WorldWideScience

Sample records for surface electron-hole recombination

  1. Calculation of electron-hole recombination probability using explicitly correlated Hartree-Fock method.

    Science.gov (United States)

    Elward, Jennifer M; Thallinger, Barbara; Chakraborty, Arindam

    2012-03-28

    The electron-hole explicitly correlated Hartree-Fock method (eh-XCHF) is presented as a general strategy for investigation of electron-hole correlation and computation of electron-hole recombination probability. The eh-XCHF method is a variational method which uses explicitly correlated wavefunction that depends on the electron-hole inter-particle distances. It is shown that the explicitly correlated ansatz provides a systematic route to variationally minimize the total energy. The parabolic quantum dot is used as the benchmark system and the eh-XCHF method is used for computation of the ground state energy and electron-hole recombination probability. The results are compared to Hartree-Fock and explicitly correlated full configuration interaction (R12-FCI) calculations. The results indicate that an accurate description of the electron-hole wavefunction at short electron-hole inter-particle distances is crucial for qualitative description of the electron-hole recombination probability. The eh-XCHF method successfully addresses this issue and comparison of eh-XCHF calculations with R12-FCI shows good agreement. The quality of the mean field approximation for electron-hole system is also investigated by comparing HF and R12-FCI energies for electron-electron and electron-hole systems. It was found that performance of the mean field approximation is worse for the electron-hole system as compared to the corresponding electron-electron system.

  2. Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity

    Science.gov (United States)

    Ihara, Toshiyuki; Takahashi, Yasushi; Noda, Susumu; Kanemitsu, Yoshihiko

    2017-07-01

    We investigate photoluminescence (PL) spectra and dynamics of clean silicon photonic crystal nanocavities at 10 K. A sharp emission peak due to the nanocavity mode has the largest intensity when the energy of the nanocavity mode is equal to the emission energy of the electron-hole droplets (EHDs). Time-resolved PL spectroscopy indicates that the PL lifetime of the EHD is reduced to as short as 1.2 ns by the nanocavity mode. A careful analysis of the lifetimes indicates that the radiative recombination rate for EHD is enhanced by a factor of larger than 5 by the Purcell effect.

  3. Relation between bulk compressibility and surface energy of electron-hole liquids

    International Nuclear Information System (INIS)

    Singwi, K.S.; Tosi, M.P.

    1979-08-01

    Attention is drawn to the existence of an empirical relation chiσ/asup(*)sub(B) approximately 1 between the compressibility, the surface energy and the excitonic radius in electron-hole liquids. (author)

  4. Tungsten-doped TiO2/reduced Graphene Oxide nano-composite photocatalyst for degradation of phenol: A system to reduce surface and bulk electron-hole recombination.

    Science.gov (United States)

    Yadav, Manisha; Yadav, Asha; Fernandes, Rohan; Popat, Yaksh; Orlandi, Michele; Dashora, Alpa; Kothari, D C; Miotello, Antonio; Ahuja, B L; Patel, Nainesh

    2017-12-01

    Recombination of photogenerated charges is the main factor affecting the photocatalytic activity of TiO 2 . Here, we report a combined strategy of suppressing both the bulk as well as the surface recombination processes by doping TiO 2 with tungsten and forming a nanocomposite with reduced graphene oxide (rGO), respectively. Sol-gel method was used to dope and optimize the concentration of W in TiO 2 powder. UV-Vis, XPS, PL and time resolved PL spectra along with DFT calculations indicate that W 6+ in TiO 2 lattice creates an impurity level just below the conduction band of TiO 2 to act as a trapping site of electrons, which causes to improve the lifetime of the photo-generated charges. Maximum reduction in the PL intensity and the improvement in charge carrier lifetime was observed for TiO 2 doped with 1 at.% W (1W-TiO 2 ), which also displayed the highest photo-activity for the degradation of p-nitro phenol pollutant in water. Tuning of rGO/TiO 2 ratio (weight) disclosed that the highest activity can be achieved with the composite formed by taking equal amounts of TiO 2 and rGO (1:1), in which the strong interaction between TiO 2 and rGO causes an effective charge transfer via bonds formed near the interface as indicated by XPS. Both these optimized concentrations were utilized to form the composite rGO/1W-TiO 2 , which showed the highest activity in photo-degradation of p-nitro phenol (87%) as compared to rGO/TiO 2 (42%), 1W-TiO 2 (62%) and pure TiO 2 (29%) in 180 min. XPS and PL results revealed that in the present nanocomposite, tungsten species traps the excited electron to reduce the interband recombination in the bulk, while the interaction between TiO 2 and rGO creates a channel for fast transfer of excited electrons towards the latter before being recombined on the surface defect sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Electron-hole recombination luminescence in LiYF4:U4+; Eu3+;Tb3+; Gd3+

    International Nuclear Information System (INIS)

    Page, A.G.; Godbole, S.V.; Sastry, M.D.; Sabharwal, S.C.

    2001-01-01

    Photoluminescence, photostimulated luminescence and electron paramagnetic resonance studies were carried out on LiYF 4 and LiYF 4 :U 4+ doped crystals. These investigations have identified presence of Eu 3+ , Tb 3+ and Gd 3+ ions being present in both the crystals arising due to their presence in starting material. On gamma irradiation, U 4+ ions were acting as electron trapping centre, and are responsible in introducing shallow traps in the material. In electron-hole recombination process, Tb 3+ ions were observed to be acting as luminescent centres. (author)

  6. Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi

    Science.gov (United States)

    Jiang, J.; Schröter, N. B. M.; Wu, S.-C.; Kumar, N.; Shekhar, C.; Peng, H.; Xu, X.; Chen, C.; Yang, H. F.; Hwang, C.-C.; Mo, S.-K.; Felser, C.; Yan, B. H.; Liu, Z. K.; Yang, L. X.; Chen, Y. L.

    2018-02-01

    The recent discovery of the extreme magnetoresistance (XMR) in the nonmagnetic rare-earth monopnictides La X (X = P, As, Sb, Bi,), a recently proposed new topological semimetal family, has inspired intensive research effort in the exploration of the correlation between the XMR and their electronic structures. In this work, using angle-resolved photoemission spectroscopy to investigate the three-dimensional band structure of LaBi, we unraveled its topologically nontrivial nature with the observation of multiple topological surface Dirac fermions, as supported by our ab initio calculations. Furthermore, we observed substantial imbalance between the volume of electron and hole pockets, which rules out the electron-hole compensation as the primary cause of the XMR in LaBi.

  7. Light-induced effects on the radiative recombination rate of electron-hole pairs in a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, C.; Inagaki, Y. [Department of Applied Science, Yamaguchi University, Ube 755-8611 (Japan); Morigaki, K. [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku, Hiroshima 731-5193 (Japan)

    2011-09-15

    Temperature variation of radiative recombination rate obtained for defect photoluminescence (PL) in high-quality a-Si:H after illumination of intense pulsed light is presented and compared with results previously reported for defective a-Si:H films. We have not found significant difference between the temperature variation of the rate of radiative recombination at photo-created radiative defects and that at native radiative defects. This fact suggests the recombination processes at the photo-created defects and the native defects are similar. The temperature dependence of the radiative recombination rates in a-Si:H is predicted by a model of the recombination processes for various cases of different density of deep and strongly localised tail states. Our recent experimental results for the principal PL and defect PL coincide with the prediction of the model. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Double carriers pulse DLTS for the characterization of electron-hole recombination process in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Suzuki, Hidetoshi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2011-01-01

    A nitrogen-related electron trap (E1), located approximately 0.33 eV from the conduction band minimum of GaAsN grown by chemical beam epitaxy, was confirmed by investigating the dependence of its density with N concentration. This level exhibits a high capture cross section compared with that of native defects in GaAs. Its density increases significantly with N concentration, persists following post-thermal annealing, and was found to be quasi-uniformly distributed. These results indicate that E1 is a stable defect that is formed during growth to compensate for the tensile strain caused by N. Furthermore, E1 was confirmed to act as a recombination center by comparing its activation energy with that of the recombination current in the depletion region of the alloy. However, this technique cannot characterize the electron-hole (e-h) recombination process. For that, double carrier pulse deep level transient spectroscopy is used to confirm the non-radiative e-h recombination process through E1, to estimate the capture cross section of holes, and to evaluate the energy of multi-phonon emission. Furthermore, a configuration coordinate diagram is modeled based on the physical parameters of E1. -- Research Highlights: → Double carrier pulse DLTS method confirms the existence of SRH center. → The recombination center in GaAsN depends on nitrogen concentration. → Minority carrier lifetime in GaAsN is less than 1 ns. → A non-radiative recombination center exits in GaAsN.

  9. Temperature variation of radiative recombination rate of electron-hole pairs responsible for defect photoluminescence in a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, C. [Department of Applied Science, Yamaguchi University, Ube (Japan); Morigaki, K. [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku, Hiroshima (Japan)

    2009-05-15

    Lifetime distribution and characteristic lifetime of the defect photoluminescence (PL) in a-Si:H have been obtained by means of frequency resolved spectroscopy at various temperatures in the range of 10-200 K. Temperature variation of the radiative recombination rate has been obtained from the intensities and the characteristic lifetimes. The results obtained for the a-Si:H films as grown and after prolonged illumination have been compared. Thermal quenching of the defect PL becomes more significant after illumination. However the decrease of lifetime with raising temperature becomes less significant after illumination. Increase of the radiative recombination rate with increasing temperature, which is significantly observed above 100 K, becomes less significant after the illumination, indicating that the illumination causes the increase of the density of strongly localised tail states. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires

    International Nuclear Information System (INIS)

    Prades, J D; Hernandez-Ramirez, F; Jimenez-Diaz, R; Manzanares, M; Andreu, T; Cirera, A; Romano-Rodriguez, A; Morante, J R

    2008-01-01

    The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron-hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron-hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron-hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.

  11. Studies of electron-hole recombination processes at deep levels in GaAs and GaP by means of transient optical absorption spectroscopy

    International Nuclear Information System (INIS)

    Sugiyama, T.; Ishikawa, Y.; Tanimura, K.; Hayashi, Y.; Itoh, N.

    1989-01-01

    Studies of recombination processes by means of transient optical absorption (TOA) spectroscopy in GaAs and GaP are reviewed. It is pointed out that the technique can reveal production of excited states having long lifetimes and of non-luminescent metastable states. Two distinct recombination processes in GaAs containing EL2 defects are discussed: one is at the metastable EL2 defects, accompanied with transformation to the EL2 defects and the other is at deep acceptors through pair recombination. (author) 11 refs., 2 figs

  12. Interaction of non-equilibrium phonons with electron-hole plasmas in germanium

    International Nuclear Information System (INIS)

    Kirch, S.J.

    1985-01-01

    This thesis presents results of experiments on the interaction of phonons and photo-excited electron-hole plasmas in Ge at low temperature. The first two studies involved the low-temperature fluid phase known as the electron-hole liquid (EHL). The third study involved a wider range of temperatures and includes the higher temperature electron-hole plasma (EHP). In the first experiment, superconducting tunnel junctions are used to produce quasi-monochromatic phonons, which propagate through the EHL. The magnitude of the absorption of these non-equilibrium phonons gives a direct measure of the coupling constant, the deformation potential. In the second experiment, the nonequilibrium phonons are generated by laser excitation of a metal film. An unusual sample geometry allows examination of the EHL-phonon interaction near the EHL excitation surface. This coupling is examined for both cw and pulsed EHL excitation. In the third experiment, the phonons are byproducts of the photo-excited carrier thermalization. The spatial, spectral and temporal dependence of the recombination luminescence is examined. A phonon wind force is observed to dominate the transport properties of the EHL and the EHP. These carriers are never observed to move faster than the phonon velocity even during the laser pulse

  13. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  14. Analysis and simulation of BGK electron holes

    Directory of Open Access Journals (Sweden)

    L. Muschietti

    1999-01-01

    Full Text Available Recent observations from satellites crossing regions of magnetic-field-aligned electron streams reveal solitary potential structures that move at speeds much greater than the ion acoustic/thermal velocity. The structures appear as positive potential pulses rapidly drifting along the magnetic field, and are electrostatic in their rest frame. We interpret them as BGK electron holes supported by a drifting population of trapped electrons. Using Laplace transforms, we analyse the behavior of one phase-space electron hole. The resulting potential shapes and electron distribution functions are self-consistent and compatible with the field and particle data associated with the observed pulses. In particular, the spatial width increases with increasing amplitude. The stability of the analytic solution is tested by means of a two-dimensional particle-in-cell simulation code with open boundaries. We consider a strongly magnetized parameter regime in which the bounce frequency of the trapped electrons is much less than their gyrofrequency. Our investigation includes the influence of the ions, which in the frame of the hole appear as an incident beam, and impinge on the BGK potential with considerable energy. The nonlinear structure is remarkably resilient

  15. On Electron Hole Evolution in Inhomogeneous Plasmas

    Science.gov (United States)

    Kuzichev, I.; Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2017-12-01

    Electron holes (EHs) are the stationary localized non-linear structures in phase space existing due to an electron population trapped within EH electrostatic potential. EHs were found to be a common phenomenon in the Earth's magnetosphere. Such structures were observed in reconnecting current sheets, injection fronts in the outer radiation belt, and in many other situations. EHs usually propagate along magnetic field lines with velocities about electron thermal velocity, are localized on the scale of about 4-10 Debye lengths, and have the field amplitude up to hundreds of mV/m. Generation of these structures, evolution, and their role in relaxation of instabilities and energy dissipation, particle energization, supporting large-scale potential drops is under active investigation. In this report, we present the results of 1.5D gyrokinetic Vlasov-Maxwell simulations of the EH evolution in plasmas with inhomogeneous magnetic field and inhomogeneous density. Our calculations show that the inhomogeneity has a critical effect on the EH dynamics. EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. During the deceleration of EH, the potential drop (weak double layer) along EH is generated. Such a potential drop might be experimentally observable even for single EH in the reconnecting current sheets. The same holds for the propagation in the plasma with inhomogeneous density. For some parameters of the system, the deceleration results in the turning of the hole. The interesting feature of this process is that the turning point depends only on the EH parameters, being independent of the average inhomogeneity scale. Our calculations also demonstrate the significant difference between "quasi-particle" concept and real evolution of the hole. Indeed, the EH is accelerated (decelerated) faster than it follows from a quasi-particle energy conservation law. It indicates

  16. Electron-hole liquid in semiconductors and low-dimensional structures

    Science.gov (United States)

    Sibeldin, N. N.

    2017-11-01

    The condensation of excitons into an electron-hole liquid (EHL) and the main EHL properties in bulk semiconductors and low-dimensional structures are considered. The EHL properties in bulk materials are discussed primarily in qualitative terms based on the experimental results obtained for germanium and silicon. Some of the experiments in which the main EHL thermodynamic parameters (density and binding energy) have been obtained are described and the basic factors that determine these parameters are considered. Topics covered include the effect of external perturbations (uniaxial strain and magnetic field) on EHL stability; phase diagrams for a nonequilibrium exciton-gas-EHL system; information on the size and concentration of electron-hole drops (EHDs) under various experimental conditions; the kinetics of exciton condensation and of recombination in the exciton-gas-EHD system; dynamic EHD properties and the motion of EHDs under the action of external forces; the properties of giant EHDs that form in potential wells produced by applying an inhomogeneous strain to the crystal; and effects associated with the drag of EHDs by nonequilibrium phonons (phonon wind), including the dynamics and formation of an anisotropic spatial structure of the EHD cloud. In discussing EHLs in low-dimensional structures, a number of studies are reviewed on the observation and experimental investigation of phenomena such as spatially indirect (dipolar) electron-hole and exciton (dielectric) liquids in GaAs/AlGaAs structures with double quantum wells (QWs), EHDs containing only a few electron-hole pairs (dropletons), EHLs in type-I silicon QWs, and spatially direct and dipolar EHLs in type-II silicon-germanium heterostructures.

  17. Acoustic absorption by the electron-hole liquid in germanium

    International Nuclear Information System (INIS)

    Hansen, A.D.A.

    1977-11-01

    The absorption of ultrasonic acoustic waves by the electron-hole liquid that may be created in germanium at liquid helium temperatures by intense optical excitation was studied. This is a degenerate compensated Fermi liquid that exhibits the behavior of both classical dynamics in a force field, and quantum phenomena in a magnetic field. Results of theoretical and experimental studies of the interaction of the mobile liquid with a travelling acoustic wave force field, the attenuation of the wave due to energy-dissipative processes coupling the liquid to the crystal lattice, and the effect of a moderately strong magnetic field on the dynamic behavior of the system are presented. In unstrained germanium the electron-hole liquid (EHL) is known to be condensed into small droplets of radius approx. 5 μm; the creation of an EHL energy well by the application of an inhomogeneous stress causes the liquid to be aggregated into a macroscopically large volume

  18. Acoustic absorption by the electron-hole liquid in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.A.

    1977-11-01

    The absorption of ultrasonic acoustic waves by the electron-hole liquid that may be created in germanium at liquid helium temperatures by intense optical excitation was studied. This is a degenerate compensated Fermi liquid that exhibits the behavior of both classical dynamics in a force field, and quantum phenomena in a magnetic field. Results of theoretical and experimental studies of the interaction of the mobile liquid with a travelling acoustic wave force field, the attenuation of the wave due to energy-dissipative processes coupling the liquid to the crystal lattice, and the effect of a moderately strong magnetic field on the dynamic behavior of the system are presented. In unstrained germanium the electron-hole liquid (EHL) is known to be condensed into small droplets of radius approx. 5 ..mu..m; the creation of an EHL energy well by the application of an inhomogeneous stress causes the liquid to be aggregated into a macroscopically large volume.

  19. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    Science.gov (United States)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  20. Surface recombination analysis in silicon-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, R.; Gandia, J.J.; Carabe, J.; Gonzalez, N.; Torres, I. [CIEMAT, Madrid (Spain); Munoz, D.; Voz, C. [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2010-02-15

    The origin of this work is the understanding of the correlation observed between efficiency and emitter-deposition temperature in single silicon-heterojunction solar cells prepared by depositing an n-doped hydrogenated-amorphous-silicon thin film onto a p-type crystalline-silicon wafer. In order to interpret these results, surface-recombination velocities have been determined by two methods, i.e. by fitting the current-voltage characteristics to a theoretical model and by means of the Quasi-Steady-State Photoconductance Technique (QSSPC). In addition, effective diffusion lengths have been estimated from internal quantum efficiencies. The analysis of these data has led to conclude that the performance of the cells studied is limited by back-surface recombination rather than by front-heterojunction quality. A 12%-efficient cell has been prepared by combining optimum emitter-deposition conditions with back-surface-field (BSF) formation by vacuum annealing of the back aluminium contact. This result has been achieved without using any transparent conductive oxide. (author)

  1. Diffusive scattering of electrons by electron holes around injection fronts

    Science.gov (United States)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Krasnoselskikh, V. V.; Bonnell, J. W.

    2017-03-01

    Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of ≲5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L ˜ 5-8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

  2. Study of recombination processes for 'electron-hole' pairs in germanium irradiated by {gamma} rays from {sup 60}Co using the photovoltaic effect in P-N junctions; Etude du processus de recombinaison des paires ''electron-trou'' dans le germanium irradie par les rayons {gamma} du cobalt 60 a l'aide de l'effet photovoltaique dans les jonctions P-N

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi-Mochadam, A.A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-10-01

    Using the photo-voltaic effect in p-n junctions, we have studied, during bombardment, the mechanism of the recombination of 'electron-hole' pairs in the presence of structure defects produced in germanium of the N and P types by {gamma} rays from a Co{sup 60} source. At 310 K the level of the recombination centres is situated 0.25 eV above the conduction band and the capture cross-sections of the holes and of the electrons have the respective values of: {sigma}{sub p} = 4 X 10{sup -15} cm{sup 2} and {sigma}{sub n} = 3 X 10{sup -15} cm{sup 2}. The value of {sigma}{sub n} appears to be under-estimated because the number of defects in P-type samples appears to be lower than that in N-type samples. These results lead to the conclusion that the interstitials are responsible for the recombination. At 80 K it has been found that in N-type samples, a shallow level exists at O.05 eV below the conduction band with a capture cross-section for the holes of {sigma}{sub p} {>=} 10{sup -14} cm{sup 2}. We believe that in this case the recombination of charge carriers is controlled by the neighbouring 'defect-interstitial' pairs. In P-type samples at low temperature, the life-time is practically constant during irradiation. This fact is attributed to a spontaneous annealing of defects ol purely electrical origin. In the last part of the work the study of the photo-voltaic effect applied to the problem of gamma radiation dosimetry is considered. It is shown that such dosimeters, based on this principle, make it possible to measure the intensity of gamma rays over a very wide range. (author) [French] En utilisant l'effet photovoltaique dans les jonctions p-n, nous avons etudie au cours du bombardement le mecanisme de recombinaison des paires 'electron-trou' en presence des defauts de structure introduits dans le germanium de type N et de type P par les rayons gamma d'une source de Co{sup 60}. A 310 K, le niveau des centres de recombinaison se

  3. Order enables efficient electron-hole separation at an organic heterojunction with a small energy loss

    KAUST Repository

    Menke, S. Matthew

    2018-01-12

    Donor–acceptor organic solar cells often show low open-circuit voltages (VOC) relative to their optical energy gap (Eg) that limit power conversion efficiencies to ~12%. This energy loss is partly attributed to the offset between Eg and that of intermolecular charge transfer (CT) states at the donor–acceptor interface. Here we study charge generation occurring in PIPCP:PC61BM, a system with a very low driving energy for initial charge separation (Eg−ECT ~ 50 meV) and a high internal quantum efficiency (ηIQE ~ 80%). We track the strength of the electric field generated between the separating electron-hole pair by following the transient electroabsorption optical response, and find that while localised CT states are formed rapidly (<100 fs) after photoexcitation, free charges are not generated until 5 ps after photogeneration. In PIPCP:PC61BM, electronic disorder is low (Urbach energy <27 meV) and we consider that free charge separation is able to outcompete trap-assisted non-radiative recombination of the CT state.

  4. Response surface methodology of nitrilase production by recombinant Escherichia coli.

    Science.gov (United States)

    Dubey, Sachin; Singh, Amit; Banerjee, Uttam C

    2011-07-01

    Growth and nitrilase production by recombinant Escherichia coli cells harbouring pET 21 (b) plasmid, for the expression of Pseudomonas putida nitrilase were improved using response surface methodology. Central composite design was used for obtaining ideal concentration of critical medium components which include fructose, tryptone, yeast extract and lactose. The optimal values for the concentration of fructose, tryptone, yeast extract and lactose were found to be 1.13, 2.26, 3.25 and 0.9 % (w/v), respectively. Here, fructose served as carbon source for the growth while lactose was preferably used as inducer for the expression of foreign protein. Yeast extract in the medium was used as a growth promoter while tryptone was added as a major nitrogen source. Using this optimized medium, an experimental growth of 6.67 (OD at 600 nm) and nitrilase activity of 27.13 U/ml was achieved. This approach for medium development led to an enhancement of the growth and enzyme activity by 1.4 and 2.2 times, respectively, as compared to the un-optimized medium.

  5. Response surface methodology of nitrilase production by recombinant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sachin Dubey

    2011-09-01

    Full Text Available Growth and nitrilase production by recombinant Escherichia coli cells harbouring pET 21 (b plasmid, for the expression of Pseudomonas putida nitrilase were improved using response surface methodology. Central composite design was used for obtaining ideal concentration of critical medium components which include fructose, tryptone, yeast extract and lactose. The optimal values for the concentration of fructose, tryptone, yeast extract and lactose were found to be 1.13, 2.26, 3.25 and 0.9 % (w/v, respectively. Here, fructose served as carbon source for the growth while lactose was preferably used as inducer for the expression of foreign protein. Yeast extract in the medium was used as a growth promoter while tryptone was added as a major nitrogen source. Using this optimized medium, an experimental growth of 6.67 (OD at 600 nm and nitrilase activity of 27.13 U/ml was achieved. This approach for medium development led to an enhancement of the growth and enzyme activity by 1.4 and 2.2 times, respectively, as compared to the un-optimized medium.

  6. Transient Melting and Recrystallization of Semiconductor Nanocrystals Under Multiple Electron-Hole Pair Excitation.

    Science.gov (United States)

    Kirschner, Matthew S; Hannah, Daniel C; Diroll, Benjamin T; Zhang, Xiaoyi; Wagner, Michael J; Hayes, Dugan; Chang, Angela Y; Rowland, Clare E; Lethiec, Clotilde M; Schatz, George C; Chen, Lin X; Schaller, Richard D

    2017-09-13

    Ultrafast optical pump, X-ray diffraction probe experiments were performed on CdSe nanocrystal (NC) colloidal dispersions as functions of particle size, polytype, and pump fluence. Bragg peak shifts related to heating and peak amplitude reduction associated with lattice disordering are observed. For smaller NCs, melting initiates upon absorption of as few as ∼15 electron-hole pair excitations per NC on average (0.89 excitations/nm 3 for a 1.5 nm radius) with roughly the same excitation density inducing melting for all examined NCs. Diffraction intensity recovery kinetics, attributable to recrystallization, occur over hundreds of picoseconds with slower recoveries for larger particles. Zincblende and wurtzite NCs revert to initial structures following intense photoexcitation suggesting melting occurs primarily at the surface, as supported by simulations. Electronic structure calculations relate significant band gap narrowing with decreased crystallinity. These findings reflect the need to consider the physical stability of nanomaterials and related electronic impacts in high intensity excitation applications such as lasing and solid-state lighting.

  7. Dissociation and recombination rate constants for CN on Cu and Ni group transition metal surfaces

    Science.gov (United States)

    Sellers, Harrell

    2000-07-01

    We report dissociation and recombination reaction rate constants for CN on the fcc(111) surfaces of Ni, Pd, Pt, Cu, Ag and Au from molecular dynamics simulations employing our normalized bond index-reactive potential functions (NBI-RPF). The Arrhenius pre-exponentials for recombination of CN on these surfaces are about three orders of magnitude greater than the dissociation pre-exponentials. On the series of metals considered herein, the reaction energetics favor dissociation on the more active metals and favor recombination on the least active metals. However, the differences in the pre-exponentials of nearly a factor of 10 3 express the tendency of the reaction entropy to favor the recombination on the surfaces investigated. We also discuss the implications of these results in terms of the thermodynamics of the surface reactions.

  8. Coupled electron-hole quantum well structure: mass asymmetry and finite width effects

    International Nuclear Information System (INIS)

    Moudgil, R K

    2006-01-01

    We investigate the role of many-body correlations in determining the ground-state behaviour of the coupled electron-hole quantum well structure by including the mass asymmetry and the finite width of wells. The correlations (both the intra- and inter-well) are treated beyond the static local-field theories by employing the dynamical self-consistent mean-field approximation of Hasegawa and Shimizu. The mass asymmetry is seen to introduce a marked change in the ground state of the electron-hole system as compared to the recent corresponding results on the mass-symmetric electron-hole bilayer. First, the critical density for the liquid-Wigner crystal phase transition is greatly enhanced (e.g., by a factor of about 4 for a GaAs/GaAlAs based system). Second, there is a change in the role played by the electron-hole correlations. The Wigner crystal phase is now found to be stable below a critical density only at sufficiently large separation between the wells. The build-up of electron-hole correlations with diminishing inter-well spacing tends to favour the charge-density-wave phase over the Wigner crystal state, with the result that the former always prevails in the sufficiently close approach of wells. This result differs strikingly from the corresponding studies on the mass-symmetric system, since the electron-hole correlations are predicted here to always support, at sufficiently small well spacing, the Wigner crystal phase below a critical density and the charge-density-wave phase at relatively higher densities. Further, we find that the inclusion of the finite width of layers results in lowering of the critical density for Wigner crystallization

  9. Crossover between the dense electron-hole phase and the BCS excitonic phase in quantum dots

    International Nuclear Information System (INIS)

    Rodriguez, B.A.; Gonzalez, A.; Quiroga, L.; Capote, R.; Rodriguez, F.J.

    1999-09-01

    Second order perturbation theory and a Lipkin-Nogami scheme combined with an exact Monte Carlo projection after variation are applied to compute the ground-state energy of 6 ≤ N ≤ 210 electron-hole pairs confined in a parabolic two-dimensional quantum dot. The energy shows nice scaling properties as N or the confinement strength is varied. A crossover from the high-density electron-hole phase to the BCS excitonic phase is found at a density which is roughly four times the close-packing density of excitons. (author)

  10. Plasma phase transition in dense hydrogen and electron-hole plasmas

    CERN Document Server

    Filinov, V S; Levashov, P R; Fortov, V E; Ebeling, W; Schlanges, M; Koch, S W

    2003-01-01

    Plasma phase transitions in dense hydrogen and electron-hole plasmas are investigated by direct path integral Monte Carlo methods. The phase boundary of the electron-hole liquid in germanium is calculated and is found to agree reasonably well with the known experimental results. Analogous behaviour is found for high-density hydrogen. For a temperature of T = 10 000 K it is shown that the internal energy is lowered due to droplet formation for densities between 10 sup 2 sup 3 cm sup - sup 3 and 10 sup 2 sup 4 cm sup - sup 3.

  11. Improved Model for Increased Surface Recombination Current in Irradiated Bipolar Junction Transistors

    Science.gov (United States)

    Barnaby, H. J.; Vermeire, B.; Campola, M. J.

    2015-08-01

    Current gain degradation in irradiated bipolar junction transistors is primarily due to excess base current caused by enhanced carrier recombination in the emitter-base space-charge region (SCR). Radiation-induced traps at the interface between silicon and the bipolar base oxide facilitate the recombination process primarily above the sensitive emitter-base junction. This leads to an increase in surface recombination current in the SCR, which is a non-ideal component of the BJT's base current characteristic under active bias conditions. In this paper, we derive a precise analytical model for surface recombination current that captures bias dependencies typically omitted from traditional models. This improved model is validated by comparisons to these traditional approaches.

  12. Relativistic nature of carriers: Origin of electron-hole conduction asymmetry in monolayer graphene

    Science.gov (United States)

    Srivastava, Pawan Kumar; Arya, Swasti; Kumar, Santosh; Ghosh, Subhasis

    2017-12-01

    We report electron-hole conduction asymmetry in monolayer graphene. Previously, it has been claimed that electron-hole conduction asymmetry is due to imbalanced carrier injection from metallic electrodes. Here, we show that metallic contacts have negligible impact on asymmetric conduction and may be either sample or device-dependent phenomena. Electrical measurements show that monolayer graphene based devices exhibit suppressed electron conduction compared to hole conduction due to the presence of donor impurities which scatter electrons more efficiently. This can be explained by the relativistic nature of charge carriers in a graphene monolayer and can be reconciled with the fact that in a relativistic quantum system transport cross section does depend on the sign of scattering potential in contrast to a nonrelativistic quantum system.

  13. Electrostatics of electron-hole interactions in van der Waals heterostructures

    Science.gov (United States)

    Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.

    2018-03-01

    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.

  14. Surface Recombination in ZnO Nanorods Grown by Aqueous Chemical Methods

    Science.gov (United States)

    Zhao, Q. X.; Yang, L. L.; Willander, M.; Pozina, G.; Holtz, P. O.

    2010-01-01

    ZnO nanorods on Si substrates were prepared by either a two-steps chemical bath deposition (CBD) method or thermal evaporation technique. It was found that the effective decay time of the near bandgap recombinations strongly depends on the method, which was used to grow the ZnO nanorods. ZnO nanorods grown by the CBD exhibit characteriristic two-exponential decay curves, while ZnO nanorods grown by thermal evaporation technique show single exponential decays. The experimental results show that the fast exponential decay from the CBD grown ZnO nanorods is related to the surface recombination, while the slow decay is related to the "bulk" decay. The results also show that an annealing treatment around 500° C to 700° C significantly reduces the surface recombination rate.

  15. Electron-Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene.

    Science.gov (United States)

    Li, Jiayu; Lin, Li; Rui, Dingran; Li, Qiucheng; Zhang, Jincan; Kang, Ning; Zhang, Yanfeng; Peng, Hailin; Liu, Zhongfan; Xu, H Q

    2017-05-23

    Graphitic nitrogen-doped graphene is an excellent platform to study scattering processes of massless Dirac Fermions by charged impurities, in which high mobility can be preserved due to the absence of lattice defects through direct substitution of carbon atoms in the graphene lattice by nitrogen atoms. In this work, we report on electrical and magnetotransport measurements of high-quality graphitic nitrogen-doped graphene. We show that the substitutional nitrogen dopants in graphene introduce atomically sharp scatters for electrons but long-range Coulomb scatters for holes and, thus, graphitic nitrogen-doped graphene exhibits clear electron-hole asymmetry in transport properties. Dominant scattering processes of charge carriers in graphitic nitrogen-doped graphene are analyzed. It is shown that the electron-hole asymmetry originates from a distinct difference in intervalley scattering of electrons and holes. We have also carried out the magnetotransport measurements of graphitic nitrogen-doped graphene at different temperatures and the temperature dependences of intervalley scattering, intravalley scattering, and phase coherent scattering rates are extracted and discussed. Our results provide an evidence for the electron-hole asymmetry in the intervalley scattering induced by substitutional nitrogen dopants in graphene and shine a light on versatile and potential applications of graphitic nitrogen-doped graphene in electronic and valleytronic devices.

  16. Electron holes in phase space: What they are and why they matter

    Science.gov (United States)

    Hutchinson, I. H.

    2017-05-01

    This is a tutorial and selective review explaining the fundamental concepts and some currently open questions concerning the plasma phenomenon of the electron hole. The widespread occurrence of electron holes in numerical simulations, space-craft observations, and laboratory experiments is illustrated. The elementary underlying theory is developed of a one-dimensional electron hole as a localized potential maximum, self-consistently sustained by a deficit of trapped electron phase-space density. The spatial extent of a hole is typically a few Debye lengths; what determines the minimum and maximum possible lengths is explained, addressing the key aspects of the as yet unsettled dispute between the integral and differential approaches to hole structure. In multiple dimensions, holes tend to form less readily; they generally require a magnetic field and distribution-function anisotropy. The mechanisms by which they break up are explained, noting that this transverse instability is not fully understood. Examples are given of plasma circumstances where holes play an important role, and of recent progress on understanding their holistic kinematics and self-acceleration.

  17. Analysis of the lipidated recombinant outer surface protein A from Borrelia burgdorferi by mass spectrometry

    NARCIS (Netherlands)

    Bouchon, B.; Klein, Michele; Bischoff, Rainer; Van Dorsselaer, A.; Roitsch, C.

    1997-01-01

    The outer surface protein A, OspA, from the spirochete Borrelia burgdorferi is a lipoprotein of 25 kDa. The recombinant OspA (rOspA) expressed in Escherichia coli has been purified and analyzed by electrospray mass spectrometry (ESMS). A heterogenous spectrum gave a measured mass of 28,462 +/- 9 Da

  18. Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells

    Energy Technology Data Exchange (ETDEWEB)

    Baghani, Erfan; O’Leary, Stephen K.; Fedin, Igor; Talapin, Dmitri V.; Pelton, Matthew

    2015-03-19

    Using time-resolved photoluminescence spectroscopy, we show that two-exciton Auger recombination dominates carrier recombination and cooling dynamics in CdSe nanoplatelets, or colloidal quantum wells. The electron-hole recombination rate depends only on the number of electron-hole pairs present in each nanoplatelet, and is consistent with a twoexciton recombination process over a wide range of exciton densities. The carrier relaxation rate within the conduction and valence bands also depends only on the number of electron-hole pairs present, apart from an initial rapid decay, and is consistent with the cooling rate being limited by reheating due to Auger recombination processes. These Auger-limited recombination and relaxation dynamics are qualitatively different from the carrier dynamics in either colloidal quantum dots or epitaxial quantum wells. TOC FIGURE:

  19. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    Science.gov (United States)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  20. Dynamical Birefringence: Electron-Hole Recollisions as Probes of Berry Curvature

    Directory of Open Access Journals (Sweden)

    Hunter B. Banks

    2017-11-01

    Full Text Available The direct measurement of Berry phases is still a great challenge in condensed-matter systems. The bottleneck has been the ability to adiabatically drive an electron coherently across a large portion of the Brillouin zone in a solid where the scattering is strong and complicated. We break through this bottleneck and show that high-order sideband generation (HSG in semiconductors is intimately affected by Berry phases. Electron-hole recollisions and HSG occur when a near-band-gap laser beam excites a semiconductor that is driven by sufficiently strong terahertz-frequency electric fields. We carry out experimental and theoretical studies of HSG from three GaAs/AlGaAs quantum wells. The observed HSG spectra contain sidebands up to the 90th order, to our knowledge the highest-order optical nonlinearity reported in solids. The highest-order sidebands are associated with electron-hole pairs driven coherently across roughly 10% of the Brillouin zone around the Γ point. The principal experimental claim is a dynamical birefringence: the intensity and polarization of the sidebands depend on the relative polarization of the exciting near-infrared (NIR and the THz electric fields, as well as on the relative orientation of the laser fields with the crystal. We explain dynamical birefringence by generalizing the three-step model for high-order harmonic generation. The hole accumulates Berry phases due to variation of its internal state as the quasimomentum changes under the THz field. Dynamical birefringence arises from quantum interference between time-reversed pairs of electron-hole recollision pathways. We propose a method to use dynamical birefringence to measure Berry curvature in solids.

  1. Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Evan; Sheng, Chunyang; Nakano, Aiichiro [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimamura, Kohei; Shimojo, Fuyuki [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)

    2015-02-07

    Power conversion efficiency of gallium arsenide (GaAs) nanowire (NW) solar cells is severely limited by enhanced charge recombination (CR) at sidewall surfaces, but its atomistic mechanisms are not well understood. In addition, GaAs NWs usually contain a high density of twin defects that form a twin superlattice, but its effects on CR dynamics are largely unknown. Here, quantum molecular dynamics (QMD) simulations reveal the existence of an intrinsic type-II heterostructure at the (110) GaAs surface. Nonadiabatic quantum molecular dynamics (NAQMD) simulations show that the resulting staggered band alignment causes a photoexcited electron in the bulk to rapidly transfer to the surface. We have found orders-of-magnitude enhancement of the CR rate at the surface compared with the bulk value. Furthermore, QMD and NAQMD simulations show unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective CR centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying CR processes.

  2. Measurement of surface recombination velocity for silicon solar cells using a scanning electron microscope with pulsed beam

    Science.gov (United States)

    Daud, T.; Cheng, L. J.

    1981-01-01

    The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.

  3. Electron-hole collision limited transport in charge-neutral bilayer graphene

    Science.gov (United States)

    Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.

    2017-12-01

    Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.

  4. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas.

    Science.gov (United States)

    Kaindl, R A; Carnahan, M A; Hägele, D; Lövenich, R; Chemla, D S

    2003-06-12

    Many-body systems in nature exhibit complexity and self-organization arising from seemingly simple laws. For example, the long-range Coulomb interaction between electrical charges has a simple form, yet is responsible for a plethora of bound states in matter, ranging from the hydrogen atom to complex biochemical structures. Semiconductors form an ideal laboratory for studying many-body interactions of electronic quasiparticles among themselves and with lattice vibrations and light. Oppositely charged electron and hole quasiparticles can coexist in an ionized but correlated plasma, or form bound hydrogen-like pairs called excitons. The pathways between such states, however, remain elusive in near-visible optical experiments that detect a subset of excitons with vanishing centre-of-mass momenta. In contrast, transitions between internal exciton levels, which occur in the far-infrared at terahertz (1012 s(-1)) frequencies, are independent of this restriction, suggesting their use as a probe of electron-hole pair dynamics. Here we employ an ultrafast terahertz probe to investigate directly the dynamical interplay of optically-generated excitons and unbound electron-hole pairs in GaAs quantum wells. Our observations reveal an unexpected quasi-instantaneous excitonic enhancement, the formation of insulating excitons on a 100-ps timescale, and the conditions under which excitonic populations prevail.

  5. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.

    Science.gov (United States)

    Sanchez-Yamagishi, Javier D; Luo, Jason Y; Young, Andrea F; Hunt, Benjamin M; Watanabe, Kenji; Taniguchi, Takashi; Ashoori, Raymond C; Jarillo-Herrero, Pablo

    2017-02-01

    Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states, the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states. Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics.

  6. Overview of systems and techniques for surface display of recombinant proteins in yeast S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Renata Teparic

    2015-12-01

    Full Text Available In the past decade much effort has been devoted to the development of new expression systems and novel techniques for the surface display of heterologous proteins in yeast in order to improve their applications in biotechnology, food technology, pharmacology and medicine. Heterologous protein-encoding genes are generally fused with genes coding for yeast cell wall proteins or their fragments required for anchoring. The variety of reactions by which a protein can be displayed at the cell surface enables finding the appropriate one for each individual protein. However, it is still challenging how to improve the efficiency of display of protein complexes and increase the quantity of protein displayed on the yeast surface. Recently, synthetic protein chimeras that self-assemble into the scaffolds on the yeast surface displaying different proteins have been constructed. This review focuses on systems and techniques for display of recombinant proteins on the yeast cell surfaces and applications afforded by this technology.

  7. Evaluation of the immunodiagnostic potential of a recombinant surface protein domain from Acanthamoeba castellanii.

    Science.gov (United States)

    Sánchez, Alemao G Carpinteyro; Virginio, Veridiana Gomes; Maschio, Vinicius José; Ferreira, Henrique Bunselmeyer; Rott, Marilise Brittes

    2016-10-01

    Acanthamoeba spp. are free-living protists widely distributed in environment, able to cause keratitis, encephalitis and skin lesions in humans and animals. Acanthamoeba spp. exist in two forms: an infective trophozoite and a dormant cyst. Several factors contribute to the pathogenesis of Acanthamoeba spp. The parasite adhesion to the host cell is the primary step for infection and is mediated by a mannose binding-protein, expressed in the surface and considered the main pathogenicity factor in Acanthamoeba spp. So far, there was no evidence of another surface protein of Acanthamoeba spp. relevant for host invasion or infection by these organisms. The aims of this study were to identify and characterize an Acanthamoeba castellanii surface protein and to evaluate its diagnostic potential. In silico predictions of surface proteins allowed to identify the A. castellanii calreticulin as a possible surface antigen. The coding sequence of a predicted extracellular domain of A. castellanii calreticulin was cloned by in vivo homologous recombination and the recombinant polypeptide (AcCRT29-130) was produced. Its immunodiagnostic potential was assessed in a recombinant antigen-based ELISA with sera from experimentally infected rats that developed keratitis and encephalitis, and sera from patients with encephalitis. The AcCRT29-130 was significantly more recognized by sera from encephalitis infected rats in comparison with the non-infected controls. Human sera from encephalitis patients, however presented no significant response. These results showed the AcCRT29-130 potential for A. castellanii infection immunodiagnosis in animals, with further studies being required for assessment of its use for human infections.

  8. Recombination and photosensitivity centres in boron nitride irradiated with ions

    International Nuclear Information System (INIS)

    Kabyshev, A.; Konusov, F.; Lopatin, V.

