to 36.0 g/m 3 , the D-value for both viruses decreased further. The relationship between D-value and AH followed a form of y = ax -b for both viruses. The D-values for H9N2 virus were significantly lower (P < 0.05) than those for H6N2 virus. Exposure to ammonia gas at concentrations of 86 and 173 ppm did not significantly alter test results. The findings give evidence that increasing the AH in poultry buildings following an outbreak of disease could greatly reduce the length of time required for their decontamination. © Her Majesty the Queen in Right of Canada 2016.

  16. XML-BSPM: an XML format for storing Body Surface Potential Map recordings.

    Science.gov (United States)

    Bond, Raymond R; Finlay, Dewar D; Nugent, Chris D; Moore, George

    2010-05-14

    The Body Surface Potential Map (BSPM) is an electrocardiographic method, for recording and displaying the electrical activity of the heart, from a spatial perspective. The BSPM has been deemed more accurate for assessing certain cardiac pathologies when compared to the 12-lead ECG. Nevertheless, the 12-lead ECG remains the most popular ECG acquisition method for non-invasively assessing the electrical activity of the heart. Although data from the 12-lead ECG can be stored and shared using open formats such as SCP-ECG, no open formats currently exist for storing and sharing the BSPM. As a result, an innovative format for storing BSPM datasets has been developed within this study. The XML vocabulary was chosen for implementation, as opposed to binary for the purpose of human readability. There are currently no standards to dictate the number of electrodes and electrode positions for recording a BSPM. In fact, there are at least 11 different BSPM electrode configurations in use today. Therefore, in order to support these BSPM variants, the XML-BSPM format was made versatile. Hence, the format supports the storage of custom torso diagrams using SVG graphics. This diagram can then be used in a 2D coordinate system for retaining electrode positions. This XML-BSPM format has been successfully used to store the Kornreich-117 BSPM dataset and the Lux-192 BSPM dataset. The resulting file sizes were in the region of 277 kilobytes for each BSPM recording and can be deemed suitable for example, for use with any telemonitoring application. Moreover, there is potential for file sizes to be further reduced using basic compression algorithms, i.e. the deflate algorithm. Finally, these BSPM files have been parsed and visualised within a convenient time period using a web based BSPM viewer. This format, if widely adopted could promote BSPM interoperability, knowledge sharing and data mining. This work could also be used to provide conceptual solutions and inspire existing formats

  17. Terrain Correction on the moving equal area cylindrical map projection of the surface of a reference ellipsoid

    Science.gov (United States)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    An operational algorithm for computing the ellipsoidal terrain correction based on application of closed form solution of the Newton integral in terms of Cartesian coordinates in the cylindrical equal area map projected surface of a reference ellipsoid has been developed. As the first step the mapping of the points on the surface of a reference ellipsoid onto the cylindrical equal area map projection of a cylinder tangent to a point on the surface of reference ellipsoid closely studied and the map projection formulas are computed. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid is considered and the gravitational potential and the vector of gravitational intensity of these mass elements has been computed via the solution of Newton integral in terms of ellipsoidal coordinates. The geographical cross section areas of the selected ellipsoidal mass elements are transferred into cylindrical equal area map projection and based on the transformed area elements Cartesian mass elements with the same height as that of the ellipsoidal mass elements are constructed. Using the close form solution of the Newton integral in terms of Cartesian coordinates the potential of the Cartesian mass elements are computed and compared with the same results based on the application of the ellipsoidal Newton integral over the ellipsoidal mass elements. The results of the numerical computations show that difference between computed gravitational potential of the ellipsoidal mass elements and Cartesian mass element in the cylindrical equal area map projection is of the order of 1.6 × 10-8m^2/s^2 for a mass element with the cross section size of 10 km × 10 km and the height of 1000 m. For a 1 km × 1 km mass element with the same height, this difference is less than 1.5 × 10-4 m^2}/s^2. The results of the numerical computations indicate that a new method for computing the terrain correction based on the closed form solution of the Newton integral in

  18. MEaSUREs Greenland Ice Mapping Project (GIMP) Digital Elevation Model from GeoEye and WorldView Imagery, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of an enhanced resolution digital elevation model (DEM) for the Greenland Ice Sheet. The DEM is derived from sub-meter resolution,...

  19. Detection of surface elevation changes using an unmanned aerial vehicle on the debris-free Storbreen glacier in Norway

    NARCIS (Netherlands)

    Kraaijenbrink, P.D.A.; Andreassen, Liss M.; Immerzeel, W.W.

    Recent studies have shown that the application of unmanned aerial vehicles (UAVs) has great potential to investigate the dynamic behavior of glaciers. The studies have successfully deployed UAVs over generally contrast-rich surfaces of debris-covered glaciers and highly crevassed bare ice glaciers.

  20. A 30 meter soil properties map of the contiguous United States for use in remote sensing and land surface models

    Science.gov (United States)

    Chaney, N.; Morgan, C.; McBratney, A.; Wood, E. F.; Yimam, Y.

    2016-12-01

    Soil moisture plays a critical role in the terrestrial water, energy, and biogeochemical cycles. For this reason, numerical weather prediction, global circulation models, and hydrologic monitoring systems increasingly emphasize modeling soil moisture and assimilating soil moisture remote sensing products. In both cases, the prescribed soil hydraulic properties play a pivotal role in accurately describing the soil moisture state. However, an accurate characterization of soil hydraulic properties remains a persistent challenge—existing continental soil databases are too coarse and outdated for contemporary applications. To address this challenge, we have developed the Probabilistic Remapping of SSURGO database (POLARIS); a new soil database that covers the contiguous United States (CONUS) at a 30-meter spatial resolution. POLARIS was constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm to remap the rich yet incomplete Soil Survey Geographic (SSURGO) database to create spatially complete probabilistic soil series maps over CONUS (Chaney et al., 2016). These maps are then combined with the vertical profile information of each soil series to create the corresponding maps of soil hydraulic properties and their associated uncertainties. The mapped soil hydraulic properties include soil texture, saturated hydraulic conductivity, porosity, field capacity, and wilting point. POLARIS provides a breakthrough in soil information. To illustrate this database's potential, we will both explore the database at multiple spatial scales and discuss recent land surface modeling results that have used POLARIS to simulate soil moisture at a 30-meter spatial resolution over CONUS between 2004 and 2014. We will discuss the added benefit of using POLARIS and the opportunity it presents to improve the characterization of soil hydraulic properties in land surface models and soil moisture remote sensing. References

  1. Surface dust wipes are the best predictors of blood leads in young children with elevated blood lead levels

    Energy Technology Data Exchange (ETDEWEB)

    Gulson, Brian, E-mail: brian.gulson@mq.edu.au [Graduate School of the Environment, Macquarie University, North Ryde NSW 2109 (Australia); CSIRO Earth Science and Resource Engineering, North Ryde NSW 2113 (Australia); Anderson, Phil [Information and Statistics Group, Australian Institute of Health and Welfare, Canberra ACT 2601 (Australia); Faculty of Health, University of Canberra, Canberra ACT 2601 (Australia); Taylor, Alan [Department of Psychology, Macquarie University, Sydney NSW 2109 (Australia)

    2013-10-15

    Background: As part of the only national survey of lead in Australian children, which was undertaken in 1996, lead isotopic and lead concentration measurements were obtained from children from 24 dwellings whose blood lead levels were ≥15 µg/dL in an attempt to determine the source(s) of their elevated blood lead. Comparisons were made with data for six children with lower blood lead levels (<10 µg/dL). Methods: Thermal ionisation and isotope dilution mass spectrometry were used to determine high precision lead isotopic ratios ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb and {sup 206}Pb/{sup 204}Pb) and lead concentrations in blood, dust from floor wipes, soil, drinking water and paint (where available). Evaluation of associations between blood and the environmental samples was based on the analysis of individual cases, and Pearson correlations and multiple regression analyses based on the whole dataset. Results and discussion: The correlations showed an association for isotopic ratios in blood and wipes (r=0.52, 95% CI 0.19–0.74), blood and soil (r=0.33, 95% CI −0.05–0.62), and blood and paint (r=0.56, 95% CI 0.09–0.83). The regression analyses indicated that the only statistically significant relationship for blood isotopic ratios was with dust wipes (B=0.65, 95% CI 0.35–0.95); there were no significant associations for lead concentrations in blood and environmental samples. There is a strong isotopic correlation of soils and house dust (r=0.53, 95% CI 0.20–0.75) indicative of a common source(s) for lead in soil and house dust. In contrast, as with the regression analyses, no such association is present for bulk lead concentrations (r=−0.003, 95% CI −0.37–0.36), the most common approach employed in source investigations. In evaluation of the isotopic results on a case by case basis, the strongest associations were for dust wipes and blood. -- Highlights: • Children with elevated blood lead ≥15 µg/dL compared with a group with <10

  2. Surface dust wipes are the best predictors of blood leads in young children with elevated blood lead levels

    International Nuclear Information System (INIS)

    Gulson, Brian; Anderson, Phil; Taylor, Alan

    2013-01-01

    Background: As part of the only national survey of lead in Australian children, which was undertaken in 1996, lead isotopic and lead concentration measurements were obtained from children from 24 dwellings whose blood lead levels were ≥15 µg/dL in an attempt to determine the source(s) of their elevated blood lead. Comparisons were made with data for six children with lower blood lead levels ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb and 206 Pb/ 204 Pb) and lead concentrations in blood, dust from floor wipes, soil, drinking water and paint (where available). Evaluation of associations between blood and the environmental samples was based on the analysis of individual cases, and Pearson correlations and multiple regression analyses based on the whole dataset. Results and discussion: The correlations showed an association for isotopic ratios in blood and wipes (r=0.52, 95% CI 0.19–0.74), blood and soil (r=0.33, 95% CI −0.05–0.62), and blood and paint (r=0.56, 95% CI 0.09–0.83). The regression analyses indicated that the only statistically significant relationship for blood isotopic ratios was with dust wipes (B=0.65, 95% CI 0.35–0.95); there were no significant associations for lead concentrations in blood and environmental samples. There is a strong isotopic correlation of soils and house dust (r=0.53, 95% CI 0.20–0.75) indicative of a common source(s) for lead in soil and house dust. In contrast, as with the regression analyses, no such association is present for bulk lead concentrations (r=−0.003, 95% CI −0.37–0.36), the most common approach employed in source investigations. In evaluation of the isotopic results on a case by case basis, the strongest associations were for dust wipes and blood. -- Highlights: • Children with elevated blood lead ≥15 µg/dL compared with a group with <10 µg/dL. • High precision lead isotopic ratios in blood, house dust wipes, soil, water, paint. • Associations for isotopic measures of blood and dust, blood and

  3. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi; Yahata, Kazuhiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Kayo, Issha [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Nishimichi, Takahiro, E-mail: kashiwagi@utap.phys.s.u-tokyo.ac.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan)

    2015-02-01

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al. for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.

  4. Driven by excess? Climatic implications of new global mapping of near-surface water-equivalent hydrogen on Mars

    Science.gov (United States)

    Pathare, Asmin V.; Feldman, William C.; Prettyman, Thomas H.; Maurice, Sylvestre

    2018-02-01

    We present improved Mars Odyssey Neutron Spectrometer (MONS) maps of near-surface Water-Equivalent Hydrogen (WEH) on Mars that have intriguing implications for the global distribution of "excess" ice, which occurs when the mass fraction of water ice exceeds the threshold amount needed to saturate the pore volume in normal soils. We have refined the crossover technique of Feldman et al. (2011) by using spatial deconvolution and Gaussian weighting to create the first globally self-consistent map of WEH. At low latitudes, our new maps indicate that WEH exceeds 15% in several near-equatorial regions, such as Arabia Terra, which has important implications for the types of hydrated minerals present at low latitudes. At high latitudes, we demonstrate that the disparate MONS and Phoenix Robotic Arm (RA) observations of near surface WEH can be reconciled by a three-layer model incorporating dry soil over fully saturated pore ice over pure excess ice: such a three-layer model can also potentially explain the strong anticorrelation of subsurface ice content and ice table depth observed at high latitudes. At moderate latitudes, we show that the distribution of recently formed impact craters is also consistent with our latest MONS results, as both the shallowest ice-exposing crater and deepest non-ice-exposing crater at each impact site are in good agreement with our predictions of near-surface WEH. Overall, we find that our new mapping is consistent with the widespread presence at mid-to-high Martian latitudes of recently deposited shallow excess ice reservoirs that are not yet in equilibrium with the atmosphere.

  5. Surface and thickness variations of Brenva Glacier tongue (Mont Blanc, Italian Alps) in the second half of the 20th century by historical maps and aerial photogrammetry comparisons

    Science.gov (United States)

    D Agata, C.; Zanutta, A.; Muzzu Martis, D.; Mancini, F.; Smiraglia, C.

    2003-04-01

    a digital surface model with a degree of accuracy varing among the glacier and the surrounding area. Comparison with available cartography may be performed if digital ortophoto is being generated from the photogrammetric processing in a well defined reference system. Accuracy in volumetric changes estimations is nevertheless of fundamental importance being derived from the comparison of different metodologies with related single accuracies. By using GIS sofware the maps and ortophotos were managed after digitalisation; Digital Elevation Models were produced and their comparison allowed: 1) to quantify surface and volume variations 2) to elaborate thematic maps about ice thickness and debris areal distribution variations 4) to elaborate topographic longitudinal and transverse profiles to underline glacier changes The preliminary results about volumetric and thickness variations obtained from maps are the following: a) 1959-1971: the glacier tongue increased in volume of about 15 millions mc of ice that correspond to an increase in thickness of about 20 m of ice with maximum values of about 40-50 m. b)1971-1983: the glacier tongue increased in volume of about 18 millions mc of ice that is to say a mean increase in thickness of a little more than 20 m of ice. In the same time the glacier advanced of about 200 m (Italian Glaciological Committee data), probably this advancing phase was related to the ablation reduction caused by the emispheric climate cooling occurred during the second half of the 20th century. It influenced the mass balance trend of a large number of glaciers in the North Emisphere between the 70s and the 80s of the 20 th century c)1983-1991: for this period a negative volumetric variation of about 8 millions mc of ice was calculated equal to a thickness decreasing of about 10 m of ice. The managing of orthopotos by GIS software to obtain DEMs is in progress and its results will confirm or add arguments to discuss them. The final results will allow to

  6. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  7. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  8. A semi-automatic multiple view texture mapping for the surface model extracted by laser scanning

    Science.gov (United States)

    Zhang, Zhichao; Huang, Xianfeng; Zhang, Fan; Chang, Yongmin; Li, Deren

    2008-12-01

    Laser scanning is an effective way to acquire geometry data of the cultural heritage with complex architecture. After generating the 3D model of the object, it's difficult to do the exactly texture mapping for the real object. we take effort to create seamless texture maps for a virtual heritage of arbitrary topology. Texture detail is acquired directly from the real object in a light condition as uniform as we can make. After preprocessing, images are then registered on the 3D mesh by a semi-automatic way. Then we divide the mesh into mesh patches overlapped with each other according to the valid texture area of each image. An optimal correspondence between mesh patches and sections of the acquired images is built. Then, a smoothing approach is proposed to erase the seam between different images that map on adjacent mesh patches, based on texture blending. The obtained result with a Buddha of Dunhuang Mogao Grottoes is presented and discussed.

  9. High-density surface EMG maps from upper-arm and forearm muscles

    Directory of Open Access Journals (Sweden)

    Rojas-Martínez Monica

    2012-12-01

    Full Text Available Abstract Background sEMG signal has been widely used in different applications in kinesiology and rehabilitation as well as in the control of human-machine interfaces. In general, the signals are recorded with bipolar electrodes located in different muscles. However, such configuration may disregard some aspects of the spatial distribution of the potentials like location of innervation zones and the manifestation of inhomogineties in the control of the muscular fibers. On the other hand, the spatial distribution of motor unit action potentials has recently been assessed with activation maps obtained from High Density EMG signals (HD-EMG, these lasts recorded with arrays of closely spaced electrodes. The main objective of this work is to analyze patterns in the activation maps, associating them with four movement directions at the elbow joint and with different strengths of those tasks. Although the activation pattern can be assessed with bipolar electrodes, HD-EMG maps could enable the extraction of features that depend on the spatial distribution of the potentials and on the load-sharing between muscles, in order to have a better differentiation between tasks and effort levels. Methods An experimental protocol consisting of isometric contractions at three levels of effort during flexion, extension, supination and pronation at the elbow joint was designed and HD-EMG signals were recorded with 2D electrode arrays on different upper-limb muscles. Techniques for the identification and interpolation of artifacts are explained, as well as a method for the segmentation of the activation areas. In addition, variables related to the intensity and spatial distribution of the maps were obtained, as well as variables associated to signal power of traditional single bipolar recordings. Finally, statistical tests were applied in order to assess differences between information extracted from single bipolar signals or from HD-EMG maps and to analyze

  10. A Model Based Deconvolution Approach for Creating Surface Composition Maps of Irregularly Shaped Bodies from Limited Orbiting Nuclear Spectrometer Measurements

    Science.gov (United States)

    Dallmann, N. A.; Carlsten, B. E.; Stonehill, L. C.

