WorldWideScience

Sample records for surface elemental analysis

  1. Roughness analysis of graphite surfaces of casting elements

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2010-01-01

    Full Text Available In the paper profilometric measurements of graphite casting elements were described. Basic topics necessary to assess roughness of their surfaces and influence of asperities on various properties related to manufacturing and use were discussed. Stylus profilometer technique of surface irregularities measurements including its limits resulting from pickup geometry and its contact with measured object were ana-lyzed. Working principle of tactile profilometer and phenomena taking place during movement of a probe on a measured surface were shown. One of the important aspects is a flight phenomenon, which means movement of a pickup without contact with a surface during inspection resulting from too high scanning speed. results of comparison research for graphite elements of new and used mould and pin composing a set were presented. Using some surface roughness, waviness and primary profile parameters (arithmetical mean of roughness profile heights Ra, biggest roughness profile height Rz, maximum primary profile height Pt as well as maximum waviness profile height Wt a possibility of using surface asperities parameters as a measure of wear of chill graphite elements was proved. The most often applied parameter is Ra, but with a help of parameters from W and P family it was shown, that big changes occur not only for roughness but also for other components of surface irregularities.

  2. Apollo remote analysis system applied to surface and underwater in-situ elemental analysis

    International Nuclear Information System (INIS)

    Evans, L.G.; Bielefeld, M.J.; Eller, E.L.; Schmadebeck, R.L.; Trombka, J.I.; Mustafa, M.G.; Senftle, F.E.; Heath, R.L.; Stehling, K.; Vadus, J.

    1976-01-01

    The surveying of the elemental composition of bulk samples over extended areas in near real-time would be an invaluable tool for surface and underwater environmental analysis. However, few techniques provide such a capability. Based on the experience from the orbital gamma-ray spectrometer experiments on Apollo 15 and 16 in which elemental composition of large portions of the moon were determined, an analysis system has been developed for terrestrial applications, which can fulfill these requirements. A portable, compact pulsed neutron generator and NaI(Tl) detector system coupled to associated electronics under mini-computer control can provide the timing and spectral characteristics necessary to determine elemental composition for many applications. Field trials of the system for underwater elemental analysis are planned during the next year

  3. Evaluation of flyash surface phenomena and the application of surface analysis technology. Summary report: Phase I. [44 elements; 86 references

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.D.

    1981-06-01

    The factors governing the formation of flyash surfaces during and following coal combustion are reviewed. The competing chemical and physical processes during the evolution of inorganic material in coal during combustion into flyash are described with respect to various surface segregation processes. Two mechanisms leading to surface enrichment are volatilization-condensation processes and diffusion processes within individual flyash particles. The experimental evidence for each of these processes is reviewed. It is shown that the volatilization-condensation process is the major factor leading to trace element enrichment in smaller flyash particles. Evidence also exists from surface analyses of flyash and representative mineral matter that diffusion processes may lead to surface enrichment of elements not volatilized or cause transport of surface-condensed elements into the flyash matrix. The semiquantitative determination of the relative importance of these two processes can be determined by comparison of concentration versus particle size profiles with surface-depth profiles obtained using surface analysis techniques. A brief description of organic transformations on flyash surfaces is also presented. The various surface analytical techniques are reviewed and the relatively new technique of Static-Secondary Ion Mass Spectroscopy is suggested as having significant advantages in studies of surfaces and diffusion processes in model systems. Several recommendations are made for research relevant to flyash formation and processes occurring on flyash surfaces.

  4. Green's function based finite element formulations for isotropic seepage analysis with free surface

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Abstract A solution procedure using the Green's function based finite element method (FEM is presented for two-dimensional nonlinear steady-state seepage analysis with the presence of free surface in isotropic dams. In the present algorithm, an iteration strategy is designed to convert the over-specified free surface problem to a regular partial differential equation problem. Then, at each iteration step, the Green's function for isotropic linear seepage partial differential equation is employed to construct the element interior water head field, while the conventional shape functions are used for the independent element frame water head field. Then these two independent fields are connected by a double-variable hybrid functional to produce the final solving equation system. By means of the physical definition of Green's function, all two-dimensional element domain integrals in the present algorithm can reduce to one-dimensional element boundary integrals, so that versatile multi-node element is constructed to simplify mesh reconstruction during iteration. Finally, numerical results from the present Green's function based FEM with isotropic Green's function kernels are compared with other numerical results to verify and demonstrate the performance of the present method.

  5. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorge, Susan Elizabeth [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 107-1010atoms/cm2 range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true

  6. Finite element based contact analysis of radio frequency MEMs switch membrane surfaces

    Science.gov (United States)

    Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen

    2017-10-01

    Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.

  7. Finite element analysis of transient viscous flow with free surface using filling pattern technique

    International Nuclear Information System (INIS)

    Kim, Ki Don; Yang, Dong Yol; Jeong, Jun Ho

    2001-01-01

    The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result

  8. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.

    Science.gov (United States)

    Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo

    2018-01-20

    The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The transient response for different types of erodable surface thermocouples using finite element analysis

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein

    2007-01-01

    Full Text Available The transient response of erodable surface thermocouples has been numerically assessed by using a two dimensional finite element analysis. Four types of base metal erodable surface thermocouples have been examined in this study, included type-K (alumel-chromel, type-E (chromel-constantan, type-T (copper-constantan, and type-J (iron-constantan with 50 mm thick- ness for each. The practical importance of these types of thermocouples is to be used in internal combustion engine studies and aerodynamics experiments. The step heat flux was applied at the surface of the thermocouple model. The heat flux from the measurements of the surface temperature can be commonly identified by assuming that the heat transfer within these devices is one-dimensional. The surface temperature histories at different positions along the thermocouple are presented. The normalized surface temperature histories at the center of the thermocouple for different types at different response time are also depicted. The thermocouple response to different heat flux variations were considered by using a square heat flux with 2 ms width, a sinusoidal surface heat flux variation width 10 ms period and repeated heat flux variation with 2 ms width. The present results demonstrate that the two dimensional transient heat conduction effects have a significant influence on the surface temperature history measurements made with these devices. It was observed that the surface temperature history and the transient response for thermocouple type-E are higher than that for other types due to the thermal properties of this thermocouple. It was concluded that the thermal properties of the surrounding material do have an impact, but the properties of the thermocouple and the insulation materials also make an important contribution to the net response.

  10. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)

    2016-09-15

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  11. Finite element analysis of laser-generated ultrasound for characterizing surface-breaking cracks

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    2005-01-01

    A finite element method was used to simulate the wave propagation of laser-generated ultrasound and its interaction with surface breaking cracks in an elastic material. Thermoelastic laser line source on the material surface was approximated as a shear dipole and loaded as nodal forces in the plane-strain Finite Element (FE) model. The shear dipole-FE model was tested for the generation of ultrasound on the surface with no defect. The model was found to generate the Rayleigh surface wave. The model was then extended to examine the interaction of laser generated ultrasound with surface-breaking cracks of various depths. The crack-scattered waves were monitored to size the crack depth. The proposed model clearly reproduced the experimentally observed features that can be used to characterize the presence of surface-breaking cracks

  12. Finite element method analysis of surface roughness transfer in micro flexible rolling

    OpenAIRE

    Qu Feijun; Xie Haibo; Jiang Zhengyi

    2016-01-01

    Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to...

  13. Finite element method analysis of surface roughness transfer in micro flexible rolling

    Directory of Open Access Journals (Sweden)

    Qu Feijun

    2016-01-01

    Full Text Available Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to decrease the surface roughness. Four types of initial workpiece surface roughness are studied in the simulation, and the influences of process parameters, such as friction coefficient, rolling speed and roll gap adjusting speed, on surface asperity flattening of workpieces with different initial surface roughness have been numerically investigated and analysed.

  14. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2008-01-01

    This paper elaborates on how the finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with optical waves in a waveguide. With a periodic model it is shown that these electrodes act as a mechanical resonator which slows d...

  15. Total reflection PIXE (TPIXE) and RBS for surface and trace element analysis.

    NARCIS (Netherlands)

    van Kan, J.A.; Vis, R.D.

    1996-01-01

    MeV proton and α beams at small incident angles (0-35 mrad) were used to analyse flat surfaces such as Si wafers and coated quartz substrates. X-rays and backscattered particles were detected in a total reflection geometry. Using TPIXE a quick and simultaneous detection of different trace elements

  16. Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool

    Science.gov (United States)

    Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi

    2018-03-01

    A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.

  17. Analysis of asphalt mix surface-tread rubber interaction by using finite element method

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Srirangam

    2017-08-01

    Full Text Available The surface texture of the pavement plays a very important role in driving the frictional properties at the tire rubber-pavement interface. Particularly, the hysteretic friction due to viscoelastic deformations of rubber depends mainly on the pavement surface texture. In the present paper, the effect of micromechanical pavement surface morphology on rubber block friction was brought in by comparing the friction results for three different asphalt mix morphological surfaces, named stone mastic asphalt (SMA, ultra-thin surfacing (UTS and porous asphalt (PA. The asphalt surface morphologies of these mixes were captured by using an X-ray tomographer, from which the resulting images micromechanical finite element (FE meshes for SMA, UTS and PA pavements were developed by means of the SimpleWare software. In the FE model, the rubber and asphalt binder were modeled as viscoelastic (VE materials and the formulation was given in the large deformation framework. FE simulations were then carried out by using contact algorithm between rubber and the road surface. It was observed that the rubber friction inversely varies with the sliding speed and positively varies with the pressure for all the pavement morphological and stiffness conditions. Furthermore, it was observed that the highly porous pavement surface results in large dissipation of energy, hence, large rubber friction which shows that the mix characteristics of pavements have a significant effect on rubber friction.

  18. Trace element analysis on Si wafer surfaces by TXRF at the ID32 ESRF undulator beamline.

    Science.gov (United States)

    Ortega, L; Comin, F; Formoso, V; Stierle, A

    1998-05-01

    Synchrotron radiation total-reflection X-ray fluorescence (SR-TXRF) has been applied to the impurity analysis of Si wafers using a third-generation synchrotron radiation undulator source. A lower limit of detectability (LLD) for Ni atoms of 17 fg (1.7 x 10(8) atoms cm(-2)) has been achieved with an optical set-up based on an Si(111) double-crystal monochromator and a horizontal sample geometry. These first results are very promising for synchrotron radiation trace element analysis since we estimate that it is possible to lower the LLD by a factor of about 25 by employing appropriate optics and detectors. The use of a crystal monochromator opens new possibilities to perform absorption and scattering experiments (NEXAFS and X-ray standing-wave methods) for chemical and structural analysis of ultratrace elements.

  19. A study of Venus surface elemental composition from 14 MeV neutron induced gamma ray spectroscopy: Activation analysis

    International Nuclear Information System (INIS)

    Jun, I.; Kim, W.; Smith, M.; Mitrofanov, I.; Litvak, M.

    2011-01-01

    The surface elemental composition of Venus can be determined using an artificially pulsed 14 MeV neutron generator (PNG) combined with a gamma ray spectrometer (GRS). The 14 MeV neutrons will interact with the surface materials and generate gamma rays, characteristic of specific elements, whose energy spectrum will be measured by GRS. These characteristic gamma rays are produced mainly through 3 different neutron interaction mechanisms: capture, inelastic, and activation reactions. Each reaction type has a different neutron energy dependency and different time scale for gamma ray production and transport. Certain elements are more easily identified through one reaction type over the others. Thus, careful analysis of the gamma ray spectra during and after the neutron pulse provides a comprehensive understanding of the surface elemental composition. In this paper, we use a well-tested neutron/gamma transport code, called Monte Carlo N-Particles (MCNP), to investigate the measurement capability of a PNG-GRS detection system through the neutron activation reactions. An activation analysis was performed for a representative soil composition of Venus with a notional operational scenario of PNG and GRS. The analysis shows that the proposed instrument concept can identify most of the modeled surface elements at Venus with sufficient accuracy through the activation mode. Specifically, U, Th, K, Si can be measured to within 1%, Fe within 2%, Al within 10%, Ca within 5%, Mg with 15%, Mn with 20%, and Cl within 6%. Although modeled in the analysis, it is shown that the activation mode alone cannot distinguish the S and Ti peaks.

  20. Comparison of different types of phacoemulsification tips. I. Quantitative analysis of elemental composition and tip surface microroughness.

    Science.gov (United States)

    Tsaousis, Konstantinos T; Werner, Liliana; Perez, Jesus Paulo; Li, He J; Reiter, Nicholas; Guan, Jia J; Mamalis, Nick

    2016-09-01

    To evaluate the elemental composition of phacoemulsification tips and their surface roughness in the microscale. John A. Moran Eye Center and Utah Nanofab, College of Engineering, University of Utah, Salt Lake City, Utah, USA. Experimental study. Seven types of phacoemulsification tips were studied. The phaco tips were examined through energy-dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) for elemental composition. In addition, the roughness of the opening in all tips was assessed through 3-dimensional white-light interferometry. Elemental analysis showed considerable differences in the surface layers between manufacturers. Alcon tips had a thinner oxidized titanium (Ti) layer in their surface. Through XPS, vanadium was not detected in the superficial layers of any tip, but only in deeper levels. The microroughness surface analysis showed comparable results regarding their root-mean-square (RMS) metric. Maximum peak valley distance values varied and appeared to be dependent on the quality of material process rather than the material itself. Phacoemulsification tips are made of Ti alloys and showed differences between models, especially regarding their composition in the superficial layers. Their opening end roughness showed an overall appropriate RMS value of less than 1.0 μm in all cases. The existence of small defected areas highlights the importance of adequate quality control of these critical surgical instruments. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Element and Crack Geometry Sensitivities of Finite Element Analysis Results of Linear Elastic Stress Intensity Factor for Surface Cracked Straight Pipes

    International Nuclear Information System (INIS)

    Ryu, Dongil; Bae, Kyungdong; Je, Jinho; An, Joonghyok; Kim, Yongbeum

    2013-01-01

    This study provides the elastic stress intensity factors, K, for circumferential and longitudinal surface cracked straight pipes under single or combined loads of internal pressure, bending, and torsion based on three-dimensional (3a) finite element (FE) analyses. FE results are compared with two different types of defect assessment codes (API-579-1 and RUC-MR A106) to prove the accuracy of the FE results and the differences between the codes. Through the 3a FE analysis, it is found that the stress intensity factors are sensitive to the number of elements, which they were believed to not be sensitive to because of path independence. Differences were also found between the FE analysis results for crack defining methods and the results obtained by two different types of defect assessment codes

  2. Finite element analysis of surface cracks in the Wilkins Ice Shelf using fracture mechanics

    Science.gov (United States)

    Plate, Carolin; Müller, Ralf; Gross, Dietmar; Humbert, Angelika; Braun, Matthias

    2010-05-01

    Ice shelves, located between the warming atmosphere and the ocean, are sensitive elements of the climate system. The Wilkins Ice Shelf is situated in the south-western part of the Antarctic Peninsula, a well known hot spot of global warming. Recent break-up events exemplified the potential of disintegration of the ice shelf. A multi interdisciplinary project consisting of remote sensing, modeling of the ice dynamics and fracture mechanics intends to improve the understanding of the impacts of temperature increase on ice shelf stability. As a part of this project the aim of this presentation is to demonstrate the fracture mechanical approach using finite elements and configurational forces. For fracture mechanical purposes the material behavior of ice is treated as a brittle solid, and linear fracture mechanics is used. Crucial to all methods in linear fracture mechanics is the evaluation of the stress intensity factor K which is a measure for the load concentration at the crack tip and which depends on the geometry of the body and on the applied loading. The computed value of K can be compared to the critical stress intensity factor Kc, a material property obtained from experimental examinations, to judge whether a crack will propagate. One very effective procedure to obtain the stress intensity factor takes advantage of configurational forces, which can be easily obtained in the finite element analysis. An initial investigation is based on a 2-dimensional analysis of a single crack with a mode-I load type using a static plane strain model in the finite element analysis software COMSOL and additional routines to compute and evaluate the configurational forces. Analytical solutions of simple geometry and load cases are called on in comparison. The application to the Wilkins Ice Shelf follows by using material parameters, geometries and loading situations, which are obtained from literature values, remote sensing data analysis and modeling of the ice dynamics

  3. EXTRACTION AND QUANTITATIVE ANALYSIS OF ELEMENTAL SULFUR FROM SULFIDE MINERAL SURFACES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. (R826189)

    Science.gov (United States)

    A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...

  4. Analysis of asphalt mix surface-tread rubber interaction by using finite element method

    NARCIS (Netherlands)

    Srirangam, S.K.; Anupam, K.; Kasbergen, C.; Scarpas, Athanasios

    2017-01-01

    The surface texture of the pavement plays a very important role in driving the frictional properties at the tire rubber-pavement interface. Particularly, the hysteretic friction due to viscoelastic deformations of rubber depends mainly on the pavement surface texture. In the present paper, the

  5. Elemental analysis of planetary surfaces via orbital gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1979-01-01

    Orbital gamma-ray spectroscopy can determine the chemical composition of planets with little or no atmosphere and provides valuable clues to the planet's origin and evolution. The strongest gamma-ray lines emitted from a planetary surface include those from the decay of the natural radioelements potassium, uranium, and thorium and those from nonelastic-scattering and neutron-capture reactions by cosmic-ray particles. The distributions of potassium, thorium, iron, magnesium, and titanium for 20% of the moon were mapped by NaI(Tl) spectrometers flown on the Apollo 15 and Apollo 16 missions. Backgrounds in the Apollo spectra included cosmic gamma rays, radioactivity in the spacecraft and detector, electron bremsstrahlung, and nuclear reactions in the matter surrounding the detector. Only about 15% of the photons from the lunar surface were gamma-ray lines that had not undergone interactions; the remainder formed a continuum that had to be determined and removed from a lunar spectrum before the discrete line spectrum could be unfolded. Solid-state gamma-ray spectrometers of high-purity germanium are proposed for future orbiters to Mars and the moon. 3 figures

  6. Elasto-plastic finite element analysis of axial surface crack in PHT piping of 500 MWe PHWR

    International Nuclear Information System (INIS)

    Chawla, D.S.; Bhate, S.R.; Kushwaha, H.S.; Mahajan, S.C.

    1994-01-01

    The leak before break (LBB) approach in nuclear piping design envisages demonstrating that the pressurized pipe with a postulated flaw will leak at a detectable rate leading to corrective action well before catastrophic rupture would occur. This requires analysis of cracked pipe to study the crack growth and its stability. This report presents the behaviour of a surface crack in the wall of a thick primary heat transport (PHT) pipe of 500 MWe Indian PHWR. The line spring model (LSM) finite element is used to model the flawed pipe geometry. The variation of crack driving force (J-integral) across the crack front has been presented. The influence of crack geometry factors such as depth, shape, aspect ratio, and loading on peak values of J-integral as well as crack mouth opening displacement has been studied. Several crack shapes have been used to study the shape influence. The results are presented in dimensionless form so as to widen their applicability. The accuracy of the results is validated by comparison with results available in open literature. (author). 47 refs., 8 figs

  7. Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device

    Science.gov (United States)

    Mohibul Kabir, K. M.; Matthews, Glenn I.; Sabri, Ylias M.; Russo, Salvy P.; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-03-01

    Accurate analysis of surface acoustic wave (SAW) devices is highly important due to their use in ever-growing applications in electronics, telecommunication and chemical sensing. In this study, a novel approach for analyzing the SAW devices was developed based on a series of two-dimensional finite element method (FEM) simulations, which has been experimentally verified. It was found that the frequency response of the two SAW device structures, each having slightly different bandwidth and center lobe characteristics, can be successfully obtained utilizing the current density of the electrodes via FEM simulations. The two SAW structures were based on XY Lithium Niobate (LiNbO3) substrates and had two and four electrode finger pairs in both of their interdigital transducers, respectively. Later, SAW devices were fabricated in accordance with the simulated models and their measured frequency responses were found to correlate well with the obtained simulations results. The results indicated that better match between calculated and measured frequency response can be obtained when one of the input electrode finger pairs was set at zero volts and all the current density components were taken into account when calculating the frequency response of the simulated SAW device structures.

  8. Study the effect of wear rate on impingement failure of an acetabular liner surface based on finite element analysis

    NARCIS (Netherlands)

    Saputra, Eko; Anwar, Iwan Budiwan; van der Heide, Emile; Ismail, Rifky; Jamari, J.

    2017-01-01

    In this study, correlation of wear inside of an acetabular liner surface (ALS) and damage on an acetabular liner rim (ALR) due to impingement effect are investigated. The analysis included evaluation of the macrostructure of the damage based on visual investigation and computer simulation analysis.

  9. Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow using a velocity-vorticity formulation

    International Nuclear Information System (INIS)

    Lo, D.C.; Young, D.L.

    2004-01-01

    This paper describes the application of velocity-vorticity formulation of the Navier-Stokes equations for two-dimensional free surface flow using an arbitrary Lagrangian-Eulerian method. The velocity Poisson equations and the vorticity transport equations are solved using a finite element method to obtain the velocity and the vorticity fields in the interior region of the computational domain. The boundary-fitted coordinates system is adopted to solve the boundary equations for kinematic and dynamic conditions at the free surface using a finite difference method. The numerical model for the velocity-vorticity formulation is validated for a square cavity flow at Re=400 and 1000. The solitary wave reflected from a vertical wall is chosen as a test case for comparison and validation of the free surface flow model. Then the proposed numerical model is used to obtain flow results for the following free surface flow cases: (i) interaction between two opposite solitary waves, (ii) seiche phenomenon in a rectangular reservoir, and (iii) solitary wave through a submerged rectangular structure in a viscous fluid. The efficiency of the present numerical model for numerical treatment of free surface flows is discussed. Furthermore the advantage of this formulation with respect to primitive variables formulation is addressed from the computational point of view

  10. Elements of real analysis

    CERN Document Server

    Sprecher, David A

    2010-01-01

    This classic text in introductory analysis delineates and explores the intermediate steps between the basics of calculus and the ultimate stage of mathematics: abstraction and generalization.Since many abstractions and generalizations originate with the real line, the author has made it the unifying theme of the text, constructing the real number system from the point of view of a Cauchy sequence (a step which Dr. Sprecher feels is essential to learn what the real number system is).The material covered in Elements of Real Analysis should be accessible to those who have completed a course in

  11. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    Science.gov (United States)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  12. Statistical finite element analysis.

    Science.gov (United States)

    Khalaji, Iman; Rahemifar, Kaamran; Samani, Abbas

    2008-01-01

    A novel technique is introduced for tissue deformation and stress analysis. Compared to the conventional Finite Element method, this technique is orders of magnitude faster and yet still very accurate. The proposed technique uses preprocessed data obtained from FE analyses of a number of similar objects in a Statistical Shape Model framework as described below. This technique takes advantage of the fact that the body organs have limited variability, especially in terms of their geometry. As such, it is well suited for calculating tissue displacements of body organs. The proposed technique can be applied in many biomedical applications such as image guided surgery, or virtual reality environment development where tissue behavior is simulated for training purposes.

  13. Analysis of isotope element by electrolytic enrichment method for ground water and surface water in Saurashtra region, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Sajal Singh

    2016-12-01

    Full Text Available The present study has been aimed for the assessment of isotope element Tritium (3H. It is a great threat to human health and environment for lengthy duration. The tritium exists in earth in diverse forms such as (1 small amounts of natural tritium are produced by alpha decay of lithium-7, (2 natural atmospheric tritium is also generated by secondary neutron cosmic ray bombardment of nitrogen, (3 atmospheric nuclear bomb testing in the 1950s, although the contribution from nuclear power plants is small. Tritium or 3H is a radioactive isotope of hydrogen with a half-life of 12.32 ± 0.02 years. Water samples from ground water, surface water, and precipitation were collected from different locations in Gujarat area and were analyzed for the same. Distillation of samples was done to reduce the conductivity. Deuterium and Hydrogen were removed by the process of physico-chemical fractionation in the tritium enrichment unit. The basis of physico-chemical fractionation is the difference in the strength of bonds formed by the light vs. the heavier isotope of a given element. A total of 10 cycles (runs were executed using Quintals process. Tritium concentration files were created with help of WinQ and Quick start software in Quintals process (Liquid Scintillation Spectrometer. The concentration of tritium in terms of tritium units (TU of various samples has been determined. The TU values of the samples vary in the range of 0.90–6.62 TU.

  14. Graphite Heating Element Thermal and Structural Performance in the NSWC (Naval Surface Warfare Center) Hypervelocity Wind Tunnel 9 - A Finite Element Analysis.

    Science.gov (United States)

    1988-06-01

    Tunnel Thermal-electric analogy Electrical Finite element Hypervelocity Crack- Nitrogen Refractory Probability Thermostructural Fatigue Heat transfer...Stress- Strain Voltage Temperature Thermal Stress/strain Heat flux Resistance-Ri4eting Joule Heating Convection ABAQUS PATRAN Principal stress Current...A-1 B ABAQUS INPUT FILES . ............... B-1 C FREE CONVECTION HEAT TRANSFER FILM COEFFICIENT CALCULATION FOR MACH-14 END HEAT CONDITIONS

  15. Surface corrosion analysis of machine elements using thin layer activation technique with the proton beam from national medical cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1996-01-01

    The surface of metallic objects becomes activated when irradiated with a narrow energetic charged particle (eg. proton) beam. The depth of the activated region and the yield of the induced radioactivity depend on the charged particle energy and beam intensity respectively. The surface radioactivity of the irradiated object is depleted when the activated surface undergo wear or corrosion processes. Therefore, the quantitative assay of the remaining surface radioactivity could be used as a very effective method for monitoring wear or corrosion processes. This poster highlights some interesting results of the Thin Layer Activation (TLA) study currently undertaken at the Health Physics laboratory of the National Medical Cyclotron

  16. Vapor phase treatment–total reflection X-ray fluorescence for trace elemental analysis of silicon wafer surface

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Hikari, E-mail: hikari@rigaku.co.jp [Rigaku Corp., 14-8 Akaoji-cho, Takatsuki, Osaka 569-1146 (Japan); Mori, Yoshihiro [Horiba Ltd., 2 Miyanohigashi, Kisshoin, Minami-ku, Kyoto 601-8510 (Japan); Shibata, Harumi [SUMCO Corporation, Seavance North, 1-2-1 Shibaura, Minato-ku, Tokyo 105-8634 (Japan); Shimazaki, Ayako [Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Shabani, Mohammad B. [Mitsubishi Material Corporation, 1-297, Kitabukuro-cho, Omiya-ku, Saitama 330-8508 (Japan); Yamagami, Motoyuki [Rigaku Corp., 14-8 Akaoji-cho, Takatsuki, Osaka 569-1146 (Japan); Yabumoto, Norikuni [Analysis Atelier Co., 4-36-4, Yoyogi, Shibuya-ku, Tokyo 151-0053 (Japan); Nishihagi, Kazuo [Horiba Ltd., 2 Miyanohigashi, Kisshoin, Minami-ku, Kyoto 601-8510 (Japan); Gohshi, Yohichi [Tsukuba University, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2013-12-01

    Vapor phase treatment (VPT) was under investigation by the International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) to improve the detection limit of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis of silicon wafers. Round robin test results have confirmed that TXRF intensity increased by VPT for intentional contamination with 5 × 10{sup 9} and 5 × 10{sup 10} atoms/cm{sup 2} Fe and Ni. The magnification of intensity enhancement varied greatly (1.2–4.7 in VPT factor) among the participating laboratories, though reproducible results could be obtained for average of mapping measurement. SEM observation results showed that various features, sizes, and surface densities of particles formed on the wafer after VPT. The particle morphology seems to have some impact on the VPT efficiency. High resolution SEM observation revealed that a certain number of dots with SiO{sub 2}, silicate and/or carbon gathered to form a particle and heavy metals, Ni and Fe in this study were segregated on it. The amount and shape of the residue should be important to control VPT factor. - Highlights: • This paper presents a summary of study results of VPT–TXRF using ISO/TC201/WG2. • Our goal is to analyze the trace metallic contamination on silicon wafer with concentrations below 1 × 10{sup 10} atoms/cm{sup 2}. • The efficiency and mechanism of VPT are discussed under several round robin tests and systematic studies.

  17. Global equatorial sea-surface temperatures over the last 150,000 years: An update from foraminiferal elemental analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.

    Solar insolation changes are amongst various factors that affect sea-surface temperature (SST) which in turn modulate global climate. Out of all the oceanic regions, equatorial region receives the maximum solar insolation and thus is the locale...

  18. Finite element simulations of surface effect on Rayleigh waves

    Science.gov (United States)

    He, Jin; Zhao, Jinling

    2018-03-01

    Rayleigh waves influenced by surface effect are investigated by using finite element methods, in which eigenfrequency analysis are performed on a model composed of a half-space covered by the surface effect dominated domain. For a given wavelength, the frequency of the Rayleigh wave is obtained as the eigenfrequency of the model satisfying Floquet periodic boundary conditions. The thickness of the surface effect can be set to be infinitely small or a finite value in the finite element methods. The curvature-dependent out-of-plane force induced by surface tension as described by the generalized Young-Laplace equation is realized through geometric nonlinear analysis. The finite element simulations show that the assumptions of small curvature and infinitely small thickness of the surface effect widely used in theoretical approaches become invalid when Rayleigh waves are highly influenced by the surface effect. This work gives a more accurate insight into the surface effect on Rayleigh waves and provides a potential method for measuring the thickness of the surface effect from the dispersion curves of surface effect influenced Rayleigh wave velocities.

  19. The proton induced X-ray emission (PIXE) for the quantitative analysis of elements in thin samples, in surface layers of thick samples, and in aerosol filters

    International Nuclear Information System (INIS)

    Waetjen, U.

    1983-01-01

    The PIXE analysis method for the determination of elements in thick samples was investigated. The text of the present thesis is arranged under the following headings: physical fundamentals and measuring equipment, quantitative analysis of thin samples, matrix effects at the PIXE analysis of thick samples, matrix correction methods, analysis of 'infinite thick' model substances, PIXE analysis of aerosol filters. (GSCH)

  20. Effects of Surface Modification and Bulk Geometry on the Biotribological Behavior of Cross-Linked Polyethylene: Wear Testing and Finite Element Analysis.

    Science.gov (United States)

    Watanabe, Kenichi; Kyomoto, Masayuki; Saiga, Kenichi; Taketomi, Shuji; Inui, Hiroshi; Kadono, Yuho; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko; Moro, Toru

    2015-01-01

    The wear and creep deformation resistances of polymeric orthopedic bearing materials are both important for extending their longevity. In this study, we evaluated the wear and creep deformation resistances, including backside damage, of different polyethylene (PE) materials, namely, conventional PE, cross-linked PE (CLPE), and poly(2-methacryloyloxyethyl phosphorylcholine)- (PMPC-) grafted CLPE, through wear tests and finite element analysis. The gravimetric and volumetric degrees of wear of disks (3 or 6 mm in thickness) of these materials against a cobalt-chromium-molybdenum alloy pin were examined using a multidirectional pin-on-disk tester. Cross-linking and PMPC grafting decreased the gravimetric wear of the PE disks significantly. The volumetric wear at the bearing surface and the volumetric penetration in the backside of the 3-mm thick PE disk were higher than those of the 6-mm thick PE disk, regardless of the bearing material. The geometrical changes induced in the PE disks consisted of creep, because the calculated internal von Mises stress at the bearing side of all disks and that at the backside of the 3-mm thick disks exceeded their actual yield strengths. A highly hydrated bearing surface layer, formed by PMPC grafting, and a cross-linking-strengthened substrate of adequate thickness are essential for increasing the wear and creep deformation resistances.

  1. Effects of Surface Modification and Bulk Geometry on the Biotribological Behavior of Cross-Linked Polyethylene: Wear Testing and Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kenichi Watanabe

    2015-01-01

    phosphorylcholine- (PMPC- grafted CLPE, through wear tests and finite element analysis. The gravimetric and volumetric degrees of wear of disks (3 or 6 mm in thickness of these materials against a cobalt-chromium-molybdenum alloy pin were examined using a multidirectional pin-on-disk tester. Cross-linking and PMPC grafting decreased the gravimetric wear of the PE disks significantly. The volumetric wear at the bearing surface and the volumetric penetration in the backside of the 3-mm thick PE disk were higher than those of the 6-mm thick PE disk, regardless of the bearing material. The geometrical changes induced in the PE disks consisted of creep, because the calculated internal von Mises stress at the bearing side of all disks and that at the backside of the 3-mm thick disks exceeded their actual yield strengths. A highly hydrated bearing surface layer, formed by PMPC grafting, and a cross-linking-strengthened substrate of adequate thickness are essential for increasing the wear and creep deformation resistances.

  2. Fracture analysis of a presure vessel with a semi-elliptical surface crack by three-dimensional elastic-plastic finite element calculations

    International Nuclear Information System (INIS)

    Aurich, D.; Brocks, W.; Noack, D.; Veith, H.

    1982-01-01

    A three-dimensional elastic-plastic analysis for stresses and strains in a pressure vessel containing two semi-elliptical surface cracks was carried out by finite element (FE) method. Results for stress distribution, spreading of plastic zones and crack opening displacements are presented and discussed. The variation of the stress intensity factor along the crack front as gained from a linear elastic FE-analysis is compared with solutions of various authors. First, the FE results are discussed according to the stress intensity concept using a plastic zone correction for small scale yielding. A Ksub(Ic) of 6900 Nmm -3 / 2 for an operating temperature of 314 K, which was taken from the ASME code, resulted in a critical pressure of 280 bar. If the zone correction is done with plane stress approximations of IRWIN and DUGDALE, just slightly lower critical values are gained. Introducing the same two dimensional models in the COD concept gives far too conservative estimations for the critical pressure, whereas the plane strain solution agrees quite well with the FE computations. All together, the COD concept is very sensitive to different methods of determining delta. (orig.) [de

  3. METHODOLOGICAL ELEMENTS OF SITUATIONAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tetyana KOVALCHUK

    2016-07-01

    Full Text Available The article deals with the investigation of theoretical and methodological principles of situational analysis. The necessity of situational analysis is proved in modern conditions. The notion “situational analysis” is determined. We have concluded that situational analysis is a continuous system study which purpose is to identify dangerous situation signs, to evaluate comprehensively such signs influenced by a system of objective and subjective factors, to search for motivated targeted actions used to eliminate adverse effects of the exposure of the system to the situation now and in the future and to develop the managerial actions needed to bring the system back to norm. It is developed a methodological approach to the situational analysis, its goal is substantiated, proved the expediency of diagnostic, evaluative and searching functions in the process of situational analysis. The basic methodological elements of the situational analysis are grounded. The substantiation of the principal methodological elements of system analysis will enable the analyst to develop adaptive methods able to take into account the peculiar features of a unique object which is a situation that has emerged in a complex system, to diagnose such situation and subject it to system and in-depth analysis, to identify risks opportunities, to make timely management decisions as required by a particular period.

  4. Elements of abstract harmonic analysis

    CERN Document Server

    Bachman, George

    2013-01-01

    Elements of Abstract Harmonic Analysis provides an introduction to the fundamental concepts and basic theorems of abstract harmonic analysis. In order to give a reasonably complete and self-contained introduction to the subject, most of the proofs have been presented in great detail thereby making the development understandable to a very wide audience. Exercises have been supplied at the end of each chapter. Some of these are meant to extend the theory slightly while others should serve to test the reader's understanding of the material presented. The first chapter and part of the second give

  5. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  6. Comparison of the Effect of Three Abutment-implant Connections on Stress Distribution at the Internal Surface of Dental Implants: A Finite Element Analysis

    Science.gov (United States)

    Raoofi, Saeed; Khademi, Maryam; Amid, Reza; Kadkhodazadeh, Mahdi; Movahhedi, Mohammad Reza

    2013-01-01

    Background and aims. The aim of this study was to determine the stress patterns within an implant and the effect of different types of connections on load transfer. Materials and methods. Three different types of implant-abutment connections were selected for this study. Sample A: 1.5-mm deep internal hex corresponding to a lead-in bevel; sample B: a tri-channel internal connection; and sample C: in-ternal Morse taper with 110 degrees of tapering and 6 anti-rotational grooves. Four types of loading conditions were simu-lated in a finite element model, with the maximum von Mises stress set as output variables. Results. The maximum stress concentration at the inner surface of the fixtures was higher than the stress value in bone in all of the samples. Stress values in sample B were the lowest amongst all of the models. Any alterations in the amount and direction of the 100-N axial load resulted in an increase in fixture surfaces stress. Overall, the highest amount of stress (112 MPa) was detected in sample C at the inner surface of the fixture under a non-axial load of 300 N. Conclusion. Stress concentration decreased when the internal surface area increased. Creating three or six stops in the internal surface of the fixtures resulted in a decrease in stress. PMID:24082983

  7. Trace Element Analysis of Selenium

    International Nuclear Information System (INIS)

    Soliman, M.S.A.

    2010-01-01

    The present thesis divided into four chapters as follows:Chapter (1):This chapter contains an introduction on different oxidation states of organic and inorganic species for selenium in environmental and biological samples, the process for separation of selenium from these samples and the importance of selenium as a component for these samples. Also gives notes about the techniques which are used in the elemental analysis for selenium species and the detection limits for selenium in these techniques, selenium species in human body and the importance of these species in protecting the body from the different types of cancer and the sources of selenium in environmental samples (soil and water) and distribution levels of selenium in these samples.Chapter (2):This chapter is divided into two parts :The first part deals with the sample collection process for environmental samples (underground water, soil) and the wet digestion ( microwave digestion ) process of soil samples. It also contains the theory of work of the closed microwave digestion system.The second part contains detailed information concerning the theoretical considerations of the used analytical techniques. These techniques include Hydride generation - Atomic Absorption Spectrometer (HG-AAS), Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Neutron Activation Analysis (NAA).Chapter (3): This chapter includes the methods of sampling, sample preparation, and sample digesition. The measures of quality assurance are disscused in this chapter. It describes in details the closed microwave digestion technique and the analytical methods used in this study which are present in Central Laboratory for Elemental and Isotopic Analysis (CLEIA) and the Egypt Second Research Reactor (ETRR-2). The described techniques are Atomic Absorption Spectrometer (AAS 6 vario, Analytical Jena GmbH, Germany), JMS-PLASMAX2 Mass Spectrometer (ICP-MS) and the Egypt Second Research Reactor (NAA).

  8. Correct use of Membrane Elements in Structural Analysis

    Directory of Open Access Journals (Sweden)

    Rothman Timothy

    2016-01-01

    Full Text Available Structural analysis of consumer electronic devices such as phones and tablets involves Finite Element Analysis (FEA. Dynamic loading conditions such as device dropping and bending dictate accurate FEA models to reduce design risk in many areas. The solid elements typically used in structural analysis do not have integration points on the surface. The outer surface is of most interest because that is where the cracks start. Analysts employ a post processing trick through using membranes to bring accurate stress/strain results to the surface. This paper explains numerical issues with implementation of membranes and recommends a methodology for accurate structural analysis.

  9. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  10. From analysis to surface

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    In recent years, a significant body of research has focused on developing algorithms for computing analyses of mu- sical works automatically from encodings of these works' surfaces [3,4,7,10,11]. The quality of the output of such analysis algorithms is typically evaluated by comparing it with a “......In recent years, a significant body of research has focused on developing algorithms for computing analyses of mu- sical works automatically from encodings of these works' surfaces [3,4,7,10,11]. The quality of the output of such analysis algorithms is typically evaluated by comparing...... an effective (i.e., comput- able), correct and complete description of some aspect of the structure of the music. Generating the surface struc- ture of a piece from an analysis in this manner serves as a proof of the analysis' correctness, effectiveness and com- pleteness. We present a reductive analysis...

  11. Phytochemical screening, proximate and elemental analysis of ...

    African Journals Online (AJOL)

    Citrus sinensis was screened for its phytochemical composition and was evaluated for the proximate and elemental analysis. The phytochemical analysis indicated the presence of reducing sugar, saponins, cardiac glycosides, tannins and flavonoids. The elemental analysis indicated the presence of the following mineral ...

  12. FINITE ELEMENT ANALYSIS OF ELEMENT ANALYSIS OF A FREE ...

    African Journals Online (AJOL)

    eobe

    formulated as functional minimization. Finite Element Method (FEM) is regarde accurate and versatile numerical too differential equations that model phys. The methodology is used in vari engineering in which the problems ar partial differential equations. The met considerable application in structural e related disciplines.

  13. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    A reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where...... sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well...

  14. Regional subsidence modelling in Murcia city (SE Spain using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    Directory of Open Access Journals (Sweden)

    S. Tessitore

    2015-11-01

    Full Text Available Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  15. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  16. FINITE ELEMENT ANALYSIS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  17. Elements of stock market analysis

    Directory of Open Access Journals (Sweden)

    Suciu, T.

    2013-12-01

    Full Text Available The paper represents a starting point in the presentation of the two types of stock/market analysis: the fundamental analysis and the technical analysis. The fundamental analysis consist in the assessment of the financial and economic status of the company together with the context and macroeconomic environment where it activates. The technical analysis deals with the demand and supply of securities and the evolution of their trend on the market, using a range of graphics and charts to illustrate the market tendencies for the quick identification of the best moments to buy or sell.

