WorldWideScience

Sample records for surface electromyography emg

  1. Muscular Activities Measurements of Forward Lean and Upright Sitting Motorcycling Postures via Surface Electromyography (sEMG

    Directory of Open Access Journals (Sweden)

    Ma’arof Muhammad Izzat Nor

    2017-01-01

    Full Text Available Motorcycling postures are generically speculated to be physical and physiologically demanding – which in-turn may lead to motorcycling fatigue, and then becoming a possible factor to road accident. The objective of this study was to measure the muscular activities of various motorcycling postures. High muscular activity reading will signifies that motorcycling is indeed physically and physiologically demanding to the motorcyclist. For this particular study, the following postures were tested: i forward lean, ii upright sitting, and iii neutral sitting (as control. Surface electromyography (sEMG measurement was conducted on the following muscles: i extensor carpi radialis, ii upper trapezius iii latissimus dorsi, and iv erector spinae. The results showed that for all test subjects, the muscular activities readings for the forward lean posture was actually close to neutral sitting’s. Whilst, the upright sitting had showed much higher muscular activities measurement instead. Conclusively, this study had proven that any types of discomforts associated with the forward lean posture is not originated from muscular activities. Whereas, confirming that any discomforts in regards to the upright sitting is indeed related to muscular activities. Further studies are warranted to discover the actual risk factors that causes physical and physiological discomforts for the forward lean motorcycling posture.

  2. Surface electromyography physiology, engineering and applications

    CERN Document Server

    Farina, Dario

    2016-01-01

    The book presents a quantitative approach to the study and use of noninvasively detected electromyographic (EMG) signals, as well as their numerous applications in various aspects of the life sciences. Surface Electromyography: Physiology, Engineering, and Applications is an update of Electromyography: Physiology, Engineering, and Noninvasive Applications (Wiley-IEEE Press, 2004) and focuses on the developments that have taken place over the last decade. The first nine chapters deal with the generation, detection, understanding, interpretation, and modeling of EMG signals. Detection technology, with particular focus on EMG imaging techniques that are based on two-dimensional electrode arrays are also included in the first half of the book. The latter 11 chapters deal with applications, which range fro monitoring muscle fatigue, electrically elicited contractions, posture analysis, prevention of work-related and child-delivery-related neuromuscular disorders, ergonomics, movement analysis, physical therapy, ex...

  3. Neural mechanisms of intermuscular coherence: Implications for the rectification of surface electromyography

    NARCIS (Netherlands)

    Boonstra, T.W.; Breakspear, M.

    2012-01-01

    Oscillatory activity plays a crucial role in corticospinal control of muscle synergies and is widely investigated using corticospinal and intermuscular synchronization. However, the neurophysiological mechanisms that translate these rhythmic patterns into surface electromyography (EMG) are not well

  4. SURFACE ELECTROMYOGRAPHY IN BIOMECHANICS: APPLICATIONS AND SIGNAL ANALYSIS ASPECTS

    Directory of Open Access Journals (Sweden)

    DEAK GRAłIELA-FLAVIA

    2009-12-01

    Full Text Available Surface electromyography (SEMG is a technique for detecting and recording the electrical activity of the muscles using surface electrodes. The EMG signal is used in biomechanics mainly as an indicator of the initiation of muscle activation, as an indicator of the force produced by a contracting muscle, and as an index ofthe fatigue occurring within a muscle. EMG, used as a method of investigation, can tell us if the muscle is active or not, if the muscle is more or less active, when it is on or off, how much active is it, and finally, if it fatigues.The purpose of this article is to discuss some specific EMG signal analysis aspects with emphasis on comparison type analysis and frequency fatigue analysis.

  5. Robust Features Of Surface Electromyography Signal

    International Nuclear Information System (INIS)

    Sabri, M I; Miskon, M F; Yaacob, M R

    2013-01-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20–27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and

  6. Robust Features Of Surface Electromyography Signal

    Science.gov (United States)

    Sabri, M. I.; Miskon, M. F.; Yaacob, M. R.

    2013-12-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20-27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and show

  7. Reliability of surface EMG measurements from the suprahyoid muscle complex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Pedersen, Asger Roer

    2017-01-01

    of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy participants over days. Methods: Seventeen healthy participants were recruited. Measurements were performed twice with one week...... on stimulus type/intensity) had significantly different MEP values between day 1 and day 2 for single pulse and paired pulse TMS. A large stimulus artefact resulted in MEP responses that could not be assessed in four participants. Conclusions: The assessment of the SMC using sEMG following TMS was poorly...... reliable for ≈50% of participants. Although using sEMG to assess swallowing musculature function is easier to perform clinically and more comfortable to patients than invasive measures, as the measurement of muscle activity using TMS is unreliable, the use of sEMG for this muscle group is not recommended...

  8. Swallowing in patients with Parkinson's disease: a surface electromyography study.

    Science.gov (United States)

    Ws Coriolano, Maria das Graças; R Belo, Luciana; Carneiro, Danielle; G Asano, Amdore; Al Oliveira, Paulo José; da Silva, Douglas Monteiro; G Lins, Otávio

    2012-12-01

    Our goal was to study deglutition of Parkinson's disease (PD) patients and normal controls (NC) using surface electromyography (sEMG). The study included 15 patients with idiopathic PD and 15 age-matched normal controls. Surface electromyography was collected over the suprahyoid muscle group. Conditions were the following: swallow at once 10 and 20 ml of water and 5 and 10 ml of yogurt of firm consistency, and freely drink 100 ml of water. During swallowing, durations of sEMG were significantly longer in PD patients than in normal controls but no significant differences of amplitudes were found. Eighty percent of the PD patients and 20 % of the NC needed more than one swallow to consume 20 ml of water, while 70 % of the PD patients and none of the NC needed more than one swallow to consume 5 ml of yogurt. PD patients took significantly more time and needed significantly more swallows to drink 100 ml of water than normal controls. We conclude that sEMG might be a simple and useful tool to study and monitor deglutition in PD patients.

  9. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG) Signal Acquisitions

    OpenAIRE

    Khamis Herman; Mohamaddan Shahrol; Komeda Takashi; Alias Aidil Azli; Tanjong Shirley Jonathan; Julai Norhuzaimin; Hashim Nurul ‘Izzati

    2017-01-01

    The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG) and flex sensor which was implemented to the device. It wa...

  10. A more precise, repeatable and diagnostic alternative to surface electromyography

    DEFF Research Database (Denmark)

    Harrison, Adrian P

    2018-01-01

    Acoustic myography (AMG) enables a detailed and accurate measurement of those muscles involved in a particular movement and is independent of electrical signals between the nerve and muscle, measuring solely muscle contractions, unlike surface electromyography (sEMG). With modern amplifiers....../coordination (E-score), spatial summation (S-score) and temporal summation (T-score). It is concluded that modern AMG units have the potential to accurately assess patients with neuromuscular and musculoskeletal complaints in hospital clinics, home monitoring situations as well as sports settings....

  11. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG Signal Acquisitions

    Directory of Open Access Journals (Sweden)

    Khamis Herman

    2017-01-01

    Full Text Available The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG and flex sensor which was implemented to the device. It was programmed into active and semi-active mode operation. EMG sensors were placed on the forearm to capture EMG signal of Flexor Digitorum Profundus muscle to activate the device. Flex sensor was used to indicate the finger position and placed on top of the finger. The signal from both sensors then used to control the device. The new control system allowed single hand operation and designed to prevent user from over depended on the device by activating it through moving their fingers.

  12. Surface electromyography in orthodontics – a literature review

    Science.gov (United States)

    WoŸniak, Krzysztof; Piątkowska, Dagmara; Lipski, Mariusz; Mehr, Katarzyna

    2013-01-01

    Electromyography is the most objective and reliable technique for evaluating muscle function and efficiency by detecting their electrical potentials. It makes it possible to assess the extent and duration of muscle activity. The main aim of surface electromyography is to detect signals from many muscle fibers in the area of the detecting surface electrodes. These signals consist of a weighted summation of the spatial and temporal activity of many motor units. Hence, the analysis of the recordings is restricted to an assessment of general muscle activity, the cooperation of different muscles, and the variability of their activity over time. This study presents the main assumptions in the assessment of electrical muscle activity through the use of surface electromyography, along with its limitations and possibilities for further use in many areas of orthodontics. The main clinical uses of sEMG include the diagnostics and therapy of temporomandibular joint disorders, an assessment of the extent of stomatognathic system dysfunctions in subjects with malocclusion, and the monitoring of orthodontic therapies. PMID:23722255

  13. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography.

    Directory of Open Access Journals (Sweden)

    João Freitas

    Full Text Available Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI, collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics.

  14. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation

    Directory of Open Access Journals (Sweden)

    Wentao Sun

    2018-05-01

    Full Text Available Estimating muscle force by surface electromyography (sEMG is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs in two steps: (1 learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2 extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  15. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review.

    Science.gov (United States)

    Mohseni Bandpei, Mohammad A; Rahmani, Nahid; Majdoleslam, Basir; Abdollahi, Iraj; Ali, Shabnam Shah; Ahmad, Ashfaq

    2014-09-01

    The purpose of this study was to review the literature to determine whether surface electromyography (EMG) is a reliable tool to assess paraspinal muscle fatigue in healthy subjects and in patients with low back pain (LBP). A literature search for the period of 2000 to 2012 was performed, using PubMed, ProQuest, Science Direct, EMBASE, OVID, CINAHL, and MEDLINE databases. Electromyography, reliability, median frequency, paraspinal muscle, endurance, low back pain, and muscle fatigue were used as keywords. The literature search yielded 178 studies using the above keywords. Twelve articles were selected according to the inclusion criteria of the study. In 7 of the 12 studies, the surface EMG was only applied in healthy subjects, and in 5 studies, the reliability of surface EMG was investigated in patients with LBP or a comparison with a control group. In all of these studies, median frequency was shown to be a reliable EMG parameter to assess paraspinal muscles fatigue. There was a wide variation among studies in terms of methodology, surface EMG parameters, electrode location, procedure, and homogeneity of the study population. The results suggest that there seems to be a convincing body of evidence to support the merit of surface EMG in the assessment of paraspinal muscle fatigue in healthy subject and in patients with LBP. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of upper limb muscle fatigue based on surface electromyography.

    Science.gov (United States)

    Zhou, Qianxiang; Chen, Yuhong; Ma, Chao; Zheng, Xiaohui

    2011-10-01

    Fatigue is believed to be a major contributory factor to occupational injuries in machine operators. The development of accurate and usable techniques to measure operator fatigue is therefore important. In this study, we used a novel method based on surface electromyography (sEMG) of the biceps brachii and the Borg scale to evaluate local muscle fatigue in the upper limb after isometric muscle action. Thirteen young males performed isometric actions with the upper limb at different force levels. sEMG activities of the biceps brachii were recorded during the actions. Borg scales were used to evaluate the subjective sensation of local fatigue of the biceps brachii after the actions. sEMG activities were analyzed using the one-third band octave method, and an equation to determine the degree of fatigue was derived based on the relationship between the variable and the Borg scale. The results showed that the relationship could be expressed by a conic curve, and could be used to evaluate muscle fatigue during machine operation.

  17. Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K

    2007-01-01

    The paper reports the use of fractal theory and fractal dimension to study the non-linear properties of surface electromyogram (sEMG) and to use these properties to classify subtle hand actions. The paper reports identifying a new feature of the fractal dimension, the bias that has been found to be useful in modelling the muscle activity and of sEMG. Experimental results demonstrate that the feature set consisting of bias values and fractal dimension of the recordings is suitable for classification of sEMG against the different hand gestures. The scatter plots demonstrate the presence of simple relationships of these features against the four hand gestures. The results indicate that there is small inter-experimental variation but large inter-subject variation. This may be due to differences in the size and shape of muscles for different subjects. The possible applications of this research include use in developing prosthetic hands, controlling machines and computers.

  18. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy.

    Science.gov (United States)

    Taelman, Joachim; Vanderhaegen, Joke; Robijns, Mieke; Naulaers, Gunnar; Spaepen, Arthur; Van Huffel, Sabine

    2011-01-01

    This study looks at various parameters, derived from surface electromyography (sEMG) and Near Infrared Spectroscopy (NIRS) and their relationship in muscle fatigue during a static elbow flexion until exhaustion as well as during a semidynamic exercise.We found a linear increasing trend for a corrected amplitude parameter and a linear decreasing slope for the frequency content of the sEMG signal. The tissue oxygenation index (TOI) extracted from NIRS recordings showed a four-phase response for all the subjects. A strong correlation between frequency content of the sEMG signal and TOI was established. We can conclude that both sEMG and NIRS give complementary information concerning muscle fatigue.

  19. Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue

    OpenAIRE

    ŞAYLİ, Ömer; AKIN, Ata; ÇOTUK, Hasan Birol

    2014-01-01

    In this study, the process of muscular fatigue was examined using surface electromyography (sEMG) and continuous-wave near-infrared spectroscopy (cw-NIRS) simultaneously during an isometric hand grip exercise at 50% and 75% of the maximal voluntary contraction (MVC), sustained until volitional fatigue. The mean frequency of the sEMG decreased during the whole exercise, whereas the root mean square had a tendency to increase. Oxyhemoglobin/deoxyhemoglobin concentration changes computed ...

  20. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    Science.gov (United States)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  1. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements

    Directory of Open Access Journals (Sweden)

    Steffi L. Colyer, Polly M. McGuigan

    2018-03-01

    Full Text Available Textile electromyography (EMG electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2% and excitation length (CV: 12.9 and 9.8% when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV was recorded for average rectified EMG (13.8 and 14.1% and excitation length (13.0 and 12.7% for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  2. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  3. Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue.

    Science.gov (United States)

    Gonzalez-Izal, Miriam; Lusa Cadore, Eduardo; Izquierdo, Mikel

    2014-03-01

    Concentric (CON) and eccentric (ECC) contractions may involve different mechanisms related to changes in sarcolemma status and the consequent alteration of action potential transmission along muscle fibers. Muscle conduction velocity (CV), surface electromyography signal (sEMG), muscle quality, and blood lactate concentrations were analyzed during CON and ECC actions. Compared with ECC, the CON protocol resulted in greater muscle force losses, blood lactate concentrations, and changes in sEMG parameters. Similar reductions in CV were detected in both protocols. Higher echo intensity values were observed 2 days after ECC due to greater muscle damage. The effects of the muscle damage produced by ECC exercise on the transmission of action potentials along muscle fibers (measured as the CV) may be comparable with the effects of hydrogen accumulation produced by CON exercise (related to greater lactate concentrations), which causes greater force loss and change in other sEMG variables during CON than during ECC actions.

  4. Electromyography (EMG) analysis on impact of classroom chair and table usage among primary school students in Perlis

    Science.gov (United States)

    Jing, Ewe Hui; Shan, Lim Shaiu; Effendi, M. S. M.; Rosli, Muhamad Farizuan

    2017-09-01

    The existing design of primary school classroom chair and table had brought low back pain, neck pain and shoulder pain problems respectively among students in primary school. The purpose of this study is to relate the electromyography (EMG) analysis with the most critical area of the body during sitting and writing. Six male and six female primary school students from SK Seri Perlis with no back pain, neck pain and shoulder pain problems involved were invited as respondents in this study. EMG experiment was carried out by first determined the critical point at T9 and L3 from thoracic and lumbar segment respectively for ECG electrode placement and performed with a series of sitting trials for analysis. The sitting trials performed were slouch to lumbopelvic sitting and slouch to thoracic sitting follow by instruction. Next, the electrode placement was identified at C2-C3 on cervical spine for neck and at midpoint between C7 to the lateral edge of acromion spanning for shoulder respectively. These points were identified for a series of writing task performing for the EMG analysis. There were two type of writing task which included writing by looking at the whiteboard and paper placed on the table. The subjects were instructed to rest during the experiment when necessary. During lumbopelvic sitting posture, the average muscle activation on lumbar area was at the highest peak. The peak indicated that there was critical effect from the experimental finding. The performance of writing task from whiteboard gave rise a higher impact on neck muscle while writing task from paper had a greater impact on shoulder muscle. The critical affected muscle on these areas was proven on these written tasks. The EMG experiment showed that the existing design of primary school classroom chair and table had brought impact on lumbar, neck and shoulder towards the students who were using. A future recommendation suggests that to redesign primary school classroom chair and table which

  5. [Detection of surface EMG signal using active electrode].

    Science.gov (United States)

    He, Qinghua; Peng, Chenglin; Wu, Baoming; Wang, He

    2003-09-01

    Research of surface electromyogram(EMG) signal is important in rehabilitation medicine, sport medicine and clinical diagnosis, accurate detection of signal is the base of quantitative analysis of surface EMG signal. In this article were discussed how to reduce possible noise in the detection of surface EMG. Considerations on the design of electrode unit were presented. Instrumentation amplifier AD620 was employed to design a bipolar active electrode for use in surface EMG detection. The experiments showed that active electrode could be used to improve signal/noise ratio, reduce noise and detect surface EMG signal effectively.