    2017-12-01

    Orbiting nuclear spectrometers have contributed significantly to our understanding of the composition of solar system bodies. Gamma rays and neutrons are produced within the surfaces of bodies by impacting galactic cosmic rays (GCR) and by intrinsic radionuclide decay. Measuring the flux and energy spectrum of these products at one point in an orbit elucidates the elemental content of the area in view. Deconvolution of measurements from many spatially registered orbit points can produce detailed maps of elemental abundances. In applying these well-established techniques to small and irregularly shaped bodies like Phobos, one encounters unique challenges beyond those of a large spheroid. Polar mapping orbits are not possible for Phobos and quasistatic orbits will realize only modest inclinations unavoidably limiting surface coverage and creating North-South ambiguities in deconvolution. The irregular shape causes self-shadowing both of the body to the spectrometer but also of the body to the incoming GCR. The view angle to the surface normal as well as the distance between the surface and the spectrometer is highly irregular. These characteristics can be synthesized into a complicated and continuously changing measurement system point spread function. We have begun to explore different model-based, statistically rigorous, iterative deconvolution methods to produce elemental abundance maps for a proposed future investigation of Phobos. By incorporating the satellite orbit, the existing high accuracy shape-models of Phobos, and the spectrometer response function, a detailed and accurate system model can be constructed. Many aspects of this model formation are particularly well suited to modern graphics processing techniques and parallel processing. We will present the current status and preliminary visualizations of the Phobos measurement system model. We will also discuss different deconvolution strategies and their relative merit in statistical rigor, stability

  11. Variations in Near-Infrared Emissivity of Venus Surface Observed by the Galileo Near-Infrared Mapping Spectrometer

    Science.gov (United States)

    Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.

    2004-11-01

    We evaluate the spatial variation of venusian surface emissivity at a near-infrared wavelength using multispectral images obtained by the Near-Infrared Mapping Spectrometer (NIMS) on board the Galileo spacecraft. The Galileo made a close flyby to Venus in February 1990. During this flyby, NIMS observed the nightside of Venus with 17 spectral channels, which includes the well-known spectral windows at 1.18, 1.74, and 2.3 μ m. The surface emissivity is evaluated at 1.18 μ m, at which thermal radiation emitted from the planetary surface could be detected. To analyze the NIMS observations, synthetic spectra have been generated by means of a line-by-line radiative transfer program which includes both scattering and absorption. We used the discrete ordinate method to calculate the spectra of vertically inhomogeneous plane-parallel atmosphere. Gas opacity is calculated based on the method of Pollack et al. (1993), though binary absorption coefficients for continuum opacity are adjusted to achieve an acceptable fit to the NIMS data. We used Mie scattering theory and a cloud model developed by Pollack et al. (1993) to determine the single scattering albedo and scattering phase function of the cloud particles. The vertical temperature profile of Venus International Reference Atmosphere (VIRA) is used in all our calculations. The procedure of the analysis is the followings. We first made a correction for emission angle. Then, a modulation of emission by the cloud opacities is removed using simultaneously measured 1.74 and 2.3 μ m radiances. The resulting images are correlated with the topographic map of Magellan. To search for variations in surface emissivity, this cloud corrected images are divided by synthetic radiance maps that were created from the Magellan data. This work has been supported by The 21st Century COE Program of Origin and Evolution of Planetary Systems of Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  12. Surface mapping via unsupervised classification of remote sensing: application to MESSENGER/MASCS and DAWN/VIRS data.

    Science.gov (United States)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-12-01

    Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.

  13. Modeling Urinary Dysfunction After External Beam Radiation Therapy of the Prostate Using Bladder Dose-Surface Maps: Evidence of Spatially Variable Response of the Bladder Surface.

    Science.gov (United States)

    Yahya, Noorazrul; Ebert, Martin A; House, Michael J; Kennedy, Angel; Matthews, John; Joseph, David J; Denham, James W

    2017-02-01

    We assessed the association of the spatial distribution of dose to the bladder surface, described using dose-surface maps, with the risk of urinary dysfunction. The bladder dose-surface maps of 754 participants from the TROG 03.04-RADAR trial were generated from the volumetric data by virtually cutting the bladder at the sagittal slice, intersecting the bladder center-of-mass through to the bladder posterior and projecting the dose information on a 2-dimensional plane. Pixelwise dose comparisons were performed between patients with and without symptoms (dysuria, hematuria, incontinence, and an International Prostate Symptom Score increase of ≥10 [ΔIPSS10]). The results with and without permutation-based multiple-comparison adjustments are reported. The pixelwise multivariate analysis findings (peak-event model for dysuria, hematuria, and ΔIPSS10; event-count model for incontinence), with adjustments for clinical factors, are also reported. The associations of the spatially specific dose measures to urinary dysfunction were dependent on the presence of specific symptoms. The doses received by the anteroinferior and, to lesser extent, posterosuperior surface of the bladder had the strongest relationship with the incidence of dysuria, hematuria, and ΔIPSS10, both with and without adjustment for clinical factors. For the doses to the posteroinferior region corresponding to the area of the trigone, the only symptom with significance was incontinence. A spatially variable response of the bladder surface to the dose was found for symptoms of urinary dysfunction. Limiting the dose extending anteriorly might help reduce the risk of urinary dysfunction. Copyright © 2016. Published by Elsevier Inc.

  14. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  15. Reciprocal space XRD mapping with varied incident angle as a probe of structure variation within surface depth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiguang [Norfolk State University; Williams, Frances [Norfolk State University; Zhao, Xin [JLAB; Reece, Charles E. [JLAB; Krishnan, Mahadevan [AASC, San Leandro, California

    2013-09-01

    In this study, we used a differential-depth X-Ray diffraction Reciprocal Spacing Mapping (XRD RSM) technique to investigate the crystal quality of a variety of SRF-relevant Nb film and bulk materials. By choosing different X-ray probing depths, the RSM study successfully revealed evolution the of materials microstructure after different materials processes, such as energetic condensation or surface polishing. The RSM data clearly measured the materials crystal quality at different thickness. Through a novel differential-depth RSM technique, this study found: I. for a heteroepitaxy Nb film Nb(100)/MgO(100), the film thickening process, via a cathodic arc-discharge Nb ion deposition, created a near-perfect single crystal Nb on the surfaces top-layer; II. for a mechanically polished single-crystal bulk Nb material, the microstructure on the top surface layer is more disordered than that in-grain.

  16. Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS.

    Science.gov (United States)

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F; Becker, James T; Aizenstein, Howard J; Lopez, Oscar L; Tamburo, Robert J; Toga, Arthur W; Thompson, Paul M

    2010-02-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics-these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  17. Base Flood Elevation (BFE) Lines

    Data.gov (United States)

    Department of Homeland Security — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally if...

  18. FEMA DFIRM Base Flood Elevations

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally,...

  19. Nanoripple formation on GaAs (001) surface by reverse epitaxy during ion beam sputtering at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debasree; Ghose, Debabrata, E-mail: debabrata1.ghose@gmail.com

    2016-11-01

    Highlights: • GaAs (001) surfaces are sputtered by 1 keV Ar{sup +} at sample temperature of 450 °C. • Highly ordered defect-free ripples develop at near-normal incidence angles (θ ≈ 0–25{sup 0}). • Concurrent sample rotation does not alter the ripple orientation with respect to the ion beam. • At grazing incidence angles anisotropic structure is formed. • Concurrent sample rotation shows that the structure orientation depends on the beam direction. - Abstract: Self-organized pattern formation by the process of reverse epitaxial growth has been investigated on GaAs (001) surfaces during 1 keV Ar{sup +} bombardment at target temperature of 450 °C for a wide range of incident angles. Highly ordered ripple formation driven by diffusion instability is evidenced at near normal incidence angles. Concurrent sample rotation shows that the ripple morphology and its orientation do not depend on the incident beam direction; rather they are determined by the symmetry of the crystal face.

  20. A chord diagrammatic presentation of the mapping class group of a once bordered surface

    DEFF Research Database (Denmark)

    Bene, Alex

    2010-01-01

    The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichmüller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path groupo...

  1. Toddlers Default to Canonical Surface-to-Meaning Mapping When Learning Verbs

    Science.gov (United States)

    Dautriche, Isabelle; Cristia, Alejandrina; Brusini, Perrine; Yuan, Sylvia; Fisher, Cynthia; Christophe, Anne

    2014-01-01

    Previous work has shown that toddlers readily encode each noun in the sentence as a distinct argument of the verb. However, languages allow multiple mappings between form and meaning that do not fit this canonical format. Two experiments examined French 28-month-olds' interpretation of right-dislocated sentences ("noun"-verb,…

  2. A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling

    Science.gov (United States)

    Lenaerts, J. T. M.; van den Broeke, M. R.; van de Berg, W. J.; van Meijgaard, E.; Kuipers Munneke, P.

    2012-02-01

    A new, high resolution (27 km) surface mass balance (SMB) map of the Antarctic ice sheet is presented, based on output of a regional atmospheric climate model that includes snowdrift physics and is forced by the most recent reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA-Interim (1979-2010). The SMB map confirms high accumulation zones in the western Antarctic Peninsula (>1500 mm y-1) and coastal West Antarctica (>1000 mm y-1), and shows low SMB values in large parts of the interior ice sheet (181 Gt y-1. Snowfall shows modest interannual variability (σ = 114 Gt y-1), but a pronounced seasonal cycle (σ = 30 Gt mo-1), with a winter maximum. The main ablation process is drifting snow sublimation, which also peaks in winter but with little interannual variability (σ = 9 Gt y-1).

  3. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  4. Near-Surface Geophysical Mapping of the Hydrological Response to an Intense Rainfall Event at the Field Scale

    Science.gov (United States)

    Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.

    2009-12-01

    Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind

  5. High-resolution peptide mapping separations with MS-friendly mobile phases and charge-surface-modified C18.

    Science.gov (United States)

    Lauber, Matthew A; Koza, Stephan M; McCall, Scott A; Alden, Bonnie A; Iraneta, Pamela C; Fountain, Kenneth J

    2013-07-16

    Ionic analytes, such as peptides, can be challenging to separate by reverse-phase chromatography with optimal efficiency. They tend, for instance, to exhibit poor peak shapes, particularly when eluted with mobile phases preferred for electrospray ionization mass spectrometry. We demonstrate that a novel charged-surface C18 stationary phase alleviates some of the challenges associated with reverse-phase peptide separations. This column chemistry, known as CSH (charged-surface hybrid) C18, improves upon an already robust organosilica hybrid stationary phase, BEH (ethylene-bridged hybrid) C18. Based on separations of a nine-peptide standard, CSH C18 was found to exhibit improved loadability, greater peak capacities, and unique selectivity compared to BEH C18. Its performance was also seen to be significantly less dependent on TFA-ion pairing, making it ideal for MS applications where high sensitivity is desired. These performance advantages were evaluated through application to peptide mapping, wherein CSH C18 was found to aid the development of a high-resolution, high-sensitivity LC-UV-MS peptide mapping method for the therapeutic antibody, trastuzumab. From these results, the use of a C18 stationary phase with a charged surface, such as CSH C18, holds significant promise for facilitating challenging peptide analyses.

  6. Using multi-temporal Sentinal-2 imagery for mapping Andean meadows and surface soil moisture in central Chile

    Science.gov (United States)

    Araya, Rocio; Fassnacht, Fabian E.; Lopatin, Javier; Hernández, H. Jaime

    2017-04-01

    In the Rio Maipo watershed, situated in central Chile, mining activities are the main factor impacting Andean meadows, through the consumption and exploitation of water and land. As wetlands are vulnerable and particularly susceptible to changes of water supply, alterations and modifications in the hydrological regime have direct effects on vegetation cover. In order to better understand this ecosystem, as well as for conservation planning and resource management, there is a strong need for spatially explicit and update wetland ecosystem assessment. However, there is a lack of baseline dataset and state of knowledge on these habitats. During the last decades remote sensing as evolve as an efficient tool for mapping and monitoring wetland ecosystems at different temporal and spatial scales. Accurate and up-to-date mapping and assessment of wetlands allows monitoring the changes in wetlands' vegetation due to natural and/or anthropogenic disturbances. New freely available spaceborne imagery, like Sentinel-2, supports long term monitoring on a high spatial resolution (10 m). The main aim of this work was to evaluate the potential of multi-temporal Sentinel-2 images in the detection and monitoring of water status of Andean meadows with anthropic disturbances. For these tasks we used bias support vector machines (BSVM), a one-class classifier to map and monitor meadow areas, and the support vector machines regression (SVMR) to estimate surface soil moisture (i.e. top 30 cm). BSVM produces probability maps of the class of interest, were only data of this class is needed as input of the model. One-class classifiers are well suited for situations where the numbers of the training samples from the class of interest is small and/or cover a small fraction of the area to be classified. We found that BSVM was capable to classify the meadow areas with an overall accuracy between 65% and 96%. Meanwhile, surface soil moisture prediction using SVMR reached r2 values between 0.2 and

  7. G.POT: a method for the assessment and mapping of the near-surface geothermal potential

    Science.gov (United States)

    Casasso, Alessandro; Sethi, Rajandrea

    2017-04-01

    Shallow geothermal systems are widely recognised as a valuable technology for the heating and cooling of buildings. The most adopted technology is the Borehole Heat Exchanger (BHE), since it can be installed almost everywhere. However, the economic viability of BHEs depends on the thermal load that can be efficiently exchanged with the ground, i.e. the near-surface geothermal potential. We present the G.POT (Geothermal POTential) method for the assessment of near-surface geothermal potential as a function of the thermal conductivity and capacity of the ground, of its initial temperature, of the thermal resistance of the BHE and of the duration of the sinusoidal thermal load cycle, which reproduces the typical pattern of a thermal load during a heating or a cooling season. The function was calibrated from the results of numerical heat transfer simulations, performed varying the values of the aforementioned parameters over broad ranges. G.POT is a simple mathematical tool which can be easily implemented for the large-scale assessment and mapping of the near-surface geothermal potential for heating or cooling purpose. An example of its application is also shown, and advice is provided on the processing of input parameters. References A. Casasso, R. Sethi, G.POT: A quantitative method for the assessment and mapping of the shallow geothermal potential, Energy 106 (2016) 765-773. A. Casasso, R. Sethi, Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy), Renewable Energy 102, Part B (2017) 306-315.

  8. Scanning Electron Microscope Mapping System Developed for Detecting Surface Defects in Fatigue Specimens

    Science.gov (United States)

    Bonacuse, Peter J.; Kantzos, Peter T.

    2002-01-01

    An automated two-degree-of-freedom specimen positioning stage has been developed at the NASA Glenn Research Center to map and monitor defects in fatigue specimens. This system expedites the examination of the entire gauge section of fatigue specimens so that defects can be found using scanning electron microscopy (SEM). Translation and rotation stages are driven by microprocessor-based controllers that are, in turn, interfaced to a computer running custom-designed software. This system is currently being used to find and record the location of ceramic inclusions in powder metallurgy materials. The mapped inclusions are periodically examined during interrupted fatigue experiments. The number of cycles to initiate cracks from these inclusions and the rate of growth of initiated cracks can then be quantified. This information is necessary to quantify the effect of this type of defect on the durability of powder metallurgy materials. This system was developed with support of the Ultra Safe program.

  9. Mapping surface tension induced menisci with application to tensiometry and refractometry.

    Science.gov (United States)

    Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve

    2015-07-28

    In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.

  10. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars......-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient...