    2001-01-01

    The physical-chemical processes, taking place during the irradiation of dielectrics with ions distort the electron structure of the compounds and generate additional localise state in the forbidden zone (FZ). Consequently, the semiconductor layer with the specific surface density of σ ≥ 10 -10 S/ forms on the surface of the dielectric. In addition to his, the high concentration of the radiation-induced defects changes the optical and photoelectric properties of the materials and also the energy characteristics. Analysis of the photoelectric properties indicates that the recombination processes take part in electric transport. These processes restricted the increase of the photosensitivity and changing the kinetics of relaxation of photo conductivity (σ hv ). The practical application of the boron nitride (BN) the in the thermonuclear systems (for example, Ref. 7), stimulates research into the reasons for the deceleration of its properties under the effect of radiation of various types. The conductivity of non-irradiated boron nitride is of the electron-hole nature with a large fraction of the activation component in exchange of the charge carriers between the levels of the defects and the forbidden zones. On the basis of the correlation of the energy and kinetic parameters of luminescence and , the authors of Ref. 8 constructed a model of electron transfers accompanying the electric transport of the boron nitride. In addition to ion-thermal modification, the conductivity of boron nitride is also of the electron-hole nature and is accompanied by luminescence. Examination of the characteristics of luminescence may be useful for obtaining more information on the transport mechanism. In this work, in order to clarify the main parameters of the forbidden band, detailed investigations were carried out into the spectrum of the electronic states of radiation defects which determine the photoelectric and luminescence properties of the modified boron nitride. The

  9. Uncorrelated electron-hole transition energy in GaN|InGaN|GaN spherical QDQW nanoparticles

    International Nuclear Information System (INIS)

    Haddou El Ghazi; Anouar Jorio and Izeddine Zorkani

    2013-01-01

    The electron (hole) energy and uncorrelated 1S e - 1S h electron-hole transition in Core(GaN)|well(In x Ga 1-x N)|shell(GaN) spherical QDQW nanoparticles is investigated as a function of the inner and the outer radii. The calculations are performed within the framework of the effective-mass approximation and the finite parabolic potential confinement barrier in which two confined parameters are taking account. The Indium composition effect is also investigated. A critical value of the outer and the inner ratio is obtained which constitutes the turning point of two indium composition behaviors. (author)

  10. On electron hole symmetry and phase separation in someelectron doped cuprates

    Science.gov (United States)

    Gor'kov, Lev P.; Teitel'baum, Gregory B.

    2005-12-01

    We conclude from the analysis of the experimental NMR data for electron-doped cuprates that the Coulomb effects caused by doping lead to dynamical spatial phase separation that contributes to the nuclear spin relaxation. Remarkable, the 'infinite-layer' Sr 0.9La 0.1CuO 2 reveals unexpected electron-hole symmetry. Its 63Cu nuclear spin relaxation rate is the sum of a constant and the temperature dependent dissipation components, moreover, the latter turns out to be identical to the 1/ 63T1( T)-behavior in the stoichiometric hole-type compound YBa 2Cu 4O 8. Connection to fluctuations of a magnetic sub-phase is discussed.

  11. Correlated electron-hole mechanism for molecular doping in organic semiconductors

    Science.gov (United States)

    Li, Jing; D'Avino, Gabriele; Pershin, Anton; Jacquemin, Denis; Duchemin, Ivan; Beljonne, David; Blase, Xavier

    2017-07-01

    The electronic and optical properties of the paradigmatic F4TCNQ-doped pentacene in the low-doping limit are investigated by a combination of state-of-the-art many-body ab initio methods accounting for environmental screening effects, and a carefully parametrized model Hamiltonian. We demonstrate that while the acceptor level lies very deep in the gap, the inclusion of electron-hole interactions strongly stabilizes dopant-semiconductor charge transfer states and, together with spin statistics and structural relaxation effects, rationalize the possibility for room-temperature dopant ionization. Our findings reconcile available experimental data, shedding light on the partial vs. full charge transfer scenario discussed in the literature, and question the relevance of the standard classification in shallow or deep impurity levels prevailing for inorganic semiconductors.

  12. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides.

    Science.gov (United States)

    Li, Jingquan; Qian Ba; Yin, Jun; Wu, Songjie; Zhuan, Fangfang; Xu, Songci; Li, Junyang; Salazar, Joelle K; Zhang, Wei; Wang, Hui

    2013-01-01

    Acetylcholinesterase (AChE) is commonly used for the detection of organophosphate (OP) and carbamate (CB) insecticides. However, the cost of this commercially available enzyme is high, making high-throughput insecticide detection improbable. In this study we constructed a new AChE yeast expression system in Saccharomyces cerevisiae for the expression of a highly reactive recombinant AChE originating from Drosophila melanogaster (DmAChE). Specifically, the coding sequence of DmAChE was fused with the 3'-terminal half of an α-agglutinin anchor region, along with an antigen tag for the detection of the recombinant protein. The target sequence was cloned into the yeast expression vector pYes-DEST52, and the signal peptide sequence was replaced with a glucoamylase secretion region for induced expression. The resultant engineered vector was transformed into S. cerevisiae. DmAChE was expressed and displayed on the cell surface after galactose induction. Our results showed that the recombinant protein displayed activity comparable to the commercial enzyme. We also detected different types of OP and CB insecticides through enzyme inhibition assays, with the expressed DmAChE showing high sensitivity. These results show the construction of a new yeast expression system for DmAChE, which can subsequently be used for detecting OP and CB insecticides with reduced economic costs.

  13. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides.

    Directory of Open Access Journals (Sweden)

    Jingquan Li

    Full Text Available Acetylcholinesterase (AChE is commonly used for the detection of organophosphate (OP and carbamate (CB insecticides. However, the cost of this commercially available enzyme is high, making high-throughput insecticide detection improbable. In this study we constructed a new AChE yeast expression system in Saccharomyces cerevisiae for the expression of a highly reactive recombinant AChE originating from Drosophila melanogaster (DmAChE. Specifically, the coding sequence of DmAChE was fused with the 3'-terminal half of an α-agglutinin anchor region, along with an antigen tag for the detection of the recombinant protein. The target sequence was cloned into the yeast expression vector pYes-DEST52, and the signal peptide sequence was replaced with a glucoamylase secretion region for induced expression. The resultant engineered vector was transformed into S. cerevisiae. DmAChE was expressed and displayed on the cell surface after galactose induction. Our results showed that the recombinant protein displayed activity comparable to the commercial enzyme. We also detected different types of OP and CB insecticides through enzyme inhibition assays, with the expressed DmAChE showing high sensitivity. These results show the construction of a new yeast expression system for DmAChE, which can subsequently be used for detecting OP and CB insecticides with reduced economic costs.

  14. Probing the charge recombination in rGO decorated mixed phase (anatase-rutile TiO2 multi-leg nanotubes

    Directory of Open Access Journals (Sweden)

    Y. Rambabu

    2016-11-01

    Full Text Available Recombination of photo-generated charges is one of the most significant challenges in designing efficient photo-anode for photo electrochemical water oxidation. In the case of TiO2, mixed phase (anatase-rutile junctions often shown to be more effective in suppressing electron-hole recombination compared to a single (anatase or rutile phase. Here, we report the study of bulk and surface recombination process in TiO2 multi-leg nanotube (MLNTs anatase-rutile (A-R junctions decorated with reduced graphene oxide (rGO layers, through an analysis of the photo-current and impedance characteristics. To quantify the charge transport/transfer process involved in these junctions, holes arriving at the interface of semiconductor/electrolyte were collected by adding H2O2 to the electrolyte. This enabled us to interpret the bulk and surface recombination process involved in anatase/rutile/rGO junctions for photo-electrochemical water oxidation. We correlated this quantification to the electrochemical impedance spectroscopy (EIS measurements, and showed that in anatase/rutile junction the increase in PEC performance was due to suppression in electron-hole recombination rate at the surface states that effectively enhances the hole transfer rate to the electrolyte. On the other hand, in rGO wrapped A-R MLNTs junction it was due to both phenomenon i.e decrease in bulk recombination rate as well as increase in hole transfer rate to the electrolyte at the semiconductor/electrolyte interface.

  15. Analysis of direct immobilized recombinant protein G on a gold surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunhee [Department of Chemical and Biomolecular Engineering, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Research Institute for Applied Science and Technology, Sogang University , Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Kang, Da-Yeon [Department of Chemical and Biomolecular Engineering, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Goh, Hyun-Jeong [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Byung-Keun [Department of Chemical and Biomolecular Engineering, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Singh, Ravindra P. [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Soo-Min [Department of Chemical and Biomolecular Engineering, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Research Institute for Applied Science and Technology, Sogang University , Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Choi, Jeong-Woo [Department of Chemical and Biomolecular Engineering, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)], E-mail: jwchoi@sogang.ac.kr

    2008-09-15

    Abstact: For the immobilization of IgG, various techniques such as chemical linker, thiolated protein G methods, and fragmentation of antibodies have been reported [Y.M. Bae, B.K. Oh, W. Lee, W.H. Lee, J.W. Choi, Biosensors Bioelectron. 21 (2005) 103; W. Lee, B.K. Oh, W.H. Lee, J.W. Choi, Colloids Surf. B-Biointerfaces, 40 (2005) 143; A.A. Karyakin, G.V. Presnova, M.Y. Rubtsova, A.M. Egorov, Anal. Chem. 72 (2000) 3805]. Here, we modified the immunoglobulin Fc-binding B-domain of protein G to contain two cysteine residues at its C-terminus by a genetic engineering technique. The resulting recombinant protein, RPGcys, retained IgG-binding activity in the same manner as native protein G. RPGcys was immobilized on a gold surface by strong affinity between thiol of cysteine and gold. The orientations of both IgG layers immobilized on the base recombinant protein Gs were analyzed by fluorescence microscope, atomic force microscope (AFM), and surface plasmon resonance (SPR). Our data revealed that IgG-binding activity of RPGcys on gold surface significantly increased in comparison to wild type of protein G (RPGwild), which was physically adsorbed due to absence of cysteine residue. Immobilization of highly oriented antibodies based on cysteine-modified protein G could be useful for the fabrication of immunosensor systems.

  16. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    Directory of Open Access Journals (Sweden)

    Tam Yew

    2012-10-01

    Full Text Available Abstract Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg from Pichia pastoris expression cells were optimized using response surface methodology (RSM based on the central composite design (CCD. The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing.

  17. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    Science.gov (United States)

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  18. Electron-hole pairs generated in ZrO2 nanoparticle resist upon exposure to extreme ultraviolet radiation

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-02-01

    Metal oxide nanoparticle resists have attracted much attention as the next-generation resist used for the high-volume production of semiconductor devices. However, the sensitization mechanism of the metal oxide nanoparticle resists is unknown. Understanding the sensitization mechanism is important for the efficient development of resist materials. In this study, the energy deposition in a zirconium oxide (ZrO2) nanoparticle resist was investigated. The numbers of electron-hole pairs generated in a ZrO2 core and an methacrylic acid (MAA) ligand shell upon exposure to 1 mJ cm-2 (exposure dose) extreme ultraviolet (EUV) radiations were theoretically estimated to be 0.16 at most and 0.04-0.17 cm2 mJ-1, respectively. By comparing the calculated distribution of electron-hole pairs with the line-and-space patterns of the ZrO2 nanoparticle resist fabricated by an EUV exposure tool, the number of electron-hole pairs required for the solubility change of the resist films was estimated to be 1.3-2.2 per NP. NP denotes a nanoparticle consisting of a metal oxide core with a ligand shell. In the material design of metal oxide nanoparticle resists, it is important to efficiently use the electron-hole pairs generated in the metal oxide core for the chemical change of ligand molecules.

  19. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    Science.gov (United States)

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-05-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies ηe-h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

  20. Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger K.; Aji, Vivek; Gabor, Nathaniel M.

    2017-12-01

    Strong electronic interactions can result in novel particle-antiparticle (electron-hole, e-h) pair generation effects, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e-h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots, carbon nanotubes and graphene. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e-h interactions are very strong, so high-efficiency generation of e-h pairs from hot electrons is expected. However, such e-h pair multiplication has not been observed in 2D TMD devices. Here, we report the highly efficient multiplication of interlayer e-h pairs in 2D semiconductor heterostructure photocells. Electronic transport measurements of the interlayer I-VSD characteristics indicate that layer-indirect e-h pairs are generated by hot-electron impact excitation at temperatures near T = 300 K. By exploiting this highly efficient interlayer e-h pair multiplication process, we demonstrate near-infrared optoelectronic devices that exhibit 350% enhancement of the optoelectronic responsivity at microwatt power levels. Our findings, which demonstrate efficient carrier multiplication in TMD-based optoelectronic devices, make 2D semiconductor heterostructures viable for a new class of ultra-efficient photodetectors based on layer-indirect e-h excitations.

  1. Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators

    Science.gov (United States)

    Wu, Jiagui; Huang, Shu-Wei; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Duan, Shukai; Wei Wong, Chee

    2017-06-01

    Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron-hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale.

  2. Low-frequency instabilities of electron-hole plasmas in crossed fields

    International Nuclear Information System (INIS)

    Schneider, W.; Kirchesch, P.

    1978-01-01

    Using local point-contact probes, we observed two types of low-frequency instabilities in n-InSb at 85 K if the samples were exposed to crossed fields. One is a local density instability with threshold frequencies of f = 1 ... 20 Mc, the other a more turbulent current instability. The threshold values of U 0 and B for the onset of these instabilities and the dependence of their amplitudes on the fields have been measured. If a rectangular semiconductor slab is placed in crossed fields, regions of high electric field strength at opposite edges of the contacts are caused by the distortion of the Hall field, giving rise to the generation of electron-hole plasmas by impact ionization. These plasmas are the sources of the observed instabilities. This is especially evident in the case of the local density instability, which originates at the anode high field corner. Several possible reasons for the development of the instabilities are discussed. (orig.) [de

  3. Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells.

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger K; Aji, Vivek; Gabor, Nathaniel M

    2017-12-01

    Strong electronic interactions can result in novel particle-antiparticle (electron-hole, e-h) pair generation effects, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e-h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots, carbon nanotubes and graphene. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e-h interactions are very strong, so high-efficiency generation of e-h pairs from hot electrons is expected. However, such e-h pair multiplication has not been observed in 2D TMD devices. Here, we report the highly efficient multiplication of interlayer e-h pairs in 2D semiconductor heterostructure photocells. Electronic transport measurements of the interlayer I-V SD characteristics indicate that layer-indirect e-h pairs are generated by hot-electron impact excitation at temperatures near T = 300 K. By exploiting this highly efficient interlayer e-h pair multiplication process, we demonstrate near-infrared optoelectronic devices that exhibit 350% enhancement of the optoelectronic responsivity at microwatt power levels. Our findings, which demonstrate efficient carrier multiplication in TMD-based optoelectronic devices, make 2D semiconductor heterostructures viable for a new class of ultra-efficient photodetectors based on layer-indirect e-h excitations.

  4. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review

    Science.gov (United States)

    Khan, M. A.; Nadeem, M. A.; Idriss, H.

    2016-03-01

    The current efficiency of various photocatalytic processes is limited by the recombination of photogenerated electron-hole pairs in the photocatalyst as well as the back-reaction of intermediate species. This review concentrates on the use of ferroelectric polarization to mitigate electron-hole recombination and back-reactions and therefore improve photochemical reactivity. Ferroelectric materials are considered as wide band gap polarizable semiconductors. Depending on the surface polarization, different regions of the surface experience different extents of band bending and promote different carriers to move to spatially different locations. This can lead to some interesting interactions at the surface such as spatially selective adsorption and surface redox reactions. This introductory review covers the fundamental properties of ferroelectric materials, effect of an internal electric field/polarization on charge carrier separation, effect of the polarization on the surface photochemistry and reviews the work done on the use of these ferroelectric materials for photocatalytic applications such as dye degradation and water splitting. The manipulation of photogenerated charge carriers through an internal electric field/surface polarization is a promising strategy for the design of improved photocatalysts.

  5. Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Protein A for Immunoglobulin Detection

    Science.gov (United States)

    Bakhmachuk, A.; Gorbatiuk, O.; Rachkov, A.; Dons'koi, B.; Khristosenko, R.; Ushenin, I.; Peshkova, V.; Soldatkin, A.

    2017-02-01

    The developed surface plasmon resonance (SPR) biosensor based on the recombinant Staphylococcal protein A with an additional cysteine residue (SPA-Cys) used as a biorecognition component showed a good selectivity and sensitivity for the immunoglobulin detection. The developed biosensor with SPA-Cys-based bioselective element can also be used as a first step of immunosensor creation. The successful immobilization of SPA-Cys on the nanolayer gold sensor surface of the SPR spectrometer was performed. The efficiency of blocking nonspecific sorption sites on the sensor surface with milk proteins, gelatin, BSA, and HSA was studied, and a rather high efficiency of using gelatin was confirmed. The SPR biosensor selectively interacted with IgG and did not interact with the control proteins. The linear dependence of the sensor response on the IgG concentration in the range from 2 to 10 μg/ml was shown. Using the calibration curve, the IgG concentration was measured in the model samples. The determined concentrations are in good agreement ( r 2 = 0.97) with the given concentration of IgG.

  6. Biological protein-resistance layer construction of recombinant hirudin on polymethyl methacrylate IOL surface.

    Science.gov (United States)

    Zheng, Zhiwen; Jiao, Yan; Ren, Li; Wang, Yingjun

    2015-03-01

    In this article, the surface of intraocular len material PMMA was first aminated for activation on which some polar groups generated such as C-N, COO(-), -OH, NH3(+), etc. Then the anticoagulant drugs recombinant hirudin (rH) was grafted with amido bonds to look forward to resist the adsorption of nonspecific protein or cells in tear, even the cataract. The detailed analysis and discussion about the grafting quantity, molography, wettability, electric charges, chemical structure, and the dynamic adsorption of protein Fn on the material surface were carried on by the technology of ultraviolet photometric, contact angle, solid Zeta potential, X-ray photoelectron spectroscopy, and quartz crystal microbalance. The surface with a certain amount of rH modification existed more hydrophilic due to the amphiphilic structure than before, on which the protein adsorption was the most unstable. The results indicated that the rH modification improved the resistance of PMMA to nonspecific adsorption of protein Fn to achieve the expectative effect. © 2014 Wiley Periodicals, Inc.

  7. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  8. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  9. Electron holes in the outer radiation belt: Characteristics and their role in electron energization

    Science.gov (United States)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Drake, J. F.; Kuzichev, I. V.

    2017-01-01

    Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that is of the order of hundred Debye lengths. The perpendicular to parallel scale ratio is larger than one in a qualitative agreement with the theoretical scaling relation. The amplitudes of EH electrostatic potentials are generally below 100 V. We determine the properties of the electron population trapped within EHs by making use of the Bernstein-Green-Kruskal analysis and via analysis of EH magnetic field signatures. The density of the trapped electron population is on average 20% of the background electron density. The perpendicular temperature of the trapped population is on average 300 eV and is larger for faster EHs. We show that energy losses of untrapped electrons scattered by EHs in the inhomogeneous background magnetic field may balance the energization of trapped electrons.

  10. Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiawen [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fan, Huiqing, E-mail: hqfan3@163.com [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Ma, Yuan [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Wang, Zheng [Ministry of Education Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi’an 710072 (China); Chang, Qi [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China)

    2015-03-30

    Graphical abstract: - Highlights: • ZnO nanorods with controllable surface defects concentration were prepared by quenching treatment. • The recombination of photoinduced charges was greatly suppressed and controllable. • The electronic origin of light absorption enhancement was investigated. • Quenched ZnO showed excellent photocatalytic reactivity. - Abstract: ZnO nanorods with controllable surface defects was synthesized by high-temperature quenching method, and the recombination of photogenerated electron–hole pairs had been drastically suppressed, thus significantly improving the photocatalytic reactivity. The as-prepared samples were characterized for the surface structure, chemical state, phase structure as well as optical absorption using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescent spectrophotometer (PL), diffuse reflectance UV–visible spectroscopy (DRS) and zeta potential. With XPS valence band spectra characterization, its light absorption enhancement in UV–vis range was found due to induced additional electronic states above the valence band edge. Specific types of defects related to the quenching process were further investigated. Moreover, the concentration of surface defects and the recombination of carriers were controllable by quenching temperature, also affected by cooling rates. It provides a time-saving and straightforward method to suppressed recombination of photo-induced carriers and increased UV–vis light absorption for highly efficient ZnO-based photocatalyst applied to environmental remediation.

  11. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  12. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  13. Optimization of recombinant β-NGF expression in Escherichia coli using response surface methodology.

    Science.gov (United States)

    Gholami Tilko, Pouria; Hajihassan, Zahra; Moghimi, Hamid

    2017-04-21

    Human nerve growth factor a member of the neurotrophin family can be used to treat neurodegenerative diseases. As it has disulfide bonds in its structure, periplasmic expression of it using appropriate signal sequence is beneficial. Therefore, in this work β-nerve growth factor (β-NGF) was expressed in Escherichia coli using pET39b expression vector containing DsbA signal sequence. In an initial step, the effect of isopropyl β-D-1-thiogalactopyranoside (IPTG) and lactose concentration as inducer on protein production was investigated using response surface methodology. Then the effect of different postinduction time and temperature on protein production was studied. Our results indicated that the highest β-NGF production was achieved with 1 mM IPTG and low concentrations of lactose (0-2% w/v), low cultivation temperature of 25°C and postinduction time of 2 hr. Also following β-NGF purification, bioassay test using PC12 cell line was done. The biological activity of the purified β-NGF showed a similar cell proliferation activity with the standard recombinant human β-NGF. In conclusion, the results indicated an optimized upstream process to obtain high yields of biologically active β-NGF.

  14. The dissociation and recombination rates of CH4through the Ni(111) surface: The effect of lattice motion.

    Science.gov (United States)

    Wang, Wenji; Zhao, Yi

    2017-07-28

    Methane dissociation is a prototypical system for the study of surface reaction dynamics. The dissociation and recombination rates of CH 4 through the Ni(111) surface are calculated by using the quantum instanton method with an analytical potential energy surface. The Ni(111) lattice is treated rigidly, classically, and quantum mechanically so as to reveal the effect of lattice motion. The results demonstrate that it is the lateral displacements rather than the upward and downward movements of the surface nickel atoms that affect the rates a lot. Compared with the rigid lattice, the classical relaxation of the lattice can increase the rates by lowering the free energy barriers. For instance, at 300 K, the dissociation and recombination rates with the classical lattice exceed the ones with the rigid lattice by 6 and 10 orders of magnitude, respectively. Compared with the classical lattice, the quantum delocalization rather than the zero-point energy of the Ni atoms further enhances the rates by widening the reaction path. For instance, the dissociation rate with the quantum lattice is about 10 times larger than that with the classical lattice at 300 K. On the rigid lattice, due to the zero-point energy difference between CH 4 and CD 4 , the kinetic isotope effects are larger than 1 for the dissociation process, while they are smaller than 1 for the recombination process. The increasing kinetic isotope effect with decreasing temperature demonstrates that the quantum tunneling effect is remarkable for the dissociation process.

  15. Exchange electron-hole interaction of two-dimensional magnetoexcitons under the influence of the Rashba spin-orbit coupling

    International Nuclear Information System (INIS)

    Moskalenko, S.A.; Podlesny, I.V.; Lelyakov, I.A.; Novikov, B.V.; Kiselyova, E.S.; Gherciu, L.

    2011-01-01

    The Rashba spin-orbit coupling (RSOC) in the case of two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field was studied. The spinor-type wave functions are characterized by different numbers of Landau levels in different spin projections. For electrons they differ by 1 as was established earlier by Rashba, whereas for holes they differ by 3. Two lowest electron states and four lowest hole states of Landau quantization give rise to eight 2D magnetoexciton states. The exchange electron-hole interaction in the frame of these states is investigated.

  16. A novel strategy to increase separated electron-hole dipoles in commercial Si based solar panel to assist photovoltaic effect

    Science.gov (United States)

    Feng, Yefeng; He, Cheng-En; Xu, Zhichao; Hu, Jianbing; Peng, Cheng

    2018-01-01

    Interface induced polarization has been found to have a significant impact on dielectric properties of 2-2 type polymer composites bearing Si based semi-conducting ceramic sheets. Inherent overall polarity of polymer layers in 2-2 composites has been verified to be closely connected with interface effect and achieved permittivity in composites. In present work, conducting performances of monocrystalline Si sheets coated by varied high polarity material layers were deeply researched. The positive results inspired us to propose a novel strategy to improve separated electron-hole dipoles in commercial Si based solar cell panel for assisting photovoltaic effect, based on strong interface induced polarization. Conducting features of solar panels coated by two different high polarity polymer layers were detected to be greatly elevated compared with solar panel standalone, thanks to interface induced polarization between panel and polymer. Polymer coating with higher polarity would lead to more separated electron-hole dipole pairs in solar panel contributing to higher conductivity of panel. Valid synergy of interface effect and photovoltaic effect was based on their unidirectional traits of electron transfer. Dielectric properties of solar panels in composites further confirmed that strategy. This work might provide a facile route to prepare promising Si based solar panels with higher photoelectric conversion efficiency by enhancing interface induced polarization between panel and polymer coating.

  17. Coupled Heterojunction Sn₂Ta₂O₇@SnO₂: Cooperative Promotion of Effective Electron-Hole Separation and Superior Visible-light Absorption.

    Science.gov (United States)

    Lang, Junyu; Li, Congyan; Wang, Shuwei; Lv, Juanjuan; Su, Yiguo; Wang, Xiaojing; Li, Guangshe

    2015-07-01

    In this work, a novel heterostructure integrated by two wide-band gap semiconductors, SnO2 and Sn2Ta2O7, is successfully prepared via a hydrothermal approach. Hollow Sn2Ta2O7 spheres were first formed, and small SnO2 particles were then well-dispersed onto the outside surface of the spheres, forming a p-n heterostructure. This heterostructure exhibits a higher potential edge that yielded enhanced photoredox ability. Further, the heterostructure is of Z-type with a consistent internal electric field direction, which effectively separates the photogenerated electron-hole pairs. Although both component semiconductors do not absorb visible light, the resulted p-n heterostructure is surprisingly observed to show an outstanding photocatalytic performance under visible light illumination. Such a visible light response is concluded to be the consequence of the impurity band formed by Sn(2+) doped in SnO2 and Sn(4+) in Sn2Ta2O7 via in situ redox. The existence of coupled Sn(2+) and Sn(4+) ions in p-n heterostructure is responsible for the absence of defects and the regenerated catalytic activities. The findings reported here may provide an approach to fabricate the new types of photocatalysts with a synergetic promotion for visible light absorption and sustained photocatalytic activities by coupling different wide-band semiconductors.

  18. Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection.

    Science.gov (United States)

    Barbosa, Rafael Polidoro Alves; Filho, Bruno Galvão; Dos Santos, Luara Isabela; Junior, Policarpo Ademar Sales; Marques, Pedro Elias; Pereira, Rafaela Vaz Sousa; Cara, Denise Carmona; Bruña-Romero, Oscar; Rodrigues, Maurício Martins; Gazzinelli, Ricardo Tostes; Machado, Alexandre Vieira

    2013-01-01

    In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.

  19. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    -erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers...

  20. High concentration effects of neutral-potential-well interface traps on recombination dc current-voltage lineshape in metal-oxide-silicon transistors

    Science.gov (United States)

    Chen, Zuhui; Jie, Bin B.; Sah, Chih-Tang

    2008-11-01

    Steady-state Shockley-Read-Hall kinetics is employed to explore the high concentration effect of neutral-potential-well interface traps on the electron-hole recombination direct-current current-voltage (R-DCIV) properties in metal-oxide-silicon field-effect transistors. Extensive calculations include device parameter variations in neutral-trapping-potential-well electron interface-trap density NET (charge states 0 and -1), dopant impurity concentration PIM, oxide thickness Xox, forward source/drain junction bias VPN, and transistor temperature T. It shows significant distortion of the R-DCIV lineshape by the high concentrations of the interface traps. The result suggests that the lineshape distortion observed in past experiments, previously attributed to spatial variation in surface impurity concentration and energy distribution of interface traps in the silicon energy gap, can also arise from interface-trap concentration along surface channel region.

  1. Negligible Electronic Interaction between Photoexcited Electron-Hole Pairs and Free Electrons in Phosphorus-Boron Co-Doped Silicon Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Limpens, Rens [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neale, Nathan R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fujii, Minoru [Kobe University; Gregorkiewicz, Tom [University of Amsterdam

    2018-03-05

    Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction of the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).

  2. Expression and Evaluation of Recombinant Plasmodium knowlesi Merozoite Surface Protein-3 (MSP-3 for Detection of Human Malaria.

    Directory of Open Access Journals (Sweden)

    Jeremy Ryan De Silva

    Full Text Available Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61% and ELISA (100%. Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49. In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.

  3. Electron-hole transition in spherical QD-QW nanoparticles based on GaN∣(In,Ga)N∣GaN under hydrostatic pressure

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar

    2013-01-01

    Within the framework of effective-mass approximation and finite parabolic potential confinement barrier in which two confinement parameters are taking account, the electron (hole) energy and the ground-state electron-hole (e−h) transition in Core∣well∣shell (GaN|In x Ga 1−x N|GaN) spherical QD-QW nanoparticles are investigated as a function of the inner and the outer radii under externally applied hydrostatic pressure. The pressure dependencies of the effective-mass and the QD radius are taking into account. The results we obtained are in quite good agreement with the theoretical and the experimental findings

  4. Surface Display of Recombinant Drosophila melanogaster Acetylcholinesterase for Detection of Organic Phosphorus and Carbamate Pesticides

    OpenAIRE

    Li, Jingquan; Qian Ba,; Yin, Jun; Wu, Songjie; Zhuan, Fangfang; Xu, Songci; Li, Junyang; Salazar, Joelle K.; Zhang, Wei; Wang, Hui

    2013-01-01

    Acetylcholinesterase (AChE) is commonly used for the detection of organophosphate (OP) and carbamate (CB) insecticides. However, the cost of this commercially available enzyme is high, making high-throughput insecticide detection improbable. In this study we constructed a new AChE yeast expression system in Saccharomyces cerevisiae for the expression of a highly reactive recombinant AChE originating from Drosophila melanogaster (DmAChE). Specifically, the coding sequence of DmAChE was fused w...

  5. Dynamical instability of a driven-dissipative electron-hole condensate in the BCS-BEC crossover region

    Energy Technology Data Exchange (ETDEWEB)

    Hanai, Ryo; Littlewood, Peter B.; Ohashi, Yoji

    2017-09-01

    We present a stability analysis on a driven-dissipative electron-hole condensate in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein-condensation)-crossover region. Extending the combined BCS-Leggett theory with the generalized random phase approximation (GRPA) to the non-equilibrium case by employing the Keldysh formalism, we show that the pumping-and-decay of carriers causes a depairing effect on excitons. This phenomenon gives rise to an attractive interaction between excitons in the BEC regime, as well as a supercurrent that anomalously flows anti-parallel to ∇θ(r) (where θ(r) is the phase of the condensate) in the BCS regime, both leading to dynamical instabilities of an exciton-BEC.

  6. Far infrared spectroscopy of solids. I. Impurity states in Al2O3. II. Electron-hole droplets in Ge

    International Nuclear Information System (INIS)

    Aurbauch, R.L.

    1975-01-01

    Far infrared Fourier transform spectroscopy was used to study the low lying vibronic states of Mn 3+ in Al 2 O 3 and the plasma absorption of electron-hole droplets in Ge. The transmission of Mn-doped samples of Al 2 O 3 was measured in the frequency range from 3 to 30 cm -1 in applied magnetic fields up to 50 kG. Absorption lines were observed due to both ground and excited state transitions. Polarization measurements established that these absorption lines were due to electric dipole transitions. Temperature dependence measurements were used to derive a level diagram for the low lying states of Mn 3+ . A phenomenological model based on an electronic Hamiltonian was developed which successfully describes the data. The empirically determined trigonal field and spin-orbit quenching parameters of this model are 0.7 and 0.1 respectively. This quenching is attributed to the dynamic Jahn--Teller interaction. The plasma absorption of small (α) electron-hole drops in Ge was measured in the frequency range from 30 to 300 cm -1 . The observed absorption is in good agreement with measurements by Vavilov and other workers. A theoretical model which includes both intraband and interband contributions to the dielectric constant in the Rayleigh limit of Mie theory is used to describe the observed lineshape. Measurements of plasma absorption of large (γ) drops in inhomogeneously stressed Ge were made in magnetic fields up to 50 kG. The lineshape at zero applied field was calculated in the large sphere limit of Mie theory including intraband terms and a zero-strain interband term. Qualitative agreement with experiment was obtained. The peak absorption shifted quadratically with applied magnetic field and the total plasma absorption increased. No oscillatory structure was observed in the field-dependence of the total absorption

  7. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  8. Using recombinant Lactococci as an approach to dissect the immunomodulating capacity of surface piliation in probiotic Lactobacillus rhamnosus GG.

    Directory of Open Access Journals (Sweden)

    Ingemar von Ossowski

    Full Text Available Primarily arising from their well understood beneficial health effects, many lactobacilli strains are considered good candidates for use as probiotics in humans and animals. Lactobacillar probiosis can itself be best typified by the Lactobacillus rhamnosus GG strain, which, with its well-documented clinical benefits, has emerged as one of the most widely used probiotics in the food and health-supplement industries. Even so, many facets of its molecular mechanisms and limitations as a beneficial commensal bacterium still remain to be thoroughly explored and dissected. Because L. rhamnosus GG is one of only a few such strains exhibiting surface piliation (called SpaCBA, we sought to examine whether this particular type of cell-surface appendage has a discernible immunomodulating capacity and is able to trigger targeted responses in human immune-related cells. Thus, presented herein for this study, we recombinantly engineered Lactococcus lactis to produce native (and pilin-deleted SpaCBA pili that were assembled in a structurally authentic form and anchored to the cell surface, and which had retained mucus-binding functionality. By using these recombinant lactococcal constructs, we were able to demonstrate that the SpaCBA pilus can be a contributory factor in the activation of Toll-like receptor 2-dependent signaling in HEK cells as well as in the modulation of pro- and anti-inflammatory cytokine (TNF-α, IL-6, IL-10, and IL-12 production in human monocyte-derived dendritic cells. From these data, we suggest that the recombinant-expressed and surface-anchored SpaCBA pilus, given its projected functioning in the gut environment, might be viewed as a new microbe-associated molecular pattern (MAMP-like modulator of innate immunity. Accordingly, our study has brought some new insight to the molecular immunogenicity of the SpaCBA pilus, thus opening the way to a better understanding of its possible role in the multifaceted nature of L. rhamnosus GG

  9. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface

    NARCIS (Netherlands)

    Weeterings, Cees; de Groot, Philip G.; Adelmeijer, Jelle; Lisman, Ton

    2008-01-01

    Several lines of evidence suggest that recombinant factor VIIa (rFVIIa) is able to activate factor X on an activated platelet, in a tissue factor-independent manner. We hypothesized that, besides the anionic surface, a receptor on the activated platelet surface is involved in this process. Here, we

  10. Enhancement of tunnel conductivity by Cooper pair fluctuations in electron-hole bilayer

    International Nuclear Information System (INIS)

    Efimkin, D K; Lozovik, Yu E

    2012-01-01

    Influence of Cooper pair fluctuations that are precursor of pairing of electrons and holes located on opposite surfaces of topological insulator film on tunnel conductivity between the surfaces is investigated. Due to restrictions caused by momentum and energy conservation dependence of tunnel conductivity on external bias voltage has peak that becomes more prominent with decreasing of disorder and temperature. We have shown that Cooper pair fluctuations considerably enhance tunneling and height of the peak diverges in vicinity of critical temperature with critical index ν = 2. Width of the peak tends to zero in proximity of critical temperature. Pairing of electrons and holes can be suppressed by disorder and in vicinity of quantum critical point height of the peak also diverges as function of Cooper pair damping with critical index μ = 2.

  11. Surface Recombination of Crystalline Silicon Substrates Passivated by Atomic-Layer-Deposited AlOx

    Science.gov (United States)

    Arafune, Koji; Miki, Shohei; Matsutani, Ryosuke; Hamano, Junpei; Yoshida, Haruhiko; Tachibana, Tomihisa; Lee, Hyun Ju; Ogura, Atsuhi; Ohshita, Yoshio; Satoh, Shin-ichi

    2012-04-01

    AlOx films as passivation layers for p-type crystalline silicon were prepared by atomic layer deposition with ozone as an oxidant, and the effects of the AlOx film thickness and deposition temperature on the maximum recombination velocity (Smax) were evaluated. Smax is improved by increasing the layer thickness but saturates at a layer thickness of about 30 nm. In the case of samples deposited at room temperature, Smax is improved fivefold when the thickness is increased from 20 to 33 nm. Smax also improved as the deposition temperature was increased to 300 °C then deteriorated when it was further increased to 350 °C. After postdeposition annealing, we obtained an Smax of 8.5 cm/s.

  12. The Optimisation of the Expression of Recombinant Surface Immunogenic Protein of Group B Streptococcus in Escherichia coli by Response Surface Methodology Improves Humoral Immunity.

    Science.gov (United States)

    Díaz-Dinamarca, Diego A; Jerias, José I; Soto, Daniel A; Soto, Jorge A; Díaz, Natalia V; Leyton, Yessica Y; Villegas, Rodrigo A; Kalergis, Alexis M; Vásquez, Abel E

    2018-03-01

    Group B Streptococcus (GBS) is the leading cause of neonatal meningitis and a common pathogen in livestock and aquaculture industries around the world. Conjugate polysaccharide and protein-based vaccines are under development. The surface immunogenic protein (SIP) is a conserved protein in all GBS serotypes and has been shown to be a good target for vaccine development. The expression of recombinant proteins in Escherichia coli cells has been shown to be useful in the development of vaccines, and the protein purification is a factor affecting their immunogenicity. The response surface methodology (RSM) and Box-Behnken design can optimise the performance in the expression of recombinant proteins. However, the biological effect in mice immunised with an immunogenic protein that is optimised by RSM and purified by low-affinity chromatography is unknown. In this study, we used RSM for the optimisation of the expression of the rSIP, and we evaluated the SIP-specific humoral response and the property to decrease the GBS colonisation in the vaginal tract in female mice. It was observed by NI-NTA chromatography that the RSM increases the yield in the expression of rSIP, generating a better purification process. This improvement in rSIP purification suggests a better induction of IgG anti-SIP immune response and a positive effect in the decreased GBS intravaginal colonisation. The RSM applied to optimise the expression of recombinant proteins with immunogenic capacity is an interesting alternative in the evaluation of vaccines in preclinical phase, which could improve their immune response.

  13. Effect of a novel saponin adjuvant derived from Quillaja saponaria on the immune response to recombinant hepatitis B surface antigen.

    Science.gov (United States)

    So, H S; Yoon, H S; Choi, D Y; Kwon, Y S; Sung, J H; Lee, T G; Park, E S; Cho, H S; Lee, B M; Cho, J M; Ryu, W S

    1997-04-30

    Adjuvant activity of saponins extracted from the South American tree Quillaja saponaria has been demonstrated with many antigens. Recently, four saponin fractions (designated as QS-7, QS-17, QS-18, and QS-21) with adjuvant activity were purified by reverse phase chromatography. In particular, efficacy of the less toxic QS-21 fraction has been demonstrated with several recombinant viral antigens including HIV gp120. Here, we report a novel saponin fraction (designated as QS-L1) derived from Quillaja saponaria. Unlike previously identified saponins, QS-L1 had a different chemical structure and showed adjuvant activity only when administered in the presence of alum-precipitated antigen. Interestingly, the QS-L1 greatly increased not only a humoral immune response but also cellular immune response to recombinant hepatitis B virus surface antigen (HBsAg). Furthermore, QS-L1 showed lower toxicity in vivo and in vitro than the previously identified saponin fraction, QS-21. Finally, we examined the chemical structure of the QS-L1 using mass spectroscopic analysis, carbohydrate composition analysis and NMR spectroscopic analysis. Thus, our results indicated that this novel QS-L1 saponin fraction had several desirable properties required for an effective adjuvant.

  14. Covalent-display of an active chimeric-recombinant tissue plasminogen activator on polyhydroxybutyrate granules surface.

    Science.gov (United States)

    Hafizi, Akram; Malboobi, Mohamad Ali; Jalali-Javaran, Mokhtar; Maliga, Pal; Alizadeh, Houshang

    2017-11-01

    To develop a deliberately engineered expression and purification system for an active chimeric-recombinant tissue plasminogen activator (crtPA) using co-expression with polyhydroxybutyrate (PHB) operon genes. Fusion of crtPA with PhaC-synthase simplified the purification steps through crtPA sedimentation with PHB particles. Moreover, the covalently immobilized crtPA was biologically active as shown in a chromogenic assay. Upon WELQut-protease activity, the released single-chain crtPA converted to the two-chain form which produced a pattern of bands with approx. MW of 32 and 11 kDa in addition to the full length crtPA. Fusion of crtPA with PhaC-synthase not only simplifies purification from the bacterial host lysate, but also co-expression of PHB operon genes creates an oxidative environment, thereby reducing the inclusion body formation possibility. The isolated crtPA-PHB granules exhibited crtPA serine protease activity. Thus, fusion with the PhaC protein could be used as a scaffold for covalent displaying of functional disulfide-rich proteins.

  15. Determination of the electron-hole pair creation energy for semiconductors from the spectral responsivity of photodiodes

    CERN Document Server

    Scholze, F; Kuschnerus, P; Rabus, H; Richter, M; Ulm, G

    2000-01-01

    Ionizing radiation can be detected by the measurement of the charge carriers produced in a detector. The improved semiconductor technology now allows detectors operating near the physical limits of the detector materials to be designed. The mean energy required for producing an electron-hole pair, W, is a material property of the semiconductor. Here, the determination of W from the spectral responsivity of photodiodes is demonstrated. Using spectrally dispersed synchrotron radiation, different types of semiconductor photodiodes have been examined in the UV-, VUV-, and soft X-ray spectral range. Their spectral responsivity was determined with relative uncertainties between 0.4% and 1% using a cryogenic electrical-substitution radiometer as primary detector standard. Results are presented for silicon n-on-p junction photodiodes and for GaAsP/Au Schottky diodes at room temperature. The investigations for silicon covered the complete spectral range from 3 to 1500 eV, yielding a constant value W=(3.66+-0.03) eV fo...

  16. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Medina-Bailón, C.; Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  17. Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interaction correction

    International Nuclear Information System (INIS)

    Du Jincheng; Rene Corrales, L.; Tsemekhman, Kiril; Bylaska, Eric J.

    2007-01-01

    Density functional theory (DFT) calculations were employed to understand the refractive index change in germanium doped silica glasses for the trapped states of electronic excitations induced by UV irradiation. Local structure relaxation and excess electron density distribution were calculated upon self-trapping of an excess electron, hole, and exciton in germanium doped silica glass. The results show that both the trapped exciton and excess electron are highly localized on germanium ion and, to some extent, on its oxygen neighbors. Exciton self-trapping is found to lead to the formation of a Ge E' center and a non-bridging hole center. Electron trapping changes the GeO 4 tetrahedron structure into trigonal bi-pyramid with the majority of the excess electron density located along the equatorial line. The self-trapped hole is localized on bridging oxygen ions that are not coordinated to germanium atoms that lead to elongation of the Si-O bonds and change of the Si-O-Si bond angles. We carried out a comparative study of standard DFT versus DFT with a hybrid PBE0 exchange and correlation functional. The results show that the two methods give qualitatively similar relaxed structure and charge distribution for electron and exciton trapping in germanium doped silica glass; however, only the PBE0 functional produces the self-trapped hole

  18. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  19. Two-particle self-consistent analysis for the electron-hole asymmetry of superconductivity in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Daisuke; Kuroki, Kazuhiko [Department of Physics, Graduate School of Science, Osaka University, Toyonaka (Japan)

    2017-06-15

    In the hole-doped type cuprate superconductors, it is well-known that the superconducting transition temperature T{sub c} exhibits a dome-like structure against doping. On the other hand, recent experiments unveil that T{sub c} in the electron-doped compounds shows a monotonic increase with decreasing the doping, at least down to a very small doping rate. Our recent study for the three-band d-p model has unveiled that this asymmetric behavior can be explained as a combined effect of the intrinsic electron-hole asymmetry in systems comprising Cu3 d and O2 p orbitals and the band-filling-dependent vertex correction. In the present study, we study another compound Tl{sub 2} Ba{sub 2} CuO{sub 6} to show that this explanation can be applied to other cuprate superconductors with the small d{sub z{sup 2}} orbital mixture. By varying the d-p offset, we also study how the strength of the d-p hybridization controls the spin fluctuation and hence the pairing interaction. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Terahertz spectroscopy of two-dimensional electron-hole pairs: probing Mott physics of magneto-excitons

    Science.gov (United States)

    Zhang, Qi; Gao, Weilu; Watson, John; Manfra, Michael; Kono, Junichiro

    2015-03-01

    Density-dependent Coulomb interactions can drive electron-hole (e - h) pairs in semiconductors through an excitonic Mott transition from an excitonic gas into an e - h plasma. Theoretical studies suggest that these interactions can be strongly modified by an external magnetic field, including the absence of inter-exciton interactions in the high magnetic field limit in two dimensions, due to an e - h charge symmetry, which results in ultrastable magneto-excitons. Here, we present a systematic experimental study of e - h pairs in photo-excited undoped GaAs quantum wells in magnetic fields with ultrafast terahertz spectroscopy. We simultaneously monitored the dynamics of the intraexcitonic 1 s-2 p transition (which splits into 1 s-2p+ and 1 s-2p- transitions in a magnetic field) and the cyclotron resonance of unbound electrons and holes up to 10 Tesla. We found that the 1 s-2p- absorption feature is robust at high magnetic fields even under high excitation fluences, indicating magnetically enhanced stability of excitons. We will discuss the Mott physics of magneto-excitons as a function of temperature, e - h pair density, optical pump delay time, as well as magnetic field, and also compare two-dimensional excitons in GaAs quantum wells with three-dimensional excitons in bulk GaAs.