  6. Test-retest reliability of trunk motor variability measured by large-array surface electromyography.

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Loranger, Michel; Descarreaux, Martin

    2015-01-01

    The objective of this study was to evaluate the test-retest reliability of the trunk muscle activity distribution in asymptomatic participants during muscle fatigue using large-array surface electromyography (EMG). Trunk muscle activity distribution was evaluated twice, with 3 to 4 days between them, in 27 asymptomatic volunteers using large-array surface EMG. Motor variability, assessed with 2 different variables (the centroid coordinates of the root mean square map and the dispersion variable), was evaluated during a low back muscle fatigue task. Test-retest reliability of muscle activity distribution was obtained using Pearson correlation coefficients. A shift in the distribution of EMG amplitude toward the lateral-caudal region of the lumbar erector spinae induced by muscle fatigue was observed. Moderate to very strong correlations were found between both sessions in the last 3 phases of the fatigue task for both motor variability variables, whereas weak to moderate correlations were found in the first phases of the fatigue task only for the dispersion variable. These findings show that, in asymptomatic participants, patterns of EMG activity are less reliable in initial stages of muscle fatigue, whereas later stages are characterized by highly reliable patterns of EMG activity. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  7. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2009-01-01

    The aim of this study was to investigate motor unit (MU) characteristics of the biceps brachii in post-stroke patients, using high-density surface electromyography (sEMG). Eighteen chronic hemiparetic stroke patients took part. The Fugl-Meyer score for the upper extremity was assessed. Subjects

  8. Advanced biofeedback from surface electromyography signals using fuzzy system

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2010-01-01

    The aims of this study were to develop a fuzzy inference-based biofeedback system and investigate its effects when inducing active (shoulder elevation) and passive (relax) pauses on the trapezius muscle electromyographic (EMG) activity during computer work. Surface EMG signals were recorded from...

  9. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    Science.gov (United States)

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

  10. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    Directory of Open Access Journals (Sweden)

    Ho Chit Siu

    2018-02-01

    Full Text Available Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG, but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  11. Exercise muscle fatigue detection system implementation via wireless surface electromyography and empirical mode decomposition.

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2013-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. A wireless Bluetooth transmission sEMG measurement system with a sampling frequency of 2 KHz is developed. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. As fatigue increases, the power spectrum of the sEMG shifts toward lower frequencies. The goal of this study is to evaluate the sensitivity of empirical mode decomposition (EMD) quantifying the electrical manifestations of the local muscle fatigue during exercising in health people. We also compared this method with the raw data and discrete wavelet transform (DWT). Five male and five female volunteers participated. Each subject was asked to run on a multifunctional pedaled elliptical trainer for about 30 minutes, twice a week, and there were a total of six recording times for each subject with a wireless EMG recording system. The results show that sensitivity of the highest frequency component of EMD is better than the highest frequency component of DWT, and raw data.

  12. [Surface electromyography signal classification using gray system theory].

    Science.gov (United States)

    Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai

    2004-12-01

    A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.

  13. Use of surface electromyography in phonation studies: an integrative review

    Science.gov (United States)

    Balata, Patricia Maria Mendes; Silva, Hilton Justino da; Moraes, Kyvia Juliana Rocha de; Pernambuco, Leandro de Araújo; Moraes, Sílvia Regina Arruda de

    2013-01-01

    Summary Introduction: Surface electromyography has been used to assess the extrinsic laryngeal muscles during chewing and swallowing, but there have been few studies assessing these muscles during phonation. Objective: To investigate the current state of knowledge regarding the use of surface electromyography for evaluation of the electrical activity of the extrinsic muscles of the larynx during phonation by means of an integrative review. Method: We searched for articles and other papers in the PubMed, Medline/Bireme, and Scielo databases that were published between 1980 and 2012, by using the following descriptors: surface electromyography and voice, surface electromyography and phonation, and surface electromyography and dysphonia. The articles were selectedon the basis ofinclusion and exclusion criteria. Data Synthesis: This was carried out with a cross critical matrix. We selected 27 papers,i.e., 24 articles and 3 theses. The studies differed methodologically with regards to sample size and investigation techniques, making it difficult to compare them, but showed differences in electrical activity between the studied groups (dysphonicsubjects, non-dysphonicsubjects, singers, and others). Conclusion: Electromyography has clinical applicability when technical precautions with respect to application and analysis are obeyed. However, it is necessary to adopt a universal system of assessment tasks and related measurement techniques to allow comparisons between studies. PMID:25992030

  14. Use of surface electromyography in phonation studies: an integrative review

    Directory of Open Access Journals (Sweden)

    Balata, Patricia Maria Mendes

    2014-01-01

    Full Text Available Introduction: Surface electromyography has been used to assess the extrinsic laryngeal muscles during chewing and swallowing, but there have been few studies assessing these muscles during phonation. Objective: To investigate the current state of knowledge regarding the use of surface electromyography for evaluation of the electrical activity of the extrinsic muscles of the larynx during phonation by means of an integrative review. Method: We searched for articles and other papers in the PubMed, Medline/Bireme, and Scielo databases that were published between 1980 and 2012, by using the following descriptors: surface electromyography and voice, surface electromyography and phonation, and surface electromyography and dysphonia. The articles were selectedon the basis ofinclusion and exclusion criteria. Data Synthesis: This was carried out with a cross critical matrix. We selected 27 papers,i.e., 24 articles and 3 theses. The studies differed methodologically with regards to sample size and investigation techniques, making it difficult to compare them, but showed differences in electrical activity between the studied groups (dysphonicsubjects, non-dysphonicsubjects, singers, and others. Conclusion: Electromyography has clinical applicability when technical precautions with respect to application and analysis are obeyed. However, it is necessary to adopt a universal system of assessment tasks and related measurement techniques to allow comparisons between studies.

  15. Central motor control failure in fibromyalgia: a surface electromyography study.

    Science.gov (United States)

    Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto

    2009-07-01

    Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Eight female patients aged 55.6 +/- 13.6 years (FM group) and eight healthy female volunteers aged 50.3 +/- 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean +/- SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 +/- 0.052%/s in FM vs -0.196 +/- 0.133%/s in MCG; normalised MNF rate of changes: -0.29 +/- 0.16%/s in FM vs -0.66 +/- 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control.

  16. Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Adrian Bingham

    2017-12-01

    Full Text Available This study has developed a technique for identifying the presence of muscle fatigue based on the spatial changes of the normalised mutual information (NMI between multiple high density surface electromyography (HD-sEMG channels. Muscle fatigue in the tibialis anterior (TA during isometric contractions at 40% and 80% maximum voluntary contraction levels was investigated in ten healthy participants (Age range: 21 to 35 years; Mean age = 26 years; Male = 4, Female = 6. HD-sEMG was used to record 64 channels of sEMG using a 16 by 4 electrode array placed over the TA. The NMI of each electrode with every other electrode was calculated to form an NMI distribution for each electrode. The total NMI for each electrode (the summation of the electrode’s NMI distribution highlighted regions of high dependence in the electrode array and was observed to increase as the muscle fatigued. To summarise this increase, a function, M(k, was defined and was found to be significantly affected by fatigue and not by contraction force. The technique discussed in this study has overcome issues regarding electrode placement and was used to investigate how the dependences between sEMG signals within the same muscle change spatially during fatigue.

  17. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    Science.gov (United States)

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  18. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Qi Huang

    2017-06-01

    Full Text Available Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC, by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC. We compared PAC performance with incremental support vector classifier (ISVC and non-adapting SVC (NSVC in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05 and ISVC (13.38% ± 2.62%, p = 0.001, and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle.

  19. Validity and Reliability of Surface Electromyography Measurements from a Wearable Athlete Performance System

    Directory of Open Access Journals (Sweden)

    Scott K. Lynn, Casey M. Watkins, Megan A. Wong, Katherine Balfany, Daniel F. Feeney

    2018-06-01

    Full Text Available The Athos ® wearable system integrates surface electromyography (sEMG electrodes into the construction of compression athletic apparel. The Athos system reduces the complexity and increases the portability of collecting EMG data and provides processed data to the end user. The objective of the study was to determine the reliability and validity of Athos as compared with a research grade sEMG system. Twelve healthy subjects performed 7 trials on separate days (1 baseline trial and 6 repeated trials. In each trial subjects wore the wearable sEMG system and had a research grade sEMG system’s electrodes placed just distal on the same muscle, as close as possible to the wearable system’s electrodes. The muscles tested were the vastus lateralis (VL, vastus medialis (VM, and biceps femoris (BF. All testing was done on an isokinetic dynamometer. Baseline testing involved performing isometric 1 repetition maximum tests for the knee extensors and flexors and three repetitions of concentric-concentric knee flexion and extension at MVC for each testing speed: 60, 180, and 300 deg/sec. Repeated trials 2-7 each comprised 9 sets where each set included three repetitions of concentric-concentric knee flexion-extension. Each repeated trial (2-7 comprised one set at each speed and percent MVC (50%, 75%, 100% combination. The wearable system and research grade sEMG data were processed using the same methods and aligned in time. The amplitude metrics calculated from the sEMG for each repetition were the peak amplitude, sum of the linear envelope, and 95th percentile. Validity results comprise two main findings. First, there is not a significant effect of system (Athos or research grade system on the repetition amplitude metrics (95%, peak, or sum. Second, the relationship between torque and sEMG is not significantly different between Athos and the research grade system. For reliability testing, the variation across trials and averaged across speeds was 0.8%, 7

  20. The correlation between surface electromyography and bite force of mastication muscles in Asian young adults.

    Science.gov (United States)

    Yen, Cheng-I; Mao, Shih-Hsuan; Chen, Chih-Hao; Chen, Chien-Tzung; Lee, Ming-Yih

    2015-05-01

    Mastication function is related to mandible movement, muscle strength, and bite force. No standard device for measuring bite force has been developed. A linear relationship between electromyographic activity and bite force has been reported by several investigators, but data on the reliability of this relationship remain limited in Asian young adults. The purpose of this study was to develop a clinically applicable, reliable, quantitative, and noninvasive system to measure the kinetic mastication function and observe the correlation between surface electromyography (sEMG) and bite force. The study group consisted of 41 young healthy adults (24 men and 17 women). Surface electromyography was used to evaluate bilateral temporalis and masseter muscle activities, and an occlusal bite force system was used concurrently to measure the bite force during maximal voluntary biting. Bilateral symmetry was compared, and the correlation between EMG and bite force was calculated. The sEMG signals were 107.7±55.0 μV and 106.0±56.0 μV (P=0.699) on right and left temporalis muscles and 183.7±86.2 μV and 194.8±94.3 μV (P=0.121) on right and left masseter muscles, respectively. The bite force was 5.0±3.2 kg on the right side and 5.7±4.0 kg on the left side (P=0.974). A positive correlation between sEMG and bite force was observed. The correlation coefficient between the temporalis muscle and bite force was 0.512, and that between the masseter muscle and bite force was 0.360. No significant difference between the bilateral electromyographic activities of the temporalis and masseter muscles and bilateral bite force was observed in young healthy adults in Taiwan. A positive correlation between sEMG signals and bite force was noted. By combining sEMG and bite force, we developed a clinically applicable, quantitative, reliable, and noninvasive system for evaluating mastication function by using characteristics of biofeedback.

  1. Surface EMG signals based motion intent recognition using multi-layer ELM

    Science.gov (United States)

    Wang, Jianhui; Qi, Lin; Wang, Xiao

    2017-11-01

    The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.

  2. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    Science.gov (United States)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  3. A systematic review of surface electromyography analyses of the bench press movement task.

    Directory of Open Access Journals (Sweden)

    Petr Stastny

    Full Text Available The bench press exercise (BP plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed?PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered.The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB and pectoralis major (PM muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change.PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits or guidelines for the use of exact muscle models.

  4. A systematic review of surface electromyography analyses of the bench press movement task.

    Science.gov (United States)

    Stastny, Petr; Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models.

  5. A systematic review of surface electromyography analyses of the bench press movement task

    Science.gov (United States)

    Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    Background The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? Strategy PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. Results The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. Conclusions PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models. PMID

  6. Impact of Functional Appliances on Muscle Activity: A Surface Electromyography Study in Children

    Science.gov (United States)

    Woźniak, Krzysztof; Piątkowska, Dagmara; Szyszka-Sommerfeld, Liliana; Buczkowska-Radlińska, Jadwiga

    2015-01-01

    Background Electromyography (EMG) is the most objective tool for assessing changes in the electrical activity of the masticatory muscles. The purpose of the study was to evaluate the tone of the masseter and anterior temporalis muscles in growing children before and after 6 months of treatment with functional removable orthodontic appliances. Material/Methods The sample conisted of 51 patients with a mean age 10.7 years with Class II malocclusion. EMG recordings were performed by using a DAB-Bluetooth instrument (Zebris Medical GmbH, Germany). Recordings were performed in mandibular rest position, during maximum voluntary contraction (MVC), and during maximum effort. Results The results of the study indicated that the electrical activity of the muscles in each of the clinical situations was the same in the group of girls and boys. The factor that determined the activity of the muscles was their type. In mandibular rest position and in MVC, the activity of the temporalis muscles was significantly higher that that of the masseter muscels. The maximum effort test indicated a higher fatigue in masseter than in temporalis muscles. Conclusions Surface electromyography is a useful tool for monitoring muscle activity. A 6-month period of functional therapy resulted in changes in the activity of the masticatory muscles. PMID:25600247

  7. Surface EMG in advanced hand prosthetics.

    Science.gov (United States)

    Castellini, Claudio; van der Smagt, Patrick

    2009-01-01

    One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.

  8. Surface electromyography as a screening method for evaluation of dysphagia and odynophagia

    Science.gov (United States)

    Vaiman, Michael; Eviatar, Ephraim

    2009-01-01

    Objective Patients suspected of having swallowing disorders, could highly benefit from simple diagnostic screening before being referred to specialist evaluations. The article analyzes various instrumental methods of dysphagia assessment, introduces surface electromyography (sEMG) to carry out rapid assessment of such patients, and debates proposed suggestions for sEMG screening protocol in order to identify abnormal deglutition. Data sources Subject related books and articles from 1813 to 2007 were obtained through library search, MEDLINE (1949–2007) and EMBASE (1975–2007). Methods Specifics steps for establishing the protocol for applying the technique for screening purposes (e.g., evaluation of specific muscles), the requirements for diagnostic sEMG equipment, the sEMG technique itself, and defining the tests suitable for assessing deglutition (e.g., saliva, normal, and excessive swallows and uninterrupted drinking of water) are presented in detail. SEMG is compared with other techniques in terms of cost, timing, involvement of radiation, etc. Results According to the published data, SEMG of swallowing is a simple and reliable method for screening and preliminary differentiation among dysphagia and odynophagia of various origins. This noninvasive radiation-free examination has a low level of discomfort, and is simple, time-saving and inexpensive to perform. The major weakness of the method seems to be inability for precise diagnostic of neurologically induced dysphagia. Conclusion With standardization of the technique and an established normative database, sEMG might serve as a reliable screening method for optimal patient management but cannot serve for proper investigation of neurogenic dysphagia. PMID:19232090

  9. Validity and Reliability of Surface Electromyography in the Assessment of Primary Muscle Tension Dysphonia.

    Science.gov (United States)

    Khoddami, Seyyedeh Maryam; Talebian, Saeed; Izadi, Farzad; Ansari, Noureddin Nakhostin

    2017-05-01

    The study aims to evaluate the reliability and the discriminative validity of surface electromyography (sEMG) in the assessment of patients with primary muscle tension dysphonia (MTD). The study design is cross-sectional. Fifteen patients with primary MTD (mean age: 34.07 ± 10.99 years) and 15 healthy volunteers (mean age: 34.53 ± 10.63 years) were included. All participants underwent evaluation of sEMG to record the electrical activity of the thyrohyoid and cricothyroid muscles. The outcome measures were the root mean square (RMS), activity peak, duration, and time to the peak activity, which were obtained during /a/ and /i/ prolongation for test-retest reliability. The test-retest reliability was good to excellent for the RMS and peak activity measures (intraclass correlation coefficient [agreement] [ICC agreement ] = 0.49-0.98). The reliability for the activity duration was poor to excellent (ICC agreement  = 0.19-0.9). Poor test-retest reliability was found for the time to peak measure (ICC agreement  = 0.15-0.37). The standard error of measurement for all sEMG measures was between 0.41 and 2.05. The smallest detectable change (SDC) was calculated between 1.13 and 5.66. The highest SDC values were obtained for the peak and the lowest SDCs were documented for the duration (5.66 and 1.13, respectively). All sEMG measures were not able to discriminate between the MTD patients and healthy subjects (P > 0.05). The sEMG is a reliable tool to measure the RMS, the peak activity, and the activity duration in primary MTD. However, it is not able to discriminate the patients with primary MTD from healthy subjects. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.