  11. Keratoconus Progression in Patients With Allergy and Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test.

    Science.gov (United States)

    Mazzotta, Cosimo; Traversi, Claudio; Mellace, Pierfrancesco; Bagaglia, Simone A; Zuccarini, Silvio; Mencucci, Rita; Jacob, Soosan

    2017-10-04

    To assess keratoconus (KC) progression in patients with allergies who also tested positive to surface matrix metalloproteinase 9 (MMP-9) point-of-care test. Prospective comparative study including 100 stage I-II keratoconic patients, mean age 16.7±4.6 years. All patients underwent an anamnestic questionnaire for concomitant allergic diseases and were screened with the MMP-9 point-of-care test. Patients were divided into two groups: patients KC with allergies (KC AL) and patients KC without allergies (KC NAL). Severity of allergy was established by papillary subtarsal response grade and KC progression assessed by Scheimpflug corneal tomography, corrected distance visual acuity (CDVA) measurement in a 12-month follow-up. The KC AL group included 52 patients and the KC NAL group 48. In the KC AL group, 42/52 of patients (81%) were positive to MMP-9 point-of-care test versus two positive patients in the KC NAL group (4%). The KC AL group data showed a statistically significant decrease of average CDVA, from 0.155±0.11 to 0.301±0.2 logarithm of the minimum angle of resolution (Paverage. The KC NAL group revealed a slight KC progression without statistically significant changes. Pearson correlation test showed a high correlation between Kmax worsening and severity of PSR in the KC AL group. The study demonstrated a statistically significant progression of KC in patients with concomitant allergies, positive to MMP-9 point-of-care test versus negative. A high correlation between severity of allergy and KC progression was documented.

  12. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Marutschke, Christoph; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika; Walters, Deron; Cleveland, Jason

    2014-01-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid–liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface. (paper)

  13. Mapping the environmental risk potential on surface water of pesticide contamination in the Prosecco's vineyard terraced landscape

    Science.gov (United States)

    Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro

    2016-04-01

    Intensive cropping systems today represent a paramount issue in terms of environmental impacts, since agricultural pollutants can constitute a potential threat to surface water, non-target organisms and aquatic ecosystems. Levels of pesticide concentrations in surface waters are indeed unquestionably correlated to crop and soil management practices at field-scale. Due to the numerous applications of pesticides required, orchards and vineyards can represent relevant non-point sources for pesticide contamination of water bodies, mainly prompted by soil erosion, surface runoff and spray drift. To reduce risks of pesticide contamination of surface water, the Directive 2009/128/CET imposed the local implementation of agricultural good practices and mitigation actions such as the use of vegetative buffer filter strips and hedgerows along river and pond banks. However, implementation of mitigation actions is often difficult, especially in extremely fragmented agricultural landscapes characterized by a complex territorial matrix set up on urban sprawling, frequent surface water bodies, important geomorphological processes and protected natural areas. Typically, such landscape matrix is well represented by the, Prosecco-DOCG vineyards area (NE of Italy, Province of Treviso) which lays on hogback hills of conglomerate, marls and sandstone that ranges between 50 and 500 m asl. Moreover such vineyards landscape is characterized by traditional and non-traditional agricultural terraces The general aim of this paper is to identify areas of surface water bodies with high potential risk of pesticide contamination from surrounding vineyards in the 735 ha of Lierza river basin (Refrontolo, TV), one of the most representative terraced landscape of the Prosecco-DOCG area. Specific aims are i) mapping terraced Prosecco-DOCG vineyards, ii) classifying potential risk from pesticide of the different areas. Remote sensing technologies such as four bands aerial photos (RGB+NIR) and Light

  14. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    Science.gov (United States)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  15. Sensitivity of thermal inertia calculations to variations in environmental factors. [in mapping of Earth's surface by remote sensing

    Science.gov (United States)

    Kahle, A. B.; Alley, R. E.; Schieldge, J. P.

    1984-01-01

    The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.

  16. Pixel-based absolute surface metrology by three flat test with shifted and rotated maps

    Science.gov (United States)

    Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang

    2018-03-01

    In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.

  17. Calibration and Validation of High Frequency Radar for Ocean Surface Current Mapping

    National Research Council Canada - National Science Library

    Kim, Kyung

    2004-01-01

    High Frequency (HF) radar backscatter instruments are being developed and tested in the marine science and defense science communities for their abilities to sense surface parameters remotely in the coastal ocean over large areas...

  18. High-resolution mapping of global surface water and its long-term changes

    Science.gov (United States)

    Pekel, Jean-François; Cottam, Andrew; Gorelick, Noel; Belward, Alan S.

    2016-12-01

    The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water

  19. Mapping the Qademah Fault with Traveltime, Surface-wave, and Resistivity Tomograms

    KAUST Repository

    Hanafy, Sherif M.

    2015-08-19

    Traveltime, surface-wave, and resistivity tomograms are used to track the buried Qademah fault located near King Abdullah Economic City (KAEC), Saudi Arabia. The fault location is confirmed by the 1) resistivity tomogram obtained from an electrical resistivity experiment, 2) the refraction traveltime tomogram, 3) the reflection image computed from 2D seismic data set recorded at the northern part of the fault, and 4) the surface-wave tomogram.

  20. [Ca2+]i Elevation and Oxidative Stress Induce KCNQ1 Protein Translocation from the Cytosol to the Cell Surface and Increase Slow Delayed Rectifier (IKs) in Cardiac Myocytes*

    Science.gov (United States)

    Wang, Yuhong; Zankov, Dimitar P.; Jiang, Min; Zhang, Mei; Henderson, Scott C.; Tseng, Gea-Ny

    2013-01-01

    Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca2+]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes. PMID:24142691

  1. [Ca2+]i elevation and oxidative stress induce KCNQ1 protein translocation from the cytosol to the cell surface and increase slow delayed rectifier (IKs) in cardiac myocytes.

    Science.gov (United States)

    Wang, Yuhong; Zankov, Dimitar P; Jiang, Min; Zhang, Mei; Henderson, Scott C; Tseng, Gea-Ny

    2013-12-06

    Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca(2+)]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes.

  2. Mapping surface flow in low gradient areas with thermal remote sensing

    DEFF Research Database (Denmark)

    Prinds, Christian; Petersen, Rasmus Jes; Greve, Mogens Humlekrog

    into lowlands and water bodies (lakes, streams, ditches etc.). Tile drains are one of the main end points for nutrients applied to the agricultural fields and a fast conduit. When studying the function of riparian lowlands and wetlands as nutrient buffer zones, it is essential to know 1) the location...... of drainage input into the buffer system and 2) the flow path of the water. The TIR imagery was collected by a UAV (eBee from SenseFly) with a thermal camera (ThermoMap from SenseFly) at early spring in 2016 and 2017. The surveys are conducted in cold periods where discharging drainage water (and groundwater...

  3. Data Elevator

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-29

    Data Elevator: Efficient Asynchronous Data Movement in Hierarchical Storage Systems Multi-layer storage subsystems, including SSD-based burst buffers and disk-based parallel file systems (PFS), are becoming part of HPC systems. However, software for this storage hierarchy is still in its infancy. Applications may have to explicitly move data among the storage layers. We propose Data Elevator for transparently and efficiently moving data between a burst buffer and a PFS. Users specify the final destination for their data, typically on PFS, Data Elevator intercepts the I/O calls, stages data on burst buffer, and then asynchronously transfers the data to their final destination in the background. This system allows extensive optimizations, such as overlapping read and write operations, choosing I/O modes, and aligning buffer boundaries. In tests with large-scale scientific applications, Data Elevator is as much as 4.2X faster than Cray DataWarp, the start-of-art software for burst buffer, and 4X faster than directly writing to PFS. The Data Elevator library uses HDF5's Virtual Object Layer (VOL) for intercepting parallel I/O calls that write data to PFS. The intercepted calls are redirected to the Data Elevator, which provides a handle to write the file in a faster and intermediate burst buffer system. Once the application finishes writing the data to the burst buffer, the Data Elevator job uses HDF5 to move the data to final destination in an asynchronous manner. Hence, using the Data Elevator library is currently useful for applications that call HDF5 for writing data files. Also, the Data Elevator depends on the HDF5 VOL functionality.

  4. Surface mapping, organic matter and water stocks in peatlands of the Serra do Espinhaço meridional - Brazil

    Directory of Open Access Journals (Sweden)

    Márcio Luiz da Silva

    2013-10-01

    Full Text Available Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water, low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000 by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1 of organic matter and 142,138,262 m³ (9,948 m³ ha-1 of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric organic matter predominate, followed by the intermediate stage (hemic. The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation

  5. Selection of optimal recording sites for limited lead body surface potential mapping: A sequential selection based approach

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2006-02-01

    Full Text Available Abstract Background In this study we propose the development of a new algorithm for selecting optimal recording sites for limited lead body surface potential mapping. The proposed algorithm differs from previously reported methods in that it is based upon a simple and intuitive data driven technique that does not make any presumptions about deterministic characteristics of the data. It uses a forward selection based search technique to find the best combination of electrocardiographic leads. Methods The study was conducted using a dataset consisting of body surface potential maps (BSPM recorded from 116 subjects which included 59 normals and 57 subjects exhibiting evidence of old Myocardial Infarction (MI. The performance of the algorithm was evaluated using spatial RMS voltage error and correlation coefficient to compare original and reconstructed map frames. Results In all, three configurations of the algorithm were evaluated and it was concluded that there was little difference in the performance of the various configurations. In addition to observing the performance of the selection algorithm, several lead subsets of 32 electrodes as chosen by the various configurations of the algorithm were evaluated. The rationale for choosing this number of recording sites was to allow comparison with a previous study that used a different algorithm, where 32 leads were deemed to provide an acceptable level of reconstruction performance. Conclusion It was observed that although the lead configurations suggested in this study were not identical to that suggested in the previous work, the systems did bear similar characteristics in that recording sites were chosen with greatest density in the precordial region.

  6. Mapping of Synaptic-Neuronal Impairment on the Brain Surface through Fluctuation Analysis

    International Nuclear Information System (INIS)

    Musha, Toshimitsu; Kurachi, Takayoshi; Suzuki, Naohoro; Kosugi, Yukio

    2005-01-01

    Increase of demented population year by year is becoming a serious social problem to be solved urgently. The most effective way to block this increase is in its early detection by means of an inexpensive, non-invasive, sensitive, reliable and easy-to-operate diagnosis method. We have developed a method satisfying these requirements by using scalp potential fluctuations. We have collected 21ch EEG and SPECT data of 25 very mild Alzheimer's disease (AD) (MMSE=26±1.8), moderately severe AD (MMSE=15.3±6.4) and age-matched normal controls. As AD progresses, local synaptic-neuronal activity becomes abnormal, either more unstable or more inactive than in normal state. Such abnormality is detected in terms of normalized power variance (NPV) of a scalp potential recorded with a scalp electrode. The z-score is defined by z = ((NPV of a subject) - (mean NPV of normal subjects))/(standard deviation of NPV of normal subjects). Correlation of a measured z-score map with the mean z-score map for AD patients characterizes likelihood to AD, in terms of which AD is discriminated from normal with 75% of true positive and 25% false negative probability. By introducing two thresholds, we have 90% of true positive and 10% of false negative discrimination

  7. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Science.gov (United States)

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  8. Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX.

    Science.gov (United States)

    Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas

    2014-05-25

    During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients' oral cavities.

  9. Mechanism of degradation of surface hardening at elevated temperature in TiAlV-alloys by in situ synchrotron radiation diffraction

    CERN Document Server

    Berberich, F; Kreissig, U; Schell, N; Mücklich, A

    2003-01-01

    The surface hardness of the technically important alloy Ti-6Al-4V (wt.%) can be improved by nitrogen implantation. The structural mechanisms of hardening and of the stability of the improved hardness at elevated temperatures are studied. Ion implanted (II) and plasma immersion ion implanted (PII) samples were used. The formation of small TiN crystallites was detected in the as-implanted state, but only for the II samples a considerable surface hardness increase (factor 3) is observed. The in situ XRD experiments showed, that the TiN phase is stable up to temperatures of 650 deg. C for both types of implantation. At higher temperature Ti sub 2 N is formed which is stable up to 770 deg. C. ERDA results indicate a diffusion of nitrogen into the bulk material. The redistribution of N is responsible for the hardness changes: a slight decrease for II samples but an improvement by a factor of 2.5 for PII samples. The improvements/degradations of hardness and wear are discussed in correlation with the nitrogen depth ...

  10. Self-Organization Maps for Analyzing the Black Sea Bio-Physical Variability and Surface Wind Forcing

    Science.gov (United States)

    Chu, P. C.; Gulher, E.

    2014-12-01

    Spatial and temporal variability of the Black Sea surface circulation and chlorophyll-a concentration with the link to the surface winds is investigated using the self-organizing maps (SOMs) on the satellite data from Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and Quick Scatterometer (QuikSCAT). Six spatial patterns with temporal variability are identified for the surface currents: Pattern-1 (Sevastopol Cyclonic and Batumi Dipole Eddies, 21%) Pattern-2 (Cyclonic RIM Current and Anti-cyclonic Batumi Eddy, 16%), Pattern-3 (Anti-cyclonic Sevastopol and Batumi Eddies, 17%), Pattern-4 (Cyclonic RIM Current and Cyclonic Batumi Eddy, 21%), Pattern-5 (Anti-cyclonic RIM Current and Batumi Dipole Eddies, 15%), Pattern-6 (Anti-cyclonic RIM Current and Multi Eddies, 10%). The bi-modal characteristics has been changed in 1999-2009 with the fall bloom being more significant than the spring bloom. The surface circulation pattern-4 (cyclonic RIM current and Batumi eddy) is associated with the occurrence of the fall bloom. Evident connection of negative NAO and negative ENSO to the pattern-4 circulation implies the large-scale atmospheric effect. Possible connection of these patterns to the climatological indices, such as the North Atlantic Oscillation (NAO) and the East Atlantic/West Russian (EAWR), oscillation are also discussed.

  11. Use of high-resolution imagery acquired from an unmanned aircraft system for fluvial mapping and estimating water-surface velocity in rivers

    Science.gov (United States)

    Kinzel, P. J.; Bauer, M.; Feller, M.; Holmquist-Johnson, C.; Preston, T.

    2013-12-01

    The use of unmanned aircraft systems (UAS) for environmental monitoring in the United States is anticipated to increase in the coming years as the Federal Aviation Administration (FAA) further develops guidelines to permit their integration into the National Airspace System. The U.S. Geological Survey's (USGS) National Unmanned Aircraft Systems Project Office routinely obtains Certificates of Authorization from the FAA for utilizing UAS technology for a variety of natural resource applications for the U.S. Department of the Interior (DOI). We evaluated the use of a small UAS along two reaches of the Platte River near Overton Nebraska, USA, to determine the accuracy of the system for mapping the extent and elevation of emergent sandbars and to test the ability of a hovering UAS to identify and track tracers to estimate water-surface velocity. The UAS used in our study is the Honeywell Tarantula Hawk RQ16 (T-Hawk), developed for the U.S. Army as a reconnaissance and surveillance platform. The T-Hawk has been recently modified by USGS, and certified for airworthiness by the DOI - Office of Aviation Services, to accommodate a higher-resolution imaging payload than was originally deployed with the system. The T-Hawk is currently outfitted with a Canon PowerShot SX230 HS with a 12.1 megapixel resolution and intervalometer to record images at a user defined time step. To increase the accuracy of photogrammetric products, orthoimagery and DEMs using structure-from-motion (SFM) software, we utilized ground control points in the study reaches and acquired imagery using flight lines at various altitudes (200-400 feet above ground level) and oriented both parallel and perpendicular to the river. Our results show that the mean error in the elevations derived from SFM in the upstream reach was 17 centimeters and horizontal accuracy was 6 centimeters when compared to 4 randomly distributed targets surveyed on emergent sandbars. In addition to the targets, multiple transects were

  12. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, R.; Malladi, R. [Lawrence Berkeley National Lab., CA (United States); Sochen, N. [Tel-Aviv Univ. (Israel)

    1997-02-01

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as a surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.