  18. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  19. Element segregation on the surfaces of pure aluminum foils

    International Nuclear Information System (INIS)

    Zhang Xinming; Liu Jiancai; Tang Jianguo; Li Li; Chen Mingan; Liu Shengdan; Zhu Bing

    2010-01-01

    The surface segregation trend of trace elements in pure aluminum foils was investigated by density functional theory. The model of nine-layer Al(1 0 0) slab substituted partially by trace element atoms was proposed for calculating surface segregation energy. The calculating results show that (i) B, Mg, Si, Ga, Ge, Y, In, Sn, Sb, Pb and Bi exhibit negative segregation energy and possibly move to the surface, while Be, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zr exhibit positive segregation energies and migrated into the bulk; (ii) the segregation energy was found to be related with the covalent radius, the relaxed position at the surface of the substituting atom and the surface energy; (iii) the segregation behavior of trace element generates lots of defects and dislocation, which can increase the initial pitting nucleation sites in the surface of aluminum foils; (iv) the impurity atom concentration was tested with Pb-doped surfaces, the calculated negative segregation energies in all coverage increases rapidly with the Pb coverage. These conclusions are helpful for designing of the chemical composition and to advance the tunnel etching of aluminum foils.

  20. METHODOLOGICAL ELEMENTS OF SITUATIONAL ANALYSIS

    OpenAIRE

    Tetyana KOVALCHUK

    2016-01-01

    The article deals with the investigation of theoretical and methodological principles of situational analysis. The necessity of situational analysis is proved in modern conditions. The notion “situational analysis” is determined. We have concluded that situational analysis is a continuous system study which purpose is to identify dangerous situation signs, to evaluate comprehensively such signs influenced by a system of objective and subjective factors, to search for motivated targeted action...

  1. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  2. Boundary Element Analysis of the Steady-state Response of an Elastic Half-Space to a Moving Force on its Surface

    DEFF Research Database (Denmark)

    Andersen, Lars; Nielsen, Søren R. K.

    2003-01-01

    The paper deals with the boundary element method formulation of the steady-state wave propagation through elastic media due to a source moving with constant velocity. The Greens' function for the three-dimensional full-space is formulated in a local frame of reference following the source. This i...

  3. Finite element analysis of piezoelectric materials

    International Nuclear Information System (INIS)

    Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)

  4. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...

  5. Finite element analysis of bending performance on polyurethane composite panel

    Science.gov (United States)

    Jia, Minli; Li, Hongqiao; Wang, Xiaoming

    2017-09-01

    The finite element analysis model of polyurethane composite panel (simply named PCP) is established by using ABAQUS software. In view of the PCPs made of different thickness of surface board, their bending performance is carried out on finite element analysis, and the load-deflection curves which come from it are compared with the experimental results. The results show that the values between finite element analysis and experiment agree well with each other. It can be deduced that the established finite element model is fit to simulate the bending test of PCPs. The simulation not only has certain reference significance to the optimal design for the bending performance of PCPs, but also to the choice of PCPs in the practical project.

  6. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  7. ANSYS mechanical APDL for finite element analysis

    CERN Document Server

    Thompson, Mary Kathryn

    2017-01-01

    ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers...

  8. Finite elements for analysis and design

    CERN Document Server

    Akin, J E; Davenport, J H

    1994-01-01

    The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee

  9. Electrical machine analysis using finite elements

    CERN Document Server

    Bianchi, Nicola

    2005-01-01

    OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I

  10. Trace element analysis of nail polishes

    International Nuclear Information System (INIS)

    Misra, G.; Mittal, V.K.; Sahota, H.S.

    1999-01-01

    Instrumental neutron activation analysis (INAA) technique was used to measure the concentrations of various trace elements in nail polishes of popular Indian and foreign brands. The aim of the present experiment was to see whether trace elements could distinguish nail polishes of different Indian and foreign brands from forensic point of view. It was found that cesium can act as a marker to differentiate foreign and Indian brands. (author)

  11. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  12. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    Science.gov (United States)

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  13. Fourier analysis for rotating-element ellipsometers.

    Science.gov (United States)

    Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo

    2011-01-15

    We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.

  14. PIXE - a new method for elemental analysis

    International Nuclear Information System (INIS)

    Johansson, S.A.E.

    1983-01-01

    With elemental analysis we mean the determination of which chemical elements are present in a sample and of their concentration. This is an old and important problem in chemistry. The earliest methods were purely chemical and many such methods are still used. However, various methods based on physical principles have gradually become more and more important. One such method is neutron activation. When the sample is bombarded with neutrons it becomes radioactive and the various radioactive isotopes produced can be identified by the radiation they emit. From the measured intensity of the radiation one can calculate how much of a certain element that is present in the sample. Another possibility is to study the light emitted when the sample is excited in various ways. A spectroscopic investigation of the light can identify the chemical elements and allows also a determination of their concentration in the sample. In the same way, if a sample can be brought to emit X-rays, this radiation is also characteristic for the elements present and can be used to determine the elemental concentration. One such X-ray method which has been developed recently is PIXE. The name is an acronym for Particle Induced X-ray Emission and indicates the principle of the method. Particles in this context means heavy, charged particles such as protons and a-particles of rather high energy. Hence, in PIXE-analysis the sample is irradiated in the beam of an accelerator and the emitted X-rays are studied. (author)

  15. Solving the incompressible surface Navier-Stokes equation by surface finite elements

    Science.gov (United States)

    Reuther, Sebastian; Voigt, Axel

    2018-01-01

    We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.

  16. Preparation of fingernails for trace element analysis.

    Science.gov (United States)

    Bank, H L; Robson, J; Bigelow, J B; Morrison, J; Spell, L H; Kantor, R

    1981-10-26

    There are substantial differences in the reported elemental composition of human nails. Most investigators have used extensive washing procedures to minimize environmental contamination, however, such washing poses the risk of extraction of elements bound to the nail matrix. To determine if a portion of this variability could be accounted for by the "washing solutions" used by different investigators, nails were washed in nine solvents previously used for cleaning nails and their residual elemental composition measured by atomic absorption spectroscopy or energy dispersion analysis. In general, treatment with organic solvents resulted in less elemental loss than did treatment with aqueous detergents, while aqueous acids caused the greatest loss. Organic solvents more readily extracted iron and magnesium than calcium, copper and zinc. Virtually all of the magnesium was extracted by distilled water or aqueous detergents.

  17. Analysis of light elements by PIGE

    International Nuclear Information System (INIS)

    Kim, Y. S.; Choi, H. W.; Kim, D. K.; Woo, H. J.; Kim, N. B.; Park, K. S.

    2000-01-01

    The PIGE (Proton Induced Gamma ray Emission) method was applied for the measurement of light elements Li - K. A test measurement has been performed for geological, biological, environmental and material samples by using a standard sample for each element. The measurement was performed for the two proton energies of 2.4 and 3.4 MeV, and 3.4MeV was found to yield better result for multielemental analysis. The result shows a fair agreement within 15% for all elements with standard values. The detection limits of Li, B, F and Na are less than 100 ppm, while those of the other elements are from a few hundred ppm to a few percents. (author)

  18. Investigation of faulted tunnel models by combined photoelasticity and finite element analysis

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Huang, Y.

    1994-01-01

    Models of square and circular tunnels with short faults cutting through their surfaces are investigated by photoelasticity. These models, when duplicated by finite element analysis can predict the stress states of square or circular faulted tunnels adequately. Finite element analysis, using gap elements, may be used to investigate full size faulted tunnel system

  19. FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS

    Directory of Open Access Journals (Sweden)

    URDEA Mihaela

    2015-06-01

    Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.

  20. An Axial Sliding Test for machine elements surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran

    2012-01-01

    are necessary: a press to provide the normal pressure and a tensile machine to perform the axial movements. The test is calibrated so that the correspondence between the normal pressure and the container advancement is found. Finally, preliminary tests are carried out involving a multifunctional and a fine......Throughout the years, it has become more and more important to find new methods for reducing friction and wear occurrence in machine elements. A possible solution is found in texturing the surfaces under tribological contact, hence the development and spread of plateau-honed surface for cylinder...... liners. To prove the efficacy of a particular textured surface, it is paramount to perform experimental tests under controlled laboratory conditions. In this paper a new test rig simulating pure sliding conditions is presented, dubbed Axial Sliding Test. It presents four major components: a rod, a sleeve...

  1. Slave finite elements: The temporal element approach to nonlinear analysis

    Science.gov (United States)

    Gellin, S.

    1984-01-01

    A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.

  2. Quality management of finite element analysis

    Science.gov (United States)

    Barlow, John

    1991-09-01

    A quality management system covering the use of finite element analysis is described. The main topics are as follows: acquisition, development and verification of software (including the software suppliers software quality control system), support, documentation, error control, internal software, software acceptance and release; development and qualification of analysis methods, including software evaluation, analysis procedure qualification and documentation, procedure quality checks, control of analysis procedure errors; product design and integrity analysis, including project quality assurance and analysis planning, task specification and allocation, analysis, execution, results checking and analysis records. Other issues include the commercial and business advantages of quality systems, project and technical management and the training and experience of personnel. The items are correlated with the requirements of International Standard Organization 9001.

  3. Modelling cell motility and chemotaxis with evolving surface finite elements.

    Science.gov (United States)

    Elliott, Charles M; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-11-07

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html.

  4. Surface charge method for molecular surfaces with curved areal elements I. Spherical triangles

    Science.gov (United States)

    Yu, Yi-Kuo

    2018-03-01

    Parametrizing a curved surface with flat triangles in electrostatics problems creates a diverging electric field. One way to avoid this is to have curved areal elements. However, charge density integration over curved patches appears difficult. This paper, dealing with spherical triangles, is the first in a series aiming to solve this problem. Here, we lay the ground work for employing curved patches for applying the surface charge method to electrostatics. We show analytically how one may control the accuracy by expanding in powers of the the arc length (multiplied by the curvature). To accommodate not extremely small curved areal elements, we have provided enough details to include higher order corrections that are needed for better accuracy when slightly larger surface elements are used.

  5. Piezoelectric Analysis of Saw Sensor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Vladimír KUTIŠ

    2013-06-01

    Full Text Available In this contribution modeling and simulation of surface acoustic waves (SAW sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses were performed using FEM code ANSYS.

  6. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...

  7. A stabilized cut finite element method for the Darcy problem on surfaces

    Science.gov (United States)

    Hansbo, Peter; G. Larson, Mats; Massing, André

    2017-11-01

    We develop a cut finite element method for the Darcy problem on surfaces. The cut finite element method is based on embedding the surface in a three dimensional finite element mesh and using finite element spaces defined on the three dimensional mesh as trial and test functions. Since we consider a partial differential equation on a surface, the resulting discrete weak problem might be severely ill conditioned. We propose a full gradient and a normal gradient based stabilization computed on the background mesh to render the proposed formulation stable and well conditioned irrespective of the surface positioning within the mesh. Our formulation extends and simplifies the Masud-Hughes stabilized primal mixed formulation of the Darcy surface problem proposed in [28] on fitted triangulated surfaces. The tangential condition on the velocity and the pressure gradient is enforced only weakly, avoiding the need for any tangential projection. The presented numerical analysis accounts for different polynomial orders for the velocity, pressure, and geometry approximation which are corroborated by numerical experiments. In particular, we demonstrate both theoretically and through numerical results that the normal gradient stabilized variant results in a high order scheme.

  8. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  9. Finite element analysis of human joints

    International Nuclear Information System (INIS)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described

  10. Finite element analysis of human joints

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  11. CHEMICAL MAPPING OF ELEMENTAL SULFUR ON PYRITE AND ARSENOPYRITE SURFACES USING NEAR-INFRARED RAMAN IMAGING MICROSCOPY. (R826189)

    Science.gov (United States)

    AbstractNear-infrared Raman imaging microscopy (NIRIM) was used to produce chemical images of the distribution of elemental sulfur on oxidized pyrite and arsenopyrite surfaces. Analysis using Savitsky¯Golay filtering permits an unambiguous identificati...

  12. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  13. Modeling of the LA-ICPMS surface rastering procedure to optimize elemental imaging

    International Nuclear Information System (INIS)

    Elteren, J.T. van; Triglav, J.; Selih, V.S.; Zivin, M.

    2009-01-01

    Full text: The quality of elemental image maps generated by LA-ICPMS is a function of the instrumental settings (laser fluence, pulse rate, beam diameter, scanning speed, gas flow rate and acquisition time). Optimizing these settings is a matter of trial and error since quality criteria for elemental imaging (sensitivity, resolution, analysis time) are intricately linked. A theoretical model (and software) will be discussed with which it is possible to simply compute the image distortion introduced by the LA-ICPMS as a function of the instrumental settings and optimize the surface rastering procedure prior to the actual analysis to meet the required quality criteria. (author)

  14. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  15. Examination of paints by trace element analysis.

    Science.gov (United States)

    Krishnan, S S

    1976-10-01

    Trace element analysis using neutron activation analysis is effective and valuable, particularly in the examination of white household paint. Although physical appearance and resin composition are generally similar in these paint samples, trace element composition provides an effective way of distinguishing among them. In the case of automobile paint samples, NAA serves as an important additional technique for discrimination. The technique is important when sample sizes are very small. The technique developed takes a few minutes for sample preparation, a few hours of irradiation time (during which the examiner's presence is not required), and then a few minutes for counting and obtaining quantitative multielement concentration patterns. A technician can easily handle 30 to 50 samples per day.

  16. Introduction to nonlinear finite element analysis

    CERN Document Server

    Kim, Nam-Ho

    2015-01-01

    This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: ·         Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems ·         Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory ·    ...

  17. Finite element analysis of nonlinear creeping flows

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Guerreiro, J.N.C.

    1988-12-01

    Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt

  18. Trace-element analysis in environmental sciences

    International Nuclear Information System (INIS)

    Valkovic, V.; Moschini, G.

    1988-01-01

    The use of charged-particle accelerators in trace-element analysis in the field of environmental sciences is described in this article. Nuclear reactions, charged-particle-induced X-ray emission as well as other nuclear and atomic processes can be used individually, or combined, in developing adequate analytical systems. In addition to concentration levels, concentration levels, concentration profiles can be measured, resulting in unique information. Some examples of experiments performed are described together with the suggestions for future measurements [pt

  19. BERSAFE: (BERkeley Structural Analysis by Finite Elements)

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    BERSAFE is a well-known finite element system which has been under continuous use and development for over 20 years. The BERSAFE system comprises an inter-compatible set of program modules covering static stress analysis, linear dynamics and thermal analysis. Data generation and results presentation modules are also available, along with special supporting functions including automatic crack growth through a model with adaptive meshing. The functionality of BERSAFE, is nowadays very advanced, both in engineering scope and finite element technology. It has seen many firsts, including the front solution and Virtual Crack Extension methods (VCE). More recent additions which have developed out of the Power Industry's requirements are a finite element computational fluid dynamics code, FEAT, and engineering design assessment procedures. These procedures include R6 and R5 for the assessment of the integrity of structures containing defects below and within the creep regime. To use all this software in a user-friendly manner, a new computational environment has been developed, called 'The Harness' which takes advantage of modern hardware and software philosophies. This provides the tool-kit to undertake complete problems, covering determination of fluid loads, structural analysis and failure assessment. In the following sections we describe briefly various components of the BERSAFE suite. (author)

  20. Observed linear trend in few surface weather elements over the ...

    Indian Academy of Sciences (India)

    total precipitation amount (TP). Linear regression analysis is used to construct the trend in variables listed in table 1 (Pant and. Rupa Kumar 1997; Bhutiyani et al. 2007, 2009,. Dimri and Das 2011). Linear regression equation of the following form is developed at each station for surface weather variables listed in table 1 to.

  1. Computational structural analysis and finite element methods

    CERN Document Server

    Kaveh, A

    2014-01-01

    Graph theory gained initial prominence in science and engineering through its strong links with matrix algebra and computer science. Moreover, the structure of the mathematics is well suited to that of engineering problems in analysis and design. The methods of analysis in this book employ matrix algebra, graph theory and meta-heuristic algorithms, which are ideally suited for modern computational mechanics. Efficient methods are presented that lead to highly sparse and banded structural matrices. The main features of the book include: application of graph theory for efficient analysis; extension of the force method to finite element analysis; application of meta-heuristic algorithms to ordering and decomposition (sparse matrix technology); efficient use of symmetry and regularity in the force method; and simultaneous analysis and design of structures.

  2. Optical selection of trace elements for discriminant analysis

    International Nuclear Information System (INIS)

    Rasmussen, S.E.; Erasmus, C.S.; Watterson, J.I.W.; Sellschop, J.P.F.

    This report describes different methods of element selection; a combination of stepwise multivariate analysis of variance for primary element selection, and principle component analysis regression for the element interrelationship analysis. These offer a satisfactory solution to the problem of element selection

  3. Surface analysis the principal techniques

    CERN Document Server

    Vickerman, John C

    2009-01-01

    This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c

  4. Storage and pre-neutron-activation-analysis treatment for trace-element analysis in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1985-01-01

    The problems regarding storage and pre-neutron-activation-analysis treatment for the elements aluminum, calcium, vanadium, selenium, copper, iodine, zinc, manganese, and magnesium in a urine matrix are reviewed. The type of collection and storage procedure and pre-neutron activation analysis treatment of urine depend on the specific trace element; that is, its inherent physical and chemical properties. Specifically polyethylene in teflon containers are the most suitable for general determinations. Whether any preservative is added would depend upon the stability of the trace element and its tendency for surface adsorption. Preferably, preservatives should contain no radioactivatable elements for maximum efficacy. Freeze drying or packing urine shipments under dry ice needs to be explored on an individual basis. Each pre- or post-neutron activation analysis treatment is specific and optimized for the trace element analyzed

  5. PIXE analysis of caries related trace elements in tooth enamel

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Jodaikin, A.; Cleaton-Jones, P.E.; Sellschop, J.P.F.; Madiba, C.C.P.; Bibby, D.; University of the Witwatersrand, Johannesburg

    1981-01-01

    PIXE analysis has been applied to a set of twenty human teeth to determine trace element concentration in enamel from areas suceptible to dental caries (mesial and distal contact points) and in areas less susceptible to the disease (buccal surface), with the aim of determining the possible roles of trace elements in the carious process. The samples were caries-free anterior incisors extracted for periodontal reasons from subjects 10-30 years of age. Prior to extraction of the sample teeth, a detailed dental history and examination was carried out in each individual. PIXE analysis, using a 3 MeV proton beam of 1 mm diameter, allowed the determination of Ca, Mn, Fe, Cu, Zn, Sr and Pb above detection limits. As demonstrated in this work, the enhanced sensitivity of PIXE analysis over electron microprobe analysis, and capability of localised surface analysis compared with the pooled samples require for neutron activation analysis, makes it a powerful and useful technique in dental analysis. (orig.)

  6. XRF elemental analysis of Romanian archaeological materials

    International Nuclear Information System (INIS)

    Therese, L.; Guillot, Ph.; Muja, C.; Zirra, V.

    2009-01-01

    Complete text of publication follows. Several instrumental techniques of elemental analysis are now widely used for the characterization and the provenance analysis of archaeological materials (A. M. Pollard et al., Analytical Chemistry in Archaeology, United Kingdom at the University Press, Cambridge, 2006). The main properties are: sample preparation, destructive technique or not, time consumption, precision, detection limits and cost. The combination of archaeological and analytical information could provide significant knowledge on the constituting material origin, provenance, migration, social interaction and exchange for ancient potteries and ceramics, and possible information on the relationship between elemental content and past diet from archaeological bones, for example. In this preliminary work, XGT-1000WR instrument manufactured by Jobin-Yvon Horiba has been used for XRF sample elemental analysis to estimate the potential interest of this instrument in archaeological studies. The analysis technique will be described, advantages and limitations presented. Analysis time influence, repeatability, reproducibility and elemental composition will be presented for bone samples (unburned, burned, powdered burned bones). XRF results have been completed by ICP and SEM measurements. The excavated bones come from a Gentians necropolis, IV th -III rd century BC, situated in Stelnica 'Gradistea Mare', Ialomita County, Romania. The aim is to get paleodiet information and information regarding the (geographical) origin of human population (F. Donald Pate, J. Archaeological Method and Theory, 1 (1994) 161-209). A similar study will be presented for two ancient pottery sherds (IV th -III rd century BC) excavated in 'La Cetate' fortified settlement, Bazdana-Calopar, Dolj County, Romania. Usually the ceramics are made from local clay (standard production, fake copy) and still remains the possibility for the presence of non-local ceramics within the site, with implications

  7. Finite Element analysis of jar connections

    DEFF Research Database (Denmark)

    Kristensen, A.; Toor, Kashif; Solem, Sigurd

    2005-01-01

    A new tool joint system is considered. Traditionally these rotary connections have been designed with only one shoulder geometry. However, in order to increase the torque rating of the tool joint, a new design is introduced using two shoulders. This design allow reduced tool joint dimensions wher...... whereby down-hole equipment more easily can be fitted. In order to evaluate the validity of the design, finite element analysis have been performed in ANSYS. The results obtained indicate that the new design is valid and further tests can be performed....

  8. Failure analysis for WWER-fuel elements

    International Nuclear Information System (INIS)

    Boehmert, J.; Huettig, W.

    1986-10-01

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  9. Inelastic pipe elements for analysis of pipe whip

    International Nuclear Information System (INIS)

    Powell, H.

    1977-01-01

    Two alternative assumptions for the effects of moment interaction following yielding of a pipe are compared. The piping system must usually be divided into short finite elements, in order to account for wave propagation through the piping. Where short elements are used, it is accurate and convenient to use a lumped plasticity finite element model, the pipe being represented by three-dimensional beam-column elements in which yielding is assumed to be concentrated in generalized plastic hinges at the element ends. It is also convenient to assume that the generalized moment-rotation relationship at a hinge is elastic-perfectly-plastic, and to account for strain hardening using the well-known parallel element procedure. With this assumption, the task of monitoring hinge behavior is simplified, yet completely arbitrary moment-rotation relationships can be constructed. The interaction relationship defining the combinations of bending and torsional moments which produce yield at a plastic hinge can easily be determined. Classical plasticity theory adopts the normality criterion, in which post-yield deformations are divided into components normal and tangential to the yield surface. The normal components are then assumed to be plastic, producing no change in moment, and the tangential rotations to be elastic, producing moment change in accordance with the element elastic stiffness. An alternative, simpler assumption is that post-yield rotations are entirely plastic. With this assumption, the moments at the hinge remain unchanged, as in a 'rusty' hinge. The elasto-plastic element stiffness for this model does not change continuously during the response analysis, so that the computation is simpler, more economical, but less accurate

  10. TransFit: Finite element analysis data fitting software

    Science.gov (United States)

    Freeman, Mark

    1993-01-01

    The Advanced X-Ray Astrophysics Facility (AXAF) mission support team has made extensive use of geometric ray tracing to analyze the performance of AXAF developmental and flight optics. One important aspect of this performance modeling is the incorporation of finite element analysis (FEA) data into the surface deformations of the optical elements. TransFit is software designed for the fitting of FEA data of Wolter I optical surface distortions with a continuous surface description which can then be used by SAO's analytic ray tracing software, currently OSAC (Optical Surface Analysis Code). The improved capabilities of Transfit over previous methods include bicubic spline fitting of FEA data to accommodate higher spatial frequency distortions, fitted data visualization for assessing the quality of fit, the ability to accommodate input data from three FEA codes plus other standard formats, and options for alignment of the model coordinate system with the ray trace coordinate system. TransFit uses the AnswerGarden graphical user interface (GUI) to edit input parameters and then access routines written in PV-WAVE, C, and FORTRAN to allow the user to interactively create, evaluate, and modify the fit. The topics covered include an introduction to TransFit: requirements, designs philosophy, and implementation; design specifics: modules, parameters, fitting algorithms, and data displays; a procedural example; verification of performance; future work; and appendices on online help and ray trace results of the verification section.

  11. Neutron activation analysis as applied to instrumental analysis of trace elements from seawater

    International Nuclear Information System (INIS)

    Boniforti, R.; Moauro, A.; Madaro, M.

    1983-01-01

    Particulate matter collected from the coastal area delimited by the mouth of the river Volturno and the Sabaudia lake has been analyzed by instrumental neutron activation analysis for its content of twenty-two trace elements. The results for surface water and bottom water are reported separately, thus evidencing the effect of sampling depth on the concentration of many elements. The necessity of accurately 'cleaning' the filters before use is stressed

  12. Three-Dimensional Finite Element Analysis Surface Stress Distribution on Regular and Short Morse Taper Implants Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges.

    Science.gov (United States)

    Toniollo, Marcelo Bighetti; Macedo, Ana Paula; Pupim, Denise; Zaparolli, Danilo; de Mattos, Maria da Gloria Chiarello

    2016-05-01

    This study used finite element analysis to compare the biomechanical performance of splinted (SP) and nonsplinted (NSP) prostheses to regular and short length Morse taper implants in the posterior side of the mandible. The authors used 3-dimensional geometric models of regular implants (∅4 × 11 mm) and short implants (∅4 × 5 mm) housed in the corresponding bone edges of the posterior left mandibular hemiarch involving tooth 34. The 8 experimental groups were: the control group SP (3 regular implants rehabilitated with SP), group 1SP (2 regular and 1 short implants rehabilitated with SP), group 2SP (1 regular and 2 short implants rehabilitated with SP), group 3SP (3 short implants rehabilitated with SP), the control group NSP (3 regular implants rehabilitated with NSP), group 1NSP (2 and 1 short implants rehabilitated with NSP), group 2NSP (1 regular and 2 short implants rehabilitated with NSP), and group 3NSP (3 short implants rehabilitated with NSP). Oblique forces were simulated in the molars (365 N) and premolars (200 N). Qualitative and quantitative analysis of the distribution of Von Mises equivalent stress (implants, components, and infrastructure) was performed using the AnsysWorkbench10.0 software. The results showed that the use of SP provides several advantages and benefits, reducing the stresses placed on the implant surface, on the transmucosal abutment areas and on the interior region of the infrastructure. The use of NSP was advantageous in reducing the stresses on the abutments and in the distal interproximal area of connection between the crowns.

  13. Accurate determination of light elements by charged particle activation analysis

    International Nuclear Information System (INIS)

    Shikano, K.; Shigematsu, T.

    1989-01-01

    To develop accurate determination of light elements by CPAA, accurate and practical standardization methods and uniform chemical etching are studied based on determination of carbon in gallium arsenide using the 12 C(d,n) 13 N reaction and the following results are obtained: (1)Average stopping power method with thick target yield is useful as an accurate and practical standardization method. (2)Front surface of sample has to be etched for accurate estimate of incident energy. (3)CPAA is utilized for calibration of light element analysis by physical method. (4)Calibration factor of carbon analysis in gallium arsenide using the IR method is determined to be (9.2±0.3) x 10 15 cm -1 . (author)

  14. Origin and migration of trace elements in the surface sediments of Majuro Atoll, Marshall Islands.

    Science.gov (United States)

    Ito, Lisa; Omori, Takayuki; Yoneda, Minoru; Yamaguchi, Toru; Kobayashi, Ryuta; Takahashi, Yoshio

    2018-03-13

    The sediments of Majuro Atoll, Marshall Islands, consist of bioclastic materials, including foraminifera and coral debris. The sedimentary depth profiles of elements showed that various elements including zinc (Zn) and copper (Cu) were enriched in the upper layers of the islands of Majuro Atoll. Carbon-14 dating revealed that the sedimentation of the upper layer was completed before 1670 and 542 cal BP in Laura and Calalen, respectively. The enriched elements could be categorized by their origins: (a) terrestrial elements transported as dust (aluminum (Al) and rare earth elements (REEs)); (b) anthropogenic elements (Zn and Cu); and (c) elements supplied by seabirds (phosphorus (P)). From the results of the total amount of Al supplied to sediments for ca. 2000 years, Al in Majuro Atoll was suggested to be airborne origin. The enrichment factors of the elements normalized to Al concentration of continental crust showed that REEs were also transported as dust, while Zn and Cu were mainly of anthropogenic origin. The speciation analysis by X-ray absorption near-edge structure (XANES) showed the presence of Zn-Cu alloys originated from industrial products. It was also revealed that Zn was enriched in the surface due to anthropogenic emission after urbanization on Majuro Atoll and fixed by carbonate and phosphate at the upper layer, which inhibits migration of Zn into the deeper layer and its release to the groundwater and costal water. Hence, the fixation of heavy metals at the surface prevents their exposure to aquatic organisms and residents via fresh groundwater in the island. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Analysis of Fluid Flow over a Surface

    Science.gov (United States)

    McCloud, Peter L. (Inventor)

    2013-01-01

    A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.

  16. Elemental analysis of silver coins by PIXE technique

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, B.B. [Department of Physics, Silicon Institute of Technology, Patia, Bhubaneswar 751 024 (India); Rautray, Tapash R. [Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, 2-188-1 Samduk -dong, Jung-gu, Daegu 700 412 (Korea, Republic of); ARASMIN, G. Udayagiri, Kandhamal, Orissa 762 100 (India)], E-mail: tapash.rautray@gmail.com; Rautray, A.C. [ARASMIN, G. Udayagiri, Kandhamal, Orissa 762 100 (India); Vijayan, V. [Praveen Institute of Radiation Technology, Flat No. 9A, Avvai Street, New Perungalathur, Chennai 600 063 (India)

    2010-03-15

    Elemental analysis of nine Indian silver coins during British rule was carried out by proton induced X-ray emission spectroscopy. Eight elements, namely Cr, Fe, Ni, Cu, Zn, As, Ag, and Pb were determined in the present study. Ag and Cu were found to be the major elements, Zn was the only minor element and all other elements are present at the trace level. The variation of the elemental concentration may be due to the use of different ores for making coins.

  17. Elemental analysis of silver coins by PIXE technique

    International Nuclear Information System (INIS)

    Tripathy, B.B.; Rautray, Tapash R.; Rautray, A.C.; Vijayan, V.

    2010-01-01

    Elemental analysis of nine Indian silver coins during British rule was carried out by proton induced X-ray emission spectroscopy. Eight elements, namely Cr, Fe, Ni, Cu, Zn, As, Ag, and Pb were determined in the present study. Ag and Cu were found to be the major elements, Zn was the only minor element and all other elements are present at the trace level. The variation of the elemental concentration may be due to the use of different ores for making coins.

  18. Isogeometric finite element approximation of minimal surfaces based on extended loop subdivision

    Science.gov (United States)

    Pan, Qing; Chen, Chong; Xu, Guoliang

    2017-08-01

    In this paper, we investigate the formulation of isogeometric analysis for minimal surface models on planar bounded domains by extended Loop surface subdivision approach. The exactness of the physical domain of interest is fixed on the coarsest level of the triangular discretization with any topological structure, which is thought of as the initial control mesh of Loop subdivision. By performing extended Loop subdivision, the control mesh can be repeatedly refined, and the geometry is described as an infinite set of quartic box-spline while maintaining its original exactness. The limit function representation of extended Loop subdivision forms our finite element space, which possesses C1 smoothness and the flexibility of mesh topology. We establish its inverse inequalities which resemble the ones of general finite element spaces. We develop the approximation estimate with the aid of H1 convergence property of the corresponding linear models. It enables us to overcome the difficulty of proving the boundedness of the gradient of finite element solutions appearing in the coefficient of minimal surface models. Numerical examples are given with the comparison to the classical linear finite element method which is consistent with our theoretical results.

  19. A Direct analysis of elastic contact using super elements

    Science.gov (United States)

    Pedersen, Pauli

    2006-02-01

    Solutions to contact problems are important in mechanical as well as in civil engineering, and even for the most simple problems there is still a need for research results. In the present paper we suggest an alternative finite element procedure and by examples show the need for more knowledge related to the compliance of contact surfaces. The most simple solutions are named Hertz solutions from 1882, and we use some of these solutions for comparison with our finite element results. As a function of the total contact force we find the size of the contact area, the distribution of the contact pressure, and the contact compliance. In models of finite size the compliance depends on the flexibility of the total model, including the boundary condition of the model, and therefore disagreement with the locally based analytical models is expected and found. With computational contact mechanics we can solve more advanced contact problems and treat models that are closer to physical reality. The finite element method is widely used and solutions are obtained by incrementation and/or iteration for these non-linear problems with unknown boundary conditions. Still with these advanced tools the solution is difficult because of extreme sensitivity. Here we present a direct analysis of elastic contact without incrementation and iteration, and the procedure is based on a finite element super element technique. This means that the contacting bodies can be analyzed independently, and are only coupled through a direct analysis with low order super element stiffness matrices. The examples of the present paper are restricted to axisymmetric problems with isotropic, elastic materials and excluding friction. Direct extensions to cases of non-isotropy, including laminates, and to plane and general 3D models are possible.

  20. Hybrid of Natural Element Method (NEM with Genetic Algorithm (GA to find critical slip surface

    Directory of Open Access Journals (Sweden)

    Shahriar Shahrokhabadi

    2014-06-01

    Full Text Available One of the most important issues in geotechnical engineering is the slope stability analysis for determination of the factor of safety and the probable slip surface. Finite Element Method (FEM is well suited for numerical study of advanced geotechnical problems. However, mesh requirements of FEM creates some difficulties for solution processing in certain problems. Recently, motivated by these limitations, several new Meshfree methods such as Natural Element Method (NEM have been used to analyze engineering problems. This paper presents advantages of using NEM in 2D slope stability analysis and Genetic Algorithm (GA optimization to determine the probable slip surface and the related factor of safety. The stress field is produced under plane strain condition using natural element formulation to simulate material behavior analysis utilized in conjunction with a conventional limit equilibrium method. In order to justify the preciseness and convergence of the proposed method, two kinds of examples, homogenous and non-homogenous, are conducted and results are compared with FEM and conventional limit equilibrium methods. The results show the robustness of the NEM in slope stability analysis.

  1. Finite Element Modeling of RMS Roughness Effect on the Contact Stiffness of Rough Surfaces

    Directory of Open Access Journals (Sweden)

    M.B. Amor

    2016-09-01

    Full Text Available The present study considers finite element analysis of an elastic and elastic-plastic contact between a rigid flat and a real rough surface taking into account the asperities interaction. Numerical modeling and measurement of the normal interfacial stiffness were conducted. Surfaces with different rms roughness values were investigated in the elastic and power-law hardening models to highlight the combined effect of the topography and the strain hardening on the contact characteristics. The influence of the surface roughness on the interaction between neighboring micro-contacts, the residual stress and deformation for the power-law hardening material was analyzed. The obtained results have shown the importance of considering the strain hardening in the modeling of a rough contact especially for rougher surface.

  2. Analysis and Design of Rolling Stock Elements

    Directory of Open Access Journals (Sweden)

    M. V. Chugunov

    2014-01-01

    Full Text Available The work solves the problem of equal-strength design of the rolling stock elements in option of discrete equal-strength. For this purpose, has been developed the software built in SolidWorks and SolidWorks Simulation as an AddIn-application using necessary basic functionality and extending it in the specified part on the basis of API SolidWorks and COM technology.The SolidWorks software is used to develop a 3D-model for general force frame of the wagon as an assembly. As this assembly is quite complicated and includes many elements both standard, and non-standard type, 3D - specification is developed by 3Dvia Composer software, which is included in the article in the form of the gif-animation and via-roller. This means is very useful for the evident analysis of topology and geometrical properties of a design as a whole, facilitates a procedure of adequate formation of the FE model providing accuracy and profitability of computing. From the point of view of profitability and opportunities of definition of concentrators of stresses with a sufficient accuracy for practice the combined model including volume and shell FEM is optimum.In the work the analysis results of stress-strain state of a design are given in two options of static loading in the form of stress diagrams, the main areas of stress concentration are revealed.Results of equal-strength design in the form of thickness distribution on thin-walled elements of a design, considered within FEM as shells, are received. It is shown that the developed software doesn't allow optimum design results, however it is economically viable, simple in use and can be applied to the solution of problems of rational design in design practice.SolidWorks, as well as the majority of similar CADs, possess an open architecture and allow users to apply its functionality. This work continues a series of publications of the author of this paper and other authors concerning the API-based CAD/CAE adaptation and

  3. Technology of wear resistance increase of surface elements of friction couples using solid lubricants

    Science.gov (United States)

    Morgunov, A. P.; Masyagin, V. B.; Derkach, V. V.; Matveev, N. A.

    2017-06-01

    Based on the results of experimental investigations in wear resistance increase using lamellar solid lubricants the technology of wear resistance increase of surface elements of friction couples by applying solid lubricants is developed with the following surface plastic deformation providing enough bond strength of solid lubricant with an element surface and increasing operational life.

  4. Multi-elemental analysis and source apportionment of urban ...

    African Journals Online (AJOL)

    Data obtained from the elemental analysis of both fractions were further subjected to Pearson correlation and Principal Component Analysis (PCA) for source apportionment and identification. Pearson inter-elemental correlations indicated that some elements could have common source origins or similar chemical ...

  5. Instrumental neutron activation analysis for the elemental analysis of cement

    International Nuclear Information System (INIS)

    Khrbish, Y.S.; Abugassa, I.O.; Benfaid, N.; Bashir, A.A.

    2007-01-01

    Cement is widely used as a construction material in Libya. Production plants introduce certain contaminants to the environment. The dust from such plants is carried away to neighbouring areas. This dust contains a substantial amount of contaminants depending on the origin of clays used in the production. In this study, a survey of elemental concentration of clay and cement was carried out to assess the environmental impact of such plants, especially those that are situated near residential and agricultural areas. Cement and clay samples, imported and locally produced, were analyzed. Instrumental neutron activation analysis was utilized to determine the elemental concentration of As, Ca, Ce, Co, Cr, Eu, Fe, Hf, La, Na, Rb, Sb, Sc, Sm, Ta, Th, U, Yb and Zn. Elevated concentrations of U and Th were found in a number of cement samples. The two nuclides are part of an elaborate decay scheme producing a range of radioactive elements, which emit alpha-, beta- and gamma-radiation. With 40 K, they could give elevated levels of background radiation in buildings resulting in higher exposure doses. This could pose a health hazard and a detrimental effect on the well being of residents, especially in poor ventillated buildings. Also, cement is the main component for constructing underground reservoirs for collecting rainwater for drinking in private residences, so some harmful elements could leach into water. This is the first comprehensive survey of commercial cement brands and clays used in Libya. These results are intended to build a database for trace element concentrations using INAA. (author)

  6. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    Science.gov (United States)

    Evans, Alistair R.; McHenry, Colin R.

    2015-01-01

    The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620

  7. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    Directory of Open Access Journals (Sweden)

    Matthew R. McCurry

    2015-06-01

    Full Text Available The reliability of finite element analysis (FEA in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context.

  8. Stability analysis of artificial synthetic overweight elements

    International Nuclear Information System (INIS)

    Zhou Jian

    1990-01-01

    Stability of artificial synthetic overweight elements has been analysed theoretically using a diagram of nuclear stability. It is indicated that overweight nucleus can be synthesized only when a certain amount of neutrons participate simultaneously in the synthesis. The maximum number of protons in overweight elements is 1002. The proton number of 'extreme overweight' elements of which the neutron star is possibly composed is in the range from 326 to 1002. It is expected that the mass number of the stable overweight elements with proton number 114 is in the range from 299 to 315

  9. Chromatographic Techniques for Rare Earth Elements Analysis

    Science.gov (United States)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  10. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  11. Trace element analysis in soy sauce. 2

    International Nuclear Information System (INIS)

    Haruyama, Yoichi; Saito, Manabu; Tomita, Michio; Yoshida, Koji.

    1994-01-01

    Trace elements in four kinds of soybean and three kinds of salt have been measured by means of in-air PIXE. In soybeans, which were made in Japan, America, Canada and China, six kinds of trace elements were detected, such as Mn, Fe, Ni, Cu, Zn and Br. The concentration of these elements varied depending on the place they were made. American soybean showed characteristic feature compared with other soybeans. As to the bromine concentration, American soybean contains ten times as much as Japanese one. In salts Br and Sr were detected. (author)

  12. Testing external surface of fuel element tubes for power nuclear reactors

    International Nuclear Information System (INIS)

    Naugol'nykh, O.G.; Nelyubin, Yu.V.

    1987-01-01

    Optical methods are regarded perspective for discovery and detection of flaws of external surfaces of fuel element tubes. The TV method has highest information content among them. Two mock-ups of facilities based on the TV method using a ''dissector'' type TV device and a TV tube with charge accumulation (vidikon) have been developed. It is concluded that complex testing - combination of ultrasonic, photoelectric and TV methods in a facility is necessary for discovery and analysis of the whole variety of flaws, though sensitivity of the TV method is enough for disclosure of all the main defects

  13. Elemental Analysis and Biological Activities of Chrysophyllum ...

    African Journals Online (AJOL)

    Sapotaceae) Leaves. ... The plant material could be used as a source of important elements required for the body. In suitable form, the plant could be used in the prevention and treatment of dental caries, oxidative damage, obesity and cancer.

  14. Instrumental trace element analysis of California market milk

    International Nuclear Information System (INIS)

    Ragaini, R.C.; Langhorst, A.L.; Ralston, H.R.; Heft, R.

    1975-01-01

    Trace element analysis for 15 elements (Zn, Na, Br, Rb, Sr, Mg, Al, Ca, Cl, I, K, Fe, Co, Se, Cs) was carried out on 32 samples of California market milk and 6 samples of Colorado milk in a pilot study of toxic and nutrient trace elements in the soil-forage-cow-milk food chain. The techniques of instrumental neutron activation analysis and x-ray fluorescence analysis are described. Sample collection, preparation, analysis, and data reduction procedures are discussed. The mean values and variations of trace element concentrations in milk are compared to data from other studies. (U.S.)