    Science.gov (United States)

    Soylu, Abdullah Ruhi; Arpinar-Avsar, Pinar

    2010-08-01

    The effects of fatigue on maximum voluntary contraction (MVC) parameters were examined by using force and surface electromyography (sEMG) signals of the biceps brachii muscles (BBM) of 12 subjects. The purpose of the study was to find the sEMG time interval of the MVC recordings which is not affected by the muscle fatigue. At least 10s of force and sEMG signals of BBM were recorded simultaneously during MVC. The subjects reached the maximum force level within 2s by slightly increasing the force, and then contracted the BBM maximally. The time index of each sEMG and force signal were labeled with respect to the time index of the maximum force (i.e. after the time normalization, each sEMG or force signal's 0s time index corresponds to maximum force point). Then, the first 8s of sEMG and force signals were divided into 0.5s intervals. Mean force, median frequency (MF) and integrated EMG (iEMG) values were calculated for each interval. Amplitude normalization was performed by dividing the force signals to their mean values of 0s time intervals (i.e. -0.25 to 0.25s). A similar amplitude normalization procedure was repeated for the iEMG and MF signals. Statistical analysis (Friedman test with Dunn's post hoc test) was performed on the time and amplitude normalized signals (MF, iEMG). Although the ANOVA results did not give statistically significant information about the onset of the muscle fatigue, linear regression (mean force vs. time) showed a decreasing slope (Pearson-r=0.9462, pfatigue starts after the 0s time interval as the muscles cannot attain their peak force levels. This implies that the most reliable interval for MVC calculation which is not affected by the muscle fatigue is from the onset of the EMG activity to the peak force time. Mean, SD, and range of this interval (excluding 2s gradual increase time) for 12 subjects were 2353, 1258ms and 536-4186ms, respectively. Exceeding this interval introduces estimation errors in the maximum amplitude calculations

  11. Analysis of Muscle Contraction on Pottery Manufacturing Process Using Electromyography (EMG)

    Science.gov (United States)

    Soewardi, Hartomo; Azka Rahmayani, Amalia

    2016-01-01

    One of the most common problems in pottery manufacturing process is musculoskeletal disorders on workers. This disorder was caused by uncomfortable posture where the workers sit on the floor with one leg was folded and another was twisted for long duration. Back, waist, buttock, and right knee frequently experience the disorders. The objective of this research is to investigate the muscle contraction at such body part of workers in manufacturing process of pottery. Electromyography is used to investigate the muscle contraction based on the median frequency signal. Focus measurements is conducted on four muscles types. They are lower interscapular muscle on the right and left side, dorsal lumbar muscle, and lateral hamstring muscle. Statistical analysis is conducted to test differences of muscle contraction between female and male. The result of this research showed that the muscle which reached the highest contraction is dorsal lumbar muscle with the average of median frequency is 51,84 Hz. Then followed by lower interscapular muscle on the left side with the average of median frequency is 31,30 hz, lower interscapular muscle on the right side average of median frequency is 31,24 Hz, and lateral hamstring muscle average of median frequency is 21,77 Hz. Based on the statistic analysis result, there were no differences between male and female on left and right lower interscapular muscle and dorsal lumbar muscle but there were differences on lateral hamstring muscle with the significance level is 5%. Besides that, there were differences for all combination muscle types with the level of significance is 5%.

  12. Intermuscular Coherence Between Surface EMG Signals Is Higher for Monopolar Compared to Bipolar Electrode Configurations

    Directory of Open Access Journals (Sweden)

    Maurice Mohr

    2018-05-01

    Full Text Available Introduction: The vasti muscles have to work in concert to control knee joint motion during movements like walking, running, or squatting. Coherence analysis between surface electromyography (EMG signals is a common technique to study muscle synchronization during such movements and gain insight into strategies of the central nervous system to optimize neuromuscular performance. However, different assessment methods related to EMG data acquisition, e.g., different electrode configurations or amplifier technologies, have produced inconsistent observations. Therefore, the aim of this study was to elucidate the effect of different EMG acquisition techniques (monopolar vs. bipolar electrode configuration, potential vs. current amplifier on the magnitude, reliability, and sensitivity of intermuscular coherence between two vasti muscles during stable and unstable squatting exercises.Methods: Surface EMG signals from vastus lateralis (VL and medialis (VM were obtained from eighteen adults while performing series of stable und unstable bipedal squats. The EMG signals were acquired using three different recording techniques: (1 Bipolar with a potential amplifier, (2 monopolar with a potential amplifier, and (3 monopolar electrodes with a current amplifier. VL-VM coherence between the respective raw EMG signals was determined during two trials of stable squatting and one trial of unstable squatting to compare the coherence magnitude, reliability, and sensitivity between EMG recording techniques.Results: VL-VM coherence was about twice as high for monopolar recordings compared to bipolar recordings for all squatting exercises while coherence was similar between monopolar potential and current recordings. Reliability measures were comparable between recording systems while the sensitivity to an increase in intermuscular coherence during unstable vs. stable squatting was lowest for the monopolar potential system.Discussion and Conclusion: The choice of

  13. Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor

    Directory of Open Access Journals (Sweden)

    Dong Sun

    2012-01-01

    Full Text Available The human hand has multiple degrees of freedom (DOF for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  14. Hand motion classification using a multi-channel surface electromyography sensor.

    Science.gov (United States)

    Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong

    2012-01-01

    The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  15. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography

    Science.gov (United States)

    Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.

    2016-01-01

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155

  16. Time-varying surface electromyography topography as a prognostic tool for chronic low back pain rehabilitation.

    Science.gov (United States)

    Hu, Yong; Kwok, Jerry Weilun; Tse, Jessica Yuk-Hang; Luk, Keith Dip-Kei

    2014-06-01

    Nonsurgical rehabilitation therapy is a commonly used strategy to treat chronic low back pain (LBP). The selection of the most appropriate therapeutic options is still a big challenge in clinical practices. Surface electromyography (sEMG) topography has been proposed to be an objective assessment of LBP rehabilitation. The quantitative analysis of dynamic sEMG would provide an objective tool of prognosis for LBP rehabilitation. To evaluate the prognostic value of quantitative sEMG topographic analysis and to verify the accuracy of the performance of proposed time-varying topographic parameters for identifying the patients who have better response toward the rehabilitation program. A retrospective study of consecutive patients. Thirty-eight patients with chronic nonspecific LBP and 43 healthy subjects. The accuracy of the time-varying quantitative sEMG topographic analysis for monitoring LBP rehabilitation progress was determined by calculating the corresponding receiver-operating characteristic (ROC) curves. Physiologic measure was the sEMG during lumbar flexion and extension. Patients who suffered from chronic nonspecific LBP without the history of back surgery and any medical conditions causing acute exacerbation of LBP during the clinical test were enlisted to perform the clinical test during the 12-week physiotherapy (PT) treatment. Low back pain patients were classified into two groups: "responding" and "nonresponding" based on the clinical assessment. The responding group referred to the LBP patients who began to recover after the PT treatment, whereas the nonresponding group referred to some LBP patients who did not recover or got worse after the treatment. The results of the time-varying analysis in the responding group were compared with those in the nonresponding group. In addition, the accuracy of the analysis was analyzed through ROC curves. The time-varying analysis showed discrepancies in the root-mean-square difference (RMSD) parameters between the

  17. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Directory of Open Access Journals (Sweden)

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  18. Basic Hand Gestures Classification Based on Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Aleksander Palkowski

    2016-01-01

    Full Text Available This paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis. The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector Machine classifiers with various kernel functions. The average classification rate of 98.12% has been achieved for the proposed method.

  19. Reproducibility of 3D kinematics and surface electromyography measurements of mastication.

    Science.gov (United States)

    Remijn, Lianne; Groen, Brenda E; Speyer, Renée; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G

    2016-03-01

    The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the masticatory muscles were obtained over two sessions with four conditions: two food textures (biscuit and bread) of two sizes (small and large). Twelve healthy adults (mean age 29.1 years) completed the study. The second to the fifth chewing cycle of 5 bites were used for analyses. The reproducibility per outcome variable was calculated with an intraclass correlation coefficient (ICC) and a Bland-Altman analysis was applied to determine the standard error of measurement relative error of measurement and smallest detectable differences of all variables. ICCs ranged from 0.71 to 0.98 for all outcome variables. The outcome variables consisted of four bite and fourteen chewing cycle variables. The relative standard error of measurement of the bite variables was up to 17.3% for 'time-to-swallow', 'time-to-transport' and 'number of chewing cycles', but ranged from 31.5% to 57.0% for 'change of chewing side'. The relative standard error of measurement ranged from 4.1% to 24.7% for chewing cycle variables and was smaller for kinematic variables than sEMG variables. In general, measurements obtained with 3D kinematics and sEMG are reproducible techniques to assess the mastication process. The duration of the chewing cycle and frequency of chewing were the best reproducible measurements. Change of chewing side could not be reproduced. The published measurement error and smallest detectable differences will aid the interpretation of the results of future clinical studies using the same study variables. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evaluation of surgeon's muscle fatigue during thoracoscopic pulmonary lobectomy using interoperative surface electromyography.

    Science.gov (United States)

    Yoon, Seung-Hyun; Jung, Myung-Chul; Park, Seong Yong

    2016-06-01

    The aim of this study was to document the physical stress experienced by a surgeon during thoracoscopic pulmonary lobectomy and mediastinal lymph node dissection for lung cancer by measuring the intraoperative electromyography (EMG). Surface EMG was recorded during 12 cases of thoracoscopic lobectomy. During the operation, 16 channels of a wireless EMG were used to measure muscle activity and fatigue from the bilateral muscles of the splenius capitis (SC), upper trapezius (UT), middle deltoid (MD), flexor carpi radialis (FCR), extensor carpi radialis (ECR), lumbar erector spinae (LES), rectus femoralis (RF), and tibialis anterior (TA). The EMG signals were processed to collect the values of the root mean square for muscle activity and median frequency (MF) for muscle fatigue. All operations were completed without adverse events. The mean operating time was 99.16±35.15 minutes. During the operation, the mean muscle activity of all muscles was 21.91±12.85 mV. High muscle activity was observed in the bilateral FCR and ECR, whereas low muscle activity was observed in the bilateral SC and LES. The final MFs in the bilateral SC and LES were found to be decreased from the initial status, which implied increased muscle fatigue. The muscles of the right and left LES were significantly fatigued by up to 29% and 37% compared to their initial status (P=0.021 and P=0.007, respectively). The MFs of the bilateral LES decreased with time (an average decreases of 0.008/5 minutes, P=0.002 in right LES and 0.004/5 minutes, P=0.018 in left LES). During thoracoscopic lobectomy, muscle fatigue was observed in muscles related to a static posture, such as the bilateral SC, UT, and ES. Further studies are required to investigate the ergonomic adjustments needed to reduce muscle fatigue in these static muscles.

  1. Estimation of muscle fatigue by ratio of mean frequency to average rectified value from surface electromyography.

    Science.gov (United States)

    Fernando, Jeffry Bonar; Yoshioka, Mototaka; Ozawa, Jun

    2016-08-01

    A new method to estimate muscle fatigue quantitatively from surface electromyography (EMG) is proposed. The ratio of mean frequency (MNF) to average rectified value (ARV) is used as the index of muscle fatigue, and muscle fatigue is detected when MNF/ARV falls below a pre-determined or pre-calculated baseline. MNF/ARV gives larger distinction between fatigued muscle and non-fatigued muscle. Experiment results show the effectiveness of our method in estimating muscle fatigue more correctly compared to conventional methods. An early evaluation based on the initial value of MNF/ARV and the subjective time when the subjects start feeling the fatigue also indicates the possibility of calculating baseline from the initial value of MNF/ARV.

  2. A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG).

    Science.gov (United States)

    Ma, Rui; Kim, Dae-Hyeong; McCormick, Martin; Coleman, Todd; Rogers, John

    2010-01-01

    This paper reports a class of stretchable electrode array capable of intimate, conformal integration onto the curvilinear surfaces of skin on the human body. The designs employ conventional metallic conductors but in optimized mechanical layouts, on soft, thin elastomeric substrates. These devices exhibit an ability to record spontaneous EEG activity even without conductive electrolyte gels, with recorded alpha rhythm responses that are 40% stronger than those collected using conventional tin electrodes and gels under otherwise similar conditions. The same type of device can also measure high quality ECG and EMG signals. The results suggest broad utility for skin-mounted measurements of electrical activity in the body, with advantages in signal levels, wearability and modes of integration compared to alternatives.

  3. Surface electromyography based muscle fatigue analysis for stroke patients at different Brunnstrom stages.

    Science.gov (United States)

    Yinjun Tu; Zhe Zhang; Xudong Gu; Qiang Fang

    2016-08-01

    Muscle fatigue analysis has been an important topic in sport and rehabilitation medicine due to its role in muscle performance evaluation and pathology investigation. This paper proposes a surface electromyography (sEMG) based muscle fatigue analysis approach which was specifically designed for stroke rehabilitation applications. 14 stroke patients from 5 different Brunnstrom recovery stage groups were involved in the experiment and features including median frequency and mean power frequency were extracted from the collected sEMG samples for investigation. After signal decomposition, the decline of motor unit firing rate of patients from different groups had also been studied. Statistically significant presence of fatigue had been observed in deltoideus medius and extensor digitorum communis of patients at early recovery stages (P0.01). It had also been discovered that the motor unit firing frequency declines with a range positively correlated to the recovery stage during repetitive movements. Based on the experiment result, it can be verified that as the recovery stage increases, the central nervous system's control ability strengthens and the patient motion becomes more stable and resistive to fatigue.

  4. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    Science.gov (United States)

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  5. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals

    Directory of Open Access Journals (Sweden)

    Qin Zhang

    2017-05-01

    Full Text Available In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA and independent component analysis (ICA are respectively employed for EMG mode decomposition with artificial neural network (ANN for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA and single ANN, the average estimation accuracy 91.12% (90.23% is obtained in 70-s intra-cross validation and 87.00% (86.30% is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA with single ANN for multi-joint kinematics estimation in variant application conditions.

  6. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features.

    Science.gov (United States)

    Karthick, P A; Makaram, Navaneethakrishna; Ramakrishnan, S

    2014-01-01

    Muscle fatigue is a neuromuscular condition where muscle performance decreases due to sustained or intense contraction. It is experienced by both normal and abnormal subjects. In this work, an attempt has been made to analyze the progression of muscle fatigue in biceps brachii muscles using surface electromyography (sEMG) signals. The sEMG signals are recorded from fifty healthy volunteers during dynamic contractions under well defined protocol. The acquired signals are preprocessed and segmented in to six equal parts for further analysis. The features, such as activity, mobility, complexity, sample entropy and spectral entropy are extracted from all six zones. The results are found showing that the extracted features except complexity feature have significant variations in differentiating non-fatigue and fatigue zone respectively. Thus, it appears that, these features are useful in automated analysis of various neuromuscular activities in normal and pathological conditions.

  7. Detection of tonic epileptic seizures based on surface electromyography

    DEFF Research Database (Denmark)

    Larsen, Sigge N.; Conradsen, Isa; Beniczky, Sandor

    2014-01-01

    The purpose of this project was to design an algorithm for detection of tonic seizures based on surface electromyography signals from the deltoids. A successful algorithm has a future prospect of being implemented in a wearable device as part of an alarm system. This has already been done......, median frequency, zero crossing rate and approximate entropy. These features were used as input in the random forest classifier to decide if a data segment was from a seizure or not. The goal was to develop a generic algorithm for all tonic seizures, but better results were achieved when certain...

  8. Surface electromyography and ultrasound evaluation of pelvic floor muscles in hyperandrogenic women.

    Science.gov (United States)

    Vassimon, Flávia Ignácio Antonio; Ferreira, Cristine Homsi Jorge; Martins, Wellington Paula; Ferriani, Rui Alberto; Batista, Roberta Leopoldino de Andrade; Bo, Kari

    2016-04-01

    High levels of androgens increase muscle mass. Due to the characteristics of hyperandrogenism in polycystic ovary syndrome (PCOS), it is plausible that women with PCOS may have increased pelvic floor muscle (PFM) thickness and neuromuscular activity levels compared with controls. The aim of this study was to assess PFM thickness and neuromuscular activity among hyperandrogenic women with PCOS and controls. This was an observational, cross-sectional, case-control study evaluating PFM by ultrasound (US) and surface electromyography (sEMG) in nonobese women with and without PCOS. Seventy-two women were divided into two groups: PCOS (n = 33) and controls (n = 39). PFM thickness during contraction was assessed by US (Vingmed CFM 800). Pelvic floor muscle activity was assessed by sEMG (MyoTrac Infinit) during contractions at different time lengths: quick, and 8 and 60 s. Descriptive analysis, analysis of variance (ANOVA), and Student's t test were used for statistical analyses. There were no significant differences in PFM sEMG activity between PCOS and controls in any of the contractions: quick contraction (73.23 mV/ 71.56 mV; p = 0.62), 8 s (55.77 mV/ 54.17 mV; p = 0.74), and 60 s (49.26 mV/ 47.32 mV; p = 0.68), respectively. There was no difference in PFM thickness during contractions evaluated by US between PCOS and controls (12.78 mm/ 13.43 mm; p =  .48). This study did not find statistically significant differences in pelvic floor muscle thickness or in muscle activity between PCOS women and controls.