  1. Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures

    Science.gov (United States)

    Yang, Bowen; Lohmann, Mark; Barroso, David; Liao, Ingrid; Lin, Zhisheng; Liu, Yawen; Bartels, Ludwig; Watanabe, Kenji; Taniguchi, Takashi; Shi, Jing

    2017-07-01

    Despite its extremely weak intrinsic spin-orbit coupling (SOC), graphene has been shown to acquire considerable SOC by proximity coupling with exfoliated transition metal dichalcogenides (TMDs). Here we demonstrate strong induced Rashba SOC in graphene that is proximity coupled to a monolayer TMD film, Mo S2 or WS e2 , grown by chemical-vapor deposition with drastically different Fermi level positions. Graphene/TMD heterostructures are fabricated with a pickup-transfer technique utilizing hexagonal boron nitride, which serves as a flat template to promote intimate contact and therefore a strong interfacial interaction between TMD and graphene as evidenced by quenching of the TMD photoluminescence. We observe strong induced graphene SOC that manifests itself in a pronounced weak-antilocalization (WAL) effect in the graphene magnetoconductance. The spin-relaxation rate extracted from the WAL analysis varies linearly with the momentum scattering time and is independent of the carrier type. This indicates a dominantly Dyakonov-Perel spin-relaxation mechanism caused by the induced Rashba SOC. Our analysis yields a Rashba SOC energy of ˜1.5 meV in graphene/WS e2 and ˜0.9 meV in graphene/Mo S2 . The nearly electron-hole symmetric nature of the induced Rashba SOC provides a clue to possible underlying SOC mechanisms.

  2. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2014-03-19

    Photoexcitation of the plasmon band in metallic nanoparticles adsorbed on a TiO2 surface initiates many important photovoltaic and photocatalytic processes. The traditional view on the photoinduced charge separation involves excitation of a surface plasmon, its subsequent dephasing into electron-hole pairs, followed by electron transfer (ET) from the metal nanoparticle into TiO2. We use nonadiabatic molecular dynamics combined with time-domain density functional theory to demonstrate that an electron appears inside TiO2 immediately upon photoexcitation with a high probability (~50%), bypassing the intermediate step of electron-hole thermalization inside the nanoparticle. By providing a detailed, atomistic description of the charge separation, energy relaxation, and electron-hole recombination processes, the simulation rationalizes why the experimentally observed ultrafast photoinduced ET in an Au-TiO2 system is possible in spite of the fast energy relaxation. The simulation shows that the photogenerated plasmon is highly delocalized onto TiO2, and thus, it is shared by the electron donor and acceptor materials. In the 50% of the cases remaining after the instantaneous photogeneration of the charge-separated state, the electron injects into TiO2 on a sub-100 fs time scale by the nonadiabatic mechanism due to high density of acceptor states. The electron-phonon relaxation parallels the injection and is slower, resulting in a transient heating of the TiO2 surface by 40 K. Driven by entropy, the electron moves further into TiO2 bulk. If the electron remains trapped at the TiO2 surface, it recombines with the hole on a picosecond time scale. The obtained ET and recombination times are in excellent agreement with the experiment. The delocalized plasmon state observed in our study establishes a novel concept for plasmonic photosensitization of wide band gap semiconductors, leading to efficient conversion of photons to charge carriers and to hybrid materials with a wide

  3. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Science.gov (United States)

    Simonds, Brian J.; Kheraj, Vipul; Palekis, Vasilios; Ferekides, Christos; Scarpulla, Michael A.

    2015-06-01

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm2 with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  4. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  5. Energy relaxation and separation of a hot electron-hole pair in organic aggregates from a time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin

    2014-01-01

    The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation

  6. Time-resolved study of electron-hole plasmas near the liquid-gas critical point in Si: Evidence for a second condensed phase

    Science.gov (United States)

    Smith, L. M.; Wolfe, J. P.

    1995-03-01

    At low temperatures and sufficient densities, free excitons in Si and Ge undergo simultaneous gas-liquid and insulator-metal transitions into droplets of electron-hole liquid. Some previous theoretical and experimental studies have suggested that, under certain values of density and temperature, there may be separate metal-insulator and liquid-gas transitions. In the present paper, we examine the difficult transcritical region for electron-hole liquid formation in unstressed Si using time- and space-resolved photoluminescence spectroscopy. Using the latest models for the luminescence of electron-hole plasma and small excitonic complexes (EC's), we have succeeded in characterizing the complicated luminescence spectra both above and below the liquid-gas critical temperature [Tc(LG)~=24.5 K] with a relatively small number of free parameters. Near the liquid-gas critical point the luminescence spectra are analyzed as contributions from four lines: the high-density electron-hole liquid (EHL), a lower-density electron-hole plasma (EHP), free excitons (FE's), and excitonic complexes. After a sufficient thermalization time, the temperature of all phases settles to a value indistinguishable from the lattice temperature. The line shapes of FE's and EC's are calculated using previously established parameters. Using the latest band-renormalization theory, the pair density of the plasma phases (EHL and EHP) determines both the position and the shape of the spectrum. Therefore the analysis of these complex spectra is reduced to five free parameters: A single parameter describing the intensity of the FE line (the intensity of the EC line shape is linked to that of the FE using an experimentally determined scaling relation), the intensities of the two plasma components EHL and EHP, and the pair densities of these two plasmas. These parameters are sufficient to characterize the spectra over a wide range of particle density and temperature. The EHP density obtained in this way is

  7. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs

    Science.gov (United States)

    Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel

    2016-01-01

    Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates. PMID:27223609

  8. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs.

    Science.gov (United States)

    Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel

    2016-05-01

    Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  9. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA Induce Protective Immune Responses in Dogs.

    Directory of Open Access Journals (Sweden)

    Elodie Petitdidier

    2016-05-01

    Full Text Available Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA, from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA or its carboxy terminal part LaPSA-12S (Cter-rPSA, combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  10. Fine structure of excitons and electron-hole exchange energy in polymorphic CsPbBr3 single nanocrystals.

    Science.gov (United States)

    Ramade, Julien; Andriambariarijaona, Léon Marcel; Steinmetz, Violette; Goubet, Nicolas; Legrand, Laurent; Barisien, Thierry; Bernardot, Frédérick; Testelin, Christophe; Lhuillier, Emmanuel; Bramati, Alberto; Chamarro, Maria

    2018-04-05

    All inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) belong to the novel class of confined metal-halide perovskites which are currently arousing enthusiasm and stimulating huge activity across several fields of optoelectronics due to outstanding properties. A deep knowledge of the band-edge excitonic properties of these materials is thus crucial to further optimize their performances. Here, high-resolution photoluminescence (PL) spectroscopy of single bromide-based NCs reveals the exciton fine structure in the form of sharp peaks that are linearly polarized and grouped in doublets or triplets, which directly mirror the adopted crystalline structure, tetragonal (D4h symmetry) or orthorhombic (D2h symmetry). Intelligible equations are found that show how the fundamental parameters (spin-orbit coupling, ΔSO, crystal field term, T, and electron-hole exchange energy, J) rule the energy spacings in doublets and triplets. From experimental data, fine estimations of each parameter are obtained. The analysis of the absorption spectra of an ensemble of NCs with a "quasi-bulk" behavior leads to ΔSO = 1.20 ± 0.06 eV and T = -0.34 ± 0.05 eV in CsPbBr3. The study of individual luminescence responses of NCs having sizes comparable to the exciton Bohr diameter, 7 nm, allows us to estimate the value of J to be around ≈3 meV in both tetragonal and orthorhombic phases. This value is already enhanced by confinement.

  11. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel.

    Science.gov (United States)

    Dixit, Anant; Ángyán, János G; Rocca, Dario

    2016-09-14

    A new formalism was recently proposed to improve random phase approximation (RPA) correlation energies by including approximate exchange effects [B. Mussard et al., J. Chem. Theory Comput. 12, 2191 (2016)]. Within this framework, by keeping only the electron-hole contributions to the exchange kernel, two approximations can be obtained: An adiabatic connection analog of the second order screened exchange (AC-SOSEX) and an approximate electron-hole time-dependent Hartree-Fock (eh-TDHF). Here we show how this formalism is suitable for an efficient implementation within the plane-wave basis set. The response functions involved in the AC-SOSEX and eh-TDHF equations can indeed be compactly represented by an auxiliary basis set obtained from the diagonalization of an approximate dielectric matrix. Additionally, the explicit calculation of unoccupied states can be avoided by using density functional perturbation theory techniques and the matrix elements of dynamical response functions can be efficiently computed by applying the Lanczos algorithm. As shown by several applications to reaction energies and weakly bound dimers, the inclusion of the electron-hole kernel significantly improves the accuracy of ground-state correlation energies with respect to RPA and semi-local functionals.

  12. Picosecond pulse radiolysis studies on geminate ion recombination in saturated hydrocarbon

    International Nuclear Information System (INIS)

    Tagawa, S.; Washio, M.; Kobayashi, H.; Katsumura, Y.; Tabata, Y.

    1983-01-01

    The geminate recombination kinetics of the excess electron and the electron hole are discussed, based on time-resolved data on picosecond and nanosecond time scales. The recombination times of the excess electron and the electron hole are evaluated to be 3 ps for cyclohexane on the basis of the comparison between the experimental and the calculated results. The spin correlation decay of the geminate ion pairs and the triplet state formation before the spin correlation loss have also been discussed. The rapidly decaying species with very broad absorption spectra, which are similar to the absorption spectra of the cation radicals of saturated hydrocarbons, have been observed in neat saturated hydrocarbons in the sub-nanosecond and a few nanosecond time regions. The identification of the rapidly decaying species were not definitely made but those species are tentatively assigned to the excited states and/or the tail of the geminate cation radicals of saturated hydrocarbons. (author)

  13. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    Directory of Open Access Journals (Sweden)

    Mabel Izquierdo-López

    2014-12-01

    Full Text Available In this paper the development of potency assay in animals (mice was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, as well as different areas for the maintenance of the animals were evaluated. The results on the applicability of the potency test, to two presentations of the vaccines; monovalent Heberbiovac HB and pentavalent liquid in one vial Heberpenta-L are shown, for which specificity studies, evaluating different vaccine lots, the behavior of linearity, and parallelism, as well as establishing quality specification of the test were performed. This assay led to the obtainment of reliable results for the vaccines evaluated, the consistent evaluation of the immunogenic power and the monitoring of different production processes.

  14. The promastigote surface antigen gene family of the Leishmania parasite: differential evolution by positive selection and recombination.

    Science.gov (United States)

    Devault, Alain; Bañuls, Anne-Laure

    2008-10-24

    PSA (promastigote surface antigen) is one of the major classes of membrane proteins present at the surface of the parasitic protozoan Leishmania. While it harbours leucine rich repeats, which are suggestive of its involvement in parasite-to-host physical interactions, its exact role is largely unknown. Furthermore, the extent of diversity of this gene family, both in copy number and sequence has not been established. From the newly available complete genome sequences of L. major, L. infantum and L. braziliensis, we have established the complete list of PSA genes, based on the conservation of specific domain architecture. The latter includes an array of leucine rich repeats of unique signature flanked by conserved cysteine-rich domains. All PSA genes code either for secreted or membrane-anchored surface proteins. Besides the few previously identified PSA genes, which are shown here to be part of a relatively large subclass of PSA genes located on chromosome 12, this study identifies seven other PSA subtypes. The latter, whose genes lie on chromosomes 5, 9, 21 and 31 in all three species, form single gene (two genes in one instance) subfamilies, which phylogenetically cluster as highly related orthologs. On the other hand, genes found on chromosome 12 generally show high diversification, as reflected in greater sequence divergence between species, and in an extended set of divergent paralogs. Moreover, we show that the latter genes are submitted to strong positive selection. We also provide evidence that evolution of these genes is driven by intra- and intergenic recombination, thereby modulating the number of LRRs in protein and generating chimeric genes. PSA is a Leishmania family of membrane-bound or secreted proteins, whose main signature consists in a specific LRR sequence. All PSA genes found in the genomes of three sequenced Leishmania species unambiguously distribute into eight subfamilies of orthologs. Seven of these are evolving relatively slowly and could

  15. The promastigote surface antigen gene family of the Leishmania parasite: differential evolution by positive selection and recombination

    Directory of Open Access Journals (Sweden)

    Bañuls Anne-Laure

    2008-10-01

    Full Text Available Abstract Background PSA (promastigote surface antigen is one of the major classes of membrane proteins present at the surface of the parasitic protozoan Leishmania. While it harbours leucine rich repeats, which are suggestive of its involvement in parasite-to-host physical interactions, its exact role is largely unknown. Furthermore, the extent of diversity of this gene family, both in copy number and sequence has not been established. Results From the newly available complete genome sequences of L. major, L. infantum and L. braziliensis, we have established the complete list of PSA genes, based on the conservation of specific domain architecture. The latter includes an array of leucine rich repeats of unique signature flanked by conserved cysteine-rich domains. All PSA genes code either for secreted or membrane-anchored surface proteins. Besides the few previously identified PSA genes, which are shown here to be part of a relatively large subclass of PSA genes located on chromosome 12, this study identifies seven other PSA subtypes. The latter, whose genes lie on chromosomes 5, 9, 21 and 31 in all three species, form single gene (two genes in one instance subfamilies, which phylogenetically cluster as highly related orthologs. On the other hand, genes found on chromosome 12 generally show high diversification, as reflected in greater sequence divergence between species, and in an extended set of divergent paralogs. Moreover, we show that the latter genes are submitted to strong positive selection. We also provide evidence that evolution of these genes is driven by intra- and intergenic recombination, thereby modulating the number of LRRs in protein and generating chimeric genes. Conclusion PSA is a Leishmania family of membrane-bound or secreted proteins, whose main signature consists in a specific LRR sequence. All PSA genes found in the genomes of three sequenced Leishmania species unambiguously distribute into eight subfamilies of orthologs

  16. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice.

    Science.gov (United States)

    Dong, Hui; Huang, Yanmei; Yao, Shuwen; Liang, Bingshao; Long, Yan; Xie, Yongqiang; Mai, Jialiang; Gong, Sitang; Zhou, Zhenwen

    2017-07-01

    The neutrophil-activating protein of Helicobacter pylori (HP-NAP) has been identified as a modulator with anti-Th2 inflammation activity, and cholera toxin B (CTB) is a mucosal adjuvant that can also induce antigen tolerance. In this study, we constructed a CTB-NAP fusion protein on the surface of Bacillus subtilis spore and evaluate the efficiency of oral administration of the recombinant CTB-NAP spores in preventing asthma in mice. Oral administration of recombinant CTB or CTB-NAP spores significantly decreased serum ovalbumin (OVA)-specific IgE (p recombinant spores. Oral administration of recombinant CTB or CTB-NAP spores induced IL-10 and IFN-γ expression and reduced IL-4 levels in bronchoalveolar lavage fluid (BALF). Moreover, CTB and CTB-NAP spores reduced the eosinophils in BALF and inflammatory cell infiltration in the lungs. Furthermore, CD4 + CD25 + Foxp3 + Tregs in splenocytes were significantly increased in mice treated with recombinant CTB or CTB-NAP spores. The number of CD4 + CD25 + Foxp3 + Tregs caused by CTB-NAP was higher than that by CTB alone. Our study indicated that B. subtilis spores with surface expression of subunit CTB or CTB-NAP could inhibit OVA-induced allergic inflammation in mice. The attenuated inflammation was attributed to the induction of CD4 + CD25 + Foxp3 + Tregs and IgA. Moreover, the fusion protein CTB-NAP demonstrated a better efficiency than CTB alone in inhibiting the inflammation.

  17. Immunogenicity and In Vitro and In Vivo Protective Effects of Antibodies Targeting a Recombinant Form of the Streptococcus mutans P1 Surface Protein

    OpenAIRE

    Batista, Milene Tavares; Souza, Renata D.; Ferreira, Ewerton L.; Robinette, Rebekah; Crowley, Paula J.; Rodrigues, Juliana F.; Brady, L. Jeannine; Ferreira, Luís C. S.; Ferreira, Rita C. C.

    2014-01-01

    Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P139–512), produced in Bacillus subtilis and encompassing a functional dom...

  18. Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light

    International Nuclear Information System (INIS)

    Li, Juan-Juan; Cai, Song-Cai; Xu, Zhen; Chen, Xi; Chen, Jin; Jia, Hong-Peng; Chen, Jing

    2017-01-01

    Highlights: • Bi-Zn co-doped TiO 2 catalysts were prepared by solvothermal route. • The incorporation of Bi doping into the TiO 2 generates intermediate energy levels. • Bi and Zn doping showed the enhanced absorption in visible-light region. • Zn dopant acts as a mediator of interfacial charge transfer. • TiBi 1.9% Zn 1% O 2 exhibited high photocatalytic degradation for toluene. - Abstract: This study investigated the effects of Bi doped and Bi-Zn co-doped TiO 2 on photodegradation of gaseous toluene. The doped TiO 2 with various concentration of metal was prepared using the solvothermal route and characterized by SEM, XRD, Raman, BET, DRS, XPS, PL and EPR. Their photocatalytic activities under visible-light irradiation were drastically influenced by the dopant content. The results showed that moderate metal doping levels were obviously beneficial for the toluene degradation, while high doping levels suppressed the photocatalytic activity. The photocatalytic degradation of toluene over TiBi 1.9% O 2 and TiBi 1.9% Zn 1% O 2 can reach to 51% and 93%, respectively, which are much higher than 25% of TiO 2 . Bi doping into TiO 2 lattice generates new intermediate energy level of Bi below the CB edge of TiO 2 . The electron excitation from the VB to Bi orbitals results in the decreased band gap, extended absorption of visible-light and thus enhances its photocatalytic efficiency. Zn doping not only further enhances the absorption in this visible-light region, but also Zn dopant exists as the form of ZnO crystallites located on the interfaces of TiO 2 agglomerates and acts as a mediator of interfacial charge transfer to suppress the electron-hole recombination. These synergistic effects are responsible for the enhanced photocatalytic performance.

  19. Probing single-molecule electron-hole transfer dynamics at a molecule-NiO semiconductor nanocrystalline interface.

    Science.gov (United States)

    Dhital, Bharat; Rao, Vishal Govind; Lu, H Peter

    2017-07-14

    Interfacial charge transfer dynamics in dye-sensitized NiO nanoparticles are being investigated for photocathodes in p-type dye-sensitized solar cells. In the photoreaction, after fast electron transfer from NiO to a molecule, the recombination of the hole in the nanoparticles with the electron in a reduced molecule plays an important role in the charge separation process and solar energy harvesting. Nevertheless, knowledge of the interfacial charge recombination (CR) rate and its mechanism is still limited due to the complex photoinduced electron and hole dynamics and lack of characterization of the inhomogeneity of the dynamics. Here, we report our work on probing interfacial charge recombination dynamics in Zn(ii)-5,10,15,20-tetra(3-carboxyphenyl)porphyrin (m-ZnTCPP) dye-sensitized NiO nanoparticles by correlating single-molecule fluorescence blinking dynamics with charge transfer dynamics using single-molecule photon-stamping spectroscopy. The correlated analyses of single-molecule fluorescence intensity, lifetime, and blinking reveal the intrinsic distribution and temporal fluctuation of interfacial charge transfer reactivity, which are closely related to site-specific molecular interactions and dynamics.

  20. Potential beneficial effects of electron-hole plasmas created in silicon sensors by XFEL-like high intensity pulses for detector development

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Joel T.; Becker, Julian; Shanks, Katherine S.; Philipp, Hugh T.; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    There is a compelling need for a high frame rate imaging detector with a wide dynamic range, from single x-rays/pixel/pulse to >10{sup 6} x-rays/pixel/pulse, that is capable of operating at both x-ray free electron laser (XFEL) and 3rd generation sources with sustained fluxes of > 10{sup 11} x-rays/pixel/s [1, 2, 3]. We propose to meet these requirements with the High Dynamic Range Pixel Array Detector (HDR-PAD) by (a) increasing the speed of charge removal strategies [4], (b) increasing integrator range by implementing adaptive gain [5], and (c) exploiting the extended charge collection times of electron-hole pair plasma clouds that form when a sufficiently large number of x-rays are absorbed in a detector sensor in a short period of time [6]. We have developed a measurement platform similar to the one used in [6] to study the effects of high electron-hole densities in silicon sensors using optical lasers to emulate the conditions found at XFELs. Characterizations of the employed tunable wavelength laser with picosecond pulse duration have shown Gaussian focal spots sizes of 6 ± 1 µm rms over the relevant spectrum and 2 to 3 orders of magnitude increase in available intensity compared to previous measurements presented in [6]. Results from measurements on a typical pixelated silicon diode intended for use with the HDR-PAD (150 µm pixel size, 500 µm thick sensor) are presented.

  1. Addressing electron-hole correlation in core excitations of solids: An all-electron many-body approach from first principles

    Science.gov (United States)

    Vorwerk, Christian; Cocchi, Caterina; Draxl, Claudia

    2017-04-01

    We present an ab initio study of core excitations of solid-state materials focusing on the role of electron-hole correlation. In the framework of an all-electron implementation of many-body perturbation theory into the exciting code, we investigate three different absorption edges of three materials, spanning a broad energy window, with transition energies between a few hundred to thousands of eV. Specifically, we consider excitations from the Ti K edge in rutile and anatase TiO2, from the Pb M4 edge in PbI2, and from the Ca L2 ,3 edge in CaO. We show that the electron-hole attraction rules x-ray absorption for deep core states when local fields play a minor role. On the other hand, the local-field effects introduced by the exchange interaction between the excited electron and the hole dominate excitation processes from shallower core levels, separated by a spin-orbit splitting of a few eV. Our approach yields absorption spectra in good agreement with available experimental data and allows for an in-depth analysis of the results, revealing the electronic contributions to the excitations, as well as their spatial distribution.

  2. First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector

    Science.gov (United States)

    Lawal, Abdullahi; Shaari, A.; Ahmed, R.; Jarkoni, Norshila

    2017-09-01

    Bismuth telluride (Bi2Te3), a layered compound with narrow band gap has been potentially reported for thermoelectric. However, strong light interaction of Bi2Te3 is an exciting feature to emerge it as a promising candidate for optoelectronic applications within broadband wavelengths. In this study, we investigate structural, electronic and optical properties of Bi2Te3 topological insulator using combination of density functional theory (DFT) and many-body perturbation theory (MBPT) approach. With the inclusion of van der Waals (vdW) correction in addition to PBE, the lattice parameters and interlayer distance are in good agreement with experimental results. Furthermore, for the precise prediction of fundamental band gap, we go beyond DFT and calculated band structure using one-shot GW approach. Interestingly, our calculated quasiparticle (QP) band gap, Eg of 0.169 eV, is in good agreement with experimental measurements. Taken into account the effects of electron-hole interaction by solving Bethe-Salpeter equation, the calculated optical properties, namely, imaginary and real parts of complex dielectric function, absorption coefficient, refractive index, reflectivity, extinction coefficient, electron energy loss function and optical conductivity all are in better agreement with available experimental results. Consistencies of our findings with experimental data validate the effectiveness of electron-hole interaction for theoretical investigation of optical properties.

  3. The development of strategy for obtaining single-chain recombinant antibodies against cell-surface biomarkers on the example of human CD34

    Directory of Open Access Journals (Sweden)

    Tsapenko M. V.

    2010-10-01

    Full Text Available Antibodies against cell-surface proteins play an important role in cell detection, separation and determination of differentiation stage. The globular structure of extracellular region of cell-surface antigens is frequently characterized by heavily glycosilation and/or is stabilized by disulphide bonds. In this case the obtaining of antibodies against such proteins is a substantive problem. Aim. The development of strategy for obtaining recombinant antibodies against cell-surface biomarkers. Methods. The research strategy is based on the construction of cDNA library of VH and VL genes of animals, immunized with recombinant antigen, and subsequent cell-based biopanning for the library enrichment with desired phage clones. High-throughput automated systems were used for the detection and isolation of antigen-specific clones. Results. We have obtained a panel of five antibodies that recognize an antigen on CD34+ cell surface using the methods of immunocytochemistry and flow cytometry. Conclusions. The proposed strategy may be used for obtaining antibodies against cell-surface antigens

  4. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    Science.gov (United States)

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Characterization of a quadrant diamond transmission X-ray detector including a precise determination of the mean electron-hole pair creation energy.

    Science.gov (United States)

    Keister, Jeffrey W; Cibik, Levent; Schreiber, Swenja; Krumrey, Michael

    2018-03-01

    Precise monitoring of the incoming photon flux is crucial for many experiments using synchrotron radiation. For photon energies above a few keV, thin semiconductor photodiodes can be operated in transmission for this purpose. Diamond is a particularly attractive material as a result of its low absorption. The responsivity of a state-of-the art diamond quadrant transmission detector has been determined, with relative uncertainties below 1% by direct calibration against an electrical substitution radiometer. From these data and the measured transmittance, the thickness of the involved layers as well as the mean electron-hole pair creation energy were determined, the latter with an unprecedented relative uncertainty of 1%. The linearity and X-ray scattering properties of the device are also described.

  6. Structural transformations in silicon under exposure by femtosecond laser pulse: role of electron-hole plasma and phonon-phonon anharmonism

    CERN Document Server

    Kudryashov, S I

    2002-01-01

    It is experimentally shown for the first time that by the effect of the feed-up laser pulse of 100 fs duration on the silicon target the consecutive structural transitions of the substance into the new crystalline and liquid metallic phase occur both during the laser pulse feed-up and after 0.1-10 sup 3 ps, depending on the material excitation conditions. The thresholds of the observed structural transitions are determined and the phonon nodes, responsible for therefore, are identified. The structural transitions dynamics in the silicon by the 01.-10 sup 3 ps times is described within the frames of the model of the phonon modes instability, originating due to the plasma electron-hole effect and also due to the intra- and intermode phonon-phonon anharmonic interactions

  7. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  8. Non-adiabatic effects in elementary reaction processes at metal surfaces

    Science.gov (United States)

    Alducin, M.; Díez Muiño, R.; Juaristi, J. I.

    2017-12-01

    Great success has been achieved in the modeling of gas-surface elementary processes by the use of the Born-Oppenheimer approximation. However, in metal surfaces low energy electronic excitations are generated even by thermal and hyperthermal molecules due to the absence of band gaps in the electronic structure. This shows the importance of performing dynamical simulations that incorporate non-adiabatic effects to analyze in which way they affect most common gas-surface reactions. Here we review recent theoretical developments in this problem and their application to the study of the effect of electronic excitations in the adsorption and relaxation of atoms and molecules in metal surfaces, in scattering processes, and also in recombinative processes between impinging atoms and adsorbates at the surface. All these studies serve us to establish what properties of the gas-surface interaction favor the excitation of low-energy electron-hole pairs. A general observation is that the nature of these excitations usually requires long lasting interactions at the surface in order to observe deviations from the adiabatic behaviour. We also provide the basis of the local density friction approximation (LDFA) that have been used in all these studies, and show how it has been employed to perform ab initio molecular dynamics with electronic friction (AIMDEF). As a final remark, we will shortly review on recent applications of the LDFA to successfully simulate desorption processes induced by intense femtosecond laser pulses.

  9. Study on interactions of human IgG with immobilized anti-IgG or recombinant Staphylococcal protein A using surface plasmon resonance spectrometry

    Directory of Open Access Journals (Sweden)

    Bakhmachuk A. O.

    2016-02-01

    Full Text Available Aim. Comparison of the IgG-binding activity of recombinant Staphylococcal protein A with introduced C-terminal cysteine residue (SPA-Cys or goat anti-human IgG antibodies (anti-IgG after their immobilization on a gold sensor surface of surface plasmon resonance (SPR spectrometer. Methods. SPA-Cys or anti-IgG were immobilized on a gold sensor surface to form two variants of a bioselective element of the immunosensor. SPR spectrometry was used for the detection of IgG-binding activity of the immobilized proteins. Results.The SPR sensor response to the immobilization of anti-IgG was more than two times higher than that at the immobilization of SPA-Cys. However, there is almost the double advantage for SPA-Cys in the number of immobilized molecules. Moreover, the bioselective element of the immunosensor based on SPA-Cys showed a much better capability of binding Ig than bioselective element based on anti-IgG. Conclusions.The study on the immobilization of SPA-Cys or anti-IgG on the sensor surface of SPR spectrometer, and the interactions of immobilized proteins with human IgG demonstrated obvious advantages of SPA-Cys.

  10. Suppression of auger recombination in ""giant"" core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Santamaria, Florencio [Los Alamos National Laboratory; Vela, Javier [Los Alamos National Laboratory; Schaller, Richard D [Los Alamos National Laboratory; Hollingsworth, Jennifer A [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Chen, Yongfen [NON LANL

    2009-01-01

    Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ('blinking') of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has been a longstanding goal in colloidal nanocrystal research. Here, we demonstrate that such suppression is possible using so-called 'giant' nanocrystals that consist of a small CdSe core and a thick CdS shell. These nanostructures exhibit a very long biexciton lifetime ({approx}10 ns) that is likely dominated by radiative decay instead of non-radiative Auger recombination. As a result of suppressed Auger recombination, even high-order multiexcitons exhibit high emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 me V) and record low excitation thresholds.

  11. The promastigote surface antigen gene family of the Leishmania parasite : differential evolution by positive selection and recombination - art. no. 292

    OpenAIRE

    Devault, A.; Banuls, Anne-Laure

    2008-01-01

    Background: PSA (promastigote surface antigen) is one of the major classes of membrane proteins present at the surface of the parasitic protozoan Leishmania. While it harbours leucine rich repeats, which are suggestive of its involvement in parasite-to-host physical interactions, its exact role is largely unknown. Furthermore, the extent of diversity of this gene family, both in copy number and sequence has not been established. Results: From the newly available complete genome sequences of L...

  12. Experimental Observation of Quantum Confinement Effect in and Silicon Nanowire Field-Effect Transistors and Single-Electron/Hole Transistors Operating at Room Temperature

    Science.gov (United States)

    Suzuki, Ryota; Nozue, Motoki; Saraya, Takuya; Hiramoto, Toshiro

    2013-10-01

    The quantum confinement effect (QCE) in ultranarrow silicon nanowire channel field-effect transistors (FETs) as well as single-electron/hole transistors (SET/SHTs) operating at room temperature is intensively investigated for the optimization of device design and fabrication. By adopting a “shared channel” structure with the directions of and , a carrier-dependent QCE is systematically examined. It is found that nanowire pFETs exhibit a smaller threshold voltage (Vth) variability due to a weaker QCE, while nFETs and n/pFETs show comparable Vth variabilities coming from the QCE. It is also found that only SETs exhibit clear Coulomb oscillations in the case of the channel, suggesting the formation of higher tunnel barriers than SHTs. On the other hand, SHTs show undesirable multidot behavior in spite of their comparable QCEs for electrons and holes. It is concluded that -directed nanowire channel SETs and n/pFETs are suitable for the integration of CMOS and SETs.

  13. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin; Xu, Bingqian, E-mail: bxu@engr.uga.edu [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); Lou, Zhichao [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhang, Haiqian [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-03-21

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  14. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Science.gov (United States)

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-01

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  15. Immunogenicity and in vitro and in vivo protective effects of antibodies targeting a recombinant form of the Streptococcus mutans P1 surface protein.

    Science.gov (United States)

    Batista, Milene Tavares; Souza, Renata D; Ferreira, Ewerton L; Robinette, Rebekah; Crowley, Paula J; Rodrigues, Juliana F; Brady, L Jeannine; Ferreira, Luís C S; Ferreira, Rita C C

    2014-12-01

    Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P1(39-512)), produced in Bacillus subtilis and encompassing a functional domain, induces antibodies that recognize the native protein and interfere with S. mutans adhesion in vitro. In the present study, we further investigated the immunological features of P1(39-512) in combination with the following different adjuvants after parenteral administration to mice: alum, a derivative of the heat-labile toxin (LT), and the phase 1 flagellin of S. Typhimurium LT2 (FliCi). Our results demonstrated that recombinant P1(39-512) preserves relevant conformational epitopes as well as salivary agglutinin (SAG)-binding activity. Coadministration of adjuvants enhanced anti-P1 serum antibody responses and affected both epitope specificity and immunoglobulin subclass switching. Importantly, P1(39-512)-specific antibodies raised in mice immunized with adjuvants showed significantly increased inhibition of S. mutans adhesion to SAG, with less of an effect on SAG-mediated bacterial aggregation, an innate defense mechanism. Oral colonization of mice by S. mutans was impaired in the presence of anti-P1(39-512) antibodies, particularly those raised in combination with adjuvants. In conclusion, our results confirm the utility of P1(39-512) as a potential candidate for the development of anticaries vaccines and as a tool for functional studies of S. mutans P1. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Recombinant forms of Leishmania amazonensis excreted/secreted promastigote surface antigen (PSA) induce protective immune responses in dogs

    OpenAIRE

    Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel

    2016-01-01

    International audience; Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), fr...

  17. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis.

    Science.gov (United States)

    Rintahaka, Johanna; Yu, Xia; Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  18. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley–Read–Hall recombination

    KAUST Repository

    Zhao, Chao

    2015-07-24

    We present a detailed study on the effects of dangling bond passivation and the comparison of different sulfides passivation process on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency, and higher peak efficiency. Our results highlighted the research opportunity in employing this technique for further design and realization of high performance NW-LEDs and NW-lasers.

  19. Isolation of recombinant Hepatitis B surface antigen with antibody-conjugated superparamagnetic Fe3O4/SiO2core-shell nanoparticles.

    Science.gov (United States)

    Mostafaei, Mehdi; Hosseini, Seyed Nezamedin; Khatami, Maryam; Javidanbardan, Amin; Sepahy, Abbas Akhavan; Asadi, Ebadullah

    2018-05-01

    In the production process of recombinant Hepatitis B surface antigen (rHBsAg) various separation techniques are used to purify this virus-like particle (VLP). In this study, we developed antibody-conjugated super-paramagnetic Fe 3 O 4 /SiO 2 core-shell nanoparticles as a highly selective method for isolation of expressed rHBsAg in yeast Pichia pastoris. For this purpose, first, iron oxide magnetic nanoparticles (MNP s ) were prepared by co-precipitation method in alkali media and coated with silica. Then the surface was activated by amine groups and conjugated with oxidized antibodies. X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) were used to study the physical properties of MNPs. To evaluate the efficacy of these MNPs as a purification technique successfully synthesized MNPs were added to the rHBsAg sample to couple with the antigen and then be isolated based on their magnetic property. In the present research, in the optimum condition, we could isolate 65% of total rHBsAg from the final vaccine sample with purity above 95%. In this procedure, the maximum obtained specific yield (mg HBsAg/mg MNPs) was equal to 37.6. These results underline the potential application of the immune-magnetic separation (IMS) in the future bioseparation systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2015-09-14

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  1. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    International Nuclear Information System (INIS)

    Kuznetsov, A. P.; Buzinskij, O. I.; Gubsky, K. L.; Nikitina, E. A.; Savchenkov, A. V.; Tarasov, B. A.; Tugarinov, S. N.

    2015-01-01

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxide films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements

  2. Interpretation of EIS data on passive steel surfaces in aqueous sulfuric acid solution in terms of carrier migration and recombination

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Gabor; Kerner, Zsolt; Schiller, Robert [Central Research Institute for Physics, Atomic Energy Research Institute, P.O.B. 49, Budapest H-1525 (Hungary)

    2007-12-31

    A model is proposed for the description of the interplay of charge carrier migration, effected by external voltage and combination within very thin passive oxide layers. This theory is used to describe the electrochemical impedance spectra of passive stainless steel in sulfuric acid, a prototype of such surfaces. A simple R{sub s}-Z{sub mr} vertical stroke vertical stroke R{sub p} circuit is considered with Z{sub mr} accounting for dispersion and R{sub p} for the Faraday process. Z{sub mr} is based on a continuous time random walk (CTRW) expression and it is seen to be independent of voltage. R{sub p} shows a strong voltage dependence which can be understood in the negative voltage range as a Butler-Volmer-Erdey-Gruz process, whereas in the positive range it can be described in terms of tunneling across the oxide. Curve fitting results in parameters characteristic to oxide structure and process kinetics. All fitted quantities are seen to be realistic with the exception of charge carrier density which turned out to be much too high, indicating that mobility might not obey the classical, frequency-independent law. (author)

  3. ELISA detection of IgG antibody against a recombinant major surface antigen (Nc-p43) fragment of Neospora caninum in bovine sera

    Science.gov (United States)

    Ahn, Hye-Jin; Kim, Sera; Kim, Dae-Yong

    2003-01-01

    An ELISA was established to measure bovine IgG directed against the recombinant antigenic determinant of Nc-p43, a major surface antigen of Neospora caninum. In a previous study, two thirds of the C-terminal of the molecule was expressed as a 6 × His tagged protein (Ncp43P) for ELISA using 2/3 of the N-terminal of SAG1 from Toxoplasma gondii as a control (TgSAG1A). Among 852 cattle sera collected from stock farms scattered nation-wide, 103 sera (12.1%) were found to react with Ncp43P positively, but no positive reaction was observed with TgSAG1A. This study shows that Ncp43P could be available as an efficient antigen for the diagnosis of neosporosis in cattle. Furthermore, it together with TgSAG1A, could be useful for the differential diagnosis of N. caninum and T. gondii infections in other mammals. PMID:12972732

  4. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    National Research Council Canada - National Science Library

    Angov, Evelina

    2000-01-01

    .... Since antibody is likely the effector mechanism induced by MSP-(42), it is important to insure that recombinant vaccines based upon this antigen be folded correctly and contain T-helper epitopes that will enhance induction of humoral responses...

  5. Optical Measurement Techniques of Recombination Lifetime Based on the Free Carriers Absorption Effect

    Directory of Open Access Journals (Sweden)

    Martina De Laurentis

    2014-01-01

    Full Text Available We review successful measurement techniques for the evaluation of the recombination properties in semiconductor materials based on the optically induced free carrier absorption. All the methodologies presented share the common feature of exploiting a laser beam to excite electron-hole pairs within the volume of the sample under investigation, while the probing methods can vary according to the different methodology analyzed. As recombination properties are of paramount importance in determining the properties of semiconductor devices (i.e, bipolar transistor gain, power devices switching features, and solar cells efficiency, their knowledge allows for better understanding of experimental results and robust TCAD simulator calibration. Being contactless and applicable without any particular preparation of the sample under investigation, they have been considered attractive to monitor these parameters inline or just after production of many different semiconductor devices.

  6. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.

    Science.gov (United States)

    Li, Xianglin; Bassi, Prince Saurabh; Boix, Pablo P; Fang, Yanan; Wong, Lydia Helena

    2015-08-12

    Ultrathin TiO2 is deposited on conventional hydrothermal grown hematite nanorod arrays by atomic layer deposition (ALD). Significant photoelectrochemical water oxidation performance improvement is observed when the ALD TiO2-treated samples are annealed at 650 °C or higher temperatures. The electrochemical impedance spectroscopy (EIS) study shows a surface trap-mediated charge transfer process exists at the hematite-electrolyte interface. Thus, one possible reason for the improvement could be the increased surface states at the hematite surface, which leads to better charge separation, less electron-hole recombination, and hence, greater improvement of photocurrent. Our Raman study shows the increase in surface defects on the ALD TiO2-coated hematite sample after being annealed at 650 °C or higher temperatures. A photocurrent of 1.9 mA cm(-2) at 1.23 V (vs RHE) with a maximum of 2.5 mA cm(-2) at 1.8 V (vs RHE) in 1 M NaOH under AM 1.5 simulated solar illumination is achieved in optimized deposition and annealing conditions.

  7. Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences.

    Science.gov (United States)

    Carvalho, Rimenys Junior; Cabrera-Crespo, Joaquin; Tanizaki, Martha Massako; Gonçalves, Viviane Maimoni

    2012-05-01

    Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.

  8. Disappearance of electron-hole asymmetry in nanoparticles of Nd1−xCaxMnO3(x=0.6,0.4): magnetization and electron paramagnetic resonance evidence

    International Nuclear Information System (INIS)

    Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd 1−x Ca x MnO 3 in hole doped (x=0.4;NCMOH) and electron doped (x=0.6;NCMOE) samples. NCMOH in bulk form shows a complex temperature dependence of magnetization M(T), with a charge ordering transition at ∼250 K, an antiferromagnetic (AFM) transition at ∼150 K, and a transition to a canted AFM phase/mixed phase at ∼80 K. Bulk NCMOE behaves quite differently with just a charge ordering transition at ∼280 K, thus providing a striking example of the so called electron-hole asymmetry. While our magnetization data on bulk samples are consistent with the earlier reports, the new results on the nanoparticles bring out drastic effects of size reduction. They show that M(T) behaviors of the two nanosamples are essentially similar in addition to the absence of the charge order in them thus providing strong evidence for vanishing of the electron-hole asymmetry in nanomanganites. This conclusion is further corroborated by electron paramagnetic resonance studies which show that the large difference in the “g” values and their temperature dependences found for the two bulk samples disappears as they approach a common behavior in the corresponding nanosamples

  9. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    National Research Council Canada - National Science Library

    Angov, Evelina

    2000-01-01

    .... However, it appears to lack T-helper epitopes. Since antibody is likely the effector mechanism induced by MSP1-19, it is important to insure that recombinant vaccines based on this antigen be folded correctly and contain T-helper epitopes...

  10. Surface modification and multiple exciton generation studies of lead(II) sulfide nanoparticles

    Science.gov (United States)

    Zemke, Jennifer M.

    2011-12-01

    Solar energy is a green alternative to fossil fuels but solar technologies to date have been plagued by low conversion efficiencies and high input costs making solar power inaccessible to much of the developing world. Semiconductor nanoparticles (NPs) may provide a route to efficient, economical solar devices through a phenomenon called multiple exciton generation (MEG). Through MEG, semiconductor NPs use a high-energy input photon to create more than one exciton (electron-hole pair) per photon absorbed, thereby exhibiting large photoconversion efficiencies. While MEG has been studied in many NP systems, and we understand some of the factors that affect MEG, a rigorous analysis of the NP-ligand interface with respect to MEG is missing. This dissertation describes how the NP ligand shell directly affects MEG and subsequent charge carrier recombination. Chapter I describes the motivation for studying MEG with respect to NP surface chemistry. Chapter II provides an in-depth overview of the transient absorption experiment used to measure MEG in the NP samples. Chapter III highlights the effect of oleic acid and sodium 2, 3-dimercaptopropane sulfonate on MEG in PbS NPs. The differences in carrier recombination were accounted for by two differences between these ligands: the coordinating atom and/or the secondary structure of the ligand. Because of these hypotheses, experiments were designed to elucidate the origin of these effects by controlling the NP ligand shell. Chapter IV details a viable synthetic route to thiol and amine-capped PbS NPs using sodium 3-mercaptopropane sulfonate as an intermediate ligand. With the versatile ligand exchange described in Chapter IV, the MEG yield and carrier recombination was investigated for ligands with varying headgroups but the same secondary structure. The correlation of ligand donor atom to MEG is outlined in Chapter V. Finally, Chapter VI discusses the conclusions and future outlook of the research reported in this dissertation

  11. Recombination kinetics of photogenerated electrons in InGaAs/InP quantum wells

    Science.gov (United States)

    Tito, M. A.; Pusep, Yu. A.; Gold, A.; Teodoro, M. D.; Marques, G. E.; LaPierre, R. R.