  13. Common Dorsal Stream Substrates for the Mapping of Surface Texture to Object Parts and Visual Spatial Processing.

    Science.gov (United States)

    Zachariou, Valentinos; Nikas, Christine V; Safiullah, Zaid N; Behrmann, Marlene; Klatzky, Roberta; Ungerleider, Leslie G

    2015-12-01

    Everyday objects are often composed of multiple parts, each with a unique surface texture. The neural substrates mediating the integration of surface features on different object parts are not fully understood, and potential contributions by both the ventral and dorsal visual pathways are possible. To explore these substrates, we collected fMRI data while human participants performed a difference detection task on two objects with textured parts. The objects could either differ in the assignment of the same texture to different object parts ("texture-location") or the types of texture ("texture-type"). In the ventral stream, comparable BOLD activation levels were observed in response to texture-location and texture-type differences. In contrast, in a priori localized spatial processing regions of the dorsal stream, activation was greater for texture-location than texture-type differences, and the magnitude of the activation correlated with behavioral performance. We confirmed the reliance of surface texture to object part mapping on spatial processing mechanisms in subsequent psychophysical experiments, in which participants detected a difference in the spatial distance of an object relative to a reference line. In this task, distracter objects occasionally appeared, which differed in either texture-location or texture-type. Distracter texture-location differences slowed detection of spatial distance differences, but texture-type differences did not. More importantly, the distracter effects were only observed when texture-location differences were presented within whole shapes and not between separated shape parts at distinct spatial locations. We conclude that both the mapping of texture features to object parts and the representation of object spatial position are mediated by common neural substrates within the dorsal visual pathway.

  14. Extinction in the Galaxy from surface brightnesses of ESO-LV galaxies : Testing "standard" extinction maps

    NARCIS (Netherlands)

    Choloniewski, J.; Valentijn, E. A.

    A new method for the determination of the extinction in the Galaxy is proposed. The method uses surface brightnesses of external galaxies in the B and R-bands. The observational data have been taken from the ESO-LV galaxy catalog. As a first application of our model we derive the ratio of R-band to

  15. A novel method for more accurately mapping the surface temperature of ultrasonic transducers.

    Science.gov (United States)

    Axell, Richard G; Hopper, Richard H; Jarritt, Peter H; Oxley, Chris H

    2011-10-01

    This paper introduces a novel method for measuring the surface temperature of ultrasound transducer membranes and compares it with two standard measurement techniques. The surface temperature rise was measured as defined in the IEC Standard 60601-2-37. The measurement techniques were (i) thermocouple, (ii) thermal camera and (iii) novel infra-red (IR) "micro-sensor." Peak transducer surface measurements taken with the thermocouple and thermal camera were -3.7 ± 0.7 (95% CI)°C and -4.3 ± 1.8 (95% CI)°C, respectively, within the limits of the IEC Standard. Measurements taken with the novel IR micro-sensor exceeded these limits by 3.3 ± 0.9 (95% CI)°C. The ambiguity between our novel method and the standard techniques could have direct patient safety implications because the IR micro-sensor measurements were beyond set limits. The spatial resolution of the measurement technique is not well defined in the IEC Standard and this has to be taken into consideration when selecting which measurement technique is used to determine the maximum surface temperature. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Hot spot mapping of protein surfaces with TEMPOL: Bovine pancreatic RNase A as a model system.

    Science.gov (United States)

    Niccolai, Neri; Morandi, Edoardo; Gardini, Simone; Costabile, Valentino; Spadaccini, Roberta; Crescenzi, Orlando; Picone, Delia; Spiga, Ottavia; Bernini, Andrea

    2017-02-01

    TEMPOL spin-label has been used to identify surface exposure of protein nuclei from NMR analysis of the induced paramagnetic relaxation enhancements (PRE). The absence of linear dependence between atom depths and observed PRE reveals that specific mechanisms drive the approach of the paramagnet to the protein surface. RNase A represents a unique protein system to explore the fine details of the information offered by TEMPOL induced PRE, due to the abundance of previous results, obtained in solution and in the crystal, dealing with surface dynamics behavior of this protein. MD simulations in explicit solvent have been performed, also in the presence of TEMPOL, in order to delineate the role of intermolecular hydrogen bonds (HB) on PRE extents. Comparison of our results with the ones obtained from multiple solvent crystal structure (MSCS) studies yields information on the specificities that these two techniques have for characterizing protein-ligand interactions, a fundamental step in the development of reliable surface druggability predictors. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mapping the Agulhas Current from space: an assessment of ASAR surface current velocities

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-10-01

    Full Text Available Over 2 years of surface current information collected in the Agulhas Current region and derived from the Doppler centroid anomalies of Envisat’s advanced synthetic aperture radar (ASAR) are examined. The sources of errors and potential use of ASAR...

  18. Surface analysis and mechanical behaviour mapping of vertically aligned CNT forest array through nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Koumoulos, Elias P.; Charitidis, C.A., E-mail: charitidis@chemeng.ntua.gr

    2017-02-28

    Highlights: • Structure and wall numbers are identified through TEM. • Static contact angle measurements revealed a super-hydrophobic behavior. • Hysteresis was observed (loading–unloading) due to the local stress distribution. • Hardness and modulus mapping for a grid of 70 μm{sup 2} is conducted. • Resistance is clearly divided in 2 regions (MWCNT and MWCNT – MWCNT) interface. - Abstract: Carbon nanotube (CNT) based architectures have increased the scientific interest owning to their exceptional performance rendering them promising candidates for advanced industrial applications in the nanotechnology field. Despite individual CNTs being considered as one of the most known strong materials, much less is known about other CNT forms, such as CNT arrays, in terms of their mechanical performance (integrity). In this work, thermal chemical vapor deposition (CVD) method is employed to produce vertically aligned multiwall (VA-MW) CNT carpets. Their structural properties were studied by means of scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Raman spectroscopy, while their hydrophobic behavior was investigated via contact angle measurements. The resistance to indentation deformation of VA-MWCNT carpets was investigated through nanoindentation technique. The synthesized VA-MWCNTs carpets consisted of well-aligned MWCNTs. Static contact angle measurements were performed with water and glycerol, revealing a rather super-hydrophobic behavior. The structural analysis, hydrophobic behavior and indentation response of VA-MWCNTs carpets synthesized via CVD method are clearly demonstrated. Additionally, cycle indentation load-depth curve was applied and hysteresis loops were observed in the indenter loading–unloading cycle due to the local stress distribution. Hardness (as resistance to applied load) and modulus mapping, at 200 nm of displacement for a grid of 70 μm{sup 2} is presented. Through trajection, the resistance is clearly divided in 2

  19. Monocular Elevation Deficiency - Double Elevator Palsy

    Science.gov (United States)

    ... Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? Monocular Elevation Deficiency, also known by the ...

  20. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  1. Sea surface temperature of the coastal zones of France. Heat Capacity Mapping Mission (HCMM)

    Science.gov (United States)

    Deschamps, P. Y.; Frouin, R.; Cassanet, G.; Verger, F. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. HCMM data analysis shows some mesoscale features which were previously expected to occur: summer coastal upwellings in the Gulf of Lions, tidal fronts bordering the English Channel, and cooler surface waters at the continental shelf break. The analysis of the spectral variance density spectra show that the interpretation of the data usually is limited by the HCMM radiometric performance (noise levels) at wavenumbers below 5 km in the oceanic areas; from this analysis it may also be concluded that a decrease of the radiometric noise level down to 0.1 k against an increase of the ground resolution up to 2 km would give a better optimum of the radiometric performances in the oceanic areas. HCMM data appear to be useful for analysis of the sea surface temperature field, particularly in the very coastal area by profiting from the ground resolution of 500 m.

  2. Mapping Cellular Hierarchy by Single-Cell Analysis of the Cell Surface Repertoire

    OpenAIRE

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A.; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2013-01-01

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method we analyzed over 1500 single cells throughout the mouse hematopoietic system, and illustrate its utility for revealing important biological insi...

  3. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirkó; Bosco, Filippo; Yang, Jaeyoung

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot......) intensity distributions of target molecules on receptor-functionalized nanopillar substrates for biomolecular quantification. We demonstrate that by utilizing only a small set of empirically determined parameters, our general theoretical framework agrees with the experimental data particularly well...

  4. Mapping of near surface fold structures with GPR and ERT near Steinbrunn (Northern Burgenland, Austria)

    Science.gov (United States)

    Kreutzer, Ingrid; Chwatal, Werner; Häusler, Hermann; Scheibz, Jürgen; Steirer, Fritz

    2014-05-01

    In the transition zone between the southern Vienna Basin and the Eisenstadt basin, close to Wr. Neustadt, spectacular fold structures are exposed in the former sand pit of Steinbrunn. The succession of Upper Pannonian age consists of decimetre to meter thick sandy, silty and clayey beds, which are overlain by sandstone beds (Grundtner et al., 2009). The anticline and syncline structures were interpreted as of gravitational origin by Exner et al. (2009), and reinterpreted as of tectonic origin by Häusler (2012a). In order to gain a more detailed insight to the three dimensional distribution and orientation of the folds high resolution geophysics such as electrical resistivity tomography (ERT), ground penetrating radar (GPR) and electromagnetics (EM) were applied to map the surroundings of the sandpit. The ERT- and EM-profiles show that the uppermost layer is more clayey northwest and sandier southeast of the sandpit. This is important for the GPR because clay attenuates the radar signals and therefore no clear layering of the subsurface could be mapped in these areas. In order to directly compare ERT and GPR results with the lithology of the fold structures observed in the sandpit, a reference profile on top of the 140 m long wall of the sandpit was performed. Both methods clearly reveal fold structures paralleling the folded Pannonian strata of the outcrop. While the GPR data displays boundaries and their geometry in the succession, the resistivities in the ERT portrays a more smoothened image of the observed fold structure. In almost all GPR profiles wavelike structures are visible with axes in northern direction and dome-shaped structures with axes in eastern direction, deepening towards the west. In conclusion this pattern is comparable to sections of rounded buckle folds. Although there are clayey areas wave-like and dome-like reflections can be followed in the GPR profiles over a distance of several hundred meters. This is confirmed by the ERT profiles

  5. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia.

    Science.gov (United States)

    Strager, Michael P; Strager, Jacquelyn M; Evans, Jeffrey S; Dunscomb, Judy K; Kreps, Brad J; Maxwell, Aaron E

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts.

  6. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia.

    Directory of Open Access Journals (Sweden)

    Michael P Strager

    Full Text Available Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2 gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts.

  7. Assessment of the Suomi NPP VIIRS Land Surface Albedo Data Using Station Measurements and High-Resolution Albedo Maps

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    2016-02-01

    Full Text Available Land surface albedo (LSA, one of the Visible Infrared Imaging Radiometer Suite (VIIRS environmental data records (EDRs, is a fundamental component for linking the land surface and the climate system by regulating shortwave energy exchange between the land and the atmosphere. Currently, the improved bright pixel sub-algorithm (BPSA is a unique algorithm employed by VIIRS to routinely generate LSA EDR from VIIRS top-of-atmosphere (TOA observations. As a product validation procedure, LSA EDR reached validated (V1 stage maturity in December 2014. This study summarizes recent progress in algorithm refinement, and presents comprehensive validation and evaluation results of VIIRS LSA by using extensive field measurements, Moderate Resolution Imaging Spectroradiometer (MODIS albedo product, and Landsat-retrieved albedo maps. Results indicate that: (1 by testing the updated desert-specific look-up-table (LUT that uses a stricter standard to select the training data specific for desert aerosol type in our local environment, it is found that the VIIRS LSA retrieval accuracy is improved over a desert surface and the absolute root mean square error (RMSE is reduced from 0.036 to 0.023, suggesting the potential of the updated desert LUT to the improve the VIIRS LSA product accuracy; (2 LSA retrieval on snow-covered surfaces is more accurate if the newly developed snow-specific LUT (RMSE = 0.082 replaces the generic LUT (RMSE = 0.093 that is employed in the current operational LSA EDR production; (3 VIIRS LSA is also comparable to high-resolution Landsat albedo retrieval (RMSE < 0.04, although Landsat albedo has a slightly higher accuracy, probably owing to higher spatial resolution with less impacts of mixed pixel; (4 VIIRS LSA retrievals agree well with the MODIS albedo product over various land surface types, with overall RMSE of lower than 0.05 and the overall bias as low as 0.025, demonstrating the comparable data quality between VIIRS and the MODIS LSA

  8. Surface circulation in the Iroise Sea (western Brittany) derived from high resolution current mapping by HF radars

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Barbin, Yves; Marié, Louis; Ardhuin, Fabrice

    2010-05-01

    The use of high frequency radar (HFR) systems for near-real-time coastal ocean monitoring necessities that short time scale motions of the radar-derived velocities are better understood. While the ocean radar systems are able to describe coastal flow patterns with unprecedented details, the data they produce are often too sparse or gappy for applications such as the identification of coherent structures and fronts or understanding transport and mixing processes. In this study, we address two challenges. First, we report results from the HF radar system (WERA) which is routinely operating since 2006 on the western Brittany coast to monitor surface circulation in the Iroise Sea, over an area extending up to 100 km offshore. To obtain more reliable records of vector current fields at high space and time resolution, the Multiple Signal Classification (MUSIC) direction finding algorithm is employed in conjunction with the variational interpolation (2dVar) of radar-derived velocities. This provides surface current maps at 1 km spacing and time resolution of 20 min. Removing the influence of the sea state on radar-derived current measurements is discussed and performed on some data sequences. Second, we examine in deep continuous 2d velocity records for a number of periods, exploring the different modes of variability of surface currents in the region. Given the extent, duration, and resolution of surface current velocity measurements, new quantitative insights from various time series and spatial analysis on higher frequency kinematics will be discussed. By better characterizing the full spectrum of flow regimes that contribute to the surface currents and their shears, a more complete picture of the circulation in the Iroise Sea can be obtained.

  9. A new regional high-resolution map of basal and surface topography for the Greenland ice-sheet margin at Paakitsoq, West Greenland

    DEFF Research Database (Denmark)

    Mottram, R.; Nielsen, C.; Ahlstrøm, A. P.

    2009-01-01

    In 2005 an airborne survey was carried out from a Twin Otter aircraft at Pâkitsup Akuliarusersua (Paakitsoq) near Ilulissat in West Greenland. The survey aimed to measure ice thickness with a 60 MHz cohrent radar and surface elevation with a scanning laser altimeter.......In 2005 an airborne survey was carried out from a Twin Otter aircraft at Pâkitsup Akuliarusersua (Paakitsoq) near Ilulissat in West Greenland. The survey aimed to measure ice thickness with a 60 MHz cohrent radar and surface elevation with a scanning laser altimeter....

  10. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L

    2013-01-02

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins.

  11. Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting.

    Science.gov (United States)

    Zam, Azhar; Dsouza, Roshan; Subhash, Hrebesh M; O'Connell, Marie-Louise; Enfield, Joey; Larin, Kirill; Leahy, Martin J

    2013-09-01

    We propose the use of correlation mapping optical coherence tomography (cmOCT) to deliver additional biometrics associated with the finger that could complement existing fingerprint technology for law enforcement applications. The current study extends the existing fingerprint paradigm by measuring additional biometrics associated with sub-surface finger tissue such as sub-surface fingerprints, sweat glands, and the pattern of the capillary bed to yield a user-friendly cost effective and anti-spoof multi-mode biometric solution associated with the finger. To our knowledge no other method has been able to capture sub-surface fingerprint, papillary pattern and horizontal vessel pattern in a single scan or to show the correspondence between these patterns in live adult human fingertip. Unlike many current technologies this approach incorporates 'liveness' testing by default. The ultimate output is a biometric module which is difficult to defeat and complements fingerprint scanners that currently are used in border control and law enforcement applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation.

    Science.gov (United States)

    Rodrigo, M; Climent, A M; Liberos, A; Fernández-Aviles, F; Atienza, F; Guillem, M S; Berenfeld, O

    2017-08-01

    Ablation of drivers maintaining atrial fibrillation (AF) has been demonstrated as an effective therapy. Drivers in the form of rapidly activated atrial regions can be noninvasively localized to either left or right atria (LA, RA) with body surface potential mapping (BSPM) systems. This study quantifies the accuracy of dominant frequency (DF) measurements from reduced-leads BSPM systems and assesses the minimal configuration required for ablation guidance. Nine uniformly distributed lead sets of eight to 66 electrodes were evaluated. BSPM signals were registered simultaneously with intracardiac electrocardiograms (EGMs) in 16 AF patients. DF activity was analyzed on the surface potentials for the nine leads configurations, and the noninvasive measures were compared with the EGM recordings. Surface DF measurements presented similar values than panoramic invasive EGM recordings, showing the highest DF regions in corresponding locations. The noninvasive DFs measures had a high correlation with the invasive discrete recordings; they presented a deviation of 0.8 for leads configurations with 12 or more electrodes. Reduced-leads BSPM systems enable noninvasive discrimination between LA versus RA DFs with similar results as higher-resolution 66-leads system. Our findings demonstrate the possible incorporation of simplified BSPM systems into clinical planning procedures for AF ablation. © 2017 Wiley Periodicals, Inc.