  15. Finite element analysis theory and application with ANSYS

    CERN Document Server

    Moaveni, Saeed

    2015-01-01

    For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...

  16. Element quality analysis: estimating the accuracy of ephemeris predictions from orbital elements

    Science.gov (United States)

    Siegel, Alan

    1994-07-01

    Element Quality Analysis (EQA) is the evaluation of the accuracy with which an orbital element set describes the orbit of a satellite. This paper proposes practical methods for evaluating element quality and describes the benefits of improved EQA. The paper first discusses the need for and applications of EQA. Past and current operational methods for EQA are then considered. The main portion of the paper describes alternative methods for EQA.

  17. Trace elements in termites by PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, T. E-mail: tsuyoshi@termite.kuwri.kyoto-u.ac.jp; Kagemori, N.; Kawai, S.; Sera, K.; Futatsugawa, S

    2002-04-01

    Trace elements in a Japanese subterranean xylophagous termite, Coptotermes formosanus Shiraki, were analyzed by the PIXE method. The total amount of the 14 predominant elements out of 27 detected in an intact termite was higher in a soldier termite (23 000 {mu}g/g) than in a worker termite (10 000 {mu}g/g). A block of wood (Pinus densiflora Sieb. et Zucc.) for termite feed had a much lower concentration (3600 {mu}g/g) compared with that in an intact termite. This probably relates the functional bio-condensation and/or bio-recycling of trace elements in C. formosanus. When a termite was separated into three anatomical parts, head, degutted body and gut, the worker gut contained the highest total amount of the 14 predominant measured elements (31 000 {mu}g/g). This might be correlated with the higher activity of food digestion and energy production in the worker gut. Moreover, the mandible of the soldier head, with an exoskeleton that is intensely hardened, showed a preferential distribution of Mn and Fe. These results suggest that the characteristic localization of elements will be closely related to the functional role of the individual anatomical part of C. formosanus.

  18. Nonlinear, finite deformation, finite element analysis

    Science.gov (United States)

    Nguyen, Nhung; Waas, Anthony M.

    2016-06-01

    The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated

  19. Elemental PIXE analysis of oolong tea

    International Nuclear Information System (INIS)

    Watanabe, M.; Ishii, K.; Matsuyama, S.

    2008-01-01

    The contamination of heavy metals in food becomes a serious problem. We analyzed oolong tea from different production areas by PIXE using very simple sample preparation and examined trace elements contained in these samples. From the results of this experiment, we could know oolong tea which analyzed in this experiment contains various minerals such as K, Ca, P, S, Cl, Fe, Mn, Cu and Cr but not toxic element of As which detection limit of PIXE was lower than the standard values given by the food hygiene law in Japan. (author)

  20. Investigation of Apple Vibration Characteristics Using Finite Element Modal Analysis

    Directory of Open Access Journals (Sweden)

    R Mirzaei

    2013-02-01

    Full Text Available The most important quality indicator of fruits is the flesh firmness which is well correlated to their young’s modulus. In this research variation of vibration characteristics (shape modes, natural frequency of apple due to change of material characteristics (density, young's models, Poisson ratio and apple volume was investigated using Finite Element simulation. An image processing technique was used to obtain an unsymmetrical and non-spherical geometric model of apple. The exact three-dimensional shape of the fruit was created by determining the coordinates of apple surface and forming uneven rotational curvatures. Modal analysis with no boundary constraints has been applied. The first 20 Eigen frequencies and the corresponding mode shape were determined. Six rigid body modes possess zero resonant frequency which is related to the degree of freedom of a rigid body in space indicated the validity of finite element model. The modal analysis results showed that resonant frequency increased by increasing young's modulus of the fruit, while it decreased by increasing apple density. First mode torsion has a mean resonant frequency of 584 Hz. Variations of natural frequency due to change in young's modulus, density, and Poisson ratio were 80%, 11% and 4%, respectively. Coefficient of variation of resonant frequency in response to changing young's modulus was 2-3 times of that of density which shows the greatest effect of young modulus changes on natural frequency of fruits. Consequently with determination of fruits' natural frequency, their young modulus and firmness can be estimated.

  1. Application of PIXE for elemental analysis of ancient Chinese artifacts

    International Nuclear Information System (INIS)

    Lin, E.K.; Wang, C.W.; Yu, Y.C.; Cheng, W.C.; Chang, C.H.; Yang, Y.C.; Chang, C.Y.

    1995-01-01

    Proton induced X-ray emission (PIXE) is a well-known method for elemental analysis in many different specimens for various applied studies. In this paper, we report an application of PIXE analysis for a series of ancient Chinese coins from the Tang Dynasty to the Ming Dynasty (AD 618-1679). Ninety-six PIXE spectra were obtained from forty-eight samples of the ancient coins with the use of a Ge(Li) X-ray detector. On each sample two spots at different positions on the flat surface were irradiated per run by 3 MeV protons from a NEC 9SDH-2 pelletron tandem accelerator. The principal component elements (Cu, Pb, Sn and Zn) and others (Fe, Sb, Ni and As) were determined for the analyzed coins. Variations in composition with a time span of about one thousand years for the examined coins were observed. The results are presented and aspects of the evolution of Chinese metallurgy in casting coins are discussed. (orig.)

  2. Determination of dissipative Dyakonov surface waves using a finite element method based eigenvalue algorithm.

    Science.gov (United States)

    Shih, Pi-Kuei; Hsiao, Hui-Hsin; Chang, Hung-Chun

    2017-11-27

    A full-vectorial finite element method is developed to analyze the surface waves propagating at the interface between two media which could be dissipative particularly. The dissipative wave possessing a complex-valued propagation constant can be determined precisely for any given propagation direction and thus the property of losses could be thoroughly analyzed. Besides, by applying a special characteristic of the implicit circular block matrix, we reduce the computational consumptions in the analysis. By utilizing this method, the Dyakonov surface wave (DSW) at the interface between a dielectric and a metal-dielectric multilayered (MDM) structure which serves as a hyperbolic medium is discussed. Its propagation loss is smaller for larger period of the MDM structure but its field becomes less confined to the interface.

  3. Elemental analysis of atmospheric aerosols in Gaborone

    African Journals Online (AJOL)

    ELO

    amount more than 90% were copper, lead, nickel and gold. Key words: Atmospheric particles, elements, ... Selebi-Phikwe area, gold and nickel in Francis town and soda ash in Sowa. Gaborone is the capital of ... a stub three times a week with an exposure time of four hours. The exposed stubs were collected and kept ...

  4. Finite element analysis of photonic crystal fibers

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2005-01-01

    A finite-element-based vectorial optical mode solver, furnished with Bayliss-Gunzburger-Turkel-like transparent boundary conditions, is used to rigorously analyze photonic crystal fibers (PCFs). Both the real and imaginary part of the modal indices can be computed in a relatively small computational

  5. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear.

    Science.gov (United States)

    Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R

    2011-08-11

    Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation. Copyright © 2011. Published by Elsevier Ltd.

  6. Simulation of temperature distribution by finite element analysis on ...

    Indian Academy of Sciences (India)

    on exposure to the synchrotron beam has been simulated by finite element analysis. Design of the cooling mechanism for each of these components has been carried out and estimation of the temperature rise has also been done incorporating the cooling mechanism. Keywords. Synchrotron; EXAFS; finite element analysis.

  7. Simulation of Missing Pellet Surface thermal behavior with 3D dynamic gap element

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Koo, Yang Hyun; Kang, Chang Hak; Lee Sung Uk; Yang, Dong Yol

    2014-01-01

    Most of the fuel performance codes that are able to simulate a multidimensional analysis are used to calculate the radial temperature distribution and perform a multidimensional mechanical analysis based on a one-dimensional (1D) temperature result. The FRAPCON-FRAPTRAN code system incorporates a 1D thermal module and two-dimensional (2D) mechanical module when FEM option is activated. In this method, the multidimensional gap conductance model is not required because one-dimensional thermal analysis is carried out. On the other hand, a gap conductance model for a multi-dimension should be developed in the code to perform a multidimensional thermal analysis. ALCYONE developed by CEA introduces an equivalent heat convection coefficient that represents the multidimensional gap conductance. However, the code does not employ dynamic gap conductance which is a function of gap thickness and gap characteristics in direct. The BISON code, which has been developed by INL (Idaho National Laboratory), employed a thermo-mechanical contact method that is specifically designed for tightly-coupled implicit solutions that employ Jacobian-free solution methods. Owing to tightly-coupled implicit solutions, the BISON code solves gap conductance and gap thickness simultaneously with given boundary conditions. In this paper, 3D dynamic gap element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. To evaluate 3D dynamic gap element module, 3D thermomechanical module using FORTRAN77 has been implemented incorporating 3D dynamic gap element. To demonstrate effect of 3D dynamic gap element, thermal behavior of missing pellet surface (MPS) has been simulated by the developed module. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and convergence characteristics. In

  8. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  9. Finite Element Analysis of Honeycomb Impact Attenuator

    Science.gov (United States)

    Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu

    To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.

  10. A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis

    Science.gov (United States)

    Jokhio, G. A.; Izzuddin, B. A.

    2015-05-01

    This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.

  11. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  12. Finite element analysis of coupled electromechanical problems

    International Nuclear Information System (INIS)

    Melgoza-Vazquez, E.

    2001-01-01

    The modeling of electromechanical problems is discussed. The simultaneous consideration of two distinct phenomena is required, as the evolution of the electromagnetic and the mechanical parts are influenced by each other. In this work the equations of the coupled problem are described and possible methods of solution are considered. Three general approaches with varying degrees of detail are considered. In the first, a lumped parameter model of the device is constructed from the finite element solution of the electromagnetic problem. A second approach links the electromagnetic field directly with the lumped mechanical part. Lastly, both the electromagnetic and the mechanical systems are considered to be distributed, with the individual domains solved by using the finite element method. In the process of solution of transient problems the need to solve differential-algebraic systems of equations arises and some approaches are presented. It is shown that traditional finite difference formulas may be applied as long as the discretization is made at the element level. Higher order methods and step adaptation are discussed. (author)

  13. Surface-layer lattices as patterning element for multimeric extremozymes.

    Science.gov (United States)

    Ferner-Ortner-Bleckmann, Judith; Gelbmann, Nicola; Tesarz, Manfred; Egelseer, Eva M; Sleytr, Uwe B

    2013-11-25

    A promising new approach for the production of biocatalysts comprises the use of surface-layer (S-layer) lattices that present functional multimeric enzymes on their surface, thereby guaranteeing most accurate spatial distribution and orientation, as well as maximal effectiveness and stability of these enzymes. For proof of concept, a tetrameric and a trimeric extremozyme are chosen for the construction of S-layer/extremozyme fusion proteins. By using a flexible peptide linker, either one monomer of the tetrameric xylose isomerase XylA from the thermophilic Thermoanaerobacterium strain JW/SL-YS 489 or, in another approach, one monomer of the trimeric carbonic anhydrase from the methanogenic archaeon Methanosarcina thermophila are genetically linked to one monomer of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177. After isolation and purification, the self-assembly properties of both S-layer fusion proteins as well as the specific activity of the fused enzymes are confirmed, thus indicating that the S-layer protein moiety does not influence the nature of the multimeric enzymes and vice versa. By recrystallization of the S-layer/extremozyme fusion proteins on solid supports, the active enzyme multimers are exposed on the surface of the square S-layer lattice with 13.1 nm spacing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ring-element analysis of layered orthotropic bodies

    DEFF Research Database (Denmark)

    Jørgensen, O.

    1993-01-01

    to be determined in the finite element analysis. The element chosen is an eight node isoparametric element of the serendipity family. The Fourier series show very high rate of convergence for the problems solved. The investigation shows that the computational work is remarkably reduced in relation......For the analysis of arbitrarily laminated circular bodies, a displacement-based ring-element is presented. The analysis is performed in a cylindrical coordinate system. The method of analysis requires the boundary conditions as well as the external forces to be pi-periodic. The element formulation...... accounts for a desired degree of approximation of the displacement field in the direction of the circumference. This is done by a truncated Fourier expansion of the angular dependence of the displacements in terms of trigonometric functions. Thus the Fourier expansion coefficients are the unknowns...

  15. Surface analysis and techniques in biology

    CERN Document Server

    Smentkowski, Vincent S

    2014-01-01

    This book highlights state-of-the-art surface analytical instrumentation, advanced data analysis tools, and the use of complimentary surface analytical instrumentation to perform a complete analysis of biological systems.

  16. SEM and elemental analysis of composite resins

    International Nuclear Information System (INIS)

    Hosoda, H.; Yamada, T.; Inokoshi, S.

    1990-01-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use

  17. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...

  18. Quantitative determination of elemental sulfur at the arsenopyrite surface after oxidation by ferric iron: mechanistic implications

    Directory of Open Access Journals (Sweden)

    Hamers Robert J

    2001-07-01

    Full Text Available The elemental sulfur formed at the arsenopyrite surface after oxidation by ferric iron was quantitatively measured by extraction in perchloroethylene and subsequent quantitative analysis by HPLC. Reactions with ferric iron in perchloric acid solutions or in sulfuric acid solutions (both at pH = 1 and 42°C, which approximate extreme acid mine drainage conditions produced elemental sulfur in quantities greater than 50% of the total reacted sulfur. The controversy surrounding the mechanism of the oxidative dissolution of arsenopyrite is discussed in light of these measurements. Based on the observation of greater than 50% production of elemental sulfur, a mechanism by which all the sulfur from the mineral proceeds through thiosulfate can be eliminated as a possible description of the dissolution of arsenopyrite. Instead, it is likely the other constituents of the mineral lattice, Fe and As, are leached out, leaving behind a S0 lattice. Nucleation reactions will then result in the formation of stable S8 rings.

  19. Finite element modelling of Plantar Fascia response during running on different surface types

    Science.gov (United States)

    Razak, A. H. A.; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Hashim, M. S. M.; Daud, R.

    2017-10-01

    Plantar fascia is a ligament found in human foot structure located beneath the skin of human foot that functioning to stabilize longitudinal arch of human foot during standing and normal gait. To perform direct experiment on plantar fascia seems very difficult since the structure located underneath the soft tissue. The aim of this study is to develop a finite element (FE) model of foot with plantar fascia and investigate the effect of the surface hardness on biomechanical response of plantar fascia during running. The plantar fascia model was developed using Solidworks 2015 according to the bone structure of foot model that was obtained from Turbosquid database. Boundary conditions were set out based on the data obtained from experiment of ground reaction force response during running on different surface hardness. The finite element analysis was performed using Ansys 14. The results found that the peak of stress and strain distribution were occur on the insertion of plantar fascia to bone especially on calcaneal area. Plantar fascia became stiffer with increment of Young’s modulus value and was able to resist more loads. Strain of plantar fascia was decreased when Young’s modulus increased with the same amount of loading.

  20. Adaptive photonic meta-surfaces exploiting interfacial phase change in elemental gallium

    OpenAIRE

    Waters, Robin F.; MacDonald, K.F.; Hobson, P.A.; Zheludev, N.I.

    2014-01-01

    Surface-driven metallization in a nanoscale layer of elemental gallium forming the backplane of a photonic metamaterial absorber provides a mechanism for reversible all-optical and thermo-optical tuning of resonant response.

  1. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    International Nuclear Information System (INIS)

    1980-01-01

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  2. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  3. A computer program for structural analysis of fuel elements

    International Nuclear Information System (INIS)

    Hayashi, I.M.V.; Perrotta, J.A.

    1988-01-01

    It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equivalent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt

  4. PIXE methodology of rare earth element analysis and its applications

    International Nuclear Information System (INIS)

    Ma Xinpei

    1992-01-01

    The Proton Induced X-ray Emission (PIXE) methodology of rare earth element (REEs) analysis is discussed, including the significance of REE analysis, the principle of PIXE applied to REE, selection of characteristic X-ray for Lanthanide series elements, deconvolution of highly over lapped PIXE spectrum and minimum detection limit (MDL) of REEs. Some practical applications are presented. And the specialities of PIXE analysis to the high pure REE chemicals are discussed. (author)

  5. Neutron activation analysis for uranium and associated elements

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1977-01-01

    The samples obtained by the Savannah River Laboratory as part of the National Uranium Resource Evaluation program are activated in the intense neutron flux from a Savannah River Plant production reactor. A pilot-scale facility was installed at the reactor site to provide analyses of samples through the initial phase of the program and to develop design data for a full-scale facility. Sediments are analyzed by direct activation of 0.5-g samples. However, to analyze ground or surface water samples, mineral elements from 1-liter samples are concentrated on ion exchange resin and then approximately 5-g samples of resin are activated. Uranium concentration is determined by counting neutrons emitted from specific short-lived products of fission induced in 235 U by the primary neutron flux. Repetitive short cycles of irradiation and counting permit detection and determination of <0.1 μg of uranium. Elements associated with uranium are determined by spectral analysis of the gamma ray activities induced by the cyclic and subsequent longer irradiations. The pilot facility consists of four irradiation positions (plus 2 spare positions), a sample loader and unloader, and counting stations with neutron and gamma ray detectors, all interconnected with a pneumatic sample transport system. A computer controls both the transport system and the data acquisition devices. Gamma ray counting data are stored on magnetic tape for further processing by a large central computer. Facility hardware and software are described. Repetitive analyses of standards have shown an accuracy within +-10% for uranium values and within +-25% for associated elements. A quality assurance program has been developed to maintain these levels of reliability

  6. Physically-based Surface Texture Synthesis Using a Coupled Finite Element System.

    Science.gov (United States)

    Bajaj, Chandrajit; Zhang, Yongjie; Xu, Guoliang

    2008-01-01

    This paper describes a stable and robust finite element solver for physically-based texture synthesis over arbitrary manifold surfaces. Our approach solves the reaction-diffusion equation coupled with an anisotropic diffusion equation over surfaces, using a Galerkin based finite element method (FEM). This method avoids distortions and discontinuities often caused by traditional texture mapping techniques, especially for arbitrary manifold surfaces. Several varieties of textures are obtained by selecting different values of control parameters in the governing differential equations, and furthermore enhanced quality textures are generated by fairing out noise in input surface meshes.

  7. X-ray fluorescent elemental analysis. Ch. 16

    International Nuclear Information System (INIS)

    Baryshev, V.; Kulipanov, G.; Skrinsky, A.

    1991-01-01

    X-ray fluorescence analysis (XFA) is used worldwide to define a quantitative content of the elements as well as to visualize the distribution of elements in different regions (element mapping). Utilization of synchrotron radiation (SR) to excite X-ray fluorescence enables the XFA method to be qualitatively improved. This chapter reviews the experimental work in especially the last decade (author). 71 refs.; 24 figs.; 3 tabs

  8. Application of trace element analysis to determine trace element concentrations in the field of medicine

    International Nuclear Information System (INIS)

    Kasperek, K.; Feinendegen, L.E.

    1976-01-01

    Applied trace elements research in medicine requires a sensitive and efficient technique of trace elements analysis such as, e.g., neutron activation analysis. Essential trace elements act as stabilisators (iron in haem), structural elements (silicium in fibrous tissue), in hormones (iodine in thyroid hormone), in vitamins (cobalt in vitamin B 12), and in enzymes. Most of the essential trace elements act as coenzymes or in coenzymes or directly as metabolic catalysators. For example, selenium deficiency in PKU and maple syrup patients receiving dietary treatment can be detected by determining the selenium content of the serum, while low selenium values in the whole blood indicate liver cirrhosis. Acrodermatitis enteropathica can be diagnosed by determinig zinc in the serum, and pancreatic insufficiency by determining zinc in the pancreatic juice. Zinc also plays a part in disturbances of growth, in the healing of wounds, and in the insulin metabolism. Cobalt is important in some types of anaemia and in myocardiopathies. Trace elements are also necessary in the treatment of diseases, e.g. iron cobalt in some types of anaemia, and zinc in the delayed healing of wounds in the postoperative phase and in acrodermatitis enteropathica. Chromium is now being tested for the treatment of diabetes mellitus, and fluorides may be of interest in the treatment of osteoporosis. Finally, trace elements are important in the aetiology of acute poisoning, in nutrition, and in environmental protection. (orig./AK) [de

  9. Finite element stress analysis of brick-mortar masonry under ...

    African Journals Online (AJOL)

    Stress analysis of a brick-mortar couplet as a substitute for brick wall structure has been performed by finite element method, and algorithm for determining the element stiffness matrix for a plane stress problem using the displacement approach was developed. The nodal displacements were derived for the stress in each ...

  10. Probing Trace-elements in Bitumen by Neutron Activation Analysis

    NARCIS (Netherlands)

    Nahar, S.N.; Schmets, A.J.M.; Scarpas, Athanasios

    Trace elements and their concentrations play an important role in both chemical and physical properties of bitumen. Instrumental Neutron Activation Analysis (INAA) has been applied to determine the concentration of trace elements in bitumen. This method requires irradiation of the material with

  11. Elemental analysis of atmospheric aerosols in Gaborone | Verma ...

    African Journals Online (AJOL)

    Aerosols are mixture of solid and liquid particles and have considerable variation in terms of their chemical composition and size. In this study the elemental composition of aerosol particles in the atmosphere of a city, Gaborone, was carried out. The elemental analysis was done by environmental scanning electron ...

  12. X-ray-A Boon for Elemental Analysis

    Indian Academy of Sciences (India)

    ... Resonance – Journal of Science Education; Volume 10; Issue 6. X-ray – A Boon for Elemental Analysis. N K Sharat Singh H Nandakumar Sarma. General Article Volume 10 Issue 6 June 2005 pp 60-69 ... Keywords. Characteristic X-ray; energy dispersive X-ray fluorescence; proton induced X-ray emission; trace element.

  13. Continuum damage growth analysis using element free Galerkin ...

    Indian Academy of Sciences (India)

    This paper presents an elasto-plastic element free Galerkin formulation based on Newton–Raphson algorithm for damage growth analysis. Isotropic ductile damage evolution law is used. A study has been carried out in this paper using the proposed element free Galerkin method to understand the effect of initial damage ...

  14. Finite Element Analysis of Fluid-Conveying Timoshenko Pipes

    Directory of Open Access Journals (Sweden)

    Chih-Liang Chu

    1995-01-01

    Full Text Available A general finite element formulation using cubic Hermitian interpolation for dynamic analysis of pipes conveying fluid is presented. Both the effects of shearing deformations and rotary inertia are considered. The development retains the use of the classical four degrees-of-freedom for a two-node element. The effect of moving fluid is treated as external distributed forces on the support pipe and the fluid finite element matrices are derived from the virtual work done due to the fluid inertia forces. Finite element matrices for both the support pipe and moving fluid are derived and given explicitly. A numerical example is given to demonstrate the validity of the model.

  15. Introduction to finite element analysis using MATLAB and Abaqus

    CERN Document Server

    Khennane, Amar

    2013-01-01

    There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA

  16. Finite element analysis of unnotched charpy impact tests

    Science.gov (United States)

    2008-10-01

    This paper describes nonlinear finite element analysis (FEA) to examine the energy to : fracture unnotched Charpy specimens under pendulum impact loading. An oversized, : nonstandard pendulum impactor, called the Bulk Fracture Charpy Machine (BFCM), ...

  17. Structural analysis with the finite element method linear statics

    CERN Document Server

    Oñate, Eugenio

    2013-01-01

    STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...

  18. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.

  19. Application of diffractive elements for improving the efficiency of systems for cylindrical surface inspection

    Science.gov (United States)

    Zavyalov, P. S.; Karlin, V. E.; Kravchenko, M. S.; Finogenov, L. V.; Khakimov, D. R.

    2017-09-01

    An improved method of structural lighting for increasing the efficiency of inspection of the cylindrical object surface appearance is considered. The method is based on using a diffractive optical element to reduce the amount of recorded data due to illuminating the test object at an angle to the image recording plane, which is normal to the inspected surface. Implementation of the proposed method implies the use of several identical channels. For this reason, one channel is considered in the present study. Calculations of diffractive elements, a description of the experimental setup, and results of experiments aimed at determining the depth of surface defects on objects simulating fuel pellets and fuel elements are presented. Implementation of the investigated method with defect depth determination in industrial systems of inspection of fuel pellets and fuel elements is expected to improve the quality of the fuel for atomic power stations.

  20. Trace and ultratrace level elemental and speciation analysis

    International Nuclear Information System (INIS)

    Arunachalam, J.

    2012-01-01

    Accurate determination of elements present at parts per million and billion levels in various matrices is a growing requirement in different fields. In environmental sciences various trace elements need to be analyzed so as establish the dispersal models of pollutants or the adequacy of effluent treatment prior to discharge into water bodies. The issues of bioaccumulation and magnification are important in aquatic systems. In nutrition and biochemistry one has to establish the bio-availability of essential and toxic elemental species as toxic elements prevent assimilation of essential elements. Fission and fusion technologies use a variety of structural materials requiring many trace elements to be present at levels strictly below the specified levels. Ultra-pure bulk semiconductor materials are required for fabrication devices. In metallurgy and materials sciences too, various trace elements are known to influence the properties. In the emerging fields like nanotechnology, it is necessary to understand the passage and accumulation of nano-particles inside the cells, through trace analysis. Many analytical techniques exist which can provide the concentration information in the bulk materials with good accuracy. They include ICP-AES, FAAS, and ICP-MS, which are solution based techniques. Direct solid state analytical techniques are Glow Discharge Mass Spectrometry (GDMS) and XRF. Accelerator based ion-beam analysis techniques can provide information on concentration and depth profiles of different elements in layered structures. Hyphenated techniques such as HPLC/lC-ICPMS, are helpful in identifying various chemical oxidation states in which a given element might be present in a matrix, which is termed as speciation analysis. This presentation will include the existing analytical competencies and the laboratory requirements for trace and ultra trace element elemental and speciation analyses and their applications. (author)

  1. Coupling reduction between dipole antenna elements by using a planar meta-surface

    DEFF Research Database (Denmark)

    Saenz, Elena; Ederra, Inigo; Gonzalo, Ramon

    2009-01-01

    The mutual coupling between dipole antenna array elements using a planar meta-surface as superstrate is experimentally investigated. The meta-surface is based on grids of short metal strips and continuous wires. A comparison between the mutual coupling when the dipoles are radiating in free space...

  2. Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions.

    Science.gov (United States)

    Pytlakowska, K; Kita, A; Janoska, P; Połowniak, M; Kozik, V

    2012-11-15

    Twelve mineral and trace elements (Al, B, Ba, Fe, Zn, Mn, Mg, K, Na, P, Cu, Sr, and Ca) were determined in the herbs and their infusions consumed for medical purposes in Poland such as chamomile (Matricaria chamomilla L.), peppermint (Mentha xpiperita), melissa (Melissa officinalis), sage (Salvia officinalis), nettle (Urtica dioica), linden (Tilia vulgaris) and St. John's wort (Hypericum calycinum). Dry digestion procedure for total concentration and wet digestion procedure for infusions were applied under optimized conditions for dissolution of medicinal herbs. Element concentrations in herbs and their infusions were determined by ICP-OES. The accuracy and precision were verified against NCS DC 73349 - bush branches and leaves certified reference material. The result of total concentrations of elements in herb leaves shows that all herbs contain most of the elements, except K and P, in the μg/g range, and that elemental concentrations varied widely. Moreover, on the basis of experimental results for the extraction efficiencies, the elements in herb infusions were classified into three specific groups: highly-extractable (>55%) including K; moderately-extractable (20-55%) including Mg, Na, P, B, Zn and Cu and poorly-extractable (<20%) including Al, Fe, Mn, Ba, Ca and Sr. The results of analysis were evaluated statistically using ANOVA one-way and three-way analysis of variance, variance correlation test and Spearman's test. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Finite element analysis of tubular joints in offshore structures ...

    African Journals Online (AJOL)

    ... representing a 2-D model of the joint between the brace and the chord walls. This was subsequently followed but finite element analysis of six tubular joints. A global analysis was initially undertaken, then the submodel analysis carried in the areas of stress concentration. Journal of Civil Engineering, JKUAT (2001) Vol 6, ...

  4. ANALYSIS OF DESIGN ELEMENTS IN SKI SUITS

    Directory of Open Access Journals (Sweden)

    Birsen Çileroğlu

    2014-06-01

    Full Text Available Popularity of Ski Sport in 19th century necessitated a new perspective on protective skiing clothing ag ainst the mountain climates and excessive cold. Winter clothing were the basis of ski attire during this period. By the beginning of 20th century lining cloth were used to minimize the wind effect. The difference between the men and women’s ski attire of the time consisted of a knee - length skirts worn over the golf trousers. Subsequent to the First World War, skiing suit models were influenced by the period uniforms and the producers reflected the fashion trends to the ski clothing. In conformance with th e prevailing trends, ski trousers were designed and produced for the women thus leading to reduction in gender differences. Increases in the ski tourism and holding of the first winter olympics in 1924 resulted in variations in ski attires, development of design characteristics, growth in user numbers, and enlargement of production capacities. Designers emphasized in their collections combined presence of elegance and practicality in the skiing attire. In 1930s, the ski suits influenced by pilots’ uniforms included characteristics permitting freedom of motion, and the design elements exhibited changes in terms of style, material and aerodynamics. In time, the ski attires showed varying design features distinguishing professionals from the amateurs. While protective functionality was primary consideration for the amateurs, for professionals the aerodynamic design was also a leading factor. Eventually, the increased differences in design characteristics were exhibited in ski suit collections, World reknown brands were formed, production and sales volumes showed significant rise. During 20th century the ski suits influenced by fashion trends to acquire unique styles reached a position of dominance to impact current fashion trends, and apart from sports attir es they became a style determinant in the clothing of cold climates. Ski suits

  5. Matrix elements for level shifts and widths of hydrogenic levels in ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, U.; Kuerpick, P.

    1996-05-01

    The authors present a derivation of basic one-electron matrix elements involved in the ion-metal surface scattering theory. Their method allows for the convenient generation of matrix elements for high principal quantum numbers of the projectile states and thus provides basic building blocks for the ab-initio description of highly charged ion-surface interactions. The matrix elements related to the energy shifts can be evaluated for an arbitrary one-dimensional potential therefore allowing the inclusion of electronic and nuclear self-image potentials. The authors extend these concepts to wave functions generated from an arbitrary one-dimensional surface potential and show applications to various surface potentials, projectile nuclear charges and hydrogenic levels.

  6. Analysis of concrete beams using applied element method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.

  7. Dynamic relaxation method in analysis of reinforced concrete bent elements

    Directory of Open Access Journals (Sweden)

    Anna Szcześniak

    2015-12-01

    Full Text Available The paper presents a method for the analysis of nonlinear behaviour of reinforced concrete bent elements subjected to short-term static load. The considerations in the range of modelling of deformation processes of reinforced concrete element were carried out. The method of structure effort analysis was developed using the finite difference method. The Dynamic Relaxation Method, which — after introduction of critical damping — allows for description of the static behaviour of a structural element, was used to solve the system of nonlinear equilibrium equations. In order to increase the method effectiveness in the range of the post-critical analysis, the Arc Length Parameter on the equilibrium path was introduced into the computational procedure.[b]Keywords[/b]: reinforced concrete elements, physical nonlinearity, geometrical nonlinearity, dynamic relaxation method, arc-length method

  8. Hybrid-finite-element analysis of some nonlinear and 3-dimensional problems of engineering fracture mechanics

    Science.gov (United States)

    Atluri, S. N.; Nakagaki, M.; Kathiresan, K.

    1980-01-01

    In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.

  9. Elements of stochastic calculus and analysis

    CERN Document Server

    Stroock, Daniel W

    2018-01-01

    This book gives a somewhat unconventional introduction to stochastic analysis. Although most of the material covered here has appeared in other places, this book attempts to explain the core ideas on which that material is based. As a consequence, the presentation is more an extended mathematical essay than a ``definition, lemma, theorem'' text. In addition, it includes several topics that are not usually treated elsewhere. For example, Wiener's theory of homogeneous chaos is discussed, Stratovich integration is given a novel development and applied to derive Wong and Zakai's approximation theorem, and examples are given of the application of Malliavin's calculus to partial differential equations. Each chapter concludes with several exercises, some of which are quite challenging. The book is intended for use by advanced graduate students and research mathematicians who may be familiar with many of the topics but want to broaden their understanding of them.

  10. Vortex shedding and morphodynamic response of bed surfaces containing non-erodible roughness elements

    Science.gov (United States)

    McKenna Neuman, Cheryl; Sanderson, Robert Steven; Sutton, Stephen

    2013-09-01

    A series of wind tunnel experiments was carried out to investigate particle entrainment from surfaces in which one or more roughness elements were embedded. Thin sand strips were employed to eliminate impact and ejection, and thus isolate entrainment by fluid drag. The pattern of erosion is consistent with the presence of coherent vortices, inclusive of trailing vortices in the wake flow. The shape and orientation of the roughness element strongly influence this pattern. When an upwind supply of saltators is introduced, the majority of particles within the bed are entrained through impact, with the exception of a sand tail to the lee of the roughness element. That is, the effect of coherent structures within the airflow, as related to spatial variation in the fluid drag exerted on the bed surface, is completely overprinted by the saltation cloud and the blocking of particle trajectories by the upwind face of the roughness element. In a repeated set of experiments, the bed was allowed to fully adjust its morphology to the transport system. In this case, particle entrainment did not selectively occur within the zone of wake flow, and by inference the fluid stress across the test surface appeared to be uniform. These experiments support the hypothesis that vortex annihilation occurs on morphodynamically adjusted surfaces. In summary, the system response to the emergence of non-erodible roughness elements on surfaces affected by wind erosion involves a suite of geophysical processes, each of which attains varied levels of dominance within a given morphodynamic domain.

  11. Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX.

    Science.gov (United States)

    Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas

    2014-05-25

    During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients' oral cavities.

  12. Perspectives on clinical possibility: elements of analysis.

    Science.gov (United States)

    Chiffi, Daniele; Zanotti, Renzo

    2016-08-01

    Possibility is one of the most common modalities in reasoning and argumentation. Various kinds of modal concepts have been identified in philosophical and logical discussion of the metaphysics of modality. We focus here on the concept of clinical possibility. A critical analysis of what is intended as clinical possibility has not yet received sufficient examination, although the concept is extensively used in clinical reasoning. We present arguments to emphasize some desirable features associated with the concept of clinical possibility. We argue that almost all clinical possibilities are potentialities, that is, possibilities that may be actualized by effective, appropriate and feasible interventions. However, in some limited cases, even mere possibilities - which may or may not be actualized, since we do not have the required knowledge - may be involved in clinical reasoning, and we present some examples in this paper. We then introduce some basic views on the nature of possibility showing their validity and limitations when applied to the concept of clinical possibility. Lastly, we conjecture that clinical possibility is a normative modality that can be formalized in a multimodal system with epistemic and deontic logical operators. © 2015 John Wiley & Sons, Ltd.

  13. Thermomechanical analysis of nuclear fuel elements

    International Nuclear Information System (INIS)

    Hernandez L, H.

    1997-01-01

    This work presents development of a code to obtain the thermomechanical analysis of fuel rods in the fuel assemblies inserted in the core of BWR reactors. The code uses experimental correlations developed in several laboratories. The development of the code is divided in two parts: a) the thermal part and b) the mechanical part, extending both the fuel and the cladding materials. The thermal part consists of finding the radial distribution of temperatures in the pellet, from the fuel centerline up to the coolant, along the total active length, considering one and two phase flow in the coolant, as a result of the pressure drop in the system. The mechanical part analyzes the effects of temperature gradients, pressure and irradiation, to which the fuel rod is subjected. The strains produced by swelling, creep and thermal stress in the fuel material are analyzed. In the same way the strains in the cladding are analyzed, considering the effects produced by the pressure exerted on the cladding by pellet swelling, by the pressure caused by fission gas release toward the cavities, and by the strain produced on the cladding by the pressure changes of the system. (Author)

  14. Finite element analysis of an inflatable torus considering air mass structural element

    Science.gov (United States)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  15. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  16. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    Science.gov (United States)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  17. Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.

  18. Elemental imaging of rat epididymis by micro-PIXE analysis

    International Nuclear Information System (INIS)

    Homma-Takeda, S.; Nishimura, Y.; Watanabe, Y.; Imaseki, H.; Yukawa, M.

    2003-01-01

    The epididymis, a male reproductive organ, which is a highly convoluted duct, plays an important role in transportation of spermatozoa, their maturation, and their storage. Although major elements, such as P, S and K, as well as trace elements, such as Mn, Cu, Zn, Se, are known to be essential for spermatogenesis, detailed distributions of the elements in the epididymis are only poorly understood. In the present study, Mn, Cu, Zn and Se levels in the epididymis were examined in male Wistar rats by inductively coupled argon plasma-mass spectrometry (ICP-MS) analysis and in situ multi-elemental distributions of epididymal sections were determined by micro-PIXE (particle induced X-ray emission) analysis. The Zn, Cu and Se concentrations in the epididymis of the young adult rats were around 30 μg/g wet weight, 2 μg/g wet weight and 1 μg/g wet weight, respectively, and their Mn were less than 0.5 μg/g wet weight. PIXE imaging of P and K exhibited that P and K were higher in the epididymal epithelium. In contrast, more S was detected in the lumen, which is composed of spermatozoa and a fluid. Elemental imagings of the trace elements were unclear compared with the major elements, but information about zinc localization in the epididymis was obtained

  19. Near field analysis of CSG and BSG combined element under high power laser condition

    Science.gov (United States)

    Yao, Xin; Gao, Fuhua; Zhang, Yixiao; Wang, Lei; Guo, Yongkang; Hou, Xi

    2006-08-01

    In high power laser system, it is of great interest to combine two or more diffractive structures, in particular, the beam-sampling gratings (BSG) and the color separation gratings (CSG), onto one element. However, the combined element with diffractive structure on both surfaces, may cause serious laser induced damage to the element itself. So, this paper use Fourier modal method to analyze the near field characteristic of CSG and BSG combined element. Through theoretically analysis and numerical calculation, amplitude and phase distribution of electric field are present both inside and outside the diffractive structural region, and the maximum peak-to-average modulation in near field is also given. Based on this study, the most possibility of optical damage induced by beam modulation of CSG and BSG combined element appears in the neighborhood of the interface.

  20. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  1. Finite element analysis of CFRP reinforced silo structure design method

    Science.gov (United States)

    Yuan, Long; Xu, Xinsheng

    2017-11-01

    Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.

  2. Global Analysis of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J

    2010-01-01

    Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of 'edge-crawling' along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integ

  3. Magnetoelastic energy calculations for finite element analysis of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Stoddart, W.C.T.

    1977-01-01

    It has been shown that the high current density and magnetic flux density associated with superconductors can make the magnetoelastic energy a significant portion of the total energy in a structural system. The present work presents a procedure for evaluating this magnetoelastic energy for use in the finite element analysis of the structural dynamics and stability of the superconductor. A simple, special case of the element matrices is illustrated

  4. Non-intrusive finite element reliability analysis methods

    OpenAIRE

    Papaioannou, Iason

    2014-01-01

    This thesis focuses on the modeling of uncertainties in structural systems and on strategies for the reliability assessment of structures analysed by finite element programs. New concepts are introduced for the numerical treatment of spatially varied uncertain quantities through the discretization of the relevant random fields as well as for robust and efficient finite element reliability analysis and updating of the reliability in light of new information. The methods have been implemented i...

  5. PIXE analysis of trace elements in cetacean teeth

    International Nuclear Information System (INIS)

    Mitani, Yoko; Arai, Nobuaki; Sakamoto, Wataru; Yoshida, Koji

    1997-01-01

    PIXE was adopted for analysis of trace elements in teeth of two species of cetaceans, sperm whale (Physeter microcephalus) and pantropical spotted dolphin (Stenella attenuata). The analyses were performed along with the growth layer of the teeth, which is formed annually, suitable for age determination. Mn, Fe, Cu, Zu and Sr were detected in the teeth of sperm whale and pantropical spotted dolphin. Among these trace elements, gradual increase was observed for Zn/Ca ratio in the sperm whale's teeth. (author)

  6. Reprocessing of nuclear fuel elements from the Netherlands. An analysis

    International Nuclear Information System (INIS)

    Dodd, D.H.; Harry, R.J.S.; Kloosterman, J.L.; Konings, R.J.M.; Versteegh, A.M.

    1997-05-01

    The results of an analysis of a route for the processing and storage of spent fission fuel elements from Dutch nuclear power plants (Borssele and Dodewaard) are presented. Also an alternative route in which the fuel elements are stored without being reprocessed is discussed in detail. Environmental effects, proliferation aspects and the costs for each step in both routes are discussed where appropriate. 2 figs., 10 tabs., 14 refs

  7. 2-D Finite Element Analysis of Massive RC Structures

    DEFF Research Database (Denmark)

    Saabye Ottosen, Niels

    1982-01-01

    Nonlinear analysis of concrete structures using finite elements is discussed. The applications include a thick-walled top-closure for a pressure vessel as well as the delicate problems of beams failing in shear. The top-closure analysis evaluates the effect of two different failure criteria...

  8. Hands on applied finite element analysis application with ANSYS

    CERN Document Server

    Arslan, Mehmet Ali

    2015-01-01

    Hands on Applied Finite Element Analysis Application with Ansys is truly an extraordinary book that offers practical ways of tackling FEA problems in machine design and analysis. In this book, 35 good selection of example problems have been presented, offering students the opportunity to apply their knowledge to real engineering FEA problem solutions by guiding them with real life hands on experience.

  9. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously be con...