    2016-03-01

    The electron transport and recombination processes of photoexcited electron-hole pairs were studied in InGaAs/InP single quantum wells. Comprehensive transport data analysis reveals a asymmetric shape of the quantum well potential where the electron mobility was found to be dominated by interface-roughness scattering. The low-temperature time-resolved photoluminescence was employed to investigate recombination kinetics of photogenerated electrons. Remarkable modification of Auger recombination was observed with variation of the electron mobility. In high mobility quantum wells, the increasing pump power resulted in a new and unexpected phenomenon: a considerably enhanced Auger non-radiative recombination time. We propose that the distribution of the photoexcited electrons over different conduction band valleys might account for this effect. In low mobility quantum wells, disorder-induced relaxation of the momentum conservation rule causes inter-valley transitions to be insignificant; as a consequence, the non-radiative recombination time is reduced with the increase in pump power. Thus, interface-roughness scattering was found responsible for both transport properties and dynamic optical response in InGaAs/InP quantum wells.

  12. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  13. Research and development of photovoltaic power system. Characterization and control of surface/interface recombination velocity of crystalline silicon thin films; Taiyoko hatsuden system no kenkyu kaihatsu. Silicon kessho usumaku ni okeru hyomen kaimen saiketsugo sokudo no hyoka to seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H. [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on characterization and control of surface/interface recombination velocity of crystalline silicon thin films. To optimize design and manufacture of solar cells, it is necessary to identify correctly resistance factor (or doping) of bulk of materials, bulk minority carrier life, and recombination velocity on surface, passivation interface and electrode interface. A group in the Hokkaido University has been working since a few years ago on development of non-contact and non-destructive photo-luminescence surface level spectroscopy (PLS{sup 3}). A new non-contact C-V method was also introduced. Using these methods, basic discussions were given on possibility of separate measurements on surface/interface and bulk characteristics of solar cell materials. The PLS{sup 3} method and the non-contact C-V method were used for experimental discussions on evaluation of silicon mono-crystalline and poly-crystalline materials. Discussions were given on separate evaluations by using the DLTS method. 10 figs., 2 tabs.

  14. Ultramicroscopic observation of recombinant adenoassociated virus ...

    African Journals Online (AJOL)

    Ultramicroscopic observation of recombinant adenoassociated virus type 2 on the surface of formvarcarbon coated copper grids under different relative humidity and incubation time using negative stain transmission electron microscopy.

  15. Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface

    International Nuclear Information System (INIS)

    Gupta, Vinod K.; Jain, Rajeev; Nayak, Arunima; Agarwal, Shilpi; Shrivastava, Meenakshi

    2011-01-01

    The removal of the dye-tartrazine by photodegradation has been investigated using titanium dioxide surface as photocatalyst under UV light. The process was carried out at different pH, catalyst dose, dye concentration and effects of the electron acceptor H 2 O 2 . It was found that under the influence of TiO 2 as catalyst, the colored solution of the dye became colorless and the process followed a pseudo first order kinetics. The optimum conditions for the degradation of dye were 6 x 10 -5 M dye concentration, pH of 11, and 0.18 mg/L of catalyst dose. In order to evaluate the effect of electron acceptor, the effect of H 2 O 2 on the degradation process was also monitored and it was found that the hydroxyl radical formation and retardation of electron-hole recombination took place simultaneously. The adsorption studies of tartrazine at various dose of TiO 2 followed the Langmuir isotherm trend. In order to determine the quality of waste water, Chemical Oxygen Demand (COD) measurements were carried out both before and after the treatment and a significant decrease in the values was observed, implying good potential of this technique to remove tartrazine dye from aqueous solutions. Research highlights: →Degradation efficiency increases with increase in catalyst concentration. →Adsorption of tartrazine on TiO 2 followed the Langmuir isotherm. →The photocatalytic kinetics follows first order.

  16. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO(2):Zn2+ nanocrystals.

    Science.gov (United States)

    Li, Liping; Liu, Junjie; Su, Yiguo; Li, Guangshe; Chen, Xiaobo; Qiu, Xiaoqing; Yan, Tingjiang

    2009-04-15

    Highly crystalline SnO(2) nanocrystals with and without Zn(2+) doping were directly prepared by a solvothermal method. By systematic characterizations using x-ray diffraction, transmission electron microscopy, infrared spectra, and UV-vis spectra, it is demonstrated that all samples crystallized in a single phase of rutile structure, and that upon Zn(2+) doping particle sizes closer to the exciton Bohr radius (2.7 nm) of SnO(2) were achieved, while the particle size of SnO(2) nanoparticles was as large as about 12 nm without Zn(2+) doping. The smaller particle sizes for Zn(2+) doped nanoparticles had led to a lattice expansion, a blue-shift of the surface phonon mode for the anti-symmetric Sn-O stretching vibration, and a significantly narrowed band-gap energy, opposite to what is theoretically predicted by the quantum size effect. The photocatalytic activity of the doped samples is measured by monitoring the degradation of methylene blue dye in an aqueous solution under UV-radiation exposure. It is found that Zn(2+) doped SnO(2) showed excellent activity toward photodegradation of methylene blue solution under UV light irradiation. These observations were interpreted in terms of the Zn(2+) doping at the surface sites of SnO(2) nanoparticles and the relevant defects that have increased the surface active sites and moreover improved the ratio of surface charge carrier transfer rate to the electron-hole recombination rate. These results illustrate the potential of rationally modifying the particle size and surface defect characteristics for novel semiconductor oxide photocatalysts.

  17. Recombinant protein production technology

    Science.gov (United States)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  18. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival.

    OpenAIRE

    Lopez, A F; Williamson, D J; Gamble, J R; Begley, C G; Harlan, J M; Klebanoff, S J; Waltersdorph, A; Wong, G; Clark, S C; Vadas, M A

    1986-01-01

    A purified recombinant human granulocyte-macrophage colony stimulating factor (rH GM-CSF) was a powerful stimulator of mature human eosinophils and neutrophils. The purified rH GM-CSF enhanced the cytotoxic activity of neutrophils and eosinophils against antibody-coated targets, stimulated phagocytosis of serum-opsonized yeast by both cell types in a dose-dependent manner, and stimulated neutrophil-mediated iodination in the presence of zymosan. In addition, rH GM-CSF enhanced N-formylmethion...

  19. Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: a two-step dissociation mechanism

    International Nuclear Information System (INIS)

    Offermans, Ton; Meskers, Stefan C.J.; Janssen, Rene A.J.

    2005-01-01

    The Monte-Carlo simulations are used to investigate the dissociation of a Coulomb correlated charge pair at an idealized interface between an electron accepting and an electron donating molecular material. In the simulations the materials are represented by cubic lattices of sites, with site the energies spread according to Gaussian distributions. The influence of temperature, applied external fields, and the width of the Gaussian densities of states distribution for both the electron and the hole transporting material are investigated. The results show that the dissociation of geminate charge pairs is assisted by disorder and the results can be understood in terms of a two-step model. In the first step, the slow carrier in the most disordered material jumps away from the interface. In the following, second step, the reduced Coulombic attraction allows the faster carrier in the less disordered material to escape from the interface by thermally activated hopping. When the rate for geminate recombination at the interface is very low ( -1 ) the simulations predict a high yield for carrier collection, as observed experimentally. Comparison of the simulated and experimentally observed temperature dependence of the collection efficiency indicates that at low temperature dissociation of the geminate charge pairs may be one of the factors limiting the device performance

  20. Oral immunization of a non-recombinant Lactococcus lactis surface displaying influenza hemagglutinin 1 (HA1 induces mucosal immunity in mice.

    Directory of Open Access Journals (Sweden)

    Pui-Fong Jee

    Full Text Available Mucosal immunization of influenza vaccine is potentially an effective approach for the prevention and control of influenza. The objective of the present study was to evaluate the ability of oral immunization with a non-recombinant Lactococcus lactis displaying HA1/L/AcmA recombinant protein, LL-HA1/L/AcmA, to induce mucosal immune responses and to accord protection against influenza virus infection in mice. The LL-HA1/L/AcmA was orally administered into mice and the immune response was evaluated. Mice immunized with LL-HA1/L/AcmA developed detectable specific sIgA in faecal extract, small intestine wash, BAL fluid and nasal fluid. The results obtained demonstrated that oral immunization of mice with LL-HA1/L/AcmA elicited mucosal immunity in both the gastrointestinal tract and the respiratory tract. The protective efficacy of LL-HA1/L/AcmA in immunized mice against a lethal dose challenge with influenza virus was also assessed. Upon challenge, the non-immunized group of mice showed high susceptibility to influenza virus infection. In contrast, 7/8 of mice orally immunized with LL-HA1/L/AcmA survived. In conclusion, oral administration of LL-HA1/L/AcmA in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. These results highlight the potential application of L. lactis as a platform for delivery of influenza virus vaccine.

  1. Maturation of dendritic cells by recombinant human CD40L-trimer leads to a homogeneous cell population with enhanced surface marker expression and increased cytokine production

    DEFF Research Database (Denmark)

    Würtzen, P A; Nissen, Mogens Holst; Claesson, M H

    2001-01-01

    -cell activating capacity of the DC. We studied DC phenotype and cytokine production as well as the T-cell proliferation and cytotoxic T lympocyte (CTL) activation induced by DC generated in vitro. In addition, the effect of exposure to recombinant human CD40L-trimer (huCD40LT) on these parameters was investigated...... enhanced by exposure to huCD40LT even compared to TNF-alpha exposure. Only a moderate cytokine production was observed initially, while TNF-alpha addition or CD40 triggering, especially, induced enhanced production of IL-6 and IL-12 p40. Surprisingly, comparable induction of T-cell proliferation by a DC......Dendritic cells (DC) have been shown to be potent inducers of specific cytotoxic T-cell responses both in vivo and in vitro. Furthermore, exposure to cytokines such as tumour necrosis factor (TNF)-alpha or CD40 triggering changes DC phenotype and cytokine production and may enhance the T...

  2. Maturation of dendritic cells by recombinant human CD40L-trimer leads to a homogeneous cell population with enhanced surface marker expression and increased cytokine production

    DEFF Research Database (Denmark)

    Würtzen, P A; Nissen, Mogens Holst; Claesson, M H

    2001-01-01

    Dendritic cells (DC) have been shown to be potent inducers of specific cytotoxic T-cell responses both in vivo and in vitro. Furthermore, exposure to cytokines such as tumour necrosis factor (TNF)-alpha or CD40 triggering changes DC phenotype and cytokine production and may enhance the T-cell act...... marker expression and high production of pro-inflammatory cytokines. In addition, the induction of responses to allo or recall antigens presented by huCD40LT maturated DC was comparable to the responses obtained with the DC maturated through TNF-alpha exposure.......Dendritic cells (DC) have been shown to be potent inducers of specific cytotoxic T-cell responses both in vivo and in vitro. Furthermore, exposure to cytokines such as tumour necrosis factor (TNF)-alpha or CD40 triggering changes DC phenotype and cytokine production and may enhance the T......-cell activating capacity of the DC. We studied DC phenotype and cytokine production as well as the T-cell proliferation and cytotoxic T lympocyte (CTL) activation induced by DC generated in vitro. In addition, the effect of exposure to recombinant human CD40L-trimer (huCD40LT) on these parameters was investigated...

  3. The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Brennan, Thomas P; Bakke, Jonathan R; Ding, I-Kang; Hardin, Brian E; Nguyen, William H; Mondal, Rajib; Bailie, Colin D; Margulis, George Y; Hoke, Eric T; Sellinger, Alan; McGehee, Michael D; Bent, Stacey F

    2012-09-21

    Atomic layer deposition (ALD) was used to fabricate Al(2)O(3) recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al(2)O(3) recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO(2) active layer and the HTM spiro-OMeTAD. The impact of Al(2)O(3) barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl(4) surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al(2)O(3) deposition. However, only when the TiCl(4) treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al(2)O(3) ALD and the TiCl(4) surface treatment whereas the insulating properties of Al(2)O(3) hinder charge injection and lead to current loss in TiCl(4)-treated devices. The impact of Al(2)O(3) barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al(2)O(3) growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems.

  4. The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells

    KAUST Repository

    Brennan, Thomas P.

    2012-01-01

    Atomic layer deposition (ALD) was used to fabricate Al 2O 3 recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al 2O 3 recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO 2 active layer and the HTM spiro-OMeTAD. The impact of Al 2O 3 barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl 4 surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al 2O 3 deposition. However, only when the TiCl 4 treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al 2O 3 ALD and the TiCl 4 surface treatment whereas the insulating properties of Al 2O 3 hinder charge injection and lead to current loss in TiCl 4-treated devices. The impact of Al 2O 3 barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al 2O 3 growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems. © This journal is the Owner Societies 2012.

  5. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    Science.gov (United States)

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  6. The promastigote surface antigen gene family of the Leishmania parasite: differential evolution by positive selection and recombination

    OpenAIRE

    Bañuls Anne-Laure; Devault Alain

    2008-01-01

    Abstract Background PSA (promastigote surface antigen) is one of the major classes of membrane proteins present at the surface of the parasitic protozoan Leishmania. While it harbours leucine rich repeats, which are suggestive of its involvement in parasite-to-host physical interactions, its exact role is largely unknown. Furthermore, the extent of diversity of this gene family, both in copy number and sequence has not been established. Results From the newly available complete genome sequenc...

  7. Recombinant clotting factors.

    Science.gov (United States)

    Pipe, Steven W

    2008-05-01

    The recombinant era for haemophilia began in the early 1980s with the cloning and subsequent expression of functional proteins for both factors VIII and IX. Efficient production of recombinant clotting factors in mammalian cell culture systems required overcoming significant challenges due to the complex post-translational modifications that were integral to their pro-coagulant function. The quick development and commercialization of recombinant clotting factors was, in part, facilitated by the catastrophic impact of viral contamination of plasma-derived clotting factor concentrates at the time. Since their transition into the clinic, the recombinant versions of both factor VIII and IX have proven to be remarkable facsimiles of their plasma-derived counterparts. The broad adoption of recombinant therapy throughout the developed world has significantly increased the supply of clotting factor concentrates and helped advance aggressive therapeutic interventions such as prophylaxis. The development of recombinant VIIa was a further advance bringing a recombinant option to haemophilia patients with inhibitors. Recombinant DNA technology remains the platform to address ongoing challenges in haemophilia care such as reducing the costs of therapy, increasing the availability to the developing world, and improving the functional properties of these proteins. In turn, the ongoing development of new recombinant clotting factor concentrates is providing alternatives for patients with other inherited bleeding disorders.

  8. Temperature variation of non-radiative recombination rate in a-Si:H films

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, C. [Department of Applied Science, Yamaguchi University, Ube 755-8611 (Japan); Morigaki, K. [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku, Hiroshima 731-5193 (Japan); resent address: C-305, 2-12 Wakabadai, Inagi, Tokyo 206-0824 (Japan)

    2012-12-15

    Temperature variation of the recombination rates has been investigated for the electron-hole pairs responsible for defect PL in a defective a-Si:H film as grown. The results are compared with those obtained for a high-quality a-Si:H film after illumination. The results of the nonradiative recombination rate are fitted by a theoretical prediction for the case of strong electron-phonon coupling in the case of the defective a-Si:H film similarly to the case of the illuminated high-quality a-Si:H film. Difference between the frequency of the phonon associated with the non-radiative recombination process in the defective a-Si:H film and that in the illuminated highquality a-Si:H film is discussed by considering the influence of the amorphous network in the a-Si:H films affected by the preparation conditions and the nature of the native and photo-created defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Recombinant gene expression protocols

    National Research Council Canada - National Science Library

    Tuan, Rocky S

    1997-01-01

    .... A fundamental requirement for successful recombinant gene expression is the design of the cloning vector and the choice of the host organism for expression. Recombinant Gene Expression Protocols grows out of the need for a laboratory manual that provides the reader the background and rationale, as well as the practical protocols for the preparation of...

  10. Modulating Excitonic Recombination Effects through One-Step Synthesis of Perovskite Nanoparticles for Light-Emitting Diodes.

    Science.gov (United States)

    Kulkarni, Sneha A; Muduli, Subas; Xing, Guichuan; Yantara, Natalia; Li, Mingjie; Chen, Shi; Sum, Tze Chien; Mathews, Nripan; White, Tim J; Mhaisalkar, Subodh G

    2017-10-09

    The primary advantages of halide perovskites for light-emitting diodes (LEDs) are solution processability, direct band gap, good charge-carrier diffusion lengths, low trap density, and reasonable carrier mobility. The luminescence in 3 D halide perovskite thin films originates from free electron-hole bimolecular recombination. However, the slow bimolecular recombination rate is a fundamental performance limitation. Perovskite nanoparticles could result in improved performance but processability and cumbersome synthetic procedures remain challenges. Herein, these constraints are overcome by tailoring the 3 D perovskite as a near monodisperse nanoparticle film prepared through a one-step in situ deposition method. Replacing methyl ammonium bromide (CH 3 NH 3 Br, MABr) partially by octyl ammonium bromide [CH 3 (CH 2 ) 7 NH 3 Br, OABr] in defined mole ratios in the perovskite precursor proved crucial for the nanoparticle formation. Films consisting of the in situ formed nanoparticles displayed signatures associated with excitonic recombination, rather than that of bimolecular recombination associated with 3 D perovskites. This transition was accompanied by enhanced photoluminescence quantum yield (PLQY≈20.5 % vs. 3.40 %). Perovskite LEDs fabricated from the nanoparticle films exhibit a one order of magnitude improvement in current efficiency and doubling in luminance efficiency. The material processing systematics derived from this study provides the means to control perovskite morphologies through the selection and mixing of appropriate additives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exploring the Association of Surface Plasmon Resonance with Recombinant MHC:Ig Hybrid Protein as a Tool for Detecting T Lymphocytes in Mice Infected with Leishmania (Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Lenilton Silva da Silveira-Júnior

    2017-01-01

    Full Text Available A surface plasmon resonance- (SPR- based recognition method applying H-2 Ld:Ig/peptides complexes for ex vivo monitoring cellular immune responses during murine infection with Leishmania (Leishmania amazonensis is described. Lymphocytes from lesion-draining popliteal lymph nodes were captured on a carboxylated sensor chip surface previously functionalized with H-2 Ld:Ig (DimerX protein bound to synthetic peptides derived from the COOH-terminal region of cysteine proteinase B of L. (L. amazonensis. In computational analysis, these peptides presented values of kinetic constants favorable to form complexes with H-2 Ld at neutral pH, with a Gibbs free energy ΔG°<0. The assayed DimerX:peptide complexes presented the property of attaching to distinct T lymphocytes subsets, obtained from experimentally infected BALB/c mice, in each week of infection, thus indicating a temporal variation in specific T lymphocytes populations, each directed to a different COOH-terminal region-derived peptide. The experimental design proposed herein is an innovative approach for cellular immunology studies of a neglected disease, providing a useful tool for the analysis of specific T lymphocytes subsets.

  12. Study on the surface speciation of Fe-pillared montmorillonite and mechanism of its photocatalytic effect on degradation of ionic dye rhodamine-B

    International Nuclear Information System (INIS)

    Fang, Jimin; Huang, Xiuyan; Zhang, Qian; Chen, Junhong; Wang, Xun

    2016-01-01

    Graphical abstract: - Highlights: • The surface protonation constants of Namt and Femt were obtained. • The content of >FeOH 2 + is correlated with the catalytic decolorization rate for the dye. • The mechanism of >FeOH 2 + for the photocatalytic degradation of rhodamine-B was proposed. - Abstract: The surface protonation constants of Na-montmorillonite (abbreviated as Namt) and Fe-pillared montmorillonite (abbreviated as Femt) were obtained from experimental determination and then fitted with Protfit 2.1 software. The values of pK a1 , pK a2 and N t as well as the iron content of Femt are higher than those of Namt. The surface speciation of the sample presents lagging performance as the pH changes. The adsorption amount and catalytic decolorization rate of Femt for rhodamine-B are higher than that of Namt at the same pH. When the pH value increases, the adsorption amount and catalytic decolorization rate of Femt for rhodamine-B decline. The content of >FeOH 2 + on the surface of Femt is positively correlated with the adsorption amount and catalytic decolorization rate for the dye. The mechanism of >FeOH 2 + for the photocatalytic degradation of rhodamine-B may be interpreted as follows: after >FeOH 2 + effectively captures hydrogen peroxide and photoelectrons in the valence band of >FeOH 2 + , hydroxyl radicals are produced. Hydroxyl radicals are also produced by electron holes on the valence band of >FeOH 2 + absorbing OH–. The interrupted electrostatic field produced by >FeOH 2 + on the surface of Femt can prevent the electron–hole recombination, which improves the catalytic efficiency of the Femt. Rhodamine-B is photocatalytically degraded by hydroxyl radicals.

  13. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  14. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant ...

  15. Influences of process and formulation parameters on powder flow properties and immunogenicity of spray dried polymer particles entrapping recombinant pneumococcal surface protein A.

    Science.gov (United States)

    Anish, Chakkumkal; Upadhyay, Arun K; Sehgal, Devinder; Panda, Amulya Kumar

    2014-05-15

    Particle size, antigen load and its release characteristic are the three the main attributes of polymer particles based vaccine delivery systems. The present studies focus on the formulation of spray dried polylactide microparticles entrapping pneumococcal surface protein A (PspA). Influence of process variables during polymer particle formation were optimized by using half-factorial design. Feed rate and atomization pressure during spray drying were found to be the most important parameters for achieving uniform size particles. Spray drying of preformed particles from different stages of solvent evaporation method resulted in formation of particle having different porosity and protein release profile. Presence of polyvinyl alcohol in the external aqueous phase not only contributed towards regulating the size of particles but also influenced the burst release of protein from particles. Polymer particles entrapping PspA elicited robust IgG responses both in mice and in rats. Antigen load in microparticles correlated with the antibody titer indicating the maintenance of protein integrity during particle formation using spray drying. Both, process engineering and formulation parameters during spray drying influenced the particles in terms of size, load and antigen release characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhanced cell surface expression, immunogenicity and genetic stability resulting from a spontaneous truncation of HIV Env expressed by a recombinant MVA

    International Nuclear Information System (INIS)

    Wyatt, Linda S.; Belyakov, Igor M.; Earl, Patricia L.; Berzofsky, Jay A.; Moss, Bernard

    2008-01-01

    During propagation of modified vaccinia virus Ankara (MVA) encoding HIV 89.6 Env, a few viral foci stained very prominently. Virus cloned from such foci replicated to higher titers than the parent and displayed enhanced genetic stability on passage. Sequence analysis showed a single nucleotide deletion in the 89.6 env gene of the mutant that caused a frame shift and truncation of 115 amino acids from the cytoplasmic domain. The truncated Env was more highly expressed on the cell surface, induced higher antibody responses than the full-length Env, reacted with HIV neutralizing monoclonal antibodies and mediated CD4/co-receptor-dependent fusion. Intramuscular (IM), intradermal (ID) needleless, and intrarectal (IR) catheter inoculations gave comparable serum IgG responses. However, intraoral (IO) needleless injector route gave the highest IgA in lung washings and IR gave the highest IgA and IgG responses in fecal extracts. Induction of CTL responses in the spleens of individual mice as assayed by intracellular cytokine staining was similar with both the full-length and truncated Env constructs. Induction of acute and memory CTL in the spleens of mice immunized with the truncated Env construct by ID, IO, and IR routes was comparable and higher than by the IM route, but only the IR route induced CTL in the gut-associated lymphoid tissue. Thus, truncation of Env enhanced genetic stability as well as serum and mucosal antibody responses, suggesting the desirability of a similar modification in MVA-based candidate HIV vaccines

  17. Essential role of copper in the activity and regular periodicity of a recombinant, tumor-associated, cell surface, growth-related and time-keeping hydroquinone (NADH) oxidase with protein disulfide-thiol interchange activity (ENOX2).

    Science.gov (United States)

    Tang, Xiaoyu; Chueh, P-J; Jiang, Ziying; Layman, Sara; Martin, Berdine; Kim, Chinpal; Morré, Dorothy M; Morré, D James

    2010-10-01

    ECTO-NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit time-keeping and prion-like properties. A bacterially expressed truncated recombinant 46 kDa ENOX2 with full ENOX2 activity bound ca 2 moles copper and 2 moles of zinc per mole of protein. Unfolding of the protein in trifluoroacetic acid in the presence of the copper chelator bathocuproine resulted in reversible loss of both enzymatic activities and of a characteristic pattern in the Amide I to Amide II ratios determined by FTIR with restoration by added copper. The H546-V-H together with His 562 form one copper binding site and H582 represents a second copper site as determined from site-directed mutagenesis. Bound copper emerges as having an essential role in ENOX2 both for enzymatic activity and for the structural changes that underly the periodic alternations in activity that define the time-keeping cycle of the protein.

  18. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  19. Gateway Recombinational Cloning.

    Science.gov (United States)

    Reece-Hoyes, John S; Walhout, Albertha J M

    2018-01-02

    The Gateway recombinatorial cloning system was developed for cloning multiple DNA fragments in parallel (e.g., in 96-well formats) in a standardized manner using the same enzymes. Gateway cloning is based on the highly specific integration and excision reactions of bacteriophage λ into and out of the Escherichia coli genome. Because the sites of recombination (" att " sites) are much longer (25-242 bp) than restriction sites, they are extremely unlikely to occur by chance in DNA fragments. Therefore, the same recombination enzyme can be used to robustly clone many different fragments of variable size in parallel reactions. © 2018 Cold Spring Harbor Laboratory Press.

  20. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly

    NARCIS (Netherlands)

    Horzinek, M.C.; Vennema, H.; Heijnen, L.; Zijderveld, A.; Spaan, W.J.M.

    1990-01-01

    Coronavirus spike protein genes were expressed in vitro by using the recombinant vaccinia virus expression system. Recombinant spike proteins were expressed at the cell surface and induced cell fusion in a host-cell-dependent fashion. The intracellular transport of recombinant spike proteins was

  1. Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinod K., E-mail: vinodfcy@gmail.com [Indian Institute of Technology Roorkee, Department of Chemistry, Roorkee, 247667 (India); King Fahd University of Petroleum and Minerals, Chemistry Department, Dhahran (Saudi Arabia); Jain, Rajeev [Jiwaji University, Department of Environmental Chemistry, Gwalior-474011 (India); Nayak, Arunima [Indian Institute of Technology Roorkee, Department of Chemistry, Roorkee, 247667 (India); Agarwal, Shilpi; Shrivastava, Meenakshi [Jiwaji University, Department of Environmental Chemistry, Gwalior-474011 (India)

    2011-07-20

    The removal of the dye-tartrazine by photodegradation has been investigated using titanium dioxide surface as photocatalyst under UV light. The process was carried out at different pH, catalyst dose, dye concentration and effects of the electron acceptor H{sub 2}O{sub 2}. It was found that under the influence of TiO{sub 2} as catalyst, the colored solution of the dye became colorless and the process followed a pseudo first order kinetics. The optimum conditions for the degradation of dye were 6 x 10{sup -5} M dye concentration, pH of 11, and 0.18 mg/L of catalyst dose. In order to evaluate the effect of electron acceptor, the effect of H{sub 2}O{sub 2} on the degradation process was also monitored and it was found that the hydroxyl radical formation and retardation of electron-hole recombination took place simultaneously. The adsorption studies of tartrazine at various dose of TiO{sub 2} followed the Langmuir isotherm trend. In order to determine the quality of waste water, Chemical Oxygen Demand (COD) measurements were carried out both before and after the treatment and a significant decrease in the values was observed, implying good potential of this technique to remove tartrazine dye from aqueous solutions. Research highlights: {yields}Degradation efficiency increases with increase in catalyst concentration. {yields}Adsorption of tartrazine on TiO{sub 2} followed the Langmuir isotherm. {yields}The photocatalytic kinetics follows first order.

  2. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  3. Electronic collective modes and instabilities on semiconductor surfaces. I

    International Nuclear Information System (INIS)

    Muramatsu, A.; Hanke, W.

    1984-01-01

    A Green's-function theory of electronic collective modes is presented which leads to a practical scheme for a microscopic determination of surface elementary excitations in conducting as well as nonconducting solids. Particular emphasis is placed on semiconductor surfaces where the jellium approximation is not valid, due to the importance of density fluctuations on a microscopic scale (reflected in the local-field effects). Starting from the Bethe-Salpeter equation for the two-particle Green's function of the surface system, an equation of motion for the electron-hole pair is obtained. Its solutions determine the energy spectra, lifetimes, and amplitudes of the surface elementary excitations, i.e., surface plasmons, excitons, polaritons, and magnons. Exchange and correlation effects are taken into account through the random-phase and time-dependent Hartree-Fock (screened electron-hole attraction) approximations. The formalism is applied to the study of electronic (charge- and spin-density) instabilities at covalent semiconductor surfaces. Quantitative calculations for an eight-layer Si(111) slab display an instability of the ideal paramagnetic surface with respect to spin-density waves with wavelength nearly corresponding to (2 x 1) and (7 x 7) superstructures

  4. Recombinant Antibodies for the Detection of Bacteriophage MS2 and Ovalbumin

    National Research Council Canada - National Science Library

    O'Connell, Kevin

    2002-01-01

    ...) genes are expressed on the surface of bacteriophage (bacterial virus) particles. We describe here the isolation of additional recombinant antibodies that bind two simulants of biothreat agents...

  5. Linear electron-hole-electron pair model of high-temperature superconductivity in La2-xMxCuO4 and YBa2Cu3O7-y: 2, Dependence of the superconducting transition temperatures on pressure and on hole concentration

    International Nuclear Information System (INIS)

    Whangbo, Myung-Hwan; Evain, M.; Canadell, E.; Williams, J.M.

    1989-01-01

    On the basis of the linear electron-hole-electron (e-h-e) pair model, we discuss how the number of holes (i.e., formal Cu 3+ sites), and an applied pressure, affect the superconducting transition temperatures T c of La 2-x M x CuO 4 and LBa 2 Cu 3 O 7-y (L = Y, Sm, Eu, Gd, Dy, Ho, Yb). We also examine the origin of the plateaus in the T c vs oxygen content pilot of YBa 2 Cu 3 O 7-y within the framework of the linear e-h-e pair model. 17 refs

  6. Site directed recombination

    Science.gov (United States)

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  7. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  8. CFD Analysis of Passive Autocatalytic Recombiner

    Directory of Open Access Journals (Sweden)

    B. Gera

    2011-01-01

    Full Text Available In water-cooled nuclear power reactors, significant quantities of hydrogen could be produced following a postulated loss-of-coolant accident (LOCA along with nonavailability of emergency core cooling system (ECCS. Passive autocatalytic recombiners (PAR are implemented in the containment of water-cooled power reactors to mitigate the risk of hydrogen combustion. In the presence of hydrogen with available oxygen, a catalytic reaction occurs spontaneously at the catalyst surfaces below conventional ignition concentration limits and temperature and even in presence of steam. Heat of reaction produces natural convection flow through the enclosure and promotes mixing in the containment. For the assessment of the PAR performance in terms of maximum temperature of catalyst surface and outlet hydrogen concentration an in-house 3D CFD model has been developed. The code has been used to study the mechanism of catalytic recombination and has been tested for two literature-quoted experiments.

  9. Improved diagnostic performance of a commercial anaplasma antibody competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5–glutathione S-transferase fusion protein as antigen

    Science.gov (United States)

    This study tested the hypothesis that removal of maltose binding protein from recombinant antigen used for plate coating would improve the specificity of Anaplasma antibody competitive ELISA. Three hundred and eight sera with significant MBP antibody binding (=30%I) in Anaplasma negative herds was 1...

  10. Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Saroop, Sudesh [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-09-01

    Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.

  11. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  12. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules...... as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics...

  13. Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, S Thomas [Los Alamos National Laboratory; Leonard, Francois [SNL; Swartzentruber, Brian S [SNL; Talin, A Alee [SNL

    2008-01-01

    We present electronic transport measurements in individual Au-catalyst/Ge-nanowire interfaces demonstrating the presence of a Schottky barrier. Surprisingly, the small-bias conductance density increases with decreasing diameter. Theoretical calculations suggest that this effect arises because electron-hole recombination in the depletion region is the dominant charge transport mechanism, with a diameter dependence of both the depletion width and the electron-hole recombination time. The recombination time is dominated by surface contributions and depends linearly on the nanowire diameter.

  14. Rate equation model of bulk optical damage of silica, and the influence of polishing on surface optical damage of silica

    Science.gov (United States)

    Smith, Arlee; Do, Binh; Schuster, Rod; Collier, David

    2008-02-01

    Our objective is to understand the mechanism that generates catastrophic optical damage in pulsed fiber amplifiers. We measured optical damage thresholds of bulk fused silica at 1064 nm for 8 ns and 14 ps pulses. The 8 ns pulse is single longitudinal mode from a Q-switched laser, and the 14 ps pulse is from a Q-switched mode-lock laser. The beams in both cases are TEM 00 mode, and they are focused to a 7.5 μm spot inside a fused silica window. The pulse-to-pulse energy variations are 1% for 8 ns pulses and 5% for 14 ps pulses. Under these conditions optical damage is always accompanied by plasma formation at the focal spot; we found the damage threshold fluences are 3854 +/- 85 J/cm2 for the 8 ns pulses and 25.4 +/- 1.0 J/cm2 for the 14 ps pulses. These fluences are corrected for self focusing. Both damage thresholds are deterministic, in contrast to the claim often made in the literature that optical damage is statistical in the nanosecond range. The measured damage threshold fluences for 8 ns and 14 ps pulses do not fit a square root of pulse duration scaling rule. We interpret the damage in terms of plasma formation initiated by multiphoton ionization and amplified by an electron avalanche. The damage threshold irradiance can be matched with a simple rate equation model that includes multiphoton ionization, electron avalanche, and electron-hole recombination. The damage morphologies are dramatically different in the nanosecond and picosecond cases because of the large difference in deposited energy. However, both morphologies are reproducible from pulse to pulse. We also measured surface damage thresholds for silica windows polished by different methods. We find that cerium oxide polished surfaces damage at approximately 40% of the bulk threshold, with a large statistical spread. Surfaces prepared using an Al IIO 3 polish damaged between 50% and 100% of the bulk damage limit, with a substantial fraction at 100%. Surfaces polished using first the Al IIO 3 polish

  15. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  16. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  17. Review of Parton Recombination Models

    International Nuclear Information System (INIS)

    Bass, Steffen A

    2006-01-01

    Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models

  18. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  19. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells

    Directory of Open Access Journals (Sweden)

    Alba Marina Gimenez

    2016-11-01

    Full Text Available Abstract Background Babesia bovis is a tick-transmitted protozoan hemoparasite and the causative agent of bovine babesiosis, a potential risk to more than 500 million cattle worldwide. The vaccines currently available are based on attenuated parasites, which are difficult to produce, and are only recommended for use in bovines under one year of age. When used in older animals, these vaccines may cause life-threatening clinical symptoms and eventually death. The development of a multi-subunit recombinant vaccine against B. bovis would be attractive from an economic standpoint and, most importantly, could be recommended for animals of any age. In the present study, recombinant ectodomains of MSA-2a1, MSA-2b and MSA-2c antigens were expressed in Pichia pastoris yeast as secreted soluble peptides. Results The antigens were purified to homogeneity, and biochemically and immunologically characterized. A vaccine formulation was obtained by emulsifying a mixture of the three peptides with the adjuvant Montanide ISA 720, which elicited high IgG antibody titers against each of the above antigens. IgG antibodies generated against each MSA-antigen recognized merozoites and significantly inhibited the invasion of bovine erythrocytes. Cellular immune responses were also detected, which were characterized by splenic and lymph node CD4+ T cells producing IFN-γ and TNF-α upon stimulation with the antigens MSA-2a1 or MSA-2c. Conclusions These data strongly suggest the high protective potential of the presented formulation, and we propose that it could be tested in vaccination trials of bovines challenged with B. bovis.

  20. A study on the hydrogen recombination rates of catalytic recombiners and deliberate ignition

    International Nuclear Information System (INIS)

    Fineschi, F.; Bazzichi, M.; Carcassi, M.

    1994-01-01

    A study is being carried out by the Department of Nuclear and Mechanical Constructions (DCMN) at the University of Pisa on catalytic recombiners and on deliberately induced weak deflagration. The recombination rates of different types of catalytic devices were obtained from a thorough analysis of published experimental data. The main parameter that affects the effectiveness of these devices seems to be the molar density of the deficiency reactant rather than its volumetric concentration. The recombination rate of weak deflagrations in vented compartments has been assessed with experimental tests carried out in a small scale glass vessel. Through a computerized system of analysis of video recordings of the deflagrations, the flame surface and the burned gas volume were obtained as functions of time. Although approximations are inevitable, the method adopted to identify the position of the flame during propagation is more reliable than other non-visual methods (thermocouples and ion-probes). It can only easily be applied to vented weak deflagrations, i.e. when the hydrogen concentration is far from stoichiometric conditions and near to flammability limits, because the pressurization has to be limited due to the low mechanical resistance of the glass. The values of flame surface and burned gas volume were used as inputs for a computer code to calculate the recombining rate, the burning velocity and the pressure transient in the experimental test. The code is being validated with a methodology principally based on a comparison of the measurements of pressure with the calculated values. The research gave some very interesting results on a small scale which should in the future be compared with large scale data

  1. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells.

    Science.gov (United States)

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-07-25

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells.

  2. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    Science.gov (United States)

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-07-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells.

  3. Slow recombination centers in cadmium selenide monocrystalline films

    International Nuclear Information System (INIS)

    Smyntyna, V.A.

    1983-01-01

    As a result of annealing when concentration of selenium Vacancies decreases due to their diffusion towards the surface, show recombination K-centers begin to influence the photoelectric properties of monocrystalline cadmium selenide layers. Energy levels of K-centers are located by 0.23-0.25 eV over the valent zone ceiling. The nature of K-centers is determined by the presence in the cadmium selenide layer structure of intrisic defects-cadmium vacancies in contrast to r-centers of slow recombination which are bound with impurities in a semiconductor material

  4. Electric hydrogen recombiner special tests

    International Nuclear Information System (INIS)

    Wilson, J.F.

    1975-12-01

    Westinghouse has produced an electric hydrogen recombiner to control hydrogen levels in reactor containments following a postulated loss-of-coolant accident. The recombiner underwent extensive testing for NRC qualification (see WCAP 7709-L and Supplements 1, 2, 3, 4). As a result, WCAP 7709-L and Supplements 1, 2, 3, and 4 have been accepted by the NRC for reference in applications not committed to IEEE-323-1974. Supplement 5 and the next supplement will demonstrate conformance to IEEE-323-1974. This supplement describes additional tests, beyond those necessary to qualify the system, which will be referenced in supplement 6. Each test has demonstrated a considerable margin of safety over required performance. Concurrently, the test results increased the fund of technical information on the electric hydrogen recombiner

  5. The effect of a single recombination event

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Jensen, Thomas Mailund; Wiuf, Carsten

    We investigate the variance in how visible a single recombination event is in a SNP data set as a function of the type of recombination event and its age. Data is simulated under the coalescent with recombination and inference is by the popular composite likelihood methods. The major determinant...... of the effect of a recombination event is the genealogical type of the event and whether SNP variation is present that can reveal the genealogical consequences of the recombination event. Recombination events that only change some branch lengths in the genealogy have a very small, but detectable, effect....... The more lineages left when the recombination event occurs, the larger effect it has, implying that it is mainly young recombination events that we detect when estimating the rate. If the population is growing, though, more lineages are present back in time and relatively more ancient recombination events...

  6. Charge-carrier transport and recombination in heteroepitaxial CdTe

    International Nuclear Information System (INIS)

    Kuciauskas, Darius; Farrell, Stuart; Dippo, Pat; Moseley, John; Moutinho, Helio; Li, Jian V.; Allende Motz, A. M.; Kanevce, Ana; Zaunbrecher, Katherine; Gessert, Timothy A.; Levi, Dean H.; Metzger, Wyatt K.; Colegrove, Eric; Sivananthan, S.

    2014-01-01

    We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 μm from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm 2 (Vs) −1 and diffusion coefficient D of 17 cm 2  s −1 . We find limiting recombination at the epitaxial film surface (surface recombination velocity S surface  = (2.8 ± 0.3) × 10 5  cm s −1 ) and at the heteroepitaxial interface (interface recombination velocity S interface  = (4.8 ± 0.5) × 10 5  cm s −1 ). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic devices that employ epitaxial CdTe.

  7. Improving recombinant protein purification yield

    Science.gov (United States)

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  8. A recombinant protein expression system

    African Journals Online (AJOL)

    Aghomotsegin

    2015-06-23

    Jun 23, 2015 ... Serum free cultivation of Leishmania is cost-effective and improves large scale production of well- defined parasite material. Moreover, the production of recombinant pharmaceutical proteins requires cultivation of the host in a culture medium free of animal materials, so several culture media for.

  9. Production and recombination of gluons

    International Nuclear Information System (INIS)

    Temiraliev, A.T.

    2006-01-01

    Full text: Nonlinear Markov process of parton production has been considered. The Kolmogorov equation is applied for the evolution equation based on the approximation of independent gluons production in every decay act. We introduced a 'crossing' parameter and used the combination relations to obtain nonlinear recombination equation for the evolution of gluon structure function. (author)

  10. Recombination in hepatitis C virus.

    Science.gov (United States)

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  11. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst

    Science.gov (United States)

    Sheybani, Roya; Meng, Ellis

    2015-01-01

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561

  12. Down-regulation of surface receptors for TNF and IL-1 on circulating monocytes and granulocytes during human endotoxemia: effect of neutralization of endotoxin-induced TNF activity by infusion of a recombinant dimeric TNF receptor

    NARCIS (Netherlands)

    van der Poll, T.; Coyle, S. M.; Kumar, A.; Barbosa, K.; Agosti, J. M.; Lowry, S. F.

    1997-01-01

    Leukocytes rapidly lose their surface receptors for TNF and IL-1 upon exposure to various stimuli in vitro. We sought to determine by FACS analysis changes in the expression of TNF receptors (TNFR) and type II IL-1R on circulating monocytes and granulocytes during endotoxemia in vivo, and the role

  13. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  14. Hadron production at RHIC: recombination of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.

  15. A Mechanistic Model of a Passive Autocatalytic Hydrogen Recombiner

    Directory of Open Access Journals (Sweden)

    Rożeń Antoni

    2015-03-01

    Full Text Available : A passive autocatalytic hydrogen recombiner (PAR is a self-starting device, without operator action or external power input, installed in nuclear power plants to remove hydrogen from the containment building of a nuclear reactor. A new mechanistic model of PAR has been presented and validated by experimental data and results of Computational Fluid Dynamics (CFD simulations. The model allows to quickly and accurately predict gas temperature and composition, catalyst temperature and hydrogen recombination rate. It is assumed in the model that an exothermic recombination reaction of hydrogen and oxygen proceeds at the catalyst surface only, while processes of heat and mass transport occur by assisted natural and forced convection in non-isothermal and laminar gas flow conditions in vertical channels between catalyst plates. The model accounts for heat radiation from a hot catalyst surface and has no adjustable parameters. It can be combined with an equation of chimney draft and become a useful engineering tool for selection and optimisation of catalytic recombiner geometry.

  16. High efficiency recombineering in lactic acid bacteria

    OpenAIRE

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lact...