  13. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry.

    Directory of Open Access Journals (Sweden)

    Hyung-Sup Jung

    Full Text Available Mapping three-dimensional (3D surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR and multiple aperture interferometry (MAI. In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.

  14. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry.

    Science.gov (United States)

    Jung, Hyung-Sup; Hong, Soo-Min

    2017-01-01

    Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.

  15. Geologic mapping of near-surface sediments in the northern Mississippi Embayment, McCracken County, KY

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Joshua L [JL Sexton and Son; Fryar, Alan E [Dept of Earth and Geoligical Sciences, Univ of KY,; Greb, s F [Univ of KY, KY Geological Survey

    2006-04-01

    POSTER: The Jackson Purchase region of western Kentucky consists of Coastal Plain sediments near the northern margin of the Mississippi Embayment. Within this region is the Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility operated by the US Department of Energy. At PGDP, a Superfund site, soil and groundwater studies have provided subsurface lithologic data from hundreds of monitoring wells and borings. Despite preliminary efforts by various contractors, these data have not been utilized to develop detailed stratigraphic correlations of sedimentary units across the study area. In addition, sedimentary exposures along streams in the vicinityof PGDP have not been systematically described beyond the relatively simple geologic quadrangle maps published by the US Geological Survey in 1966-67. This study integrates lithologic logs, other previous site investigation data, and outcrop mapping to provide a compilation of near-surface lithologic and stratigraphic data for the PGDP area. A database of borehole data compiled during this study has been provided to PGDP for future research and archival.

  16. Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E-1(4) with Pointwise 1-Type Gauss Map

    OpenAIRE

    Bektaş, Burcu; Dursun, Uğur

    2015-01-01

    In this work, we focus on a class of timelike rotational surfaces in Minkowski space E-1(4) with 2-dimensional axis. There are three types of rotational surfaces with 2-dimensional axis, called rotational surfaces of elliptic, hyperbolic or parabolic type. We obtain all flat timelike rotational surface of elliptic and hyperbolic types with pointwise 1-type Gauss map of the first and second kind. We also prove that there exists no flat timelike rotational surface of parabolic type in E-1(4) wi...

  17. Near surface geophysics techniques and geomorphological approach to reconstruct the hazard cave map in historical and urban areas

    Science.gov (United States)

    Lazzari, M.; Loperte, A.; Perrone, A.

    2010-03-01

    This work, carried out with an integrated methodological approach, focuses on the use of near surface geophysics techniques, such as ground penetrating radar and electrical resistivity tomography (ERT), and geomorphological analysis, in order to reconstruct the cave distribution and geometry in a urban context and, in particular, in historical centres. The interaction during recent centuries between human activity (caves excavation, birth and growth of an urban area) and the characters of the natural environment were the reasons of a progressive increase in hazard and vulnerability levels of several sites. The reconstruction of a detailed cave map distribution is the first step to define the anthropic and geomorphological hazard in urban areas, fundamental basis for planning and assessing the risk.

  18. Body surface mapping of atrial arrhythmias: atlas of paced P wave integral maps to localize the focal origin of right atrial tachycardia

    NARCIS (Netherlands)

    SippensGroenewegen, A.; Roithinger, F. X.; Peeters, H. A.; Linnenbank, A. C.; van Hemel, N. M.; Steiner, P. R.; Lesh, M. D.

    1998-01-01

    Successful curative treatment of right atrial tachycardia (AT) can be obtained provided detailed catheter activation mapping of the target site for radiofrequency energy application has been accomplished. However, right AT mapping may be difficult with a single roving catheter due to infrequent

  19. Click chemistry based biomolecular conjugation monitoring using surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirko; Kumar, Shiv; Li, Zengmin

    2016-01-01

    We describe here a novel surface-enhanced Raman spectroscopy (SERS) based technique for monitoring the conjugation of small molecules by the well-known click reaction between an alkyne and azido moiety on the partner molecules. The monitoring principle is based on the loss of the characteristic...... such as bioconjugation, material science or drug discovery. Additionally, as an attractive advantage of this technique, no significant background signal is expected during the measurements, since these signals reside in a Raman silent region of 2000–2300 cm−1, where virtually all biological molecules are transparent....

  20. Mapping surface plasmon polariton propagation via counter-propagating light pulses

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Jauernik, Stephan

    2012-01-01

    interface recorded in a counter-propagating pump-probe geometry. In comparison to former work this approach provides a very intuitive real-time access to the SPP wave packet. The quantitative analysis of the PEEM data enables us to determine in a rather direct manner the propagation characteristics......In an interferometric time-resolved photoemission electron microscopy (ITR-PEEM) experiment, the near-field associated with surface plasmon polaritons (SPP) can be locally sensed via interference with ultrashort laser pulses. Here, we present ITR-PEEM data of SPP propagation at a gold vacuum...

  1. Somatosensory maps.

    Science.gov (United States)

    Harding-Forrester, Samuel; Feldman, Daniel E

    2018-01-01

    Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mapping the surface of MNKr2 and CopZ - identification of residues critical for metallotransfer

    International Nuclear Information System (INIS)

    Jones, C.E.; Cobine, P.A.; Dameron, C.T.

    2001-01-01

    Full text: Cells utilise a network of proteins that include CPx-type ATPases and metallochaperones to balance intracellular copper concentration. The Menkes ATPase has six N-terminal domains which bind Cu(I) and are critical for ATPase function. The NMR solution structure of the second domain (MNKr2) shows that the structure adopts an 'open-faced β-sandwich' fold, in which two α-helices lie over a single four stranded β-sheet. The global fold is identical to the bacterial copper chaperone CopZ MNKr2 is unable to substitute for CopZ in copper transfer to the cop operon represser, CopY. To investigate how structure affects function we have analysed the surface features of MNKr2 and CopZ Despite having the same global fold, MNKr2 and CopZ have contrasting electrostatic surfaces, which may partially explain the inability of MNKr2 to transfer copper to CopY

  3. Empirical mapping of the convective heat transfer coefficients with local hot spots on highly conductive surfaces

    Directory of Open Access Journals (Sweden)

    Tekelioğlu Murat

    2017-01-01

    Full Text Available An experimental method was proposed to assess the natural and forced convective heat transfer coefficients on highly conductive bodies. Experiments were performed at air velocities of 0m/s, 4.0m/s, and 5.4m/s, and comparisons were made between the current results and available literature. These experiments were extended to arbitrary-shape bodies. External flow conditions were maintained throughout. In the proposed method, in determination of the surface convective heat transfer coefficients, flow condition is immaterial, i.e., either laminar or turbulent. With the present method, it was aimed to acquire the local heat transfer coefficients on any arbitrary conductive shape. This method was intended to be implemented by the heat transfer engineer to identify the local heat transfer rates with local hot spots. Finally, after analyzing the proposed experimental results, appropriate decisions can be made to control the amount of the convective heat transfer off the surface. Limited mass transport was quantified on the cooled plate.

  4. Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display.

    Science.gov (United States)

    Khatun, M Mahfuza; Liu, Chen-Guang; Zhao, Xin-Qing; Yuan, Wen-Jie; Bai, Feng-Wu

    2017-02-01

    Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.

  5. Surface errors without semantic impairment in acquired dyslexia: a voxel-based lesion-symptom mapping study.

    Science.gov (United States)

    Binder, Jeffrey R; Pillay, Sara B; Humphries, Colin J; Gross, William L; Graves, William W; Book, Diane S

    2016-05-01

    Patients with surface dyslexia have disproportionate difficulty pronouncing irregularly spelled words (e.g. pint), suggesting impaired use of lexical-semantic information to mediate phonological retrieval. Patients with this deficit also make characteristic 'regularization' errors, in which an irregularly spelled word is mispronounced by incorrect application of regular spelling-sound correspondences (e.g. reading plaid as 'played'), indicating over-reliance on sublexical grapheme-phoneme correspondences. We examined the neuroanatomical correlates of this specific error type in 45 patients with left hemisphere chronic stroke. Voxel-based lesion-symptom mapping showed a strong positive relationship between the rate of regularization errors and damage to the posterior half of the left middle temporal gyrus. Semantic deficits on tests of single-word comprehension were generally mild, and these deficits were not correlated with the rate of regularization errors. Furthermore, the deep occipital-temporal white matter locus associated with these mild semantic deficits was distinct from the lesion site associated with regularization errors. Thus, in contrast to patients with surface dyslexia and semantic impairment from anterior temporal lobe degeneration, surface errors in our patients were not related to a semantic deficit. We propose that these patients have an inability to link intact semantic representations with phonological representations. The data provide novel evidence for a post-semantic mechanism mediating the production of surface errors, and suggest that the posterior middle temporal gyrus may compute an intermediate representation linking semantics with phonology. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  7. COMPARISON OF DIGITAL SURFACE MODELS FOR SNOW DEPTH MAPPING WITH UAV AND AERIAL CAMERAS

    Directory of Open Access Journals (Sweden)

    R. Boesch

    2016-06-01

    Full Text Available Photogrammetric workflows for aerial images have improved over the last years in a typically black-box fashion. Most parameters for building dense point cloud are either excessive or not explained and often the progress between software releases is poorly documented. On the other hand, development of better camera sensors and positional accuracy of image acquisition is significant by comparing product specifications. This study shows, that hardware evolutions over the last years have a much stronger impact on height measurements than photogrammetric software releases. Snow height measurements with airborne sensors like the ADS100 and UAV-based DSLR cameras can achieve accuracies close to GSD * 2 in comparison with ground-based GNSS reference measurements. Using a custom notch filter on the UAV camera sensor during image acquisition does not yield better height accuracies. UAV based digital surface models are very robust. Different workflow parameter variations for ADS100 and UAV camera workflows seem to have only random effects.

  8. Utility of the surface electrocardiogram for confirming right ventricular septal pacing: validation using electroanatomical mapping.

    Science.gov (United States)

    Burri, Haran; Park, Chan-Il; Zimmermann, Marc; Gentil-Baron, Pascale; Stettler, Carine; Sunthorn, Henri; Domenichini, Giulia; Shah, Dipen

    2011-01-01

    When targeting the interventricular septum during pacemaker implantation, the lead may inadvertently be positioned on the anterior wall due to imprecise fluoroscopic landmarks. Surface electrocardiogram (ECG) criteria of the paced QRS complex (e.g. negativity in lead I) have been proposed to confirm a septal position, but these criteria have not been properly validated. Our aim was to investigate whether the paced QRS complex may be used to confirm septal lead position. Anatomical reconstruction of the right ventricle was performed using a NavX® system in 31 patients (70 ± 11 years, 26 males) to validate pacing sites. Surface 12-lead ECGs were analysed by digital callipers and compared while pacing from a para-Hissian position, from the mid-septum, and from the anterior free wall. Duration of the QRS complex was not significantly shorter when pacing from the mid-septum compared with the other sites. QRS axis was significantly less vertical during mid-septal pacing (18 ± 51°) compared with para-Hissian (38 ± 37°, P = 0.028) and anterior (53 ± 55°, P = 0.003) pacing, and QRS transition was intermediate (4.8 ± 1.3 vs. 3.8 ± 1.3, P < 0.001, and vs. 5.4 ± 0.9, P = 0.045, respectively), although no cut-offs could reliably distinguish sites. A negative QRS or the presence of a q-wave in lead I tended to be more frequent with anterior than with mid-septal pacing (9/31 vs. 3/31, P = 0.2 and 8/31 vs. 1/31, P = 1.0, respectively). No single ECG criterion could reliably distinguish pacing the mid-septum from the anterior wall. In particular, a negative QRS complex in lead I is an inaccurate criterion for validating septal pacing.

  9. Thermographic mapping of the skin surface in biometric evaluation of cellulite treatment effectiveness.

    Science.gov (United States)

    Wilczyński, S; Koprowski, R; Deda, A; Janiczek, M; Kuleczka, N; Błońska-Fajfrowska, B

    2017-02-01

    Cellulite is one of the worst tolerated aesthetic imperfections. Edema that accompanies cellulite causes disorders of blood flow what may be observed as changes in the skin surface temperature. The aim of this paper was to develop a new method based on the analysis and processing of thermal images of the skin for biometric evaluation of severity of cellulite and monitoring its treatment. The observations of the treatment effects were conducted on 10 females (33.4 ± 6.4 years). Thermal images of the volunteers' thighs were captured before starting the therapy (T 0 ). In the following stages: T 1 , T 2 , and T 3 , thermal images were captured 2 weeks after the first, second and third Alidya treatment administration, respectively. Profiled algorithms were developed to determine the mean Grey Level Co-occurrence Matrix (GLCM) contrast in the acquired thermograms. The mean GLCM contrast for the phase T 0 was 70.91, and for the stages T 1 , T 2 , and T 3 : 57.78, 41.80, and 38.53, respectively. The use of proposed method (GLCM contrast) enables biometric evaluation of the effectiveness of cellulite treatment. Traditionally used parameters of infrared analysis such as local points of the maximum and minimum temperature or the median temperatures are not useful in thermal, biometric evaluation of anti-cellulite preparations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Mapping the upper mantle beneath North American continent with joint inversion of surface-wave phase and amplitude

    Science.gov (United States)

    Yoshizawa, K.; Hamada, K.

    2017-12-01

    A new 3-D S-wave model of the North American upper mantle is constructed from a large number of inter-station phase and amplitude measurements of surface waves. A fully nonlinear waveform fitting method by Hamada and Yoshizawa (2015, GJI) is applied to USArray for measuring inter-station phase speeds and amplitude ratios of the fundamental-mode Rayleigh and Love waves. We employed the seismic events from 2007 - 2014 with Mw 6.0 or greater, and collected a large-number of inter-station phase speed data (about 130,000 for Rayleigh and 85,000 for Love waves) and amplitude ratio data (about 75,000 for Rayleigh waves) in a period range from 30 to 130 s for fundamental-mode surface waves. Typical inter-station distances are mostly in a range between 300 and 800 km, which can be of help in enhancing the lateral resolution of a regional tomography model. We first invert Rayleigh-wave phase speeds and amplitudes simultaneously for phase speed maps as well as local amplification factors at receiver locations. The isotropic 3-D S-wave model constructed from these phase speed maps incorporating both phase and amplitude data exhibits better recovery of the strength of velocity perturbations. In particular, local tectonic features characterized by strong velocity gradients, such as Rio Grande Rift, Colorado Plateau and New Madrid Seismic Zone, are more enhanced than conventional models derived from phase information only. The results indicate that surface-wave amplitude, which is sensitive to the second derivative of phase speeds, can be of great help in retrieving small-scale heterogeneity in the upper mantle. We also obtain a radial anisotropy model from the simultaneous inversions of Rayleigh and Love waves (without amplitude information). The model has shown faster SH wave speed anomalies than SV above the depth of 100 km, particularly in tectonically active regions in the western and central U.S., representing the effects of current and former tectonic processes on

  11. High-resolution mapping and modelling of surface albedo in Norwegian boreal forests: from remotely sensed data to predictions

    Science.gov (United States)

    Cherubini, Francesco; Hu, Xiangping; Vezhapparambu, Sajith; Stromman, Anders

    2017-04-01

    Surface albedo, a key parameter of the Earth's climate system, has high variability in space, time, and land cover and its parameterization is among the most important variables in climate models. The lack of extensive estimates for model improvement is one of the main limitations for accurately quantifying the influence of surface albedo changes on the planetary radiation balance. We use multi-year satellite retrievals of MODIS surface albedo (MCD43A3), high resolution land cover maps, and meteorological records to characterize albedo variations in Norway across latitude, seasons, land cover type, and topography. We then use this dataset to elaborate semi-empirical models to predict albedo values as a function of tree species, age, volume and climate variables like temperature and snow water equivalents (SWE). Given the complexity of the dataset and model formulation, we apply an innovative non-linear programming approach simultaneously coupled with linear un-mixing. The MODIS albedo products are at a resolution of about 500 m and 8 days. The land cover maps provide vegetation structure information on relative abundance of tree species, age, and biomass volumes at 16 m resolution (for both deciduous and coniferous species). Daily observations of meteorological information on air temperature and SWE are produced at 1 km resolution from interpolation of meteorological weather stations in Norway. These datasets have different resolution and projection, and are harmonized by identifying, for each MODIS pixel, the intersecting land cover polygons and the percentage area of the MODIS pixel represented by each land cover type. We then filter the subplots according to the following criteria: i) at least 96% of the total pixel area is covered by a single land cover class (either forest or cropland); ii) if forest area, at least 98% of the forest area is covered by spruce, deciduous or pine. Forested pixels are then categorized as spruce, deciduous, or pine dominant if the

  12. Validation and inter-comparison of surface elevation changes derived from altimetry over the Jakobshavn Isbræ drainage basin, Greenland – Round Robin results from ESA's Ice_Sheets_CCI (ID #EGU2013-6007)

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovsky, Kirill; Ticconi, Francesca

    elevation changes (SEC), surface velocities, calving front locations, and grounding line locations. This work focuses on SEC, and the goal is to develop the best routine for estimating this by means of radar altimetry. In order to find the most optimal approach we have completed a Round Robin experiment (RR...