  10. Thin film surface reconstruction analysis

    International Nuclear Information System (INIS)

    Imperatori, P.

    1996-01-01

    The study of the atomic structure of surfaces and interfaces is a fundamental step in the knowledge and the development of new materials. Among the several surface-sensitive techniques employed to characterise the atomic arrangements, grazing incidence x-ray diffraction (GIXD) is one of the most powerful. With a simple data treatment, based on the kinematical theory, and using the classical methods of x-ray bulk structure determination, it gives the atomic positions of atoms at a surface or an interface and the atomic displacements of subsurface layers for a complete determination of the structure. In this paper the main features of the technique will be briefly reviewed and selected of application to semiconductor and metal surfaces will be discussed

  11. Thin film surface reconstruction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Imperatori, P. [CNR, Monterotondo Stazione, Rome (Italy). Istituto di Chimica dei materiali

    1996-09-01

    The study of the atomic structure of surfaces and interfaces is a fundamental step in the knowledge and the development of new materials. Among the several surface-sensitive techniques employed to characterise the atomic arrangements, grazing incidence x-ray diffraction (GIXD) is one of the most powerful. With a simple data treatment, based on the kinematical theory, and using the classical methods of x-ray bulk structure determination, it gives the atomic positions of atoms at a surface or an interface and the atomic displacements of subsurface layers for a complete determination of the structure. In this paper the main features of the technique will be briefly reviewed and selected of application to semiconductor and metal surfaces will be discussed.

  12. Integral finite element analysis of turntable bearing with flexible rings

    Science.gov (United States)

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  13. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  14. Analysis of Brick Masonry Wall using Applied Element Method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.

  15. Determination of mutually interfering elements in activation analysis

    International Nuclear Information System (INIS)

    Figueiredo, A.M.G.

    1979-01-01

    The determination of the elements present in the groups scandium-zinc, mercury-selenium and arsenic-antimony-bromine represents a classical problem in thermal neutron activation analysis because the gamma-ray peaks of the radioisotopes produced from these elements by activation appear very close in the spectrum. A study is made of the possibility of simultaneous instrumental determination of these elements by means of the spectrum stripping technique, using a 400-channel analyser coupled to a Nal(Tl) detector and a 4096-channel analyser coupled to a Ge(Li) detector. Artificial mixtures of the interfering elements in varying proportions are prepared, so as to reproduce possible real samples, where the elements may be present at several concentrations. Radiochemical separation techniques for the cited elements are studied with the use of tracers. For the separation of scadium and zinc, the technique of extraction chromatography is applied. The separation of mercury and selenium is accomplished by means of ion exchange. The technique of coprecipitation is used to separate bromine from arsenic and antimony followed by ion exchange to isolate these two elements from each other. The precision and the accuracy of the results are discussed. (Author) [pt

  16. FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER

    Science.gov (United States)

    Bowles, D. E.

    1994-01-01

    Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.

  17. Application of micro-PIXE analysis to investigate trace elements in deciduous teeth enamel

    International Nuclear Information System (INIS)

    Igari, K.; Takahashi, A.; Ando, H.

    2010-01-01

    The early life environment has widespread consequences for later health and disease. To prevent the disease in later life, the assessment of fetal environment is very important. In Japan, birthweight has fallen rapidly during recent two decades. The reduction of birthweight represents reduced fetal nutrition. Deciduous tooth enamel contains pre- and postnatal enamel and its chemical composition reflects the status of metabolism of trace elements during formation period. Deciduous tooth enamel is considered to be a suitable indicator of trace elements exposure in utero. We applied micro-PIXE analysis to investigate the trace elemental content in deciduous tooth enamel. Two deciduous canines from one healthy Japanese boy were used for this study. The enamel section including pre- and postnatal enamel was prepared for micro-PIXE analysis. Five trace elements (Na, Mg, Cl, Zn, and Sr) were detected in the scanning area of tooth. The distribution profiles of 5 elements were obtained as X-ray maps. The distribution profiles of zinc and chlorine were specific, and showed higher concentration in surface enamel. No elements showed different profiles of X-ray maps between pre- and postnatal enamel in this sample. The results of this study suggested that micro-PIXE analysis would be able to estimate the trace elements in prenatal and postnatal enamel, respectively. (author)

  18. Chemical analysis of useful trace elements in sea water

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Fujii, Ayako; Miyai, Yoshitaka; Sakane, Kohji; Ogata, Noboru.

    1983-01-01

    The methods for the analysis of useful trace elements in sea water which have been tried so far are reviewed, and these methods are described briefly from the standpoint of studying the collection of resources. Ag and Au can be determined by concentrating sea water by ion-exchange method, solvent extraction method and electrodeposition method, then the elements are measured quantitatively by activation analysis and atomic absorption spectrochemical analysis. Sr, B and Li, which exist in relatively high concentration in sea water, are determined easily by atomic absorption spectrochemical analysis and absorption spectrometry. U, Mo and V are measured suitably by concentrating the elements by coprecipitation or solvent extraction method, and measuring by fluorescence analysis and arsenazo-3 method for U and through graphite-atomic absorption analysis for Mo and V. It has been revealed that the concentration of Ag and Au in sea water is extremely low, accordingly the recovery study is not conducted recently. On the other hand, the adsorption method using hydrated titanium oxide and amidoxim adsorbents for U, Mo and V, the adsorption method using aluminum adsorbent for Li, and the adsorption method using magnesium oxide and zirconium hydroxide and the solvent extraction method for B are hopeful to recover these elements. (Yoshitake, I.)

  19. Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis

    Science.gov (United States)

    Foye, R. L.

    1992-01-01

    There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.

  20. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J.V.; Cadene, V.; Occelli, R. [Universite de Provence, 13 - Marseille (France)

    1996-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  1. Finite element analysis of rotating beams physics based interpolation

    CERN Document Server

    Ganguli, Ranjan

    2017-01-01

    This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.

  2. Elemental concentrations of aquatic insect larvae and attached algae on tone surfaces in an uncontaminated stream

    International Nuclear Information System (INIS)

    Momoshima, N.; Sugihara, S.; Hibino, K.; Nakamura, Y.

    2009-01-01

    Elemental concentrations of aquatic insect larvae and attached algae in an uncontaminated river were analyzed by instrumental neutron activation analysis (INAA) via the k 0 -standardization method. The aquatic insect larvae found were all intolerant species. No significant difference was observed int he elemental concentrations of aquatic insect larvae and attached algae long the river. Similar elemental concentrations were observed in the aquatic insect larvae collected at a fixed sampling point for two years. An analysis by the ratio-matching technique indicated a higher generic relationship between aquatic insect larvae and attached algae than river water. (author)

  3. Surface analysis of selected hydrophobic materials

    Science.gov (United States)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  4. Finite element analysis of magnetically induced vibrations of conductive plates

    International Nuclear Information System (INIS)

    Lee, J.S.; Prevost, J.H.; Lee, P.C.Y.

    1990-01-01

    The coupling effect between the electromagnetic field and mechanical response of a conducting structure is of importance in high energy devices such as fusion reactors. This paper is concerned with numerical modeling of the dynamic field-structure interaction. After the theory of magneto-elasticity for nonferrous conductors is reviewed briefly, a finite element numerical model for fully coupled analysis of the field-structure interaction in conductor plates is developed and corroborated numerically. In developing coupled magneto-plate elements the magnetic field vector rather than the potentials is employed as the primary unknown in electromagnetic field calculation and attention is paid to the performance of the structural elements as well as the electromagnetic elements. Thus the resulting continuum-based, consistent finite element model requires only Cdeg-continuity both in electromagnetic aspect and mechanical aspect. For time integration of the coupled nonlinear system of equations, a partitioned analysis scheme is developed and its numerical implementation details are also presented. Then the proposed numerical model is applied to perform fully coupled analysis of the magnetically induced vibrations of the conducting plates in transient magnetic fields. The Fusion Electromagnetic Induction Experiments (FELIX) are modeled and the numerical results are shown to be in ver good agreement with the measured field data. (orig.)

  5. Finite element analysis of FRP-strengthened RC beams

    Directory of Open Access Journals (Sweden)

    Teeraphot Supaviriyakit

    2004-05-01

    Full Text Available This paper presents a non-linear finite element analysis of reinforced concrete beam strengthened with externally bonded FRP plates. The finite element modeling of FRP-strengthened beams is demonstrated. Concrete and reinforcing bars are modeled together as 8-node isoparametric 2D RC element. The FRP plate is modeled as 8-node isoparametric 2D elastic element. The glue is modeled as perfect compatibility by directly connecting the nodes of FRP with those of concrete since there is no failure at the glue layer. The key to the analysis is the correct material models of concrete, steel and FRP. Cracks and steel bars are modeled as smeared over the entire element. Stress-strain properties of cracked concrete consist of tensile stress model normal to crack, compressive stress model parallel to crack and shear stress model tangential to crack. Stressstrain property of reinforcement is assumed to be elastic-hardening to account for the bond between concrete and steel bars. FRP is modeled as elastic-brittle material. From the analysis, it is found that FEM can predict the load-displacement relation, ultimate load and failure mode of the beam correctly. It can also capture the cracking process for both shear-flexural peeling and end peeling modes similar to the experiment.

  6. Elemental analysis of hair using PIXE-tomography and INAA

    International Nuclear Information System (INIS)

    Beasley, D.; Gomez-Morilla, I.; Spyrou, N.

    2008-01-01

    3D quantitative elemental maps of a section of a strand of hair were produced using a combination of PIXE-Tomography and simultaneous On/Off Axis STIM-Tomography at the University of Surrey Ion Beam Centre. The distributions of S, K, Cl, Ca, Fe and Zn were determined using the PIXE-T reconstruction package DISRA. The results were compared with conventional bulk PIXE analysis of tomographic data as determined using Dan32. The overall concentrations determined by PIXE were compared with elemental concentrations held in the University of Surrey Hair Database. All the entries currently in the database were produced using INAA. The merits and possible contributions of tomographic PIXE analysis to analysis of hair are discussed. The conclusions drawn from the PIXE-Tomography analysis can be used to argue for more stringent procedures for hair analysis at the University of Surrey. (author)

  7. Biomonitoring of air pollution through trace element analysis

    International Nuclear Information System (INIS)

    Bamford, S.A.; Osae, E.K.; Aboh, I. J.; Serfor-Armah, Y.; Nyarko, B.; Ofosu, F.; Odamtten, G.T.

    1999-04-01

    Studies are being carried out to determine the potential and reliability in the use of local lichen species for biomonitoring air pollution in Ghana. The location of most of the gold mines in forest areas of the country presents the gold mining industry as a suitable setting for such investigations. The nuclear-related techniques being used in the multielement analysis of lichen samples and air filter samples are instrumental neutron activation analysis (Miniature Neutron Source Reactor) and energy dispersive x-ray fluorescence analysis (tube-excitation). Validation of the quantitative methods of the INAA through analysis of standard certified reference materials of orchard leaves NBS SRM 1571 and BCR-CRM No. 279 gave very good results for most elements analyzed. Elemental analysis of identified lichen samples will be done bearing in mind microclimatic factors, specie type and nature of soil. (author)

  8. Biomonitoring of air pollution through trace element analysis

    International Nuclear Information System (INIS)

    Bamford, S.A.; Osae, E.K.; Aboh, I.J.; Serfor-Armah, Y.; Nyarko, B.; Odamtten, G.T.

    1999-01-01

    Studies are being carried out to determine the potential and reliability in the use of local lichen species for biomonitoring air pollution in Ghana. The location of most of the gold mines in forest areas of the country presents the gold mining industry as a suitable setting for such investigations. The nuclear-related techniques being used in the multielement analysis of lichen samples and air filter samples are instrumental neutron activation analysis (Miniature Neutron Source Reactor) and energy dispersive x-ray fluorescence analysis (tube-excitation). Validation of the quantitative methods of the INAA through analysis of standard and certified reference materials of orchard leaves NBS SRM 1571 and BCR-CRM No. 279 gave very good results for most elements analyzed. Elemental analysis of identified lichen samples will be done beating in mind microclimatic factors, specie type and nature of soil. (author)

  9. Qualitative PIXE analysis of mineral elements in some phytopharmaceutic drugs

    International Nuclear Information System (INIS)

    Preoteasa, E.A.; Harangus, Livia; Gugiu, M; Iordan, Andreea; Ciortea, C.

    2002-01-01

    A large number of phytopharmaceutic drugs are being developed, due to positive effects in various diseases and to high tolerance by the organism. While their medicinally active compounds have been identified, little attention has been paid to their mineral micro- and trace elements. The mineral elements in the drug may have therapeutic or toxic effects which should be properly assessed. Nuclear and atomic methods allow sensitive multielement detection and we previously performed nuclear activation analysis of some Romanian drugs made by plants. Despite this method's high sensitivity, its use is limited by the availability of a nuclear reactor. Particle-induced X-ray emission (PIXE) provides an alternative, and here we examined its potential for the analysis of mineral elements in three commercial phytopharmaceutical preparations, namely, Liv52, Mentat, and Geriforte. The PIXE measurements were performed with 3 MeV protons at the 8.5 MV NIPNE-HH tandem accelerator, using a hyper pure Ge detector, normally oriented and connected to a multichannel analyzer and to a computer; the drug pills were fixed at 45 angle with respect to the beam. In all drugs PIXE detected mineral elements with Z > 16 down to trace levels. Major elements included K, Ca, Fe, Cu, and Zn, and minor/trace amounts of S, Cl, Ti, Cr, Mn, Ni, Ga, Br, Rb, Sr, Hg, and As/Pb were detected. Some differences were seen between the three drugs. Although at trace levels Ga, As, Hg and Pb are not toxic, one should consider that their accumulation might be harmful and caution seems recommendable on long-term cure. Most of the other elements are known to exert a positive biological role, and both in major and trace levels they may contribute to the therapeutic action. Thus PIXE analysis of mineral elements in phytopharmaceutic drugs, even qualitative, is useful for evaluating the benefits and risks in the therapy. (authors)

  10. Geochemistry at the earth's surface. Movement of chemical elements

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Andreas [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung; Velde, Bruce D. [Ecole Normale Superieure, 75 - Paris (France). Lab. de Geologie

    2014-07-01

    Geochemistry at the surface of the earth is dominated by two somewhat antagonistic forces: chemical reactions which attempt to attain a steady state (equilibrium) and geological movement of materials in time and space which changes the parameters that control chemical equilibrium. Another aspect that is extremely important to earth surface geochemistry is the effect of plants on the chemical and physical stability of materials (soils). Plant systems in fact work against the normal chemical changes (loss of silica, potassium, etc.) and the normal physical changes (stabilizing fine grained materials (clays) in the surface zones to avoid erosion). Biological effects are clearly seen in redox effects in the various parts of the earth surface movement cycle; soil formation, stream transport, sedimentation. This book attempts to outline these different parameters and their interactions as they affect earth surface geochemistry in order to give a better understanding of movement and accumulation of elements at the surface of the earth.

  11. Finite element analysis of degraded concrete structures - Workshop proceedings

    International Nuclear Information System (INIS)

    1999-09-01

    This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete

  12. Superficial composition in binary solid solutions A(B): Drastic effect of pure element surface tensions

    Science.gov (United States)

    Rolland, A.; Aufray, B.

    1985-10-01

    This paper deals with a comparative study of surface segragation of Pb and Ni respectively from Ag(Pb)(111) and Ag(Ni)(111) solid solutions. A high level of segregation of the solute is observed for both systems characterized by very low solute solubility. However, the superficial composition strongly depends on the relative surface tensions of the pure elements: the solute atoms are strictly on superficial sites when γ solute is smaller than γ solvent; in contrast uppermost layer consists purely of solvent when γ solute is greater than γ solvent. Two schematic distributions in close proximity to the surface are proposed in the last case.

  13. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  14. Trace elements in coloured opals using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    McOrist, G.D.; Smallwood, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs.

  15. Trace elements in coloured opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Smallwood, A.

    1996-01-01

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs

  16. Surface computing and collaborative analysis work

    CERN Document Server

    Brown, Judith; Gossage, Stevenson; Hack, Chris

    2013-01-01

    Large surface computing devices (wall-mounted or tabletop) with touch interfaces and their application to collaborative data analysis, an increasingly important and prevalent activity, is the primary topic of this book. Our goals are to outline the fundamentals of surface computing (a still maturing technology), review relevant work on collaborative data analysis, describe frameworks for understanding collaborative processes, and provide a better understanding of the opportunities for research and development. We describe surfaces as display technologies with which people can interact directly, and emphasize how interaction design changes when designing for large surfaces. We review efforts to use large displays, surfaces or mixed display environments to enable collaborative analytic activity. Collaborative analysis is important in many domains, but to provide concrete examples and a specific focus, we frequently consider analysis work in the security domain, and in particular the challenges security personne...

  17. Microlocal methods in the analysis of the boundary element method

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1993-01-01

    The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...

  18. Element analysis of a cell wall using PIXE

    Science.gov (United States)

    Jahnke, Andreas; Shimmen, Teruo; Koyama-Ito, Hiroko; Yamazaki, Toshimitsu

    1981-03-01

    The elemental analysis of cell walls of internodal cells of Chara corallina, a fresh water alga, was carried out using PIXE and 28 MeV α-particles from a cyclotron. The cell wall was a suitable monitoring system for heavy metal ions in water. Special attention was paid to the ion specific differences during adsorption to the cell wall.

  19. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    2000-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.

  20. Simulation of temperature distribution by finite element analysis on ...

    Indian Academy of Sciences (India)

    Several optical and mechanical components of the beamline are exposed to high intensity synchrotron radiation while in operation. The temperature rise on different components of the beamline on exposure to the synchrotron beam has been simulated by finite element analysis. Design of the cooling mechanism for each of ...

  1. Efficient implicit finite element analysis of sheet forming processes

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Meinders, Vincent T.; Huetink, Han

    2003-01-01

    The computation time for implicit finite element analyses tends to increase disproportionally with increasing problem size. This is due to the repeated solution of linear sets of equations, if direct solvers are used. By using iterative linear equation solvers the total analysis time can be reduced

  2. Multivariate statistical analysis of major and trace element data for ...

    African Journals Online (AJOL)

    Multivariate statistical analysis of major and trace element data for niobium exploration in the peralkaline granites of the anorogenic ring-complex province of Nigeria. PO Ogunleye, EC Ike, I Garba. Abstract. No Abstract Available Journal of Mining and Geology Vol.40(2) 2004: 107-117. Full Text: EMAIL FULL TEXT EMAIL ...

  3. Neutron activation analysis as an element of sculpture provenance establishing

    International Nuclear Information System (INIS)

    Panczyk, E.; Rowinska, L.; Walis, L.; Ligeza, M.; Nalepa, B.

    1998-01-01

    Investigation was carried out on the subject named ''Madonna Jackowa'' (XV cent.). The investigation object was to answer whether ''Madonna Jackowa'' was made of a native alabaster. Alabaster derived from five carious mines situated at the Cracow - Lvov line and ''Madonna Jackowa'' were analysed and the trace elements contents were compared. Instrumental neutron activation method was used for analysis of the trace. (author)

  4. Elemental analysis by nuclear reactions in selected mineral assemblages

    International Nuclear Information System (INIS)

    Madiba, C.C.P.

    1978-01-01

    The sensitivity of proton induced X-ray emission (PIXE) as a multi-elemental analytical technique for application in geochemical studies has been investigated. The contribution and unique features of PIXE as compared with other well-established analytical techniques is discussed. One such contribution is the analysis of minute (few microgram) grains of separated mineral phases, where these have a low frequency of occurence on the one hand, and / or require meticulous separation or collection on the other hand, or if variations in composition from grain to grain are meaningful. Mineral separates used in the investigation were selected specifically for their significance in geochemical studies related to the mineralisation of the Witwatersrand goldbearing system. These include gold, zircon and chromite. The success of PIXE in the analysis of gold, zircon, chromite and diamond samples is discussed. Comparisons are made of single grain and bulk (many grain) sample analyses and of PIXE measurements on such samples with instrumental activation analysis (INAA). The contribution of such analysis to the study of the evolution of the Witwatersrand system is discussed. The specific features of PIXE were exploited in a search for superheavy elements. A monazite sample from Malaysia was investigated for the occurrence of the element Z = 126. An upper limit of 110 plus minus 33 ppm for the possible concentration of this superheavy element in monazite is deduced

  5. Finite Element Analysis of a Free-Standing Staircase | Ajagbe ...

    African Journals Online (AJOL)

    The existing approximate analytical methods of analyzing free-standing stairs fail to predict the distribution of any stress resultant and the actual three dimensional behavior of the stair slab system. A more rationale but simple and accurate method of analysis based on finite element method is presented. Plate flexural ...

  6. Comparative pixe analysis of trace elements in archaeological samples

    Science.gov (United States)

    Zhang, Dazhong; Chen, Jianxuan; Chen, Suqing; Wang, Nengming

    1987-04-01

    Comparative analysis of trace elements in tomato seeds from the earlier Western Han dynasty (200 B.C.) tomb in suburban Chengdu and present tomato seeds in Chengdu Qingdao and Beijing has been performed. The intended purpose of this analysis is to provide some useful information for archaeologists and biologists to solve controversial problems involved in the place of origin of the ancient tomato seeds. In order to study the ancient agricultural technique, seed reservation and environment science, the trace elements in carbonized food and the wood of a coffin have also been analyzed. The experimental results demonstrate that there are significant differences between the elemental composition and relative contents of ancient tomato seeds. In this paper the analysis of trace elements in historic relics from the group tombs of the minority nationality in Aba Tibetan Autonomy State of Sichuan Province is also reported. It is found that in the glazed pearls there is much Ba and Pb which is significant for the study of glass manufacture techniques in ancient China All experiments were done in vacuum by nondestructive PIXE analysis using a 2.5 MV Van de Graaff accelerator and a Si(Li) spectrometer at the Institute of Nuclear Science and Technology of Sichuan University.

  7. Trace elements in higher fungi (mushrooms) determined by activation analysis

    Czech Academy of Sciences Publication Activity Database

    Řanda, Zdeněk; Kučera, Jan

    2004-01-01

    Roč. 259, č. 1 (2004), s. 99-107 ISSN 0236-5731 R&D Projects: GA ČR GV202/97/K038 Institutional research plan: CEZ:AV0Z1048901 Keywords : trace elements * activation analysis * mushrooms Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.457, year: 2004

  8. Analysis of Trace Elements in South African Clinkers using Latent ...

    African Journals Online (AJOL)

    The trace element content of clinkers (and possibly of cements) can be used to identify the manufacturing factory. The Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content of clinkers give detailed information for the determination of the origin of clinkers produced in different factories. However, for the analysis of such complex data there ...

  9. Continuum damage growth analysis using element free Galerkin ...

    Indian Academy of Sciences (India)

    using the proposed element free Galerkin method to understand the effect of initial damage and its growth on structural ... Effect of material discontinuity on damage growth analysis is also presented. Keywords. Damage ... 1996), Lagrange multiplier technique (Dolbow & Belytschko 1998), penalty method (Liu. 2002), full ...

  10. Multivariate cluster analysis of some major and trace elements ...

    African Journals Online (AJOL)

    UFUOMA

    This study comprises soils formed on Paleoproterozoic Birimian Basement rocks (poorly graded silty sand, gravely sand and silty clays) from the unsaturated zone of the Densu River Basin, taken from a five meter depth. Elemental analysis of the soils samples were carried out by Energy Dispersive X-ray. Fluorescence ...

  11. Bending analysis of laminated composite plates using finite element ...

    African Journals Online (AJOL)

    user

    In the past, the structural behavior of plates and shells using the finite element method has been studied by a variety of approaches. Choudhary and Tungikar ... (2011) presented the nonlinear static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic.

  12. Finite element analysis of bone loss around failing implants

    NARCIS (Netherlands)

    Wolff, J.E.H.; Narra, N.; Antalainen, A.K.; Valasek, J.; Kaiser, J.; Sandor, G.K.; Marcian, P.

    2014-01-01

    Dental implants induce diverse forces on their surrounding bone. However, when excessive unphysiological forces are applied, resorption of the neighbouring bone may occur. The aim of this study was to assess possible causes of bone loss around failing dental implants using finite element analysis. A

  13. GRIZ: Visualization of finite element analysis results on unstructured grids

    International Nuclear Information System (INIS)

    Dovey, D.; Loomis, M.D.

    1994-01-01

    GRIZ is a general-purpose post-processing application that supports interactive visualization of finite element analysis results on three-dimensional unstructured grids. GRIZ includes direct-to-videodisc animation capabilities and is being used as a production tool for creating engineering animations

  14. Sensitive analysis of a finite element model of orthogonal cutting

    Science.gov (United States)

    Brocail, J.; Watremez, M.; Dubar, L.

    2011-01-01

    This paper presents a two-dimensional finite element model of orthogonal cutting. The proposed model has been developed with Abaqus/explicit software. An Arbitrary Lagrangian-Eulerian (ALE) formulation is used to predict chip formation, temperature, chip-tool contact length, chip thickness, and cutting forces. This numerical model of orthogonal cutting will be validated by comparing these process variables to experimental and numerical results obtained by Filice et al. [1]. This model can be considered to be reliable enough to make qualitative analysis of entry parameters related to cutting process and frictional models. A sensitivity analysis is conducted on the main entry parameters (coefficients of the Johnson-Cook law, and contact parameters) with the finite element model. This analysis is performed with two levels for each factor. The sensitivity analysis realised with the numerical model on the entry parameters has allowed the identification of significant parameters and the margin identification of parameters.

  15. Developments in Dynamic Analysis for quantitative PIXE true elemental imaging

    International Nuclear Information System (INIS)

    Ryan, C.G.

    2001-01-01

    Dynamic Analysis (DA) is a method for projecting quantitative major and trace element images from PIXE event data-streams (off-line or on-line) obtained using the Nuclear Microprobe. The method separates full elemental spectral signatures to produce images that strongly reject artifacts due to overlapping elements, detector effects (such as escape peaks and tailing) and background. The images are also quantitative, stored in ppm-charge units, enabling images to be directly interrogated for the concentrations of all elements in areas of the images. Recent advances in the method include the correction for changing X-ray yields due to varying sample compositions across the image area and the construction of statistical variance images. The resulting accuracy of major element concentrations extracted directly from these images is better than 3% relative as determined from comparisons with electron microprobe point analysis. These results are complemented by error estimates derived from the variance images together with detection limits. This paper provides an update of research on these issues, introduces new software designed to make DA more accessible, and illustrates the application of the method to selected geological problems.

  16. Efficient smoothed finite element time domain analysis for photonic devices.

    Science.gov (United States)

    Atia, Khaled S R; Heikal, A M; Obayya, S S A

    2015-08-24

    In this paper, a new finite element method (FEM) is proposed to analyse time domain wave propagation in photonic devices. Dissimilar to conventional FEM, efficient "inter-element" matrices are accurately formed through smoothing the field derivatives across element boundaries. In this sense, the new approach is termed "smoothed FEM" (SFETD). For time domain analysis, the propagation is made via the time domain beam propagation method (TD-BPM). Relying on first order elements, our suggested SFETD-BPM enjoys accuracy levels comparable to second-order conventional FEM; thanks to the element smoothing. The proposed method numerical performance is tested through applicating on analysis of a single mode slab waveguide, optical grating structure, and photonic crystal cavity. It is clearly demonstrated that our method is not only accurate but also more computationally efficient (far few run time, and memory requirements) than the conventional FEM approach. The SFETD-BPM is also extended to deal with the very challenging problem of dispersive materials. The material dispersion is smartly utilized to enhance the quality factor of photonic crystal cavity.

  17. Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge

    Directory of Open Access Journals (Sweden)

    C. Alkin

    2005-01-01

    Full Text Available The design of an overhead crane bridge with a double box girder has been investigated and a case study of a crane with 35 ton capacity and 13 m span length has been conducted. In the initial phase of the case study, conventional design calculations proposed by F. E. M. Rules and DIN standards were performed to verify the stress and deflection levels. The crane design was modeled using both solids and surfaces. Finite element meshes with 4-node tetrahedral and 4-node quadrilateral shell elements were generated from the solid and shell models, respectively. After a comparison of the finite element analyses, the conventional calculations and performance of the existing crane, the analysis with quadratic shell elements was found to give the most realistic results. As a result of this study, a design optimization method for an overhead crane is proposed. 

  18. Analysis of Piezoelectric Solids using Finite Element Method

    Science.gov (United States)

    Aslam, Mohammed; Nagarajan, Praveen; Remanan, Mini

    2018-03-01

    Piezoelectric materials are extensively used in smart structures as sensors and actuators. In this paper, static analysis of three piezoelectric solids is done using general-purpose finite element software, Abaqus. The simulation results from Abaqus are compared with the results obtained using numerical methods like Boundary Element Method (BEM) and meshless point collocation method (PCM). The BEM and PCM are cumbersome for complex shape and complicated boundary conditions. This paper shows that the software Abaqus can be used to solve the governing equations of piezoelectric solids in a much simpler and faster way than the BEM and PCM.

  19. Elemental characterization of Brazilian beans using neutron activation analysis

    International Nuclear Information System (INIS)

    Lilian Seiko Kato; Nadai Fernandes, E.A. De; Marcio Arruda Bacchi; Gabriel Adrian Sarries; Andres Enrique Lai Reyes

    2015-01-01

    Beans are important for many developing countries as a source of protein and mineral nutrients. Here, ten commercial types of Brazilian beans, from the species Phaseolus vulgaris (common beans) and Vigna unguiculata (cowpeas), were analyzed by neutron activation analysis for the determination of Br, Ca, Co, Cs, Fe, K, Mo, Na, Rb, Sc and Zn. There were statistical differences (p/0.05) amongst the commercial types, except for Br, Rb and Sc. In general, non-essential elements showed high variability, indicating that the origin of beans had a strong influence on the mass fraction of such elements. (author)

  20. Fourier analysis of finite element preconditioned collocation schemes

    Science.gov (United States)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  1. Limit Analysis of 3D Reinforced Concrete Beam Elements

    DEFF Research Database (Denmark)

    Larsen, Kasper P.; Nielsen, Leif Otto; Poulsen, Peter Noe

    2012-01-01

    A new finite-element framework for lower-bound limit analysis of reinforced concrete beams, subjected to loading in three dimensions, is presented. The method circumvents the need for a direct formulation of a complex section-force-based yield criterion by creating a discrete representation...... Coulomb criterion is applied to the concrete stresses. The modified Coulomb criterion is approximated using second-order cone programming for improved performance over implementations using semidefinite programming. The element is verified by comparing the numerical results with analytical solutions....

  2. Trace element analysis in rheumatoid arthritis under chrysotherapy

    International Nuclear Information System (INIS)

    Lecomte, R.; Paradis, P.; Monaro, S.; Barrette, M.; Lamoureux, G.; Menard, H.A.

    1981-01-01

    Proton induced X-ray emission (PIXE) analysis is used to measure trace element concentrations in blood serum from patients with rheumatoid arthritis. Initially trace element contaminations in blood-collecting and storing devices are determined. Then mean values and nyctemeral cycles are measured both in normal subjects and patients with rheumatoid arthritis and other similar pathologies. Abnormal concentrations of Cu and Zn and anomalies in the nyctemeral cycle are found in the patients. In the second phase of the project, the special case of chrysotherapeutically treated (gold salt treatment) rheumatoid arthritis patients is studied for extended periods of time (up to 53 weeks). (orig.)

  3. Finite element analysis of structures through unified formulation

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico

    2014-01-01

    The finite element method (FEM) is a computational tool widely used to design and analyse  complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...

  4. Metallomics approach to changes in element concentration during differentiation from fibroblasts into adipocytes by element array analysis.

    Science.gov (United States)

    Ogra, Yasumitsu; Nagasaki, Shu; Yawata, Ayako; Anan, Yasumi; Hamada, Koichi; Mizutani, Akihiro

    2016-04-01

    We aimed to establish an element array analysis that involves the simultaneous detection of all elements in cells and the display of changes in element concentration before and after a cellular event. In this study, we demonstrated changes in element concentration during the differentiation of 3T3-L1 mouse fibroblasts into adipocytes. This metallomics approach yielded unique information of cellular response to physiological and toxicological events.

  5. OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING

    Directory of Open Access Journals (Sweden)

    Asterios KOSMARAS

    2017-05-01

    Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.

  6. Trace element analysis by PIXE in several biomedical fields

    Science.gov (United States)

    Weber, G.; Robaye, G.; Bartsch, P.; Collignon, A.; Beguin, Y.; Roelandts, I.; Delbrouck, J. M.

    1984-04-01

    Since 1980 in the University of Liége trace element analysis by PIXE has been developed in several directions, among these: the elemental composition of lung parenchyma, hilar lymph nodes, blood content in hematological disorders and renal insufficiency. The content in trace elements of lung tumor and surrounding tissue is measured and compared to similar content previously obtained on unselected patients of comparable ages. The normalization of the bromine deficiency observed in hemodialized patients is achieved by using a dialyzing bath doped with NaBr in order to obtain a normal bromine level of 5.7 μg/ml. The content of Cu, Zn, Br and Se in blood serum from more than 100 patients suffering from malignant hemopathy has been measured. The results are compared with a reference group. These oligoelements have also been measured sequentially for patients under intensive chemotherapy in acute myeloid leukemia.

  7. J-Integral Calculation by Finite Element Processing of Measured Full-Field Surface Displacements

    OpenAIRE

    Barhli, S. M.; Mostafavi, Mahmoud; Cinar, Ahmet; Hollis, David; Marrow, James

    2017-01-01

    © 2017 The Author(s)A novel method has been developed based on the conjoint use of digital image correlation to measure full field displacements and finite element simulations to extract the strain energy release rate of surface cracks. In this approach, a finite element model with imported full-field displacements measured by DIC is solved and the J-integral is calculated, without knowledge of the specimen geometry and applied loads. This can be done even in a specimen that develops crack ti...

  8. Correlation between sub-micron surface roughness of iron oxide encrustations and trace element concentrations

    International Nuclear Information System (INIS)

    Fischer, Cornelius; Karius, Volker; Luettge, Andreas

    2009-01-01

    Iron oxide encrustations are formed on black slate surfaces during oxidative weathering of iron sulfide and phosphate bearing, organic matter-rich slates. Synchronously, trace elements are released during ongoing weathering. Laser ablation ICP-MS analyses of a weathered and encrusted slate showed that major portions of the V, Cu, As, Mo, Pb, Th, and U reside in the encrustation. Recently a potential relationship between several micrometer to 500 nm surface topography roughness of such encrustations and its uranium concentration was shown. Based on laser scanning microscopy measurements, the present study shows that this interrelation must be expanded to small submicron-sized half-pores with diameters between 100 nm and 500 nm. We demonstrate that the relationship is not limited to topography variations of a single encrustation in the hand-specimen scale. Surface topography and geochemical analyses of iron oxide encrustations from several locations but from the same geochemical environment and with similar weathering history showed that the concentrations of U, P, Cu, and Zn correlate inversely with the surface roughness parameter F. This parameter represents the total surface area and is - in this case - a proxy for the root-mean square surface roughness Rq. This study substantiates the environmental importance that micrometer- to submicrometer topography variations of fluid-rock interfaces govern the trapping of trace elements.

  9. Correlation between sub-micron surface roughness of iron oxide encrustations and trace element concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Cornelius, E-mail: cornelius@rice.edu [Department of Earth Science, MS-126, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Geowissenschaftliches Zentrum der Universitaet Goettingen, Abt. Sedimentologie and Umweltgeologie, Goldschmidtstr. 3, D-37077 Goettingen (Germany); Karius, Volker [Geowissenschaftliches Zentrum der Universitaet Goettingen, Abt. Sedimentologie and Umweltgeologie, Goldschmidtstr. 3, D-37077 Goettingen (Germany); Luettge, Andreas [Department of Earth Science, MS-126, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2009-08-01

    Iron oxide encrustations are formed on black slate surfaces during oxidative weathering of iron sulfide and phosphate bearing, organic matter-rich slates. Synchronously, trace elements are released during ongoing weathering. Laser ablation ICP-MS analyses of a weathered and encrusted slate showed that major portions of the V, Cu, As, Mo, Pb, Th, and U reside in the encrustation. Recently a potential relationship between several micrometer to 500 nm surface topography roughness of such encrustations and its uranium concentration was shown. Based on laser scanning microscopy measurements, the present study shows that this interrelation must be expanded to small submicron-sized half-pores with diameters between 100 nm and 500 nm. We demonstrate that the relationship is not limited to topography variations of a single encrustation in the hand-specimen scale. Surface topography and geochemical analyses of iron oxide encrustations from several locations but from the same geochemical environment and with similar weathering history showed that the concentrations of U, P, Cu, and Zn correlate inversely with the surface roughness parameter F. This parameter represents the total surface area and is - in this case - a proxy for the root-mean square surface roughness Rq. This study substantiates the environmental importance that micrometer- to submicrometer topography variations of fluid-rock interfaces govern the trapping of trace elements.

  10. Ultra-sensitive trace element analysis of environmental samples using advanced TRXRF techniques

    International Nuclear Information System (INIS)

    Schwenke, H.; Knoth, J.; Michaelis, W.

    1980-01-01

    X-ray fluorescence analysis is a widely adopted technique for measuring elemental concentrations in a variety of sample species. The particular advantages compared to other methods are simplicity in instrumentation, rapidity of measurement and the high degree of automation attainable. In trace element analysis, however, the sensitivity of conventional x-ray fluorescence analysis is often insufficient. The paper describes a new type of energy-dispersive equipment which reveals ultimate performance with respect to detection limits and which thus considerably extends the applicability of XRF analysis. The essential feature of the system is the utilization of multiple total reflection (TR) of the exciting x-ray beam from polished quartz glass surfaces. Since the refractive index is slightly smaller than 1, total reflection occurs if the radiation strikes the surface at angles of less than 5'. The grazing incident beam from a fine-structure x-ray tube is twice reflected and follows a zigzag path before it is directed to the sample prepared as a thin film on the third quartz glass surface. The direct beam and scattered radiation are eliminated by diaphragms. In this way, a further reduction of the background in the fluorescence spectrum is achieved compared to a previously published version with single reflection of the exciting beam. The performance of the instrument leads to detection limits for aqueous solutions below 10 -11 g or 0.1 ppB, respectively, for at least 20 elements

  11. Surface element segregation and electrical conductivity of lithium layered transition-metal oxide cathode materials

    Science.gov (United States)

    Li, Guohua; Li, Qi; Li, Liping; Fan, Jianming; Ge, Qingqin; Xie, Dongjiu; Zheng, Jing; Li, Guangshe

    2018-01-01

    Surface element segregation and electric conductivity are critical in determining lithium storage ability of given cathode materials, which are poorly understood and not correlated with the structure and overall performance. Here, layered lithium transition-metal oxides, one of the state-of-the-art cathode materials for lithium ion batteries are chosen to study. A serial of LiNixCo1-2xMnxO2 samples were prepared via a solid state reaction and subsequently characterized by XRD in conjunction with structural refinement, XPS depth profiling, and AC impedance spectroscopy. Slightly different expansion rates are observed for lattice parameters (a and c/3) with varying of Ni content, which is attributed to the increase of average metal-ion radius and an increase of eg electron that enhances the columbic repulsion between transition metal and oxygen atoms. XPS depth profiling results show that surface composition is significantly deviated from bulk, in which Ni and Mn atoms tend to enrich in the surface region, while Co element is relatively deficient. Further, surface element segregation is alleviated by the increase of Ni/Mn content. Moreover, increasing the Ni/Mn content also raises the activation energy of bulk conduction.

  12. Finite element analysis of fretting contact for nonhomogenous materials

    Science.gov (United States)

    Korkmaz, Y. M.; Coker, D.

    2018-01-01

    Fretting problem arises in the case of relatively small sliding motion between contacting surfaces. Fatigue life of the components that are in contact with each other, especially in rotorcraft may be significantly reduced due to fretting. The purpose of this study is to investigate material inhomogeneity near the contact region on the fretting problem in a cylindrical on flat contact configuration. A finite element (FE) model was constructed by using commercial finite element package ABAQUSTMto study partial sliding and stress concentrations. In order to investigate the effect of material inhomogeneity, the fretting contact is analyzed by introducing voids near the contact region. The void size and an array of voids is introduced into the substrate. The results are compared in terms of pressure, shear traction, tangential stress magnitudes and relative slip between the contacting materials.

  13. Nonlinear Finite Element Analysis of Reinforced Concrete Shells

    Directory of Open Access Journals (Sweden)

    Mustafa K. Ahmed

    2013-05-01

    Full Text Available This investigation is to develop a numerical model suitable for nonlinear analysis of reinforced concrete shells. A nine-node Lagrangian element Figure (1 with enhanced shear interpolation will be used in this study. Table (1 describes shape functions and their derivatives of this element.An assumed transverse shear strain is used in the formulation of this element to overcome shear locking. Degenerated quadratic thick plate elements employing a layered discrelization through the thickness will be adopted. Different numbers of layers for different thickness can be used per element. A number of layers between (6 and 10 have proved to be appropriate to represent the nonlinear material behavior in structures. In this research 8 layers will be adequate. Material nonlinearities due to cracking of concrete, plastic flow or crushing of concrete in compression and yield condition of reinforcing steel are considered. The maximum tensile strength is used as a criterion for crack initiation. Attention is given to the tension stiffening phenomenon and the degrading effect of cracking on the compressive and shear strength of concrete. Perfect bond between concrete and steel is assumed. Attention is given also to geometric nonlinearities. An example have been chosen in order to demonstrate the suitability of the models by comparing the predicted behaviour with the experimental results for shell exhibiting various modes of failure.