  17. Population inversion in recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.

    1978-11-01

    The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)

  18. Soluble variants of human recombinant glutaminyl cyclase.

    Directory of Open Access Journals (Sweden)

    Cristiana Castaldo

    Full Text Available Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of (1H-(15N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer's disease.

  19. Cloning, purification and characterization of recombinant silkworm ...

    African Journals Online (AJOL)

    The recombinant His-tagged BmAK protein was expressed in soluble form in Escherichia coli Rosetta and purified by metal chelating affinity chromatography. The amino acid sequence of recombinant protein was confirmed by mass spectroscopic analysis and the enzyme activity assay that indicated the recombinant ...

  20. Determination of recombination in Mycoplasma hominis

    DEFF Research Database (Denmark)

    Jacobsen, Iben Søgaard; Boesen, Thomas; Mygind, Tina

    2002-01-01

    indicating the presence of recombination. In order to test for intergenic recombination, phylogenetic trees were reconstructed for each of the genes but no well-supported bifurcating phylogenetic trees could be obtained. The genes were tested for intragenic recombination using the correlation between linkage...

  1. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  2. Picosecond Nonlinear Resonant Interactions in Semiconductors.

    Science.gov (United States)

    1986-03-01

    1985). 3. "Electron-Hole Recombination Spectra and Kinetics in PbTc/PbEuTcSc Multiple Quamtum Wells", W. Goltsos, J. Nakahara, A. V. Nurmikko, and D...Partin, Proc. Int. Conf. Modulated Semiconductor Structures, Kyoto, Surface Science (in press). 4. "Optical Bandgap and Magneto-Optical Effects in (Pb,Eu

  3. A network approach to analyzing highly recombinant malaria parasite genes.

    Directory of Open Access Journals (Sweden)

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  4. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Science.gov (United States)

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  5. Mechanisms of sister chromatid recombination

    International Nuclear Information System (INIS)

    Nakai, Sayaka; Machida, Isamu; Tsuji, Satsuki

    1985-01-01

    Studies using T948 as a model system have been carried out aimed at elucidating the mechanism of sister chromatid recombination (SCR). Characterization of U.V. light- and x-ray-induced SCR, the relationiship between SCR induction and DNA repair using rad mutations, and the relationship between SCR induction and the time of cell division using cdc mutations are presented. It has been supposed that SCR is induced at the phase of S-G 2 following DNA replication, that postreplication break of DNA strands is strongly involved in the induction of SCR, and that induction type of SCR, i.e., conversion type or recombination type, is dependent upon the type of molecular damage of DNA. (Namekawa, K.)

  6. Heterogeneity in recombinant protein production

    DEFF Research Database (Denmark)

    Schalén, Martin; Johanson, Ted; Lundin, Luisa

    2012-01-01

    contribute to make a population in a fermenter heterogeneous, resulting in cell-to-cell variation in physiological parameters of the microbial culture. Our study aims at investigating how population heterogeneity and recombinant protein production is affected by environmental gradients in bioreactors....... For this purpose, a Saccharomyces cerevisiae strain, that functions as a protein production reporter, has been developed. A heterologous protein has been tagged with a fluorescent protein providing a way to measure the amount of heterologous protein produced by the cells on single cell level. Gradients...... are simulated in small bioreactors and the population heterogeneity can be visualised by analysing single cells with flow cytometry. This can give new insights to cell physiology and recombinant protein production at the industrial scale....

  7. A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Dennis

    2011-05-15

    concentration of the redox species in the electrolyte film, having the fastest decay at the lowest concentration of the redox couple. This was due to the regeneration of the oxidized dye by iodide, screening the positive charge from recombination with injected electrons. The adsorption of cations such as Li{sup +} led to a relatively weak increase of the electron lifetime, although in combination with a redox couple these effects were less clear. The replacement of the iodide/iodine redox couple by the kinetically fast ferrocene/ ferrocenium system caused a dramatic increase of the decay rates of photogenerated charge carriers in subset devices. Thus, showing the importance of the kinetically slow reduction rates of the oxidized redox couple iodide/iodine, leading to an increase of the electron lifetime by the reduction of the dye cation. The analysis of charge carrier kinetics in TiO{sub 2} powders and films displayed a decrease of the decay rate upon dye-sensitization after band-to-band excitation with laser pulses at 355 nm. In the case of ZnO films, the presence of the dye induced a significantly accelerated decay after excitation at 355 nm. In contrast to the ZnO films, ZnO nanorods displayed no such destructive influence of the dye adsorption. Furthermore, after exciting the sample at 355 nm, the decay was found to be independent of the dye and mainly depending on the recombination of electron-hole pairs and electrons with the dye cation at 355 nm and 532 nm, respectively. (orig.)

  8. Workshop on Radio Recombination Lines

    CERN Document Server

    1980-01-01

    Since their first detection 15 years ago, radio recombination lines from several elements have been observed in a wide variety of objects including HII regions, planetary nebulae, molecular clouds, the diffuse interstellar medium, and recently, other galaxies. The observations span almost the entire range from 0.1 to 100 GHz, and employ both single­ djsh and aperture synthesis techniques. The theory of radio recombination lines has also advanced strongly, to the point where it is perhaps one of the best-understood in astro­ physics. In a parallel development, it has become possible over the last decade to study these same highly-excited atoms in the laboratory; this work provides further confirmation of the theoretical framework. However there has been continuing controversy over the astrophysical interpre­ tation of radio recombination line observations, especially regarding the role of stimulated emission. A workshop was held in Ottawa on 24-25 August, 1979, bringing together many of the active scientist...

  9. Nondisjunction of chromosome 15: Origin and recombination

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A.; Mutirangura, A.; Ledbetter, D.H. (Baylor College of Medicine, Houston, TX (United States)); Langlois, S. (Univ. of Britisch Columbia, Vancouver (Canada)); Morris, M.A.; Malcolm, S.

    1993-09-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N=27) and Angelman syndrome patients (N-5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, more paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. 33 refs., 1 fig., 7 tabs.

  10. Consequences of recombination on traditional phylogenetic analysis

    DEFF Research Database (Denmark)

    Schierup, M H; Hein, J

    2000-01-01

    We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mt......DNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination....... With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may...

  11. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  12. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Science.gov (United States)

    Jin, Qingwen; Chen, Hong; Wang, Xingxia; Zhao, Liandong; Xu, Qingchen; Wang, Huijuan; Li, Guanyu; Yang, Xiaofan; Ma, Hongming; Wu, Haoquan; Ji, Xiaohui

    2015-01-01

    Insertion of T4 lysozyme (T4L) into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed. We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects. Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1) infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5. Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  13. Electron holes appear to trigger cancer-implicated mutations

    Science.gov (United States)

    Miller, John; Villagran, Martha

    Malignant tumors are caused by mutations, which also affect their subsequent growth and evolution. We use a novel approach, computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)], to compute spectra of enhanced hole probability based on actual sequence data. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. Peaks in the hole spectrum depict sites where holes tend to localize and potentially trigger a base pair mismatch during replication. Our studies of reveal a correlation between hole spectrum peaks and spikes in human mutation frequencies. Importantly, we also find that hole peak positions that do not coincide with large variant frequencies often coincide with cancer-implicated mutations and/or (for coding DNA) encoded conserved amino acids. This enables combining hole spectra with variant data to identify critical base pairs and potential cancer `driver' mutations. Such integration of DNA hole and variance spectra could also prove invaluable for pinpointing critical regions, and sites of driver mutations, in the vast non-protein-coding genome. Supported by the State of Texas through the Texas Ctr. for Superconductivity.

  14. Recombinant phage probes for Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S; Gioffre, G; Felici, F; Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2007-10-03

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 10{sup 4} cells ml{sup -1}. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  15. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  16. CRMAGE: CRISPR Optimized MAGE Recombineering

    DEFF Research Database (Denmark)

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Sommer, Morten Otto Alexander

    2016-01-01

    A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli...... that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red...

  17. Detailed modelling of processes inside a catalytic recombiner for hydrogen removal

    International Nuclear Information System (INIS)

    Heitsch, M.

    1999-01-01

    Under accidental conditions, considerable amounts of hydrogen may be released into the containment. Catalytic reacting surfaces in recombiners are a reliable method to recombine this hydrogen and other burnable gases like carbon monoxide from the atmosphere in a passive way. Many experiments have been carried out to study the main phenomena occurring inside recombiners, like the efficiency of hydrogen removal, the start-up conditions, poisoning, oxygen starvation, steam and water impact, and others. In addition, the global behavior of a given recombiner device in a larger environment has been investigated in order to demonstrate the effectiveness and to facilitate the derivation of simplified models for long term, severe accident analyses. These long-term severe accident models are complemented by detailed investigations to understand the interaction of chemistry and flow inside a recombiner box. This helps to provide the dependencies of non-measurable variables (e.g. the reaction rate distribution), of local surface temperatures etc. to make long-term or system models more reliable. It also offers possibilities for increasing the chemical efficiency by optimising the geometric design properly. Computational Fluid Dynamics (CFD) codes are available for use as development tools to include the specifics of catalytic surface reactors. The present paper describes the use of the code system CFX [1] for creating a recombiner model. Some model predictions are compared to existing test data. (author)

  18. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  19. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    Science.gov (United States)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  20. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  1. Quantum mechanical theory of collisional recombination rates

    International Nuclear Information System (INIS)

    Miller, W.H.

    1995-01-01

    Quantum mechanical expressions for the pressure-dependent recombination rate (within the strong collision assumption) are presented which have a very similar form to those developed recently for rate constants of chemical reactions: eqs. 11 and 12 express the recombination rate in terms of a flux autocorrelation function, and eqs. 14-16 in terms of a cumulative recombination probability. The qualitative behavior of these functions is illustrated by several pedagogical examples. 24 refs., 1 fig

  2. Recombination chambers for BNCT dosimetry

    International Nuclear Information System (INIS)

    Tulik, Piotr

    2006-01-01

    Parallel plate recombination ionization chambers are known as the detectors which can be used for determination of gamma and high-LET dose components and for characterization of radiation quality of mixed radiation fields. Specially designed chambers can operate correctly even at dose rates of therapeutic beams. In this work the investigations were extended to a set of cylindrical chambers including a TE chamber and three graphite chambers filled with different gases - CO 2 , N 2 and 10 BF 3 , in order to determine the thermal neutrons, 14 N capture, gamma, and fast neutron dose components. The separation of the dose components is based on differences of the shape of the saturation curve, in dependence on LET spectrum of the investigated radiation. The measurements using all the chambers and a parallel plate recombination chamber were performed in a reactor beam of NRI Rez (Czech Republic). The gamma component was determined with accuracy of about 5%, while the variations of its value could be monitored with accuracy of about 0.5%. Relative changes of the beam components could be detected with accuracy of about 5% using the parallel plate chamber. The use of the chambers filled with different gases considerably improved the resolution of the method. (author)

  3. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  4. The Red Queen theory of recombination hotspots.

    Science.gov (United States)

    Ubeda, F; Wilkins, J F

    2011-03-01

    Recombination hotspots are small chromosomal regions, where meiotic crossover events happen with high frequency. Recombination is initiated by a double-strand break (DSB) that requires the intervention of the molecular repair mechanism. The DSB repair mechanism may result in the exchange of homologous chromosomes (crossover) and the conversion of the allelic sequence that breaks into the one that does not break (biased gene conversion). Biased gene conversion results in a transmission advantage for the allele that does not break, thus preventing recombination and rendering recombination hotspots transient. How is it possible that recombination hotspots persist over evolutionary time (maintaining the average chromosomal crossover rate) when they are self-destructive? This fundamental question is known as the recombination hotspot paradox and has attracted much attention in recent years. Yet, that attention has not translated into a fully satisfactory answer. No existing model adequately explains all aspects of the recombination hotspot paradox. Here, we formulate an intragenomic conflict model resulting in Red Queen dynamics that fully accounts for all empirical observations regarding the molecular mechanisms of recombination hotspots, the nonrandom targeting of the recombination machinery to hotspots and the evolutionary dynamics of hotspot turnover. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  5. Interplay of Dirac surface states and magnetic fluctuations in topological insulator heterostructures

    Science.gov (United States)

    Hurst, Hilary M.; Efimkin, Dmitry K.; Galitski, Victor

    We consider the proximity effect between Dirac states at the surface of a topological insulator and a ferromagnet with easy plane anisotropy, which is described by the XY-model and undergoes a Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Classical magnetic fluctuations interacting with the surface states of a topological insulator can be described by an effective gauge field. This model can be mapped onto the problem of Dirac fermions in a random magnetic field, however this analogy is only partial in the presence of electron-hole asymmetry or warping of the Dirac dispersion which results in screening of magnetic fluctuations. We show that this proximity coupling leads to anomalous transport behavior of the surface states near the BKT transition temperature.

  6. Gas recombination device design and cost study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Under a contract with Argonne National Laboratory, VARTA Batterie AG. conducted a design and cost study of hydrogen-oxygen recombination devices (HORD) for use with utility load-leveling lead-acid cells. Design specifications for the devices, through extensive calculation of the heat-flow conditions of the unit, were developed. Catalyst and condenser surface areas were specified. The exact dimensions can, however, be adjusted to the cell dimension and the space available above the cell. Design specifications were also developed for additional components required to ensure proper function of the recombination device, including metal hydride compound decomposer, aerosol retainer, and gas storage component. Costs for HORD were estimated to range from $4 to $10/kWh cell capacity for the production of a large number of units (greater than or equal to 10,000 units). The cost is a function of cell size and positive grid design. 21 figures, 2 tables.

  7. Fundamental Studies of Recombinant Hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. [Univ. of Georgia, Athens, GA (United States)

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  8. Electronic recombination in some physics problems

    International Nuclear Information System (INIS)

    Guzman, O.

    1988-01-01

    This work is related to calculations of electronic recombination rates, as a function of electronic density, electronic temperature, and ion nuclear charge. Recombination times can be calculated and compared to cooling time, in cooling processes of ion beans by electrons from storage rings. (A.C.A.S.) [pt

  9. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  10. Recombinant human endostatin reduces hypertrophic scar ...

    African Journals Online (AJOL)

    Background: Recombinant human endostatin (Endostar) has been widely used to suppress angiogenesis in carcinoma patients. ... Cite as: Wang P, Jiang L-Z, Xue B. Recombinant human endostatin reduces hypertrophic scar formation in rabbit ear model through ... wounds on the tail of each ear were discarded because.

  11. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  12. Generation of Modified Pestiviruses by Targeted Recombination

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Friis, Martin Barfred; Risager, Peter Christian

    involves targeted modification of viral cDNA genomes, cloned within BACs, by Red/ET recombination-mediated mutagenesis in E.coli DH10B cells. Using recombination-mediated mutagenesis for the targeted design, the work can be expedited and focused in principal on any sequence within the viral genome...

  13. Bimolecular Recombination Kinetics of an Exciton-Trion Gas

    Science.gov (United States)

    2015-07-01

    particles are created and annihilated in pairs so that there is no accumulation of charge. However, this approach is rigorously correct only for a...8 ~ ( )22 23.75 10 photons/ cm s× ⋅ . A quantum yield for electron-hole pair creation of 0.004 would create a generation flux G within the...hole pairs , magenta—excitons, and blue—trions. The final parameter of interest is Q, which controls the creation of excitons by electron–hole

  14. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  15. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  16. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  17. Developing recombinant antibodies for biomarker detection

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.; Miller, Keith D.; Kagen, Jacob; Srivastava, Sudhir; Rodland, Karin D.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune libraries provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.

  18. Therapeutic Use of Native and Recombinant Enteroviruses

    Directory of Open Access Journals (Sweden)

    Jani Ylä-Pelto

    2016-02-01

    Full Text Available Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.

  19. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  20. The recombinational anatomy of a mouse chromosome.

    Directory of Open Access Journals (Sweden)

    Kenneth Paigen

    2008-07-01

    Full Text Available Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1-2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2x higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots.

  1. Suppression of Magnetoresistance in Thin WTe2 Flakes by Surface Oxidation.

    Science.gov (United States)

    Woods, John M; Shen, Jie; Kumaravadivel, Piranavan; Pang, Yuan; Xie, Yujun; Pan, Grace A; Li, Min; Altman, Eric I; Lu, Li; Cha, Judy J

    2017-07-12

    Recent renewed interest in layered transition metal dichalcogenides stems from the exotic electronic phases predicted and observed in the single- and few-layer limit. Realizing these electronic phases requires preserving the desired transport properties down to a monolayer, which is challenging. Surface oxides are known to impart Fermi level pinning or degrade the mobility on a number of different systems, including transition metal dichalcogenides and black phosphorus. Semimetallic WTe 2 exhibits large magnetoresistance due to electron-hole compensation; thus, Fermi level pinning in thin WTe 2 flakes could break the electron-hole balance and suppress the large magnetoresistance. We show that WTe 2 develops an ∼2 nm thick amorphous surface oxide, which shifts the Fermi level by ∼300 meV at the WTe 2 surface. We also observe a dramatic suppression of the magnetoresistance for thin flakes. However, due to the semimetallic nature of WTe 2 , the effects of Fermi level pinning are well screened and are not the dominant cause for the suppression of magnetoresistance, supported by fitting a two-band model to the transport data, which showed the electron and hole carrier densities are balanced down to ∼13 nm. However, the fitting shows a significant decrease of the mobilities of both electrons and holes. We attribute this to the disorder introduced by the amorphous surface oxide layer. Thus, the decrease of mobility is the dominant factor in the suppression of magnetoresistance for thin WTe 2 flakes. Our study highlights the critical need to investigate often unanticipated and sometimes unavoidable extrinsic surface effects on the transport properties of layered dichalcogenides and other 2D materials.

  2. Effect of recombination on the open-circuit voltage of a silicon solar cell

    Science.gov (United States)

    Von Roos, O.; Landsberg, P. T.

    1985-01-01

    A theoretical study of the influence of band-band Auger, band-trap Auger, and the ordinary Shockley-Read-Hall mechanism for carrier recombination on the open-circuit voltage VOC of a solar cell is presented. Under reasonable assumptions for the magnitude of rate constants and realistic values for trap densities, surface recombination velocities and band-gap narrowing, the maximum VOC for typical back surface field solar cells is found to lie in the range between 0.61 and 0.72 V independent of base width.

  3. Reciprocality of Recombination Events That Rearrange the Chromosome

    OpenAIRE

    Mahan, M. J.; Roth, J. R.

    1988-01-01

    We describe a genetic system for studying the reciprocality of chromosomal recombination; all substrates and recombination functions involved are provided exclusively by the bacterial chromosome. The genetic system allows the recovery of both recombinant products from a single recombination event. The system was used to demonstrate the full reciprocality of three different types of recombination events: (1) intrachromosomal recombination between direct repeats, causing deletions; (2) intrachr...

  4. Combustible gas recombining method and processing facility for gas waste

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Atsushi; Murakami, Kazuo

    1998-09-02

    Combustible gases (hydrogen, oxygen) generated by radiation decomposition of reactor water in the vicinity of a reactor core in a reactor pressure vessel of a BWR type nuclear power plant pass, together with flow of steams, through a gas/water separator and a steam dryer disposed at the upper portion of a reactor core. A catalyst for allowing hydrogen and oxygen to react efficiently and recombine them into water is plated on the surface of the steam dryer. The catalyst comprises palladium (Pd) or platinum (Pt) or a Pd-Pt alloy. The combustible gases passing through the steam dryer are recombined and formed into steams by the catalyst. A slight amount of hydrogen and oxygen which are not recombined transfers, together with main steams, from a main steam pipe to a main condensator by way of a turbine. Then they are released, together with air from an air extraction device, from an activated carbon-type rare gas hold up tower. (I.N.)

  5. Hydrogen mitigation by catalytic recombiners and ignition during severe accidents

    International Nuclear Information System (INIS)

    Rohde, J.; Chakraborty, A.K.; Heitsch, M.; Klein-Hebling, W.

    1994-01-01

    A large amount of hydrogen is expected to be released within a large dry containment of a PWR shortly after the onset of a severe accident, leading to core melting. According to local gas concentrations, turbulence and structural configurations within the containment, the released hydrogen can reach the boundary of deflagration or under certain conditions cause local detonations threatening the containment integrity. During the last few years, several concepts of mitigation have been developed to limit the hydrogen concentrations and extensive efforts have been given to investigate the use of catalytic recombiners as well as the use of deliberate ignition within the contemplated framework of a 'Dual-concept'. Although the recent recommendation of the German Reactor Safety Commission (RSK) foresees the sole application of catalytic recombiners to remove hydrogen during severe accident, a review is planned within two years for the partial and directed additional application of early ignitions or post dilution of the atmosphere of the compartments in conjunction with the recombiners installed. This presentation will review the results of large number of experiments performed both in small scale and large scale to qualify the recombiners. It is also the subject of the presentation to address the requirements for proper and secure functioning of the catalyzers under the existing boundary conditions during the severe accidents. These requirements ask for measures, starting from the proper selection of catalysts, multi purposed catalytic devices and their protection against contamination during the standby condition as well as against aerosol deposition and surface poisoning during the propagation of an accident. A short review of the results to large scale experiments with the combined application of catalytic devices and igniters form also a part of this presentation. (author). 8 refs., 2 tabs., 7 figs

  6. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...

  7. Invariant Measures of Genetic Recombination Processes

    Science.gov (United States)

    Akopyan, Arseniy V.; Pirogov, Sergey A.; Rybko, Aleksandr N.

    2015-07-01

    We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory.

  8. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  9. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  10. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  11. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  12. Recombinant aequorin and recombinant semi-synthetic aequorins. Cellular Ca2+ ion indicators.

    OpenAIRE

    Shimomura, O; Inouye, S; Musicki, B; Kishi, Y

    1990-01-01

    Properties of a recombinant aequorin were investigated in comparison with those of natural aequorin. In chromatographic behaviour the recombinant aequorin did not match any of ten isoaequorins tested, although it was very similar to aequorin J. Its sensitivity to Ca2+ was found to be higher than that of any isoaequorin except aequorin D. The recombinant aequorin exhibited no toxicity when tested in various kinds of cells, even where samples of natural aequorin had been found to be toxic. Prop...

  13. Live recombinant BHV/BRSV vaccine

    OpenAIRE

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the protection of cattle against both Bovine herpesvirus infection and against Bovine Respiratory Syncytium virus infection. Also the invention relates to methods for the preparation of such live attenuated r...

  14. Recombination-deficient mutant of Streptococcus faecalis

    International Nuclear Information System (INIS)

    Yagi, Y.; Clewell, D.B.

    1980-01-01

    An ultraviolet radiation-sensitive derivative of Streptococcus faecalis strain JH2-2 was isolated and found to be deficient in recombination, using a plasmid-plasmid recombination system. The strain was sensitive to chemical agents which interact with deoxyribonucleic acid and also underwent deoxyribonucleic acid degradation after ultraviolet irradiation. Thus, the mutant has properties similar to those of recA strains of Escherichia coli

  15. Hadron correlations from recombination and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-04-01

    We review the formalism of quark recombination applied to the hadronization of a quark-gluon plasma. Evidence in favour of the quark recombination model is outlined. Recent work on parton correlations, leading to detectable correlations between hadrons, is discussed. Hot spots from completely quenched jets are a likely source of such correlations which appear to be jet like. It will be discussed how such a picture compares with measurement of associated hadron yields at RHIC.

  16. Genome-Wide Patterns of Recombination in the Opportunistic Human Pathogen Pseudomonas aeruginosa

    Science.gov (United States)

    Dettman, Jeremy R.; Rodrigue, Nicolas; Kassen, Rees

    2015-01-01

    The bacterium Pseudomonas aeruginosa is a significant cause of acute nosocomial infections as well as chronic respiratory infections in patients with cystic fibrosis (CF). Recent reports of the intercontinental spread of a CF-specific epidemic strain, combined with high intrinsic levels of antibiotic resistance, have made this opportunistic pathogen an important public health concern. Strain-specific differences correlate with variation in clinical outcomes of infected CF patients, increasing the urgency to understand the evolutionary origin of genetic factors conferring important phenotypes that enable infection, virulence, or resistance. Here, we describe the genome-wide patterns of homologous and nonhomologous recombination in P. aeruginosa, and the extent to which the genomes are affected by these diversity-generating processes. Based on whole-genome sequence data from 32 clinical isolates of P. aeruginosa, we examined the rate and distribution of recombination along the genome, and its effect on the reconstruction of phylogenetic relationships. Multiple lines of evidence suggested that recombination was common and usually involves short stretches of DNA (200–300 bp). Although mutation was the main source of nucleotide diversity, the import of polymorphisms by homologous recombination contributed nearly as much. We also identified the genomic regions with frequent recombination, and the specific sequences of recombinant origin within epidemic strains. The functional characteristics of the genes contained therein were examined for potential associations with a pathogenic lifestyle or adaptation to the CF lung environment. A common link between many of the high-recombination genes was their functional affiliation with the cell wall, suggesting that the products of recombination may be maintained by selection for variation in cell-surface molecules that allows for evasion of the host immune system. PMID:25480685

  17. Recombinant influenza viruses as delivery vectors for hepatis B virus epitopes.

    Science.gov (United States)

    Song, Jae-Min; Lee, Kwang-Hee; Seong, Baik-Lin

    2012-07-01

    Neuraminidase (NA) of influenza virus contains stalk region that shows a great deal of variability in both amino acid sequence and length. In this paper, we investigated generation of recombinant influenza viruses that had hepatitis B virus (HBV) B cell epitopes in the NA stalk region as a dual vaccine candidate. We used the WSH-HK reassortant helper virus for rescue of recombinant influenza virus containing HBV epitopes and reverse genetic protocol based on the use of micrococcal nuclease-treated virus cores for reconstitution of ribonucleoproteins. We successfully generated a chimeric influenza viruses which contained 22 amino acid peptides in the stalk region derived from the surface and pre-surface protein HBV. The growth kinetics of the recombinant viruses was investigated after infection of Madin-Darby canine kidney (MDCK) and Madin-Darby bovine kidney (MDBK) cells and the rIV-BVPreS virus showed higher titer than other viruses in MDCK cells. We also confirmed the presence of HBV epitopes in the chimeric viruses by enzyme-linked immunosorbent assay (ELISA) using anti-HBV polyclonal antibody. When the ratio of recombinant virus verse wild type virus was calculated by ELISA, recombinant viruses exhibited 2 fold higher values than the wild type virus. These results suggest that chimeric influenza virus which contained foreign antigens can be used as dual vaccine against both HBV and influenza viruses.

  18. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution

    Directory of Open Access Journals (Sweden)

    Monjane Adérito L

    2011-12-01

    Full Text Available Abstract Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae, the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots

  19. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution.

    Science.gov (United States)

    Monjane, Adérito L; van der Walt, Eric; Varsani, Arvind; Rybicki, Edward P; Martin, Darren P

    2011-12-02

    Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV

  20. Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

    OpenAIRE

    Buonocore, Linda; Blight, Keril J.; Rice, Charles M.; Rose, John K.

    2002-01-01

    We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein...

  1. Recombination of electrons with an anisotropic velocity distribution. Continuation of recombination continuum to series lines

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Imaida, Takashi

    1998-01-01

    For ions in recombination with electrons with directional motion, the recombination continuum to a J = 0 state is π polarized, and this polarization characteristic should continue across the ionization threshold down to the series lines. A Monte Carlo calculation has been performed for electron collisions on a classical atom in excited states. No evidence is found to support the above conclusion. (author)

  2. Spontaneous radiative recombination and nonradiative Auger recombination in quantum-confined heterostructures

    International Nuclear Information System (INIS)

    Asryan, L V

    2005-01-01

    General approach is described to the rates, fluxes and current densities associated with spontaneous radiative and nonradiative Auger recombinations in heterostructure lasers with different types of a quantum-confined active region (quantum wells, quantum wires, and quantum dots). The proper way of defining the spontaneous radiative and Auger recombination coefficients and their dimensionality are discussed. It is shown that only in a quantum dot, true time constants can be introduced for spontaneous radiative and nonradiative Auger recombinations, which are independent of the injection level. Closed-form elegant expressions are presented for the radiative recombination coefficient as an explicit function of temperature and parameters in bulk and quantum-confined structures. These expressions clearly demonstrate inappropriateness of the common practice of deriving the recombination coefficients in low-dimensional heterostructures from the bulk values. (lasers)

  3. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers. © 2012 American Chemical Society.

  4. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    Science.gov (United States)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2017-05-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma.

  5. Polarized recombination of acoustically transported carriers in GaAs nanowires

    Science.gov (United States)

    Möller, Michael; Hernández-Mínguez, Alberto; Breuer, Steffen; Pfüller, Carsten; Brandt, Oliver; de Lima, Mauricio M.; Cantarero, Andrés; Geelhaar, Lutz; Riechert, Henning; Santos, Paulo V.

    2012-05-01

    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.

  6. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    International Nuclear Information System (INIS)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R K

    2017-01-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma. (paper)

  7. Effects of surface adsorbed oxygen, applied voltage, and temperature on UV photoresponse of ZnO nanorods

    Science.gov (United States)

    Zong, Xian-Li; Zhu, Rong

    2015-10-01

    The ultraviolet (UV) photoresponses of ZnO nanorods directly grown on and between two micro Au-electrodes by using electric-field-assisted wet chemical method are measured comprehensively under different conditions, including ambient environment, applied bias voltage, gate voltage and temperature. Experimental results indicate that the photoresponses of the ZnO nanorods can be modulated by surface oxygen adsorptions, applied voltages, as well as temperatures. A model taking into account both surface adsorbed oxygen and electron-hole activities inside ZnO nanorods is proposed. The enhancement effect of the bias voltage on photoresponse is also analyzed. Experimental results shows that the UV response time (to 63%) of ZnO nanorods in air and at 59 °C could be shortened from 34.8 s to 0.24 s with a bias of 4 V applied between anode and cathode. Project supported by the National Natural Science Foundation of China (Grant No. 91123017).

  8. Functional immobilization of recombinant alkaline phosphatases bearing a glutamyl donor substrate peptide of microbial transglutaminase.

    Science.gov (United States)

    Kamiya, Noriho; Doi, Satoshi; Tanaka, Yusuke; Ichinose, Hirofumi; Goto, Masahiro

    2007-09-01

    Covalent and site-specific protein immobilization catalyzed by microbial transglutaminase (MTG) was investigated using recombinant Escherichia coli alkaline phosphatase (AP) tagged with a glutamyl donor substrate peptide (MLAQGS) of MTG. A polystyrene surface physically coated with beta-casein or bovine serum albumin (BSA) was employed as an MTG-specific surface displaying reactive lysine residues. MTG-mediated protein immobilization through catalytic epsilon-(gamma-glutamyl)lysine bond formation between the peptide tag of recombinant APs and beta-casein- or BSA-coated surface was verified by the detection of AP activity on the surface. It was found that the length and the insertion position of the peptide tag did not significantly affect the efficacy of enzymatic immobilization of the recombinant APs. On the other hand, pH and ionic strength in the reaction media had crucial effects on the immobilization yields. Interestingly, the optimum pH range of MTG-mediated protein immobilization differed markedly from that for an MTG-catalyzed reaction in aqueous solution. The results suggest that the concentration of reactive species due to electrostatic interaction between the enzyme-substrate intermediate and the protein-adsorbed surface is a key factor governing MTG catalysis at a solid surface.

  9. Constraints from jet calculus on quark recombination

    International Nuclear Information System (INIS)

    Jones, L.M.; Lassila, K.E.; Willen, D.

    1979-01-01

    Within the QCD jet calculus formalism, we deduce an equation describing recombination of quarks and antiquarks into mesons within a quark or gluon jet. This equation relates the recombination function R(x 1 ,x 2 ,x) used in current literature to the fragmentation function for producing that same meson out of the parton initiating the jet. We submit currently used recombination functions to our consistency test, taking as input mainly the u-quark fragmentation data into π + mesons, but also s-quark fragmentation into K - mesons. The constraint is well satisfied at large Q 2 for large moments. Our results depend on one parameter, Q 0 2 , the constraint equation being satisfied for small values of this parameter

  10. Recombinant human erythropoietin in sports: a review

    Directory of Open Access Journals (Sweden)

    Rafael Maia de Almeida Bento

    2003-06-01

    Full Text Available Erythropoietin is an endogenous hormone of glicoproteic nature secreted by the kidneys and is the main regulator of the erythropoiesis. An alteration in its production generates a disturbance in the plasmatic concentration giving rise to several types of pathologies related to the hematopoietic system. The recombinant forms of erythropoietin have indiscriminately been used by athletes, mainly in endurance sports, by increasing the erythrocytes concentration, generating a better delivery of oxygen to the muscle tissue. The administration of recombinant erythropoietin was prohibited by the International Olympic Committee and its use considered as doping. This review has the intention to describe the physical, biological and pharmacokinetic properties of the endogenous erythropoietin, as well as its recombinant form, describing also its use in sports and the process of searching methodologies for its detection in doping control.

  11. Construction and characterization of calreticulin-HBsAg fusion gene recombinant adenovirus expression vector.

    Science.gov (United States)

    Ma, Chun-Ling; Wang, Gui-Bin; Gu, Run-Guo; Wang, Fang

    2010-06-28

    To generate recombinant adenoviral vector containing calreticulin (CRT)-hepatitis B surface antigen (HBsAg) fusion gene for developing a safe, effective and HBsAg-specific therapeutic vaccine. CRT and HBsAg gene were fused using polymerase chain reaction (PCR), endonuclease digestion and ligation methods. The fusion gene was cloned into pENTR/D-TOPO transfer vector after the base pairs of DNA (CACC) sequence was added to the 5' end. Adenoviral expression vector containing CRT-HBsAg fusion gene was constructed by homologous recombinantion. The human embryo kidney (HEK) 293A cells were transfected with linearized DNA plasmid of the recombinant adenoviral vector to package and amplify recombinant adenovirus. The recombinant adenovirus titer was characterized using the end-dilution assay. The expression of the CRT/HBsAg fusion protein in Ad-CRT/HBsAg infected 293A cells was detected by Western blotting. The CRT-HBsAg fusion gene was characterized by PCR and sequencing and its length and sequence were confirmed to be accurate. The CRT-HBsAg fusion gene recombinant pENTR/D-TOPO transfer vector was constructed. The recombinant adenoviral vector, Ad-CRT/HBsAg, was generated successfully. The titer of Ad-CRT/HBsAg was characterized as 3.9 x 10(11) pfu/mL. The CRT-HBsAg fusion protein was expressed by HEK 293A cells correctly. CRT/HBsAg fusion gene recombinant replication-defective adenovirus expression vector is constructed successfully and this study has provided an experimental basis for further studies of Hepatitis B virus gene therapy.

  12. A recombinant rabies virus expressing luciferase.

    Science.gov (United States)

    Liang, H; Tan, Y; Dun, C; Guo, X

    2010-01-01

    A recombinant Rabies virus (RV) expressing firefly luciferase (rRV-luc) was generated by an improved reverse genetics system. Its biological properties were compared with those of the parental RV. The rRV-luc grew in BHK-21 cells similarly to RV, but its virulence for mice was weaker as shown by the lower infectious titers in brain. Rising infectious titers of rRV-luc during its passaging in BHK-21 cells indicated a virus adaptation, while the luciferase (luc) expression was stable. These results suggest that the recombinant RV carrying luc gene might prove a useful tool for further analysis of pathogenesis of RV in small animal models.

  13. Thermal recombination: Beyond the valence quark approximation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: fries@physics.umn.edu; Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2005-07-07

    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.

  14. Theoretical models for recombination in expanding gas

    International Nuclear Information System (INIS)

    Avron, Y.; Kahane, S.

    1978-09-01

    In laser isotope separation of atomic uranium, one is confronted with the theoretical problem of estimating the concentration of thermally ionized uranium atoms. To investigate this problem theoretical models for recombination in an expanding gas and in the absence of local thermal equilibrium have been constructed. The expansion of the gas is described by soluble models of the hydrodynamic equation, and the recombination by rate equations. General results for the freezing effect for the suitable ranges of the gas parameters are obtained. The impossibility of thermal equilibrium in expanding two-component systems is proven

  15. NovelTreponema pallidumRecombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects.

    Science.gov (United States)

    Kubanov, Aleksey; Runina, Anastassia; Deryabin, Dmitry

    2017-01-01

    The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.

  16. Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects

    Science.gov (United States)

    Kubanov, Aleksey; Runina, Anastassia

    2017-01-01

    The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized. PMID:28523273

  17. Measurements of recombination coefficient of hydrogen atoms on plasma deposited thin films

    International Nuclear Information System (INIS)

    Drenik, A.; Vesel, A.; Mozetic, M.

    2006-01-01

    We have performed experiments in plasma afterglow in order to determine the recombination coefficients of plasma deposited thin films of tungsten and graphite. Plasma deposited films rather than bulk material were used in order to more closely emulate surface structure of plasma-facing material deposits in fusion reactors. We have also determined the recombination coefficient of 85250 borosilicate glass and Teflon. Plasma was created by means of a radio frequency generator in a mixture of argon and hydrogen at the pressures between 60 Pa and 280 Pa. The degree of dissociation of hydrogen molecules was found to be between 0.1 and 1. The H-atom density was measured by Fiber Optic Catalytic Probe. The recombination coefficient was determined by measuring the axial profile of the H-atom density and using Smith's side arm diffusion model. (author)

  18. Ion current prediction model considering columnar recombination in alpha radioactivity measurement using ionized air transportation

    International Nuclear Information System (INIS)

    Naito, Susumu; Hirata, Yosuke; Izumi, Mikio; Sano, Akira; Miyamoto, Yasuaki; Aoyama, Yoshio; Yamaguchi, Hiromi

    2007-01-01

    We present a reinforced ion current prediction model in alpha radioactivity measurement using ionized air transportation. Although our previous model explained the qualitative trend of the measured ion current values, the absolute values of the theoretical curves were about two times as large as the measured values. In order to accurately predict the measured values, we reinforced our model by considering columnar recombination and turbulent diffusion, which affects columnar recombination. Our new model explained the considerable ion loss in the early stage of ion diffusion and narrowed the gap between the theoretical and measured values. The model also predicted suppression of ion loss due to columnar recombination by spraying a high-speed air flow near a contaminated surface. This suppression was experimentally investigated and confirmed. In conclusion, we quantitatively clarified the theoretical relation between alpha radioactivity and ion current in laminar flow and turbulent pipe flow. (author)

  19. Anomalous Abundances in Gaseous Nebulae From Recombination and Collisional Lines: Improved Photoionization and Recombination Studies

    Science.gov (United States)

    Pradhan, Anil Kumar; Nahar, S. N.; Eissner, W. B.; Montenegro, M.

    2011-01-01

    A perplexing anomaly arises in the determination of abundances of common elements in gaseous nebulae, as derived from collisionally excited lines (CEL) as opposed to those from Recombination Lines (RCL). The "abundance discrepancy factors" can range from a factor of 2 to an order of magnitude or more. That has led to quite different interpretation of the physical structure and processes in gaseous nebulae, such as temperature fluctuations across the object, or metal-rich concentrations leading to a dual-abundnace scenario. We show that the problem may lie in inaccuracies in photoionization and recombination models neglecting low-energy resonance phenomena due to fine structure. Whereas the atomic physics of electron impact excitation of forbidden lines is well understood, and accurate collision strengths have long been available, that is not generally the case for electron-ion recombination cross sections. A major problem is the inclusion of relativisitic effects as it pertains to the existence of very low-energy fine structure resonances in photoionization cross sections. We carry out new relativistic calculations for photoionization and recombination cross sections using a recently extended version of the Breit-Pauli R-matrix codes, and the unified electron-ion recombination method that subsumes both the radiative and the dielectronic recombination (RR and DR) processes in an ab initio and self-consistent manner. We find that near-thresold resonances manifest themselves within fine structure levels of the ground state of ions, enhancing low-temperature recombination rate coefficients at 1000-10,000 K. The resulting enahncement in level-specific and total recombination rate coefficients should therefore lead to reduced abundances derived from RCL, and in accordance with those from CEL. We present results for photoionization of O II into, and recombination from, O III. Theoretical cross sections are benchmarked against high-resolution measurements from synchrotron

  20. Effects of Recombinant Erythropoietin on Breast Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Tiffany M. Phillips

    2007-12-01

    Full Text Available BACKGROUND: Cancer anemia causes fatigue and correlates with poor treatment outcome. Erythropoietin has been introduced in an attempt to correct these defects. However, five recent clinical trials reported a negative impact of erythropoietin on survival and/or tumor control, indicating that experimental evaluation of a possible direct effect of erythropoietin on cancer cells is required. Cancer recurrence is thought to rely on the proliferation of cancer initiating cells (CICs. In breast cancer, CICs can be identified by phenotypic markers and their fate is controlled by the Notch pathway. METHODS: In this study, we investigated the effect of erythropoietin on CICs in breast cancer cell lines. Levels of erythropoietin receptor (EpoR, CD24, CD44, Jagged-1 expression, activation of Notch-1 were assessed by flow cytometry. Self-renewing capacity of CICs was investigated in sphere formation assays. RESULTS: EpoR expression was found on the surface of CICs. Recombinant human Epo (rhEpo increased the numbers of CICs and self-renewing capacity in a Notch-dependent fashion by induction of Jagged-1. Inhibitors of the Notch pathway and P13-kinase blocked both effects. CONCLUSIONS: Erythropoietin functionally affects CICs directly. Our observation may explain the negative impact of recombinant Epo on local control and survival of cancer patients with EpoR-positive tumors.

  1. Crystallization of recombinant Haemophilus influenzaee (P4) acid phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Zhonghui [Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Felts, Richard L. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Reilly, Thomas J. [Department of Veterinary Pathobiology and Veterinary Medical Diagnostic Laboratory, University of Missouri-Columbia, Columbia, MO 65211 (United States); Nix, Jay C. [Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Tanner, John J., E-mail: tannerjj@missouri.edu [Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2006-05-01

    Lipoprotein e (P4) is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. Haemophilus influenzae infects the upper respiratory tract of humans and can cause infections of the middle ear, sinuses and bronchi. The virulence of the pathogen is thought to involve a group of surface-localized macromolecular components that mediate interactions at the host–pathogen interface. One of these components is lipoprotein e (P4), which is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. The space group is P4{sub 2}2{sub 1}2, with unit-cell parameters a = 65.6, c = 101.4 Å, one protein molecule per asymmetric unit and 37% solvent content. This is the first report of the crystallization of a class C acid phosphatase.

  2. Recombinant Lactococcus lactis fails to secrete bovine chymosine

    Science.gov (United States)

    Luerce, Tessália Diniz; Azevedo, Marcela Santiago Pacheco; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Pontes, Daniela Santos

    2014-01-01

    Bovine chymosin is an important milk-clotting agent used in the manufacturing of cheeses. Currently, the production of recombinant proteins by genetically modified organisms is widespread, leading to greatly reduced costs. Lactococcus (L.) lactis, the model lactic acid bacterium, was considered a good candidate for heterologous chymosin production for the following reasons: (1) it is considered to be a GRAS (generally regarded as safe) microorganism, (2) only one protease is present on its surface, (3) it can secrete proteins of different sizes, and (4) it allows for the direct production of protein in fermented food products. Thus, three genetically modified L. lactis strains were constructed to produce and target the three different forms of bovine chymosin, prochymosin B, chymosin A and chymosin B to the extracellular medium. Although all three proteins were stably produced in L. lactis, none of the forms were detected in the extracellular medium or showed clotting activity in milk. Our hypothesis is that this secretion deficiency and lack of clotting activity can be explained by the recombinant protein being attached to the cell envelope. Thus, the development of other strategies is necessary to achieve both production and targeting of chymosin in L. lactis, which could facilitate the downstream processing and recovery of this industrially important protein. PMID:25482140

  3. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  4. Mismatch Repair during Homologous and Homeologous Recombination

    Science.gov (United States)

    Spies, Maria; Fishel, Richard

    2015-01-01

    Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans. PMID:25731766

  5. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Purpose: To develop processes for effective isolation and purification of recombinant human plasminogen activator (rhPA) from transgenic rabbit milk. Methods: Immunoaffinity chromatography was selected and improved by a special polyol-responsive monoclonal antibody (PR-mAb). Alteplase was used as immunogen ...