  13. Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders

    Science.gov (United States)

    Alvarez, A.; Chiggiato, J.; Schroeder, K.

    2013-04-01

    Integrating the observations gathered by different platforms into a unique physical picture of the environment is a fundamental aspect of networked ocean observing systems. These are constituted by a spatially distributed set of sensors and platforms that simultaneously monitor a given ocean region. Remote sensing from satellites is an integral part of present ocean observing systems. Due to their autonomy, mobility and controllability, underwater gliders are envisioned to play a significant role in the development of networked ocean observatories. Exploiting synergism between remote sensing and underwater gliders is expected to result on a better characterization of the marine environment than using these observational sources individually. This study investigates a methodology to estimate the three dimensional distribution of geostrophic currents resulting from merging satellite altimetry and in situ samples gathered by a fleet of Slocum gliders. Specifically, the approach computes the volumetric or three dimensional distribution of absolute dynamic height (ADH) that minimizes the total energy of the system while being close to in situ observations and matching the absolute dynamic topography (ADT) observed from satellite at the sea surface. A three dimensional finite element technique is employed to solve the minimization problem. The methodology is validated making use of the dataset collected during the field experiment called Rapid Environmental Picture-2010 (REP-10) carried out by the NATO Undersea Research Center-NURC during August 2010. A marine region off-shore La Spezia (northwest coast of Italy) was sampled by a fleet of three coastal Slocum gliders. Results indicate that the geostrophic current field estimated from gliders and altimetry significantly improves the estimates obtained using only the data gathered by the glider fleet.

  14. Surface Map Traffic Intent Displays and Net-Centric Data-link Communications for NextGen

    Science.gov (United States)

    Shelton, Kevin J.; Prinzel, Lawrence J., III; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis J., III; Bailey, Randall E.

    2009-01-01

    By 2025, U.S. air traffic is predicted to increase three fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research, conducted at National Aeronautics and Space Administration (NASA) Langley Research Center, examining data-link communications and traffic intent data during envisioned four-dimensional trajectory (4DT)-based and equivalent visual (EV) surface operations. Overall, the results suggest that controller pilot data-link communications (CPDLC) with the use of mandatory pilot read-back of all clearances significantly enhanced situation awareness for 4DT and EV surface operations. The depiction of graphical traffic state and intent information on the surface map display further enhanced off-nominal detection and pilot qualitative reports of safety and awareness.

  15. Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping.

    Science.gov (United States)

    Yang, Tianxi; Zhao, Bin; Kinchla, Amanda J; Clark, John M; He, Lili

    2017-05-03

    Understanding pesticide behavior in plants is important for effectively applying pesticides and in reducing pesticide exposures from ingestion. This study aimed to investigate the penetration and persistence of pesticides applied on harvested and live basil leaves. Surface-enhanced Raman scattering (SERS) mapping was applied for in situ and real-time tracking of pesticides over time using gold nanoparticles as probes. The results showed that, after surface exposure of 30 min to 48 h, pesticides (10 mg/L) penetrated more rapidly and deeply into the live leaves than the harvested leaves. The systemic pesticide thiabendazole and the nonsystemic pesticide ferbam can penetrate into the live leaves with depths of 225 and 130 μm, respectively, and the harvested leaves with depths of 180 and 18 μm, respectively, after 48 h of exposure. The effects of leaf integrity and age on thiabendazole penetration were also evaluated on live basil leaves after 24 h of exposure. Thiabendazole (10 mg/L) when applied onto intact leaves penetrated deeper (170 μm) than when applied onto damaged leaves (80 μm) prepared with 20 scrapes on the top surface of the leaves. Older leaves with a wet mass of 0.204 ± 0.019 g per leaf (45 days after leaf out) allowed more rapid and deeper penetration of pesticides (depth of 165 μm) than younger leaves with a wet mass of 0.053 ± 0.007 g per leaf (15 days after leaf out, depth of 95 μm). The degradation of thiabendazole on live leaves was detected after 1 week, whereas the apparent degradation of ferbam was detected after 2 weeks. In addition, the removal of pesticides from basil was more efficient when compared with other fresh produce possibly due to the specific gland structure of basil leaves. The information obtained here provides a better understanding of the behavior and biological fate of pesticides on plants.

  16. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    Science.gov (United States)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  17. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).

    Science.gov (United States)

    Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S

    2016-12-01

    Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.

  18. Geospatial Information Categories Mapping in a Cross-lingual Environment: A Case Study of “Surface Water” Categories in Chinese and American Topographic Maps

    Directory of Open Access Journals (Sweden)

    Xi Kuai

    2016-06-01

    Full Text Available The need for integrating geospatial information (GI data from various heterogeneous sources has seen increased importance for geographic information system (GIS interoperability. Using domain ontologies to clarify and integrate the semantics of data is considered as a crucial step for successful semantic integration in the GI domain. Nevertheless, mechanisms are still needed to facilitate semantic mapping between GI ontologies described in different natural languages. This research establishes a formal ontology model for cross-lingual geospatial information ontology mapping. By first extracting semantic primitives from a free-text definition of categories in two GI classification standards with different natural languages, an ontology-driven approach is used, and a formal ontology model is established to formally represent these semantic primitives into semantic statements, in which the spatial-related properties and relations are considered as crucial statements for the representation and identification of the semantics of the GI categories. Then, an algorithm is proposed to compare these semantic statements in a cross-lingual environment. We further design a similarity calculation algorithm based on the proposed formal ontology model to distance the semantic similarities and identify the mapping relationships between categories. In particular, we work with two GI classification standards for Chinese and American topographic maps. The experimental results demonstrate the feasibility and reliability of the proposed model for cross-lingual geospatial information ontology mapping.

  19. An elevator

    Energy Technology Data Exchange (ETDEWEB)

    Rastorguyev, M.A.; Maloyarovslavtesv, D.A.; Prokopov, O.I.; Tukayev, Sh.V.; Zanilov, I.F.

    1983-01-01

    An elevator is proposed which includes a body with a turning collar locking device and a rod with longitudinal grooves, which are flexibly linked with jaws positioned in grooves in the body. To increase safety through ensuring automatic locking of the jaws in the closed position, the locking device is made in the form of head on wedges, spring loaded relative to the collar and made with cams and positioned with the capability of interacting with the grooves of the rod and through the cams with the collar.

  20. Body surface mapping during pacing at multiple sites in the human atrium: P-wave morphology of ectopic right atrial activation

    NARCIS (Netherlands)

    SippensGroenewegen, A.; Peeters, H. A.; Jessurun, E. R.; Linnenbank, A. C.; Robles de Medina, E. O.; Lesh, M. D.; van Hemel, N. M.

    1998-01-01

    The morphology and polarity of the P wave on 12-lead ECG are of limited clinical value in localizing ectopic atrial rhythms. It was the aim of this study to assess the spatial resolution of body surface P-wave integral mapping in identifying the site of origin of ectopic right atrial (RA) impulse

  1. Spatial features of dose-surface maps from deformably-registered plans correlate with late gastrointestinal complications

    Science.gov (United States)

    Moulton, Calyn R.; House, Michael J.; Lye, Victoria; Tang, Colin I.; Krawiec, Michele; Joseph, David J.; Denham, James W.; Ebert, Martin A.

    2017-05-01

    This study investigates the associations between spatial distribution of dose to the rectal surface and observed gastrointestinal toxicities after deformably registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate brachytherapy (HDRBT) prostate cancer treatment. The study contains data for 118 patients where the HDRBT CT was deformably-registered to the EBRT CT. The EBRT and registered HDRBT TG43 dose distributions in a reference 2 Gy/fraction were 3D-summed. Rectum dose-surface maps (DSMs) were obtained by virtually unfolding the rectum surface slice-by-slice. Associations with late peak gastrointestinal toxicities were investigated using voxel-wise DSM analysis as well as parameterised spatial patterns. The latter were obtained by thresholding DSMs from 1-80 Gy (increment  =  1) and extracting inferior-superior extent, left-right extent, area, perimeter, compactness, circularity and ellipse fit parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate features with toxicities. Rectal bleeding, stool frequency, diarrhoea and urgency/tenesmus were associated with greater lateral and/or longitudinal spread of the high doses near the anterior rectal surface. Rectal bleeding and stool frequency were also influenced by greater low-intermediate doses to the most inferior 20% of the rectum and greater low-intermediate-high doses to 40-80% of the rectum length respectively. Greater low-intermediate doses to the superior 20% and inferior 20% of the rectum length were associated with anorectal pain and urgency/tenesmus respectively. Diarrhoea, completeness of evacuation and proctitis were also related to greater low doses to the posterior side of the rectum. Spatial features for the intermediate-high dose regions such as area, perimeter, compactness, circularity, ellipse eccentricity and confinement to ellipse fits were strongly associated with toxicities other than anorectal pain. Consequently, toxicity is

  2. Road-Mapping the Way Forward for Sentinel-3 STM SAR-Mode Waveform Retracking over Water Surfaces

    Science.gov (United States)

    Benveniste, Jérôme; Cotton, David; Dinardo, Salvatore; Lucas, Bruno Manuel; Martin-Puig, Cristina; Ray, Chris; Clarizia, Maria Paola; Gommenginger, Christine

    2013-04-01

    In the framework of the preparation activities for the Sentinel-3 Topography Mission, ESA launched an R&D project on SAR Altimetry and Applications over Ocean, Coastal zones and Inland waters. The main objective was to design a novel processing algorithm over ocean surface that would run in the Sentinel-3 ground segment to provide unprecedented quality altimeter measurements over ocean surfaces when in SAR mode. Also coastal zones and inland waters were the targets of research to derive new models and re-trackers for these difficult measurements. Innovative physically based models have been developed for near-nadir ocean altimetric waveforms in SAR-Mode and subsequently implemented in prototype ocean SAR re-trackers to perform the validation. A Detailed Processing Model Document was delivered for implementation in the Sentinel-3 Topography Mission Ground Segment. In this paper, we present the approach used to date within SAMOSA and the heritage behind the latest SAMOSA2 model. The SAMOSA2 model offers a complete description of SAR altimeter echoes from ocean surfaces, expressed in the form of maps of reflected power in delay and Doppler space. SAMOSA2 is able to account for an elliptical antenna pattern, mispointing errors in roll and yaw, errors in range cell migration correction, surface scattering pattern, non-linear ocean wave statistics and spherical Earth surface effects. SAMOSA2 addresses some of the known limitations of the earlier SAMOSA1 model, in particular with regards to sensitivity to mispointing. Due to its truly comprehensive character, the full SAMOSA2 model is a complicated semi-analytical formulation that still relies on some numerical integrations. The need for numerical integrations significantly impacts the computation time and raises problems of numerical stability once implemented operationally in a re-tracker scheme. This has potentially serious implications that could prevent the implementation of SAMOSA2 in operational re-tracker schemes

  3. USGS Hill Shade Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Hill Shade (or Shaded Relief) is a tile cache base map created from the National Elevation Dataset (NED), a seamless dataset of best available raster elevation...

  4. Bucket elevator

    OpenAIRE

    Chromek, Jiří

    2013-01-01

    Cílem této bakalářské práce je návrh svislého korečkového elevátoru, který má sloužit k dopravě obilovin s dopravní výškou 19 m a dopravovaným množstvím 100 t/hod. Práce se skládá z popisu korečkového elevátoru a jeho hlavních částí, zmiňující se v úvodní rešerši. Tato práce je zaměřena na funkční a kapacitní výpočet, určení pohonu a napínacího zařízení. Další výpočet je kontrolní, skládající se z pevnostní kontroly hnacího hřídele, výpočtu pera, životnosti ložisek a výpočtu napínacího zaříze...

  5. Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design.

    Science.gov (United States)

    Imai, Takashi; Oda, Koji; Kovalenko, Andriy; Hirata, Fumio; Kidera, Akinori

    2009-09-02

    In line with the recent development of fragment-based drug design, a new computational method for mapping of small ligand molecules on protein surfaces is proposed. The method uses three-dimensional (3D) spatial distribution functions of the atomic sites of the ligand calculated using the molecular theory of solvation, known as the 3D reference interaction site model (3D-RISM) theory, to identify the most probable binding modes of ligand molecules. The 3D-RISM-based method is applied to the binding of several small organic molecules to thermolysin, in order to show its efficiency and accuracy in detecting binding sites. The results demonstrate that our method can reproduce the major binding modes found by X-ray crystallographic studies with sufficient precision. Moreover, the method can successfully identify some binding modes associated with a known inhibitor, which could not be detected by X-ray analysis. The dependence of ligand-binding modes on the ligand concentration, which essentially cannot be treated with other existing computational methods, is also investigated. The results indicate that some binding modes are readily affected by the ligand concentration, whereas others are not significantly altered. In the former case, it is the subtle balance in the binding affinity between the ligand and water that determines the dominant ligand-binding mode.

  6. Satellite-based albedo, sea surface temperature and effective land roughness maps used in the HIRLAM model for weather and climate scenarios

    Science.gov (United States)

    Hasager, C. B.; Nielsen, N. W.; Christensen, J. H.; Soegaard, H.; Boegh, E.; Rasmussen, M. S.; Jensen, N. O.

    2001-12-01

    A study is conducted on the effect of introducing maps of geophysical parameters retrieved from satellite Earth Observation data into the atmospheric model HIRLAM (HIgh Resolution Limited Area Model). . The HIRLAM system was developed by the HIRLAM project group, a cooperative project of the national weather services in Denmark, Finland, Iceland, Ireland, the Netherlands, Norway and Sweden. It is currently used by weather services in several European countries. The exchanges of sensible heat, water vapour and momentum between the land- and ocean surface and the atmosphere are very important dynamical processes in this type of model. The results from the HIRLAM model when using the improved surface boundary conditions is validated from wind and temperature data at synoptic weather stations and surface flux data from land- and ocean meteorological masts in Denmark. The results from a set of scenarios covering the hurricane in Denmark in December 1999 and several springtime cases in 2000 show improved weather forecasts. The methodology on retrieving improved boundary conditions is based on satellite image data. Maps on the geophysical parameters albedo and sea surface temperature are retrieved at a 1 km spatial resolution from NOAA AVHRR. Furthermore, land cover maps based on Landsat TM satellite data are used to assess the regional roughness. The high-resolution land roughness map (Areal Systems Information in a 25 m pixel resolution) is area-averaged into effective roughness values (15 km grid) by using a non-linear aggregation technique (QJRMS 1999, vol 125, 2075-2102). The area-averaging is highly non-linear due to the turbulent physical processes involved. Thus the effective surface conditions cannot be obtained by simple averaging but only by a flow model taking horizontal advection into consideration. The effect of hedges in the landscape is included as a correction index based on a vector-based map. The land surface fluxes of heat and water vapour is also

  7. Avaliação de modelos digitais de elevação para aplicação em um mapeamento digital de solos Evaluation of digital elevation models for application in a digital soil mapping

    Directory of Open Access Journals (Sweden)

    César S. Chagas

    2010-02-01

    Full Text Available No Brasil, normalmente os modelos digitais de elevação (MDEs são produzidos pelos próprios usuários e pouca atenção tem sido dada às suas limitações, como fonte de informação espacial. Este estudo propôs avaliar diferentes MDEs para subsidiar a escolha do modelo apropriado para derivar atributos topográficos utilizados em um mapeamento digital de solos, por redes neurais artificiais. A avaliação constou da determinação da raiz quadrada do erro médio quadrático da elevação (RMSE; análise das depressões espúrias; comparação entre drenagem mapeada e drenagem numérica, curvas de nível derivadas e curvas de nível originais, e análise das bacias de contribuição derivadas. Os resultados obtidos demonstraram que apenas o RMSE não foi suficiente para avaliar a qualidade desses modelos. O MDE, derivado de curvas de nível (CARTA, obtido com a utilização do módulo TOPOGRID apresentou qualidade superior aos MDEs derivados de sensores remotos (ASTER e SRTM. A análise qualitativa também identificou que o MDE CARTA é superior aos demais, pois estes apresentaram grande quantidade de erros que podem comprometer o estabelecimento das relações entre atributos do terreno e as condições locais de solos.In Brazil, the digital elevation models (DEMs are usually produced by users themselves and little attention has been given to their limitations as source of spatial information. The objective of this study was to evaluate different DEMs to help in choosing an appropriate model to derive topographical attributes used in a digital soil mapping based on a neural networks approach. The evaluation consisted of the following analysis: determination of root mean square error (RMSE of elevation; analysis of the spurious depressions; comparison between mapped drainage and numeric drainage and between derived contour lines and original contour lines; and analysis of the derived contribution basins. The results demonstrated that RMSE

  8. Digital Elevation Model (DEM), Countywide DEMs were created from the 2004 Maryland Statewide Lidar data.A map service has been created to host this data but local copies are recommended for complex processing and analysis as this data is very large.Contact the ESRGC to obtain a copy, Published in 2004, 1:1200 (1in=100ft) scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2004. Countywide DEMs were created from the 2004 Maryland Statewide Lidar data.A map service has been created to...