  14. Finite element analysis of thrust angle contact ball slewing bearing

    Science.gov (United States)

    Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin

    2017-12-01

    In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.

  15. [Finite element analysis on stress change of lumbar spine].

    Science.gov (United States)

    Yan, Jia-zhi; Wu, Zhi-hong; Wang, Xue-song; Xing, Ze-jun; Song, Hai-feng; Zhao, Yu; Zhang, Jian-guo; Wang, Yi-peng; Qiu, Gui-xing

    2009-05-05

    To build a 3D finite element model of whole lumbar spine and verify its efficiency and analyze the biomechanical change of L3-4 motion segment. L1-L5 segment data were obtained from computed tomography (CT) scans of the lumbar spine of a 40-year-old man with no abnormal findings. A three-dimensional finite element model of the human whole lumbar spine was built in the Mimics and the ABAQUS software. The model was composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments. The basic stress analysis of L3-4 motion segment was made under the considerations of different material properties of bone, ligaments and facet joints contacting frictional property. The stress on annulus fiber, nucleus pulposus, endplate and facet joints under axial pressure (0.3 MPa, 0.5 MPa, 1.0 MPa, 2.0 MPa & 4.0 MPa) were analyzed. A three-dimensional finite element model of human L3-L4 motion segment has 272, 619 elements, the stresses were higher in the posterior of annulus fiber, the Max pressure stress (S33) distributed in nucleus pulposus and the center of endplate. The stresses increased as axial pressure rose. 3D finite element model of whole lumbar spine and L3-4 motion segment were established successfully and the stress analyses were feasible and reliable.

  16. r-Adaptive mesh generation for shell finite element analysis

    International Nuclear Information System (INIS)

    Cho, Maenghyo; Jun, Seongki

    2004-01-01

    An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

  17. Medical and health-related trace element analysis by TXRF

    International Nuclear Information System (INIS)

    Greaves, E.D.

    2000-01-01

    The advantages offered with TXRF analysis by direct irradiation with monochromatic X-rays of tissue homogenates and body fluids make the technique appropriate for a number of medical and health related applications. The ability to detect low levels of toxic heavy elements is being used as an aid in accidental poisoning diagnosis and treatment, in treatment-induced toxicity control and as an accessory in medical and health research. Thus lead-in-whole-blood analysis is used in confirmation of diagnosis of victims of poisoning, or monitoring the evolution and efficiency of the clinical treatment. Measurement and control of plasma platinum levels of cancer patients undergoing chemotherapy with Pt-containing drugs includes: establishment of the drug level-tumor remission response, measurement of Pt plasma level curves and establishment of optimum dosage to minimize the nephrotoxicity of platinum, and bioequivalence comparisons of different commercially available platinum containing anticancer drugs. Analysis as an aid in clinical research applications includes: trace element determination of amniotic fluid in fetus malformation studies; analysis of brain specimens and cerebrospinal fluid in diagnosis of central nervous system disorders; the influence of trace elements in cataract genesis and the influence of heavy elements in semen quality in human reproduction studies. Human body samples require the use of monochromatized beams of x-rays in order to derive the special advantage of its use: i) The reduction in the spectrum background allowing direct irradiation of organic matter specimens. Hence human tissue and body fluids are prepared by simple procedures involving dilution, homogenization and standard addition avoiding the need for specimen digestion. This results in faster, cheaper methods that decrease sample contamination problems. ii) The presence of a large Compton scattered signal in the spectrum and its use as an internal standard reference allows further

  18. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    Science.gov (United States)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  19. Modeling Intracochlear Magnetic Stimulation: A Finite-Element Analysis.

    Science.gov (United States)

    Mukesh, S; Blake, D T; McKinnon, B J; Bhatti, P T

    2017-08-01

    This study models induced electric fields, and their gradient, produced by pulsatile current stimulation of submillimeter inductors for cochlear implantation. Using finite-element analysis, the lower chamber of the cochlea, scala tympani, is modeled as a cylindrical structure filled with perilymph bounded by tissue, bone, and cochlear neural elements. Single inductors as well as an array of inductors are modeled. The coil strength (~100 nH) and excitation parameters (peak current of 1-5 A, voltages of 16-20 V) are based on a formative feasibility study conducted by our group. In that study, intracochlear micromagnetic stimulation achieved auditory activation as measured through the auditory brainstem response in a feline model. With respect to the finite element simulations, axial symmetry of the inductor geometry is exploited to improve computation time. It is verified that the inductor coil orientation greatly affects the strength of the induced electric field and thereby the ability to affect the transmembrane potential of nearby neural elements. Furthermore, upon comparing an array of micro-inductors with a typical multi-site electrode array, magnetically excited arrays retain greater focus in terms of the gradient of induced electric fields. Once combined with further in vivo analysis, this modeling study may enable further exploration of the mechanism of magnetically induced, and focused neural stimulation.

  20. Electromagnetic analysis of control element drive mechanism for KSNP

    International Nuclear Information System (INIS)

    Kim, H. M.; Kim, I. G.; Kim, I. Y.

    2002-01-01

    The magnetic jack type Control Element Drive Mechanism (CEDM) for Korean Standard Nuclear Power Plant (KSNP) is an electromechanical device which provides controlled linear motion to the Control Element Assembly (CEA) through the Extension Shaft Assembly (ESA) in response to operational signals received from the Control Element Drive Mechanism Control System (CEDMCS). The CEDM is operated by applying localized magnetic flux fields to movable latch and lift magnets, which are in the coolant pressure boundary. The CEDM design had been developed through electromechanical testing of the system including the magnetic force lifting the ESA. But it will be inefficient if parametric studies should be performed to improve the CEDM by test due to the consumption of high cost and long duration. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM to improve the CEDM design efficiently. In this paper, the electromagnetic analysis using a 2D finite element model has been carried out to simulate magnetic force of the lift magnet of the CEDM, to provide effective evaluation between leakage flux and lift force and to compare with test results. Analysis results show the lift force satisfied the test results and design requirement and the lift force depend on the shape of the components, leakage flux and B-H curve

  1. Numerical Analysis of Block Caving-Induced Instability in Large Open Pit Slopes: A Finite Element/Discrete Element Approach

    Science.gov (United States)

    Vyazmensky, Alexander; Stead, D.; Elmo, D.; Moss, A.

    2010-02-01

    This paper addresses one of the most challenging problems in mining rock engineering—the interaction between block cave mining and a large overlying open pit. The finite element modeling/discrete element modeling (FEM/DEM) approach was utilized in the analysis of block caving-induced step-path failure development in a large open pit slope. The analysis indicated that there is a threshold percentage of critical intact rock bridges along a step-path failure plane that may ensure the stability of an open pit throughout caving operations. Transition from open pit to underground mining at Palabora mine presents an important example of a pit wall instability triggered by caving. Using combined FEM/DEM-DFN (discrete fracture network) modeling, it was possible to investigate the formation of a basal failure surface within an open pit slope as a direct result of cave mining. The modeling of Palabora highlighted the importance of rock mass tensile strength and its influence on caving-induced slope response.

  2. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    Science.gov (United States)

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  3. Analysis of some elements in primary enamel during postnatal mineralization.

    Science.gov (United States)

    Sabel, Nina; Klinberg, Gunilla; Nietzsche, Sandor; Robertson, Agneta; Odelius, Hans; Norén, Jörgen G

    2009-01-01

    The primary teeth start to mineralize in utero and continue development and maturation during the first year of life.The aim of this study was to investigate the concentrations of some elements, C, F, Na, Mg, Cl, K and Sr, by secondary ion mass spectrometry (SIMS) in human primary incisors at different stages of mineralization.The teeth derived from an autopsy material from children who had died in sudden infant death.The buccal enamel of specimens from the ages 1, 2, 3, 4, 6 and 19 months, respectively, was analyzed. It was evident that posteruptive effects play an important role in composition of the outermost parts of the enamel. Before the tooth erupts, the concentrations of the elements vary with the maturation grade of the mineralization in the enamel. Sodium was the element with the highest concentration of the measured elements and chlorine was the element of lowest concentration.The 19 month old specimen, considered as the only mature and erupted tooth, showed to differ from the other specimens.The concentration of fluorine, in the 19 month old specimen's outermost surface, is readily seen higher compared with the other specimens at this depth zone. In the 19 month old specimen the concentration of carbon is lower. Potassium, sodium and chlorine have higher concentrations, in general, in the 19 month old specimen compared with the immature specimens. The thickness of the enamel during mineralization was calculated from data from SIMS.The thickness of the buccal enamel of primary incisors seemed to be fully developed between 3-4 months after birth, reaching a thickness of 350-400 microm.

  4. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  5. Proposal for element size and time increment selection guideline by 3-D finite element method for elastic waves propagation analysis

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Meshii, Toshiyuki

    2008-01-01

    This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)

  6. Free surface simulation of a two-layer fluid by boundary element method

    Directory of Open Access Journals (Sweden)

    Weoncheol Koo

    2010-09-01

    Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.

  7. Study on the state of a surface of compounds of vanadium with light elements

    International Nuclear Information System (INIS)

    Povstugar, V.I.; Mikhajlova, S.S.; Trapeznikov, V.A.

    1976-01-01

    Roentgenoelectron study of powderlike compounds of vanadium with light elements (C, N, O, S) was carried out. The study was made in the temperature range of 70-500 deg C. The results were obtained in an electron magnetic spectrometer. Spectra of inner levels O 1S and V 2p and valance bands are presented. The experimental results can be employed for the study of synthesis problems of the given class of compounds. Due to high surface activity the study of catalytic properties of finely dispersed vanadium compounds by roentgenoelectron spectroscopy method gives much information about surface processes

  8. Transport and dispersion of pollutants in surface impoundments: a finite element model

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied

  9. Transport and dispersion of pollutants in surface impoundments: a finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.

  10. Finite Element Modelling of Elastic-Plastic Contact of Rough Surfaces

    OpenAIRE

    Abdo, Jamil; Haneef, Danish; Al-Shabibi, Abdullah

    2010-01-01

    The contact area and contact load of an elastic-plastic micro-contact was calculated. The ultimate stress asperity is embedded at a critical depth within the actual surface asperities. The finite element solution is used to define the limit at which failure is to occur. The present model is more accurate than the previous models since it accounts for the net elasticplastic by subtracting the plastic portion that reached the ultimate-stress asperity limit. Comparisons of the present model with...

  11. Finite Element Analysis of a Natural Fiber (Maize) Composite Beam

    OpenAIRE

    Bavan, D. Saravana; Kumar, G. C. Mohan

    2013-01-01

    Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize) composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with meth...

  12. Instrumental neutron activation analysis in environmental studies of trace elements

    International Nuclear Information System (INIS)

    Salmon, L.

    1975-06-01

    The application of a routine instrumental nuclear method is described in relation to environmental surveys and studies. A working rather than formal review is made of the techniques applied with particular reference to the data processing methods involved. The elements measured by instrumental activation analysis were: Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Cd, Co, Cr, Cs, Cu, Fe, Hg, I, In, La, Mn, Na, Ni, Pb, Rb, Sb, Sc, Se, Th, Ti, U, V, W, Zn. (author)

  13. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  14. [Three dimensional mathematical model of tooth for finite element analysis].

    Science.gov (United States)

    Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka

    2010-01-01

    The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  15. OPTIMIZATION OF EQUIPMENT "RAKECUP TYPE " USING FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    ŞOMOIAG Adrian

    2011-06-01

    Full Text Available It has been designed a new solution technological constructive of navvy equipment like rake cup attachable to the excavator arm. Cup shape and size were determined after repeated attempts for a specific cup, with the technological requirements required by the designer, the attempts being made in AutoCAD, 2D - 3D, until the desired results, based on the calculations. Finally, the structure was optimized to load applications from the cup, using finite element analysis method.

  16. Free vibration analysis of dragonfly wings using finite element method

    OpenAIRE

    M Darvizeh; A Darvizeh; H Rajabi; A Rezaei

    2016-01-01

    In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM) is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eac...

  17. Predicting thermal distortion of synchrotron radiation mirrors with finite element analysis

    International Nuclear Information System (INIS)

    DiGennaro, R.; Edwards, W.R.; Hoyer, E.

    1985-10-01

    High power and high power densities due to absorbed radiation are significant design considerations which can limit performance of mirrors receiving highly collimated synchrotron radiation from insertion devices and bending magnet sources. Although the grazing incidence angles needed for x-ray optics spread the thermal load, localized, non-uniform heating can cause distortions which exceed allowable surface figure errors and limit focusing resolution. This paper discusses the suitability of numerical approximations using finite element methods for heat transfer, deformation, and stress analysis of optical elements. The primary analysis objectives are (1) to estimate optical surface figure under maximum heat loads, (2) to correctly predict thermal stresses in order to select suitable materials and mechanical design configurations, and (3) to minimize fabrication costs by specifying appropriate tolerances for surface figure. Important factors which determine accuracy of results include finite element model mesh refinement, accuracy of boundary condition modeling, and reliability of material property data. Some methods to verify accuracy are suggested. Design analysis for an x-ray mirror is presented. Some specific configurations for internal water-cooling are evaluated in order to determine design sensitivity with respect to structural geometry, material properties, fabrication tolerances, absorbed heat magnitude and distribution, and heat transfer approximations. Estimated accuracy of these results is discussed

  18. Finite element analysis of the cyclic indentation of bilayer enamel

    Science.gov (United States)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  19. Finite Element Analysis of a Natural Fiber (Maize Composite Beam

    Directory of Open Access Journals (Sweden)

    D. Saravana Bavan

    2013-01-01

    Full Text Available Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with methyl ethyl ketone peroxide (MEKP as a catalyst and Cobalt Octoate as a promoter. The material was modeled and resembled as a structural beam using suitable assumption and analyzed by means of finite element method using ANSYS software for determining the deflection and stress properties. Morphological analysis and X-ray diffraction (XRD analysis for the fiber were examined by means of scanning electron microscope (SEM and X-ray diffractometer. From the results, it has been found that the finite element values are acceptable with proper assumptions, and the prepared natural fiber composite beam material can be used for structural engineering applications.

  20. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  1. A proposal for a determination method of element division on an analytical model for finite element elastic waves propagation analysis

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Meshii, Toshiyuki

    2010-01-01

    This study proposes an element size selection method named the 'Impact-Meshing (IM) method' for a finite element waves propagation analysis model, which is characterized by (1) determination of element division of the model with strain energy in the whole model, (2) static analysis (dynamic analysis in a single time step) with boundary conditions which gives a maximum change of displacement in the time increment and inertial (impact) force caused by the displacement change. In this paper, an example of application of the IM method to 3D ultrasonic wave propagation problem in an elastic solid is described. These examples showed an analysis result with a model determined by the IM method was convergence and calculation time for determination of element subdivision was reduced to about 1/6 by the IM Method which did not need determination of element subdivision by a dynamic transient analysis with 100 time steps. (author)

  2. Finite element modeling of stress distribution in intervertebral spacers of different surface geometries.

    Science.gov (United States)

    Lee, Jae Hyup; Baek, Myong-Hyun; Kim, Young Eun; Seo, Jun-Hyuk; Song, Dong Ryul; Ryu, Hyun-Seung; Lee, Choon-Ki; Chang, Bong-Soon

    2013-11-01

    Intervertebral disc spacers using bioactive ceramics have been used to treat degenerative spinal disease. Tooth-shaped spacers are commonly used to prevent migration, but there is a possibility of fracture when inserted or after insertion. Intervertebral disc spacers with either an isosceles triangle-shaped tooth (T1) or a right triangle-shaped tooth (T2) were used as a control group. The design factors for the experimental group were modified to prevent fractures induced by stress concentration, and the surfaces of the spacers were designed as either an isosceles triangle-shaped valley (V1) or a right triangle-shaped valley (V2). Linear analysis using finite element model (FEM) was performed, and Von Mises stress distribution was calculated by applying 1000 N of uniformly distributed load. Samples of the V2 design were made with bioactive glass-ceramics (BGS-7) and evaluated for compressive strength, fatigue degree, and impact strength. Von Mises stress was highest at the first tooth from the posterior side for the control group and at the center for the experimental group. Compared with the control group, the experimental group showed 18.4% and 82.5% reduction (V1 vs. T1 and V2 vs. T2, respectively) in the maximum stress at the bottom of the valleys. The FEM analysis revealed that the V2 design had the most even load distribution. The V2 samples with bioactive glass-ceramics were evaluated for compressive strength, and all six samples were not fractured up to 24 000 N. However, the average impact strength was 19.42 kN, suggesting that momentary force caused damage at a lower load than compression with a steady speed. The BGS-7 intervertebral disc spacer with V2 design was not fractured during the fatigue test at maximum pressure of 8000 N, R ≥10, 5 Hz, and 5 million cycles. These data confirm that the BGS-7 spacer with the V2 design may be clinically applicable. Collectively, the modified surface geometry of the experimental group significantly lowered Von

  3. Complex of the equipment for instrumental element analysis

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Kuz'michev, V.A.

    1986-01-01

    Complex of the equipment for instrumental element analysis at the IR-8 reactor is designed, fabricated and taken into operation. The complex is provided with a multichannel system of vacuum pneumatic transport with radiation positions in the reactor horizontal tangential channel for neutron-activation analysis by short-lived isotopes; specialized dry vertical channels in a beryllium reflector of the reactor and remote system of radioactive sample replacement for neutron-activation analysis by long-lived isotopes; a specialized horizontal tangential channel for neutron beam extraction by means of a beryllium converter and remote device for studied sample replacement under radiation and measurement of prompt γ-radiation for neutron-radiation analysis; a measuring center using minicomputers for experimental data accumulation and processing and analysis control

  4. Establishing a protocol for element determination in human nail clippings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sanches, Thalita Pinheiro; Saiki, Mitiko

    2011-01-01

    Human nail samples have been analyzed to evaluate occupational exposure, nutritional status and to diagnose certain diseases. However, sampling and washing protocols for nail analyses vary from study to study not allowing comparisons between studies. One of the difficulties in analyzing nail samples is to eliminate only surface contamination without removing elements of interest in this tissue. In the present study, a protocol was defined in order to obtain reliable results of element concentrations in human nail clippings. Nail clippings collected from all 10 fingers or toes were previously pre cleaned using an ethyl alcohol solution to eliminate microbes. Then, the clippings were cut in small pieces and submitted to different reagents for washing by shaking. Neutron activation analysis (NAA) was applied for nail samples analysis which consisted of irradiating aliquots of samples together with synthetic elemental standards in the IEA-R1 nuclear research reactor followed by gamma ray spectrometry. Comparisons made between the results obtained for nails submitted to different reagents for cleaning indicated that the procedure using acetone and Triton X100 solution is more effective than that of nitric acid solution. Analyses in triplicates of a nail sample indicated results with relative standard deviations lower than 15% for most of elements, showing the homogeneity of the prepared sample. Qualitative analyses of different nail polishes showed that the presence of elements determined in the present study is negligible in these products. Quality control of the analytical results indicated that the applied NAA procedure is adequate for human nail analysis. (author)

  5. Examination of the surface coatings removed from K-East Basin fuel elements

    International Nuclear Information System (INIS)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage

  6. Examination of the surface coating removed from K-East Basin fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage.

  7. Finite Element Modeling Techniques for Analysis of VIIP

    Science.gov (United States)

    Feola, Andrew J.; Raykin, J.; Gleason, R.; Mulugeta, Lealem; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.; Ethier, C. Ross

    2015-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP.

  8. Multidimensional elemental analysis with the Sandia nuclear microprobe

    International Nuclear Information System (INIS)

    Doyle, B.L.

    1988-01-01

    It is well known that many of the ion beam analysis techniques such as Rutherford backscattering spectrometry, elastic recoil detection, resonant and nonresonant nuclear reaction analysis can be used to nondestructively obtain concentration depth profiles of elements in solids. When these techniques are combined with the small beam spot capabilities of a scanned nuclear microprobe, sample composition can be determined in up to three dimensions. This paper will review the various procedures used to collect and analyze multidimensional data using the Sandia nuclear microprobe. In addition, examples of how these data are being used in the study of materials will be shown. (author)

  9. Finite element analysis of the stiffness of fabric reinforced composites

    Science.gov (United States)

    Foye, R. L.

    1992-01-01

    The objective of this work is the prediction of all three dimensional elastic moduli of textile fabric reinforced composites. The analysis is general enough for use with complex reinforcing geometries and capable of subsequent improvements. It places no restrictions on fabric microgeometry except that the unit cell be determinate and rectangular. The unit cell is divided into rectangular subcells in which the reinforcing geometries are easier to define and analyze. The analysis, based on inhomogeneous finite elements, is applied to a variety of weave, braid, and knit reinforced composites. Some of these predictions are correlated to test data.

  10. Californium-252 neutron capture and decay methods for elemental analysis

    Science.gov (United States)

    1972-01-01

    The feasibility of using a Cf-252 neutron source in conjunction with a capture and/or decay gamma ray method for elemental analysis on lunar or planetary missions was tested. The general problems of using a Cf-252 neutron source for both decay and capture gamma ray analysis in terrestrial environments included the determination of the capture gamma ray spectra by neutron absorption in various metals used for the space hardware, Cf-252 source encapsulation materials, shielding, geometry, and optimum source size for a space mission. Computer data reduction and data transmission techniques were also investigated.

  11. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  12. Macro elemental analysis of food samples by nuclear analytical technique

    Science.gov (United States)

    Syahfitri, W. Y. N.; Kurniawati, S.; Adventini, N.; Damastuti, E.; Lestiani, D. D.

    2017-06-01

    Energy-dispersive X-ray fluorescence (EDXRF) spectrometry is a non-destructive, rapid, multi elemental, accurate, and environment friendly analysis compared with other detection methods. Thus, EDXRF spectrometry is applicable for food inspection. The macro elements calcium and potassium constitute important nutrients required by the human body for optimal physiological functions. Therefore, the determination of Ca and K content in various foods needs to be done. The aim of this work is to demonstrate the applicability of EDXRF for food analysis. The analytical performance of non-destructive EDXRF was compared with other analytical techniques; neutron activation analysis and atomic absorption spectrometry. Comparison of methods performed as cross checking results of the analysis and to overcome the limitations of the three methods. Analysis results showed that Ca found in food using EDXRF and AAS were not significantly different with p-value 0.9687, whereas p-value of K between EDXRF and NAA is 0.6575. The correlation between those results was also examined. The Pearson correlations for Ca and K were 0.9871 and 0.9558, respectively. Method validation using SRM NIST 1548a Typical Diet was also applied. The results showed good agreement between methods; therefore EDXRF method can be used as an alternative method for the determination of Ca and K in food samples.

  13. Neutron activation analysis to the profile surface sediments from several sites on the Havana Bay

    International Nuclear Information System (INIS)

    Diaz Riso, O.; Gelen, A.; Lopez, N.; Gonzalez, H.; Manso, M.V.; Graciano, A.M.; Nogueira, C.A.; Beltran, J.; Soto, J.

    2003-01-01

    Instrumental neutron activation analysis (INAA) technique was employed to analyze the surface sediments from several sites on the Havana Bay, Cuba. Measurements of heavy and trace elements in the sediments are reported. The results show that the concentration of the elements is site dependent. The data suggest that an anthropogenic input into the bay from domestic sewage and industries occurred

  14. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Walied A. Moussa

    2010-02-01

    Full Text Available Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT patterned on the surface. A thin palladium (Pd film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  15. Experimental and statistical models of impact determination of the electron beam parameters on surface layers properties of optical elements in precision instruments building

    Directory of Open Access Journals (Sweden)

    I.V. Yatsenko

    2016-05-01

    Full Text Available Modern devices with optical elements for measurement and thermal control of different physical nature objects subjected to intense external thermal actions. To prevent destruction of optical elements the electron beam methods of work surfaces finishing at the stage of manufacture has practical significance. These methods can improve the properties of the element surface layers and thus make them more resistant to external thermal and mechanical action. Aim: The aim is to determine the optimal ranges of parameters of the electron beam and the development of experimental and statistical models that will automatically generate database with improved properties of the surface layers of optical elements in real time mode after previous electron beam treatment. Materials and Methods: To study the influence of parameters of the electron beam on the properties of the surface layers of the optical elements used plates of optical glass (K8, K108, etc. and ceramics (KO1, KO2, etc.. The strip electron beam has the following characteristics: density of heat flow Fn = 5∙10^6…9∙10^8 W/m2 and rate of displacement V = 0…0.1 m/s. Determination of the surface layers properties of the optical elements before and after electron beam treatment was carried out by known methods of physical and chemical analysis. Results: It was established that under the influence of the electron beam on the surface of the optical element there is visible clearing of various impurities take place, various micro-defects that remain on it after standard processing methods (mechanical, chemical, etc. remove and also its smoothness significantly increases, i.e. height of residual asperities on the surface is reduced. It was also found that the processing of optical glass elements by electron beam their surface layers change their structure, which is close to the quartz. It is shown that the surface of the preprocessed electron beam elements able to withstand the critical value of

  16. Determination of minor and trace elements concentration in kidney stones using elemental analysis techniques

    Science.gov (United States)

    Srivastava, Anjali

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. The X-ray fluorescence (XRF) and neutron activation analysis (NAA) experiments were performed and different kidney stones were analyzed. The interactions of X-ray photons and neutrons with matter are complementary in nature, resulting in distinctly different materials detection. This is the first approach to utilize combined X-ray fluorescence and neutron activation analysis for a comprehensive analysis of the kideny stones. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. The use of open source program Python Multi-Channel Analyzer was utilized to unfold the XRF spectrum. A new type of experimental set-up was developed and utilized for XRF and NAA analysis of the kidney stone. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF and NAA technique. The elements which were identified from XRF technique are Br, Cu, Ga, Ge, Mo, Nb, Ni, Rb, Se, Sr, Y, Zr. And, by using Neutron Activation Analysis (NAA) are Au, Br, Ca, Er, Hg, I, K, Na, Pm, Sb, Sc, Sm, Tb, Yb, Zn. This thesis presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF and NAA instrumental activation analysis techniques.

  17. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  18. Analysis of service quality elements in higher education

    Directory of Open Access Journals (Sweden)

    Vranješ Marija

    2014-01-01

    Full Text Available Quality is becoming one of the main factors of competitive advantage both in the manufacturing and commercial sectors, and therefore in education. In order to attract and retain a greater number of students, higher education institutions must constantly work on their services quality improvement and increase of student's satisfaction. The aim of this paper is to explore how certain dimensions of service quality of higher education affect the level of satisfaction of students. In accordance with the abovementioned aim, descriptive statistics measures were used, as well as reliability analysis, correlation and regression analysis. The originality of the paper is reflected in this, in particular. The data were collected through survey on a sample of 206 respondents and on that occasion the new model was tested, developed on the basis of earlier models for measuring the quality of services. The results suggest that all elements of the service quality of higher education have a statistically significant impact on satisfaction. Intangible elements have the strongest effect, followed by tangible elements, while the influence of the connection with the practice is weaker than the influence of the aforementioned independent variables. These results indicate that none of the dimensions should be ignored, but also emphasize the need to focus on those dimensions that contribute most to the satisfaction of students. Results of the conducted studies will contribute to the management of higher education institutions.

  19. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.

    Science.gov (United States)

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L

    2011-09-30

    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  20. Elemental segregation in titanium alloys induced by plasma-surface interaction

    International Nuclear Information System (INIS)

    Raveh, A.

    1990-07-01

    The microstructure and surface composition of nitrided titanium alloys (Ti-6Al-4V and Ti-8Al-1V-Mo) were investigated after plasma nitriding with nitrogen, hydrogen and argon. The composition of the plasma, near the surface of the sample (plasma layer) was examined by optical emission spectroscopy and mass spectrometry, while the composition of the surface of the alloy after the process, the structure and microstructure of the layers were studied by auger electron spectrometry, scanning auger microprobe, x-ray difraction, scanning electron microscope,transmission electron microscope and high resolution transmission electron microscope. It was observed that elemental segregation occurs in titanium alloys at the interface between compound layer and diffusion layer. Based on the present results, a mechanism for the formation of the nitrided layers in the plasma was suggested

  1. Fingerprint elements scatter analysis on ancient chinese Ru porcelains samples

    International Nuclear Information System (INIS)

    Gao Zhengyao; Wang Jie; Chen Xiande

    1997-01-01

    Altogether 28 samples, mainly including glazes and bodies of ancient Chinese Ru porcelain, were analyzed by NAA technique and the contents of 36 elements were compared. The scatter analysis for nine fingerprint-elements indicates that almost all ancient Chinese Ru porcelain samples had nearly identical and long-term stable source of raw materials although they were fired in different kilns, at varying time and with distinct colors, and moreover, the source of raw materials for modern Ru porcelain seems to approach that for ancient one. The close provenance relation between ancient Jun porcelain and ancient Ru porcelain is also preliminarily verified. The glaze material of Jingdezhen white porcelain is totally different from all other samples. It shows that the former came from a separate source

  2. Finite element analysis of nonisothermal polymer processing operations

    Science.gov (United States)

    Douglas, C.; Roylance, D.

    1982-01-01

    A finite element formulation for the analysis of polymer processing is presented and its use in some typical situation including entry flow, transient Couette flow, and the Graetz (forced convection) problem is illustrated. The element formulations are constructed on the premise that momentum convection can be neglected (polymer melt flows typically have very low Reynolds' numbers), but that convective heat transfer may be significant (high Peclet numbers). Nonisothermal effects are considered important in polymer processing, due in part to the significant heating which may occur due to viscous dissipation, and also to the very strong influence of temperature on fluid viscosity. The flow is treated as Newtonian with the flow field being coupled to the heat transfer equation only through the viscous heat generation.

  3. Piping noise transmission loss calculations using finite element analysis

    Science.gov (United States)

    Eberhart, Richard; Catron, Fred W.; Fagerlund, Allen C.; Karczub, Denis G.; Mann, J. Adin

    2005-09-01

    The prediction of noise radiated by piping downstream of a control valve is subject to various uncertainties. One of the significant sources of uncertainty is the pipe-wall transmission loss. Due to the difficulties in experimentally measuring pipe-wall transmission loss accurately, and practical difficulties of taking into account pipe length and boundary conditions, an analytical approach for the calculation of transmission loss is required. The feasibility of uncoupled structural-acoustic finite element based calculations of transmission loss is being investigated for this purpose. By developing the use of finite element based calculations of transmission loss, it is hoped to provide a simple analysis procedure to quantify the effects of pipe length and boundary conditions on the noise level downstream of control valves in practical piping systems. It should also assist in the refinement of analytical/statistical calculations of transmission loss and noise radiation.

  4. Neutron activation analysis of traces of metallic elements in water

    International Nuclear Information System (INIS)

    Pinte, G.; Lefol, N.; May, S.; Darras, R.

    1975-01-01

    The application of neutron activation analysis is examined for the elements iron, nickel, chromium and cobalt which are constituents of the aqueous corrosion products of stainless steels and which are present in very low concentrations in the water used in the heat transfer systems of nuclear reactors. The best results were obtained by slow evaporation of the water sample in a quartz ampoule in an oven followed by irradiation of the dry sample in the same ampoule. The problems of blanks, of losses during concentration, and of conservation of solutions at very low concentrations were studied. Good agreement was found between the theoretical quantities and experimental results with standard samples containing 50ppb of each of the studied elements. There was also excellent agreement between neutron activation and spectrophotometric methods in the case of determinations of iron in solution [fr

  5. Finite Element Analysis of Electrically Excited Quartz Tuning Fork Devices

    Science.gov (United States)

    Oria, Roger; Otero, Jorge; González, Laura; Botaya, Luis; Carmona, Manuel; Puig-Vidal, Manel

    2013-01-01

    Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement. PMID:23722828

  6. Finite Element Analysis of Electrically Excited Quartz Tuning Fork Devices

    Directory of Open Access Journals (Sweden)

    Manel Puig-Vidal

    2013-05-01

    Full Text Available Quartz Tuning Fork (QTF-based Scanning Probe Microscopy (SPM is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement.

  7. Distribution of 35 Elements in Peat Cores from Ombrotrophic Bogs Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2004-01-01

    In ombrotrophic bogs the surface peat layer is supplied with chemical substances only from the atmosphere. Peat cores from these bogs therefore can be used to study temporal trends in atmospheric deposition of pollutants. In this work epithermal neutron activation analysis was applied for the first time to study the distribution of 35 elements in peat profiles from ombrotrophic bogs. The selected examples were from Finnmark county in northern Norway: one pristine site far from any local pollution source, and another strongly affected by long-term operation of Russian copper-nickel smelters located close to the border. The elements are classified with respect to their behavior in the uppermost 40 cm of the peat, and similarities and differences between the two profiles are discussed. As compared with other more commonly used analytical techniques based on acid decomposition of the sample ENAA has the advantage of providing the total concentrations of the elements.

  8. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilometry......, optical scanning techniques, and scanning probe microscopy (SPM). These methods, based on acquisition of topography data from point by point scans, give quantitative information of heights with respect to position. Based on a different approach, the so-called integral methods produce parameters...

  9. Simultaneous multi-element analysis of some edible pulses using neutron activation analysis

    International Nuclear Information System (INIS)

    El-Sweify, F.H.; Metwally, E.; Abdel-Khalik, H.

    2007-01-01

    This paper comprises the application of instrumental neutron activation analysis (INAA) for multi-element determination in some edible pulse samples. These edible pulses are usually daily used in the Egyptian kitchen. These were: anise, cumin, coriander, caraway, black cumin, white kidney bean, lupine, lentil, chickpea, broad bean, peanut, almond, and fenugreek. The pulses have been analyzed as dehulled pulses, in the case of legume and oil pulses with simultaneous analysis of their respective skins. The determined elements were: Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sb, Sc, Sr, Th and Zn. The element content in the dehulled pulses and their respective skins has been compared. Some elements were major or minor elements where others were trace elements. Standard reference materials were used to assure quality control, accuracy and precision of the technique. (author)

  10. Global analysis of sensitivity of bioretention cell design elements to hydrologic performance

    Directory of Open Access Journals (Sweden)

    Yan-wei Sun

    2011-09-01

    Full Text Available Analysis of sensitivity of bioretention cell design elements to their hydrologic performances is meaningful in offering theoretical guidelines for proper design. Hydrologic performance of bioretention cells was facilitated with consideration of four metrics: the overflow ratio, groundwater recharge ratio, ponding time, and runoff coefficients. The storm water management model (SWMM and the bioretention infiltration model RECARGA were applied to generating runoff and outflow time series for calculation of hydrologic performance metrics. Using a parking lot to build a bioretention cell, as an example, the Morris method was used to conduct global sensitivity analysis for two groups of bioretention samples, one without underdrain and the other with underdrain. Results show that the surface area is the most sensitive element to most of the hydrologic metrics, while the gravel depth is the least sensitive element whether bioretention cells are installed with underdrain or not. The saturated infiltration rate of planting soil and the saturated infiltration rate of native soil are the other two most sensitive elements for bioretention cells without underdrain, while the saturated infiltration rate of native soil and underdrain size are the two most sensitive design elements for bioretention cells with underdrain.

  11. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.

    Science.gov (United States)

    Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur

    2015-03-01

    A non-linear isotropic finite element (FE) model of a 29-year-old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. The model simulates dis-accommodation by stretching of the lens and predicts the change in surface profiles of the lens capsule, cortex and nucleus at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the finite element results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Aspects of lens shape change relative to stretch were evaluated, including change in diameter, central thickness and accommodation. Maximum accommodation achieved was 10.29 D. From the multiple regression analysis, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5 × 10(-3 ) μm, p < 0.001). The results are compared with those from in vitro studies. The finite element and ray-tracing predictions are consistent with Ex Vivo Accommodation Simulator (EVAS) studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully accommodated states. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  12. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil.

    Science.gov (United States)

    Reimann, Clemens; de Caritat, Patrice

    2017-02-01

    During the National Geochemical Survey of Australia over 1300 top (0-10cm depth) and bottom (~60-80cm depth) sediment samples (including ~10% field duplicates) were collected from the outlet of 1186 catchments covering 81% of the continent at an average sample density of 1 site/5200km 2 . The Australian surface soil. Different methods of obtaining geochemical threshold values, which differentiate between background and those samples with unusually high element concentrations and requiring attention, are presented and compared to Western Australia's 'ecological investigation levels' (EILs) established for 14 PTEs. For Mn and V these EILs are so low that an unrealistically large proportion (~24%) of the sampled sites would need investigation in Australia. For the 12 remaining elements (As, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sn and Zn) few sample sites require investigation and as most of these are located far from human activity centres, they potentially suggest either minor local contamination or mineral exploration potential rather than pollution. No major diffuse source of contamination by PTEs affects Australian soil at the continental scale. Of the statistical methods used to establish geochemical threshold values, the most pertinent results come from identifying breaks in cumulative probability distributions, the Tukey inner fence and the 98th percentile. Geochemical threshold values for 59 elements, including emerging 'high-tech' critical elements such as lanthanides, Be, Ga or Ge, for which no EILs currently exist, are presented. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. Surface analysis with low energy ion scattering

    International Nuclear Information System (INIS)

    Taglauer, E.; Heiland, W.

    1976-01-01

    Principles and applications of low energy ion scattering for surface analysis are presented. Basic features are the binary collision concept, the scattering cross-sections and the ion neutralization process. The potential and the limitations of the method are outlined. Some pertinent experimental aspects are considered. In a number of examples the performance of the technique is demonstrated for qualitative composition analysis and for studies of surface structures. Finally a few comparisons are made with other techniques, such as AES, LEED, or SIMS. (orig.) [de

  14. Finite element analysis (FEA) of dental implant fixture for mechanical stability and rapid osseointegration

    Science.gov (United States)

    Tabassum, Shafia; Murtaza, Ahmar; Ali, Hasan; Uddin, Zia Mohy; Zehra, Syedah Sadaf

    2017-10-01

    For rapid osseointegration of dental implant fixtures, various surface treatments including plasma spraying, hydroxyapatite coating, acid-etching, and surface grooving are used. However undesirable effects such as chemical modifications, loss of mechanical properties, prolonged processing times and post production treatment steps are often associated with these techniques. The osseointegration rate of the dental implants can be promoted by increasing the surface area of the dental implant, thus increasing the bone cells - implant material contact and allow bone tissues to grow rapidly. Additive Manufacturing (AM) techniques can be used to fabricate dental implant fixtures with desirable surface area in a single step manufacturing process. AM allows the use of Computer Aided Designing (CAD) for customised rapid prototyping of components with precise control over geometry. In this study, the dental implant fixture that replaces the tooth root was designed on commercially available software COMSOL. Nickel - titanium alloy was selected as build materials for dental implant. The geometry of the dental fixture was varied by changing the interspacing distance (thread pitch) and number of threads to increase the total surface area. Three different microstructures were introduced on the surface of dental implant. The designed models were used to examine the effect of changing geometries on the total surface area. Finite Element Analysis (FEA) was performed to investigate the effect of changing geometries on the mechanical properties of the dental implant fixtures using stress analysis.

  15. Quantitative analysis of light elements in aerosol samples by PIGE

    International Nuclear Information System (INIS)

    Mateus, R.; Reis, M.A.; Jesus, A.P.; Ribeiro, J.P.

    2006-01-01

    Quantitative PIGE analysis of aerosol samples collected on nuclepore polycarbonate filters was performed by a method that avoids the use of comparative standards. Nuclear cross sections and calibration parameters established before in an extensive work on thick and intermediate samples were employed. For these samples, the excitation functions of nuclear reactions, induced by the incident protons on target's light elements, were used as input for a code that evaluates the gamma-ray yield integrating along the depth of the sample. In the present work we apply the same code to validate the use of an effective energy for thin sample analysis. Results pertaining to boron, fluorine and sodium concentrations are presented. In order to establish a correlation with sodium values, PIXE results related to chlorine are also presented, giving support to the reliability of this PIGE method for thin film analysis

  16. A Textbook of Textbooks: Elements of Discourse Analysis

    Directory of Open Access Journals (Sweden)

    Jean Cristtus Portela

    2015-10-01

    Full Text Available This paper aims to analyze, from a semiotic perspective, José Luiz Fiorin's book Elementos de Análise do Discurso [Elements of Discourse Analysis] as a "textbook of textbooks," i.e., a textbook that gathers prototypical characteristics of teaching activities in undergraduate textbooks. Besides, it establishes a way to think and to teach the semiotics of discourse in Brazil. Starting from the analysis of the texts pertaining to the publishing activity, such as the book title, its cover, and the author's presentation, I came to an inventory and an analysis of the textual segments related to teaching that were conceived by the textbook enunciator, such as theoretical exemplification and explanation. The reading suggested here seeks to put in evidence and to understand the originality and the contemporaneity of the book, which turned 26 years old in 2015 and has played a strategic education role for many generations of semioticians and discourse analysts.

  17. Large deformation finite element analysis of undrained pile installation

    Science.gov (United States)

    Konkol, Jakub; Bałachowski, Lech

    2016-03-01

    In this paper, a numerical undrained analysis of pile jacking into the subsoil using Abaqus software suit has been presented. Two different approaches, including traditional Finite Element Method (FEM) and Arbitrary Lagrangian-Eulerian (ALE) formulation, were tested. In the first method, the soil was modelled as a two-phase medium and effective stress analysis was performed. In the second one (ALE), a single-phase medium was assumed and total stress analysis was carried out. The fitting between effective stress parameters and total stress parameters has been presented and both solutions have been compared. The results, discussion and verification of numerical analyzes have been introduced. Possible applications and limitations of large deformation modelling techniques have been explained.