  6. Recombinant Poliovirus circulation among healthy children ...

    African Journals Online (AJOL)

    In order to assess the level of polio virus with natural recombinant genome and wild polio virus circulating in the environment of healthy children aged 0 to 5 years in Abidjan, 130 polio viruses made up of 26 polio type 1, 55 type 2 and 49 type 3 were identified by neutralisation test with monoclonal antibodies and restriction ...

  7. RECOMBINANT HUMAN INTERLEUKIN-3 IN CLINICAL ONCOLOGY

    NARCIS (Netherlands)

    DEVRIES, EGE; VANGAMEREN, MM; WILLEMSE, PHB

    Interleukin 3 (IL-3) is a multipotent hematopoietic growth factor which became available as a recombinant (rh) growth factor for use in the clinic a few years ago. In dose-finding studies, this hematopoietic growth factor has been evaluated without and after standard chemotherapy. Stimulatory

  8. Carbon source feeding strategies for recombinant protein ...

    African Journals Online (AJOL)

    Pichia pastoris and Pichia methanolica have been used as expression systems for the production of recombinant protein. The main problems of the production are the slow hierarchic consumption of ethanol and acetate which cause toxicity problems due to methanol accumulation when this surpasses 0.5 gl-1. In some ...

  9. Recombinant human activated protein C (Xigris)

    NARCIS (Netherlands)

    Levi, M. [=Marcel M.; de Jonge, E.; van der Poll, T.

    2002-01-01

    An impaired function of the protein C pathway plays a central role in the pathogenesis of sepsis. Administration of human recombinant activated protein C (Xigris) may restore the dysfunctional anticoagulant mechanism and prevent amplification and propagation of thrombin generation and formation of

  10. Asthma and Therapeutics: Recombinant Therapies in Asthma

    Directory of Open Access Journals (Sweden)

    Cockcroft Donald W

    2005-03-01

    Full Text Available Abstract Numerous recombinant therapies are being investigated for the treatment of asthma. This report reviews the current status of several of these novel agents. Anti-immunoglobulin (IgE (omalizumab, Xolair markedly inhibits all aspects of the allergen challenge in subjects who have reduction of free serum IgE to undetectable levels. Several clinical studies in atopic asthma have demonstrated benefit by improved symptoms and lung function and a reduction in corticosteroid requirements. Early use in atopic asthmatics may be even more effective. Several approaches target interleukin (IL-4. Soluble IL-4 receptor has been shown to effectively replace inhaled corticosteroid; further studies are under way. Recombinant anti-IL-5 and recombinant IL-12 inhibit blood and sputum eosinophils and allergen-induced eosinophilia without any effect on airway responsiveness, allergen-induced airway responses, or allergen-induced airway hyperresponsiveness. Efalizumab, a recombinant antibody that inhibits lymphocyte trafficking, is effective in psoriasis. A bronchoprovocation study showed a reduction in allergen-induced late asthmatic response and allergen-induced eosinophilia, which suggests that it should be effective in clinical asthma. These exciting novel therapies provide not only promise of new therapies for asthma but also valuable tools for investigation of asthma mechanisms.

  11. Expression of recombinant Streptokinase from local Egyptian ...

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... DISCUSSION. Isolation and identification of Streptococcus sp. In this study, SK isolated from local Streptococcus sp. SalMarEg was efficiently produced in a recombinant bioactive form. It is worthy to mention that the binding of plasminogen by pathogenic Group C streptococci isolated from human, horses, ...

  12. Expression of recombinant Streptokinase from local Egyptian ...

    African Journals Online (AJOL)

    We reported for the first time the expression of a recombinant SK from a local Streptococcus strain. When produced on industrial scale this r-SK may substantially contribute to reducing the costs of thrombolytic therapy in developing countries. In this study, a highly purified r-SK from Streptococcus sp. isolated from Egyptian ...

  13. CATALYTIC RECOMBINER FOR A NUCLEAR REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-07-01

    A hydrogen-oxygen recombiner is described for use with water-boiler type reactors. The catalyst used is the wellknown platinized alumina, and the novelty lies in the structural arrangement used to prevent flashback through the gas input system. The recombiner is cylindrical, the gases at the input end being deflected by a baffle plate through a first flashback shield of steel shot into an annular passage adjacent to and extending the full length of the housing. Below the baffle plate the gases flow first through an outer annular array of alumina pellets which serve as a second flashback shield, a means of distributing the flowing gases evenly and as a means of reducing radiation losses to the walls. Thereafter the gases flow inio the centrally disposed catalyst bed where recombination is effected. The steam and uncombined gases flow into a centrally disposed cylindrical passage inside the catalyst bod and thereafter out through the exit port. A high rate of recombination is effected.

  14. Expression and characterization of recombinant human serum ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... Key words: C-peptide, human serum albumin, recombinant fusion protein, Pichia pastoris, bioactivity, biological half-time. ... lines were purchased from Cell bank of Chinese academy of sciences (Shanghai, China). .... agarose electrophoresis and DNA sequencing (data was not shown). Expression and ...

  15. Therapeutic implications of recombinant human erythropoietin in ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-29

    Dec 29, 2006 ... The introduction of recombinant human erythropoietin (RHUEPO) has revolutionised the treatment strategies for patients suffering with anaemia of chronic renal disease and chronic heart failure. Clinical studies and several observational evidences have demonstrated that RHUEPO is also useful in various.

  16. Recombinant Supercharged Polypeptides Restore and Improve Biolubrication

    NARCIS (Netherlands)

    Veeregowda, Deepak H.; Kolbe, Anke; van der Mei, Henny C.; Busscher, Henk J.; Herrmann, Andreas; Sharma, Prashant K.

    2013-01-01

    Recombinant supercharged polypeptides (SUPs) with low cytotoxicity are developed and applied to rejuvenate the lubrication of naturally occurring salivary conditioning films (SCFs). SUPs with 72 positive charges adsorbed and rigidified the SCFs and recruited mucins to form a hydrated layer. These

  17. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  18. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  19. Theory of dielectronic recombination and plasma effects

    International Nuclear Information System (INIS)

    Yukap Hahn

    2000-01-01

    Current status of the various theoretical approaches to calculation of dielectronic recombination rates is summarized, with emphasis on the available data base and on the plasma effects of both the plasma ion (and external) fields and plasma electron collisional effects which seriously affect the rates and complicate compilation of data. (author)

  20. Ultramicroscopic observation of recombinant adenoassociated virus ...

    African Journals Online (AJOL)

    The purpose of this investigation was to compare the effects of different relative humidity (RH) on the microcosmic conformation of the recombinant AAV-2 virion at 22°C. rAAV-2 virions prepared on copper grid were placed in a high, middle or low RH cabinet and incubated for 72, 48 and 24 h, respectively. The rAAV-2 ...

  1. Expression and characterization of recombinant ecarin.

    NARCIS (Netherlands)

    Jonebring, A.; Lange, U.; Bucha, E.; Deinum, J.; Elg, M.; Lovgren, A.

    2012-01-01

    The snake venom protease ecarin from Echis carinatus was expressed in stable transfected CHO-S cells grown in animal component free cell culture medium. Recombinant ecarin (r-ecarin) was secreted from the suspension adapted Chinese Hamster Ovary (CHO-S) host cells as a pro-protein and activation to

  2. Radiative recombination of excitons in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    A theory for calculating the radiative lifetime of excitons in amorphous semiconductors is presented. Four possibilities of excitonic radiative recombination are considered and the corresponding rates are derived at thermal equilibrium. The radiative lifetime is calculated from the inverse of the maximum rate for all the four possibilities. Results agree very well with experiments

  3. Correlations in the Parton Recombination Model

    Energy Technology Data Exchange (ETDEWEB)

    Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); RIKEN BNL Research Center, Brookhaven Nat. Lab., Upton, NY 11973 (United States); Fries, R.J. [School of Physics and Astronomy, Univ. of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States)

    2006-08-07

    We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.

  4. Production, purification and characterization of two recombinant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Two recombinant DNA-derived variants of ovine growth hormone were produced, purified, characterized and compared with the authentic pituitary derived GH. The variants oGH3 and oGH5 were isolated by differential centrifugation method and were purified after refolding by ion-exchange.

  5. Gas recombination assembly for electrochemical cells

    Science.gov (United States)

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  6. Improving recombinant protein solubility in Escherichia coli ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... capable of improving solubility ratio of human lysozyme. All these studies show that while this approach has been very successful for a large number of unrelated sub- strates, there is no guarantee that chaperones co- overproduction will improve the folding of a recombinant protein. For the first time in this ...

  7. Recombination times in germanium under high pressure

    International Nuclear Information System (INIS)

    Kuyt, J.H.

    1975-01-01

    The influence of pressure on a well defined recombination process was studied. The centres were introduced by γirradiation and the lifetime determined by the decay time of photoconductivity. An optical pressure vessel is described which allows for a hydrostatic variation of 3000 bars. The diffusion constant and lifetime measurements are presented and analysed. (V.J.C.)

  8. Virus efficacy of recombined Autographa californica M ...

    African Journals Online (AJOL)

    Ectropis obliqua is a major tea pest and chitin synthase (CHS) plays a key role in the pest growth and development. A 192 bp conserved domain from E. obliqua CHS gene was cloned and it was used to construct recombined Autographa californica M nucleopolyhedrovirus (AcMNPV) with double-stranded RNA interference ...

  9. Purification of human recombinant granulocyte colony stimulating ...

    African Journals Online (AJOL)

    In Escherichia coli, recombinant proteins were produced either as three dimensionally folded forms or as unfolded forms, inclusion body (IB). The formation of IB was a frequent consequence of high-level protein production and inadequacy of folding agents namely chaperones in the cytoplasm. The structure of the protein in ...

  10. A molecular recombination map of Antirrhinum majus

    Directory of Open Access Journals (Sweden)

    Hudson Andrew

    2010-12-01

    Full Text Available Abstract Background Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus. Results We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size. Conclusions The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.

  11. Extrachromosomal recombination substrates recapitulate beyond 12/23 restricted VDJ recombination in nonlymphoid cells.

    Science.gov (United States)

    Jung, David; Bassing, Craig H; Fugmann, Sebastian D; Cheng, Hwei-Ling; Schatz, David G; Alt, Frederick W

    2003-01-01

    V(D)J recombination occurs efficiently only between gene segments flanked by recombination signals (RSs) containing 12 and 23 base pair spacers (the 12/23 rule). A further limitation "beyond the 12/23 rule" (B12/23) exists at the TCRbeta locus and ensures Dbeta usage. Herein, we show that extrachromosomal V(D)J recombination substrates recapitulate B12/23 restriction in nonlymphoid cells. We further demonstrate that the Vbeta coding flank, the 12-RS heptamer/nonamer, and the 23-RS spacer each can significantly influence B12/23 restriction. Finally, purified core RAG1 and RAG2 proteins (together with HMG2) also reproduce B12/23 restriction in a cell-free system. Our findings indicate that B12/23 restriction of V(D)J recombination is cemented at the level of interactions between the RAG proteins and TCRbeta RS sequences.

  12. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    Science.gov (United States)

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  13. High recombination rate in natural populations of Plasmodium falciparum

    NARCIS (Netherlands)

    Conway, D. J.; Roper, C.; Oduola, A. M.; Arnot, D. E.; Kremsner, P. G.; Grobusch, M. P.; Curtis, C. F.; Greenwood, B. M.

    1999-01-01

    Malaria parasites are sexually reproducing protozoa, although the extent of effective meiotic recombination in natural populations has been debated. If meiotic recombination occurs frequently, compared with point mutation and mitotic rearrangement, linkage disequilibrium between polymorphic sites is

  14. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2011-07-01

    Full Text Available The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

  15. Ag/Bi2MoO6-x with enhanced visible-light-responsive photocatalytic activities via the synergistic effect of surface oxygen vacancies and surface plasmon

    Science.gov (United States)

    Wang, Danjun; Shen, Huidong; Guo, Li; Wang, Chan; Fu, Feng; Liang, Yucang

    2018-04-01

    In this study, a heterostructured Ag/Bi2MoO6-x photocatalyst was rationally designed and successfully fabricated via the deposition of plasmonic silver nanoparticles onto the surface of Bi2MoO6 with surface oxygen vacancy (denoted as Bi2MoO6-x). Bi2MoO6-x (Abbr. BMO6-x was first synthesized via a solvothermal synthesis and calcination process. The plasmonic silver nanoparticles were then loaded onto the surface of BMO6-x using a simple photoreduction process to form Ag/BMO6-x composite. Surface oxygen vacancies (SOVs) in BMO6-x were confirmed by electron paramagnetic resonance (EPR) spectrum. The structures of BMO6-xand Ag/BiMoO6-x) were characterized using high-resolution transmission electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Under visible light irradiation, sample Ag/BMO6-x exhibits a highest visible-light-responsive photocatalytic performance compared to those of pure-Bi2MoO6 (BMO), BMO6-x and Ag/BMO for the degradation of rhodamine B (RhB), which is attributed predominantly to the synergistic effect of SOVs and Ag surface plasmonic resonance (SPR) on the surface of Bi2MoO6-x leading to the efficient separation and migration of photogenerated electrons/holes and hence broadening light responsive region. The significant improvement of the migration and separation of photogenerated electrons/holes in the Ag/BMO6-x was evidenced by photoluminescence spectra, time-resolved fluorescence decay, photocurrent, and electrochemical impedance spectrum. The ESR with spin-trap technique and reactive species trapping experiments confirm that the mainly active species O2- and h+ are playing key roles in the RhB photodegradation process over Ag/BMO6-x. This study not only provides an understandable synergistic effect of SOVs and SPR Ag but also pioneers a new approach for fabricating a series of highly catalytically active metal-semiconductor photocatalysts with surface atom defects.

  16. Modelling of a passive autocatalytic hydrogen recombiner – a parametric study

    Directory of Open Access Journals (Sweden)

    Rożeń Antoni

    2015-03-01

    Full Text Available Operation of a passive autocatalytic hydrogen recombiner (PAR has been investigated by means of computational fluid dynamics methods (CFD. The recombiner is a self-active and self-adaptive device used to remove hydrogen from safety containments of light water nuclear reactors (LWR by means of a highly exothermic reaction with oxygen at the surface of a platinum or palladium catalyst. Different turbulence models (k-ω, k-ɛ, intermittency, RSM were applied in numerical simulations of: gas flow, heat and mass transport and chemical surface reactions occurring in PAR. Turbulence was found to improve mixing and mass transfer and increase hydrogen recombination rate for high gas flow rates. At low gas flow rates, simulation results converged to those obtained for the limiting case of laminar flow. The large eddy simulation technique (LES was used to select the best RANS (Reynolds average stress model. Comparison of simulation results obtained for two- and three-dimensional computational grids showed that heat and mass transfer occurring in PAR were virtually two-dimensional processes. The effect of hydrogen thermal diffusion was also discussed in the context of possible hydrogen ignition inside the recombiner.

  17. RNA recombination in Hepatitis delta virus: Identification of a novel naturally occurring recombinant

    Directory of Open Access Journals (Sweden)

    Chia-Chi Lin

    2017-12-01

    Full Text Available Background/Purpose: Hepatitis delta virus (HDV is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity. It replicates in the nucleus by host RNA polymerase via a rolling circle mechanism. Similar to many RNA viruses encoding their own RNA-dependent RNA polymerases, homologous recombination of HDV occurs in mixed-genotype infections and in cultured cells cotransfected with two HDV sequences, as demonstrated by molecular analyses. Methods: Among 237 published complete genomic sequences, 34 sequences were reported from the small and isolated Miyako Island, Japan, and belonged to the Asia-specific genotypes, HDV-2 and HDV-4 (the majority of them belonged to the known Miyako Island-specific subgroup, HDV-4M. We investigated the presence of naturally occurring HDV recombinant in Miyako Island using phylogenetic and recombination analyses. Results: We identified a two-switch HDV-4/4M intersubtype recombinant with an unbranched rod-like RNA genome. Conclusion: Our data suggest that RNA recombination plays an important role in the rapid evolution of HDV, allowing the production of new HDV strains with correct genomic structures. Keywords: hepatitis delta virus, RNA recombination

  18. [Expression of foreign gene by cysteine proteinase null recombinant baculovirus].

    Science.gov (United States)

    Likhoradova, O A; Ogaĭ, I D; Podpisnova, M M; Slack, J M; Azimova, Sh S

    2008-01-01

    The baculovirus expression vector systems (BEVS) are broadly used for producing foreign proteins in lepidopteran larvae. Most commercial BEVS are engineered to insert foreign genes into the polyhedrin (polh) locus and lack the polh gene. These viruses cannot produce occlusion bodies and are inconvenient for per os inoculation of larvae. Current knowledge in baculovirus genomics makes it possible to engineer BEVS into other parts of the virus genome. In our work, we have expressed recombinant M-HBsAg (middle surface antigen of human hepatitis B) in the baculovirus construct, rBmNPV-Deltav-cath-M-HBsAg, inserting foreign gene into the v-cath locus of the Bombyx mori nucleopolyhedrovirus (BmNPV) such that the v-cath gene is deleted and the native polh gene is retained. Silkworm larvae were infected per os and M-HBsAg was observed to be abundantly produced at a very late stage of infection.

  19. Genetic Analysis of Meiotic Recombination in Schizosaccharomyces pombe

    OpenAIRE

    Smith, Gerald R.

    2009-01-01

    The fission yeast Schizosaccharomyces pombe is well-suited for studying meiotic recombination. Methods are described here for culturing S. pombe and for genetic assays of intragenic recombination (gene conversion), intergenic recombination (crossing-over), and spore viability. Both random spore and tetrad analyses are described.

  20. Genetic analysis of japonica x indica recombinant inbred lines and ...

    African Journals Online (AJOL)

    Genetic analysis of japonica x indica recombinant inbred lines and characterization of major fragrance gene by microsatellite markers. ... At some SSR loci, new/recombinant alleles were observed, which indicate the active recombination between genomes of two rice varieties and can be used for linkage mapping once ...

  1. Regulation of homologous recombination at telomeres in budding yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2010-01-01

    Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms...... that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae....

  2. Recombinant zoster (shingles) vaccine, RZV - what you need to know

    Science.gov (United States)

    ... year in the United States get shingles. Shingles vaccine (recombinant) Recombinant shingles vaccine was approved by FDA in 2017 for the ... life-threatening allergic reaction after a dose of recombinant shingles vaccine, or has a severe allergy to any component ...

  3. Bimolecular recombination in ambipolar organic field effect transistors

    NARCIS (Netherlands)

    Charrier, D.S.H.; Vries, T. de; Mathijssen, S.G.J.; Geluk, E.-J.; Smits, E.C.P.; Kemerink, M.; Janssen, R.A.J.

    2009-01-01

    In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron–hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy

  4. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    Recombinant melittin was then successfully expressed in Escherichia coli. The activity of affinity-purified recombinant melittin was determined in human leukemic U937 cells. Results show that the recombinant melittin had the same anti-proliferative activity in human leukemic U937 cells in vitro as natural one. This shows the ...

  5. Characterization of silicon surface states at clean and copper contaminated condition via transient capacitance measurement

    Science.gov (United States)

    Song, Lihui; Xie, Meng; Yu, Xuegong; Yang, Deren

    2017-10-01

    Silicon surface is one of the dominant recombination sites for silicon solar cells. Generally, the recombination ability of silicon surface is characterized in terms of surface recombination velocity. However, silicon surface actually contain a series of donor and acceptor levels across the silicon band gap, and therefore the surface recombination velocity is too general to provide detailed information of the silicon surface states. In this paper, we used the measured transient capacitance data to extract the detailed information (like defect energy levels, defect densities, and capture cross sections) of the silicon surface states. Furthermore, the influence of copper contamination on silicon surface states was examined, and it was found that copper contamination can change the localized energy levels of "clean" silicon surface states to the band-like energy levels, meanwhile the defect densities and capture cross sections were both enlarged.

  6. A functional analysis of the spacer of V(DJ recombination signal sequences.

    Directory of Open Access Journals (Sweden)

    Alfred Ian Lee

    2003-10-01

    Full Text Available During lymphocyte development, V(DJ recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS, which serves as the binding site for the recombination machinery. The murine Jbeta2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason for its failure to recombine. Mutagenesis of the Jbeta2.6 RSS demonstrates that the sequences of the heptamer, nonamer, and spacer are all important. Strikingly, changes solely in the spacer sequence can result in dramatic differences in the level of recombination. The subsequent analysis of a library of more than 4,000 spacer variants revealed that spacer residues of particular functional importance are correlated with their degree of conservation. Biochemical assays indicate distinct cooperation between the spacer and heptamer/nonamer along each step of the reaction pathway. The results suggest that the spacer serves not only to ensure the appropriate distance between the heptamer and nonamer but also regulates RSS activity by providing additional RAG:RSS interaction surfaces. We conclude that while RSSs are defined by a "digital" requirement for absolutely conserved nucleotides, the quality of RSS function is determined in an "analog" manner by numerous complex interactions between the RAG proteins and the less-well conserved nucleotides in the heptamer, the nonamer, and, importantly, the spacer. Those modulatory effects are accurately predicted by a new computational algorithm for "RSS information content." The interplay between such binary and multiplicative modes of interactions provides a general model for analyzing protein-DNA interactions in various biological systems.

  7. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  8. Dissipative Stern-Gerlach recombination experiment

    International Nuclear Information System (INIS)

    Oliveira, Thiago R. de; Caldeira, A. O.

    2006-01-01

    The possibility of obtaining the initial pure state in a usual Stern-Gerlach experiment through the recombination of the two emerging beams is investigated. We have extended the previous work of Englert, Schwinger, and Scully [Found Phys. 18, 1045 (1988)] including the fluctuations of the magnetic field generated by a properly chosen magnet. As a result we obtained an attenuation factor to the possible revival of coherence when the beams are perfectly recombined. When the source of the magnetic field is a superconducting quantum interference device (SQUID) the attenuation factor can be controlled by external circuits and the spin decoherence directly measured. For the proposed SQUID with dimensions in the scale of microns the attenuation factor has been shown unimportant when compared with the interaction time of the spin with the magnet

  9. Charge exchange recombination x-ray laser

    International Nuclear Information System (INIS)

    Kawachi, Tetsuya; Namba, Shinichi; Kado, Masataka; Tanaka, Momoko; Hasegawa, Noboru; Nagashima, Keisuke; Kato, Yoshiaki

    2001-01-01

    A recombining plasma x-ray laser using charge exchange recombination (CXR) is proposed. Fully stripped carbon ions collide with neutral He atoms and become excited hydrogenlike carbon ions, in which the excited levels with n=3 or 4 are mainly populated. We calculate the gain coefficients of the Balmer α and the Lyman β line of the hydrogenlike carbon ions by the use of a collisional-radiative model in which the CXR process is included. The calculated result shows that substantial gain can be generated for the Lyman β and Balmer α lines and that the gain of the Balmer α line can be strongly enhanced by the effect of CXR. We also report a preliminary experiment of this scheme. (author)

  10. Thermostable exoshells fold and stabilize recombinant proteins.

    Science.gov (United States)

    Deshpande, Siddharth; Masurkar, Nihar D; Girish, Vallerinteavide Mavelli; Desai, Malan; Chakraborty, Goutam; Chan, Juliana M; Drum, Chester L

    2017-11-13

    The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated control. Thermolabile proteins internalized by tES are resistant to thermal, organic, chaotropic, and proteolytic denaturation and can be released from the tES assembly with mild pH titration followed by proteolysis.

  11. Multiple Exponential Recombination for Differential Evolution.

    Science.gov (United States)

    Xin Qiu; Kay Chen Tan; Jian-Xin Xu

    2017-04-01

    Differential evolution (DE) is a popular population-based metaheuristic approach for solving numerical optimization problems. In recent years, considerable research has been devoted to the development of new mutation strategies and parameter adaptation mechanisms. However, as one of the basic algorithmic components of DE, the crossover operation has not been sufficiently examined in existing works. Most of the main DE variants solely employ traditional binomial recombination, which has intrinsic limitations in handling dependent subsets of variables. To fill this research niche, we propose a multiple exponential recombination that inherits all the main advantages of existing crossover operators while possessing a stronger ability in managing dependent variables. Multiple segments of the involved solutions will be exchanged during the proposed operator. The properties of the new scheme are examined both theoretically and empirically. Experimental results demonstrate the robustness of the proposed operator in solving problems with unknown variable interrelations.

  12. Recombination clumping factor during cosmic reionization

    International Nuclear Information System (INIS)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2014-01-01

    We discuss the role of recombinations in the intergalactic medium, and the related concept of the clumping factor, during cosmic reionization. The clumping factor is, in general, a local quantity that depends on both the local overdensity and the scale below which the baryon density field can be assumed smooth. That scale, called the filtering scale, depends on over-density and local thermal history. We present a method for building a self-consistent analytical model of inhomogeneous reionization, assuming the linear growth rate of the density fluctuation, which simultaneously accounts for these effects. We show that taking into account the local clumping factor introduces significant corrections to the total recombination rate, compared to the model with a globally uniform clumping factor.

  13. Regulation of Homologous Recombination by SUMOylation

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina

    , deletions, and genome rearrangements that can lead to cell death or cancer in humans. The post-translational modification by SUMO (small ubiquitinlike modifier) has proven to be an important regulator of HR and genome integrity, but the molecular mechanisms responsible for these roles are still unclear......Double-strand breaks (DSBs) are one of the most deleterious types of DNA lesions challenging genome integrity. The DNA damage response (DDR) promotes fast and effective detection and repair of the damaged DNA, leading to cell cycle arrest through checkpoint activation and the recruitment of repair...... factors such as the homologous recombination (HR) machinery. HR constitutes the main DSB repair pathway in Saccharomyces cerevisiae and despite being largely considered an error-free process and essential for genome stability, uncontrolled recombination can lead to loss of heterozygosity, translocations...

  14. Recombination models for defects in silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steingrube, Silke

    2011-07-06

    Rocombination of charge carriers via defects is a substantial loss mechanism in solar cells. In this work, recombination models for three defect types in crystalline silicon (c-Si) solar cells are developed and analyzed. First, a model is developed to describe the injection dependence of the effective surface recombination velocity S{sub eff} of both SiN{sub x} and Al{sub 2}O{sub 3} passivated c-Si surfaces. This model relies on a damaged layer in the silicon close to the interface. A suitable parametrization is given that allows to reproduce the measured effective surface recombination velocity S{sub eff} of the investigated interfaces for all relevant injection densities and dopant densities. With the help of this model, we discuss possible reasons for the damage on a microscopic scale. Second, the interface between amorphous and crystalline silicon is investigated. A Shockley-Read-Hall (SRF) model is suggested to approximate the amphoteric properties of the defects at the interface. In contrast to the exact model, the approximate model has a closed-form-solution and is therefore easily integrated into device simulators. Physically motivated error bounds are derived which can help to decide in which cases the simplified model may be applied. For typical injection densities at interfaces, the error of the SRH model is small if the correlation energy of the donor- und acceptor-like defect distribution is positive and if the properties of charged defects are described by asymmetric capture cross sections for electrons and holes. In addition, the defect distribution must lie in between the quasi-Fermi levels for traps. In low-injection, e.g. when applied to the p-n junction of a solar cell or at low illumination levels, it may fail dramatically. Further, dark current-voltage curves (I-V curves) of c-Si solar cells having diode-ideality factors n{sub D} > 2 in forward direction, i.e. increase sub-exponentially in certain voltage ranges, are analyzed. These &apos

  15. Recombinant cells and organisms having persistent nonstandard amino acid dependence and methods of making them

    Science.gov (United States)

    Church, George M.; Mandell, Daniel J.; Lajoie, Marc J.

    2017-12-05

    Recombinant cells and recombinant organisms persistently expressing nonstandard amino acids (NSAAs) are provided. Methods of making recombinant cells and recombinant organisms dependent on persistently expressing NSAAs for survival are also provided. These methods may be used to make safe recombinant cells and recombinant organisms and/or to provide a selective pressure to maintain one or more reassigned codon functions in recombinant cells and recombinant organisms.

  16. Expression, purification and characterization of recombinant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... aggregation activity analysis, we found that the anti-thrombin activity of the fusion protein did not change comparing with the ... the recombinant protein r-HV into the expression vector pPIC9K and pPIC9K1 and pPIC9K2 were ..... coagulation proteases (Dodt et al., 1984; Seemmuller et al., 1986). Hirudin is a ...

  17. DSMC Modeling of Flows with Recombination Reactions

    Science.gov (United States)

    2017-06-23

    Reactions S. Gimelshein, I. Wysong Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680 Air Force Research...dimensional flows, modeling is usually con- ducted for Knudsen numbers Kn > 0.001, where the impact of recombination reactions is almost always minor, so...prac- tical applicability of the DSMC method. These methods have already been tested for reacting air flows.20 Today, modeling of gas flows at

  18. Modelling of procecces in catalytic recombiners

    International Nuclear Information System (INIS)

    Boehm, J.

    2007-01-01

    In order to achieve a high degree of safety in nuclear power plants and prevent possible accident scenarios, their consequences are calculated and analysed with numeric codes. One of the most important part of nuclear safety research of hazardous incidents are development and validation of these numeric models, which are implemented into accident codes. The severe hydrogen release during a core meltdown is one of the considered scenario of performed accident analyses. One of the most important measure for the elimination of the hydrogen is catalytic recombiners. Converting the hydrogen with the atmospheric oxygen to water vapor in an exothermic reaction will prevent possible detonation of the hydrogen/air atmosphere. Within the dissertation the recombiner simulation REKO-DIREKT was developed and validated by an extensive experimental database. The performance of recombiners with regard to the conversion of the hydrogen and the temperature development is modelled. The REKO-DIREKT program is unique and has made significant revolution in research of hydrogen safety. For the first time it has been possible to show the performance of the recombiner so great in detail by using REKO-DIREKT. In the future engineers of nuclear power plants will have opportunity to have precise forecasts about the process of the possible accidents with hydrogen release. Also with presence of water vapor or with oxygen depletion which are included in the model. The major discussion of the hydrogen ignition at hot catalyst steel plates can be evaluated in the future with REKO-DIREKT more reliably than the existing used models. (orig.)

  19. Cultivating Insect Cells To Produce Recombinant Proteins

    Science.gov (United States)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  20. Ancestries of a recombining diploid population.

    Science.gov (United States)

    Sainudiin, R; Thatte, B; Véber, A

    2016-01-01

    We derive the exact one-step transition probabilities of the number of lineages that are ancestral to a random sample from the current generation of a bi-parental population that is evolving under the discrete Wright-Fisher model with n diploid individuals. Our model allows for a per-generation recombination probability of r . When r = 1, our model is equivalent to Chang's (Adv Appl Probab 31:1002-1038, 1999) model for the karyotic pedigree. When r = 0, our model is equivalent to Kingman's (Stoch Process Appl 13:235-248, 1982) discrete coalescent model for the cytoplasmic tree or sub-karyotic tree containing a DNA locus that is free of intra-locus recombination. When 0 r r . Thus, our family of models indexed by r ∈ [0, 1] connects Kingman's discrete coalescent to Chang's pedigree in a continuous way as r goes from 0 to 1. For large populations, we also study three properties of the ancestral process corresponding to a given r ∈ (0, 1): the time Tn to a most recent common ancestor (MRCA) of the population, the time Un at which all individuals are either common ancestors of all present day individuals or ancestral to none of them, and the fraction of individuals that are common ancestors at time Un. These results generalize the three main results of Chang's (Adv Appl Probab 31:1002-1038, 1999). When we appropriately rescale time and recombination probability by the population size, our model leads to the continuous time Markov chain called the ancestral recombination graph of Hudson (Theor Popul Biol 23:183-201, 1983) and Griffiths (The two-locus ancestral graph, Institute of Mathematical Statistics 100-117, 1991).

  1. Dissociation of recombinant prion autocatalysis from infectivity

    OpenAIRE

    Noble, Geoffrey P; Supattapone, Surachai

    2015-01-01

    Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication – that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and ...

  2. Development of Mycoplasma hyopneumoniae Recombinant Vaccines.

    Science.gov (United States)

    Marchioro, Silvana Beutinger; Simionatto, Simone; Dellagostin, Odir

    2016-01-01

    Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Research using genome-based approach has the potential to elucidate the biology and pathogenesis of M. hyopneumoniae and contribute to the development of more effective vaccines. Here, we describe the protocol for developing M. hyopneumoniae recombinant vaccines using reverse vaccinology approaches.

  3. Kinetic studies of ion - recombination in gases

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, K.J.; Bhave, R.N.; Cooper, R. [Melbourne Univ., Parkville, VIC (Australia). Dept. of Chemistry

    1996-12-31

    Full text: Subsequent to primary ionisation/excitation and dissociation events in irradiated systems, the medium relaxes by various secondary processes which may also be precursors to lasting chemical and physical changes in the system. Pulse radiolysis techniques can be successfully utilised to directly observe such processes so that kinetic parameters may be determined to subsequently accurately model these processes in irradiated systems. Time resolved microwave absorption techniques on a Febetron 706 pulsed electron beam system have been used to study ion recombination in simple gas systems. The microwave absorption method relies on the mobility of charged species within the system and effectively measures an ac-conductivity of the irradiated medium. The technique has a time resolution of about one nanosecond. The decay of conductivity in irradiated gases over the pressure range 50 to 1500 torr has been measured on time scales from 10 nanoseconds to 10 microseconds. Bulk gas pressure and ion densities were such that measurements yielded recombination coefficients for dimeric rare gas cations with thermal electrons. The recombination rate constant, {alpha}{sub T}, is shown to be both independent and dependent on the total pressure in the system ({alpha}{sub T} = {alpha}{sub 2} + {alpha}{sub 3} [M]; {alpha}{sub T} has values up to approx 10{sup +14} L. M{sup -1} s{sup -1} ). Total recombination coefficients {alpha}{sub T} have been measured for the noble gases helium, neon, argon, krypton and xenon. Measurements have also been made for the simple diatomic molecules nitrogen and hydrogen. All the systems studied, except for argon, show both two and three body processes occurring. The three body or assisted process requires the thermalisation of electrons in the neighborhood of the positive ion prior capture. The two body effect is thought to be a radiative or dissociative process. The mechanistic implications of the pulse radiolysis results will be discussed in

  4. Recent advances in DNA repair and recombination.

    Science.gov (United States)

    Iwanejko, L A; Jones, N J

    1998-09-11

    The subjects of the talks at this 1-day DNA Repair Network meeting, held at City University, London on December 15, 1997, encompassed a range of topics and reflected some of the current areas of research in the United Kingdom. Topics included DNA double-strand break repair, V(D)J recombination, DNA ligases, the RecQ family of helicases and Bloom's syndrome, UVB and immunosuppression, the repair of oxidative damage and mismatch repair mechanisms.

  5. Dissociative recombination of small molecular ions

    International Nuclear Information System (INIS)

    Mul, P.M.

    1981-01-01

    In this thesis an analysis is given of merged electron-ion beam experiment and work on dissociative recombination of molecular ions and electrons is described. Chapter II covers a brief introduction of the theory of dissociative recombination. In chapter III, a description is given of the merged electron-ion beam experiment and a method is described which allows the determination of the mean angle between the electron and ion trajectories in a merged electron-ion beam experiment. In chapter IV a paper on the three dominant atmospheric diatomic ions NO + , O 2 + and N 2 + is presented and in chapter V the dissociative recombination for N 2 H + and N 2 D + is discussed. In chapter VI two papers on the polyatomic ions of the carbon-containing molecular ions are presented, and in chapter VII a letter with some results of the work presented in more detail in the chapters IV, V and VI is presented. The magnitude and the energy dependence of the cross-section measured by the merged beam technique and by other techniques is compared and discussed. (Auth.)

  6. Heavy-ion cooling and radiative recombination

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1988-09-01

    There is presently a large number of ion storage rings under construction which will use electron cooling for increasing the phase-space density of the stored ions in order to gain luminosity and resolution advantages for a variety of experiments. In this review a more general introduction to the electron-cooling technique is given. The atomic-physics aspects of electron-ion interactions at low relative velocity are identified. One of the most important processes is electron-ion radiative recombination because it can have strong implications on the operation of a storage ring employing electron cooling. Estimates are given of the ion-beam lifetime, as limited by recombination losses, as a function of electron density and temperature and for all values of the atomic number Z of the ions. The use of recombination processes in the electron cooler for atomic spectroscopy of few-electron heavy ions is discussed along with their implication on diagnostics of electron cooling. (orig.)

  7. Recombination-dependent concatemeric viral DNA replication.

    Science.gov (United States)

    Lo Piano, Ambra; Martínez-Jiménez, María I; Zecchi, Lisa; Ayora, Silvia

    2011-09-01

    The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. CFD modeling of passive autocatalytic recombiners*

    Directory of Open Access Journals (Sweden)

    Orszulik Magdalena

    2015-06-01

    Full Text Available This study deals with numerical modeling of passive autocatalytic hydrogen recombiners (PARs. Such devices are installed within containments of many nuclear reactors in order to remove hydrogen and convert it to steam. The main purpose of this work is to develop a numerical model of passive autocatalytic recombiner (PAR using the commercial computational fluid dynamics (CFD software ANSYS-FLUENT and tuning the model using experimental results. The REKO 3 experiment was used for this purpose. Experiment was made in the Institute for Safety Research and Reactor Technology in Julich (Germany. It has been performed for different hydrogen concentrations, different flow rates, the presence of steam, and different initial temperatures of the inlet mixture. The model of this experimental recombiner was elaborated within the framework of this work. The influence of mesh, gas thermal conductivity coefficient, mass diffusivity coefficients, and turbulence model was investigated. The best results with a good agreement with REKO 3 data were received for k-ɛ model of turbulence, gas thermal conductivity dependent on the temperature and mass diffusivity coefficients taken from CHEMKIN program. The validated model of the PAR was next implemented into simple two-dimensional simulations of hydrogen behavior within a subcompartment of a containment building.

  9. Antagonistic experimental coevolution with a parasite increases host recombination frequency

    Directory of Open Access Journals (Sweden)

    Kerstes Niels AG

    2012-02-01

    Full Text Available Abstract Background One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.

  10. Monitoring homologous recombination in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhuanying; Tang Li [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China); Li Meiru [South China Botanic Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Chen Lei; Xu Jie [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China); Wu Goujiang [South China Botanic Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Li Hongqing, E-mail: hqli@scnu.edu.cn [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China)

    2010-09-10

    Here we describe a system to assay homologous recombination during the complete life cycle of rice (Oryza sativa L.). Rice plants were transformed with two copies of non-functional GUS reporter overlap fragments as recombination substrate. Recombination was observed in all plant organs examined, from the seed stage until the flowering stage of somatic plant development. Embryogenic cells exhibited the highest recombination ability with an average of 3 x 10{sup -5} recombination events per genome, which is about 10-fold of that observed in root cells, and two orders of that observed in leaf cells. Histological analysis revealed that recombination events occurred in diverse cell types, but preferentially in cells with small size. Examples of this included embryogenic cells in callus, phloem cells in the leaf vein, and cells located in the root apical meristem. Steady state RNA analysis revealed that the expression levels of rice Rad51 homologs are positively correlated with increased recombination rates in embryogenic calli, roots and anthers. Finally, radiation treatment of plantlets from distinct recombination lines increased the recombination frequency to different extents. These results showed that homologous recombination frequency can be effectively measured in rice using a transgene reporter assay. This system will facilitate the study of DNA damage signaling and homologous recombination in rice, a model monocot.

  11. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  12. V(D)J recombination frequency is affected by the sequence interposed between a pair of recombination signals: sequence comparison reveals a putative recombinational enhancer element

    DEFF Research Database (Denmark)

    Roch, F A; Hobi, R; Berchtold, M W

    1997-01-01

    this activity suggests that the effect is no mediated through attachment of the recombination substrate to a nuclear matrix-associated recombination complex but through cis-activation. The presence of a 26 bp A-T-rich sequence motif in the 5' and 3' MARs of Emu and in all of the other upregulating fragments....... These we prepared by interposing between the recombination signal sequences (RSS) of the plasmid pBlueRec various fragments, including Emu, possibly affecting V(D)J recombination. Our work shows that sequences inserted between RSS 23 and RSS 12, with distances from their proximal ends of 26 and 284 bp...

  13. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  14. Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    B.M. Ribeiro

    1998-06-01

    Full Text Available The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs. Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV. The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.

  15. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference.

    Science.gov (United States)

    Segura, Joana; Ferretti, Luca; Ramos-Onsins, Sebastián; Capilla, Laia; Farré, Marta; Reis, Fernanda; Oliver-Bonet, Maria; Fernández-Bellón, Hugo; Garcia, Francisca; Garcia-Caldés, Montserrat; Robinson, Terence J; Ruiz-Herrera, Aurora

    2013-11-22

    Recombination allows faithful chromosomal segregation during meiosis and contributes to the production of new heritable allelic variants that are essential for the maintenance of genetic diversity. Therefore, an appreciation of how this variation is created and maintained is of critical importance to our understanding of biodiversity and evolutionary change. Here, we analysed the recombination features from species representing the major eutherian taxonomic groups Afrotheria, Rodentia, Primates and Carnivora to better understand the dynamics of mammalian recombination. Our results suggest a phylogenetic component in recombination rates (RRs), which appears to be directional, strongly punctuated and subject to selection. Species that diversified earlier in the evolutionary tree have lower RRs than those from more derived phylogenetic branches. Furthermore, chromosome-specific recombination maps in distantly related taxa show that crossover interference is especially weak in the species with highest RRs detected thus far, the tiger. This is the first example of a mammalian species exhibiting such low levels of crossover interference, highlighting the uniqueness of this species and its relevance for the study of the mechanisms controlling crossover formation, distribution and resolution.

  16. [Gene fusion of egfp & kan and recombinant plasmid construction by red mediated in vivo homologous recombination].

    Science.gov (United States)

    Wu, Yang; Li, Shan-Hu; Shi, Qing-Guo; Liu, Dang-Sheng; Zhou, Jian-Guang

    2007-07-01

    Recombineering, a new genetic engineering technology based on high efficiency in vivo homologous recombination, can be used in target DNA knock-in, knock-out and gene cloning. In the process of gene subcloning mediated by Recombineering technique, high-quality target DNA fragments were difficult to obtain using in vitro overlapping PCR,therefore the efficiency of in vivo homologous recombination was severely interrupted. To solve this problem, some technology improvements have been established based on the principle of Red recombinases. The PCR DNA fragments of egfp and kan genes with complementary sequences on the end of each fragment were co-introduced into a pcDNA3.1 vector and Red recombinases containing E. coli DY331 host cells by electroporation. A recombinant plasmid pcDNA3.1-egfp-kan was screened directly by antibiotic marker. The positive rates can reach to 45%. The EGFP gene expression of pcDNA3.1-egfp-kan can be observed by transient transfection of 293 eukaryotic cells.