  9. High-resolution mapping of epitopes on the C2 domain of factor VIII by analysis of point mutants using surface plasmon resonance

    Science.gov (United States)

    Nguyen, Phuong-Cac T.; Lewis, Kenneth B.; Ettinger, Ruth A.; Schuman, Jason T.; Lin, Jasper C.; Healey, John F.; Meeks, Shannon L.; Lollar, Pete

    2014-01-01

    Neutralizing anti-factor VIII (FVIII) antibodies that develop in patients with hemophilia A and in murine hemophilia A models, clinically termed “inhibitors,” bind to several distinct surfaces on the FVIII-C2 domain. To map these epitopes at high resolution, 60 recombinant FVIII-C2 proteins were generated, each having a single surface-exposed residue mutated to alanine or a conservative substitution. The binding kinetics of these muteins to 11 monoclonal, inhibitory anti-FVIII-C2 antibodies were evaluated by surface plasmon resonance and the results compared with those obtained for wild-type FVIII-C2. Clusters of residues with significantly altered binding kinetics identified “functional” B-cell epitopes, defined as those residues contributing appreciable antigen–antibody avidity. These antibodies were previously shown to neutralize FVIII activity by interfering with proteolytic activation of FVIII by thrombin or factor Xa, or with its binding to phospholipid surfaces, von Willebrand factor, or other components of the intrinsic tenase complex. Fine mapping of epitopes by surface plasmon resonance also indicated surfaces through which FVIII interacts with proteins and phospholipids as it participates in coagulation. Mutations that significantly altered the dissociation times/half-lives identified functionally important interactions within antigen–antibody interfaces and suggested specific sequence modifications to generate novel, less antigenic FVIII proteins with possible therapeutic potential for treatment of inhibitor patients. PMID:24591205

  10. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening

    Directory of Open Access Journals (Sweden)

    Xiucheng Yang

    2017-06-01

    Full Text Available This study conducts an exploratory evaluation of the performance of the newly available Sentinel-2A Multispectral Instrument (MSI imagery for mapping water bodies using the image sharpening approach. Sentinel-2 MSI provides spectral bands with different resolutions, including RGB and Near-Infra-Red (NIR bands in 10 m and Short-Wavelength InfraRed (SWIR bands in 20 m, which are closely related to surface water information. It is necessary to define a pan-like band for the Sentinel-2 image sharpening process because of the replacement of the panchromatic band by four high-resolution multi-spectral bands (10 m. This study, which aimed at urban surface water extraction, utilised the Normalised Difference Water Index (NDWI at 10 m resolution as a high-resolution image to sharpen the 20 m SWIR bands. Then, object-level Modified NDWI (MNDWI mapping and minimum valley bottom adjustment threshold were applied to extract water maps. The proposed method was compared with the conventional most related band- (between the visible spectrum/NIR and SWIR bands based and principal component analysis first component-based sharpening. Results show that the proposed NDWI-based MNDWI image exhibits higher separability and is more effective for both classification-level and boundary-level final water maps than traditional approaches.

  11. Comparison of AltiKa and CryoSat-2 Elevation and Elevation Rates over the Amundsen Sea Sector

    Science.gov (United States)

    Otosaka, I.; Shepherd, A.; Hogg, A.

    2017-12-01

    Altimeters have been successfully used for more than two decades to observe changes in the ice sheet surface and to estimate the contribution of ice sheets to sea level rise. The Satellite for Argos and AltiKa (SARAL) was launched in February 2013 as a joint mission between the French space agency (CNES) and the Indian Space Research Organisation (ISRO). While the altimeters previously launched into space are operating at Ku-band (13.6 GHz), the altimeter on board SARAL, AltiKa, is the first instrument to operate at Ka-band (36.8 GHz). The higher frequency of AltiKa is expected to lead to reduced penetration of the radar signal into the snowpack, compared to Ku-band. A comparison of ice sheet elevation measurements recorded at the two frequencies may therefore provide useful information on surface and its scattering properties. In this study, we compare elevation and elevation rates recorded by AltiKa and CryoSat-2 between March 2013 and April 2017 over the Amundsen Sea Sector (ASS), one of the most rapidly changing sectors of West Antarctica. Elevation and elevation rates are computed within 5 km grid cells using a plane fit method, taking into account the contributions of topography and fluctuations in elevation and backscatter. The drifting orbit and imaging modes of CryoSat-2 result in 78,7 % sampling of the study area, whereas AltiKa samples 39,7 % due to its sparser orbit pattern and due to loss of signal in steeply sloping coastal margins. Over the study period, the root mean square difference between elevation and elevation change recorded at Ka-band and Ku-band were 40.3 m and 0.54 m/yr, respectively. While the broad spatial pattern of elevation change is well resolved by both satellites, data gaps along the Getz coastline may be partly responsible for the lower elevation change rate observed at Ka-band. We also compared CryoSat-2 and AltiKa to coincident airborne data from NASA's Operation IceBridge (OIB). The mean difference of elevation rate between

  12. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  13. Improved relationship between left and right ventricular electrical activation after cardiac resynchronization therapy in heart failure patients can be quantified by body surface potential mapping.

    Science.gov (United States)

    Samesima, Nelson; Pastore, Carlos Alberto; Douglas, Roberto Andrés; Martinelli, Martino Filho; Pedrosa, Anísio A

    2013-07-01

    Few studies have evaluated cardiac electrical activation dynamics after cardiac resynchronization therapy. Although this procedure reduces morbidity and mortality in heart failure patients, many approaches attempting to identify the responders have shown that 30% of patients do not attain clinical or functional improvement. This study sought to quantify and characterize the effect of resynchronization therapy on the ventricular electrical activation of patients using body surface potential mapping, a noninvasive tool. This retrospective study included 91 resynchronization patients with a mean age of 61 years, left ventricle ejection fraction of 28%, mean QRS duration of 182 ms, and functional class III/IV (78%/22%); the patients underwent 87-lead body surface mapping with the resynchronization device on and off. Thirty-six patients were excluded. Body surface isochronal maps produced 87 maximal/mean global ventricular activation times with three regions identified. The regional activation times for right and left ventricles and their inter-regional right-to-left ventricle gradients were calculated from these results and analyzed. The Mann-Whitney U-test and Kruskall-Wallis test were used for comparisons, with the level of significance set at p≤0.05. During intrinsic rhythms, regional ventricular activation times were significantly different (54.5 ms vs. 95.9 ms in the right and left ventricle regions, respectively). Regarding cardiac resynchronization, the maximal global value was significantly reduced (138 ms to 131 ms), and a downward variation of 19.4% in regional-left and an upward variation of 44.8% in regional-right ventricular activation times resulted in a significantly reduced inter-regional gradient (43.8 ms to 17 ms). Body surface potential mapping in resynchronization patients yielded electrical ventricular activation times for two cardiac regions with significantly decreased global and regional-left values but significantly increased regional

  14. 75 FR 77762 - Final Flood Elevation Determinations

    Science.gov (United States)

    2010-12-14

    ... Flooding source(s) elevation in feet above Communities affected ground [caret] Elevation in meters (MSL..., rounded to the nearest 0.1 meter. ADDRESSES City of Aurora Maps are available for inspection at 15151 East... Arapahoe County Department of Public Works and Development, 10730 West Briarwood Avenue, Centennial, CO...

  15. 78 FR 10066 - Final Flood Elevation Determinations

    Science.gov (United States)

    2013-02-13

    ... follows: * Elevation in feet (NGVD) + Elevation in feet (NAVD) Depth in feet State City/town/county Source...). Scriba Creek Approximately 0.90 mile +546 Town of Amboy. upstream of County Route 23 (Potter Road.... Town of Palermo Maps are available for inspection at the Palermo Town Municipal Offices, 53 County...

  16. 75 FR 43418 - Final Flood Elevation Determinations

    Science.gov (United States)

    2010-07-26

    ... follows: * Elevation in feet (NGVD) + Elevation in feet (NAVD) State City/town/county Source of flooding... +869 Town of Peoria, upstream of Main Street. Unincorporated Areas of Ottawa County. Approximately 1.... Town of Peoria Maps are available for inspection at the Ottawa County Courthouse, 102 East Central...

  17. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  18. Multiscale soil moisture measurement for mapping surface runoff generation on torrential headwater catchments (Draix-Bléone field observatory, South Alps, France)

    Science.gov (United States)

    Florian, Mallet; Vincent, Marc; Johnny, Douvinet; Philippe, Rossello; Bouteiller Caroline, Le; Jean-Philippe, Malet; Julien, Gance

    2015-04-01

    soilwater flow of from the surface to - 30 cm. Another distributed approach will be carried out from a measurement of cosmic neutrons mitigation (Cosmic ray sensor) to estimate a soil moisture averaged value over 40 ha (Zreda et al., 2012). Finally, the smallest scale (slope and catchment) will be approached using remote sensing with a drone and/or satellite imagery (IR, passive and active microwave). This concatenation of scales with different combinations of time steps should enable us to better understand the hydrological dynamics in torrential environments. It aims at mapping the stormflow generation on a catchment at the flood scale and defining the main determinants of surface runoff. These results may contribute to the improvement of runoff simulation and flood prediction. References : Uhlenbrook S., J.J. McDonnell and C. Leibundgut, 2003. Preface: Runoff generation implications for river basin modelling. Hydrological Processes, Special Issue, 17: 197-198. Andrew W. Western, Sen-Lin Zhou, Rodger B. Grayson, Thomas A. MacMahon, Günter Blöshl, David J. Wilson, 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology 286. Zreda, M., Shuttleworth WJ., Zeng X., Zweck C., Desilets D., Franz TE. et al., 2012. COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11): 4079-4099.

  19. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    Science.gov (United States)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived

  20. Mapeamento do saldo de radiação com imagens Landsat 5 e modelo de elevação digital Mapping net radiation using Landsat 5 imagery and digital elevation model

    Directory of Open Access Journals (Sweden)

    Frederico T. Di Pace

    2008-08-01

    Full Text Available O saldo de radiação é um importante componente do balanço de energia e tem grande relevância em estudos de evapotranspiração em áreas irrigadas e em bacias hidrográficas. Obteve-se, através do estudo, a estimativa do saldo de radiação à superfície terrestre, mediante imagens multiespectrais do Mapeador Temático do satélite Landsat 5, utilizando-se o SEBAL (Surface Energy Balance Algorithm for Land e o MED (Modelo de Elevação Digital. Os cálculos foram realizados com e sem utilização do MED, nos dias 04 de dezembro de 2000 e 04 de outubro de 2001. A temperatura da superfície (Ts e os valores do albedo estimados com o MED em 04/12/2000, foram um pouco superiores aos valores de Ts estimados sem a utilização deste modelo. Os resultados demonstraram que na estimativa do saldo de radiação com base em imagens MT - Landsat 5, se deve levar em consideração os efeitos topográficos da região de estudo.Net radiation is an important component of the surface energy balance in studies of evapotranspiration of irrigated crops and in evaporation of hydrological basins. The objective of this research was to determine the surface radiation balance, by using multispectral imagery of the Thematic Mapper (Landsat 5 satellite. In this study the SEBAL (Surface Energy Balance Algorithm for Land and DEM (Digital Elevation Model were used in order to correct the albedo and vegetation indices under the influence of the slope aspects were used for each study area. TM (Thematic Mapper imageries were used for two different dates (December 4, 2000 and October 4, 2001. The calculations were accomplished with and without use of the DEM. The land surface temperature and albedo values with DEM were larger than without DEM in both years, for two selected areas. Results also show that for obtaining net radiation based on imagery of the TM - Landsat 5 the topographical effects of the study area must be considered.

  1. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  2. MapBook

    Data.gov (United States)

    National Aeronautics and Space Administration — Beginning with the systematic mapping of the lunar surface more than three decades ago, this database contains over 1600 maps of the planets and satellites of the...

  3. Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    T. L. Edwards

    2014-01-01

    Régional: Fettweis, 2007 climate projections are for 2000–2199, forced by the ECHAM5 and HadCM3 global climate models (GCMs under the SRES A1B emissions scenario. The additional sea level contribution due to the SMB–elevation feedback averaged over five ISM projections for ECHAM5 and three for HadCM3 is 4.3% (best estimate; 95% credibility interval 1.8–6.9% at 2100, and 9.6% (best estimate; 95% credibility interval 3.6–16.0% at 2200. In all results the elevation feedback is significantly positive, amplifying the GrIS sea level contribution relative to the MAR projections in which the ice sheet topography is fixed: the lower bounds of our 95% credibility intervals (CIs for sea level contributions are larger than the "no feedback" case for all ISMs and GCMs. Our method is novel in sea level projections because we propagate three types of modelling uncertainty – GCM and ISM structural uncertainties, and elevation feedback parameterisation uncertainty – along the causal chain, from SRES scenario to sea level, within a coherent experimental design and statistical framework. The relative contributions to uncertainty depend on the timescale of interest. At 2100, the GCM uncertainty is largest, but by 2200 both the ISM and parameterisation uncertainties are larger. We also perform a perturbed parameter ensemble with one ISM to estimate the shape of the projected sea level probability distribution; our results indicate that the probability density is slightly skewed towards higher sea level contributions.

  4. Infrared-spectroscopic single-shot laser mapping ellipsometry: Proof of concept for fast investigations of structured surfaces and interactions in organic thin films

    Science.gov (United States)

    Furchner, Andreas; Kratz, Christoph; Gkogkou, Dimitra; Ketelsen, Helge; Hinrichs, Karsten

    2017-11-01

    We present a novel infrared-spectroscopic laser mapping ellipsometer based on a single-shot measurement concept. The ellipsometric set-up employs multiple analyzers and detectors to simultaneously measure the sample's optical response under different analyzer azimuths. An essential component is a broadly tunable quantum cascade laser (QCL) covering the important marker region of 1800-1540 cm-1. The ellipsometer allows for fast single-wavelength as well as spectroscopic studies with thin-film sensitivity at temporal resolutions of 60 ms per wavelength. We applied the single-shot mapping ellipsometer for the characterization of metal-island enhancement surfaces as well as of molecular interactions in organic thin films. In less than 3 min, a linescan with 1600 steps revealed profile and infrared-enhancement properties of a gradient gold-island film for sensing applications. Spectroscopic measurements were performed to probe the amide I band of thin films of poly(N-isopropylacrylamide) [PNIPAAm], a stimuli-responsive polymer for bioapplications. The QCL spectra agree well with conventional FT-IR ellipsometric results, showing different band components associated with hydrogen-bond interactions between polymer and adsorbed water. Multi-wavelength ellipsometric maps were used to analyze homogeneity and surface contaminations of the polymer films.