  18. Large deformation finite element analysis of undrained pile installation

    Directory of Open Access Journals (Sweden)

    Konkol Jakub

    2016-03-01

    Full Text Available In this paper, a numerical undrained analysis of pile jacking into the subsoil using Abaqus software suit has been presented. Two different approaches, including traditional Finite Element Method (FEM and Arbitrary Lagrangian–Eulerian (ALE formulation, were tested. In the first method, the soil was modelled as a two-phase medium and effective stress analysis was performed. In the second one (ALE, a single-phase medium was assumed and total stress analysis was carried out. The fitting between effective stress parameters and total stress parameters has been presented and both solutions have been compared. The results, discussion and verification of numerical analyzes have been introduced. Possible applications and limitations of large deformation modelling techniques have been explained.

  19. Finite element analysis of osteoporosis models based on synchrotron radiation

    Science.gov (United States)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  20. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution.

    Science.gov (United States)

    Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R

    2011-09-30

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.

  1. Distributed Finite Element Analysis Using a Transputer Network

    Science.gov (United States)

    Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy

    1989-01-01

    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.

  2. Strength Analysis on Ship Ladder Using Finite Element Method

    Science.gov (United States)

    Budianto; Wahyudi, M. T.; Dinata, U.; Ruddianto; Eko P., M. M.

    2018-01-01

    In designing the ship’s structure, it should refer to the rules in accordance with applicable classification standards. In this case, designing Ladder (Staircase) on a Ferry Ship which is set up, it must be reviewed based on the loads during ship operations, either during sailing or at port operations. The classification rules in ship design refer to the calculation of the structure components described in Classification calculation method and can be analysed using the Finite Element Method. Classification Regulations used in the design of Ferry Ships used BKI (Bureau of Classification Indonesia). So the rules for the provision of material composition in the mechanical properties of the material should refer to the classification of the used vessel. The analysis in this structure used program structure packages based on Finite Element Method. By using structural analysis on Ladder (Ladder), it obtained strength and simulation structure that can withstand load 140 kg both in static condition, dynamic, and impact. Therefore, the result of the analysis included values of safety factors in the ship is to keep the structure safe but the strength of the structure is not excessive.

  3. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall

    International Nuclear Information System (INIS)

    Zhu Mingyong; Tan Shuduan; Dang Haishan; Zhang Quanfa

    2011-01-01

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10 m x 2 m x 0.16 m with a gradient of 20 o (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources. - Highlights: → Soil erosion processes with rare earth elements was conducted under natural rainfall. → Experimental setup developed here has seldom implemented in the world. → Sheet erosion is the main erosion type and main contributor to sediment loss. → Sediment source changed in different sections on the slope surface. → The primary sediment source area tended to move upslope as erosion progressed.

  4. Neutron activation analysis of trace elements in sea water samples

    International Nuclear Information System (INIS)

    Kusaka, Yuzuru; Tsuji, Haruo; Imai, Sakingo; Ohmori, Sayoko.

    1979-01-01

    Analytical values of trace elements in sea water samples have been fluctuated according to the sampling locations, the analytical procedures and so on. It is very important in marine chemistry to elucidate the cause of such concentration variations. This report is the analytical results of the samples obtained in the Pacific Ocean, the Indian Ocean and the Sea of Japan, by means of neutron activation analysis. As the preconcentration, 1-pyrrolidine carbothio acid (APDC)-chelate extraction and freeze-drying were adopted. The specimens obtained by this extraction from 500 or 800 ml samples were irradiated by KUR reactor for 1 min, 1 hr to 10 hrs and the gamma-ray spectrometry with a Ge(Li) detector was used for the determination of V, Mn, Cu, Zn, U, Fe, Co, Ni, Ag, Sb and Au. By about 80 hrs irradiation of the specimens obtained by freeze-drying from 20 ml samples and their gamma-ray spectrometry, Sc, Cr, Fe, Co, Zn, Rb, Sr, Ag, Sb and Cs were determined. The former procedure gives concentrations of elements in species reactable with APDC, but the latter method shows entire concentrations of the elements in the sea water samples. Some considerations on the analytical values and the comparisons of the both methods are described. (author)

  5. Applications of finite-element scaling analysis in primatology.

    Science.gov (United States)

    Richtsmeier, J T

    1989-01-01

    The study of biological shape in three dimensions using landmark data can now be accomplished using several alternative methods. This report focuses on the use of finite-element scaling analysis in primate craniofacial morphology. The method is particularly useful in its ability to localize the differences between forms, thereby indicating those loci that differ most between specimens. Several examples of this feature are provided from primatological research. Particulars of the methods are also discussed in an attempt to provide the reader with cautionary knowledge for prudent application of the method in future research.

  6. Free vibration analysis of dragonfly wings using finite element method

    Directory of Open Access Journals (Sweden)

    M Darvizeh

    2016-04-01

    Full Text Available In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eachmode shape evaluated and the ratio between numerical natural frequencyand experimental natural frequency presented as damping ratio. Theresults obtain from present method are in good agreement with sameexperimental methods.

  7. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... as the mean normal effective stress reaches a minimum and the effective stress path has a 'knee'. The similarity in drained and undrained behaviour of the soil skeleton makes it possible to describe the change in volumetric behaviour by a single parameter, given as a characteristic friction angle...

  8. [Finite Element Analysis of Intravascular Stent Based on ANSYS Software].

    Science.gov (United States)

    Shi, Gengqiang; Song, Xiaobing

    2015-10-01

    This paper adopted UG8.0 to bulid the stent and blood vessel models. The models were then imported into the finite element analysis software ANSYS. The simulation results of ANSYS software showed that after endothelial stent implantation, the velocity of the blood was slow and the fluctuation of velocity was small, which meant the flow was relatively stable. When blood flowed through the endothelial stent, the pressure gradually became smaller, and the range of the pressure was not wide. The endothelial shear stress basically unchanged. In general, it can be concluded that the endothelial stents have little impact on the flow of blood and can fully realize its function.

  9. Finite element analysis of offshore drilling jar connections

    DEFF Research Database (Denmark)

    Kristensen, A.; Toor, Kashif; Solem, Sigurd

    2005-01-01

    A new tool joint system is considered. Traditionally these rotary connections have been designed with only one shoulder geometry. However, in order to increase the torque rating of the tool joint, a new design is introduced using two shoulders. This design allow reduced tool joint dimensions wher...... whereby downhole equipment more easily can be fitted. In order to evaluate the validity of the design, finite element analysis have been performed in ANSYS. The results obtained indicate that the new design is valid and further tests can be performed....

  10. Nonlinear Finite Element Analysis of Pull-Out Test

    DEFF Research Database (Denmark)

    Saabye Ottesen, N

    1981-01-01

    A specific pull-out test used to determine in-situ concrete compressive strength is analyzed. This test consists of a steel disc that is extracted from the structure. The finite element analysis considers cracking as well as strain hardening and softening in the pre- and post-failure region......, respectively. The aim is to attain a clear insight into structural behavior. Special attention is given to the failure mode. Severe cracking occurs and the stress distribution is very inhomogeneous. However, large compressive forces run from the disc in a rather narrow band towards the support...

  11. Sorption of redox-sensitive elements: critical analysis

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH - , CO -- 3 ) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states

  12. Multi-element analysis of sediments, coal samples and gemstones by INAA

    International Nuclear Information System (INIS)

    Lakshminarayana, S.; Krishnarjuna Rao, I.; Thirumala Rao, B.V.; Naidu, T.Y.; Kasipathi, C.; Jagannadha Rao, M.; Newton Nathaniel, T.; Acharya, R.; Reddy, A.V.R.

    2006-01-01

    Instrumental Neutron Activation Analysis (INAA) is one of the best analytical methods for the determination of most of the Rare Earth Elements (REEs) and other trace elements. INAA is more effective for trace elemental analysis in the presence of other elements in varying matrices. Multi elemental analysis of the sediments of Gosthani River Estuary, Balacheruvu Backwaters, Kothagudem coal deposits and Chrysoberyl, chrysoberyl cat's eye and Alexandrite gemstones were carries out by INAA. (author)

  13. Multi-element analysis of unidentified fallen objects from Tatale in ...

    African Journals Online (AJOL)

    A multi-element analysis has been carried out on two fallen objects, # 01 and # 02, using instrumental neutron activation analysis technique. A total of 17 elements were identified in object # 01 while 21 elements were found in object # 02. The two major elements in object # 01 were Fe and Mg, which together constitute ...

  14. Finite element model validation of bridge based on structural health monitoring—Part I: Response surface-based finite element model updating

    Directory of Open Access Journals (Sweden)

    Zhouhong Zong

    2015-08-01

    Full Text Available In the engineering practice, merging statistical analysis into structural evaluation and assessment is a tendency in the future. As a combination of mathematical and statistical techniques, response surface (RS methodology has been successfully applied to design optimization, response prediction and model validation. With the aid of RS methodology, these two serial papers present a finite element (FE model updating and validation method for bridge structures based on structural health monitoring. The key issues to implement such a model updating are discussed in this paper, such as design of experiment, parameter screening, construction of high-order polynomial response surface model, optimization methods and precision inspection of RS model. The proposed procedure is illustrated by a prestressed concrete continuous rigid-frame bridge monitored under operational conditions. The results from the updated FE model have been compared with those obtained from online health monitoring system. The real application to a full-size bridge has demonstrated that the FE model updating process is efficient and convenient. The updated FE model can relatively reflect the actual condition of Xiabaishi Bridge in the design space of parameters and can be further applied to FE model validation and damage identification.

  15. Spatial Distribution and Fuzzy Health Risk Assessment of Trace Elements in Surface Water from Honghu Lake

    Directory of Open Access Journals (Sweden)

    Fei Li

    2017-09-01

    Full Text Available Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L > Pb (3.42 μg/L > Cu (3.09 μg/L > Cr (1.63 μg/L > As (0.99 μg/L > Cd (0.14 μg/L, within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10−5 to 10−4. The areas in the south (S4, S13, and S16 and northeast (S8, S18, and S19 of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10–S13, S15, and S18 were of relatively low credibility (50–60%, and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent.

  16. Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels

    DEFF Research Database (Denmark)

    Andersen, Lars; Jones, C. J. C.

    2004-01-01

    body vibration (about 4 to 80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian Tunnelling Method (NATM).......The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas around cities. Such analysis can be carried out using numerical methods but models and therefore......-dimensional wave propagation. The aim of this paper is to investigate the quality of the information that can be gained from a two-dimensional model of a railway tunnel. The vibration transmission from the tunnel floor to the ground surface is analysed for the frequency range relevant to the perception of whole...

  17. Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels

    DEFF Research Database (Denmark)

    Andersen, Lars; Jones, C.J.C.

    2006-01-01

    body vibration (about 4 to 80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian Tunnelling Method (NATM).......The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas around cities. Such analysis can be carried out using numerical methods but models and therefore......-dimensional wave propagation. The aim of this paper is to investigate the quality of the information that can be gained from a two-dimensional model of a railway tunnel. The vibration transmission from the tunnel floor to the ground surface is analysed for the frequency range relevant to the perception of whole...

  18. Analysis of elemental composition of porcelains unearthed from Waguantan kiln site by PIXE–RBS

    International Nuclear Information System (INIS)

    Zhou, Z.; Zhang, K.; Xia, C.D.; Liu, M.T.; Zhu, J.J.; An, Z.; Bai, B.

    2015-01-01

    Highlights: •We analyzed 61 unearthed porcelain shards in Yuan Dynasty by PIXE–RBS. •An electron gun was installed to solve the electric charge accumulations. •The factor analysis was performed for the element compositions. •The “exotic group” porcelain samples unearthed were produced locally. -- Abstract: A method combining proton-induced X-ray emission spectrometry (PIXE) and Rutherford backscattering spectrometry (RBS) was used to determine the composition of 61 porcelain shards from the Yuan Dynasty (1271–1368 A.D.) unearthed from the Waguantan kiln site at Tianzhu County in Guizhou Province, China. Based on our previous experimental setup, an electron gun device with a LaB 6 crystal cathode was installed to solve the problem created when the incident proton beams generated electric charge accumulations on the surfaces of the insulating porcelain samples, which induced a large bremsstrahlung background. The use of the electron gun has largely eliminated the large bremsstrahlung background and has therefore improved the detection limits for elements, especially for trace elements, and made it possible to determine the origin of the porcelains based on the trace elements. Major and trace elemental compositions of the porcelain bodies and glazes measured by PIXE and RBS were analyzed by the factor analysis method. The factor analysis showed that a few pieces of porcelain with a style similar to the porcelain of the Longquan kiln among the unearthed porcelains from the Waguantan kiln site did not have obvious differences in elemental compositions from other remaining porcelains unearthed from the Waguantan kiln site, indicating that the pieces of unearthed porcelain with the Longquan kiln style did in fact belong to the product fired locally by imitating the model of the Longquan celadon with local raw materials. This result therefore indicated that the Longquan kiln technology that originated from the Five Dynasties (907–960 A.D.) had been

  19. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    International Nuclear Information System (INIS)

    Miller, J.D.

    1985-01-01

    This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures

  20. Analysis of TRU waste for RCRA-listed elements

    International Nuclear Information System (INIS)

    Mahan, C.; Gerth, D.; Yoshida, T.

    1996-01-01

    Analytical methods for RCRA listed elements on Portland cement type waste have been employed using both microwave and open hot plate digestions with subsequent analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), graphite furnace atomic absorption (GFAA) and cold vapor atomic absorption and fluorescence (CVAA/CVAFS). Four different digestion procedures were evaluated including an open hot plate nitric acid digestion, EPA SW-846 Method 3051, and 2 methods using modifications to Method 3051. The open hot plate and the modified Method 3051, which used aqua regia for dissolution, were the only methods which resulted in acceptable data quality for all 14 RCRA-listed elements. Results for the nitric acid open hot plate digestion were used to qualify the analytical methods for TRU waste characterization, and resulted in a 99% passing score. Direct chemical analysis of TRU waste is being developed at Los Alamos National Laboratory in an attempt to circumvent the problems associated with strong acid digestion methods. Technology development includes laser induced breakdown spectroscopy (LIBS), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), dc arc CID atomic emission spectroscopy (DC-AES), and glow discharge mass spectrometry (GDMS). Analytical methods using the Portland cement matrix are currently being developed for each of the listed techniques. Upon completion of the development stage, blind samples will be distributed to each of the technology developers for RCRA metals characterization

  1. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  2. X-ray trace element analysis with positive ion beams

    International Nuclear Information System (INIS)

    Davis, R.H.

    1973-01-01

    A new trace element analysis having the advantage that many elements may be detected in a single measurement, based on positive charged particle induced X-ray florescence and on the production of X-rays by heavy ions, is described. Because of the large cross-sections for the production of discrete X-ray and the low yield of continuum radiation, positive charged particle X-ray florescence is a competitive, fast, analytic tool. In the experiment a beam of positive charged particles from an accelerator was directed toward a target. X-rays induced by the bombardment were detected by a Si(Li) detector the ouput from which was amplified and sorted in a multichannel analyzer. For rapid data handling and analysis, the multichannel analyzer or ADC unit was connected to an on-line computer. A large variety of targets prepared in collaboration with the oceanographers have been studied and spectra obtained for different particles having the same velocity are presented to show that the yield of discrete X-rays increases at least as rapidly as Z 2 . While protons of several MeV appear to be already competitive further advantage may be gained by heavy ions at lower energies since the continuum is reduced while the peak ''signals'' retain strength due to the Z 2 dependence. (S.B.)

  3. Finite Element Analysis of Drilling of Carbon Fibre Reinforced Composites

    Science.gov (United States)

    Isbilir, Ozden; Ghassemieh, Elaheh

    2012-06-01

    Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling.

  4. Multi-element neutron activation analysis of Brazilian coal samples

    International Nuclear Information System (INIS)

    Atalla, L.T.; Requejo, C.S.

    1982-09-01

    The elements U, Th, La, Ce, Nd, Sm, Eu, Dy, Tb, Yb, Lu, Sc, Ta, Hf, Co, Ni, Cr, Mo, Ti, V, W, In, Ga, Mn, Ba, Sr, Mg, Rb, Cs, K, Cl, Br, As, Sb, Au, Ca, Al and Fe were determined in coal samples by instrumental neutron activation analysis, by using both thermal and epithermal neutron irradiations. The irradiation times were 10 minutes and 8 or 16 hours in a position where the thermal neutron flux was about 10 12 n.cm - 2 .s - 1 and 72 non-consecutive hours for epithermal irradiation at a flux of about 10 11 n.Cm - 2 .s - 1 . After the instrumental analysis of the above mentioned elements, Zn and Se were determined with chemical separation. The relative standard deviation of, at least, 4 determinations was about + - 10% for the majority of the results. The coal samples analysed were supplied by: Cia. Estadual da Tecnologia e Saneamento Basico (CETESB-SP), Cia. de Pesquisas e Lavras Minerais (COPELMI-RS), Cia. Carbonifera Urussunga (SC), Cia. Carbonifera Prospera (SC), Cia. Carbonifera Treviso (SC), Cia. Nacional de Mineracao de Carvao do Barro Branco (SC) and Comissao Nacional de Energia Nuclear (CNEN-RJ). (Author) [pt

  5. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements.

    Science.gov (United States)

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar

    2015-05-15

    This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.

  6. Hydrodynamics of free surface flows modelling with the finite element method

    CERN Document Server

    Hervouet, Jean-Michel

    2007-01-01

    A definitive guide for accurate state-of-the-art modelling of free surface flows Understanding the dynamics of free surface flows is the starting point of many environmental studies, impact studies, and waterworks design. Typical applications, once the flows are known, are water quality, dam impact and safety, pollutant control, and sediment transport. These studies used to be done in the past with scale models, but these are now being replaced by numerical simulation performed by software suites called "hydro-informatic systems". The Telemac system is the leading software package worldwide, and has been developed by Electricité de France and Jean-Michel Hervouet, who is the head and main developer of the Telemac project. Written by a leading authority on Computational Fluid Dynamics, the book aims to provide environmentalists, hydrologists, and engineers using hydro-informatic systems such as Telemac and the finite element method, with the knowledge of the basic principles, capabilities, different hypothese...

  7. Repository surface design site layout analysis

    International Nuclear Information System (INIS)

    Montalvo, H.R.

    1998-01-01

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond

  8. Repository Surface Design Site Layout Analysis

    International Nuclear Information System (INIS)

    Montalvo, H.R.

    1998-01-01

    The purpose of this analysis is to establish the arrangement of the Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD (Reference 5.5), including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond

  9. Finite element analysis model development and static strength analysis for CANDU-6 reactor fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Moon Sung; Suk, Ho Chun

    2000-12-01

    A static and finite-element (FE) analysis model was developed to simulate out-reactor fuel string strength tests with use of the structural analysis computer code ABAQUS. The FE model takes into account the deflection of fuel elements and stress and displacement in end-plates subjected to hydraulic drag loads. It was adapted to the strength tests performed for CANFLEX 43-element bundles and the existing 37-element bundles. The FE model was found to be in good agreement with the experiment results. With use of the FE model, the static behavior of the fuel bundle strings, such as load transfer between ring elements, end-plate rib effects, hydraulic drag load incurring plastic deformation in fuel string and hydraulic flow rate effects were investigated.

  10. Biomonitoring of air pollution through trace element analysis

    International Nuclear Information System (INIS)

    Akoto Bamford, Samuel; Osae, E.K.; Serfor-Armah, Y.; Nyarko, B.; Ofosu, F.; Aboh, I.J.; Odamtten, G.T.

    2001-01-01

    Research work is currently going on to determine the suitability in the use of local lichen species for biomonitoring air pollution in Ghana. The study areas being investigated are the gold-mining areas situated in the Moist Evergreen and Semi-Deciduous forests in Ghana. The nuclear analytical techniques being used in this work are instrumental neutron activation analysis and tube-excited x-ray fluorescence spectrometry. The present report covers results of quality control exercise carried out to validate the quantitative methods being used. This includes our participation in an intercomparison exercise carried out among participants of the IAEA coordinated research project. The samples analyzed were two lichen samples from two completely different areas using neutron activation analysis. Only short- and medium-lived irradiations were carried out. Satisfactory results were obtained for most of the elements identified and quantified. (author)

  11. Finite element analysis of elasto-plastic tee joints

    International Nuclear Information System (INIS)

    Powell, G.H.

    1974-09-01

    The theory and computational procedures used in the computer program B169TJ/EP for the analysis of elasto-plastic tee joints are described, and detailed user's guide is presented. The program is particularly applicable to joints conforming to the ANSI B16.9 Manufacturing Standard, but can also be applied to other joint geometries. The joint may be loaded by internal pressure and by arbitrary combinations of applied forces and moments at the ends of the branch and run pipes, and the loading sequence may be arbitrary. The joint material is assumed to yield according to the von Mises criterion, and to exhibit either linear kinematic hardening or nonlinear isotropic hardening after yield. The program makes use of the finite element and mesh generation procedures previously applied in the elastic stress analysis program B16.9TJ/ SA, with minor modifications. (U.S.)

  12. Finite element stress analysis of extruded outlet tee junctions

    International Nuclear Information System (INIS)

    Gilroy, J.E.; Clark, J.S.; Tosh, P.A.

    1985-01-01

    The stress analysis of branch pipe intersections and nozzles in large diameter, thin walled pipework systems, subjected to moment loadings, is an area of concern to pipework designers. This is of particular concern in the pipework design of the liquid metal heat transport systems used in Fast Reactor Power Plants. The authors have used the NASTRAN finite element program to model a 10 x 10 x 8 x 3/8 in. extruded outlet tee, subjected to internal pressure, in-plane, out-of-plane and torsion moments applied to both the branch pipe and the run pipe legs of the tee. The results of the analysis are compared with the stresses obtained experimentally on a similar sized tee. (author)

  13. Automatic measurement system for light element isotope analysis

    International Nuclear Information System (INIS)

    Satake, Hiroshi; Ikegami, Kouichi.

    1990-01-01

    The automatic measurement system for the light element isotope analysis was developed by installing the specially designed inlet system which was controlled by a computer. The microcomputer system contains specific interface boards for the inlet system and the mass spectrometer, Micromass 602 E. All the components of the inlet and the computer system installed are easily available in Japan. Ten samples can be automatically measured as a maximum of. About 160 minutes are required for 10 measurements of δ 18 O values of CO 2 . Thus four samples can be measured per an hour using this system, while usually three samples for an hour using the manual operation. The automatized analysis system clearly has an advantage over the conventional method. This paper describes the details of this automated system, such as apparatuses used, the control procedure and the correction for reliable measurement. (author)

  14. Multi-element analysis of emeralds and associated rocks by k0 neutron activation analysis

    International Nuclear Information System (INIS)

    Acharya, R.N.; Mondal, R.K.; Burte, P.P.; Nair, A.G.C.; Reddy, N.B.Y.; Reddy, L.K.; Reddy, A.V.R.; Manohar, S.B.

    2000-01-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k 0 method (k 0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method

  15. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    Science.gov (United States)

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  16. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  17. Gyral Folding Pattern Analysis via Surface Profiling

    Science.gov (United States)

    Li, Kaiming; Guo, Lei; Li, Gang; Nie, Jingxin; Faraco, Carlos; Cui, Guangbin; Zhao, Qun; Miller, L. Stephen; Liu, Tianming

    2010-01-01

    Folding is an essential shape characteristic of the human cerebral cortex. Descriptors of cortical folding patterns have been studied for decades. However, many previous studies are either based on local shape descriptors such as curvature, or based on global descriptors such as gyrification index or spherical wavelets. This paper proposes a gyrus-scale folding pattern analysis technique via cortical surface profiling. Firstly, we sample the cortical surface into 2D profiles and model them using a power function. This step provides both the flexibility of representing arbitrary shape by profiling and the compactness of representing shape by parametric modeling. Secondly, based on the estimated model parameters, we extract affine-invariant features on the cortical surface, and apply the affinity propagation clustering algorithm to parcellate the cortex into cortical regions with strict hierarchy and smooth transitions among them. Finally, a second-round surface profiling is performed on the parcellated cortical surface, and the number of hinges is detected to describe the gyral folding pattern. We have applied the surface profiling method to two normal brain datasets and a Schizophrenia patient dataset. The experimental results demonstrate that the proposed method can accurately classify human gyri into 2-hinge, 3-hinge and 4-hinge patterns. The distribution of these folding patterns on brain lobes and the relationship between fiber density and gyral folding patterns are further investigated. Results from the Schizophrenia dataset are consistent with commonly found abnormality in former studies by others, which demonstrates the potential clinical applications of the proposed technique. PMID:20472071

  18. Surface analysis with STM and AFM

    CERN Document Server

    Magonov, Sergi N

    1996-01-01

    Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are powerful tools for surface examination. In the past, many STM and AFM studies led to erroneous conclusions due to lack of proper theoretical considerations and of an understanding of how image patterns are affected by measurement conditions. For this book, two world experts, one on theoretical analysis and the other on experimental characterization, have joined forces to bring together essential components of STM and AFM studies: The practical aspects of STM, the image simulation by surface electron density plot calculat

  19. The finite element analysis for prediction of residual stresses induced by shot peening

    International Nuclear Information System (INIS)

    Kim, Cheol; Yang, Won Ho; Sung, Ki Deug; Cho, Myoung Rae; Ko, Myung Hoon

    2000-01-01

    The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modeling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis

  20. Determination of planetary surfaces elemental composition by gamma and neutron spectroscopy

    International Nuclear Information System (INIS)

    Diez, B.

    2009-06-01

    Measuring the neutron and gamma ray fluxes produced by the interaction of galactic cosmic rays with planetary surfaces allow constraining the chemical composition of the upper tens of centimeters of material. Two different angles are proposed to study neutron and gamma spectroscopy: data processing and data interpretation. The present work is in line with two experiments, the Mars Odyssey Neutron Spectrometer (MONS) and the Selene Gamma Ray Spectrometer. A review of the processing operations applied to the MONS dataset is proposed. The resulting dataset is used to determine the depth of the hydrogen deposits below the Martian surface. In water depleted regions, neutron data allow constraining the concentration in elements likely to interact with neutrons. The confrontation of these results to those issued from the Gamma Ray Spectrometer onboard Mars Odyssey provides interesting insight on the geologic context of the Central Elysium Planitia region. These martian questions are followed by the study of the Selene gamma ray data. Although only preliminary processing has been done to date, qualitative lunar maps of major elements (Fe, Ca, Si, Ti, Mg, K, Th, U) have already been realized. (author)

  1. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles

    KAUST Repository

    Jain, Rohan

    2015-02-03

    © 2014 American Chemical Society. The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  2. Finite element analysis and validation of dielectric elastomer actuators used for active origami

    International Nuclear Information System (INIS)

    McGough, Kevin; Ahmed, Saad; Frecker, Mary; Ounaies, Zoubeida

    2014-01-01

    The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed. (paper)

  3. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    Directory of Open Access Journals (Sweden)

    X. Wang

    2016-09-01

    Full Text Available Mercury (Hg emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0 from natural surfaces in China. The development implements recent advancements in the understanding of air–soil and air–foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr−1, including 565.5 Mg yr−1 from soil surfaces, 9.0 Mg yr−1 from water bodies, and −100.4 Mg yr−1 from vegetation. The air–surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air–surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake during April–October (rice planting to a net source when the farmland is not flooded (November–March. Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %, followed by spring (28 %, autumn (13 %, and winter (8 %. Model verification is accomplished using observational data of air–soil/air–water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008 that reported large emission from

  4. Finite element analysis of 2-Station hip himulator

    Science.gov (United States)

    Fazli, M. I. M.; Yahya, A.; Shahrom, A.; Nawawi, S. W.; Zainudin, M. R.; Nazarudin, M. S.

    2017-10-01

    This paper presented the analysis of materials and design architecture of 2-station hip simulator. Hip simulator is a machine used to conduct the joint and wear test of hip prosthetic. In earlier work, the hip simulator was modified and some improvement were made by using SolidWorks software. The simulator consists of 3DOF which controlled by separate stepper motor and a static load that set up by manual method in each station. In this work, finite element analysis (FEA) of hip simulator was implemented to analyse the structure of the design and selected materials used for simulator component. The analysis is completed based on two categories which are safety factor and stress tests. Both design drawing and FEA was done using SolidWorks software. The study of the two categories is performed by applying the peak load up to 4000N on the main frame that is embedded with metal-on-metal hip prosthesis. From FEA, the value of safety factor and degree of stress formation are successfully obtained. All the components exceed the value of 2 for safety factor analysis while the degree of stress formation shows higher value compare to the yield strength of the material. With this results, it provides information regarding part of simulator which are susceptible to destruct. Besides, the results could be used for design improvement and certify the stability of the hip simulator in real application.

  5. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  6. Microchemical surface analysis of two Numidian coins

    International Nuclear Information System (INIS)

    Mousser, Henia; Amri, Redha; Madani, Abdelghani; Darchen, Andre; Mousser, Abdelhamid

    2011-01-01

    This work is a contribution to the microchemical surface analysis of two Numidian coins. Numidia was an ancient kingdom of northern Algeria during 2nd and 1st century BC. Investigations were performed with scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS), energy dispersive X-ray fluorescence spectrometry (EDXRF) and X-ray diffraction (XRD). The identification of the coins was done thanks to the name initials and effigy of King Massinissa. SEM observations of coins showed heterogeneous surfaces. SEM and EDXRF analyses showed an alloy structure with copper (65%), antimony (19%) and lead (16%). The XRD identified a metal structure and corrosion products which were on the coin surfaces: Litharge (PbO), Hydrocerussite (Pb 3 (CO 3 ) 2 (OH) 2 ), Bindheimite (Pb 2 Sb 2 O 7 ) and Bystromite (MgSb 2 O 6 ).

  7. Storage element performance optimization for CMS analysis jobs

    International Nuclear Information System (INIS)

    Behrmann, G; Dahlblom, J; Guldmyr, J; Happonen, K; Lindén, T

    2012-01-01

    Tier-2 computing sites in the Worldwide Large Hadron Collider Computing Grid (WLCG) host CPU-resources (Compute Element, CE) and storage resources (Storage Element, SE). The vast amount of data that needs to processed from the Large Hadron Collider (LHC) experiments requires good and efficient use of the available resources. Having a good CPU efficiency for the end users analysis jobs requires that the performance of the storage system is able to scale with I/O requests from hundreds or even thousands of simultaneous jobs. In this presentation we report on the work on improving the SE performance at the Helsinki Institute of Physics (HIP) Tier-2 used for the Compact Muon Experiment (CMS) at the LHC. Statistics from CMS grid jobs are collected and stored in the CMS Dashboard for further analysis, which allows for easy performance monitoring by the sites and by the CMS collaboration. As part of the monitoring framework CMS uses the JobRobot which sends every four hours 100 analysis jobs to each site. CMS also uses the HammerCloud tool for site monitoring and stress testing and it has replaced the JobRobot. The performance of the analysis workflow submitted with JobRobot or HammerCloud can be used to track the performance due to site configuration changes, since the analysis workflow is kept the same for all sites and for months in time. The CPU efficiency of the JobRobot jobs at HIP was increased approximately by 50 % to more than 90 %, by tuning the SE and by improvements in the CMSSW and dCache software. The performance of the CMS analysis jobs improved significantly too. Similar work has been done on other CMS Tier-sites, since on average the CPU efficiency for CMSSW jobs has increased during 2011. Better monitoring of the SE allows faster detection of problems, so that the performance level can be kept high. The next storage upgrade at HIP consists of SAS disk enclosures which can be stress tested on demand with HammerCloud workflows, to make sure that the I

  8. In-situ elemental analysis of coal by neutron activation

    International Nuclear Information System (INIS)

    Mikesell, J.L.; Senftle, F.E.; Tanner, A.B.

    1986-01-01

    The U.S. Geological Survey (USGS) has worked to develop neutron techniques for the borehole measurement of the elemental composition of ores since 1969, and first demonstrated a borehole ultimate analysis of coal in 1977. Borehole measurements such as these permit real-time evaluation of coal quality without the expense of coring or the delays associated with laboratory analyses. Two technological innovations make such measurements possible: the availability, from Savannah River Operations Office, DOE, of small californium-252 (/sup 252/Cf) fission neutron sources, and the development, by USGS and Princeton Gamma-Techn, of the melting-cryogen-cooled high-purity germanium borehole gamma-ray detector. A technique of relating mass fractions to measured gamma-ray intensities, which eliminates the need for detailed knowledge of the geometry of the neutron distribution, is used to calculate elemental compositions without resorting to the test pits or computer borehole modeling. In coal, all of the major constituents (C, H, N, S, Si, Al, Fe, Ti) except oxygen can be determined quantitatively by thermal neutron capture gamma-ray spectroscopy

  9. A finite-element-analysis of orthogonal metal cutting processes

    International Nuclear Information System (INIS)

    Oh, Joon-Dong; Aurich, Jan C.

    2004-01-01

    A 2-D finite-element-model for simulation of the chip formation process in metal cutting is presented. In order to consider the reciprocal interaction between mechanical and thermal loads during cutting a coupled-filed finite-element-analysis is carried out. The complex flow behavior of workpiece material which depends on local strain, strain rate and temperature is described by a thermo-viscoplastic workpiece model. The different frictional behavior in sticking and sliding regions is expressed by a nonlinear stress relationship between normal and frictional stresses at the tool-chip interface. To analyze the large deformation in the cutting zone more accurately a new technique of dynamic remeshing is developed. As the employed general purpose FEM-software Ansys does not support this feature, an additional preprocessor is developed and integrated into the program. With the aid of this remeshing technique the chip formation process can be simulated more closely to reality, i. e. the modeled tool is not assumed to be ideal sharp, but possesses nose radius and chip breaker. Simulations are carried out for conventional cutting conditions and the effects of cutting conditions, tool geometry and wear progress are examined. Furthermore, the segmented chip formation process during high speed cutting and/or during machining of hardened steel is also analyzed

  10. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2010-10-01

    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  11. The application of proton induced x-ray emission to the element analysis of thick obsidian samples

    International Nuclear Information System (INIS)

    Duerden, P.; Cohen, D.; Clayton, E.

    1979-11-01

    The proton induced X-ray emission (PIXE) technique has been applied to the analysis of element concentrations in obsidian source samples. No target preparation other than washing and the selection of a flat surface was undertaken. Thick target yields have been calculated and element concentrations derived from the detected X-ray spectra; concentrations are given for K, Ca, Ti, V, Mn, Fe, Ga, As, Rb, Sr, Y, Zr, Nb, Ta, and Pb. A pinhole filter is described which enables a single measurement of about 5 minutes' duration to give element concentration data over an X-ray energy range 3-20 keV

  12. The analysis of pigments on rock surfaces

    International Nuclear Information System (INIS)

    Fankhauser, B.; O'Connor, S.; Pittelkow, Y.

    1997-01-01

    A limestone slab of roof fall coated with a red pigment was recovered from a Rockshelter in the Napier Ranges of the Kimberley region, Western Australia. Next to the roof fall fragment in the same stratigraphic layer was a piece of ochre. Three questions were presented: (1) is the red substance an ochre? (2) is the piece of ochre identical to the red substance on the roof fall? and (3) are the layers of pigment on the top and bottom of the limestone slab the same? In addition, as an extension from these questions, a general method was developed for the in situ analysis of ochre pigments on substrates to determine likely compositions and ochre sources. The analysis of the red pigment presented an analytical problem because the substance was intimately associated with the rock slab and therefore the analysis had to be done in situ. Not only was the red layer thin, but on a micro level it was uneven. Energy dispersive x-ray analysis (EDXA) penetrated the red layer, simultaneously analysing this layer and the rock substrate to different degrees depending upon the thickness of the red layer. Determining if the substance was actually ochre involved a comparison of elemental analyses between the background (slab) and background with red coating. Coatings of other ochres with known elemental concentrations on the same limestone background gave a comparison of the effect of simultaneously analysing a thin layer and background with different compositions. Three graphical methods useful for insitu analysis are demeonstrated. The find dates (around 40,000 BP) add to a growing body of data in support of the widespread use of ochre accompanying the earliest documented use of widely separated and environmentally diverse regions of Australia by Aboriginal people

  13. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  14. Understanding compressive deformation behavior of porous Ti using finite element analysis

    International Nuclear Information System (INIS)

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-01-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces

  15. The Three-Dimensional Elemental Distribution of 3D Printing Stainless Steel Gear via Confocal 3D–XRF Analysis

    Science.gov (United States)

    Qin, Min; Yi, Longtao; Wang, Jingbang; Han, Yue; Sun, Tianxi; Liu, Zhiguo

    2017-11-01

    The macroscopic mechanical properties of 3D printing product are closely related to their microstructure, it has significant importance to accurately characterize the micro-structure of 3D printing products. Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. Therefore, this technique is also very suitable for element distribution measurement of 3D printing product which is printed layer by layer. In this paper the 3D-XRF technique was used to study the spatial elemental distribution of a micro zone from the 3D printing stainless steel gear. An elemental mapping of two orthogonal sections in the depth direction and three dimensional elemental rendering of one micro-region were obtained. The result shows that elemental distribution of the sample is not uniform, the elemental layer structure is formed in the depth direction, the content of the element in measured area vary smoothly, and with no elemental mutation region. This indicates that the 3D printing sample are fused well between layers and layers, with no large pores or bubbles inside the sample. This study demonstrates that it is feasible to make assessment for micro-structure of 3D printing metal product by using confocal 3D-XRF.

  16. Improvements in quantification of low z element analysis for Sr- and conventional TXRF

    International Nuclear Information System (INIS)

    Baur, K.; Brennan, S.; Pianetta, P.; Kerner, J.; Zhu, Q.; Burrow, B.

    2000-01-01

    As the dimensions of integrated circuits continue to shrink also the amount of tolerable contamination on Si wafer surfaces decreases. Contaminants of primary concern are transition metals and light elements like Al. Total reflection x-ray fluorescence (TXRF) spectroscopy using synchrotron radiation from the Stanford synchrotron radiation laboratory (SSRL) is one of the most powerful techniques for trace impurity analysis on Si wafer surfaces. In addition, it is among the more sensitive techniques and the only one, which is non-destructive. Upon having established a better detection sensitivity for transition elements than required by semiconductor industry, the current effort focuses on the improvement of the sensitivity for the detection and data analysis of light elements. Due to the presence of the neighboring Si signal from the substrate this can only be achieved by tuning the excitation energy below the Si-K absorption edge. For conventional TXRF systems this can be done by using a W-M fluorescence line (1.78 keV) for excitation or by employing the tunability of synchrotron radiation. However, this results in a substantial increase in background due to resonant X-ray Raman scattering. This scattering dominates the background behavior of the Al K fluorescence line, and consequently limits the achievable sensitivity for the detection of Al surface contaminants. In particular, we find that for a precise determination of the achievable sensitivity, the specific shape of the continuous Raman background must be used in the deconvolution. This data analysis opens a new perspective for conventional TXRF systems to overcome background problems in quantification and first results will be presented. (author)

  17. Elemental analysis of Korean adult toenail using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Kim, Sun-Ha; Moon, Jong-Hwa; Chung, Yong-Sam; Lee, Ok-Hee

    2013-01-01

    The elemental contents in a toenail as a biological sample may depend on the dietary habit and health status. In this study, the inorganic elements in Korean adult toenail were determined by an instrumental neutron activation analysis (INAA). Toenail samples were collected from Korean adults, and the total number of samples was 50. The collected samples were pretreated and analyzed using INAA facilities at the HANARO research reactor. 15 elements, i.e., Al, As, Br, Ca, Cl, Co, Cr, Fe, Hg, K, Mn, Na, Se, V, and Zn in the toenail samples were determined and evaluated for the level of elemental concentration. Finally, correlation between 15 elements was examined. It is found that Mn-V, Na-Cl, Br-K, and Cr-Fe seem to be in close correlation. (author)

  18. Nondestructive analysis of uranium mass in MTR fuel elements

    International Nuclear Information System (INIS)

    Coelho, P.R.P.; Holland, L.

    1982-01-01

    Results of uranium mass non destructive analysis by the pulsed source technique, are presented. The method used is that of relate measurement, being that the uranium mass is determined by the measurement of the delayed neutron production, emited after fissions, produced by sample irradiated with pulses of 14 MeV neutrons. Three types of samples were analysed: metallic uranium disks, sintered pellets of uranium dioxide and plates of uranium-alluminium alloys, surrounded by an alluminium coat. Those plates simules the fuel elements for MTR type reactor. The result of the measurements are reproducible in the range of 1.6 to 3.9%. The errors in a specified measure depends on the form, size and mass of the sample. (E.G.) [pt

  19. Obtaining local reciprocal lattice vectors from finite-element analysis.

    Science.gov (United States)

    Sutter, John P; Connolley, Thomas; Hill, Tim P; Huang, Houcheng; Sharp, Doug W; Drakopoulos, Michael

    2008-11-01

    Finite-element analysis is frequently used by engineers at synchrotron beamlines to calculate the elastic deformation of a single crystal undergoing mechanical bending or thermal load. ANSYS Workbench software is widely used for such simulations. However, although ANSYS Workbench software provides useful information on the displacements, strains and stresses within the crystal, it does not yield the local reciprocal lattice vectors that would be required for X-ray diffraction calculations. To bridge this gap, a method based on the shape functions and interpolation procedures of the software itself has been developed. An application to the double-crystal bent Laue monochromator being designed for the I12 (JEEP) wiggler beamline at the Diamond Light Source is presented.