  9. Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals.

    Science.gov (United States)

    Karthick, P A; Venugopal, G; Ramakrishnan, S

    2016-01-01

    Analysis of neuromuscular fatigue finds various applications ranging from clinical studies to biomechanics. Surface electromyography (sEMG) signals are widely used for these studies due to its non-invasiveness. During cyclic dynamic contractions, these signals are nonstationary and cyclostationary. In recent years, several nonstationary methods have been employed for the muscle fatigue analysis. However, cyclostationary based approach is not well established for the assessment of muscle fatigue. In this work, cyclostationarity associated with the biceps brachii muscle fatigue progression is analyzed using sEMG signals and Spectral Correlation Density (SCD) functions. Signals are recorded from fifty healthy adult volunteers during dynamic contractions under a prescribed protocol. These signals are preprocessed and are divided into three segments, namely, non-fatigue, first muscle discomfort and fatigue zones. Then SCD is estimated using fast Fourier transform accumulation method. Further, Cyclic Frequency Spectral Density (CFSD) is calculated from the SCD spectrum. Two features, namely, cyclic frequency spectral area (CFSA) and cyclic frequency spectral entropy (CFSE) are proposed to study the progression of muscle fatigue. Additionally, degree of cyclostationarity (DCS) is computed to quantify the amount of cyclostationarity present in the signals. Results show that there is a progressive increase in cyclostationary during the progression of muscle fatigue. CFSA shows an increasing trend in muscle fatiguing contraction. However, CFSE shows a decreasing trend. It is observed that when the muscle progresses from non-fatigue to fatigue condition, the mean DCS of fifty subjects increases from 0.016 to 0.99. All the extracted features found to be distinct and statistically significant in the three zones of muscle contraction (p < 0.05). It appears that these SCD features could be useful in the automated analysis of sEMG signals for different neuromuscular conditions.

  10. Surface EMG characteristics of people with multiple sclerosis during static contractions of the knee extensors.

    Science.gov (United States)

    Scott, Sasha M; Hughes, Adrienne R; Galloway, Stuart D R; Hunter, Angus M

    2011-01-01

    This study was designed to determine whether any alterations existed in surface electromyography (sEMG) in people with multiple sclerosis (MS) during isometric contractions of the knee extensors. Fifteen people with MS and 14 matched controls (mean ± SD age and body mass index 53·7 ± 10·5 versus 54·6 ± 9·6 years and 27·7 ± 6·1 versus 26·5 ± 4, respectively) completed 20%, 40%, 60% and 80% of their maximal voluntary contraction (MVC) of the knee extensors. sEMG was recorded from the vastus lateralis where muscle fibre conduction velocity (MFCV) and sEMG amplitude (RMS) were assessed. Body composition was determined using dual-energy X-ray absorptiometry and physical activity with the use of accelerometry. People with MS showed significantly (P<0·05) faster MFCV during MVC (6·6 ± 2·7 versus 4·7 ± 1·4 m s(-1) ) and all submaximal contractions, while RMS was significantly (P<0·05) less (0·11 ± 0·03 versus 0·24 ± 0·06 mV) in comparison with the controls. MVC along with specific thigh lean mass to torque, rate of force development and mean physical activity were significantly (P<0·01) less in PwMS. People with MS have elevated MFCV alongside reduced RMS during isometric contraction. This elevation in MFCV should be accounted for when interpreting sEMG from people with MS. © 2010 University of Stirling. Clinical physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  11. Assessment of Diaphragm and External Intercostals Fatigue from Surface EMG using Cervical Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2008-03-01

    Full Text Available This study was designed: (1 to test the reliability of surface electromyography (sEMG recording of the diaphragm and external intercostals contractions response to cervical magnetic stimulation (CMS, (2 to examine the amount and the types of inspiratory muscle fatigue that developed after maximum voluntary ventilation (MVV maneuvers.Ten male college students without physical disability (22.1±2.0 years old participated in the study and each completed a control (quiet breathing trial and a fatigue (MVV maneuvers trial sequentially. In the quiet breathing trial, the subjects maintained quiet breathing for five minutes. The subjects performed five maximal static inspiratory efforts and received five CMS before and after the quiet breathing. In the MVV trial, subjects performed five maximal inspiratory efforts and received five CMS before, immediately after, and ten minutes after two sets of MVV maneuvers performed five minutes apart. Maximal inspiratory pressure (PImax, sEMG of diaphragm and external intercostals during maximal static inspiratory efforts and during CMS were recorded. In the quiet breathing trial, high intraclass correlation coefficients (ICC=0.95-0.99 were observed in all the variables. In the MVV trial, the PImax, the EMG amplitude and the median power frequency during maximal static inspiratory efforts significantly decreased in both the diaphragm and the external intercostals immediately after the MVV maneuvers Sensors 2008, 8 2175 (P 0.05. It is concluded that the sEMG recordings of the diaphragm during maximal static inspiratory efforts and in response to CMS allow reproducible sequential assessment of diaphragm contractility. MVV maneuvers resulted in inspiratory muscles fatigue, possibly central fatigue.

  12. Preferred sensor sites for surface EMG signal decomposition

    International Nuclear Information System (INIS)

    Zaheer, Farah; Roy, Serge H; De Luca, Carlo J

    2012-01-01

    Technologies for decomposing the electromyographic (EMG) signal into its constituent motor unit action potential trains have become more practical by the advent of a non-invasive methodology using surface EMG (sEMG) sensors placed on the skin above the muscle of interest (De Luca et al 2006 J. Neurophysiol. 96 1646–57 and Nawab et al 2010 Clin. Neurophysiol. 121 1602–15). This advancement has widespread appeal among researchers and clinicians because of the ease of use, reduced risk of infection, and the greater number of motor unit action potential trains obtained compared to needle sensor techniques. In this study we investigated the influence of the sensor site on the number of identified motor unit action potential trains in six lower limb muscles and one upper limb muscle with the intent of locating preferred sensor sites that provided the greatest number of decomposed motor unit action potential trains, or motor unit yield. Sensor sites rendered varying motor unit yields throughout the surface of a muscle. The preferred sites were located between the center and the tendinous areas of the muscle. The motor unit yield was positively correlated with the signal-to-noise ratio of the detected sEMG. The signal-to-noise ratio was inversely related to the thickness of the tissue between the sensor and the muscle fibers. A signal-to-noise ratio of 3 was found to be the minimum required to obtain a reliable motor unit yield. (paper)

  13. Surface EMG and intra-socket force measurement to control a prosthetic device

    Science.gov (United States)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  14. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  15. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    Directory of Open Access Journals (Sweden)

    Han Sun

    2018-03-01

    Full Text Available The novel human-computer interface (HCI using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC and Fisher discrimination (FD criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT and recognition rate (RR. The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s

  16. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.

    Science.gov (United States)

    Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S

    2018-02-01

    Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to

  17. Entropic Analysis of Electromyography Time Series

    Science.gov (United States)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  18. Occlusal splint versus modified nociceptive trigeminal inhibition splint in bruxism therapy: a randomized, controlled trial using surface electromyography.

    Science.gov (United States)

    Dalewski, B; Chruściel-Nogalska, M; Frączak, B

    2015-12-01

    An occlusal splint and a modified nociceptive trigeminal inhibition splint (AMPS, anterior deprogrammer, Kois deprogrammer, Lucia jig, etc.) are commonly and quite frequently used in the treatment of masticatory muscle disorders, although their sustainable and long-lasting effect on these muscles' function is still not very well known. Results of scant surface electromyography studies in patients with temporomandibular disorders have been contradictory. The aim of this study was to evaluate both devices in bruxism therapy; EMG activity levels during postural activity and maximum voluntary contraction of the superficial temporal and masseter muscles were compared before and after 30 days of treatment. Surface electromyography of the examined muscles was performed in two groups of bruxers (15 patients each). Patients in the first group used occlusal splints, while those in the second used modified nociceptive trigeminal inhibition splints. The trial was randomized, controlled and semi-blind. Neither device affected the asymmetry index or postural activity/maximum voluntary contraction ratio after 1 month of treatment. Neither the occlusal nor the nociceptive trigeminal inhibition splint showed any significant influence on the examined muscles. Different scientific methods should be considered in clinical applications that require either direct influence on the muscles' bioelectrical activity or a quantitative measurement of the treatment quality. © 2015 Australian Dental Association.

  19. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.

    Science.gov (United States)

    de Moura, Karina de O A; Balbinot, Alexandre

    2018-05-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method

  20. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography

    DEFF Research Database (Denmark)

    Blangsted, Anne Katrine; Sjøgaard, Gisela; Madeleine, Pascal

    2005-01-01

    Controversies exist regarding objective documentation of fatigue development with low-force contractions. We hypothesized that non-exhaustive, low-force muscle contraction may induce prolonged low-frequency fatigue (LFF) that in the subsequent recovery period is detectable by electromyography (EMG...

  1. Neural network committees for finger joint angle estimation from surface EMG signals

    Directory of Open Access Journals (Sweden)

    Reddy Narender P

    2009-01-01

    Full Text Available Abstract Background In virtual reality (VR systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG together with the actual joint angle measurements were obtained while the subject was performing flexion-extension rotation of the index finger at three speeds. Several neural networks were trained to predict the joint angle from the parameters extracted from the SEMG signals. The best networks were selected to form six committees. The neural network committees were evaluated using data from new subjects. Results There was hysteresis in the measured SMEG signals during the flexion-extension cycle. However, neural network committees were able to predict the joint angle with reasonable accuracy. RMS errors ranged from 0.085 ± 0.036 for fast speed finger-extension to 0.147 ± 0.026 for slow speed finger extension, and from 0.098 ± 0.023 for the fast speed finger flexion to 0.163 ± 0.054 for slow speed finger flexion. Conclusion Although hysteresis was observed in the measured SEMG signals, the committees of neural networks were able to predict the finger joint angle from SEMG signals.

  2. Muscle fatigue in women with primary biliary cirrhosis: Spectral analysis of surface electromyography

    Science.gov (United States)

    Biagini, Maria Rosa; Tozzi, Alessandro; Grippo, Antonello; Galli, Andrea; Milani, Stefano; Amantini, Aldo

    2006-01-01

    AIM: To evaluate the myoelectric manifestations of peripheral fatigability in patients with primary biliary cirrhosis in comparison to healthy subjects. METHODS: Sixteen women with primary biliary cirrhosis without comorbidity and 13 healthy women matched for age and body mass index (BMI) completed the self-reported questionnaire fatigue impact scale. All subjects underwent surface electromyography assessment of peripheral fatigability. Anterior tibial muscle isometric voluntary contraction was executed for 20 s at 80% of maximal voluntary isometric contraction. During the exercise electromyographic signal series were recorded and root mean square (expression of central drive) as well as mean and median of electromyographic signal frequency spectrum (estimates of muscle fatigability) were computed. Each subject executed the trial two times. EMG parameters were normalized, then linear regression was applied and slopes were calculated. RESULTS: Seven patients were fatigued (median fatigue impact scale score: 38, range: 26-66) and 9 were not fatigued (median fatigue impact scale score: 7, range: 0-17). The maximal voluntary isometric contraction was similar in patients (82, 54-115 N) and controls (87, 74-101 N), and in patients with high (81, 54-115 N) and low fatigue impact scale scores (86, 65-106 N). Root mean square as well as mean and median of frequency spectrum slopes were compared with the Mann-Whitney U test, and no significant difference was found between fatigued and non-fatigued patients and controls. CONCLUSION: No instrumental evidence of peripheral fatigability can be found in women with primary biliary cirrhosis but no comorbidity, suggesting that fatigue in such patients may be of central origin. PMID:16937530

  3. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    Science.gov (United States)

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this

  4. Developing control algorithms of a voluntary cough for an artificial bioengineered larynx using surface electromyography of chest muscles: A prospective cohort study.

    Science.gov (United States)

    Banus, M S; Birchall, M A; Graveston, J A

    2018-04-01

    This prospective cohort study investigates the prediction of a voluntary cough using surface electromyography (EMG) of intercostal and diaphragm muscles, to develop control algorithms for an EMG-controlled artificial larynx. The Ear Institute, London. Electromyography onset compared to voluntary cough exhalation onset and to 100 ms (to give the artificial larynx the time to close the bioengineered vocal cords) before voluntary cough exhalation onset, in twelve healthy participants. In the 189 EMG of intercostal muscle-detected voluntary coughs, 172 coughs (91% CI 70-112) were detected before onset of cough exhalation and 128 coughs (67.6% CI 33.7-101.7) 100 ms before onset of cough exhalation. In the 158 EMG of diaphragm muscle-detected voluntary coughs, 149 coughs (94.3% CI 76.3-112.3) were detected before onset of cough exhalation and 102 coughs (64.6% CI 26.6-102.6) 100 ms before onset of cough exhalation. More coughs were detected before onset of cough exhalation when combining EMG activity of intercostal and diaphragm muscles and comparing this to intercostal muscle activity alone (183 coughs [96.8% CI 83.8-109.8] vs 172 coughs, P = .0294). When comparing the mentioned combination to diaphragm muscle activity alone, the higher percentage of detected coughs before cough exhalation onset was not found to be significant (183 coughs vs 149 coughs, P = .295). In addition, more coughs were detected 100 ms before onset of cough exhalation with the mentioned combination of EMG activity and comparing this to intercostal muscles alone (149 coughs [78.8% CI 48.8-108.8] vs 128 coughs, P = .0198) and to diaphragm muscles alone (149 coughs vs 102 coughs, P = .0038). Most voluntary coughs can be predicted based on combined EMG signals of intercostal and diaphragm muscles, and therefore, these two muscle groups will be useful in controlling the bioengineered vocal cords within the artificial larynx during a voluntary cough. © 2017 John Wiley & Sons Ltd.

  5. Differences in the EMG pattern of lea muscle activation during locomotion in Parkinson's disease

    NARCIS (Netherlands)

    Albani, G; Sandrini, G; Kunig, G; Martin-Soelch, C; Mauro, A; Pignatti, R; Pacchetti, C; Dietz, [No Value; Leenders, KL

    2003-01-01

    In this pilot study, EMG patterns of leg muscle activation were studied in five parkinsonian patients with (B1) and five without (B2) freezing. Gastrocnemius medialis (GM) and tibialis anterior (TA) activity was analysed, by means of surface electromyography (EMG), during treadmill walking at two

  6. Duration of observation required in detecting fasciculation potentials in amyotrophic lateral sclerosis using high-density surface EMG

    Directory of Open Access Journals (Sweden)

    Zhou Ping

    2012-10-01

    Full Text Available Abstract Background High-density surface electromyography (HD-SEMG has recently emerged as a potentially useful tool in the evaluation of amyotrophic lateral sclerosis (ALS. This study addresses a practical constraint that arises when applying HD-SEMG for supporting the diagnosis of ALS; specifically, how long the surface EMG should be recorded before one can be confident that fasciculation potentials (FPs are absent in a muscle being tested. Methods HD-SEMG recordings of 29 muscles from 11 ALS patients were analyzed. We used the distribution of intervals between FPs, and estimated the observation duration needed to record from one to five FPs with a probability approaching unity. Such an approach was previously tested by Mills with a concentric needle electrode. Results We found that the duration of recording was up to 70 s in order to record a single FP with a probability approaching unity. Increasing recording time to 2 minutes, the probability of recording five FPs approached approximately 0.95. Conclusions HD-SEMG appears to be a suitable method for capturing FPs comparable to intramuscular needle EMG.

  7. Vitamin D, surface electromyography and physical function in uraemic patients

    DEFF Research Database (Denmark)

    Heaf, J.G.; Mølsted, Stig; Harrison, Adrian Paul

    2010-01-01

    EMG signal peak-peak amplitude, frequency and RMS were positively correlated to the quality of life scales Physical Function, Role Physical, General Health, Vitality, Social Function, Mental Health, and Physical Component Scale (p ... was to investigate the association between 25-OHD and muscle function as well as physical function in chronic kidney disease (CKD) and peritoneal dialysis (PD) patients. Methods: In this cross-sectional study, 21 adult patients with CKD stage 3-5 and 21 patients treated with PD were included. Standard biochemistry......) under voluntary contractions. Physical function was determined using a 30-second Chair Stand Test and the Short Form 36 quality of life questionnaire. Clinical characteristics were collected from the patient records. Results: Moderate vitamin 25-OHD deficiency (

  8. FastICA peel-off for ECG interference removal from surface EMG.

    Science.gov (United States)

    Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping

    2016-06-13

    Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.