  17. Mobility dependent recombination models for organic solar cells

    Science.gov (United States)

    Wagenpfahl, Alexander

    2017-09-01

    Modern solar cell technologies are driven by the effort to enhance power conversion efficiencies. A main mechanism limiting power conversion efficiencies is charge carrier recombination which is a direct function of the encounter probability of both recombination partners. In inorganic solar cells with rather high charge carrier mobilities, charge carrier recombination is often dominated by energetic states which subsequently trap both recombination partners for recombination. Free charge carriers move fast enough for Coulomb attraction to be irrelevant for the encounter probability. Thus, charge carrier recombination is independent of charge carrier mobilities. In organic semiconductors charge carrier mobilities are much lower. Therefore, electrons and holes have more time react to mutual Coulomb-forces. This results in the strong charge carrier mobility dependencies of the observed charge carrier recombination rates. In 1903 Paul Langevin published a fundamental model to describe the recombination of ions in gas-phase or aqueous solutions, known today as Langevin recombination. During the last decades this model was used to interpret and model recombination in organic semiconductors. However, certain experiments especially with bulk-heterojunction solar cells reveal much lower recombination rates than predicted by Langevin. In search of an explanation, many material and device properties such as morphology and energetic properties have been examined in order to extend the validity of the Langevin model. A key argument for most of these extended models is, that electron and hole must find each other at a mutual spatial location. This encounter may be limited for instance by trapping of charges in trap states, by selective electrodes separating electrons and holes, or simply by the morphology of the involved semiconductors, making it impossible for electrons and holes to recombine at high rates. In this review, we discuss the development of mobility limited

  18. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  19. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay

    DEFF Research Database (Denmark)

    Nikolaitchik, Olga A; Galli, Andrea; Moore, Michael D

    2011-01-01

    Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms...... between variants from different groups is further reduced compared with green fluorescent protein, indicating that sequence divergence interferes with recombination efficiency in the gag gene. Compared with identical sequences, we estimate that recombination rates are reduced by 3-fold and by 10- to 13...... of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses...

  20. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  1. Late replicating domains are highly recombining in females but have low male recombination rates: implications for isochore evolution.

    Directory of Open Access Journals (Sweden)

    Catherine J Pink

    Full Text Available In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in

  2. Late Replicating Domains Are Highly Recombining in Females but Have Low Male Recombination Rates: Implications for Isochore Evolution

    Science.gov (United States)

    Pink, Catherine J.; Hurst, Laurence D.

    2011-01-01

    In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in analysis of GC

  3. Development of a diagnostic method for neosporosis in cattle using recombinant Neospora caninum proteins

    Directory of Open Access Journals (Sweden)

    Dong Jinhua

    2012-05-01

    Full Text Available Abstract Background Neosporosis is an infectious disease primarily of cattle and dogs, caused by intracellular parasite, Neospora caninum. Neosporosis appears to be a major cause of abortion in dairy cattle worldwide and causes to huge economic loss to dairy industry. Results Recombinant surface associated antigen 1 (NcSAG1, NcSAG1 related sequence 2 (NcSRS2 and the dense granule antigen 2 (NcGRA2 of N. caninum were expressed either in silkworm or in Escherichia coli and purified. The purified recombinant proteins bound to the N. caninum-specific antibodies in serum samples from infected cattle as revealed by an enzyme-linked immunosorbent assay (ELISA. By co-immobilizing these recombinant proteins, a novel indirect ELISA was developed for detection of neosporosis. With the use of 32 serum samples, comprising 12 positive serum samples and 20 negative serum samples, the sensitivity and specificity of the assay were found to be 91.7 and 100%, respectively. Seventy-two serum samples from dairy farms were also tested and one was diagnosed with neosporasis with both this method and a commercial assay. Conclusions A diagnostic method employing recombinant proteins of N. caninum was developed. The method showed high sensitivity and specificity. Diagnostic test with field serum samples suggested its applicability to the practical diagnosis of neosporosis.

  4. Development of a diagnostic method for neosporosis in cattle using recombinant Neospora caninum proteins

    Science.gov (United States)

    2012-01-01

    Background Neosporosis is an infectious disease primarily of cattle and dogs, caused by intracellular parasite, Neospora caninum. Neosporosis appears to be a major cause of abortion in dairy cattle worldwide and causes to huge economic loss to dairy industry. Results Recombinant surface associated antigen 1 (NcSAG1), NcSAG1 related sequence 2 (NcSRS2) and the dense granule antigen 2 (NcGRA2) of N. caninum were expressed either in silkworm or in Escherichia coli and purified. The purified recombinant proteins bound to the N. caninum-specific antibodies in serum samples from infected cattle as revealed by an enzyme-linked immunosorbent assay (ELISA). By co-immobilizing these recombinant proteins, a novel indirect ELISA was developed for detection of neosporosis. With the use of 32 serum samples, comprising 12 positive serum samples and 20 negative serum samples, the sensitivity and specificity of the assay were found to be 91.7 and 100%, respectively. Seventy-two serum samples from dairy farms were also tested and one was diagnosed with neosporasis with both this method and a commercial assay. Conclusions A diagnostic method employing recombinant proteins of N. caninum was developed. The method showed high sensitivity and specificity. Diagnostic test with field serum samples suggested its applicability to the practical diagnosis of neosporosis. PMID:22558916

  5. Development of a diagnostic method for neosporosis in cattle using recombinant Neospora caninum proteins.

    Science.gov (United States)

    Dong, Jinhua; Otsuki, Takahiro; Kato, Tatsuya; Park, Enoch Y

    2012-05-04

    Neosporosis is an infectious disease primarily of cattle and dogs, caused by intracellular parasite, Neospora caninum. Neosporosis appears to be a major cause of abortion in dairy cattle worldwide and causes to huge economic loss to dairy industry. Recombinant surface associated antigen 1 (NcSAG1), NcSAG1 related sequence 2 (NcSRS2) and the dense granule antigen 2 (NcGRA2) of N. caninum were expressed either in silkworm or in Escherichia coli and purified. The purified recombinant proteins bound to the N. caninum-specific antibodies in serum samples from infected cattle as revealed by an enzyme-linked immunosorbent assay (ELISA). By co-immobilizing these recombinant proteins, a novel indirect ELISA was developed for detection of neosporosis. With the use of 32 serum samples, comprising 12 positive serum samples and 20 negative serum samples, the sensitivity and specificity of the assay were found to be 91.7 and 100%, respectively. Seventy-two serum samples from dairy farms were also tested and one was diagnosed with neosporasis with both this method and a commercial assay. A diagnostic method employing recombinant proteins of N. caninum was developed. The method showed high sensitivity and specificity. Diagnostic test with field serum samples suggested its applicability to the practical diagnosis of neosporosis.

  6. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Satoshi; Fukuda, Hideki [Kobe Univ. (Japan). Div. of Molecular Science; Mizuike, Atsuko; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2006-10-15

    The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying ss-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation. (orig.)

  7. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance.

    Science.gov (United States)

    Kempf, Brian J; Peersen, Olve B; Barton, David J

    2016-10-01

    RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3D(pol), as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3D(pol) may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3D(pol)-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3D(pol) decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3D(pol) increased the frequency of recombination. The 3D(pol) Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3D(pol) Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a polymerase

  8. Central role of the Holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2009-12-01

    Full Text Available Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA, BB0022 (ruvB, BB0797 (mutS, and BB0098 (mutS-II, showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the 'parental' vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together

  9. Characterization of heme binding to recombinant α1-microglobulin

    Directory of Open Access Journals (Sweden)

    Elena eKarnaukhova

    2014-12-01

    Full Text Available Background: Alpha-1-microglobulin (A1M, a small lipocalin protein found in plasma and tissues, has been identified as a heme and radical scavenger that may participate in the mitigation of toxicities caused by degradation of hemoglobin. The objective of this work was to investigate heme interactions with A1M in vitro using various analytical techniques and to optimize analytical methodology suitable for rapid evaluation of the ligand binding properties of recombinant A1M versions. Methods: To examine heme binding properties of A1M we utilized UV/Vis absorption spectroscopy, visible circular dichroism (CD, catalase-like activity, migration shift electrophoresis, and surface plasmon resonance (SPR, which was specifically developed for the assessment of His-tagged A1M. Results: The results of this study confirm that A1M is a heme binding protein that can accommodate heme at more than one binding site and/or in coordination with different amino acid residues depending upon heme concentration and ligand-to-protein molar ratio. UV/Vis titration of A1M with heme revealed an unusually large bathochromic shift, up to 38 nm, observed for heme binding to a primary binding site. UV/Vis spectroscopy, visible CD and catalase-like activity suggested that heme is accommodated inside His-tagged (tgA1M and tagless A1M (ntA1M in a rather similar fashion although the His-tag is very likely involved into coordination with iron of the heme molecule. SPR data indicated kinetic rate constants and equilibrium binding constants with KD values in a uM range. Conclusions: This study provided experimental evidence of the A1M heme binding properties by aid of different techniques and suggested an analytical methodology for a rapid evaluation of ligand-binding properties of recombinant A1M versions, also suitable for other His-tagged proteins.

  10. Recombination: the good, the bad and the variable.

    Science.gov (United States)

    Stapley, Jessica; Feulner, Philine G D; Johnston, Susan E; Santure, Anna W; Smadja, Carole M

    2017-12-19

    Recombination, the process by which DNA strands are broken and repaired, producing new combinations of alleles, occurs in nearly all multicellular organisms and has important implications for many evolutionary processes. The effects of recombination can be good , as it can facilitate adaptation, but also bad when it breaks apart beneficial combinations of alleles, and recombination is highly variable between taxa, species, individuals and across the genome. Understanding how and why recombination rate varies is a major challenge in biology. Most theoretical and empirical work has been devoted to understanding the role of recombination in the evolution of sex-comparing between sexual and asexual species or populations. How recombination rate evolves and what impact this has on evolutionary processes within sexually reproducing organisms has received much less attention. This Theme Issue focusses on how and why recombination rate varies in sexual species, and aims to coalesce knowledge of the molecular mechanisms governing recombination with our understanding of the evolutionary processes driving variation in recombination within and between species. By integrating these fields, we can identify important knowledge gaps and areas for future research, and pave the way for a more comprehensive understanding of how and why recombination rate varies. © 2017 The Authors.

  11. Dry phase titanium dioxide-mediated photocatalysis: Basis for in situ surface destruction of hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.P.; Watts, R.J. [Washington State Univ., Pullman, WA (United States). Dept. of Civil and Environmental Engineering

    1997-10-01

    The photocatalytic oxidation of 2,4,6-trichlorophenol (TCP) on the surface of titanium dioxide (TiO{sub 2}) at varying water contents was investigated to provide fundamental data for incorporating photocatalysts into the surface of pavements to promote the destruction of spilled organic chemicals. 2,4,6-Trichlorophenol, spiked onto a thin layer of TiO{sub 2}, was degraded to 20% of its original concentration over 24 h; the release of chloride confirmed the degradation of the parent compound on the surface of the dry TiO{sub 2}. Addition of water ({ge}25% by weight) to the TiO{sub 2} increased the rate of photocatalysis resulting in degradation of TCP to below detectable levels after 20 h. Based on competition studies using the hydroxyl radical scavengers, bicarbonate and 1-octanol, the proposed mechanisms for the dry phase photocatalytic degradation of TCP was oxidation by the valence band hole on the surface of the TiO{sub 2} particle or dehalogenation by superoxide radical anions. Competition studies also confirmed that the more rapid TCP oxidation on wet TiO{sub 2} was primarily the result of generation of hydroxyl radicals through oxidation of water by the valence band hole. The results show that dry phase TiO{sub 2}-mediated photocatalysis may be a potential system for the in situ surface destruction of chemicals that can be oxidized by nonhydroxyl radical mechanisms, such as valence band electron holes and dehalogenation processes.

  12. Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Manganelli Riccardo

    2005-01-01

    Full Text Available Abstract Background In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. Results The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat, was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the

  13. Creating Porcine Biomedical Models Through Recombineering

    Directory of Open Access Journals (Sweden)

    Lawrence B. Schook

    2006-03-01

    Full Text Available Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates traditionally used as models as well as new candidates (pigs and cattle. In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to ‘forward genetics’, in which gene(s responsible for a particular phenotype are identified by positional cloning (phenotype to genotype, the ‘reverse genetics’ approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype. The convergence of classical and reverse genetics, along with genomics, provides a working definition of a ‘genetic model’ organism (3. The recent construction of phenotypic maps defining quantitative trait loci (QTL in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT technology can provide ‘clones’ of genetically modified animals.

  14. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  15. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    , equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  16. Dissociative recombination of molecular ions H2+

    International Nuclear Information System (INIS)

    Abarenov, A.V.; Marchenko, V.S.

    1989-01-01

    The total cross sections of dissociation and dissociative recombination of slow electrons and molecular ions H 2 + have been calculated in terms of the quasiclassical and dipole approximations. In the calculations allowance was made for the quantum nature of vibrational motion of heavy particles and presence of autoionization of divergence states of the H 2 (Σ u , nl) molecules. It is shown that the H 2 + ion dissociation cross sections are dominant in increase of the electron energy in the ε >or approx. 2-3 eV region for H 2 + (v) ion distribution over the vibrational levels characteristic for the beam experiments. 15 refs.; 5 figs

  17. Population inversion in a stationary recombining plasma

    International Nuclear Information System (INIS)

    Otsuka, M.

    1980-01-01

    Population inversion, which occurs in a recombining plasma when a stationary He plasma is brought into contact with a neutral gas, is examined. With hydrogen as a contact gas, noticeable inversion between low-lying levels of H as been found. The overpopulation density is of the order of 10 8 cm -3 , which is much higher then that (approx. =10 5 cm -3 ) obtained previously with He as a contact gas. Relations between these experimental results and the conditions for population inversion are discussed with the CR model

  18. An introduction to recombination and linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mcpeek, M.S. [Univ. of Chicago, IL (United States)

    1996-12-31

    With a garden as his laboratory, Mendel was able to discern basic probabilistic laws of heredity. Although it first appeared as a baffling exception to one of Mendel`s principles, the phenomenon of variable linkage between characters was soon recognized to be a powerful tool in the process of chromosome mapping and location of genes of interest. In this introduction, we first describe Mendel`s work and the subsequent discovery of linkage. Next we describe the apparent cause of variable linkage, namely recombination, and we introduce linkage analysis. 33 refs., 1 fig., 2 tabs.

  19. Nanobodies and recombinant binders in cell biology

    Science.gov (United States)

    Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge

    2015-01-01

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137

  20. Hydrogen recombiner catalyst test supporting data

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  1. Recombinant DNA. Rifkin's regulatory revivalism runs riot.

    Science.gov (United States)

    David, P

    Jeremy Rifkin, activist opponent of genetic engineering, has adopted tactics of litigation, persuasion, and confrontation in his campaign to halt genetic experimentation. The Recombinant DNA Advisory Committee of the National Institutes of Health has often been the target of his criticism, most recently for its failure to prepare an environmental risk assessment for some DNA tests it approved. Rifkin has won support for his position from religious organizations in the United States, and in June 1983 persuaded an ecumenical group of religious leaders to ask Congress to ban genetic experiments that would affect the human germ line.

  2. ReCombine: a suite of programs for detection and analysis of meiotic recombination in whole-genome datasets.

    Directory of Open Access Journals (Sweden)

    Carol M Anderson

    Full Text Available In meiosis, the exchange of DNA between chromosomes by homologous recombination is a critical step that ensures proper chromosome segregation and increases genetic diversity. Products of recombination include reciprocal exchanges, known as crossovers, and non-reciprocal gene conversions or non-crossovers. The mechanisms underlying meiotic recombination remain elusive, largely because of the difficulty of analyzing large numbers of recombination events by traditional genetic methods. These traditional methods are increasingly being superseded by high-throughput techniques capable of surveying meiotic recombination on a genome-wide basis. Next-generation sequencing or microarray hybridization is used to genotype thousands of polymorphic markers in the progeny of hybrid yeast strains. New computational tools are needed to perform this genotyping and to find and analyze recombination events. We have developed a suite of programs, ReCombine, for using short sequence reads from next-generation sequencing experiments to genotype yeast meiotic progeny. Upon genotyping, the program CrossOver, a component of ReCombine, then detects recombination products and classifies them into categories based on the features found at each location and their distribution among the various chromatids. CrossOver is also capable of analyzing segregation data from microarray experiments or other sources. This package of programs is designed to allow even researchers without computational expertise to use high-throughput, whole-genome methods to study the molecular mechanisms of meiotic recombination.

  3. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  4. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...... a protocol for expressing Hbs with low intrinsic solubilities. Since the alpha- and beta-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression......-translational modifications. CONCLUSION/SIGNIFICANCE: Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need...

  5. Test tube systems with cutting/recombination operations

    Energy Technology Data Exchange (ETDEWEB)

    Freund, R. [Technische Universitaet Wien (Austria); Csuhaj-Varju, E. [Computer and Automation Institute, Budapest (Hungary); Wachtler, F. [Universitaet Wien (Austria)

    1996-12-31

    We introduce test tube systems based on operations that are closely related to the splicing operations, i.e. we consider the operations of cutting a string at a specific site into two pieces with marking them at the cut ends and of recombining two strings with specifically marked endings. Whereas in the splicing of two strings these strings are cut at specific sites and the cut pieces are recombined immediately in a crosswise way, in CR(cutting/recombination)-schemes cutting can happen independently from recombining the cut pieces. Test tube systems based on these operations of cutting and recombination turn out to have maximal generative power even if only very restricted types of input filters for the test tubes are used for the redistribution of the contents of the test tubes after a period of cuttings and recombinations in the test tubes. 10 refs.

  6. Dynamics at Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia Ceyer, Nancy Ryan Gray

    2010-05-04

    The 2009 Gordon Conference on Dynamics at Surfaces is the 30th anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state dynamics, non-adiabatic interactions in molecule-metal systems, photon induced desorption from semiconductor and metal surfaces, ultrafast x-ray and electron diffraction as probes of the dynamics of ablation, ultrafast vibrational spectroscopy of water surface dynamics, dynamics of a single adsorbate, growth at nano-scale mineral surfaces, dynamics of atom recombination on interstellar dust grains and the dynamics of the interaction of water with lipid bilayers. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology and biophysics.

  7. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch.

    Directory of Open Access Journals (Sweden)

    Fabio Vanoli

    2010-11-01

    Full Text Available Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different

  8. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems.

    Science.gov (United States)

    Rozwadowski, Kevin; Yang, Wen; Kagale, Sateesh

    2008-11-17

    Employing genomic DNA clones to characterise gene attributes has several advantages over the use of cDNA clones, including the presence of native transcription and translation regulatory sequences as well as a representation of the complete repertoire of potential splice variants encoded by the gene. However, working with genomic DNA clones has traditionally been tedious due to their large size relative to cDNA clones and the presence, absence or position of particular restriction enzyme sites that may complicate conventional in vitro cloning procedures. To enable efficient cloning and manipulation of genomic DNA fragments for the purposes of gene expression and reporter-gene studies we have combined aspects of the Gateway system and a bacteriophage-based homologous recombination (i.e. recombineering) system. To apply the method for characterising plant genes we developed novel Gateway and plant transformation vectors that are of small size and incorporate selectable markers which enable efficient identification of recombinant clones. We demonstrate that the genomic coding region of a gene can be directly cloned into a Gateway Entry vector by recombineering enabling its subsequent transfer to Gateway Expression vectors. We also demonstrate how the coding and regulatory regions of a gene can be directly cloned into a plant transformation vector by recombineering. This construct was then rapidly converted into a novel Gateway Expression vector incorporating cognate 5' and 3' regulatory regions by using recombineering to replace the intervening coding region with the Gateway Destination cassette. Such expression vectors can be applied to characterise gene regulatory regions through development of reporter-gene fusions, using the Gateway Entry clones of GUS and GFP described here, or for ectopic expression of a coding region cloned into a Gateway Entry vector. We exemplify the utility of this approach with the Arabidopsis PAP85 gene and demonstrate that the expression

  9. The estimation of recombination rates from population genetic data

    OpenAIRE

    2007-01-01

    Genetic recombination is an important process that generates new combinations of genes on which natural selection can operate. As such, an understanding of recombination in the human genome will provide insight into the evolutionary processes that have shaped our genetic history. The aim of this thesis is to use samples of population genetic data to explore the patterns of variation in the rate of recombination in the human genome. To do this I introduce a novel means of estimating recombinat...

  10. Study of a photovoltaic cell to silicon tri grain under illumination in static mode: determination of the parameters of recombination

    International Nuclear Information System (INIS)

    ZERBO Issa

    2000-01-01

    A study of the photovoltaic cell to silicon tri grain under illumination functioning at a static normal rate is presented. The determination of the parameters of recombination relies on the analysis of the photo-answer of the photovoltaic cell. The length of diffusion L, the speeds of recombination of minority carriers and respectively on the surface of the junction and with the back face of the base of the photovoltaic cell are extracted thanks to the measurement from the from short-circuit electricity and the tension from open circuit [fr

  11. Modified Fragmentation Function from Quark Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, A.; Wang, Enke; Wang, Xin-Nian

    2005-07-26

    Within the framework of the constituent quark model, it isshown that the single hadron fragmentation function of a parton can beexpressed as a convolution of shower diquark or triquark distributionfunction and quark recombination probability, if the interference betweenamplitudes of quark recombination with different momenta is neglected.Therecombination probability is determined by the hadron's wavefunction inthe constituent quark model. The shower diquark or triquark distributionfunctions of a fragmenting jet are defined in terms of overlappingmatrices of constituent quarks and parton field operators. They aresimilar in form to dihadron or trihadron fragmentation functions in termsof parton operator and hadron states. Extending the formalism to thefield theory at finite temperature, we automatically derive contributionsto the effective single hadron fragmentation function from therecombination of shower and thermal constituent quarks. Suchcontributions involve single or diquark distribution functions which inturn can be related to diquark or triquark distribution functions via sumrules. We also derive QCD evolution equations for quark distributionfunctions that in turn determine the evolution of the effective jetfragmentation functions in a thermal medium.

  12. Sweetness characterization of recombinant human lysozyme.

    Science.gov (United States)

    Matano, Mami; Nakajima, Kana; Kashiwagi, Yutaka; Udaka, Shigezo; Maehashi, Kenji

    2015-10-01

    Lysozyme, a bacteriolytic enzyme, is widely distributed in nature and is a component of the innate immune system. It is established that chicken egg lysozyme elicits sweetness. However, the sweetness of human milk lysozyme, which is vital for combating microbial infections of the gastrointestinal tract of breast-fed infants, has not been characterized. This study aimed to assess the elicitation of sweetness using recombinant mammalian lysozymes expressed in Pichia pastoris. Recombinant human lysozyme (h-LZ) and other mammalian lysozymes of mouse, dog, cat and bovine milk elicited similar sweetness as determined using a sensory test, whereas bovine stomach lysozyme (bs-LZ) did not. Assays of cell cultures showed that h-LZ activated the human sweet taste receptor hT1R2/hT1R3, whereas bs-LZ did not. Point mutations confirmed that the sweetness of h-LZ was independent of enzyme activity and substrate-binding sites, although acidic amino acid residues of bs-LZ played a significant role in diminishing sweetness. Therefore, we conclude that elicitation of sweetness is a ubiquitous function among all lysozymes including mammalian lysozymes. These findings may provide novel insights into the biological implications of T1R2/T1R3-activation by mammalian lysozyme in the oral cavity and gastrointestinal tract. However, the function of lysozyme within species lacking the functional sweet taste receptor gene, such as cat, is currently unknown. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Simulation and Optimisation of CLIC's recombination complex

    CERN Document Server

    Costa, Raul; Barroso, Manuel

    In this thesis we present the first Placet2 recombination simulations of the drive beam recombination complex (DBRC) design for the compact linear collider (CLIC). We start by presenting a review of the CLIC project and the DBRC’s role and design within it. We then discuss some of the core principles of beam dynamics and how tracking codes like Placet2 implement them. We follow that by presenting the design issues raised by our simulations and our proposed strategy to address them, key among which is a previously unknown parabolic dependency of the longitudinal position to the momentum (T 566 ), which threat- ens the efficiency of the power extraction structures. Through iterative opti- misation of the design, we eliminated this aberration both in the delay loop and in combiner ring 1. We also found the beam’s horizontal emittance to be significantly over the design budget (150 μm) and attempted to meet that budget, reaching 157 μm. In order to obtain this emittance value, an update to the combiner ring...

  14. The landscape of recombination in African Americans

    Science.gov (United States)

    Hinch, Anjali G.; Tandon, Arti; Patterson, Nick; Song, Yunli; Rohland, Nadin; Palmer, Cameron D.; Chen, Gary K.; Wang, Kai; Buxbaum, Sarah G.; Akylbekova, Meggie; Aldrich, Melinda C.; Ambrosone, Christine B.; Amos, Christopher; Bandera, Elisa V.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Bock, Cathryn H.; Boerwinkle, Eric; Cai, Qiuyin; Caporaso, Neil; Casey, Graham; Cupples, L. Adrienne; Deming, Sandra L.; Diver, W. Ryan; Divers, Jasmin; Fornage, Myriam; Gillanders, Elizabeth M.; Glessner, Joseph; Harris, Curtis C.; Hu, Jennifer J.; Ingles, Sue A.; Isaacs, Williams; John, Esther M.; Kao, W. H. Linda; Keating, Brendan; Kittles, Rick A.; Kolonel, Laurence N.; Larkin, Emma; Le Marchand, Loic; McNeill, Lorna H.; Millikan, Robert C.; Murphy, Adam; Musani, Solomon; Neslund-Dudas, Christine; Nyante, Sarah; Papanicolaou, George J.; Press, Michael F.; Psaty, Bruce M.; Reiner, Alex P.; Rich, Stephen S.; Rodriguez-Gil, Jorge L.; Rotter, Jerome I.; Rybicki, Benjamin A.; Schwartz, Ann G.; Signorello, Lisa B.; Spitz, Margaret; Strom, Sara S.; Thun, Michael J.; Tucker, Margaret A.; Wang, Zhaoming; Wiencke, John K.; Witte, John S.; Wrensch, Margaret; Wu, Xifeng; Yamamura, Yuko; Zanetti, Krista A.; Zheng, Wei; Ziegler, Regina G.; Zhu, Xiaofeng; Redline, Susan; Hirschhorn, Joel N.; Henderson, Brian E.; Taylor, Herman A.; Price, Alkes L.; Hakonarson, Hakon; Chanock, Stephen J.; Haiman, Christopher A.; Wilson, James G.; Reich, David; Myers, Simon R.

    2011-01-01

    Recombination, together with mutation, is the ultimate source of genetic variation in populations. We leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing-over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P<10−245). We identify a 17 base pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of African-enriched alleles of PRDM9. PMID:21775986

  15. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  16. Investigation on the recombination kinetics of the pyrolytic free-radicals in the irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Chengyue; Wu Yiyong; Yue Long; Shi Yaping; Xiao Jingdong

    2012-01-01

    Highlights: ► Free radicals behavior was exposure during the irradiation and anneal during the post storage. ► Both of the recombination and oxygen reaction affect the post-annealing evolution of free radicals. ► The activation energy and the surface reaction rate were calculated by the analysis of the free radical anneal process. - Abstract: The free radical behavior of 60 and 110 keV proton-irradiated polyimide were investigated using electron paramagnetic resonance measurements. The results indicate that during proton irradiation, a type of pyrolytic carbon free radical was formed with a g value of 2.0025. The radical population was found, after proton irradiation to decrease in a combination of an exponential and linear modes with an annealing time in the range of 50–120 °C. The exponential part indicated a radical recombination process while the linear part is due to the reaction of the radical with the ambient. Using the annealing results, the recombination activation energy of the radicals was determined as 12.4 ± 0.2 and 17.6 ± 0.2 kJ/mol for 60 and 110 keV irradiated polyimide, respectively, with a surface reaction rate of about 0.02/h. It is possible that the kinetic study presented here is used as one of the criteria for predicting the optical properties of polyimide material in spacecraft. The mechanism of the free radical evolution will be discussed in this paper.

  17. Recombination efficiency of molecular hydrogen on interstellar grains - II: A numerical study

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Ankan, Das; Kinsuk, Acharyya; Sonali, Chakrabarti

    2006-05-01

    Knowledge of the recombination time on the grain surfaces has been a major obstacle in deciding the production rate of molecular hydrogen and other molecules in the interstellar medium. We present a numerical study to compute this time for molecular hydrogen for various cloud and grain parameters. We also find the time dependence, particularly when a grain is freshly injected into the system. Apart from the fact that the recombination times seem to be functions of the grain parameters such as the activation barrier energy, temperature etc., our result also shows the dependence on the number of sites in the grain S and the effective accretion rate per site a s of atomic hydrogen. To put simply the average time that a pair of atomic hydrogens will take to produce one molecular hydrogen depends on how heavily the grain is already populated by atomic and molecular hydrogens and how fast the hopping and desorption times are. We show that if we write the average recombination time as T r ∼ S α /A H , where, A H is the hopping rate, then α could be much greater than 1 for all astrophysically relevant accretion rates. Thus the average formation rate of H 2 is also dependent on the grain parameters, temperature and the accretion rate. We believe that our results will affect the overall rate of the formation of complex molecules such as methanol which requires successive hydrogenation on the grain surfaces in the interstellar medium. (author)

  18. Effect of the interface recombination current fluctuations on 1/f noise of gated lateral bipolar transistors

    Science.gov (United States)

    Romas, Gregory G., Jr.; Ul Hoque, Md Mazhar; Celik-Butler, Zeynep

    2003-05-01

    A gated lateral bipolar transistor is a bulk lateral BJT in parallel with a MOSFET at the surface. The base current components such as surface recombination and space charge recombination currents are two of the dominant noise sources in the lateral BJT. If the gate is biased such that the MOSFET is in the off-state by accumulating carriers underneath the oxide in the base surface, the noise contribution by these two base current (Ib) components can be better understood. The carrier accumulation in the base surface can be modulated with different gate bias, which in turn will affect the fluctuation of the surface recombination current component. In this paper, noise power spectral density of gated lateral PNP transistors, fabricated in Texas Instruments Standard Bipolar Process, has been discussed. The base current noise power spectral density (SIb) was extracted from the cross-correlation noise spectrum measured between the base and the collector circuits for different gate biasing conditions. Based on the frequency exponent dependence of the noise power spectral density, it was found that the noise in the low frequency range is in the form of 1/f noise. SIb was found to be the dominant noise source for these devices as the coherence between the base and collector power spectral density was very close to 1. SIb was extracted for a base current range of 8 nA to 1microA for a gate bias range of 0V to 40V. The SPICE noise model parameters, AF and KF were also determined for each case from the dependence of SIb on Ib. The noise was measured on devices with different base width values.

  19. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    Science.gov (United States)

    Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying

    2014-01-01

    In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839

  20. Boundary mode lubrication of articular cartilage by recombinant human lubricin.

    Science.gov (United States)

    Gleghorn, Jason P; Jones, Aled R C; Flannery, Carl R; Bonassar, Lawrence J

    2009-06-01

    Lubrication of cartilage involves a variety of physical and chemical factors, including lubricin, a synovial glycoprotein that has been shown to be a boundary lubricant. It is unclear how lubricin boundary lubricates a wide range of bearings from tissue to artificial surfaces, and if the mechanism is the same for both soluble and bound lubricin. In the current study, experiments were conducted to investigate the hypothesis that recombinant human lubricin (rh-lubricin) lubricates cartilage in a dose-dependent manner and that soluble and bound fractions of rh-lubricin both contribute to the lubrication process. An rh-lubricin dose response was observed with maximal lubrication achieved at concentrations of rh-lubricin greater than 50 microg/mL. A concentration-response variable-slope model was fit to the data, and indicated that rh-lubricin binding to cartilage was not first order. The pattern of decrease in equilibrium friction coefficient indicated that aggregation of rh-lubricin or steric arrangement may regulate boundary lubrication. rh-lubricin localized at the cartilage surface was found to lubricate a cartilage-glass interface in boundary mode, as did soluble rh-lubricin at high concentrations (150 microg/mL); however, the most effective lubrication occurred when both soluble and bound rh-lubricin were present at the interface. These findings point to two distinct mechanisms by which rh-lubricin lubricates, one mechanism involving lubricin bound to the tissue surface and the other involving lubricin in solution. Copyright 2008 Orthopaedic Research Society

  1. Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing

    Science.gov (United States)

    Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa

    2018-02-01

    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

  2. Protective efficacy of six immunogenic recombinant proteins of Vibrio anguillarum and evaluation them as vaccine candidate for flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-06-01

    Vibrio anguillarum is a severe bacterium that causes terminal haemorrhagic septicaemia in freshwater and marine fish. Virulence-associated proteins play an important role in bacterial pathogenicity and could be applied for immunoprophylaxis. In this study, six antigenic proteins from V. anguillarum were selected and the immune protective efficacy of their recombinant proteins was investigated. VirA, CheR, FlaC, OmpK, OmpR and Hsp33 were recombinantly produced and the reactions of recombinant proteins to flounder-anti-V. anguillarum antibodies (fV-ab) were detected, respectively. Then the recombinant proteins were injected to fish, after immunization, the percentages of surface membrane immunoglobulin-positive (sIg+) cell in lymphocytes, total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were analyzed, respectively. The results showed that all the recombinant proteins could react to fV-ab, proliferate sIg + cells in lymphocytes and induce production of total antibodies, specific antibodies against V. anguillarum or the recombinant proteins; the RPS of rVirA, rCheR, rFlaC, rOmpK, rOmpR and rHsp33 against V. anguillarum was 70.27%, 27.03%, 16.22%, 62.16%, 45.95% and 81.08%, respectively. The results revealed that rHsp33, rVirA and rOmpK have good protections against V. anguillarum and could be vaccine candidates against V. anguillarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Production of cellulase-free xylanase by the recombinant Bacillus subtilis and its applicability in paper pulp bleaching.

    Science.gov (United States)

    Verma, Digvijay; Satyanarayana, T

    2013-01-01

    A metagenomic xylanase gene (Mxyl) was successfully cloned into shuttle vector pWH1520 and expressed in Bacillus subtilis extracellularly. On induction with xylose, recombinant xylanase secretion commenced after 6 h. Identifying critical variables for recombinant xylanase production by one-variable-at-time approach followed by optimization of the selected variables (xylose, inoculum density, incubation density) by response surface methodology (RSM) led to three-fold enhancement in extracellular xylanase production (119 U mL(-1) ). When the pulp was treated with recombinant xylanase at 80°C and pH 9.0, kappa number of the pulp was reduced with concomitant increase in brightness and 24% reduction in chlorine consumption. This is the first report on the expression of metagenomic xylanase gene in Bacillus subtilis extracellularly and its utility in developing an environment-friendly pulp bleaching process. © 2013 American Institute of Chemical Engineers.

  4. Evidence of recombination in intrapatient populations of hepatitis C virus.

    Science.gov (United States)

    Sentandreu, Vicente; Jiménez-Hernández, Nuria; Torres-Puente, Manuela; Bracho, María Alma; Valero, Ana; Gosalbes, María José; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2008-09-18

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and a potential cause of substantial morbidity and mortality in the future. HCV is characterized by a high level of genetic heterogeneity. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there are only a few studies reporting recombination on natural populations of HCV, suggesting that these events are rare in vivo. Furthermore, these few studies have focused on recombination between different HCV genotypes/subtypes but there are no reports on the extent of intra-genotype or intra-subtype recombination between viral strains infecting the same patient. Given the important implications of recombination for RNA virus evolution, our aim in this study has been to assess the existence and eventually the frequency of intragenic recombination on HCV. For this, we retrospectively have analyzed two regions of the HCV genome (NS5A and E1-E2) in samples from two different groups: (i) patients infected only with HCV (either treated with interferon plus ribavirin or treatment naïve), and (ii) HCV-HIV co-infected patients (with and without treatment against HIV). The complete data set comprised 17712 sequences from 136 serum samples derived from 111 patients. Recombination analyses were performed using 6 different methods implemented in the program RDP3. Recombination events were considered when detected by at least 3 of the 6 methods used and were identified in 10.7% of the amplified samples, distributed throughout all the groups described and the two genomic regions studied. The resulting recombination events were further verified by detailed phylogenetic analyses. The complete experimental procedure was applied to an artificial mixture of relatively closely viral populations and the ensuing analyses failed to reveal artifactual recombination. From these results we conclude that recombination should be considered as a potentially

  5. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

    Science.gov (United States)

    Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  6. Plant-produced recombinant influenza A vaccines based on the M2e peptide.

    Science.gov (United States)

    Mardanova, Eugenia S; Ravin, Nikolai V

    2018-03-09

    Influenza is a widely distributed infection that almost annually causes seasonal epidemics. The current egg-based platforms for influenza vaccine production are facing a number of challenges and are failing to satisfy the global demand in the case of pandemics due to the long production time. Recombinant vaccines are an alternative that can be quickly produced in high quantities in standard expression systems. Plants may become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Plant-based expression systems have been used to produce recombinant vaccines against influenza based on two targets; the major surface antigen hemagglutinin and the transmembrane protein M2. Different forms of recombinant hemagglutinin were successfully expressed in plants, and some plant-produced vaccines based on hemagglutinin were successfully tested in clinical trials. However, these vaccines remain strain specific, while the highly conserved extracellular domain of M2 protein (M2e) could be used for the development of a universal influenza vaccine. In this review, the state of the art in developing plant-produced influenza vaccines based on M2e is presented and placed in perspective. A number of strategies to produce M2e in an immunogenic form in plants have been reported, including its presentation on the surface of plant viruses or virus-like particles formed by capsid proteins, linkage to bacterial flagellin, and targeting to protein bodies. Some M2e-based vaccine candidates were produced at high levels (up to 1 mg/g of fresh plant tissue) and were shown to be capable of stimulating broad-range protective immunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. The construction of recombinant Lactobacillus casei expressing BVDV E2 protein and its immune response in mice.

    Science.gov (United States)

    Bhuyan, Anjuman Ara; Memon, Atta Muhammad; Bhuiyan, Ali Akbar; Zhonghua, Li; Zhang, Bingzhou; Ye, Shiyi; Mengying, Li; He, Qi-Gai

    2018-03-20

    Bovine viral diarrhea virus (BVDV) is the etiological agent of BVD causes substantial economic losses and endemic in world-wide cattle population. Mucosal immunity plays an important role in protection against BVDV infection and Lactobacillus casei is believed as an excellent live vaccine vector for expressing foreign genes. In this study, we have constructed a novel recombinant L. casei/pELX1-E2 strain expressing the most immunogenic E2 antigen of BVDV; using growth phage dependent surface expression system pELX1. The expression of E2 protein was verified by SDS-PAGE, Western blotting, and Immunofluorescence microscopic analysis. The immune responses triggered by the E2 producing recombinant L. casei were evaluated in BALB/c mice revealed that oral and intranasal (IN) administration of the recombinant strain was able to induce a significantly higher level of specific anti-E2 mucosal IgA and serum IgG as well as the greater level of cellular response by IFN-γ and IL-12 than those of intramuscular (IM) and control groups of mice. However, IN inoculation was found the most potent route of immunization. The ability of the recombinant strain to induce serum neutralizing antibody against BVDV and reduced viral load after viral challenge indicated better protection of BVDV infection. Therefore, this recombinant L. casei expressing E2 could be a safe and promising mucosal vaccine candidate against BVD. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Omenn Syndrome and DNA recombination defects.

    Science.gov (United States)

    Yachie, Akihiro

    2017-01-01

    Mutations in the RAG1/RAG2 genes are associated with a broad spectrum of clinical phenotypes, ranging from severe combined immunodeficiency to various autoimmune diseases. The diversity of the clinical symptoms is determined not only by the residual RAG recombinase enzyme activity as determined by the mutations, but also by multiple environmental factors and, in rare cases, by second site mutations within the RAG1/RAG2 genes. The residual recombinase activity is responsible for the oligoclonal expansion of autoreactive T cells. Omenn syndrome is the result of intense Th2 type inflammation involving the skin and multiple other organs triggered by these T cells. In this review, the molecular pathology of diseases caused by RAG1/RAG2 mutations, in particular Omenn syndrome, will be discussed. Furthermore, abnormalities in other molecules involved in V(D)J recombination will be discussed in relation to Omenn-like syndrome.

  9. Classification of Recombinant Biologics in the EU

    DEFF Research Database (Denmark)

    Klein, Kevin; De Bruin, Marie L; Broekmans, Andre W

    2015-01-01

    BACKGROUND AND OBJECTIVE: Biological medicinal products (biologics) are subject to specific pharmacovigilance requirements to ensure that biologics are identifiable by brand name and batch number in adverse drug reaction (ADR) reports. Since Member States collect ADR data at the national level...... before the data is aggregated at the European Union (EU) level, it is important that an unambiguous understanding of which medicinal products belong to the biological product category exists. This study aimed to identify the level of consistency between Member States regarding the classification...... of biologics by national authorities responsible for ADR reporting. METHODS: A sample list of recombinant biologics from the European Medicines Agency database of European Public Assessment Reports was created to analyze five Member States (Belgium, the Netherlands, Spain, Sweden, and the UK) according...

  10. Scavenging and recombination kinetics in radiation chemistry.

    Science.gov (United States)

    Al-Samra, Eyad H; Green, Nicholas J B

    2017-08-02

    This work describes stochastic models developed to study the competition between radical scavenging and recombination for simple model systems typical of radiation chemistry, where the reactive particles are tightly clustered and reactions are assumed fully diffusion limited. Three models are developed: a Monte Carlo random flights model with a periodic boundary condition for scavengers, Monte Carlo simulations in which the scavenging rate is calculated from the Smoluchowski theory for diffusion-limited reactions and a modification of the independent reaction times method where the scavengers close to the spur are explicitly included and the scavengers further away are treated as a continuum. The results indicate that the Smoluchowski theory makes a systematic overestimate of the scavenging rate when such competition is present. A correction for the Smoluchowski rate constant is suggested, an analytical justification is presented and it is tested against the simulations, and shown to be a substantial improvement.

  11. Recombinant expression of backbone-cyclized polypeptides.

    Science.gov (United States)

    Borra, Radhika; Camarero, Julio A

    2013-09-01

    Here we review the different biochemical approaches available for the expression of backbone-cyclized polypeptides, including peptides and proteins. These methods allow for the production of circular polypeptides either in vitro or in vivo using standard recombinant DNA expression techniques. Polypeptide circularization provides a valuable tool to study the effects of topology on protein stability and folding kinetics. Furthermore, having biosynthetic access to backbone-cyclized polypeptides makes the production of genetically encoded libraries of cyclic polypeptides possible. The production of such libraries, which was previously restricted to the domain of synthetic chemistry, now offers biologists access to highly diverse and stable molecular libraries that can be screened using high-throughput methods for the rapid selection of novel cyclic polypeptide sequences with new biological activities. Copyright © 2013 Wiley Periodicals, Inc.

  12. MSD Recombination Method in Statistical Machine Translation

    Science.gov (United States)

    Gros, Jerneja Žganec

    2008-11-01

    Freely available tools and language resources were used to build the VoiceTRAN statistical machine translation (SMT) system. Various configuration variations of the system are presented and evaluated. The VoiceTRAN SMT system outperformed the baseline conventional rule-based MT system in all English-Slovenian in-domain test setups. To further increase the generalization capability of the translation model for lower-coverage out-of-domain test sentences, an "MSD-recombination" approach was proposed. This approach not only allows a better exploitation of conventional translation models, but also performs well in the more demanding translation direction; that is, into a highly inflectional language. Using this approach in the out-of-domain setup of the English-Slovenian JRC-ACQUIS task, we have achieved significant improvements in translation quality.

  13. Guiding recombinant antivenom development by omics technologies

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2017-01-01

    , endogenous animal proteins with toxin-neutralizing capabilities, and recombinant monoclonal antibodies. Harnessing either of these approaches, antivenom development may benefit from an in-depth understanding of venom compositions and the medical importance of individual venom toxins. Focus is thus also...... directed towards the different omics technologies (particularly venomics, antivenomics, and toxicovenomics) that are being used to uncover novel animal toxins, shed light on venom complexity, and provide directions for how to determine the medical relevance of individual toxins within whole venoms. Finally......In this review, the different approaches that have been employed with the aim of developing novel antivenoms against animal envenomings are presented and discussed. Reported efforts have focused on the use of innovative immunization strategies, small molecule inhibitors against enzymatic toxins...

  14. Recombinant Brucella abortus gene expressing immunogenic protein

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, J.E.; Tabatabai, L.B.

    1991-06-11

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  15. Initiation of Meiotic Recombination in Mammals

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2010-12-01

    Full Text Available Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs. DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs, which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization.