  20. Studying apple bruise using a finite element method analysis

    Science.gov (United States)

    Pascoal-Faria, P.; Alves, N.

    2017-07-01

    Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in a loss of profits for the entire fruit industry. Bruising is defined as damage and discoloration of fruit flesh, usually with no breach of the skin. The three factors which can physically cause fruit bruising are vibration, compression load and impact. The last one is the main source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important task. To address these problems a finite element analysis has been developed for studying Portuguese Royal Gala apple bruise. The results obtained will be suitable to apple distributors and sellers and will allow a reduction of the impact caused by bruise damage in apple annual production.

  1. Heterogeneous modelling and finite element analysis of the femur

    Directory of Open Access Journals (Sweden)

    Zhang Binkai

    2017-01-01

    Full Text Available As the largest and longest bone in the human body, the femur has important research value and application prospects. This paper introduces a fast reconstruction method with Mimics and ANSYS software to realize the heterogeneous modelling of the femur according to Hu distribution of the CT series, and simulates it in various situations by finite element analysis to study the mechanical characteristics of the femur. The femoral heterogeneous model shows the distribution of bone mineral density and material properties, which can be used to assess the diagnosis and treatment of bone diseases. The stress concentration position of the femur under different conditions can be calculated by the simulation, which can provide reference for the design and material selection of prosthesis.

  2. Model order reduction techniques with applications in finite element analysis

    CERN Document Server

    Qu, Zu-Qing

    2004-01-01

    Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be offset by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order mo...

  3. Finite element analysis of stress relaxation in soft denture liner.

    Science.gov (United States)

    Sato, Y; Abe, Y; Okane, H; Tsuga, K

    2000-08-01

    To gather knowledge related to establishing criteria for selecting soft denture liners for individual patients, the effects of certain properties of soft denture liners on stress distribution were evaluated by two-dimensional finite element analysis. A partial mandibular edentulous ridge crest was modelled. Six combinations of thickness (mucosa: 1 or 2 mm; soft denture liner: 1, 2, or 3 mm) and 18 combinations of Young's modulus (mucosa: three kinds; soft denture liner: six kinds) were analysed. The ratio of maximum to minimum stress in the mucosa (stress ratio) was calculated to estimate stress concentration. In the case of thin mucosa (1 mm thickness), the lower the Young's modulus of the soft denture liner, the lower the stress ratio. However, if the soft denture liner had a lower Young's modulus than the mucosa, stress concentrated adversely. These results suggest that the elasticity of the soft denture liner should match the elasticity of the mucosa to obtain the optimum cushioning effect.

  4. Finite element analysis on badminton racket design parameters

    CERN Document Server

    Nasruddin, Fakhrizal Azmy; Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Omar, Abdul Hafidz; Öchsner, Andreas

    2016-01-01

    This work identifies the characteristics of racket design parameters that influence racket performance.  It presents the finite element analysis of several designs of badminton rackets and compares them to experimental results for validation. Designing a racket requires a comprehensive understanding of racket performance characteristics. Essentially, racket performance is related to the sweet spot, which is the spot on the racket head that produces the most power and control when it strikes a shuttlecock. Determining a coefficient of restitution can help to identify the sweet spot on a racket. By analyzing several head shape designs, it becomes apparent that isometric head shape rackets produce better coefficients of restitution compared to oval and round ones. It is recommended that the racket design consist of low string tension, stiffer racket shafts and bigger head size in order to produce higher shuttlecock speed.

  5. Overview of adaptive finite element analysis in computational geodynamics

    Science.gov (United States)

    May, D. A.; Schellart, W. P.; Moresi, L.

    2013-10-01

    The use of numerical models to develop insight and intuition into the dynamics of the Earth over geological time scales is a firmly established practice in the geodynamics community. As our depth of understanding grows, and hand-in-hand with improvements in analytical techniques and higher resolution remote sensing of the physical structure and state of the Earth, there is a continual need to develop more efficient, accurate and reliable numerical techniques. This is necessary to ensure that we can meet the challenge of generating robust conclusions, interpretations and predictions from improved observations. In adaptive numerical methods, the desire is generally to maximise the quality of the numerical solution for a given amount of computational effort. Neither of these terms has a unique, universal definition, but typically there is a trade off between the number of unknowns we can calculate to obtain a more accurate representation of the Earth, and the resources (time and computational memory) required to compute them. In the engineering community, this topic has been extensively examined using the adaptive finite element (AFE) method. Recently, the applicability of this technique to geodynamic processes has started to be explored. In this review we report on the current status and usage of spatially adaptive finite element analysis in the field of geodynamics. The objective of this review is to provide a brief introduction to the area of spatially adaptive finite analysis, including a summary of different techniques to define spatial adaptation and of different approaches to guide the adaptive process in order to control the discretisation error inherent within the numerical solution. An overview of the current state of the art in adaptive modelling in geodynamics is provided, together with a discussion pertaining to the issues related to using adaptive analysis techniques and perspectives for future research in this area. Additionally, we also provide a

  6. Advanced wettability analysis of implant surfaces

    Directory of Open Access Journals (Sweden)

    Jennissen Herbert P.

    2016-09-01

    Full Text Available New methodologies are a major driving force of scientific progress. In this case the finding that contact angles can be expressed as complex numbers offers the possibility of a much refined analysis beyond zero degrees of rough ultra-/superhydrophilic, (now called hyperhydrophilic, metal surfaces, which play a distinct role in dental and orthopedic implantology. The approaches, a short theoretical introduction and examples from medical applications are given.

  7. CD -24°17504: A New Comprehensive Element Abundance Analysis

    Science.gov (United States)

    Jacobson, Heather R.; Frebel, Anna

    2015-07-01

    With [Fe/H] ˜ -3.3, CD -24°17504 is a canonical metal-poor main-sequence turn-off star. Though it has appeared in numerous literature studies, the most comprehensive abundance analysis for the star based on high-resolution, high signal-to-noise ratio (S/N) spectra is nearly 15 years old. We present a new detailed abundance analysis for 21 elements based on combined archival Keck-HIRES and Very Large Telescope-UVES spectra of the star that is higher in both spectral resolution and S/N than previous data. Our results are very similar to those of an earlier comprehensive study of the star, but we present for the first time a carbon abundance from the CH G-band feature as well as improved upper limits for neutron-capture species such as Y, Ba, and Eu. In particular, we find that CD -24°17504 has [Fe/H] = -3.41, [C/Fe] = +1.10, [Sr/H] = -4.68, and [Ba/H] ≤ -4.46, making it a carbon-enhanced metal-poor star with neutron-capture element abundances among the lowest measured in Milky Way halo stars. This work is based on data obtained from the ESO Science Archive Facility and associated with Programs 68.D-0094(A) and 073.D-0024(A). This work is also based on data obtained from the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Obsevatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. These data are associated with Program C01H (P.I. Mélendez).

  8. A Finite Element Analysis of Optimal Variable Thickness Sheets

    DEFF Research Database (Denmark)

    Petersson, Joakim S

    1996-01-01

    A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill ...

  9. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, D.

    2010-10-15

    A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (R{sub p}) to the gross forward precipitation rate (R{sub f}), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of R{sub p} has been experimentally measured under varying conditions, but the magnitude of R{sub f} is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, R{sub f} can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (R{sub b} or k{sub b}), since at equilibrium R{sub f} = R{sub b}, and R{sub p} = 0. Hence it can be inferred that R{sub f} {approx} R{sub p} + R{sub b}. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when R{sub p} (= R{sub f} - R{sub b}) << R{sub b}. For precipitation rates high enough that R{sub p} >> R{sub b}, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near R{sub p} {approx} R{sub b} for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate R{sub f} for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence R{sub p

  10. Finite element analysis of a crankshaft of diesel engine

    International Nuclear Information System (INIS)

    Bannikiv, M.G.

    2005-01-01

    This research was a part of the project aimed at the increase in power of the direct injection turbocharged twelve- cylinder V-type diesel engine. Crankshaft of a high power high speed diesel engine is subjected to complex loading conditions and undergoes high cyclic loads of the order of 107 to 108 cycles. Therefore, durability of this component is of critical importance. Strength analysis was based on the assessment of factor of safety (FOS) of the engine augmented by brake mean effective pressure (bmep) and/or engine speed. In the first part of the study, mechanical loads due to gas pressure and inertia forces were obtained from engine cycle simulation. Relationships for displacement, velocity and acceleration of an articulated connecting rod piston as a function of engine geometry and crank angle were derived. In the second part, the range of bmep and engine speed was determined over which engine performance is satisfactory on the basis of fatigue. It was shown that with limitations imposed (unchanged design and material of the crankshaft) the crankshaft of the given engine can withstand increase in power up to 15%. It was recommended, that required increase in engine power should be realized by the increase in bmep, since the increase in engine speed would deteriorate combustion efficiency. Finite Element Analysis was used to verify stresses calculations. New features of procedure used and relationships obtained in this research apply to strength analysis of other types of internal combustion engines. (author)

  11. Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Protein A for Immunoglobulin Detection

    Science.gov (United States)

    Bakhmachuk, A.; Gorbatiuk, O.; Rachkov, A.; Dons'koi, B.; Khristosenko, R.; Ushenin, I.; Peshkova, V.; Soldatkin, A.

    2017-02-01

    The developed surface plasmon resonance (SPR) biosensor based on the recombinant Staphylococcal protein A with an additional cysteine residue (SPA-Cys) used as a biorecognition component showed a good selectivity and sensitivity for the immunoglobulin detection. The developed biosensor with SPA-Cys-based bioselective element can also be used as a first step of immunosensor creation. The successful immobilization of SPA-Cys on the nanolayer gold sensor surface of the SPR spectrometer was performed. The efficiency of blocking nonspecific sorption sites on the sensor surface with milk proteins, gelatin, BSA, and HSA was studied, and a rather high efficiency of using gelatin was confirmed. The SPR biosensor selectively interacted with IgG and did not interact with the control proteins. The linear dependence of the sensor response on the IgG concentration in the range from 2 to 10 μg/ml was shown. Using the calibration curve, the IgG concentration was measured in the model samples. The determined concentrations are in good agreement ( r 2 = 0.97) with the given concentration of IgG.

  12. Neutron activation analysis of platinum group elements as indicators of extraterrestrial materials

    International Nuclear Information System (INIS)

    Chai Chifang

    1988-01-01

    A review is given of modern applications of the platinum group elements, mainly Ir and Os, in identifying and studying extraterrestrial materials, e.g. study of impact events resulting in biological mass extinctions in the earth's evolution, identification of cosmic dust, tracing of parent body of meteoric craters on the earth's surface, searching for extrasolar components in the solar system, estimation of fluxes of extraterrestrial matters, etc. Also various representative neutron activation analysis methods developed for these purposes are summarized. 213 refs. (author)

  13. Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis

    Science.gov (United States)

    Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin

    2007-09-01

    Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.

  14. Elemental analysis of two Egyptian iron ores and produced industrial iron samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Sroor, A.; Abdel-Basset, N.; Abdel-Haleem, A.S.; Hassan, A.M.

    2001-01-01

    Elemental analysis of two iron ores and initial industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were performed by the instrumental neutron activation analysis technique. Five samples of each type were irradiated for 48 h in a thermal neutron flux of 4x10 12 n/cm 2 s in the first Egyptian research reactor ET-RR-1. Also, the Pneumatic Irradiation Rabbit System (PIRS), attached to the reactor ET-RR-1 in Inshass, was used to measure short-life elements. The γ-ray spectra were obtained with a hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. Implications of the elemental concentration values obtained are presented

  15. Finite element analysis of soil-sheet pile interaction

    Science.gov (United States)

    Nyby, D. W.

    A finite element model which accurately and economically models soil-sheet pile structures was developed. The model was used to analyze cantilever and anchored sheet pile walls. The finite element model includes transition and interface elements. The transition element has the capability of conforming to the displaced shape of the sheet pile elements on one side (cubic element) and soil elements on the other sides (bilinear element). The interface element models the frictional resistance between the soil and the sheet pile. It behaves elastically below a threshold force level (Coulomb friction) and perfectly plastic above this value. The soil is modeled using nonlinear constitutive relations. These relations are used for both the transition elements and the bilinear elements. The economy of the finite element model was increased in two ways. Closed-form integration was used to reduce the computational effort and an equation solver was used which takes advantage of the banded, symmetric, and positive-definite characteristics of the global stiffness matrix.

  16. Comparative analysis of regulatory elements in different germin-like ...

    African Journals Online (AJOL)

    It was observed that these promoters have important regulatory elements, which are involved in various important functions. These elements have been compared on the basis of location, copy number, and distributed on positive and negative strands. It was also observed that some of these elements are common and ...

  17. A comparative phylogenetic analysis of full-length mariner elements ...

    Indian Academy of Sciences (India)

    Unknown

    nucleotide identity in parasitoid insect and its host wasp inferring that the element is possibly horizontally trans- ferred from one to another. The presence of different copy number of distinct mariner subfamily elements in the same genome suggests that they may be regulated differently, as presence of one element in the ...

  18. Application of PIXE analysis to environmental samples stable element distribution in sea algae by scanning microprobe analysis

    International Nuclear Information System (INIS)

    Ishikawa, M.; Kitao, K.; Imaseki, H.; Ishii, T.; Uchida, S.

    1984-01-01

    The resolution of a 33+-3 μm microprobe focussed with quadrupole doublet installed at the 3 MV Van de Graaff of the National Institute of Radiological Sciences, Japan, was used for the present analysis. Brown algae, Hizikia fusiforme was the sample target bombarded with a 2 MeV proton beam collimated mechanically into a rectangular image of 100 μm x 700 μm. Scanning across the sample target prepared into a longitudinal section from the caulis of the algae provided the following observations. More than 12 elements such as Al, Si, P, Cl, Ca, Mn, Fe, Cu, Zn, As, Br and Sr were determined simultaneously, together with their distributional information across the diameter. In the medullary layer, Mn and Zn were specific in their accumulation, while the deposition of Fe, Cu, As and Br were observed to be high in the epithelial layer, especially Fe and Cu which were found on the surface, where they contacted ambient sea water, but no significant change in pattern was indicated for such elements as Al, P and Cl. The PIXE microprobe analysis was, therefore, effective in its detectability for elements below a few ppm level, resultantly providing further possibilities for collecting information from bio-medical and environmental samples on trace characterization of elements. (author)

  19. Elemental characteristics of surface suspended particulates off the Changjiang estuary during the 1998 flood

    Science.gov (United States)

    Hsu, Shih-Chieh; Lin, Fei-Jan

    2010-06-01

    Surface suspended particulate matter (SPM) samples were collected on two latitudinal transects over the Changjiang estuary, covering a wide salinity regime from 8 to 30‰, instantaneously after the largest Changjiang flood peak in August 1998 that caused severe disaster in China. They have been analyzed for 20 major and trace elements and 7 rare earth elements (REEs) using ICP-MS. The SPM concentrations varied a very wide range of up to two orders of magnitude, sharply decreasing southward from 18 mg/l in the Changjiang river mouth to less than 1 mg/l at around 28°N, which may be representative of a background in the East China Sea (ECS) shelf. All selected particulate elements exhibit large variability in space. SPM collected around the Changjiang river mouth was dominated by the lithogenic components approximately accounting for 80% or more of the bulk, and when going south the proportions decreased to less than half of the total. Based on the results of enrichment factor (EF) calculation, elements Fe, Ti, Mn, Ba, Sr, Co, Be, Tl, Nb, V, Ni, and Mo with mean EF values of less than 3 were categorized into the unpolluted group, and elements Zn, Cu, Pb, As, Ag, and Sb with EF values of higher than 5 into the polluted group. This investigation demonstrated that anthropogenic metals could be dispersed over a large extent along the Chinese coast and on the ECS shelf although a majority of terrigenous sediments would be deposited within the Changjiang estuary. Additionally, our study reveals that the Qiantangjiang might contribute non-negligible pollutants to Hangzhou Bay. We therefore argue that the study area has been in moderate pollution, different from most of previous suggestions. Overall, most samples have similar chondrite- and especially UCC-normalized distribution patterns (UCC: upper continental crust); the sample/UCC ratios of REEs generally vary within a factor of 3 and display a flat (or slightly convex) pattern, essentially revealing little fractionation

  20. A three-dimensional viscous/potential flow interaction analysis method for multi-element wings

    Science.gov (United States)

    Dvorak, F. A.; Woodward, F. A.; Maskew, B.

    1977-01-01

    An analysis method and computer program were developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element, finite wings in incompressible flow. A fully-three dimensional potential flow program is used to determine the inviscid pressure distribution about the configuration. The potential flow program uses surface source and vortex singularities to represent the inviscid flow. The method is capable of analysing configurations having at most one slat, a main element, and two slotted flaps. Configurations are limited to full span slats or flaps. The configuration wake is allowed to relax as a force free wake, although roll up is not allowed at this time. Once the inviscid pressure distribution is calculated, a series of boundary layer computations are made along streamwise strips.

  1. No deterioration elemental analysis with in-air submilli-PIXE camera

    International Nuclear Information System (INIS)

    Matsuyama, S.; Ishii, K.; Yamazaki, H.

    1999-01-01

    Elemental images of rice leaves with lesion parts were taken with an in-air submilli-PIXE camera at Tohoku University. The rice leaves were analyzed in vivo and it resulted that the elements of Ca and Mn are accumulated in the lesion parts. It was confirmed by checking the intactness of cells that the living leaves were not seriously damaged. The surface of japan bowls (the Edo period), Japanese vessels (Shigaraki wares, the Edo period) and wooden tablets (the Meiji period) were directly surveyed by submilli-beams (3 MeV protons). Japanese vessels and wooden tablets were not discolored by the beam irradiation. Shigaraki vessels were discolored first, but their color disappeared after 10 days from the irradiation. It is concluded that such samples are not seriously deteriorated in in-air PIXE analysis. (author)

  2. Elemental analysis of soil and hair sample by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Quraishi, Shamshad Begum; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeoil; Kang, Sang Hoon; Lim, Jong Myoung; Cho, Hyun Je; Kim, Young Jin

    2004-03-01

    Myanmar soil sample was analyzed by using the instrumental neutron activation analysis. The elemental concentrations in the sample, altogether 34 elements, Al As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Ga, Gd, Hf, Ir, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Se, Sm, Th, Ti, V, Yb, Zn and Zr were determined. The concentration of 17 elements (Al, Au, Br, Ca, Cl, Cr, Cu, Co, Fe, Hg, K, Na, Mn, Mg, Sb, Se, Zn) in human hair samples were determined by INAA For quality control of analytical method, certified reference material was used.

  3. Elemental analysis of soil and hair sample by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Quraishi, Shamshad Begum; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeoil; Kang, Sang Hoon; Lim, Jong Myoung; Cho, Hyun Je; Kim, Young Jin

    2004-03-01

    Myanmar soil sample was analyzed by using the instrumental neutron activation analysis. The elemental concentrations in the sample, altogether 34 elements, Al As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Ga, Gd, Hf, Ir, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Se, Sm, Th, Ti, V, Yb, Zn and Zr were determined. The concentration of 17 elements (Al, Au, Br, Ca, Cl, Cr, Cu, Co, Fe, Hg, K, Na, Mn, Mg, Sb, Se, Zn) in human hair samples were determined by INAA For quality control of analytical method, certified reference material was used

  4. Surface analysis of stone and bone tools

    Science.gov (United States)

    Stemp, W. James; Watson, Adam S.; Evans, Adrian A.

    2016-03-01

    Microwear (use-wear) analysis is a powerful method for identifying tool use that archaeologists and anthropologists employ to determine the activities undertaken by both humans and their hominin ancestors. Knowledge of tool use allows for more accurate and detailed reconstructions of past behavior, particularly in relation to subsistence practices, economic activities, conflict and ritual. It can also be used to document changes in these activities over time, in different locations, and by different members of society, in terms of gender and status, for example. Both stone and bone tools have been analyzed using a variety of techniques that focus on the observation, documentation and interpretation of wear traces. Traditionally, microwear analysis relied on the qualitative assessment of wear features using microscopes and often included comparisons between replicated tools used experimentally and the recovered artifacts, as well as functional analogies dependent upon modern implements and those used by indigenous peoples from various places around the world. Determination of tool use has also relied on the recovery and analysis of both organic and inorganic residues of past worked materials that survived in and on artifact surfaces. To determine tool use and better understand the mechanics of wear formation, particularly on stone and bone, archaeologists and anthropologists have increasingly turned to surface metrology and tribology to assist them in their research. This paper provides a history of the development of traditional microwear analysis in archaeology and anthropology and also explores the introduction and adoption of more modern methods and technologies for documenting and identifying wear on stone and bone tools, specifically those developed for the engineering sciences to study surface structures on micro- and nanoscales. The current state of microwear analysis is discussed as are the future directions in the study of microwear on stone and bone tools.

  5. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  6. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  7. Effect of analysis parameters on non-linear implicit finite element analysis of marine corroded steel plate

    Science.gov (United States)

    Islam, Muhammad Rabiul; Sakib-Ul-Alam, Md.; Nazat, Kazi Kaarima; Hassan, M. Munir

    2017-12-01

    FEA results greatly depend on analysis parameters. MSC NASTRAN nonlinear implicit analysis code has been used in large deformation finite element analysis of pitted marine SM490A steel rectangular plate. The effect of two types actual pit shape on parameters of integrity of structure has been analyzed. For 3-D modeling, a proposed method for simulation of pitted surface by probabilistic corrosion model has been used. The result has been verified with the empirical formula proposed by finite element analysis of steel surface generated with different pitted data where analyses have been carried out by the code of LS-DYNA 971. In the both solver, an elasto-plastic material has been used where an arbitrary stress versus strain curve can be defined. In the later one, the material model is based on the J2 flow theory with isotropic hardening where a radial return algorithm is used. The comparison shows good agreement between the two results which ensures successful simulation with comparatively less energy and time.

  8. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology.

    Science.gov (United States)

    Panagiotopoulou, O

    2009-01-01

    A fundamental research question for morphologists is how morphological variation in the skeleton relates to function. Traditional approaches have advanced our understanding of form-function relationships considerably but have limitations. Strain gauges can only record strains on a surface, and the geometry of the structure can limit where they can be bonded. Theoretical approaches, such as geometric abstractions, work well on problems with simple geometries and material properties but biological structures typically have neither of these. Finite element analysis (FEA) is a method that overcomes these problems by reducing a complex geometry into a finite number of elements with simple geometries. In addition, FEA allows strain to be modelled across the entire surface of the structure and throughout the internal structure. With advances in the processing power of computers, FEA has become more accessible and as such is becoming an increasingly popular tool to address questions about form-function relationships in development and evolution, as well as human biology generally. This paper provides an introduction to FEA including a review of the sequence of steps needed for the generation of biologically accurate finite element models that can be used for the testing of biological and functional morphology hypotheses.

  9. Elemental analysis of Uranouchi bay seabed sludge using PIXE

    International Nuclear Information System (INIS)

    Kabir, M. Hasnat; Narusawa, Tadashi; Nishiyama, Fumitaka; Sumi, Katsuhiro

    2006-01-01

    Elemental analyses were carried out for the seabed sludge collected from Uranouchi bay (Kochi, Japan) using Particle Induced X-ray Emission (PIXE). Seabed-sludge contamination with heavy metals as well as toxic elements becomes one of the most serious environmental problems. The aim of the present study is to investigate the polluted areas in the bay by heavy and toxic elements. As a results of analyses of samples collected from eleven different places in the bay, seventeen elements including toxic ones were detected. The results suggest that the center region of the bay is seriously contaminated by heavy and toxic elements in comparison with the other areas in the bay. (author)

  10. Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces

    International Nuclear Information System (INIS)

    Pershina, V.; Borschevsky, A.; Anton, J.

    2012-01-01

    possibility of chromatography adsorption studies of element 119 on the noble metal surfaces.

  11. Elements of the Chicxulub Impact Structure as Revealed in SRTM and Surface GPS Topographic Data

    Science.gov (United States)

    Kinsland, Gary L.; Sanchez, Gary; Kobrick, Michael; Cardador, Manuel Hurtado

    2003-01-01

    Pope et al. [1] utilized the elevations from the Petroleos Mexicanos (PEMEX) gravity data files to show that the main component of the surface expression of the Chicxulub Impact Structure is a roughly semi-circular, lowrelief depression about 90 km in diameter. They also identified other topographic features and the elements of the buried impact, which possibly led to the development of these features. These are summarized in Table 1. Kinsland et al. [2] presented a connection between these topographic anomalies, small gravity anomalies and buried structure of the impact. Very recently we have acquired digital topography data from NASA s Shuttle Radar Topography Mission (SRTM). Our subset covers 6 square degrees from 20deg N 91degW to 22deg N 88degW (corner to corner) with a pixel size of about 90m. This area includes all of the identified portion of the crater on land.

  12. Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element

    Science.gov (United States)

    Doolittle, Charles; Goldstein, David

    2009-11-01

    Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.

  13. Observed metre scale horizontal variability of elemental carbon in surface snow

    International Nuclear Information System (INIS)

    Svensson, J; Lihavainen, H; Ström, J; Hansson, M; Kerminen, V-M

    2013-01-01

    Surface snow investigated for its elemental carbon (EC) concentration, based on a thermal–optical method, at two different sites during winter and spring of 2010 demonstrates metre scale horizontal variability in concentration. Based on the two sites sampled, a clean and a polluted site, the clean site (Arctic Finland) presents the greatest variability. In side-by-side ratios between neighbouring samples, 5 m apart, a ratio of around two was observed for the clean site. The median for the polluted site had a ratio of 1.2 between neighbouring samples. The results suggest that regions exposed to snowdrift may be more sensitive to horizontal variability in EC concentration. Furthermore, these results highlight the importance of carefully choosing sampling sites and timing, as each parameter will have some effect on EC variability. They also emphasize the importance of gathering multiple samples from a site to obtain a representative value for the area. (letter)

  14. Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal.

    Science.gov (United States)

    Brito, Pedro; Prego, Ricardo; Mil-Homens, Mário; Caçador, Isabel; Caetano, Miguel

    2018-04-15

    The distribution and sources of yttrium and rare-earth elements (YREE) in surface sediments were studied on 78 samples collected in the Tagus estuary (SW Portugal, SW Europe). Yttrium and total REE contents ranged from 2.4 to 32mg·kg -1 and 18 to 210mg·kg -1 , respectively, and exhibited significant correlations with sediment grain-size, Al, Fe, Mg and Mn, suggesting a preferential association to fine-grained material (e.g. aluminosilicates but also Al hydroxides and Fe oxyhydroxides). The PAAS (Post-Archean Australian Shale) normalized patterns display three distinct YREE fractionation pattern groups along the Tagus estuary: a first group, characterized by medium to coarse-grained material, a depleted and almost flat PAAS-normalized pattern, with a positive anomaly of Eu, representing one of the lithogenic components; a second group, characterized mainly by fine-grained sediment, with higher shale-normalized ratios and an enrichment of LREE relative to HREE, associated with waste water treatment plant (WWTP) outfalls, located in the northern margin; and, a third group, of fine-grained material, marked by a significant enrichment of Y, a depletion of Ce and an enrichment of HREE over LREE, located near an inactive chemical-industrial complex (e.g. pyrite roast plant, chemical and phosphorous fertilizer industries), in the southern margin. The data allow the quantification of the YREE contents and its spatial distribution in the surface sediments of the Tagus estuary, identifying the main potential sources and confirming the use of rare earth elements as tracers of anthropogenic activities in highly hydrodynamic estuaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    Science.gov (United States)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons

  16. Finite element analysis of constrained total Condylar Knee Prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-13

    Exactech, Inc., is a prosthetic joint manufacturer based in Gainesville, FL. The company set the goal of developing a highly effective prosthetic articulation, based on scientific principles, not trial and error. They developed an evolutionary design for a total knee arthroplasty system that promised improved performance. They performed static load tests in the laboratory with similar previous designs, but dynamic laboratory testing was both difficult to perform and prohibitively expensive for a small business to undertake. Laboratory testing also cannot measure stress levels in the interior of the prosthesis where failures are known to initiate. To fully optimize their designs for knee arthroplasty revisions, they needed range-of-motion stress/strain data at interior as well as exterior locations within the prosthesis. LLNL developed computer software (especially NIKE3D) specifically designed to perform stress/strain computations (finite element analysis) for complex geometries in large displacement/large deformation conditions. Additionally, LLNL had developed a high fidelity knee model for other analytical purposes. The analysis desired by Exactech could readily be performed using NIKE3D and a modified version of the high fidelity knee that contained the geometry of the condylar knee components. The LLNL high fidelity knee model was a finite element computer model which would not be transferred to Exactech during the course of this CRADA effort. The previously performed laboratory studies by Exactech were beneficial to LLNL in verifying the analytical capabilities of NIKE3D for human anatomical modeling. This, in turn, gave LLNL further entree to perform work-for-others in the prosthetics field. There were two purposes to the CRADA (1) To modify the LLNL High Fidelity Knee Model to accept the geometry of the Exactech Total Knee; and (2) To perform parametric studies of the possible design options in appropriate ranges of motion so that an optimum design could be

  17. Phosphogypsum analysis: total content and extractable element concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gennari, Roseli F.; Medina, Nilberto H., E-mail: rgennari@dfn.if.usp.br, E-mail: medina@if.usp.br [Departamento de Fisica Nuclear, Instituto de Fisica (USP), Sao Paulo, SP (Brazil); Garcia, Isabella; Silveira, Marcilei A.G., E-mail: shila@if.usp.br [Centro Universitario da FEI. Sao Bernardo do Campo, SP (Brazil)

    2011-07-01

    Phosphogypsum stand for the chemical origin gypsum generated in fertilizers production, in which phosphate rock is attacked by sulfuric acid resulting in phosphoric acid (H{sub 3}PO{sub 4}) and phosphate fertilizers. Phosphogypsum is not a commercial product and it is stocked in large open areas or accumulated in lakes inducing to a major environmental problem due to the presence of toxic and radioactive elements. The increasing world agricultural demand is the real responsible for the severity of this environmental problem. Nevertheless, there are some possibilities for the application of this reject material, such as civil construction, waste water treatment, and in cultivated lands, etc. In the agriculture the phosphogypsum is commonly used as a nutrient source due to its large amounts of phosphorus, calcium and sulfur. However, there are still some environmental questions related to the use of this by-product since phosphogypsum is classified as TENORM (Technologically Enhanced Naturally Occurring Radioactive Material), which is a solid waste containing heavy metals and naturally occurring radioactive elements from the rock matrix. In this work, Plasma Mass Spectrometry (ICP-MS) was used to study phosphogypsum samples. Several acid solutions for samples digestion were evaluated in order to be feasible the chemical analysis. BCR sequential extractions were also performed. The results showed analyte concentrations are highly dependent on the acid solution used. The BCR guidelines could not be applied as used for soil, since the phosphogypsum solubility is different. So, it would be necessary to use different mass aliquots in the extractions, to be feasible an environmental evaluation. (author)

  18. Neutron activation analysis of trace elements in foodstuffs

    International Nuclear Information System (INIS)

    Schelenz, R.; Bayat, I.; Fischer, E.

    1976-05-01

    For the determination of trace elements in foodstuffs with the aid of neutron activation analysis the separation of volatile radionuclides after digestion of the sample is of special interest for radiochemical processing. A distillation procedure was developed to give reproducable results, however optimal conditions were not found for all volatile radionuclides studied. The required selective separation of Br-82 from the distillate was best achieved by the application of an ion-exchange column-chromatography technique. The computer programs for the evaluation of complex gamma spectra have been developed further. The automatic peak search and peak area determination is based on a computer program using the correlation technique and carried out with a mini-computer coupled with a multi-channel gamma spectrometer. The results, which are presented in 3 earlier reports relating to this research program, reveal the advantages and disadvantages of the individual steps of the radiochemical separation scheme. Before neutron activation analysis can be introduced on a routine basis, some aspects of the radiochemical process remain to be tested; these studies will be published in a fourth and final report. (orig.) [de

  19. [Analysis of trace elements in limestone for archeological functions

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, A. [Lab. de Recherche des Monuments Historiques, Champs-sur-Marne (France); Holmes, L.; Harbottle, G. [Brookhaven National Lab., Upton, NY (US). Chemistry Dept.

    1998-12-31

    Numerous quarries in the Lutetian limestone formations of the Paris Basin provided stone for the building and the decoration of monuments from antiquity to the present. To determine the origin of stone used for masonry and sculptures in these monuments, a team of geologists and archaeologists has investigated 300 quarries and collected 2,300 samples. Petrographic and paleontologic examination of thin sections allows geologists to distinguish Lutetian limestones from Jurassic and Cretaceous limestones. Geologists also seek to formulate hypotheses regarding the origin of Lutetian limestones used for building and sculpture in the Paris region. In the search for the sources of building and sculptural stone, the analytical methods of geologists are limited because often several quarries produce the same lithofacies. A new tool is now available, however, to attack questions of provenance raised by art historians. Because limestones from different sources have distinctive patterns of trace-element concentrations, compositional analysis by neutron activation allows one to compare building or sculptural stone from one monument with stone from quarries or other monuments. This analytical method subjects a powdered limestone sample to standard neutron activation analysis procedures at Brookhaven National Laboratory. With the help of computer programs, the compositional fingerprints of Lutetian limestones can be determined and stored in a database. The limestone database contains data for approximately 2,100 samples from monuments, sculptures and quarries. It is particularly rich in samples from the Paris Basin.

  20. Design Through Manufacturing: The Solid Model - Finite Element Analysis Interface

    Science.gov (United States)

    Rubin, Carol

    2003-01-01

    State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts which reflect every detail of the finished product. Ideally, these models should fulfill two very important functions: (1) they must provide numerical control information for automated manufacturing of precision parts, and (2) they must enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in space missions. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. The research performed during the fellowship period investigated the transition process from the solid CAD model to the FEA stress analysis model with the final goal of creating an automatic interface between the two. During the period of the fellowship a detailed multi-year program for the development of such an interface was created. The ultimate goal of this program will be the development of a fully parameterized automatic ProE/FEA translator for parts and assemblies, with the incorporation of data base management into the solution, and ultimately including computational fluid dynamics and thermal modeling in the interface.

  1. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.

    Science.gov (United States)

    Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu

    2018-03-21

    The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. First principles study of elemental mercury (Hg0) adsorption on low index CoMnO3 surfaces

    International Nuclear Information System (INIS)

    Ji, Wenchao; Su, Pingru; Tang, Qingli; Cheng, Zhiwen; Shen, Zhemin; Fan, Maohong

    2017-01-01

    Highlights: • Hg 0 adsorption on low index CoMnO 3 surface was predicted by DFT method. • Hg 0 is adsorbed on the CoMnO 3 surface with chemisorption interaction. • Hg 0 has highest adsorption energy on CoMnO 3 (1 0 0) surface with Hg-Mn mechanism. • The electron transfer of Hg 0 has positive relationship with adsorption energy. - Abstract: The density functional theory (DFT) is applied to predict elemental mercury (Hg 0 ) adsorption on CoMnO 3 surface for the first time. GGA/PBE functional were selected to determine the potential Hg 0 capture mechanisms. The results show that Hg 0 has good affinity with CoMnO 3 surfaces with chemical adsorption. The adsorption energy of Hg 0 -CoMnO 3 (1 0 0), Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) are −85.225, −72.305 and −70.729 kJ/mol, respectively. The Hg-Mn and Hg-Co mechanisms were revealed on low index surfaces. Hg 0 was oxidized to its valence state of 0.236 on Mn site in CoMnO 3 (1 0 0) surface. The Hg-Co interaction mechanism occurred on Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) with 0.209e − and 0.189e − transformation, respectively. The PDOS analysis shows that Hg-Mn interaction depends on the hybridization of Hg(s- and d-orbitals) and Mn (s-, p- and d- orbitals). However, Hg-Co interaction stems from s- and d- orbitals of Hg, which only overlapping with d- and p- orbital of Co. Both the adsorption energy and electronic structure analysis indicated that CoMnO 3 catalyst performed excellent in Hg 0 oxidation. Exposing CoMnO 3 (1 0 0) is most favorable in Hg 0 control, which provides theoretical instruction on certain crystal plane synthesis in experiment.

  3. Finite Element Modeling with Embed Rebar Elements and Steady State Rolling Analysis for Rolling Resistance Test of Pneumatic Tire

    Directory of Open Access Journals (Sweden)

    Suvanjumrat Chakrit

    2017-01-01

    Full Text Available Finite element model of tire rolling resistance test on the drum was developed using 3D steady state rolling analysis coupling with pre-inflation of 2D axisymmetric tire analysis. The complex components of the radial tires composing tread, sidewall, ply layers, steel belts, and lead wires were modeled using rebar elements which were embed into the rubber element using the tying equation. The Mooney-Rivlin hyperelastic constitutive model was employed to describe the large deformation behavior of tread and sidewall, while other components such as plies, steel belts and bead wires were assigned the linear isotropic material. The tire rolling resistance system was modeled by inflation of slick tire and compression on the drum for the footprint analysis regarding the rolling resistance test. The tire’s steady state characteristics such as footprint contact pressure, rolling resistance force, and time response characteristic of tires were predicted instead the experiment of the prototype.

  4. The nonlinear finite element analysis program NUCAS (NUclear Containment Analysis System) for reinforced concrete containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Lee, Hong Pyo; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The maim goal of this research is to develop a nonlinear finite element analysis program NUCAS to accurately predict global and local failure modes of containment building subjected to internal pressure. In this report, we describe the techniques we developed throught this research. An adequate model to the analysis of containment building such as microscopic material model is adopted and it applied into the development Reissner-Mindlin degenerated shell element. To avoid finite element deficiencies, the substitute strains based on the assumed strain method is used in the shell formulation. Arc-length control method is also adopted to fully trace the peak load-displacement path due to crack formation. In addition, a benchmark test suite is developed to investigate the performance of NUCAS and proposed as the future benchmark tests for nonlinear analysis of reinforced concrete. Finally, the input format of NUCAS and the examples of input/output file are described. 39 refs., 65 figs., 8 tabs. (Author)

  5. Parameterized finite element analysis of a superplastic forming process, using Ansys®

    Directory of Open Access Journals (Sweden)

    Grebenişan Gavril

    2017-01-01

    Full Text Available A theoretical and experimental analysis was carried out, after superplastic forming, of Al-Ti-V-based alloy sheets, of hemispherical parts, as the start point of research. Based on the measurements i.e. the quantitative and qualitative determinations of the manufactured parts, work reports have been prepared to contain the magnitude of variations in the thickness of the parts, in cross-section, as well as references to the surface quality and the local thinning of the walls of the part. The experimental study was followed by a parameterized finite elements analysis of the process, using Ansys®, Explicit Dynamics Module, This being for examining the next step of our study, comparing the experimental results with the theoretical analysis, based on two input parameters: and discussing the results, and very necessary, the correlation between input and output parameters, mainly the influence magnitude rate of input parameters on output parameters.

  6. Siderophile element concentrations in magnetic spherules from deep sea sediments revealed by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nogami, Ken-ichi; Shimamura, Tadashi; Tazawa, Yuji; Yamakoshi, Kazuo.

    1980-01-01

    For the purpose of deciding the extraterrestrial origin of the magnetic spherules found in deep sea sediments, the siderophile elements Co, Ni, Ir and/or Au etc., were measured by instrumental neutron activation analysis. Spherules were collected from red clay samples which were dredged from Mid Pacific Ocean. Only spherules which had smooth surfaces and relatively high specific gravities were chosen for analysis. Existence of Co, Ni and Ir in most spherules suggests the possibility of an extraterrestrial origin for these spherules. It is not clear whether these spherules are droplets ablated from iron meteorites entering into the Earth's atmosphere or they are cosmic iron grains themselves. X-ray diffraction analysis suggested that these spherules are the products of rapid cooling materials. (author)

  7. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on

  8. XPS analysis of nanostructured materials and biological surfaces

    International Nuclear Information System (INIS)

    Baer, D.R.; Engelhard, M.H.

    2010-01-01

    This paper examines the types of information that XPS can provide about a variety of nanostructured materials. Although it is sometimes not considered a 'nanoscale analysis method,' XPS can provide a great deal of information about elemental distributions, layer or coating structure and thicknesses, surface functionality, and even particles sizes on the 1-20 nm scale for sample types that may not be readily analyzed by other methods. This information is important for both synthetic nanostructured or nanosized materials and a variety of natural materials with nanostructure. Although the links between nanostructure materials and biological systems may not at first be obvious, many biological molecules and some organisms are the sizes of nanoparticles. The nanostructure of cells and microbes plays a significant role in how they interact with their environment. The interaction of biomolecules with nanoparticles is important for medical and toxicity studies. The interaction of biomolecules is important for sensor function and many nanomaterials are now the active elements in sensors. This paper first discusses how nanostructures influences XPS data as a part of understanding how simple models of sample structure and data analysis can be used to extract information about the physical and chemical structures of the materials being analyzed. Equally important, aspects of sample and analysis limitations and challenges associated with understanding nanostructured materials are indicated. Examples of the application of XPS to nanostructured and biological systems and materials are provided.