  9. Relationship between lower limb position and pelvic floor muscle surface electromyography activity in menopausal women: a prospective observational study

    Directory of Open Access Journals (Sweden)

    Halski T

    2017-01-01

    Full Text Available Tomasz Halski,1 Kuba Ptaszkowski,2 Lucyna Słupska,1 Robert Dymarek,3 Małgorzata Paprocka-Borowicz2 1Department of Physiotherapy, Opole Medical School, Opole, 2Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, 3Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland Objectives: In physiotherapeutic practice, special attention is being given to the reciprocal anatomical, physiological, and biomechanical relationship of the pelvis and the structures connected to it. However, the scientific literature shows mainly the theoretical information about their mutual connections. The lack of information about these relations from a practical aspect coupled with the paucity of scientific papers on the impact of posture changes on the pelvic floor led the authors to conduct this study. The primary aim of this study was to compare the resting and functional bioelectrical activities of pelvic floor muscles (PFMs depending on three different positions of the lower limbs (positions A, B, and C in the supine position.Materials and methods: This was a prospective observational study evaluating resting and functional activities of the PFM depending on the position of the lower limbs. The study was carried out at the Department and Clinic of Urology, University Hospital in Wroclaw, Poland and the target group were women in the menopausal period. Bioelectrical activity of PFM was recorded using a surface electromyographic instrument in the supine position. Results of the values obtained in A, B, and C positions were compared using a one-way analysis of variance.Results: In position A, the average resting surface electromyography (sEMG activity of PFM was 6.9±2.6 µV; in position B, the result was 6.9±2.5 µV and in position C, the resting sEMG activity was 5.7±1.8 µV (P=0.0102. The results of the functional bioelectrical activity of PFM were as follows: position A – 20.3

  10. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.

    Science.gov (United States)

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-09-15

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no

  11. Embroidered Electromyography: A Systematic Design Guide.

    Science.gov (United States)

    Shafti, Ali; Ribas Manero, Roger B; Borg, Amanda M; Althoefer, Kaspar; Howard, Matthew J

    2017-09-01

    Muscle activity monitoring or electromyography (EMG) is a useful tool. However, EMG is typically invasive, expensive and difficult to use for untrained users. A possible solution is textile-based surface EMG (sEMG) integrated into clothing as a wearable device. This is, however, challenging due to 1) uncertainties in the electrical properties of conductive threads used for electrodes, 2) imprecise fabrication technologies (e.g., embroidery, sewing), and 3) lack of standardization in design variable selection. This paper, for the first time, provides a design guide for such sensors by performing a thorough examination of the effect of design variables on sEMG signal quality. Results show that imprecisions in digital embroidery lead to a trade-off between low electrode impedance and high manufacturing consistency. An optimum set of variables for this trade-off is identified and tested with sEMG during a variable force isometric grip exercise with n = 12 participants, compared with conventional gel-based electrodes. Results show that thread-based electrodes provide a similar level of sensitivity to force variation as gel-based electrodes with about 90% correlation to expected linear behavior. As proof of concept, jogging leggings with integrated embroidered sEMG are made and successfully tested for detection of muscle fatigue while running on different surfaces.

  12. Muscle fatigue and contraction intensity modulates the complexity of surface electromyography.

    Science.gov (United States)

    Cashaback, Joshua G A; Cluff, Tyler; Potvin, Jim R

    2013-02-01

    Nonlinear dynamical techniques offer a powerful approach for the investigation of physiological time series. Multiscale entropy analyses have shown that pathological and aging systems are less complex than healthy systems and this finding has been attributed to degraded physiological control processes. A similar phenomenon may arise during fatiguing muscle contractions where surface electromyography signals undergo temporal and spectral changes that arise from the impaired regulation of muscle force production. Here we examine the affect of fatigue and contraction intensity on the short and long-term complexity of biceps brachii surface electromyography. To investigate, we used an isometric muscle fatigue protocol (parsed into three windows) and three contraction intensities (% of maximal elbow joint moment: 40%, 70% and 100%). We found that fatigue reduced the short-term complexity of biceps brachii activity during the last third of the fatiguing contraction. We also found that the complexity of surface electromyography is dependent on contraction intensity. Our results show that multiscale entropy is sensitive to muscle fatigue and contraction intensity and we argue it is imperative that both factors be considered when evaluating the complexity of surface electromyography signals. Our data contribute to a converging body of evidence showing that multiscale entropy can quantify subtle information content in physiological time series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors

    Directory of Open Access Journals (Sweden)

    Yanran Li

    2017-03-01

    Full Text Available Quantitative evaluation of motor function is of great demand for monitoring clinical outcome of applied interventions and further guiding the establishment of therapeutic protocol. This study proposes a novel framework for evaluating upper limb motor function based on data fusion from inertial measurement units (IMUs and surface electromyography (EMG sensors. With wearable sensors worn on the tested upper limbs, subjects were asked to perform eleven straightforward, specifically designed canonical upper-limb functional tasks. A series of machine learning algorithms were applied to the recorded motion data to produce evaluation indicators, which is able to reflect the level of upper-limb motor function abnormality. Sixteen healthy subjects and eighteen stroke subjects with substantial hemiparesis were recruited in the experiment. The combined IMU and EMG data yielded superior performance over the IMU data alone and the EMG data alone, in terms of decreased normal data variation rate (NDVR and improved determination coefficient (DC from a regression analysis between the derived indicator and routine clinical assessment score. Three common unsupervised learning algorithms achieved comparable performance with NDVR around 10% and strong DC around 0.85. By contrast, the use of a supervised algorithm was able to dramatically decrease the NDVR to 6.55%. With the proposed framework, all the produced indicators demonstrated high agreement with the routine clinical assessment scale, indicating their capability of assessing upper-limb motor functions. This study offers a feasible solution to motor function assessment in an objective and quantitative manner, especially suitable for home and community use.

  14. Evaluating the Training Effects of Two Swallowing Rehabilitation Therapies Using Surface Electromyography--Chin Tuck Against Resistance (CTAR) Exercise and the Shaker Exercise.

    Science.gov (United States)

    Sze, Wei Ping; Yoon, Wai Lam; Escoffier, Nicolas; Rickard Liow, Susan J

    2016-04-01

    In this study, the efficacy of two dysphagia interventions, the Chin Tuck against Resistance (CTAR) and Shaker exercises, were evaluated based on two principles in exercise science-muscle-specificity and training intensity. Both exercises were developed to strengthen the suprahyoid muscles, whose contractions facilitate the opening of the upper esophageal sphincter, thereby improving bolus transfer. Thirty-nine healthy adults performed two trials of both exercises in counter-balanced order. Surface electromyography (sEMG) recordings were simultaneously collected from suprahyoid muscle group and sternocleidomastoid muscle during the exercises. Converging results using sEMG amplitude analyses suggested that the CTAR was more specific in targeting the suprahyoid muscles than the Shaker exercise. Fatigue analyses on sEMG signals further indicated that the suprahyoid muscle group were equally or significantly fatigued (depending on metric), when participants carried out CTAR compared to the Shaker exercise. Importantly, unlike during Shaker exercise, the sternocleidomastoid muscles were significantly less activated and fatigued during CTAR. Lowering the chin against resistance is therefore sufficiently specific and intense to fatigue the suprahyoid muscles.

  15. Continuous Wavelet Transform Analysis of Surface Electromyography for Muscle Fatigue Assessment on the Elbow Joint Motion

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available Studying muscle fatigue plays an important role in preventing the risks associated with musculoskeletal disorders. The effect of elbow-joint angle on time-frequency parameters during a repetitive motion provides valuable information in finding the most accurate position of the angle causing muscle fatigue. Therefore, the purpose of this study is to analyze the effect of muscle fatigue on the spectral and time-frequency domain parameters derived from electromyography (EMG signals using the Continuous Wavelet Transform (CWT. Four male participants were recruited to perform a repetitive motion (flexion and extension movements from a non-fatigue to fatigue condition. EMG signals were recorded from the biceps muscle. The recorded EMG signals were then analyzed offline using the complex Morlet wavelet. The time-frequency domain data were analyzed using the time-averaged wavelet spectrum (TAWS and the Scale-Average Wavelet Power (SAWP parameters. The spectral domain data were analyzed using the Instantaneous Mean Frequency (IMNF and the Instantaneous Mean Power Spectrum (IMNP parameters. The index of muscle fatigue was observed by calculating the increase of the IMNP and the decrease of the IMNF parameters. After performing a repetitive motion from non-fatigue to fatigue condition, the average of the IMNF value decreased by 15.69% and the average of the IMNP values increased by 84%, respectively. This study suggests that the reliable frequency band to detect muscle fatigue is 31.10-36.19Hz with linear regression parameters of 0.979mV^2Hz^(-1 and 0.0095mV^2Hz^(-1 for R^2 and slope, respectively.

  16. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    Science.gov (United States)

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the

  17. Patterns of motor recruitment can be determined using surface EMG.

    Science.gov (United States)

    Wakeling, James M

    2009-04-01

    Previous studies have reported how different populations of motor units (MUs) can be recruited during dynamic and locomotor tasks. It was hypothesised that the higher-threshold units would contribute higher-frequency components to the sEMG spectra due to their faster conduction velocities, and thus recruitment patterns that increase the proportion of high-threshold units active would lead to higher-frequency elements in the sEMG spectra. This idea was tested by using a model of varying recruitment coupled to a three-layer volume conductor model to generate a series of sEMG signals. The recruitment varied from (A) orderly recruitment where the lowest-threshold MUs were initially activated and higher-threshold MUs were sequentially recruited as the contraction progressed, (B) a recurrent inhibition model that started with orderly recruitment, but as the higher-threshold units were activated they inhibited the lower-threshold MUs (C) nine models with intermediate properties that were graded between these two extremes. The sEMG was processed using wavelet analysis and the spectral properties quantified by their mean frequency, and an angle theta that was determined from the principal components of the spectra. Recruitment strategies that resulted in a greater proportion of faster MUs being active had a significantly lower theta and higher mean frequency.

  18. Associations between motor unit action potential parameters and surface EMG features.

    Science.gov (United States)

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit

  19. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    Science.gov (United States)

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  20. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  1. Innervation zone of the vastus medialis muscle: position and effect on surface EMG variables

    International Nuclear Information System (INIS)

    Gallina, A; Merletti, R; Gazzoni, M

    2013-01-01

    The aim of this study was to investigate the position of the innervation zone (IZ) of the vastus medialis (VM) and its effect on the electromyographic (EMG) amplitude and mean frequency estimates. Eighteen healthy subjects performed maximal isometric knee extensions at three knee angles. Surface EMG signals were collected by using a 16 × 8 electrode grid placed on the VM muscle. The position of the IZ was estimated through visual analysis, and traditional bipolar signals were obtained from channels over and away from it; amplitude and mean frequency values were extracted and compared using an analysis of variance (ANOVA) with repeated measures. The IZ is shaped as a line running from the proximal–lateral to the distal–medial aspect of the VM muscle. The presence of an IZ under the electrodes lowered the EMG amplitude (P < 0.001, F = 58.11) and increased the EMG mean frequency (P < 0.001, F = 26.47); variations of these parameters due to the knee flexion angle were less frequently observed in EMG signals collected over than away from the IZ. Electrodes placed ‘over the belly of the VM muscle’ are likely to collect EMG signals influenced by the presence of the IZ, thus hindering the detection of changes in muscle activity. (paper)

  2. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography

    DEFF Research Database (Denmark)

    Blangsted, Anne Katrine; Sjøgaard, Gisela; Madeleine, Pascal

    2005-01-01

    Controversies exist regarding objective documentation of fatigue development with low-force contractions. We hypothesized that non-exhaustive, low-force muscle contraction may induce prolonged low-frequency fatigue (LFF) that in the subsequent recovery period is detectable by electromyography (EMG......) and in particular mechanomyography (MMG) during low-force rather than high-force test contractions. Seven subjects performed static wrist extension at 10% maximal voluntary contraction (MVC) for 10 min (10%MVC10 min). Wrist force response to electrical stimulation of extensor carpi radialis muscle (ECR) quantified...... LFF. EMG and MMG were recorded from ECR during static test contractions at 5% and 80% MVC. Electrical stimulation, MVC, and test contractions were performed before 10%MVC10 min and at 10, 30, 90 and 150 min recovery. In spite of no changes in MVC, LFF persisted up to 150 min recovery but did...

  3. Subspace based adaptive denoising of surface EMG from neurological injury patients

    Science.gov (United States)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  4. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  5. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle

    NARCIS (Netherlands)

    de Ruiter, C.J.; Elzinga, M.J.; Verdijk, P.W.L.; van Mechelen, W.; de Haan, A.

    2005-01-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n=9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50%

  6. Emg Signal Analysis of Healthy and Neuropathic Individuals

    Science.gov (United States)

    Gupta, Ashutosh; Sayed, Tabassum; Garg, Ridhi; Shreyam, Richa

    2017-08-01

    Electromyography is a method to evaluate levels of muscle activity. When a muscle contracts, an action potential is generated and this circulates along the muscular fibers. In electromyography, electrodes are connected to the skin and the electrical activity of muscles is measured and graph is plotted. The surface EMG signals picked up during the muscular activity are interfaced with a system. The EMG signals from individual suffering from Neuropathy and healthy individual, so obtained, are processed and analyzed using signal processing techniques. This project includes the investigation and interpretation of EMG signals of healthy and Neuropathic individuals using MATLAB. The prospective use of this study is in developing the prosthetic device for the people with Neuropathic disability.

  7. [Evaluation of swallowing function with surface electromyography before and after tonsillectomy].

    Science.gov (United States)

    Gürkan, Emre; Veyseller, Bayram; Açıkalın, Reşit Murat; Elbistanlı, Suphi; Yurtsever, Serveren; Acar, Hürtan

    2011-01-01

    In this study, we evaluated the swallowing function with surface electromyography before and after tonsillectomy. Twenty patients (12 males, 8 females; mean age 23.8 years; range 17 to 30 years) who had tonsillectomy indication as study group, and 10 healthy individuals (8 males, 2 females; mean age 26 years; range 18 to 35 years) as control group were included in this prospective study between October 2008 and February 2009. Due to their significant role on oral and faringeal phases of swallowing; the surface electromyography prosedure is performed on the masseter muscle, the submental-submandibular muscle group and the infrahyoid muscles to measure their electrical activity and duration of contraction. For this purpose, single swallow and continuous drinking of 100 cc water tests were applied to each patient preoperatively and; in the postoperative 1st week and the 1st month. The preoperative duration of drinking periods were significanly longer in the study group compared to the control group (p<0.05). At the end of the first postoperative week the duration of drinking 100 cc water test was significantly longer than the preoperative mean of the study group (p<0.05). After one month single- swallow durations of study group were significantly shorter then the preoperative mean (p<0.05). The electrical activity of the masseter and infrahyoid muscles were significantly higher in study group compared with control group (p<0.05). The close proximity of the surgical area to the muscles affects swallowing after tonsillectomy. The surface electromyography is a simple, non-invasive and reliable method for postoperative evaluation of the swallowing functions of the throat muscles and thereby allows monitoring of the recovery and functional improvement of these muscles.

  8. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2015-12-01

    Objective. The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Approach. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Main results. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Significance. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.

  9. Monitorando a deglutição através da eletromiografia de superfície Monitoring swallowing with surface electromyography

    Directory of Open Access Journals (Sweden)

    Maria das Graças Wanderley de Sales Coriolano

    2010-06-01

    Full Text Available OBJETIVO: descrever o método de registro da eletromiografia de superfície através da utilização de um protocolo desenvolvido para o estudo da deglutição e demonstrar a deglutição de um paciente com doença de Parkinson e de um sujeito normal através do registro da eletromiografia de superfície (EMGs. MÉTODOS: para ilustrar os parâmetros eletrofisiológicos registrados após execução do protocolo foram utilizados dois voluntários do sexo feminino, sendo um sem doença e outro apresentando doença de Parkinson (DP no estágio III de acordo com a escala de Hoehn e Yahr. Os parâmetros analisados pelo foram: a duração da atividade elétrica durante a deglutição, a amplitude (rms e o limite de disfagia. RESULTADOS: os resultados mostram diferenças entre os eletromiogramas ilustrativos. CONCLUSÃO: a EMGs pode ser utilizada como método de avaliação e monitorização da deglutição de sujeitos sem doença e com DP.PURPOSE: to describe the registering method of the surface electromyography (sEMG through the use of a protocol developed for swallowing study and to demonstrate the swallowing pattern of a patient with Parkinson’s disease and of normal individuals through the sEMG registering. METHODS: to illustrate the registered electrophysiologic parameters execution of the protocol we used two volunteers of the feminine gender, being one without disease and the other one with Parkinson’s disease (PD in III period of training in accordance with the scale of Hoehn and Yahr. The analyzed parameters had been the duration of the electric activity during swallowing, the amplitude (rms and the dysphagia limit. RESULTS: the results show differences amongst the illustrative electromyograms. CONCLUSION: sEMG can be used as method for evaluating and monitoring the swallowing pattern of citizens with no disease and with PD.

  10. Surface EMG system for use in long-term vigorous activities

    Science.gov (United States)

    de Luca, G.; Bergman, P.; de Luca, C.