  16. Functional, Responsive Materials Assembled from Recombinant Oleosin

    Science.gov (United States)

    Hammer, Daniel

    Biological cells are surrounded by a plasma membrane made primarily of phospholipids that form a bilayer. This membrane is permselective and compartmentalizes the cell. A simple form of artificial cell is the vesicle, in which a phospholipid bilayer membrane surrounds an aqueous solution. However, there is no a priori reason why a membrane needs to be made of phospholipids. It could be made of any surfactant that forms a bilayer. We have assembled membranes and other structures from the recombinant plant protein oleosin. The ability to assemble from a recombinant protein means that every molecule is identical, we have complete control over the sequence, and hence can build in designer functionality with high fidelity, including adhesion and enzymatic activity. Such incorporation is trivial using the tools of molecular biology. We find that while many variants of oleosin make membranes, others make micelles and sheets. We show how the type of supramolecular structure can be altered by the conditions of solvent, such as ionic strength, and the architecture of the surfactant itself. We show that protease cleavable domains can be incorporated within oleosin, and be engineered to protect other functional domains such as adhesive motifs, to make responsive materials whose activity and shape depend on the action of proteases. We will also present the idea of making ``Franken''-oleosins, where large domains of native oleosin are replaced with domains from other functional proteins, to make hybrids conferred by the donor protein. Thus, we can view oleosin as a template upon which a vast array of designer functionalities can be imparted..

  17. Dynamic protein assemblies in homologous recombination with single DNA molecules

    NARCIS (Netherlands)

    van der Heijden, A.H.

    2007-01-01

    What happens when your DNA breaks? This thesis describes experimental work on the single-molecule level focusing on the interaction between DNA and DNA-repair proteins, in particular bacterial RecA and human Rad51, involved in homologous recombination. Homologous recombination and its central event

  18. Improved means and methods for expressing recombinant proteins

    NARCIS (Netherlands)

    Poolman, Berend; Martinez Linares, Daniel; Gul, Nadia

    2014-01-01

    The invention relates to the field of genetic engineering and the production of recombinant proteins in microbial host cells. Provided is a method for enhanced expression of a recombinant protein of interest in a microbial host cell, comprising providing a microbial host cell wherein the function of

  19. The pharmacology of recombinant hirudin, a new anticoagulant

    African Journals Online (AJOL)

    1990-09-01

    Sep 1, 1990 ... The pharmacology of recombinant hirudin, a new anticoagulant. B. H. MEYER, H. G. LUUS, F. O. MULLER, P. N. BADENHORST, H.-J. ROTHIG. Summary. A new anticoagulant, recombinant hirudin, was given to hea"hy volunteers (5 per test dose) in single .intravenous doses of 0,01, 0,02, 0,04, 0,07 and 0 ...

  20. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  1. Activity of recombinant factor VIIa under different conditions in vitro

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Jespersen, Jørgen

    2008-01-01

    Recombinant activated factor VII (NovoSeven; Novo Nordisk A/S, Måløv, Denmark) is an effective drug for treatment of bleeding in patients with haemophilia A or B and inhibitors. Little is known about physiological conditions influencing the efficacy of recombinant activated factor VII. We...

  2. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    neglected in comparison to the effect due to the recombination for estimating the dust-acoustic instability; later the other report shows that the recombination effect is negligible in the presence of dust-neutral collisions. In line of this present situation our investigation revealed that the recom- bination is more important than ...

  3. Recombinant HT.sub.m4 gene, protein and assays

    Science.gov (United States)

    Lim, Bing; Adra, Chaker N.; Lelias, Jean-Michel

    1996-01-01

    The invention relates to a recombinant DNA molecule which encodes a HT.sub.m4 protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT.sub.m4 protein and a recombinant HT.sub.m4 protein. The invention also relates to a method for detecting the presence of a hereditary atopy.

  4. Mitochondrial recombination increases with age in Podospora anserina

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Goedbloed, Daniël J; Slakhorst, S Marijke; Koopmanschap, A Bertha; Maas, Marc F P M; Hoekstra, Rolf F; Debets, Alfons J M

    With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer

  5. Effect of dielectronic recombination on the charge-state distribution ...

    Indian Academy of Sciences (India)

    either neglecting dielectronic recombination [6] or later is taken to be proportional to radiative recombination [7]. Since the theoretically calculated population density of an ionic charge state depends on the rate coefficients used, it is interesting to investigate their effect on the charge-state distribution and spectral line ...

  6. Measurements of EEDF in recombination dominated afterglow plasma

    Science.gov (United States)

    Plasil, R.; Korolov, I.; Kotrik, T.; Varju, J.; Dohnal, P.; Donko, Z.; Bano, G.; Glosik, J.

    2009-11-01

    Electron energy distribution functions (EEDF) have been measured in decaying plasma in Flowing Afterglow Langmuir Probe (FALP) experiment. The measurements have been carried out in diffusion and recombination governed plasmas used for studies of recombination of KrD+ and H3+ ions.

  7. Measurements of EEDF in recombination dominated afterglow plasma

    Energy Technology Data Exchange (ETDEWEB)

    Plasil, R; Korolov, I; Kotrik, T; Varju, J; Dohnal, P; Glosik, J [Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Prague (Czech Republic); Donko, Z; Bano, G, E-mail: radek.plasil@mff.cuni.c [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary)

    2009-11-15

    Electron energy distribution functions (EEDF) have been measured in decaying plasma in Flowing Afterglow Langmuir Probe (FALP) experiment. The measurements have been carried out in diffusion and recombination governed plasmas used for studies of recombination of KrD{sup +} and H{sub 3}{sup +} ions.

  8. Measurements of EEDF in recombination dominated afterglow plasma

    International Nuclear Information System (INIS)

    Plasil, R; Korolov, I; Kotrik, T; Varju, J; Dohnal, P; Glosik, J; Donko, Z; Bano, G

    2009-01-01

    Electron energy distribution functions (EEDF) have been measured in decaying plasma in Flowing Afterglow Langmuir Probe (FALP) experiment. The measurements have been carried out in diffusion and recombination governed plasmas used for studies of recombination of KrD + and H 3 + ions.

  9. Recombinant-activated factor VII in the paediatric cardiac surgery ...

    African Journals Online (AJOL)

    Recombinant-activated factor VII in the paediatric cardiac surgery: Single unit experience. V Agarwal, KE Okonta, PS Lal. Abstract. Background: The control of excessive bleeding after paediatric cardiac surgery can be challenging. This may make the use of recombinant-activated factor VII (rFVIIa) in preventing this ...

  10. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  11. Co-solute assistance in refolding of recombinant proteins | Gerami ...

    African Journals Online (AJOL)

    Prokaryotic expression system is the most widely used host for the production of recombinant proteins but inclusion body formation is a major bottleneck in the production of recombinant proteins in prokaryotic cells, especially in Escherichia coli. In vitro refolding of inclusion body into the the proteins with native ...

  12. Optimal recombination in genetic algorithms for flowshop scheduling problems

    Science.gov (United States)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  13. Recombinant expression systems: the obstacle to helminth vaccines?

    Science.gov (United States)

    Geldhof, Peter; De Maere, Veerle; Vercruysse, Jozef; Claerebout, Edwin

    2007-11-01

    The need for alternative ways to control helminth parasites has in recent years led to a boost in vaccination experiments with recombinant antigens. Despite the use of different expression systems, only a few recombinants induced high levels of protection against helminths. This is often attributed to the limitations of the current expression systems. Therefore, the need for new systems that can modify and glycosylate the expressed antigens has been advocated. However, analysis of over 100 published vaccine trials with recombinant helminth antigens indicates that it is often not known whether the native parasite antigen itself can induce protection or, if it does, which epitopes are important. This information is vital for a well-thought-out strategy for recombinant production. So, in addition to testing more expression systems, it should be considered that prior evaluation and characterization of the native antigens might help the development of recombinant vaccines against helminths in the long term.

  14. Recombination Rate Evolution and the Origin of Species.

    Science.gov (United States)

    Ortiz-Barrientos, Daniel; Engelstädter, Jan; Rieseberg, Loren H

    2016-03-01

    A recipe for dissolving incipient species into a continuum of phenotypes is to recombine their genetic material. Therefore, students of speciation have become increasingly interested in the mechanisms by which recombination between locally adapted lineages is reduced. Evidence abounds that chromosomal rearrangements, via their suppression of recombination during meiosis in hybrids, play a major role in adaptation and speciation. By contrast, genic modifiers of recombination rates have been largely ignored in studies of speciation. We show how both types of reduction in recombination rates facilitate divergence in the face of gene flow, including the early stages of adaptive divergence, the persistence of species after secondary contact, and reinforcement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sex recombination, and reproductive fitness: an experimental study using Paramecium

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, D.

    1982-08-01

    The effect of sex and recombination on reproductive fitness are measured using five wild stocks of Paramecium primaurelia. Among the wild stocks there were highly significant differences in growth rates. No hybrid had as low a fitness as the least fit parental stock. Recombination produced genotypes of higher fitness than those of either parent only in the cross between the two stocks of lowest fitness. The increase in variance of fitness as a result of recombination was almost exclusively attributable to the generation lines with low fitness. The fitness consequences of sexuality and mate choice were stock specific; some individuals leaving the most descendants by inbreeding, others by outcrossing. For most crosses the short-term advantage of sex, if any, accrue from the fusion of different gametes (hybrid vigor) and not from recombination. Since the homozygous genotype with the highest fitnes left the most progeny by inbreeding (no recombination), the persistence of conjugation in P. primaurelia is paradoxical. (JMT)

  16. Charge carrier recombination dynamics in perovskite and polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulke, Andreas; Kniepert, Juliane; Kurpiers, Jona; Wolff, Christian M.; Schön, Natalie; Brenner, Thomas J. K.; Neher, Dieter [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476, Potsdam (Germany); Stranks, Samuel D. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2016-03-14

    Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10{sup −9} cm{sup 3}/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC{sub 71}BM yields important differences with regard to the mechanism and time scale of free carrier recombination.

  17. Looking for the optimal rate of recombination for evolutionary dynamics

    Science.gov (United States)

    Saakian, David B.

    2018-01-01

    We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.

  18. Recombinant tagging system using ribosomal frameshifting to monitor protein expression.

    Science.gov (United States)

    Han, Se Jong; Cho, Sayeon; Lowehhaupt, Ky; Park, So-Young; Sim, Sang Jun; Kim, Yang-Gyun

    2013-03-01

    For rapid and accurate quantitation of recombinant proteins during expression and after purification, we introduce a new tagging strategy that expresses both target proteins and limitedly tagged target proteins together in a single cell at a constant ratio by utilizing cis-elements of programmed -1 ribosomal frameshifting (-1RFS) as an embedded device. -1RFS is an alternative reading mechanism that effectively controls protein expression by many viruses. When a target gene is fused to the enhanced green fluorescent protein (EGFP) gene with a -1RFS element implanted between them, the unfused target and the target-GFP fusion proteins are expressed at a fixed ratio. The expression ratio between these two protein products is adjustable simply by changing -1RFS signals. This limited-tagging system would be valuable for the real-time monitoring of protein expression when optimizing expression condition for a new protein, and in monitoring large-scale bioprocesses without a large metabolic burden on host cells. Furthermore, this strategy allows for the direct measurement of the quantity of a protein on a chip surface and easy application to proteomewide study of gene products. Copyright © 2012 Wiley Periodicals, Inc.

  19. First experience with the installation of passive autocatalytic recombiners

    International Nuclear Information System (INIS)

    Snoeck, J.; Solaro, C.; Moeyaert, P.

    1997-01-01

    From the principle decision of installing Passive Autocatalytic Recombiners (PARs) in all Belgian NPPs to the installation on site, several problems needed to be identified and solved; it is the goal of this paper to address these issues and to present the solutions which were adopted. The first section deals with the sizing and the distribution of the catalytic surface inside the containment to be equipped. Rather than to rely on numerous multicompartment calculations, the procedure is based on a single volume approach combined with engineering judgement. The criteria applied in the successive design steps are explained and illustrated for the Doel1 unit. The second section is devoted to additional requirements concerning the resistance to poisoning agents and the maintenance constraints, and to some recommendations for the design of the supports. Because the effectiveness of the PARs entirely relies on the catalyst material, a periodic control of the active parts is of primary importance. Therefore, the Transportable In-Service Inspection Equipment (TIIE) and the test procedures are presented in the third section. Finally, recommendations are made for further work, derived from this first experience. (author)

  20. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    Full Text Available Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus, a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  1. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E; Moriyama, Hideaki; Storz, Jay F

    2011-01-01

    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  2. Operation of a novel hot-electron vertical-cavity surface-emitting laser

    Science.gov (United States)

    Balkan, Naci; O'Brien-Davies, Angela; Thoms, A. B.; Potter, Richard J.; Poolton, Nigel; Adams, Michael J.; Masum, J.; Bek, Alpan; Serpenguzel, Ali; Aydinli, Atilla; Roberts, John S.

    1998-07-01

    The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of `lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.

  3. Recombination in Escherichia coli V. Genetic analysis of recombinants from crosses with recipients deficient in ATP-dependent exonuclease activity

    NARCIS (Netherlands)

    Haan, P.G. de; Hoekstra, W.P.M.; Verhoef, C.

    A genetic analysis of recombinants from crosses with recombination-deficient recipients, lacking the ATP-dependent exonuclease activity, demonstrated differences in the inheritance pattern of donor markers compared with a Rec+ recipient. In particular the donor markers proximal to the transfer

  4. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae. [Comparison of. gamma. -, uv-induced meiotic and spontaneous mitotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1979-01-01

    Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, ..gamma..-ray-induced, uv-induced, and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Intra- and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the hisl-1/hisl-315 and trp5-2/trp5-48 heteroalleles. Gene-centromere recombination was also not observed in rad52/rad52 diploids. No ..gamma..-ray-induced intragenic mitotic recombination is seen in rad52/rad52 diploids and uv-induced intragenic recombination is greatly reduced. However, spontaneous mitotic recombination is not similarly affected. The RAD52 gene thus functions in recombination in meiosis and in ..gamma..-ray and uv-induced mitotic recombination but not in spontaneous mitotic recombination.

  5. Yeast-recombinant hepatitis B vaccine: efficacy with hepatitis B immune globulin in prevention of perinatal hepatitis B virus transmission

    International Nuclear Information System (INIS)

    Stevens, C.E.; Taylor, P.E.; Tong, M.J.; Toy, P.T.; Vyas, G.N.; Nair, P.V.; Weissman, J.Y.; Krugman, S.

    1987-01-01

    A yeast-recombinant hepatitis B vaccine was licensed recently by the Food and Drug administration and is now available. To assess the efficacy of the yeast-recombinant vaccine, the authors administered the vaccine in combination with hepatitis B immune globulin to high-risk newborns. If infants whose mothers were positive for both hepatitis B surface antigen and the e antigen receive no immunoprophylaxis, 70% to 90% become infected with the virus, and almost all become chronic carriers. Among infants in this study who received hepatitis B immune globulin at birth and three 5- + g doses of yeast-recombinant hepatitis B vaccine, only 4.8% became chronic carriers, a better than 90% level of protection and a rate that is comparable with that seen with immune globulin and plasma-derived hepatitis B vaccine. Hepatitis surface antigen and antibodies were detected by radioimmunoassay. These data suggest that, in this high-risk setting, the yeast-recombinant vaccine is as effective as the plasma-derived vaccine in preventing hepatitis B virus infection and the chronic carrier state

  6. Bio-equivalent doses of recombinant HCG and recombinant LH during ovarian stimulation result in similar oestradiol output

    DEFF Research Database (Denmark)

    Alsbjerg, Birgit; Elbaek, Helle Olesen; Laursen, Rita Jakubcionyte

    2017-01-01

    In nature, HCG is secreted by the implanting embryo from peri-implantation and onwards. In contrast, LH is mandatory for steroidogenesis and follicular development during the follicular phase, working in synergy with FSH. Moreover, LH is mandatory for the function of the corpus luteum. Although LH...... and HCG bind to the same receptor, significant molecular, structural and functional differences exist, inducing differences in bioactivity. This randomized controlled study compared the effect of recombinant FSH stimulation combined with daily either micro-dose recombinant HCG or recombinant LH...... oestradiol level in the HCG supplemented group was 8662 pmol/l versus 9203 pmol/l in the recombinant LH supplemented group; therefore, no significant difference was found. Moreover, no differences were observed in the number of oocytes retrieved or in the live birth rate. We conclude that recombinant HCG...

  7. SISGR - Design and Characterization of Novel Photocatalysts With Core-Shell Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zaera, Francisco [Univ. of California, Riverside, CA (United States). Dept. of Chemistry; Bardeen, Christopher J. [Univ. of California, Riverside, CA (United States). Dept. of Chemistry; Yin, Yadong [Univ. of California, Riverside, CA (United States). Dept. of Chemistry

    2017-03-15

    The overall goal of this project has been to develop new a new and novel class of well-characterized nanostructured Metal@TiO2 core-shell and yolk-shell photocatalysts to address two fundamental issues presently limiting this field: (1) the fast recombination of electron-hole pairs once generated by light absorption, and (2) the recombination of H2 and O2 on the metal surface once produced. These model samples are also used to study the fundamentals of the photocatalytic processes.

  8. Neutralizing trapped electrons on the hydrogenated surface of a diamond amplifier

    Directory of Open Access Journals (Sweden)

    Xiangyun Chang

    2012-01-01

    Full Text Available We discuss our investigation of electron trapping in a diamond amplifier (DA. Our previous work demonstrated that some electrons reaching the DA’s hydrogenated surface are not emitted. The state and the removal of these electrons is important for DA applications. We found that these stopped electrons are trapped, and cannot be removed by a strong reversed-polarity electric field; to neutralize this surface charge, holes must be sent to the hydrogenated surface to recombine with the trapped electrons through the Shockley-Read-Hall surface-recombination mechanism. We measured the time taken for such recombination on the hydrogenated surface, viz. the recombination time, as less than 5 ns, limited by the resolution of our test system. With this measurement, we demonstrated that DA could be operated in an rf cavity with frequency of a few hundred megahertz.

  9. Cold Spring Harbor symposia on quantitative biology: Volume 49, Recombination at the DNA level

    International Nuclear Information System (INIS)

    1984-01-01

    This volume contains full papers prepared by the participants to the 1984 Cold Springs Harbor Symposia on Quantitative Biology. This year's theme is entitled Recombination at the DNA level. The volume consists of 93 articles grouped into subject areas entitled chromosome mechanics, yeast systems, mammalian homologous recombination, transposons, mu, plant transposons/T4 recombination, topoisomerase, resolvase and gyrase, Escherichia coli general recombination, RecA, repair, leukaryotic enzymes, integration and excision of bacteriophage, site-specific recombination, and recombination in vitro

  10. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    Science.gov (United States)

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  11. Tuning Mesenchymal Stem Cell Response onto Titanium-Niobium-Hafnium Alloy by Recombinant Fibronectin Fragments.

    Science.gov (United States)

    Herranz-Diez, C; Mas-Moruno, C; Neubauer, S; Kessler, H; Gil, F J; Pegueroles, M; Manero, J M; Guillem-Marti, J

    2016-02-03

    Since metallic biomaterials used for bone replacement possess low bioactivity, the use of cell adhesive moieties is a common strategy to improve cellular response onto these surfaces. In recent years, the use of recombinant proteins has emerged as an alternative to native proteins and short peptides owing to the fact that they retain the biological potency of native proteins, while improving their stability. In the present study, we investigated the biological effect of two different recombinant fragments of fibronectin, spanning the 8-10th and 12-14th type III repeats, covalently attached to a new TiNbHf alloy using APTES silanization. The fragments were studied separately and mixed at different concentrations and compared to a linear RGD, a cyclic RGD and the full-length fibronectin protein. Cell culture studies using rat mesenchymal stem cells demonstrated that low to medium concentrations (30% and 50%) of type III 8-10th fragment mixed with type III 12-14th fragment stimulated cell spreading and proliferation compared to RGD peptides and the fragments separately. On the other hand, type III 12-14th fragment alone or mixed at low volume percentages ≤50% with type III 8-10th fragment increased alkaline phosphatase levels compared to the other molecules. These results are significant for the understanding of the role of fibronectin recombinant fragments in cell responses and thus to design bioactive coatings for biomedical applications.

  12. Cu(In,Ga)Se{sub 2} mesa diodes for the study of edge recombination

    Energy Technology Data Exchange (ETDEWEB)

    Paire, Myriam, E-mail: myriam.paire@edf.fr [Institute of Research and Development on Photovoltaic Energy, 6 Quai Watier, 78401 Chatou (France); Jean, Cyril; Lombez, Laurent [Institute of Research and Development on Photovoltaic Energy, 6 Quai Watier, 78401 Chatou (France); Collin, Stéphane; Pelouard, Jean-Luc [Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Gérard, Isabelle [Institut Lavoisier de Versailles, UMR, 8180 Versailles (France); Guillemoles, Jean-François; Lincot, Daniel [Institute of Research and Development on Photovoltaic Energy, 6 Quai Watier, 78401 Chatou (France)

    2015-05-01

    The concentrating approach was applied on Cu(In,Ga)Se{sub 2} to develop photovoltaic devices with increased efficiency using less rare materials. To withstand the operating conditions, Cu(In,Ga)Se{sub 2} devices are miniaturized. Compared to previous generations of microcells, with only window layer structuration, microcells with a mesa design are fabricated. These microcells are created by etching ZnO, CdS and Cu(In,Ga)Se{sub 2} layers. The crucial issue addressed in this study is the electrical behavior of the device edges, to determine if microcells suffer from perimeter recombination. We analyze the influence of different etching techniques on the edge recombination signal. It is found that bromine etch result in well passivated surfaces, and devices as small as 50 × 50 μm do not experience edge recombination efficiency limitations. This behavior is remarkable compared to that of the microcells made of crystalline materials. For devices where the edges are deteriorated by a chemical post-treatment, a quasi-shunting signal coming from the edges is seen. We tested these microcells under concentrated illumination and important open-circuit voltage and efficiency gains are seen. - Highlights: • Cu(In,Ga)Se{sub 2} mesa diodes are fabricated by chemical etching. • Opto-electronic measurements show that mesa edges are passivated. • Open-circuit voltage over 950 mV is obtained at high concentration on Cu(In,Ga)Se{sub 2} micromesa diodes.

  13. Intensity-modulated scanning Kelvin probe microscopy for probing recombination in organic photovoltaics.

    Science.gov (United States)

    Shao, Guozheng; Glaz, Micah S; Ma, Fei; Ju, Huanxin; Ginger, David S

    2014-10-28

    We study surface photovoltage decays on sub-millisecond time scales in organic solar cells using intensity-modulated scanning Kelvin probe microscopy (SKPM). Using polymer/fullerene (poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]/[6,6]-phenyl C71-butyric acid methyl ester, PCDTBT/PC71BM) bulk heterojunction devices as a test case, we show that the decay lifetimes measured by SKPM depend on the intensity of the background illumination. We propose that this intensity dependence is related to the well-known carrier-density-dependent recombination kinetics in organic bulk heterojunction materials. We perform transient photovoltage (TPV) and charge extraction (CE) measurements on the PCDTBT/PC71BM blends to extract the carrier-density dependence of the recombination lifetime in our samples, and we find that the device TPV and CE data are in good agreement with the intensity and frequency dependence observed via SKPM. Finally, we demonstrate the capability of intensity-modulated SKPM to probe local recombination rates due to buried interfaces in organic photovoltaics (OPVs). We measure the differences in photovoltage decay lifetimes over regions of an OPV cell fabricated on an indium tin oxide electrode patterned with two different phosphonic acid monolayers known to affect carrier lifetime.

  14. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  15. Recombination properties of dislocations in GaN

    Science.gov (United States)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  16. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    Directory of Open Access Journals (Sweden)

    Jonathan M.O. Rawson

    2014-09-01

    Full Text Available Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.

  17. Phylogenetic and recombination analysis of tomato spotted wilt virus.

    Directory of Open Access Journals (Sweden)

    Sen Lian

    Full Text Available Tomato spotted wilt virus (TSWV severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV.

  18. Data Mining for Expressivity of Recombinant Protein Expression

    Science.gov (United States)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  19. Experimental study of para- and ortho-H3+ recombination

    International Nuclear Information System (INIS)

    Plasil, R; Varju, J; Hejduk, M; Dohnal, P; KotrIk, T; Glosik, J

    2011-01-01

    Recombination of H 3 + with electrons is a key process for many plasmatic environments. Recent experiments on storage ring devices used ion sources producing H 3 + with enhanced populations of H 3 + ions in the para nuclear spin configuration to shed light on the theoretically predicted faster recombination of para states. Although increased recombination rates were observed, no in situ characterization of recombining ions was performed. We present a state selective recombination study of para- and ortho-H 3 + ions with electrons at 77 K in afterglow plasma in a He/Ar/H 2 gas-mixture. Both spin configurations of H 3 + have been observed in situ with a near infrared cavity ring down spectrometer (NIR-CRDS) using the two lowest energy levels of H 3 + . Using hydrogen with an enhanced population of H 2 molecules in para states allowed us to influence the [para-H 3 + ]/[ortho-H 3 + ] ratio in the discharge and in the afterglow. We observed an increase in the measured effective recombination rate coefficients with the increase of the fraction of para-H 3 + . Measurements with different fractions of para-H 3 + at otherwise identical conditions allowed us to determine the binary recombination rate coefficients for pure para-H 3 + p α bin (77 K) = (2.0±0.4)x10 -7 cm 3 s -1 and pure ortho-H 3 + o α bin (77 K) = (4±3)x10 -8 cm 3 s -1 .

  20. Triplet formation in the ion recombination in irradiated liquids

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Tachiya, M.; Hummel, A.

    1990-01-01

    The formation of singlet and triplet excited stages in the ion recombination in groups of oppositely charged ions (or positive ions and electrons) in nonpolar liquids, as occurs in the tracks of high energy electrons, is considered. Theoretical studies on triplet formation in groups of ion pairs have thus far concentrated on the case where recombination of the negative ions with any of the positive ions in the group is equally probable (random recombination). In this paper the probability for geminate recombination (electron and parent positive ion) vs cross-recombination (an electron with a positive ion other than its parent ion) in multiple ion pair groups is calculated by computer simulation and the effect of the initial spatial configuration of the charged species is investigated. It is also shown explicitly that the probability for singlet formation as a result of cross recombination is equal to 1/4, when spin relaxation by magnetic interaction with the medium and by exchange interaction can be neglected. The effect of the preferential recombination on the singlet formation probability is illustrated and recent experimental results on singlet to triplet ratios are discussed. (author)

  1. Evaluation of somatic embryos of alfalfa for recombinant protein expression.

    Science.gov (United States)

    Fu, Guohua; Grbic, Vojislava; Ma, Shengwu; Tian, Lining

    2015-02-01

    Somatic embryos of alfalfa can accumulate higher levels of recombinant proteins comparing to vegetative organs. Somatic embryos may be explored as a new system for new protein production for plants. Plants have been explored via genetic engineering as an inexpensive system for recombinant protein production. However, protein expression levels in vegetative tissues have been low, which limits the commercial utilization of plant expression systems. Somatic embryos resemble zygotic embryos in many aspects and may accumulate higher levels of proteins as true seed. In this study, somatic embryo of alfalfa (Medicago sativa L.) was investigated for the expression of recombinant proteins. Three heterologous genes, including the standard scientific reporter uid that codes for β-glucuronidase and two genes of interest: ctb coding for cholera toxin B subunit (CTB), and hIL-13 coding for human interleukin 13, were independently introduced into alfalfa via Agrobacterium-mediated transformation. Somatic embryos were subsequently induced from transgenic plants carrying these genes. Somatic embryos accumulated approximately twofold more recombinant proteins than vegetative organs including roots, stems, and leaves. The recombinant proteins of CTB and hIL-13 accumulated up to 0.15 and 0.18 % of total soluble protein in alfalfa somatic embryos, respectively. The recombinant proteins expressed in somatic embryos also exhibited biological activities. As somatic embryos can be induced in many plant species and their production can be scaled up via different avenues, somatic embryos may be developed as an efficient expression system for recombinant protein production.

  2. Homologous plasmid recombination is elevated in immortally transformed cells.

    Science.gov (United States)

    Finn, G K; Kurz, B W; Cheng, R Z; Shmookler Reis, R J

    1989-09-01

    The levels of intramolecular plasmid recombination, following transfection of a plasmid substrate for homologous recombination into normal and immortally transformed cells, have been examined by two independent assays. In the first assay, recovered plasmid was tested for DNA rearrangements which regenerate a functional neomycin resistance gene from two overlapping fragments. Following transformation of bacteria, frequencies of recombinationlike events were determined from the ratio of neomycin-resistant (recombinant) colonies to ampicillin-resistant colonies (indicating total plasmid recovery). Such events, yielding predominantly deletions between the directly repeated sequences, were substantially more frequent in five immortal cell lines than in any of three normal diploid cell strains tested. Effects of plasmid replication or interaction with T antigen and of bacterially mediated rejoining of linear molecules generated in mammalian cells were excluded by appropriate controls. The second assay used limited coamplification of a control segment of plasmid DNA, and of the predicted recombinant DNA region, primed by two sets of flanking oligonucleotides. Each amplified band was quantitated by reference to a near-linear standard curve generated concurrently, and recombination frequencies were determined from the ratio of recombinant/control DNA regions. The results confirmed that recombinant DNA structures were generated within human cells at direct repeats in the transfected plasmid and were markedly more abundant in an immortal cell line than in the diploid normal cells from which that line was derived.

  3. Analysis of intermolecular RNA-RNA recombination by rubella virus

    International Nuclear Information System (INIS)

    Adams, Sandra D.; Tzeng, W.-P.; Chen, M.-H.; Frey, Teryl K.

    2003-01-01

    To investigate whether rubella virus (RUB) undergoes intermolecular RNA-RNA recombination, cells were cotransfected with pairs of in vitro transcripts from genomic cDNA plasmid vectors engineered to contain nonoverlapping deletions: the replicative transcript maintained the 5'-proximal nonstructural (NS) ORF (which contained the replicase, making it RNA replication competent), had a deletion in the 3'-proximal structural protein (SP) ORF, and maintained the 3' end of the genome, including the putative 3' cis-acting elements (CSE), while the nonreplicative transcript consisted of the 3' half of the genome including the SP-ORF and 3' CSE. Cotransfection yielded plaque-forming virus that synthesized the standard genomic and subgenomic RNAs and thus was generated by RNA-RNA recombination. Using transcripts tagged with a 3'-terminal deletion, it was found that recombinants contained the 3' end derived from the replicative strand, indicating a cis-preference for initiation of negative-strand synthesis. In cotransfections in which the replicative transcript lacked the 3' CSE, recombination occurred, albeit at lower efficiency, indicating that initiation in trans from the NS-ORF can occur. The 3' CSE was sufficient as a nonreplicative transcript, showing that it can serve as a promoter for negative-strand RNA synthesis. While deletion mutagenesis showed that the presence of the junction untranslated region (J-UTR) between the ORFs appeared to be necessary on both transcripts for recombination in this region of the genome, analysis with transcripts tagged with restriction sites showed that the J-UTR was not a hot spot for recombination compared to neighboring regions in both ORFs. Sequence analysis of recombinants revealed that both precise (homologous) and imprecise recombination (aberrant, homologous resulting in duplications) occurred; however, imprecise recombination only involved the J-UTR or the 3' end of the NS-ORF and the J-UTR (maintaining the NS-ORF), indicating

  4. Functional bottlenecks for generation of HIV-1 intersubtype Env recombinants.

    Science.gov (United States)

    Bagaya, Bernard S; Vega, José F; Tian, Meijuan; Nickel, Gabrielle C; Li, Yuejin; Krebs, Kendall C; Arts, Eric J; Gao, Yong

    2015-05-23

    Intersubtype recombination is a powerful driving force for HIV evolution, impacting both HIV-1 diversity within an infected individual and within the global epidemic. This study examines if viral protein function/fitness is the major constraint shaping selection of recombination hotspots in replication-competent HIV-1 progeny. A better understanding of the interplay between viral protein structure-function and recombination may provide insights into both vaccine design and drug development. In vitro HIV-1 dual infections were used to recombine subtypes A and D isolates and examine breakpoints in the Env glycoproteins. The entire env genes of 21 A/D recombinants with breakpoints in gp120 were non-functional when cloned into the laboratory strain, NL4-3. Likewise, cloning of A/D gp120 coding regions also produced dead viruses with non-functional Envs. 4/9 replication-competent viruses with functional Env's were obtained when just the V1-V5 regions of these same A/D recombinants (i.e. same A/D breakpoints as above) were cloned into NL4-3. These findings on functional A/D Env recombinants combined with structural models of Env suggest a conserved interplay between the C1 domain with C5 domain of gp120 and extracellular domain of gp41. Models also reveal a co-evolution within C1, C5, and ecto-gp41 domains which might explain the paucity of intersubtype recombination in the gp120 V1-V5 regions, despite their hypervariability. At least HIV-1 A/D intersubtype recombination in gp120 may result in a C1 from one subtype incompatible with a C5/gp41 from another subtype.

  5. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pezzoli, Fabio, E-mail: fabio.pezzoli@unimib.it; Giorgioni, Anna; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Miglio, Leo [LNESS and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Gallacher, Kevin; Millar, Ross W.; Paul, Douglas J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Isa, Fabio [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy); Laboratory for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Biagioni, Paolo [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Isella, Giovanni [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy)

    2016-06-27

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO{sub 2} in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  6. Applications of recombinant antibodies in plant pathology.

    Science.gov (United States)

    Ziegler, Angelika; Torrance, Lesley

    2002-09-01

    Summary Advances in molecular biology have made it possible to produce antibody fragments comprising the binding domains of antibody molecules in diverse heterologous systems, such as Escherichia coli, insect cells, or plants. Antibody fragments specific for a wide range of antigens, including plant pathogens, have been obtained by cloning V-genes from lymphoid tissue, or by selection from large naive phage display libraries, thus avoiding the need for immunization. The antibody fragments have been expressed as fusion proteins to create different functional molecules, and fully recombinant assays have been devised to detect plant viruses. The defined binding properties and unlimited cheap supply of antibody fusion proteins make them useful components of standardized immunoassays. The expression of antibody fragments in plants was shown to confer resistance to several plant pathogens. However, the antibodies usually only slowed the progress of infection and durable 'plantibody' resistance has yet to be demonstrated. In future, it is anticipated that antibody fragments from large libraries will be essential tools in high-throughput approaches to post-genomics research, such as the assignment of gene function, characterization of spatio-temporal patterns of protein expression, and elucidation of protein-protein interactions.

  7. Meiotic Recombination in the Giraffe (G. reticulata).

    Science.gov (United States)

    Vozdova, Miluse; Fröhlich, Jan; Kubickova, Svatava; Sebestova, Hana; Rubes, Jiri

    2017-01-01

    Recently, the reticulated giraffe (G. reticulata) was identified as a distinct species, which emphasized the need for intensive research in this interesting animal. To shed light on the meiotic process as a source of biodiversity, we analysed the frequency and distribution of meiotic recombination in 2 reticulated giraffe males. We used immunofluorescence detection of synaptonemal complex protein (SYCP3), meiotic double strand breaks (DSB, marked as RAD51 foci) in leptonema, and crossovers (COs, as MLH1 foci) in pachynema. The mean number of autosomal MLH1 foci per cell (27), which resulted from a single, distally located MLH1 focus observed on most chromosome arms, is one of the lowest among mammalian species analysed so far. The CO/DSB conversion ratio was 0.32. The pseudoautosomal region was localised in the Xq and Yp termini by FISH and showed an MLH1 focus in 83% of the pachytene cells. Chromatin structures corresponding to the nucleolus organiser regions were observed in the pachytene spermatocytes. The results are discussed in the context of known data on meiosis in Cetartiodactyla, depicting that the variation in CO frequency among species of this taxonomic group is mostly associated with their diploid chromosome number. © 2017 S. Karger AG, Basel.

  8. Overview of the purification of recombinant proteins.

    Science.gov (United States)

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  9. Dielectronic recombination studies based on EBIT

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jun; Han Chuan; Yao Ke; Shen Yang; Yang Yang; Wei Baoren; Fu Yunqing; Lu Di; Hutton, Roger; Zou Yaming [Key Laboratory of Applied Ion Beam Physics, Ministry of Education (China) and Shanghai EBIT Laboratory, Institute of Modern Physics, Fudan University, Shanghai (China)

    2013-04-19

    Dielectronic recombination (DR) process plays an important role in high temperature plasmas, where DR can affect charge balance and level populations significantly, and can cause radiative energy loss. Resolvable DR sourced satellite lines are often used for plasma temperature diagnostics, while the un-resolvable ones disturb determining spectral line shape, line intensity, and line position. Data of DR resonant strength is vital for accurate modeling of high temperature plasmas. DR studies are also important for testing atomic structure and atomic collision theories, since they carry information on quantum electrodynamics, relativistic effects, electron correlations and so on. Electron beam ion trap (EBIT) is an accelerator type device, which is capable of acting as both ion sources and light sources. EBIT can produce a special sort of plasma, in which electron energy is tunable and has a very narrow distribution. This made it possible for disentanglement studies on electron ion collision processes in plasmas. In this paper, experimental studies of DR processes based on electron beam ion traps (EBIT) will be discussed.

  10. Characterization of recombinantly expressed matrilin VWA domains.

    Science.gov (United States)

    Becker, Ann-Kathrin A; Mikolajek, Halina; Werner, Jörn M; Paulsson, Mats; Wagener, Raimund

    2015-03-01

    VWA domains are the predominant independent folding units within matrilins and mediate protein-protein interactions. Mutations in the matrilin-3 VWA domain cause various skeletal diseases. The analysis of the pathological mechanisms is hampered by the lack of detailed structural information on matrilin VWA domains. Attempts to resolve their structures were hindered by low solubility and a tendency to aggregation. We therefore took a comprehensive approach to improve the recombinant expression of functional matrilin VWA domains to enable X-ray crystallography and nuclear magnetic resonance (NMR) studies. The focus was on expression in Escherichia coli, as this allows incorporation of isotope-labeled amino acids, and on finding conditions that enhance solubility. Indeed, circular dichroism (CD) and NMR measurements indicated a proper folding of the bacterially expressed domains and, interestingly, expression of zebrafish matrilin VWA domains and addition of N-ethylmaleimide yielded the most stable proteins. However, such proteins did still not crystallize and allowed only partial peak assignment in NMR. Moreover, bacterially expressed matrilin VWA domains differ in their solubility and functional properties from the same domains expressed in eukaryotic cells. Structural studies of matrilin VWA domains will depend on the use of eukaryotic expression systems. Copyright © 2014. Published by Elsevier Inc.

  11. Recombination-assisted megaprimer (RAM) cloning

    Science.gov (United States)

    Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.

    2014-01-01

    No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930

  12. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  13. Pediocin production by recombinant lactic acid bacteria.

    Science.gov (United States)

    Somkuti, G A; Steinberg, D H

    2003-03-01

    Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 degrees C, while incubation at 40 degrees C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51,000 units ml(-1) and 25,000 units ml(-1), respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.

  14. Dielectronic Recombination of Al-Like Ions

    Science.gov (United States)

    Abdel-Naby, Shahin; Nikolic, Dragan; Gorczyca, Thomas W.; Badnell, Nigel R.; Savin, Daniel W.

    2008-05-01

    Accurate dielectronic recombination (DR) data are important for cosmic and laboratory plasma modeling. Over the past few years, our group has computed reliable DR data for all isoelectronic sequences up through Mg-like ions. Recently, we have focused our work on the complex third-row M-shell isoelectronic sequences, especially Al-like. Previous calculations for the DR rate coefficient for S^3+ were performed only within a non-relativistic LS-coupling approximation. Fe^13+ DR calculations, including semi-relativistic effects, have been completed and tested against the Heidelberg heavy-ion Test Storage Ring facility measurements. Here we present semi-relativistic DR rate coefficient calculations for a wide range of Al-like ions using AUTOSTRUCTURE, a level-resolved distorted-wave program package. The important effect of fine structure splitting in the Al-like ground state will be discussed. Finally, our results are fitted into a simple formula for use by astrophysical plasma modelers.This work was funded in part by NASA (APRA), NASA (SHP) SR&T, and UK PPARC grants.

  15. Recombinant canine coronaviruses in dogs, Europe.

    Science.gov (United States)

    Decaro, Nicola; Mari, Viviana; Elia, Gabriella; Addie, Diane D; Camero, Michele; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-01-01

    Coronaviruses of potential recombinant origin with porcine transmissible gastroenteritis virus (TGEV), referred to as a new subtype (IIb) of canine coronavirus (CCoV), were recently identified in dogs in Europe. To assess the distribution of the TGEV-like CCoV subtype, during 2001-2008 we tested fecal samples from dogs with gastroenteritis. Of 1,172 samples, 493 (42.06%) were positive for CCoV. CCoV-II was found in 218 samples, and CCoV-I and CCoV-II genotypes were found in 182. Approximately 20% of the samples with CCoV-II had the TGEV-like subtype; detection rates varied according to geographic origin. The highest and lowest rates of prevalence for CCoV-II infection were found in samples from Hungary and Greece (96.87% and 3.45%, respectively). Sequence and phylogenetic analyses showed that the CCoV-IIb strains were related to prototype TGEV-like strains in the 5' and the 3' ends of the spike protein gene.

  16. Stress in recombinant protein producing yeasts.

    Science.gov (United States)

    Mattanovich, Diethard; Gasser, Brigitte; Hohenblum, Hubertus; Sauer, Michael

    2004-09-30

    It is well established today that heterologous overexpression of proteins is connected with different stress reactions. The expression of a foreign protein at a high level may either directly limit other cellular processes by competing for their substrates, or indirectly interfere with metabolism, if their manufacture is blocked, thus inducing a stress reaction of the cell. Especially the unfolded protein response (UPR) in Saccharomyces cerevisiae (as well as some other yeasts) is well documented, and its role for the limitation of expression levels is discussed. One potential consequence of endoplasmatic reticulum folding limitations is the ER associated protein degradation (ERAD) involving retrotranslocation and decay in the cytosol. High cell density fermentation, the typical process design for recombinant yeasts, exerts growth conditions that deviate far from the natural environment of the cells. Thus, different environmental stresses may be exerted on the host. High osmolarity, low pH and low temperature are typical stress factors. Whereas the molecular pathways of stress responses are well characterized, there is a lack of knowledge concerning the impact of stress responses on industrial production processes. Accordingly, most metabolic engineering approaches conducted so far target at the improvement of protein folding and secretion, whereas only few examples of cell engineering against general stress sensitivity were published. Apart from discussing well-documented stress reactions of yeasts in the context of heterologous protein production, some more speculative topics like quorum sensing and apoptosis are addressed.

  17. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  18. Engineered mammalian cells for production of recombinant proteins

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins.......The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...

  19. Recombinative generalization of subword units using matching to sample.

    LENUS (Irish Health Repository)

    Mahon, Catherine

    2010-01-01

    The purpose of the current study was to develop and test a computerized matching-to-sample (MTS) protocol to facilitate recombinative generalization of subword units (onsets and rimes) and recognition of novel onset-rime and onset-rime-rime words. In addition, we sought to isolate the key training components necessary for recombinative generalization. Twenty-five literate adults participated. Conditional discrimination training emerged as a crucial training component. These findings support the effectiveness of MTS in facilitating recombinative generalization, particularly when conditional discrimination training with subword units is used.

  20. The use of recombinant DNA technology for the development of a bluetongue virus subunit vaccine

    International Nuclear Information System (INIS)

    Huismans, H.

    1985-01-01

    The double-standed RNA gene coding for the surface antigen responsible for inducing neutralising anti-bodies has been isolated, converted to DNA, and cloned in the plasmid pBR322. So far, only plasmids containing inserts smaller than the gene have been obtained. The recombinant plasmids were isolated by screening for specific antibiotic resistance markers and characterized by size, restriction enzymes and hybridization with a 32 P-labelled DNA probe made with BTV-m RNA as template. Possible strategies for the development of a bluetongue virus submit vaccine are discussed