  9. Soil-Framed Structure Interaction Analysis - A New Interface Element

    Directory of Open Access Journals (Sweden)

    M. Dalili Shoaei

    Full Text Available AbstractInterfacial behavior between soil and shallow foundation has been found so influential to combined soil-footing performance and redistribution of forces in the superstructure. This study introduces a new thin-layer interface element formulated within the context of finite element method to idealize interfacial behavior of soil-framed structure interaction with new combination of degrees of freedom at top and bottom sides of the interface element, compatible with both isoparametric beam and quadrilateral element. This research also tends to conduct a parametric study on respective parameters of the new joint element. Presence of interface element showed considerable changes in the performance of the framed structure under quasi-static loading.

  10. Analysis of toxical element in the whitening cream cosmetic samples using neutron activation analysis (NAA)

    International Nuclear Information System (INIS)

    Th Rina M; Sunarko

    2007-01-01

    Neutron activation analysis has been done to analyze of toxical elements that is not allowed in the whitening cream cosmetic. These samples have been randomly selected from the cosmetic market. The samples were irradiated at thermal neutron flux of 10 13 3n.cm -2 s -1 in the irradiation facility of rabbit system in the RSG-GAS reactor Serpong. Counting of irradiated samples have been done by a high resolution HPGe detector couple to multichannel analyzer. Data have been analyzed by GENIE 2000. The sample have been qualitatively determined up to 19 elements. These elements are: As, Br, Ce, Co, Cr, Cs, Eu, Fe, Hg, K, La, Na, Rb, Sb, Se, Sc, Rb, Th, IV, and Zn. The result of qualitative analysis showed that the toxical elements present in the samples are Hg, As, Cr and Sb with the following concentration ranges in μg/g 25.2-65.1, 1.0-6.3, 30.5-89.1 and 2.9-5.3, respectively and these element not allowed in the whitening cream cosmetic. Besides that, the others elements have been detected in the samples are Br, Fe, Zn, Sc and Co, with concentration ranges, 13.1-36.4, 65.6-159.3, 0.79-77.1, 0.5-19.5, and 6.8-31.7 μg/g, respectively, in the sample whitening cream cosmetic. (author)

  11. Finite Element Analysis of Composite Aircraft Fuselage Frame

    Science.gov (United States)

    Dandekar, Aditya Milind

    Composites have been introduced in aircraft industries, for their stronger, stiffer, and lighter properties than their metal-alloys counterparts. The general purpose of an aircraft is to transport commercial or military payload. Aircraft frames primarily maintains the shape of fuselage and prevent instability of the structure. Fuselage is similar as wing in construction which consist of longitudinal elements (longerons and stringers), transverse elements (frames and bulkheads) and its external skin. The fuselage is subjected to forces such as the wing reactions, landing gear reaction, empennage reaction, inertia forces subjected due to size and weight, internal pressure forces due to high altitude. Frames also ensure fail-safe design against skin crack propagation due to hoops stress. Ideal fuselage frames cross section is often circular ring shape with a frame cap of Z section. They are mainly made up of light alloy commonly used is aluminium alloys such as Al-2024, Al-7010, Al-7050, Al-7175. Aluminium alloys have good strength to density ratios in compression and bending of thin plate. A high strength to weight ratio of composite materials can result in a lighter aircraft structure or better safety factor. This research focuses on analysis of fuselage frame under dynamic load condition with change in material. Composites like carbon fibre reinforced plastics [CFRP] and glass fibre reinforced plastics [GFRP] are compared with traditional aluminium alloy Al-7075. The frame is subjected to impact test by dropping it at a velocity of 30 ft. / secs from a height of 86 inch from its centre of gravity. These parameters are considered in event of failure of landing gear, and an aircraft is subject to belly landing or gear-up landing. The shear flow is calculated due to impact force which acts in radial direction. The frame is analysed under static structural and explicit dynamic load conditions. Geometry is created in ANSYS Design Modeler. Analysis setup is created using

  12. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    Science.gov (United States)

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  13. Elemental analysis using a handheld X-Ray fluorescence spectrometer

    Science.gov (United States)

    Groover, Krishangi D.; Izbicki, John

    2016-06-24

    The U.S. Geological Survey is collecting geologic samples from local stream channels, aquifer materials, and rock outcrops for studies of trace elements in the Mojave Desert, southern California. These samples are collected because geologic materials can release a variety of elements to the environment when exposed to water. The samples are to be analyzed with a handheld X-ray fluorescence (XRF) spectrometer to determine the concentrations of up to 27 elements, including chromium.

  14. Finite element analysis of rail-wheel interaction

    International Nuclear Information System (INIS)

    Rahman, F.; Kharlamov, Y.A.; Islam, S.; Khan, A.A.

    2006-01-01

    Damage mechanisms such as surface cracks, plastic deformation and wear can significantly reduce the service life of railway track and rolling stock. They also have a negative impact on the rolling noise as well as: on the riding comfort. A proper understanding of these mechanisms requires a detailed knowledge of physical interaction between wheel and rail. Furthermore, demands for higher train speeds and increased axle loads implies that the consequences of larger contact. forces between wheel and rail must be thoroughly investigated. Two methods have traditionally been used to investigate the rail-wheel contact, that is the Hertz analytical method and simplified numerical method based on the boundary element (BE) method. These methods rely on a half-space assumption and a linear material model. This paper presents that to overcome these limitations, a tool for FE-based quasistatic wheel-rail contact simulations has been developed. The tool is a library of ANSYS macro routines for configuring, meshing and loading of a parametric wheel-rail model. The meshing is based on measured wheel and rail profiles. The wheel and rail materials in the contact region are treated as elastic-plastic with kinematic hardening. By controlling the values of the configuration parameters, representations of various driving cases can be generated. The quasi-static loads are obtained from train motion. Interaction phenomena such as rolling, spinning and sidling can be included. The modeling tool and a methodology are described in the presented paper. Significant differences in the calculated state between the FE solution and the traditional approaches can be observed. These differences are most significant in situations with flange contact. (author)

  15. Finite element analysis and experimental verification of multilayered tissue characterization using the thermal technique.

    Science.gov (United States)

    Kharalkar, Nachiket M; Valvano, Jonathan W

    2006-01-01

    The objective of this research is to develop noninvasive techniques to determine thermal properties of layered biologic structures based on measurements from the surface. The self-heated thermistor technique is evaluated both numerically and experimentally. The finite element analyses, which confirm the experimental results, are used to study the temperature profiles occurring in the thermistor-tissue system. An in vitro tissue model was constructed by placing Teflon of varying thickness between the biologic tissue and the self-heated thermistor. The experiments were performed using two different-sized thermistors on six tissue samples. A self-heated thermistor was used to determine the thermal conductivity of tissue covered by a thin layer Teflon. The results from experimental data clearly indicate that this technique can penetrate below the thin layers of Teflon and thus is sensitive to the thermal properties of the underlying tissue. The factors which may introduce error in the experimental data are (i) poor thermal/physical contact between the thermistor probe and tissue sample, and (ii) water loss from tissue during the course of experimentation. The finite element analysis was used to simulate the experimental conditions and to calculate transient temperature profile generated by the thermistor bead. The results of finite element analysis are in accordance with the experimental data.

  16. Ablative Thermal Response Analysis Using the Finite Element Method

    Science.gov (United States)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  17. Neutron activation analysis of trace elements in Japanese hormesis cosmetics

    International Nuclear Information System (INIS)

    Furuta, E.; Nakahara, H.; Hatsukawa, Y.; Matsue, H.; Sakane, H.

    2008-01-01

    In Japan, cosmetics claiming hormesis effect are available through Internet. Although these cosmetics show the contents, they never mention the minor elements and radioactive sources. The existence of radioisotopes, however, was observed by measurements of the gamma-rays with a HPGe detector. In this study, in order to clarify the contents of trace elements, the hormesis cosmetics including radioactive sources were analyzed using INAA, PGAA and NAA with multiple gamma-ray detection (NAAMG). Nineteen elements were analyzed quantitatively in hormesis cosmetics by INAA, PGAA and NAAMG and 16 elements were detected qualitatively by SEM-EPMA. (author)

  18. Finite element analysis in a minicomputer/mainframe environment

    Science.gov (United States)

    Storaasli, O. O.; Murphy, R. C.

    1978-01-01

    Design considerations were evaluated for general purpose finite element systems to maximize performance when installed on distributed computer hardware/software systems. It is shown how the features of current minicomputers complement those of a modular implementation of the finite element method for increasing the control, speed, and visibility (interactive graphics) in solving structural problems at reduced cost. The approach used is to implement a finite element system in a distributed computer environment to solve structural problems and to explore alternatives in distributing finite element computations.

  19. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  20. Plastic Indentation Analysis Used in Study of Colliding Robotic Elements

    Directory of Open Access Journals (Sweden)

    Florina Carmen Ciornei

    2014-06-01

    Full Text Available In robotic system there are frequent situations when on the robotic parts percutions develop. The impact plastic imprints are unique source of data remaining after collision, but complications occur in the analysis and the work models a general impact and presents the manner of processing the experimental data. The paper presents the characteristics occurring in the analysis of the indentation remnant after the oblique impact between a free falling ball and the surface of an inclined metallic prism. A series of difficulties arise while trying to approximate the collision’s imprint profile with a parabola having oblique symmetry axis. Both these impediments and the manner of surmounting them are presented. Finally, the impasse that takes place in the actual analysis of an imprint profile is presented. A first method of surpassing this aspect uses the intrinsic characteristics of osculating circle in a point of the profile is applicable only for smooth signals. The second proposed method is applied to the real signal and provides fine results.

  1. MODELLING THE DELAMINATION FAILURE ALONG THE CFRP-CFST BEAM INTERACTION SURFACE USING DIFFERENT FINITE ELEMENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    AHMED W. AL-ZAND

    2017-01-01

    Full Text Available Nonlinear finite element (FE models are prepared to investigate the behaviour of concrete-filled steel tube (CFST beams strengthened by carbon fibre reinforced polymer (CFRP sheets. The beams are strengthened from the bottom side only by varied sheet lengths (full and partial beam lengths and then subjected to ultimate flexural loads. Three surface interaction techniques are used to implement the bonding behaviour between the steel tube and the CFRP sheet, namely, full tie interaction (TI, cohesive element (CE and cohesive behaviour (CB techniques using ABAQUS software. Results of the comparison between the FE analysis and existing experimental study confirm that the FE models with the TI technique could be applicable for beams strengthened by CFRP sheets with a full wrapping length; the technique could not accurately implement the CFRP delamination failure, which occurred for beams with a partial wrapping length. Meanwhile, the FE models with the CE and CB techniques are applicable in the implementation of both CFRP failures (rapture and delamination for both full and partial wrapping lengths, respectively. Where, the ultimate loads' ratios achieved by the FE models using TI, CE and CB techniques about 1.122, 1.047 and 1.045, respectively, comparing to the results of existing experimental tests.

  2. Finite element analysis and modeling of temperature distribution in turning of titanium alloys

    Directory of Open Access Journals (Sweden)

    Moola Mohan Reddy

    2018-04-01

    Full Text Available The titanium alloys (Ti-6Al-4V have been widely used in aerospace, and medical applications and the demand is ever-growing due to its outstanding properties. In this paper, the finite element modeling on machinability of Ti-6Al-4V using cubic boron nitride and polycrystalline diamond tool in dry turning environment was investigated. This research was carried out to generate mathematical models at 95% confidence level for cutting force and temperature distribution regarding cutting speed, feed rate and depth of cut. The Box-Behnken design of experiment was used as Response Surface Model to generate combinations of cutting variables for modeling. Then, finite element simulation was performed using AdvantEdge®. The influence of each cutting parameters on the cutting responses was investigated using Analysis of Variance. The analysis shows that depth of cut is the most influential parameter on resultant cutting force whereas feed rate is the most influential parameter on cutting temperature. Also, the effect of the cutting-edge radius was investigated for both tools. This research would help to maximize the tool life and to improve surface finish.

  3. Sensitivity analysis of bridge health index to element failure and element conditions.

    Science.gov (United States)

    2009-11-01

    Bridge Health Index (BHI) is a bridge performance measure based on the condition of the bridge elements. It : is computed as the ratio of remaining value of the bridge structure to the initial value of the structure. Since it : is expressed as a perc...

  4. Stress and Deformation Analysis in Base Isolation Elements Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Claudiu Iavornic

    2011-01-01

    Full Text Available In Modern tools as Finite Element Method can be used to study the behavior of elastomeric isolation systems. The simulation results obtained in this way provide a large series of data about the behavior of elastomeric isolation bearings under different types of loads and help in taking right decisions regarding geometrical optimizations needed for improve such kind of devices.

  5. BOOK REVIEW: Nonlinear Continuum Mechanics for Finite Element Analysis

    Science.gov (United States)

    Bialek, James M.

    1998-05-01

    Nonlinear continuum mechanics of solids is a fascinating subject. All the assumptions inherited from an overexposure to linear behaviour and analysis must be re-examined. The standard definitions of strain designed for small deformation linear problems may be totally misleading when finite motion or large deformations are considered. Nonlinear behaviour includes phenomena like `snap-through', where bifurcation theory is applied to engineering design. Capabilities in this field are growing at a fantastic speed; for example, modern automobiles are presently being designed to crumple in the most energy absorbing manner in order to protect the occupants. The combination of nonlinear mechanics and the finite element method is a very important field. Most engineering designs encountered in the fusion effort are strictly limited to small deformation linear theory. In fact, fusion devices are usually kept in the low stress, long life regime that avoids large deformations, nonlinearity and any plastic behaviour. The only aspect of nonlinear continuum solid mechanics about which the fusion community now worries is that rare case where details of the metal forming process must be considered. This text is divided into nine sections: introduction, mathematical preliminaries, kinematics, stress and equilibrium, hyperelasticity, linearized equilibrium equations, discretization and solution, computer implementation and an appendix covering an introduction to large inelastic deformations. The authors have decided to use vector and tensor notation almost exclusively. This means that the usual maze of indicial equations is avoided, but most readers will therefore be stretched considerably to follow the presentation, which quickly proceeds to the heart of nonlinear behaviour in solids. With great speed the reader is led through the material (Lagrangian) and spatial (Eulerian) co-ordinates, the deformation gradient tensor (an example of a two point tensor), the right and left Cauchy

  6. Surface Preparation for Microdebonding Analysis of Composites

    International Nuclear Information System (INIS)

    Kahraman, Ramazan; Mandell, J. F.

    1999-01-01

    The bond strength between fibers and matrix is an essential property of all composite materials and it must be measured accurately to be able to correlate it with the composite behavior. There are several factors affecting its measurement. This paper discusses the polishing and load application aspects of the indentation test technique for fibre-matrix bond strength determination in polymer and ceramic matrix composites. Different polishing procedures are suggested for polymer and ceramic surfaces for obtaining a smooth surface which is a must for the test results to be reliable. The geometry of the fibers tested was also found to affect the analysis results. For best results, fibers with similar size and which are similarly surrounded by other fibers should be tested. Care should be taken during load application on a fiber for the loading probe not to approach the fiber circumference. The force should be applied in a small increments as possible, however starting from a high enough level to prevent fiber breakage due to surface damage from several loading steps. (Author)

  7. FINITE ELEMENT ANALYSIS FOR OPTIMIZING ANTENNA FOR MICROWAVE COAGULATION THERAPY

    Directory of Open Access Journals (Sweden)

    MARWAHA S.

    2012-08-01

    Full Text Available Microwave coagulation therapy (MCT is emerging as an attractive modality for thermal therapy of soft tissues targeted in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. In this field of microwave coagulation therapy, the use of minimally invasive antenna is recognized as a very promising technique for the treatment of small tumors because a very thin antenna can be easily inserted inside the body and precisely localized using the advanced 3D imaging techniques and surgical robots. The authors investigated the microwave coaxial antenna operating at 2.45 GHz by varying the slots size for the removal of liver tumor. The analysis was done using 2D finite element modeling. By several optimization steps the antenna is simulated and optimized by comparing the values of specific absorption rate (SAR, mesh statistics and temperature distributions in tissue generated by the antenna with the variations of dimensions of slot from 1 mm to 1.7 mm.

  8. Fluid-film bearings: a finite element method of analysis

    International Nuclear Information System (INIS)

    Pururav, T.; Soni, R.S.; Kushwaha, H.S.; Mahajan, S.C.

    1995-01-01

    Finite element method (FEM) has become a very popular technique for the analysis of fluid-film bearings in the last few years. These bearings are extensively used in nuclear industry applications such as in moderator pumps and main coolant pumps. This report gives the methodology for the solution of Reynold's equation using FEM and its implementation in FE software LUBAN developed in house. It also deals with the mathematical basis and algorithm to account for the cavitation phenomena which makes these problems non-linear in nature. The dynamic coefficients of bearings are evaluated by one-step approach using variational principles. These coefficients are useful for the dynamic characterisation of fluid-film bearings. Several problems have been solved using this code including two real life problems, a circumferentially grooved journal bearing for which experimental results are available and the bearing of moderator pump of 500 MWe PHWR, have been solved. The results obtained for sample problems are in good agreement with the published literature. (author). 9 refs., 14 figs., 5 tabs., 2 ills

  9. Elemental analysis of brazing alloy samples by neutron activation technique

    International Nuclear Information System (INIS)

    Eissa, E.A.; Rofail, N.B.; Hassan, A.M.; El-Shershaby, A.; Walley El-Dine, N.

    1996-01-01

    Two brazing alloy samples (C P 2 and C P 3 ) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10 1 1 n/cm 2 /s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10 1 2 n/cm 2 /s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab

  10. Solar Electric Generating System II finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Anderson, J.R.

    1994-04-01

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  11. PIXE analysis for bioaccumulation studies of trace elements

    International Nuclear Information System (INIS)

    Iwata, Y.; Satoh, A.; Sasaki, Y.; Ito, R.; Kuramachi, K.

    2005-01-01

    Bioaccumulation by micro-alga in the ocean was simulated in nutritive seawater containing known amounts of trace metals, and the concentration factors for Fe, Zn and Cd were measured by PIXE. Trace transition metals in nearshore seawater were removed by Chelex-100. Then a culture solution was prepared by adding known amounts of trace metals and nutritive salts to the purified seawater. Marine micro-algae (Nannochloropsis sp., and Phaeodactylum sp.,) were purely cultured in the culture solution. An interested metal ion was added to the culture solution (0.01-5.0 mg/l). Alga in 10 ml of the culture solution was collected on a polycarbonate filter (pore size: 1.0 ) by suction filtration and subjected to 2.9 MeV proton bombardment. Na, Mg, Al, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Zn and Cd were simultaneously determined. PIXE multi-element analysis was possible using less than 1 mg of analytical sample. The quantity of the metal in the alga was increased in proportion to the concentration in the culture solution. The concentration factors for Zn, Fe and Cd were measured, e.g., 10200 ± 300 ml/g to Zn for Phaeodactylum. The trend of the affinity for the trace metals in the case of Nannochloropsis was Fe 3+ > Zn 2+ > Pb 2+ > Cd 2+ . (author)

  12. Application of cyclic activation to in vivo elemental analysis

    International Nuclear Information System (INIS)

    Spyrou, N.M.

    1984-01-01

    Experience over the past seven years with a prototype cyclic system, based on an oscillating 5Ci AmBe neutron source, suggests that multielemental in vivo analysis is possible and more specifically indicates that the determination of selenium and cadmium in liver may allow the examination of the interaction of the two elements at acceptable doses. Detection limits obtained for selenium and cadmium, in the same experiment but through different modes of detection i.e. the measurement of delayed gamma-rays from short-lived Se-77m (17.6 s) and prompt gamma-rays from Cd-114, in a cyclic sequence of irradiations, are 0.4 ppm and 6 ppm respectively, for a total irradiation period of 1800s and an equivalent dose to the irradiated region of 5mSv. The redesigning of the prototype system is being considered in order to decrease the detection limit of selenium to a value of 0.1 ppm or less and the effect of increasing the neutron flux tenfold is investigated. This could result in an improvement by a factor of 4 to 5 in detection, for the same dose. 36 references, 6 figures

  13. Analysis of gear reducer housing using the finite element method

    Science.gov (United States)

    Miklos, I. Zs; Miklos, C. C.; Alic, C. I.; Raţiu, S.

    2018-01-01

    The housing is an important component in the construction of gear reducers, having the role of fixing the relative position of the shafts and toothed wheels. At the same time, the housing takes over, via the bearings, the shaft loads resulting when the toothed wheel is engaging another toothed mechanism (i.e. power transmission through belts or chains), and conveys them to the foundation on which it is anchored. In this regard, in order to ensure the most accurate gearing, a high stiffness of the housing is required. In this paper, we present the computer-aided 3D modelling of the housing (in cast version) of a single stage cylindrical gear reducer, using the Autodesk Inventor Professional software, on the principle of constructive sizing. For the housing resistance calculation, we carried out an analysis using the Autodesk Simulation Mechanical software to apply the finite element method, based on the actual loads, as well as a comparative study of the stress and strain distribution, for several tightening values of the retaining bolts that secure the cover and the foundation housing.

  14. Distraction osteogenesis for cleft palate closure: A finite element analysis

    Directory of Open Access Journals (Sweden)

    Majid Ghasemianpour

    2014-01-01

    Full Text Available Background: Current methods of closure of the cleft palate result in the formation of scars and impairment of growth. Distraction osteogenesis (DO might be an effective means to repair or at least reduce the size of wide clefts. This study investigates the biomechanical aspects of this process. Materials and Methods: DO simulation was applied to reduce the size of a unilateral hard palate cleft on a three-dimensional (3D model of the maxilla. For the position of osteotomy lines, two different models were assumed, with the osteotomy line on the affected side in model A and on the intact side in model B. In each model, DO screws were placed on two different positions, anteriorly (models A1 and B1 and posteriorly (models A2 and B2. Displacement pattern of the bony island in each of the four models, reaction forces at DO locations, and von Mises stress were estimated. Mesh generation and data processing were carried out in the 3D finite element analysis package (ABAQUS V6.7-1; Simulia Corp., Providence, RI, USA. Results: In model B2, the island moved almost evenly, assuring a more complete closure of the cleft. The most uniform stress distribution was found in model B1. Conclusion: The results suggest that the best positions for the DO screw and the osteotomy line for closure of the cleft palate are posteriorly and on the intact side, respectively.

  15. Distraction osteogenesis for cleft palate closure: A finite element analysis.

    Science.gov (United States)

    Ghasemianpour, Majid; Ehsani, Sara; Tahmasbi, Soodeh; Bayat, Mohammad; Ghorbanpour, Maedeh; Safavi, Seyed Mohammadreza; Mirhashemi, Fatemeh Sadat

    2014-01-01

    Current methods of closure of the cleft palate result in the formation of scars and impairment of growth. Distraction osteogenesis (DO) might be an effective means to repair or at least reduce the size of wide clefts. This study investigates the biomechanical aspects of this process. DO simulation was applied to reduce the size of a unilateral hard palate cleft on a three-dimensional (3D) model of the maxilla. For the position of osteotomy lines, two different models were assumed, with the osteotomy line on the affected side in model A and on the intact side in model B. In each model, DO screws were placed on two different positions, anteriorly (models A1 and B1) and posteriorly (models A2 and B2). Displacement pattern of the bony island in each of the four models, reaction forces at DO locations, and von Mises stress were estimated. Mesh generation and data processing were carried out in the 3D finite element analysis package (ABAQUS V6.7-1; Simulia Corp., Providence, RI, USA). In model B2, the island moved almost evenly, assuring a more complete closure of the cleft. The most uniform stress distribution was found in model B1. The results suggest that the best positions for the DO screw and the osteotomy line for closure of the cleft palate are posteriorly and on the intact side, respectively.

  16. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate

  17. A finite element analysis of the distribution velocity in viscous ...

    African Journals Online (AJOL)

    In this work we use the finite element method to analyze the distribution of velocity in a viscous incompressible fluid flow using Lagrange interpolation function. The results obtained are highly accurate and converge fast to the exact solution as the number of elements increase.

  18. Trace element analysis in silicon by accelerator SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Ender, R.M.; Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Doebeli, M.; Synal, H.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The accelerator SIMS technique has been applied to Si samples implanted with different elements. It has been shown that concentrations of several trace elements can be analysed down to about 1 ppb in depth profiling mode. (author) 2 figs., 1 ref.

  19. Analysis of Tube Drawing Process – A Finite Element Approach ...

    African Journals Online (AJOL)

    In this paper the effect of die semi angle on drawing load in cold tube drawing has been investigated numerically using the finite element method. The equation governing the stress distribution was derived and solved using Galerkin finite element method. An isoparametric formulation for the governing equation was utilized ...

  20. Stress distributions in finite element analysis of concrete gravity dam ...

    African Journals Online (AJOL)

    Gravity dams are solid structures built of mass concrete material; they maintain their stability against the design loads from the geometric shape, the mass, and the strength of the concrete. The model was meshed with an 8-node biquadratic plane strain quadrilateral (CPE8R) elements, using ABAQUS, a finite element ...

  1. THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS

    Directory of Open Access Journals (Sweden)

    Natalia Bakhova

    2011-03-01

    Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.

  2. Modelling Convergence of Finite Element Analysis of Cantilever Beam

    African Journals Online (AJOL)

    Convergence studies are carried out by investigating the convergence of numerical results as the number of elements is increased. If convergence is not obtained, the engineer using the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the correct solution ...

  3. Roughness parameters as the elements of surface condition and deformation assessment based on the results of TLS scanning

    Directory of Open Access Journals (Sweden)

    Kowalska Maria E.

    2017-03-01

    Full Text Available Roughness parameters as the elements of surface condition and deformation assessment based on the results of TLS scanning. Roughness is the attribute of a surface that can be defined as a collection of small surface unevennesses that can be identified optically or detected mechanically which do not result from the surface’s shape and their size depends on a material type as well as on undergone processing. The most often utilised roughness parameters are: Ra - mean distance value of the points on the observed profile from the average line on the sampling length, and Rz - difference between arithmetic mean height of the five highest peaks and arithmetic mean depth of the five deepest valleys regarding to the average line on the length of the measured fragment. In practice, roughness parameters are most often defined for surface elements that require relevant manufacturing or processing through grinding, founding or polishing in order to provide the expected surface roughness. To measure those parameters for the produced elements profilometers are used. In this paper the authors present an alternative approach of determining and utilising such parameters. Instead of the utilising methods based on sampling length measurement, roughness parameters are determined on the basis of point clouds, that represent a surface of rough concrete, obtained through terrestrial laser scanning. The authors suggest using the surface roughness parameter data acquired in this way as a supplementary data in the condition assessment (erosion rate of surfaces being a part of engineering constructions made of concrete.

  4. On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Sanborn, Graham G.; Shabana, Ahmed A.

    2009-01-01

    For almost a decade, the finite element absolute nodal coordinate formulation (ANCF) has been used for both geometry and finite element representations. Because of the ANCF isoparametric property in the cases of beams, plates and shells, ANCF finite elements lend themselves easily to the geometric description of curves and surfaces, as demonstrated in the literature. The ANCF finite elements, therefore, are ideal for what is called isogeometric analysis that aims at the integration ofcomputer aided designandanalysis (ICADA), which involves the integration of what is now split into the separate fields of computer aided design (CAD) and computer aided analysis (CAA). The purpose of this investigation is to establish the relationship between the B-spline and NURBS, which are widely used in the geometric modeling, and the ANCF finite elements. It is shown in this study that by using the ANCF finite elements, one can in a straightforward manner obtain the control point representation required for the Bezier, B-spline and NURBS geometry. To this end, a coordinate transformation is used to write the ANCF gradient vectors in terms of control points. Unifying the CAD and CAA will require the use of such coordinate transformations and their inverses in order to transform control points to position vector gradients which are required for the formulation of the element transformations in the case of discontinuities as well as the formulation of the strain measures and the stress forces based on general continuum mechanics theory. In particular, fully parameterized ANCF finite elements can be very powerful in describing curve, surface, and volume geometry, and they can be effectively used to describe discontinuities while maintaining the many ANCF desirable features that include a constant mass matrix, zero Coriolis and centrifugal forces, no restriction on the amount of rotation or deformation within the finite element, ability for straightforward implementation of general

  5. GPU-based interactive cut-surface extraction from high-order finite element fields.

    Science.gov (United States)

    Nelson, Blake; Haimes, Robert; Kirby, Robert M

    2011-12-01

    We present a GPU-based ray-tracing system for the accurate and interactive visualization of cut-surfaces through 3D simulations of physical processes created from spectral/hp high-order finite element methods. When used by the numerical analyst to debug the solver, the ability for the imagery to precisely reflect the data is critical. In practice, the investigator interactively selects from a palette of visualization tools to construct a scene that can answer a query of the data. This is effective as long as the implicit contract of image quality between the individual and the visualization system is upheld. OpenGL rendering of scientific visualizations has worked remarkably well for exploratory visualization for most solver results. This is due to the consistency between the use of first-order representations in the simulation and the linear assumptions inherent in OpenGL (planar fragments and color-space interpolation). Unfortunately, the contract is broken when the solver discretization is of higher-order. There have been attempts to mitigate this through the use of spatial adaptation and/or texture mapping. These methods do a better job of approximating what the imagery should be but are not exact and tend to be view-dependent. This paper introduces new rendering mechanisms that specifically deal with the kinds of native data generated by high-order finite element solvers. The exploratory visualization tools are reassessed and cast in this system with the focus on image accuracy. This is accomplished in a GPU setting to ensure interactivity. © 2011 IEEE

  6. Sound transmission analysis of MR fluid based-circular sandwich panels: Experimental and finite element analysis

    Science.gov (United States)

    Hemmatian, Masoud; Sedaghati, Ramin

    2017-11-01

    Magnetorheological Fluids (MR) have been recently utilized in sandwich panels to provide variable stiffness and damping to effectively control vibrations. In this study, the sound transmission behavior of MR based-sandwich panels is investigated through development of an efficient finite element model. A clamped circular sandwich panel with elastic face sheets and MR Fluid as the core layer has been considered. A finite element model utilizing circular and annular elements has been developed to derive the governing equations of motion in the finite element form. The transverse velocity is then calculated and utilized to obtain the sound radiated from the panel and subsequently the sound transmission loss. In order to validate the simulated results, a test setup including two anechoic spaces and an electro-magnet has been designed and fabricated. The magnetic flux density generated inside the electromagnet is simulated using magneto-static finite element analysis and validated with the measured magnetic flux density using Gaussmeter. The results from magneto-static analysis is used to derive an approximate polynomial function to evaluate the magnetic flux density as a function of the plate's radius and applied current. The STL and first axisymmetric natural frequency of the MR sandwich panels with aluminum face sheets are simulated and compared with those obtained experimentally. Finally, a parametric study on the effect of applied magnetic field, the thickness of the core layer and the thickness of face sheets on the STL and natural frequency of the adaptive sandwich panel are presented.

  7. A radiation analysis of lunar surface habitats

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Tripathi, R.K.; Clowdsley, M.S.; Nealy, J.E.

    2003-01-01

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to minimize the astronaut radiation exposure and at the same time control the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process performs minimization of mass along all phases of a mission scenario, considered in terms of time frame, equipment, location, crew characteristics and performance required, radiation exposure annual and career limit constraints (those proposed in NCRP 132), and implementation of the ALARA principle. In the lunar environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in detail (e.g. shape, thickness, materials, etc) with considerations of various shielding strategies. The results for all scenarios clearly showed that the direct exposure to the space environment like in transfers and EVAs phases gives the most of the dose, with the proposed shielded habitats and shelters giving quite a good protection from radiation. Operational constraints on hardware and scenarios have all been considered by the optimization techniques. Within the limits of this preliminary analysis, the three Moon Base related mission scenarios are perfectly feasible from the astronaut radiation safety point of view with the currently adopted and proposed

  8. Analysis of elemental composition of porcelains unearthed from Waguantan kiln site by PIXE–RBS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z. [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, K. [School of History and Culture, Sichuan University, Chengdu 610064 (China); Xia, C.D.; Liu, M.T.; Zhu, J.J. [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); An, Z., E-mail: anzhu@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Bai, B., E-mail: baibin@scu.edu.cn [School of History and Culture, Sichuan University, Chengdu 610064 (China)

    2015-03-01

    Highlights: •We analyzed 61 unearthed porcelain shards in Yuan Dynasty by PIXE–RBS. •An electron gun was installed to solve the electric charge accumulations. •The factor analysis was performed for the element compositions. •The “exotic group” porcelain samples unearthed were produced locally. -- Abstract: A method combining proton-induced X-ray emission spectrometry (PIXE) and Rutherford backscattering spectrometry (RBS) was used to determine the composition of 61 porcelain shards from the Yuan Dynasty (1271–1368 A.D.) unearthed from the Waguantan kiln site at Tianzhu County in Guizhou Province, China. Based on our previous experimental setup, an electron gun device with a LaB{sub 6} crystal cathode was installed to solve the problem created when the incident proton beams generated electric charge accumulations on the surfaces of the insulating porcelain samples, which induced a large bremsstrahlung background. The use of the electron gun has largely eliminated the large bremsstrahlung background and has therefore improved the detection limits for elements, especially for trace elements, and made it possible to determine the origin of the porcelains based on the trace elements. Major and trace elemental compositions of the porcelain bodies and glazes measured by PIXE and RBS were analyzed by the factor analysis method. The factor analysis showed that a few pieces of porcelain with a style similar to the porcelain of the Longquan kiln among the unearthed porcelains from the Waguantan kiln site did not have obvious differences in elemental compositions from other remaining porcelains unearthed from the Waguantan kiln site, indicating that the pieces of unearthed porcelain with the Longquan kiln style did in fact belong to the product fired locally by imitating the model of the Longquan celadon with local raw materials. This result therefore indicated that the Longquan kiln technology that originated from the Five Dynasties (907–960 A.D.) had been

  9. A wave finite element analysis of the passive cochlea

    OpenAIRE

    Elliott, Stephen J.; Ni, Guangjian; Mace, Brian R.; Lineton, Ben

    2013-01-01

    Current models of the cochlea can be characterized as being either based on the assumed propagation of a single slow wave, which provides good insight, or involve the solution of a numerical model, such as in the finite element method, which allows the incorporation of more detailed anatomical features. In this paper it is shown how the wave finite element method can be used to decompose the results of a finite element calculation in terms of wave components, which allows the insight of the w...

  10. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  11. Effect of elemental composition of ion beam on the phase formation and surface strengthening of structural materials

    International Nuclear Information System (INIS)

    Avdienko, K.I.; Avdienko, A.A.; Kovalenko, I.A.

    2001-01-01

    The investigation results are reported on the influence of ion beam element composition on phase formation, wear resistance and microhardness of surface layers of titanium alloys VT-4 and VT-16 as well as stainless steel 12Kh18N10T implanted with nitrogen, oxygen and boron. It is stated that ion implantation into structural materials results in surface hardening and is directly dependent on element composition of implanted ion beam. The presence of oxygen in boron or nitrogen ion beams prevents the formation of boride and nitride phases thus decreasing a hardening effect [ru

  12. Mineral elements in dental composites by atomic and nuclear analytical methods. II. Improved analysis by PIXE

    International Nuclear Information System (INIS)

    Preoteasa, E.A.; Ciortea, C.; Fluerasu, D.; Enescu, S.E.; Preoteasa, Elena

    2000-01-01

    In the corrosive environment of the mouth, a diversity of interactions take place at the solid-solid and solid-liquid interfaces of a tooth's filling. Moreover, the mineral elements of the restorative material may induce a complex response of the organism. The approach of these problems requires sensitive surface elemental analysis of the composite and of the dental enamel and dentine. Particle-induced X-ray emission (PIXE) is such a method and has been applied in investigations of hard dental tissues; however, it was not used so far in the study of dental composites. We continue our study by evaluating the potential of PIXE for analysis of these materials. Three types of composites with two color shades each have been studied. The measurements were performed with 3 MeV protons, using a hyperpure Ge detector in a spectroscopic chain connected to a computer. The spectra were processed with the dedicated program Leone. PIXE without additional Al absorbent foil allowed the detection of Z > 14 elements in composites. In two glass- and ceramics-based materials we found: Ca, Zr, Ba, Yb and traces of Sr and In in Tetric Ceram (Vivadent); and Ca, Zr, Ba, Hf, possibly Mn, and traces of Ni, Ho, Ti, Fe, Cr in Valux Plus (3M Dental), after elimination of the escape peaks. In quartz-based Evicrol (Spofa), Si, Ca, Ti, Fe and traces of K, Cr, Ni, Cu, Zn were seen. Materials with different color shades showed variations of Ti, Cr, Fe, Ni and Cu in Evicrol, as contrasted to Tetric Ceram and Valux Plus whose spectra were color-invariant. By its sensitivity and low background, PIXE enables the detection of many trace elements in dental composites; it could serve also in new materials' development and forensic expertise. (authors)

  13. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    Energy Technology Data Exchange (ETDEWEB)

    Assari, Mohamad javad [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rangkooy, Hossinali [Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of)

    2015-07-01

    Highlights: • A novel nanocomposite including bone char and gold nanoparticle was developed for capture of Hg{sup 0} vapor. • EDS and XRD results confirm the presence of nano-gold on the surface of the bone char support. • The majority of the pores were found to be in the mesoporous range. • The dynamic capacity of 586 μg/g was obtained for Hg{sup 0} vapor. - Abstract: The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg{sup 0}) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV–VIS–NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg{sup 0} determination. Dynamic capacity of nanocomposite for Hg{sup 0} was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg{sup 0}. It could be applied for the laboratory and field studies.

  14. Nuclear reaction analysis (NRA) for trace element detection

    Energy Technology Data Exchange (ETDEWEB)

    Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Noll, K. [Bern Univ. (Switzerland)

    1997-09-01

    Ion beam induced nuclear reactions can be used to analyse trace element concentrations in materials. The method is especially suited for the detection of light contaminants in heavy matrices. (author) 3 figs., 2 refs.

  15. Finite Element Analysis of the Hierarchical Structure of Human Bone

    National Research Council Canada - National Science Library

    Dolloff, Katherine

    2003-01-01

    .... Finally, the effective stiffness of the bone was estimated. In order to determine the stiffness of the collagen fiber, a three-dimensional finite element model was developed and a simple analytical model was derived...

  16. A modified finite element procedure for underwater shock analysis

    International Nuclear Information System (INIS)

    Chan, S.K.

    1990-01-01

    Using the regular finite element method for analyzing wave propagation problems presents difficulties: (a) The finite element mesh gives spurious reflection of the traveling wave and (b) Since a finite element model has to have a finite boundary, the wave is reflected by the outside boundary. However, for underwater shock problems, only the response of the structure is of major interest, not the behavior of the wave itself, and the shock wave can be assumed to be spherical. By taking advantage of the limited scope of the underwater shock problem, a finite element procedure can be developed that eliminates the above difficulties. This procedure not only can give very accurate solutions but it may also include structural nonlinearities and effect of cavitation

  17. 40 CFR 1400.5 - Internet access to certain off-site consequence analysis data elements.

    Science.gov (United States)

    2010-07-01

    ... consequence analysis data elements. 1400.5 Section 1400.5 Protection of Environment ENVIRONMENTAL PROTECTION...-site consequence analysis data elements. The Administrator shall include only the following OCA data... UNDER THE CLEAN AIR ACT SECTION 112(r)(7); DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION...

  18. Numerical investigation of soil and buried structures using finite element analysis

    Directory of Open Access Journals (Sweden)

    Meysam Shirzad Shahrivar

    2017-02-01

    Full Text Available Today the important of studying soil effect on behavior of soil  contacted structures such as foundations, piles,  retaining wall and other similar structures is so much that neglecting of soil-structure interaction effect can cause to untrue results. In this paper soil-structure interaction simulation was done by using Finite element method analysis with ABAQUS version 6.13-14.The results has been presented based on pile function in contact with soil, vertical stresses in soil and structures, pore pressure in drained and undrained condition and underground water level.Final conclusions revealed that pore pressure effect is not uniform on all parts of pile and amount of pore pressure increment in top elements is lower than down elements of  pile.Further it was proven that average amount of vertical stress on end of pile is    of this stress on top of the pile. thus it was concluded that 70% of pile bearing capacity is depend on friction of soil and pile contact surface.

  19. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    Science.gov (United States)

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  20. Geochemical characteristics of rare earth elements in the surface sediments from the Spratly Islands of China.

    Science.gov (United States)

    Li, Jingxi; Sun, Chengjun; Zheng, Li; Yin, Xiaofei; Chen, Junhui; Jiang, Fenghua

    2017-01-30

    The geochemistry of rare earth elements (REE) in surface sediment from Cuarteron reef (N1), Johnson reef (N2), Hugh reef (N3), Gaven reef (N4), Fiery cross reef (N5), and Subi reef (N6) were firstly studied. The total REE abundance (∑REE) varied from 2.244μg·g -1 to 21.661μg·g -1 , with an average of 4.667μg·g -1 . The LREE/HREE was from 2.747 to 9.869, with an average of 3.687, which indicated that the light REE was evidently enriched. Fractionation was observed between LREE and HREE. Gd with a negative anomaly was also detected in all of the stations. The negative anomalies of δEu from 0.11 to 0.25, with an average of 0.22, and the positive anomalies of δCe from 1.38 to 3.86, with an average of 1.63. The REE individual correlation values with Ca, Mn, Mg, Sr were r Ca =-0.05, r Mn =0.26, r Mg =-0.14, and r Sr =0.08. Copyright © 2016 Elsevier Ltd. All rights reserved.