    The purpose of the project was to develop an advanced surface electromyographic (EMG) system that is portable, un-tethered, and able to detect high-fidelity EMG signals from multiple channels. The innovation was specifically designed to extend NASA's capability to perform neurological status monitoring for long-term, vigorous activities. These features are a necessary requirement of ground-based and in-flight studies planned for the International Space Station and human expeditions to Mars. The project consisted of developing 1) a portable EMG digital data logger using a handheld PC for acquiring the signal and storing the data from as many as 8 channels, and 2) an EMG electrode/skin interface to improve signal fidelity and skin adhesion in the presence of sweat and mechanical disturbances encountered during vigorous activities. The system, referred to as a MyoMonitor, was configured with a communication port for downloading the data from the data logger to the PC computer workstation. Software specifications were developed and implemented for programming of acquisition protocols, power management, and transferring data to the PC for processing and graphical display. The prototype MyoMonitor was implemented using a handheld PC that features a color LCD screen, enhanced keyboard, extended Lithium Ion battery and recharger, and 128 Mbytes of F ash Memory. The system was designed to be belt-worn,l thereby allowing its use under vigorous activities. The Monitor utilizes up to 8 differential surface EMG sensors. The prototype allowed greater than 2 hours of continuous 8-channel EMG data to be collected, or 17.2 hours of continuous single channel EMG data. Standardized tests in human subjects were conducted to develop the mechanical and electrical properties of the prototype electrode/interface system. Tests conducted during treadmill running and repetitive lifting demonstrated that the prototype interface significantly reduced the detrimental effects of sweat

  11. A model for generating Surface EMG signal of m. Tibialis Anterior.

    Science.gov (United States)

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar P

    2014-01-01

    A model that simulates surface electromyogram (sEMG) signal of m. Tibialis Anterior has been developed and tested. This has a firing rate equation that is based on experimental findings. It also has a recruitment threshold that is based on observed statistical distribution. Importantly, it has considered both, slow and fast type which has been distinguished based on their conduction velocity. This model has assumed that the deeper unipennate half of the muscle does not contribute significantly to the potential induced on the surface of the muscle and has approximated the muscle to have parallel structure. The model was validated by comparing the simulated and the experimental sEMG signal recordings. Experiments were conducted on eight subjects who performed isometric dorsiflexion at 10, 20, 30, 50, 75, and 100% maximal voluntary contraction. Normalized root mean square and median frequency of the experimental and simulated EMG signal were computed and the slopes of the linearity with the force were statistically analyzed. The gradients were found to be similar (p>0.05) for both experimental and simulated sEMG signal, validating the proposed model.

  12. EMG (elektromyografie jako metoda pro sledování účinnosti sportovního tréninku Surface EMG as a method for following-up sports training efficiency

    Directory of Open Access Journals (Sweden)

    Damian Miklavčič

    2005-02-01

    Full Text Available Účel této studie byl zhodnotit vhodnost a použitelnost povrchové elektromyografie pro vyhodnocení změn kontrakčních vlastností svalů spojených s tréninkem. Skupina osmi národních juniorských tenistů se zúčastnila šestitýdenního výcvikového programu, který byl zaměřen na zvýšení rychlosti a výbušnosti. Jejich fyzické charakteristiky byly zhodnoceny před a po období programu, a to specifickými tenisovými testy, které měří izometrickou kontrakci trhnutí středního gastroknemického svalu, a zaznamenáváním spektra frekvence EMG při 50% maximální volní kontrakci. Ve specifických tenisových testech se prokázalo, že většina hráčů zlepšila své výkony po výcvikovém období, pouze u 3 hráčů byla zjištěna zvýšená rychlost kontrakce středního gastroknemického svalu, která byla vyjádřena kratší dobou kontrakčního trhnutí po období výcviku. Stejní hráči předvedli vyšší charakteristickou frekvenci (definována jako střední frekvence ležící mezi 6. a 9. decilem spektrální distribuční funkce a širší EMG spektrum rozkmitu po výcvikovém období. Vysoká korelace byla zjištěna mezi počtem parametrů izometrické kontrakce trhnutí, která byla zlepšena o více než 2 % po období výcviku (Np, poměr mezi charakteristickou frekvencí po období výcviku (fA a před výcvikovým obdobím (fB (fA/fB (p = 0,0065, a také mezi Np a stoupáním lineárního přiblížení závislosti mezi decilovými frekvencemi signálů EMG po období výcviku (dAf a před výcvikovým obdobím (dBf (dAf = f(dBf (p = 0,0035. Korelace mezi počtem parametrů izometrické kontrakce trhnutí, které byly zlepšeny po období výcviku, a změny v charakteristických parametrech EMG evokují použitelnost EMG pro sledování účinnosti sportovního výcviku. The purpose of the present study was to evaluate the applicability of surface electromyography (EMG for evaluation of

  13. Surface EMG electrodes do not accurately record from lumbar multifidus muscles.

    Science.gov (United States)

    Stokes, Ian A F; Henry, Sharon M; Single, Richard M

    2003-01-01

    This study investigated whether electromyographic signals recorded from the skin surface overlying the multifidus muscles could be used to quantify their activity. Comparison of electromyography signals recorded from electrodes on the back surface and from wire electrodes within four different slips of multifidus muscles of three human subjects performing isometric tasks that loaded the trunk from three different directions. It has been suggested that suitably placed surface electrodes can be used to record activity in the deep multifidus muscles. We tested whether there was a stronger correlation and more consistent regression relationship between signals from electrodes overlying multifidus and longissimus muscles respectively than between signals from within multifidus and from the skin surface electrodes over multifidus. The findings provided consistent evidence that the surface electrodes placed over multifidus muscles were more sensitive to the adjacent longissimus muscles than to the underlying multifidus muscles. The R(2) for surface versus intra-muscular comparisons was 0.64, while the average R(2) for surface-multifidus versus surface-longissimus comparisons was 0.80. Also, the magnitude of the regression coefficients was less variable between different tasks for the longissimus versus surface multifidus comparisons. Accurate measurement of multifidus muscle activity requires intra-muscular electrodes. Electromyography is the accepted technique to document the level of muscular activation, but its specificity to particular muscles depends on correct electrode placement. For multifidus, intra-muscular electrodes are required.

  14. Electromyography physiology engineering and noninvasive applications

    CERN Document Server

    Parker, Philip; John Wiley & Sons

    2004-01-01

    "Featuring contributions from key innovators working in the field today, Electromyography reveals the broad applications of EMG data in areas as diverse as neurology, ergonomics, exercise physiology, rehabilitation, movement analysis, biofeedback, and myoelectric control of prostheses." "Electromyography offers physiologists, medical professionals, and students in biomedical engineering a new window into the possibilities of this technology."--Jacket.

  15. sEMG Signal Acquisition Strategy towards Hand FES Control

    Directory of Open Access Journals (Sweden)

    Cinthya Lourdes Toledo-Peral

    2018-01-01

    Full Text Available Due to damage of the nervous system, patients experience impediments in their daily life: severe fatigue, tremor or impaired hand dexterity, hemiparesis, or hemiplegia. Surface electromyography (sEMG signal analysis is used to identify motion; however, standardization of electrode placement and classification of sEMG patterns are major challenges. This paper describes a technique used to acquire sEMG signals for five hand motion patterns from six able-bodied subjects using an array of recording and stimulation electrodes placed on the forearm and its effects over functional electrical stimulation (FES and volitional sEMG combinations, in order to eventually control a sEMG-driven FES neuroprosthesis for upper limb rehabilitation. A two-part protocol was performed. First, personalized templates to place eight sEMG bipolar channels were designed; with these data, a universal template, called forearm electrode set (FELT, was built. Second, volitional and evoked movements were recorded during FES application. 95% classification accuracy was achieved using two sessions per movement. With the FELT, it was possible to perform FES and sEMG recordings simultaneously. Also, it was possible to extract the volitional and evoked sEMG from the raw signal, which is highly important for closed-loop FES control.

  16. [Analysis of the Muscle Fatigue Based on Band Spectrum Entropy of Multi-channel Surface Electromyography].

    Science.gov (United States)

    Liu, Jian; Zou, Renling; Zhang, Dongheng; Xu, Xiulin; Hu, Xiufang

    2016-06-01

    Exercise-induced muscle fatigue is a phenomenon that the maximum voluntary contraction force or power output of muscle is temporarily reduced due to muscular movement.If the fatigue is not treated properly,it will bring about a severe injury to the human body.With multi-channel collection of lower limb surface electromyography signals,this article analyzes the muscle fatigue by adoption of band spectrum entropy method which combined electromyographic signal spectral analysis and nonlinear dynamics.The experimental result indicated that with the increase of muscle fatigue,muscle signal spectrum began to move to low frequency,the energy concentrated,the system complexity came down,and the band spectrum entropy which reflected the complexity was also reduced.By monitoring the entropy,we can measure the degree of muscle fatigue,and provide an indicator to judge fatigue degree for the sports training and clinical rehabilitation training.

  17. The reliability of surface EMG recorded from the pelvic floor muscles.

    Science.gov (United States)

    Auchincloss, Cindy C; McLean, Linda

    2009-08-30

    The neuromuscular function of the pelvic floor muscles (PFMs) is frequently evaluated using surface electrodes embedded on vaginal probes. The purpose of this study was to determine the between-trial and between-day reliability of EMG data recorded from the PFM using two different vaginal probes while subjects performed PFM maximum voluntary contractions and a coughing task. The Femiscan and the Periform vaginal probes were used to acquire EMG data while the subjects performed the tasks. Peak RMS amplitudes were computed for each instrument, task, and side of the pelvic floor using a sliding window technique. The between-trial reliability was evaluated using intraclass correlation coefficients (ICCs) and coefficients of variation (CV). Between-trial reliability was determined using ICCs, Pearson's correlation coefficients, computing the mean absolute difference between days, and calculating the standard error the measurement (SEM) for each instrument and task. EMG amplitude differences were detected between the left and right PFM (pperformed separately for each side. Overall, between-trial reliability was fair to high for the Femiscan (ICC((3,1))=0.58-0.98, CV=8.5-20.7%) and good to high for the Periform (ICC((3,1))=0.80-0.98, CV=9.6-19.5%), however between-day reliability was generally poor for both vaginal probes (ICC((3,1))=0.08-0.84). The results suggest that although it is acceptable to use PFM surface EMG as a biofeedback tool for training purposes, it is not recommended for use to make between-subject comparisons or to use as an outcome measure between-days when evaluating PFM function.

  18. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    Science.gov (United States)

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  19. The risk of iatrogenic pneumothorax after electromyography.

    Science.gov (United States)

    Kassardjian, Charles D; O'gorman, Cullen M; Sorenson, Eric J

    2016-04-01

    Pneumothorax is a potentially serious complication of electromyography (EMG). Data on the frequency of pneumothorax after EMG are lacking. The purpose of this study was to determine the frequency, timing, and risk factors for iatrogenic pneumothorax after EMG. Cases of pneumothorax after EMG were reviewed for clinical, electrophysiological, and radiological data. Of 64,490 EMG studies, 7 patients had an association between the EMG and pneumothorax. All patients were symptomatic and presented within 24 hours of EMG. Sampling of serratus anterior and diaphragm was causative in 1 patient each. In 5 patients, multiple high-risk muscles were sampled. The highest frequency of pneumothorax was observed with examination of serratus anterior (0.445%) and diaphragm (0.149%). The frequency of symptomatic iatrogenic pneumothorax after EMG appears to be low, and examinations of serratus anterior and diaphragm carry the highest risk. Electromyographers should be aware of the risk of pneumothorax and should counsel patients accordingly. © 2015 Wiley Periodicals, Inc.

  20. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch

    Science.gov (United States)

    Remaley, D. Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M.

    2015-01-01

    Background: Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Purpose: Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Study Design: Descriptive laboratory study. Methods: Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. Results: During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o’clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. Conclusion: During the 6

  1. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch.

    Science.gov (United States)

    Remaley, D Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M

    2015-01-01

    Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Descriptive laboratory study. Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o'clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. During the 6 pitches, the greatest muscular activity was in phases 5 and 6

  2. Reliability of surface electromyography activity of gluteal and hamstring muscles during sub-maximal and maximal voluntary isometric contractions.

    Science.gov (United States)

    Bussey, Melanie D; Aldabe, Daniela; Adhia, Divya; Mani, Ramakrishnan

    2018-04-01

    Normalizing to a reference signal is essential when analysing and comparing electromyography signals across or within individuals. However, studies have shown that MVC testing may not be as reliable in persons with acute and chronic pain. The purpose of this study was to compare the test-retest reliability of the muscle activity in the biceps femoris and gluteus maximus between a novel sub-MVC and standard MVC protocols. This study utilized a single individual repeated measures design with 12 participants performing multiple trials of both the sub-MVC and MVC tasks on two separate days. The participant position in the prone leg raise task was standardised with an ultrasonic sensor to improve task precession between trials/days. Day-to-day and trial-to-trial reliability of the maximal muscle activity was examined using ICC and SEM. Day-to-day and trial-to-trial reliability of the EMG activity in the BF and GM were high (0.70-0.89) to very high (≥0.90) for both test procedures. %SEM was <5-10% for both tests on a given day but higher in the day-to-day comparisons. The lower amplitude of the sub-MVC is a likely contributor to increased %SEM (8-13%) in the day-to-day comparison. The findings show that the sub-MVC modified prone double leg raise results in GM and BF EMG measures similar in reliability and precision to the standard MVC tasks. Therefore, the modified prone double leg raise may be a useful substitute for traditional MVC testing for normalizing EMG signals of the BF and GM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The use of surface electromyography as a tool in differentiating temporomandibular disorders from neck disorders.

    Science.gov (United States)

    Ferrario, Virgilio F; Tartaglia, Gianluca M; Luraghi, Francesca E; Sforza, Chiarella

    2007-11-01

    The aim of this study was to assess the electromyographic characteristics of the masticatory muscles (masseter and temporalis) of patients with either "temporomandibular joint disorder" or "neck pain". Surface electromyography of the right and left masseter and temporalis muscles was performed during maximum teeth clenching in 38 patients aged 21-67 years who had either (a) temporomandibular joint disorder (24 patients); (b) "neck pain" (13 patients). Ninety-five control, healthy subjects were also examined. During clenching, standardized total muscle activities (electromyographic potentials over time) were significantly different in the three groups: 75 microV/microVs% in the temporomandibular joint disorder patients, 124 microV/microVs% in the neck pain patients, and 95 microV/microVs% in the control subjects (analysis of variance, Ptemporomandibular joint disorder patients also had significantly (Pneck pain patients (87%) or control subjects (92%). A linear discriminant function analysis allowed a significant separation between the two patient groups, with a single patient error of 18.2%. Surface electromyographic analysis during clenching allowed to differentiate between patients with a temporomandibular joint disorder and patients with a neck pain problem.

  4. Auto-Encoder based Deep Learning for Surface Electromyography Signal Processing

    Directory of Open Access Journals (Sweden)

    Marwa Farouk Ibrahim Ibrahim

    2018-01-01

    Full Text Available Feature extraction is taking a very vital and essential part of bio-signal processing. We need to choose one of two paths to identify and select features in any system. The most popular track is engineering handcrafted, which mainly depends on the user experience and the field of application. While the other path is feature learning, which depends on training the system on recognising and picking the best features that match the application. The main concept of feature learning is to create a model that is expected to be able to learn the best features without any human intervention instead of recourse the traditional methods for feature extraction or reduction and avoid dealing with feature extraction that depends on researcher experience. In this paper, Auto-Encoder will be utilised as a feature learning algorithm to practice the recommended model to excerpt the useful features from the surface electromyography signal. Deep learning method will be suggested by using Auto-Encoder to learn features. Wavelet Packet, Spectrogram, and Wavelet will be employed to represent the surface electromyography signal in our recommended model. Then, the newly represented bio-signal will be fed to stacked autoencoder (2 stages to learn features and finally, the behaviour of the proposed algorithm will be estimated by hiring different classifiers such as Extreme Learning Machine, Support Vector Machine, and SoftMax Layer. The Rectified Linear Unit (ReLU will be created as an activation function for extreme learning machine classifier besides existing functions such as sigmoid and radial basis function. ReLU will show a better classification ability than sigmoid and Radial basis function (RBF for wavelet, Wavelet scale 5 and wavelet packet signal representations implemented techniques. ReLU will illustrate better classification ability, as an activation function, than sigmoid and poorer than RBF for spectrogram signal representation. Both confidence interval and

  5. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    Science.gov (United States)

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Reliability of surface electromyography timing parameters in gait in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-02-01

    The aims of this study were to validate a computerised method to detect muscle activity from surface electromyography (SEMG) signals in gait in patients with cervical spondylotic myelopathy (CSM), and to evaluate the test-retest reliability of the activation times designated by this method. SEMG signals were recorded from rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG), during gait in 12 participants with CSM on two separate test days. Four computerised activity detection methods, based on the Teager-Kaiser Energy Operator (TKEO), were applied to a subset of signals and compared to visual interpretation of muscle activation. The most accurate method was then applied to all signals for evaluation of test-retest reliability. A detection method based on a combined slope and amplitude threshold showed the highest agreement (87.5%) with visual interpretation. With respect to reliability, the standard error of measurement (SEM) of the timing of RF, TA and MG between test days was 5.5% stride duration or less, while the SEM of BF was 9.4%. The timing parameters of RF, TA and MG designated by this method were considered sufficiently reliable for use in clinical practice, however the reliability of BF was questionable.