  5. Lake surface area variations in the North-Eastern sector of Sagarmatha National Park (Nepal at the end of the 20th Century by comparison of historical maps

    Directory of Open Access Journals (Sweden)

    Gabriele BRUCCOLERI

    2008-08-01

    Full Text Available The purpose of the present work was to investigate variations in the surface areas of lakes in the north-east sector of Sagarmatha National Park (Nepal at the end of the 20th century, through comparison of the Mount Everest maps based on a survey done in the early 1980s, and the official Map of Nepal based on a survey done at the beginning of the 1990s. The analysis of the changes occurring between the 1980s and the 1990s in the surface areas and distribution of lakes in the north-east sector of SNP reveals that lake areas substantially increased, by 15.4 (-5.5; +5.7% (median 12.5%, within hydrographic basins that included a certain amount of glacial cover. In fact, 96% of the lakes whose surface area increased are located in glacial basins. Conversely, the majority of the lakes without glacial cover in their catchment showed a reduction in surface area, and in many cases disappeared (83% of the lakes that disappeared were situated in basins without glaciers. This different behaviour of these two types of lakes, though observed over a short time span, would appear to be consistent with the consequences of temperature increases recorded from the beginning of 1980s on a global and local scale. The digital tool produced (Limnological Information System, LIS as part of this work is intended to provide a useful platform for extending the analysis to entire area of SNP, as well as for subsequent comparisons based on earlier maps or more recent satellite images.

  6. An X-ray photoelectron spectroscopic study of a nitric acid/argon ion cleaned uranium metal surface at elevated temperature

    International Nuclear Information System (INIS)

    Paul, A.J.; Sherwood, P.M.A.

    1987-01-01

    X-ray photoelectron spectroscopy has been used to study the surface of uranium metal cleaned by nitric acid treatment and argon ion etching, followed by heating in a high vacuum. The surface is shown to contain UOsub(2-x) species over the entire temperature range studied. Heating to temperatures in the range 400-600 0 C generates a mixture of this oxide, the metal and a carbide and/or oxycarbide species. (author)

  7. Cartographic production for the Florida Shelf Habitat (FLaSH) map study: generation of surface grids, contours, and KMZ files

    Science.gov (United States)

    Robbins, Lisa L.; Hansen, Mark; Raabe, Ellen; Knorr, Paul O.; Browne, Joseph

    2007-01-01

    The Florida shelf represents a finite source of economic resources, including commercial and recreational fisheries, tourism, recreation, sand and gravel resources, phosphate, and freshwater reserves. Yet the basic information needed to locate resources, or to interpret and utilize existing data, comes from many sources, dates, and formats. A multi-agency effort is underway to coordinate and prioritize the compilation of suitable datasets for an integrated information system of Florida’s coastal and ocean resources. This report and the associated data files represent part of the effort to make data accessible and useable with computer-mapping systems, web-based technologies, and user-friendly visualization tools. Among the datasets compiled and developed are seafloor imagery, marine sediment data, and existing bathymetric data. A U.S. Geological Survey-sponsored workshop in January 2007 resulted in the establishment of mapping priorities for the state. Bathymetry was identified as a common priority among agencies and researchers. State-of-the-art computer-mapping techniques and data-processing tools were used to develop shelf-wide raster and vector data layers. Florida Shelf Habitat (FLaSH) Mapping Project (http://coastal.er.usgs.gov/flash) endeavors to locate available data, identify data gaps, synthesize existing information, and expand our understanding of geologic processes in our dynamic coastal and marine systems.

  8. Mapping impervious surfaces in the Xiangjiang River basin based on remote sensing spectral indices: a case study in Chang-Zhu-Tan region

    Science.gov (United States)

    Zhang, Xiaoping; Lyu, Ying; Zhang, Huaguo; Gong, Fang; Zhang, Yongxin; Li, Chaokui

    2017-10-01

    Increased impervious surfaces pose significant threats to the hydrologic cycle of the Xiangjiang River basin as a consequence of urbanization. Quantifying the percentage of imperviousness within the Xiangjiang River basin is important to pollution control and watershed management. Per-pixel and sub-pixel methods have been widely used for analyzing impervious surface changes, but these methods are considered as complicated, computationally intensive, and sometimes subjective, especially when applied to a large geographic area. In this paper, normalized difference built-up index (NDBI), normalized difference impervious surface index (NDISI), normalized difference vegetation index (NDVI) and enhanced built-up and bareness index (EBBI) were respectively used to estimate impervious surfaces in Chang-ZhuTan region (CZT) of the Xiangjiang River basin, and a comparative analyses was conducted. Then the optimum spectral index was chosen to map the percentage of impervious surfaces for the study area. The results show that the spectral index of NDBI has the optimum estimation of large-scale impervious surfaces, and the percentage of imperviousness in CZT was 13.87%. The water quality in CZT was characterized as "protected", indicating that water quality protection in the plain areas of CZT is imperative.

  9. Adenosine monophosphate is elevated in the bronchoalveolar lavage fluid of mice with acute respiratory toxicity induced by nanoparticles with high surface hydrophobicity.

    Science.gov (United States)

    Dailey, Lea Ann; Hernández-Prieto, Raquel; Casas-Ferreira, Ana Maria; Jones, Marie-Christine; Riffo-Vasquez, Yanira; Rodríguez-Gonzalo, Encarnación; Spina, Domenico; Jones, Stuart A; Smith, Norman W; Forbes, Ben; Page, Clive; Legido-Quigley, Cristina

    2015-02-01

    Inhaled nanomaterials present a challenge to traditional methods and understanding of respiratory toxicology. In this study, a non-targeted metabolomics approach was used to investigate relationships between nanoparticle hydrophobicity, inflammatory outcomes and the metabolic fingerprint in bronchoalveolar fluid. Measures of acute lung toxicity were assessed following single-dose intratracheal administration of nanoparticles with varying surface hydrophobicity (i.e. pegylated lipid nanocapsules, polyvinyl acetate nanoparticles and polystyrene beads; listed in order of increasing hydrophobicity). Broncho-alveolar lavage (BAL) fluid was collected from mice exposed to nanoparticles at a surface area dose of 220 cm(2) and metabolite fingerprints were acquired via ultra pressure liquid chromatography-mass spectrometry-based metabolomics. Particles with high surface hydrophobicity were pro-inflammatory. Multivariate analysis of the resultant small molecule fingerprints revealed clear discrimination between the vehicle control and polystyrene beads (p < 0.05), as well as between nanoparticles of different surface hydrophobicity (p < 0.0001). Further investigation of the metabolic fingerprints revealed that adenosine monophosphate (AMP) concentration in BAL correlated with neutrophilia (p < 0.01), CXCL1 levels (p < 0.05) and nanoparticle surface hydrophobicity (p < 0.001). Our results suggest that extracellular AMP is an intermediary metabolite involved in adenine nucleotide-regulated neutrophilic inflammation as well as tissue damage, and could potentially be used to monitor nanoparticle-induced responses in the lung following pulmonary administration.

  10. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...... and catalytic activity; this was attributed to the presence of excess amorphous carbon in the carbide powder. TEM imaging and TGA-DTA results revealed a better correlation of the activity with the carbide particle size....

  11. Detection of regional myocardial ischaemia by a novel 80-electrode body surface Delta map in patients presenting to the emergency department with cardiac-sounding chest pain.

    Science.gov (United States)

    Zeb, Mehmood; Mahmoudi, Michael; Garty, Florence; Bannister, Clare; Reddiar, Richard; Nicholas, Zoe; Crouch, Robert; Heyworth, John; Curzen, Nicholas

    2014-04-01

    Presentation with acute chest pain is common, but the conventional 12-lead ECG has limitations in the detection of regional myocardial ischaemia. The previously described method of the body surface mapping system (BSM) Delta map, derived from an 80-electrode BSM, as well as a novel parameter total ischaemic burden (IB), may offer improved diagnostic sensitivity and specificity in patients with myocardial ischaemia. The feasibility of using the novel BSM Delta map technique, and IB, for transient regional myocardial ischaemia was assessed in comparison with 12-lead ECG in 49 patients presenting to the emergency department (ED) with cardiac-sounding chest pain. The sensitivity and specificity of 12-lead ECG for the diagnosis of acute coronary syndrome (ACS) was 67 and 55%, respectively, positive likelihood ratio (+LR) 1.52 [95% confidence interval (CI) 0.86, 2.70] and negative likelihood ratio (-LR) 0.58 [95% CI 0.30, 1.12]. The sensitivity and specificity of the BSM Delta map for the diagnosis of ACS was 71 and 78%, +LR 3.19 [95% CI 1.31, 7.80], -LR 0.37 [95% CI 0.20, 0.68]. There was a significantly positive correlation between peak troponin-I concentration and IB (r=0.437; Psounding chest pain and suggests that it has promising diagnostic accuracy and has superior sensitivity and specificity to the 12-lead ECG. The novel parameter of IB shows a significant correlation with troponin-I and is a promising tool for describing the extent of ischaemia. The use of the BSM Delta map in the ED setting could improve the diagnosis of clinically important ischaemic heart disease and furthermore presents the result in an intuitive manner, requiring little specialist experience. Further larger scale study is now warranted.

  12. Surface mapping and drilling of extinct seafloor massive sulphide deposits (eSMS) from the TAG Hydrothermal Field, 26oN: A tale of two `Jaspers'

    Science.gov (United States)

    Stobbs, I. J.; Lusty, P.; Petersen, S.; Murton, B. J.

    2017-12-01

    Two extinct seafloor massive sulphide (eSMS) deposits within the TAG hydrothermal field, 26oN, mid-Atlantic ridge, were mapped and drilled: Southern Mound and the newly discovered `Rona Mound'. Surface mapping was undertaken by combining high definition video footage and high resolution bathymetry to interpret surface geological and geomorphological features. Drill core was recovered using the BGS RD2 robotic drilling rig. Surface mapping of the mounds revealed a superficial cover of carbonate and iron-oxyhydroxides sediments, observed to directly overly oxide coated sulphide material within fault scarps, which dissect the flanks of both mounds. Drilling at the summits of the mounds revealed similar stratigraphy to the mapping, with the addition of a coherent and dense layer of red-coloured silica-rich `jasper', up to 3m thick, underlying the sediments and overlying unoxidised massive sulphides. The jasper mineralogy is dominated by silica, with minor iron oxides and rare disseminated sulphides. It displays a range of complex textures including filamentous and dendritic iron oxides often coated in silica. Drill core samples show the material to be porous, but relatively impermeable. Strong and positive Eu (REE) anomalies indicates a hydrothermal origin with little evidence of a seawater signature (lack of negative Ce anomaly). Silica precipitation is associated with low temperature hydrothermal activity, chert and jasper materials are locally present within the nearby hydrothermally active TAG mound and are more widespread at low-temperature diffuse hydrothermal sites such as within the MESO field. We interpret the `jasper' layers to be a common product, formed during the waning, low temperature, stage of the hydrothermal cycle which may form an impermeable and resistant `cap' that protects the underlying massive sulphide ore body from oxidation and dissolution. The formation of a `jasper cap' could act automatically to preserve eSMS deposits when hydrothermal

  13. Texture-based segmentation with Gabor filters, wavelet and pyramid decompositions for extracting individual surface features from areal surface topography maps

    International Nuclear Information System (INIS)

    Senin, Nicola; Leach, Richard K; Pini, Stefano; Blunt, Liam A

    2015-01-01

    Areal topography segmentation plays a fundamental role in those surface metrology applications concerned with the characterisation of individual topography features. Typical scenarios include the dimensional inspection and verification of micro-structured surface features, and the identification and characterisation of localised defects and other random singularities. While morphological segmentation into hills or dales is the only partitioning operation currently endorsed by the ISO specification standards on surface texture metrology, many other approaches are possible, in particular adapted from the literature on digital image segmentation. In this work an original segmentation approach is introduced and discussed, where topography partitioning is driven by information collected through the application of texture characterisation transforms popular in digital image processing. Gabor filters, wavelets and pyramid decompositions are investigated and applied to a selected set of test cases. The behaviour, performance and limitations of the proposed approach are discussed from the viewpoint of the identification and extraction of individual surface topography features. (paper)

  14. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Ground water surface elevations

    International Nuclear Information System (INIS)

    Shevenell, L.; Switek, J.

    1992-02-01

    The purpose of this document is to provide a summary and interpretation of hydraulic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Periodic water level observations are presented using hydrographs and water table contour maps based on data obtained from quarterly sampling during calendar year 1991. Generalized, preliminary interpretation of results are presented. The two sites covered by this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each rate are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the up-gradient and down-gradient directions for each of the sites is included

  15. Dry Eye Profiles in Patients with a Positive Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test Versus Negative Patients.

    Science.gov (United States)

    Lanza, Nicole L; McClellan, Allison L; Batawi, Hatim; Felix, Elizabeth R; Sarantopoulos, Konstantinos D; Levitt, Roy C; Galor, Anat

    2016-04-01

    To compare dry eye (DE) symptoms and signs in subjects who tested positive versus those who tested negative for ocular surface matrix metalloproteinase 9 (MMP-9) using the InflammaDry point-of-care test (RPS, Sarasota, FL). In this cross-sectional study, individuals seen in the Miami Veterans Affairs eye clinic with DE symptoms, as evidenced by DE questionnaire 5 (DEQ5) ≥6, were given standardized questionnaires to assess DE symptoms and ocular and non-ocular pain complaints. Also, a complete evaluation was conducted to measure ocular surface signs of DE. MMP-9 testing was performed using the InflammaDry once in each eye, per the manufacturer's instructions. The main outcome measure was a comparison of DE symptoms and signs in MMP-9 positive versus negative subjects. Of 128 subjects, 50 (39%) were positive for MMP-9 for InflammaDry testing in either eye. No statistically significant differences in mental health indices, DE symptoms, or ocular surface signs were seen in subjects based on MMP-9 status. In our population, there was no difference in the DE profile by both symptoms and signs between those testing positive versus negative for MMP-9 on the ocular surface. This suggests that clinical exam alone cannot predict patients with clinically significant inflammation. Published by Elsevier Inc.

  16. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  17. National Elevation Dataset (NED)

    Data.gov (United States)

    Kansas Data Access and Support Center — The U.S. Geological Survey has developed a National Elevation Database (NED). The NED is a seamless mosaic of best-available elevation data. The 7.5-minute elevation...

  18. Radar-Assisted Mapping of Massive Ice in Western Utopia Planitia, Mars: Degradational Mechanisms and Implications for Surface Evolution

    Science.gov (United States)

    Stuurman, C. M.; Levy, J. S.; Holt, J. W.; Harrison, T. N.; Osinski, G. R.

    2015-12-01

    Western Utopia Planitia remains an enigmatic region of Mars. Radar and morphological analyses have framed the area as rich in ground ice, however there exist multiple theories regarding how the ice was emplaced. Here, we combine radar and morphological analyses to characterize the recent history of water ice in western Utopia Planitia. A radar reflective interface found in SHAllow RADar (SHARAD) data in Utopia Planitia is found to correlate with layered mesas 80-110 m thick. Discontinuities in the radar reflective interface relate to degradation of the layered mesas. This work uses the extent of the reflective interface to map the previous extent of the layered mesas, which we believe constitutes the remnants of a large ice sheet formed in the Late Amazonian. The past volume of the ice sheet is to be determined by the SHARAD-assisted mapping. This volume will be related to the recent climate history of western Utopia Planitia.

  19. ESA's Ice Sheets CCI: validation and inter-comparison of surface elevation changes derived from laser and radar altimetry over Jakobshavn Isbræ, Greenland – Round Robin results

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovsky, K.; Ticconi, F.

    2013-01-01

    Sheets CCI and four parameters are to be determined for the Greenland Ice Sheet (GrIS), each resulting in a dataset made available to the public: Surface Elevation Changes (SEC), surface velocities, grounding line locations, and calving front locations. All CCI projects have completed a so-called Round...... Robin exercise in which the scientific community was asked to provide their best estimate of the sought parameters as well as a feedback sheet describing their work. By inter-comparing and validating the results, obtained from research institutions world-wide, it is possible to develop the most optimal...... led to inter-comparisons of radar vs. altimetry as well as cross-over vs. repeat-track analyses. Due to the high accuracy of the former and the high spatial resolution of the latter, a method, which combines the two techniques will provide the most accurate SEC estimates. The data supporting the final...

  20. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon - Implications for deposition and surface modification

    Science.gov (United States)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-08-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The 7700 calendar year B.P. climactic eruption of Mount Manama, USA, vented 50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Manama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ± 1 m lateral and ± 4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow-parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of closely spaced pits caused by phreatic explosions, fractures and cracks due to extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies

  1. α-TEA-induced death receptor dependent apoptosis involves activation of acid sphingomyelinase and elevated ceramide-enriched cell surface membranes

    Directory of Open Access Journals (Sweden)

    Xiong Ailian

    2010-10-01

    Full Text Available Abstract Background Alpha-tocopherol ether-linked acetic acid (α-TEA, an analog of vitamin E (RRR-alpha-tocopherol, is a potent and selective apoptosis-inducing agent for human cancer cells in vivo and in vitro. α-TEA induces apoptosis via