  7. Effect of electrocardiographic contamination on surface electromyography assessment of back muscles.

    Science.gov (United States)

    Hu, Yong; Mak, Joseph N F; Luk, Keith D K

    2009-02-01

    The purpose of this study was to demonstrate the relative effect of electrocardiography (ECG) on back muscle surface electromyography (SEMG) parameters and their corresponding sensitivity in low back pain (LBP) assessment. Back muscle SEMG activities were recorded from 17 healthy subjects and 18 chronic LBP patients under static postures (straight sitting and upright standing), and dynamic action (flexion-extension). ECG cancellation based on independent component analysis (ICA) method was performed. Root mean square (RMS) and median frequency (MF) of raw and denoised SEMG data were computed respectively. Multiple comparisons were then performed. A consistent trend of change (increased MF and decreased RMS) followed ECG removal was noticed. In particular, in SEMG measurements under static postures, a significant decrease in RMS (pcorruption by ECG artifacts on SEMG measurements was found to be more serious and prominent in static postures than that in dynamic action. After ECG removal, significant improvements in the ability of SEMG to discriminate LBP patients from healthy subjects were seen in RMS amplitude recorded while standing (peffect of ECG contamination on back muscles SEMG parameters and LBP assessment.

  8. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles.

    Science.gov (United States)

    Chowdhury, Suman Kanti; Nimbarte, Ashish D; Jaridi, Majid; Creese, Robert C

    2013-10-01

    Assessment of neuromuscular fatigue is essential for early detection and prevention of risks associated with work-related musculoskeletal disorders. In recent years, discrete wavelet transform (DWT) of surface electromyography (SEMG) has been used to evaluate muscle fatigue, especially during dynamic contractions when the SEMG signal is non-stationary. However, its application to the assessment of work-related neck and shoulder muscle fatigue is not well established. Therefore, the purpose of this study was to establish DWT analysis as a suitable method to conduct quantitative assessment of neck and shoulder muscle fatigue under dynamic repetitive conditions. Ten human participants performed 40min of fatiguing repetitive arm and neck exertions while SEMG data from the upper trapezius and sternocleidomastoid muscles were recorded. The ten of the most commonly used wavelet functions were used to conduct the DWT analysis. Spectral changes estimated using power of wavelet coefficients in the 12-23Hz frequency band showed the highest sensitivity to fatigue induced by the dynamic repetitive exertions. Although most of the wavelet functions tested in this study reasonably demonstrated the expected power trend with fatigue development and recovery, the overall performance of the "Rbio3.1" wavelet in terms of power estimation and statistical significance was better than the remaining nine wavelets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Changes in shoulder muscle activity pattern on surface electromyography after breast cancer surgery.

    Science.gov (United States)

    Yang, Eun Joo; Kwon, YoungOk

    2018-02-01

    Alterations in muscle activation and restricted shoulder mobility, which are common in breast cancer patients, have been found to affect upper limb function. The purpose of this study was to determine muscle activity patterns, and to compare the prevalence of abnormal patterns among the type of breast surgery. In total, 274 breast cancer patients were recruited after surgery. Type of breast surgery was divided into mastectomy without reconstruction (Mastectomy), reconstruction with tissue expander/implant (TEI), latissimus dorsi (LD) flap, or transverse rectus abdominis flap (TRAM). Activities of shoulder muscles were measured using surface electromyography. Experimental analysis was conducted using a Gaussian filter smoothing method with regression. Patients demonstrated different patterns of muscle activation, such as normal, lower muscle electrical activity, and tightness. After adjusting for BMI and breast surgery, the odds of lower muscle electrical activity and tightness in the TRAM are 40.2% and 38.4% less than in the Mastectomy only group. The prevalence of abnormal patterns was significantly greater in the ALND than SLNB in all except TRAM. Alterations in muscle activity patterns differed by breast surgery and reconstruction type. For breast cancer patients with ALND, TRAM may be the best choice for maintaining upper limb function. © 2017 Wiley Periodicals, Inc.

  10. Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump

    International Nuclear Information System (INIS)

    Ancillao, Andrea; Galli, Manuela; Rigoldi, Chiara; Albertini, Giorgio

    2014-01-01

    Fractal dimension was demonstrated to be able to characterize the complexity of biological signals. The EMG time series are well known to have a complex behavior and some other studies already tried to characterize these signals by their fractal dimension. This paper is aimed at studying the correlation between the fractal dimension of surface EMG signal recorded over Rectus Femoris muscles during a vertical jump and the height reached in that jump. Healthy subjects performed vertical jumps at different heights. Surface EMG from Rectus Femoris was recorded and the height of each jump was measured by an optoelectronic motion capture system. Fractal dimension of sEMG was computed and the correlation between fractal dimension and eight of the jump was studied. Linear regression analysis showed a very high correlation coefficient between the fractal dimension and the height of the jump for all the subjects. The results of this study show that the fractal dimension is able to characterize the EMG signal and it can be related to the performance of the jump. Fractal dimension is therefore an useful tool for EMG interpretation

  11. Changes in surface electromyography signals and kinetics associated with progression of fatigue at two speeds during wheelchair propulsion.

    Science.gov (United States)

    Qi, Liping; Wakeling, James; Grange, Simon; Ferguson-Pell, Martin

    2012-01-01

    The purpose of this study was to determine whether muscle balance is influenced by fatigue in a recordable way, toward creating novel defensive activity strategies for manual wheelchair users (MWUs). Wheelchair propulsion to a point of mild fatigue, level 15 on the Rating of Perceived Exertion scale, was investigated at two different speeds. Surface electromyographic (EMG) activity of 7 muscles was recorded on 14 nondisabled participants. Kinetic variables were measured using a SmartWheel. No significant effect was found of percentage endurance time on kinetic variables for the two propulsion speeds. Fatigue-related changes in the EMG spectra were identified as an increase of EMG intensity and a decrease of mean power frequency as a function of percent endurance time for the tested muscles under both fast and slow speed conditions. The greater increases in activity for propulsive muscles compared with recovery muscles during fast speed wheelchair propulsion indicated muscle imbalance associated with fatiguing wheelchair propulsion. This study shows how kinetic and EMG information might be used as feedback to MWUs to ensure that they conduct activity in ways that do not precipitate injury.

  12. Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery.

    Science.gov (United States)

    Maul, H; Maner, W L; Olson, G; Saade, G R; Garfield, R E

    2004-05-01

    The study was conducted to investigate whether the strength of uterine contractions monitored invasively by intrauterine pressure catheter could be determined from transabdominal electromyography (EMG) and to estimate whether EMG is a better predictor of true labor compared to tocodynamometry (TOCO). Uterine EMG was recorded from the abdominal surface in laboring patients simultaneously monitored with an intrauterine pressure catheter (n = 13) or TOCO (n = 24). Three to five contractions per patient and corresponding electrical bursts were randomly selected and analyzed (integral of intrauterine pressure; integral, frequency, amplitude of contraction curve on TOCO; burst energy for EMG). The Mann-Whitney test, Spearman correlation and receiver operator characteristics (ROC) analysis were used as appropriate (significance was assumed at a value of p TOCO parameters were different. In addition, burst energy levels were highly predictive of delivery within 48 h (AUC = 0.9531; p TOCO, transabdominal uterine EMG can be used reliably to predict labor and delivery.

  13. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Directory of Open Access Journals (Sweden)

    Menon Carlo

    2011-09-01

    Full Text Available Abstract Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2 values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS was shown to have high isometric torque estimation accuracy combined with very short training times.

  14. The Eligibility of Surface Electromyography in the Assessment of Paraspinal Muscles Fatigue Following Interventions in Patients with Chronic Low Back Pain: A Systematic Review

    OpenAIRE

    Nahid Rahmani; Mohammad Ali Mohseni-Bandpei; Iraj Abdollahi

    2013-01-01

    Objective: Evaluation of paraspinal muscles endurance in patients with chronic low back pain (LBP) seems to be of great importance. Many studies demonstrated that surface electromyography has merit to assess muscle fatigue using frequency spectrum. The purpose of this study was to systematically review the eligibility of the surface electromyography in the assessment of paraspinal muscles fatigue changes following different interventions in patients with chronic LBP. Materials & Methods: ...

  15. Simultaneous Force Regression and Movement Classification of Fingers via Surface EMG within a Unified Bayesian Framework.

    Science.gov (United States)

    Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer

    2018-01-01

    This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.

  16. A MATLAB-based graphical user interface for the identification of muscular activations from surface electromyography signals.

    Science.gov (United States)

    Mengarelli, Alessandro; Cardarelli, Stefano; Verdini, Federica; Burattini, Laura; Fioretti, Sandro; Di Nardo, Francesco

    2016-08-01

    In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.

  17. Quantitative analysis of surface electromyography during epileptic and nonepileptic convulsive seizures

    DEFF Research Database (Denmark)

    Beniczky, S.; Conradsen, I.; Moldovan, M.

    2014-01-01

    , median frequency (MF), coherence, and duration of the seizures, of the clonic EMG discharges, and of the silent periods between the cloni. Based on wavelet analysis, we distinguished between a low-frequency component (LF 2-8 Hz) and a high-frequency component (HF 64-256 Hz). Results: Duration...... without rhythmic clonic movements....

  18. Quantitative estimation of muscle fatigue using surface electromyography during static muscle contraction.

    Science.gov (United States)

    Soo, Yewguan; Sugi, Masao; Nishino, Masataka; Yokoi, Hiroshi; Arai, Tamio; Kato, Ryu; Nakamura, Tatsuhiro; Ota, Jun

    2009-01-01

    Muscle fatigue is commonly associated with the musculoskeletal disorder problem. Previously, various techniques were proposed to index the muscle fatigue from electromyography signal. However, quantitative measurement is still difficult to achieve. This study aimed at proposing a method to estimate the degree of muscle fatigue quantitatively. A fatigue model was first constructed using handgrip dynamometer by conducting a series of static contraction tasks. Then the degree muscle fatigue can be estimated from electromyography signal with reasonable accuracy. The error of the estimated muscle fatigue was less than 10% MVC and no significant difference was found between the estimated value and the one measured using force sensor. Although the results were promising, there were still some limitations that need to be overcome in future study.

  19. Fasciculations and their F-response revisited: High-density surface EMG in ALS and benign fasciculations

    NARCIS (Netherlands)

    Kleine, B.U.; Boekestein, W.A.; Arts, I.M.; Zwarts, M.J.; Schelhaas, H.J.; Stegeman, D.F.

    2012-01-01

    Objective: To compare the prevalence of fasciculation potentials (FPs) with F-responses between patients with amyotrophic lateral sclerosis (ALS) and patients with benign fasciculations. Methods: In seven patients with ALS and seven patients with benign fasciculations, high-density surface EMG was

  20. SURFACE ELECTROMYOGRAPHY OF MASSETER AND TEMPORAL MUSCLES WITH USE PERCENTAGE WHILE CHEWING ON CANDIDATES FOR GASTROPLASTY.

    Science.gov (United States)

    Santos, Andréa Cavalcante Dos; Silva, Carlos Antonio Bruno da

    Surface electromyography identifies changes in the electrical potential of the muscles during each contraction. The percentage of use is a way to treat values enabling comparison between groups. To analyze the electrical activity and the percentage of use of masseter and temporal muscles during chewing in candidates for gastric bypass. It was used Surface Electromyography Miotool 200,400 (Miotec (r), Porto Alegre/RS, Brazil) integrated with Miograph 2.0 software, involving patients between 20-40 years old. Were included data on electrical activity simultaneously and in pairs of temporal muscle groups and masseter at rest, maximum intercuspation and during the chewing of food previously classified. Were enrolled 39 patients (59 women), mean age 27.1+/-5.7. The percentage of use focused on temporal muscle, in a range of 11-20, female literacy (n=11; 47.82) on the left side and 15 (65.21) on the right-hand side. In the male, nine (56.25) at left and 12 (75.00) on the right-hand side. In masseter, also in the range of 11 to 20, female literacy (n=10; 43.48) on the left side and 11 (47.83) on the right-hand side. In the male, nine (56.25) at left and eight (50.00) on the right-hand side. 40-50% of the sample showed electrical activity in muscles (masseter and temporal) with variable values, and after processing into percentage value, facilitating the comparison of load of used electrical activity between the group, as well as usage percentage was obtained of muscle fibers 11-20% values involving, representing a range that is considered as a reference to the group studied. The gender was not a variable. A eletromiografia de superfície identifica variações dos potenciais elétricos dos músculos durante cada contração realizada. O percentual de uso é uma forma de tratar valores possibilitando comparação entre grupos. Analisar a atividade elétrica e o percentual de uso dos músculos masséteres e temporais durante a mastigação em candidatos à gastroplastia

  1. The study of surface electromyography used for the assessment of abductor hallucis muscle activity in patients with hallux valgus.

    Science.gov (United States)

    Mortka, Kamila; Lisiński, Przemysław; Wiertel-Krawczuk, Agnieszka

    2018-01-26

    Hallux valgus is a common foot disorder. In patients with hallux valgus, the anatomy and biomechanics of foot is subject to alterations. The aim of this clinical and neurophysiological study is to compare the activity of abductor hallucis (AbdH) muscle between the group of patients with hallux valgus and control group of healthy people, with the use of surface electromyography. The study involved 44 feet with diagnosed hallux valgus (research group) and 42 feet without deformation (control group). The X-ray images, measurements of range of motion in the first metatarsophalangeal joint and in hallux interphalangeal joint, and the surface electromyography study recorded from AbdH muscle were performed. Considering the amplitude of motor unit action potential, study participants with hallux valgus demonstrate significantly less activity of AbdH muscle than people without hallux valgus deformity. This activity is not dependent on the severity of valgus, age, or range of motion. It is speculated that the changes of the AbdH function may occur in the period before clinical appearance of hallux valgus deformity, or at the onset of distortion development. Further studies are needed for a comprehensive assessment of AbdH muscle in patients with hallux valgus.

  2. Investigation of Physiological Properties of Nerves and Muscles Using Electromyography

    Science.gov (United States)

    Roe, Seán M.; Johnson, Christopher D.; Tansey, Etain A.

    2014-01-01

    The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in…

  3. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    Science.gov (United States)

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), Pexercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (Pmotor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  4. Analysis of High-Density Surface EMG and Finger Pressure in the Left Forearm of Violin Players: A Feasibility Study.

    Science.gov (United States)

    Cattarello, Paolo; Merletti, Roberto; Petracca, Francesco

    2017-09-01

    Wrist and finger flexor muscles of the left hand were evaluated using high-density surface EMG (HDsEMG) in 17 violin players. Pressure sensors also were mounted below the second string of the violin to evaluate, simultaneously, finger pressure. Electrode grid size was 110x70 mm (12x8 electrodes with interelectrode distance=10 mm and Ø=3 mm). The study objective was to observe the activation patterns of these muscles while the violinists sequentially played four notes--SI (B), DO# (C#), RE (D), MI (E)--at 2 bows/s (one bow up in 0.5 s and one down in 0.5 s) and 4 bows/s on the second string, while producing a constant (CONST) or ramp (RAMP) sound volume. HDsEMG images obtained while playing the notes were compared with those obtained during isometric radial or ulnar flexion of the wrist or fingers. Two image descriptors provided information on image differences. Results showed that the technique was reliable and provided reliable signals, and that recognizably different sEMG images could be associated with the four notes tested, despite the variability within and between subjects playing the same note. sEMG activity of the left hand muscles and pressure on the string in the RAMP task were strongly affected in some individuals by the sound volume (controlled by the right hand) and much less in other individuals. These findings question whether there is an individual or generally optimal way of pressing violin strings with the left hand. The answer to this question might substantially modify the teaching of string instruments.

  5. High-density surface EMG maps from upper-arm and forearm muscles

    Directory of Open Access Journals (Sweden)

    Rojas-Martínez Monica

    2012-12-01

    Full Text Available Abstract Background sEMG signal has been widely used in different applications in kinesiology and rehabilitation as well as in the control of human-machine interfaces. In general, the signals are recorded with bipolar electrodes located in different muscles. However, such configuration may disregard some aspects of the spatial distribution of the potentials like location of innervation zones and the manifestation of inhomogineties in the control of the muscular fibers. On the other hand, the spatial distribution of motor unit action potentials has recently been assessed with activation maps obtained from High Density EMG signals (HD-EMG, these lasts recorded with arrays of closely spaced electrodes. The main objective of this work is to analyze patterns in the activation maps, associating them with four movement directions at the elbow joint and with different strengths of those tasks. Although the activation pattern can be assessed with bipolar electrodes, HD-EMG maps could enable the extraction of features that depend on the spatial distribution of the potentials and on the load-sharing between muscles, in order to have a better differentiation between tasks and effort levels. Methods An experimental protocol consisting of isometric contractions at three levels of effort during flexion, extension, supination and pronation at the elbow joint was designed and HD-EMG signals were recorded with 2D electrode arrays on different upper-limb muscles. Techniques for the identification and interpolation of artifacts are explained, as well as a method for the segmentation of the activation areas. In addition, variables related to the intensity and spatial distribution of the maps were obtained, as well as variables associated to signal power of traditional single bipolar recordings. Finally, statistical tests were applied in order to assess differences between information extracted from single bipolar signals or from HD-EMG maps and to analyze

  6. Electromyography Activation Levels of the 3 Gluteus Medius Subdivisions During Manual Strength Testing

    DEFF Research Database (Denmark)

    Otten, Roald; Tol, Johannes L; Holmich, Per

    2015-01-01

    deficits and guide specific rehabilitation programs. However, the optimal positions for assessing the strength and activation of these subdivisions are unknown. OBJECTIVE: The first aim was to establish which strength-testing positions produce the highest surface electromyography (sEMG) activation levels...... of the individual GM subdivisions. The second aim was to evaluate differences in sEMG activation levels between the tested and contralateral (stabilizing) leg. METHOD: Twenty healthy physically active male subjects participated in this study. Muscle activity using sEMG was recorded for the GM subdivisions in 8......STUDY DESIGN: Cross-sectional. CONTEXT: Gluteus medius (GM) muscle dysfunction is associated with overuse injury. The GM is functionally composed of 3 separate subdivisions: anterior, middle, and posterior. Clinical assessment of the GM subdivisions is relevant to detect strength and activation...

  7. Age-Related Increase in Electromyography Burst Activity in Males and Females

    Directory of Open Access Journals (Sweden)

    Olga Theou

    2013-01-01

    Full Text Available The rapid advancement of electromyography (EMG technology facilitates measurement of muscle activity outside the laboratory during daily life. The purpose of this study was to determine whether bursts in EMG recorded over a typical 8-hour day differed between young and old males and females. Muscle activity was recorded from biceps brachii, triceps brachii, vastus lateralis, and biceps femoris of 16 young and 15 old adults using portable surface EMG. Old muscles were active 16–27% of the time compared to 5–9% in young muscles. The number of bursts was greater in old than young adults and in females compared to males. Burst percentage and mean amplitude were greater in the flexor muscles compared with the extensor muscles. The greater burst activity in old adults coupled with the unique activity patterns across muscles in males and females provides further understanding of how changes in neuromuscular activity effects age-related functional decline between the sexes.

  8. EMG evaluation of hip adduction exercises for soccer players

    DEFF Research Database (Denmark)

    Serner, Andreas; Jakobsen, Markus Due; Andersen, Lars Louis

    2014-01-01

    INTRODUCTION: Exercise programmes are used in the prevention and treatment of adductor-related groin injuries in soccer; however, there is a lack of knowledge concerning the intensity of frequently used exercises. OBJECTIVE: Primarily to investigate muscle activity of adductor longus during six...... traditional and two new hip adduction exercises. Additionally, to analyse muscle activation of gluteals and abdominals. MATERIALS AND METHODS: 40 healthy male elite soccer players, training >5 h a week, participated in the study. Muscle activity using surface electromyography (sEMG) was measured bilaterally...

  9. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    Science.gov (United States)

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (pinternal oblique (pexternal oblique (pinternal oblique (pexternal oblique: pinternal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Analyzing surface EMG signals to determine relationship between jaw imbalance and arm strength loss

    Directory of Open Access Journals (Sweden)

    Truong Quang Dang Khoa

    2012-08-01

    Full Text Available Abstract Background This study investigated the relationship between dental occlusion and arm strength; in particular, the imbalance in the jaw can cause loss in arm strength phenomenon. One of the goals of this study was to record the maximum forces that the subjects can resist against the pull-down force on their hands while biting a spacer of adjustable height on the right or left side of the jaw. Then EMG measurement was used to determine the EMG-Force relationship of the jaw, neck and arms muscles. This gave us useful insights on the arms strength loss due to the biomechanical effects of the imbalance in the jaw mechanism. Methods In this study to determine the effects of the imbalance in the jaw to the strength of the arms, we conducted experiments with a pool of 20 healthy subjects of both genders. The subjects were asked to resist a pull down force applied on the contralateral arm while biting on a firm spacer using one side of the jaw. Four different muscles – masseter muscles, deltoid muscles, bicep muscles and trapezoid muscles – were involved. Integrated EMG (iEMG and Higuchi fractal dimension (HFD were used to analyze the EMG signals. Results The results showed that (1 Imbalance in the jaw causes loss of arm strength contra-laterally; (2 The loss is approximately a linear function of the height of the spacers. Moreover, the iEMG showed the intensity of muscle activities decreased when the degrees of jaw imbalance increased (spacer thickness increased. In addition, the tendency of Higuchi fractal dimension decreased for all muscles. Conclusions This finding indicates that muscle fatigue and the decrease in muscle contraction level leads to the loss of arm strength.

  11. Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals.

    Science.gov (United States)

    Xie, Hong-Bo; Guo, Jing-Yi; Zheng, Yong-Ping

    2010-04-01

    In the present contribution, a complexity measure is proposed to assess surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Approximate entropy (ApEn) is believed to provide quantitative information about the complexity of experimental data that is often corrupted with noise, short data length, and in many cases, has inherent dynamics that exhibit both deterministic and stochastic behaviors. We developed an improved ApEn measure, i.e., fuzzy approximate entropy (fApEn), which utilizes the fuzzy membership function to define the vectors' similarity. Tests were conducted on independent, identically distributed (i.i.d.) Gaussian and uniform noises, a chirp signal, MIX processes, Rossler equation, and Henon map. Compared with the standard ApEn, the fApEn showed better monotonicity, relative consistency, and more robustness to noise when characterizing signals with different complexities. Performance analysis on experimental EMG signals demonstrated that the fApEn significantly decreased during the development of muscle fatigue, which is a similar trend to that of the mean frequency (MNF) of the EMG signal, while the standard ApEn failed to detect this change. Moreover, fApEn of EMG demonstrated a better robustness to the length of the analysis window in comparison with the MNF of EMG. The results suggest that the fApEn of an EMG signal may potentially become a new reliable method for muscle fatigue assessment and be applicable to other short noisy physiological signal analysis.

  12. A comparative study of various electrodes in electromyography of the striated urethral and anal sphincter in children

    DEFF Research Database (Denmark)

    Nielsen, K K; Kristensen, E S; Qvist, N

    1985-01-01

    The series comprised 41 children aged 6 to 14 years consecutively referred with recurrent urinary tract infection and/or enuresis. Carbon dioxide cystometry was carried out in the supine and the erect position and combined with simultaneous electromyography (EMG). The external urethral sphincter ....... Correlation between them was good, as was reproducibility. Perianal surface ECG electrodes are recommended for the evaluation of functional disturbances of the external sphincter. They are painless, easy to use, and are well tolerated by the patient....

  13. Estimation of continuous multi-DOF finger joint kinematics from surface EMG using a multi-output Gaussian Process.

    Science.gov (United States)

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro

    2014-01-01

    Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.

  14. The reliability of a maximal isometric hip strength and simultaneous surface EMG screening protocol in elite, junior rugby league athletes.

    Science.gov (United States)

    Charlton, Paula C; Mentiplay, Benjamin F; Grimaldi, Alison; Pua, Yong-Hao; Clark, Ross A

    2017-02-01

    Firstly to describe the reliability of assessing maximal isometric strength of the hip abductor and adductor musculature using a hand held dynamometry (HHD) protocol with simultaneous wireless surface electromyographic (sEMG) evaluation of the gluteus medius (GM) and adductor longus (AL). Secondly, to describe the correlation between isometric strength recorded with the HHD protocol and a laboratory standard isokinetic device. Reliability and correlational study. A sample of 24 elite, male, junior, rugby league athletes, age 16-20 years participated in repeated HHD and isometric Kin-Com (KC) strength testing with simultaneous sEMG assessment, on average (range) 6 (5-7) days apart by a single assessor. Strength tests included; unilateral hip abduction (ABD) and adduction (ADD) and bilateral ADD assessed with squeeze (SQ) tests in 0 and 45° of hip flexion. HHD demonstrated good to excellent inter-session reliability for all outcome measures (ICC (2,1) =0.76-0.91) and good to excellent association with the laboratory reference KC (ICC (2,1) =0.80-0.88). Whilst intra-session, inter-trial reliability of EMG activation and co-activation outcome measures ranged from moderate to excellent (ICC (2,1) =0.70-0.94), inter-session reliability was poor (all ICC (2,1) Isometric strength testing of the hip ABD and ADD musculature using HHD may be measured reliably in elite, junior rugby league athletes. Due to the poor inter-session reliability of sEMG measures, it is not recommended for athlete screening purposes if using the techniques implemented in this study. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Electromyography Exposes Heterogeneity in Muscle Co-Contraction following Stroke

    Directory of Open Access Journals (Sweden)

    Caitlin L. Banks

    2017-12-01

    Full Text Available Walking after stroke is often described as requiring excessive muscle co-contraction, yet, evidence that co-contraction is a ubiquitous motor control strategy for this population remains inconclusive. Co-contraction, the simultaneous activation of agonist and antagonist muscles, can be assessed with electromyography (EMG but is often described qualitatively. Here, our goal is to determine if co-contraction is associated with gait impairments following stroke. Fifteen individuals with chronic stroke and nine healthy controls walked on an instrumented treadmill at self-selected speed. Surface EMGs were collected from the medial gastrocnemius (MG, soleus (SOL, and tibialis anterior (TA of each leg. EMG envelope amplitudes were assessed in three ways: (1 no normalization, (2 normalization to the maximum value across the gait cycle, or (3 normalization to maximal M-wave. Three co-contraction indices were calculated across each agonist/antagonist muscle pair (MG/TA and SOL/TA to assess the effect of using various metrics to quantify co-contraction. Two factor ANOVAs were used to compare effects of group and normalization for each metric. Co-contraction during the terminal stance (TSt phase of gait is not different between healthy controls and the paretic leg of individuals post-stroke, regardless of the metric used to quantify co-contraction. Interestingly, co-contraction was similar between M-max and non-normalized EMG; however, normalization does not impact the ability to resolve group differences. While a modest correlation is revealed between the amount of TSt co-contraction and walking speed, the relationship is not sufficiently strong to motivate further exploration of a causal link between co-contraction and walking function after stroke. Co-contraction does not appear to be a common strategy employed by individuals after stroke. We recommend exploration of alternative EMG analysis approaches in an effort to learn more about the causal

  16. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    Science.gov (United States)

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  17. Evaluation of novel algorithm embedded in a wearable sEMG device for seizure detection

    DEFF Research Database (Denmark)

    Conradsen, Isa; Beniczky, Sandor; Wolf, Peter

    2012-01-01

    We implemented a modified version of a previously published algorithm for detection of generalized tonic-clonic seizures into a prototype wireless surface electromyography (sEMG) recording device. The method was modified to require minimum computational load, and two parameters were trained...... on prior sEMG data recorded with the device. Along with the normal sEMG recording, the device is able to set an alarm whenever the implemented algorithm detects a seizure. These alarms are annotated in the data file along with the signal. The device was tested at the Epilepsy Monitoring Unit (EMU......) at the Danish Epilepsy Center. Five patients were included in the study and two of them had generalized tonic-clonic seizures. All patients were monitored for 2–5 days. A double-blind study was made on the five patients. The overall result showed that the device detected four of seven seizures and had a false...

  18. The Response of Hyperkinesis to EMG Biofeedback.

    Science.gov (United States)

    Haight, Maryellen J.; And Others

    A study was conducted involving eight hyperkinetic males (11-15 years old) to determine if Ss receiving electromyography (EMG) biofeedback training would show a reduction in frontalis muscle tension, hyperactivity, and lability, and increases in self-esteem and visual and auditory attention span. Individual 45- and 30-minute relaxation exercises…

  19. The Stroop matching task presents conflict at both the response and nonresponse levels: an event-related potential and electromyography study.

    Science.gov (United States)

    Caldas, A L; Machado-Pinheiro, W; Souza, L B; Motta-Ribeiro, G C; David, I A

    2012-09-01

    In the Stroop matching task, a Stroop word is compared to a colored bar. The origin of the conflict presented by this task is a topic of current debate. In an effort to disentangle nonresponse and response conflicts, we recorded electromyography (EMG) and event-related potentials (ERPs) while participants performed the task. The N450 component was sensitive to the relationship of color surfaces, regardless of the response, suggesting the participation of nonresponse conflict. Incompatible arrays (e.g., incongruent Stroop stimuli during "same" responses) presented a substantial amount of double EMG activation and slower EMG latencies, suggesting the participation of response conflict. We propose that both response and nonresponse conflicts are sources of these effects. The combined use of the EMG and ERP techniques played an important role in elucidating the conflicts immersed in the Stroop matching task. Copyright © 2012 Society for Psychophysiological Research.

  20. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle.

    Science.gov (United States)

    de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A

    2005-08-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (Pexercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (Pexercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.

  1. Congenital multiple cranial neuropathies: Relevance of orofacial electromyography in infants.

    Science.gov (United States)

    Renault, Francis; Flores-Guevara, Roberto; Baudon, Jean-Jacques; Vazquez, Marie-Paule

    2015-11-01

    The aim of this study was to assess diagnoses and outcomes of infants with 2 or more cranial neuropathies identified using orofacial electromyography (EMG). This retrospective study involved 90 patients. Diagnoses took into account clinical, radiological, and genetic data. EMG examined the orbicularis oculi, genioglossus, and levator veli palatini muscles, and blink responses. To evaluate outcome, neurological disability, respiratory complications, and feeding difficulties were recorded. The patients had malformation syndromes (59), encephalopathies (29), or no underlying disorders (2). Neurogenic EMG signs were detected in a mean of 4 muscles, reflecting a mean of 3 affected nerves. EMG identified a higher number of neuropathies than clinical examination alone (82 vs. 31, facial; 56 vs. 2, pharyngeal; 25 vs. 3, hypoglossal). Poor outcome and death were more frequent when EMG identified ≥4 affected nerves (P = 0.02). EMG highlights multiple cranial neuropathies that can be clinically silent in infants with malformation syndromes or encephalopathies. © 2015 Wiley Periodicals, Inc.

  2. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.

    Science.gov (United States)

    Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis

    2018-02-01

    Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.

  3. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    Science.gov (United States)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  4. Behaviour of a surface EMG based measure for motor control: Motor unit action potential rate in relation to force and muscle fatigue

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2008-01-01

    Surface electromyography parameters such as root-mean-square value (RMS) and median power frequency (FMED) are commonly used to assess the input of the central nervous system (CNS) to a muscle. However, RMS and FMED are influenced not only by CNS input, but also by peripheral muscle properties. The

  5. Comparison of sEMG processing methods during whole-body vibration exercise.

    Science.gov (United States)

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-12-01

    The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of 2 ankle destabilization devices on electromyography measures during functional exercises in individuals with chronic ankle instability.

    Science.gov (United States)

    Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2015-03-01

    Randomized crossover laboratory study. To determine the effects of ankle destabilization devices on surface electromyography (sEMG) measures of selected lower extremity muscles during functional exercises in participants with chronic ankle instability. Ankle destabilization devices are rehabilitation tools that can be worn as a boot or sandal to increase lower extremity muscle activation during walking in healthy individuals. However, they have not been tested in a population with pathology. Fifteen adults with chronic ankle instability participated. Surface electromyography electrodes were located over the anterior tibialis, fibularis longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius. The activity level of these muscles was recorded in a single testing session during unipedal stance with eyes closed, the Star Excursion Balance Test, lateral hops, and treadmill walking. Each task was performed under 3 conditions: shod, ankle destabilization boot, and ankle destabilization sandal. Surface electromyography signal amplitudes were measured for each muscle during each exercise for all 3 conditions. Participants demonstrated a significant increase, with moderate to large effect sizes, in sEMG signal amplitude of the fibularis longus in the ankle destabilization boot and ankle destabilization sandal conditions during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, lateral hops, and walking, when compared to the shod condition. Both devices also resulted in an increase in sEMG signal amplitudes, with large effect sizes of the lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius during the unipedal-stance-with-eyes-closed test, compared to the shod condition. Wearing ankle destabilization devices caused greater muscle activation during functional exercises in individuals with chronic ankle instability. Based on the magnitude of the effect, there were

  7. EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-08-01

    Full Text Available Among the potential biological signals for human-machine interactions (brain, nerve, and muscle signals, electromyography (EMG widely used in clinical setting can be obtained non-invasively as motor commands to control movements. The aim of this study was to develop a model for continuous and simultaneous decoding of multi-joint dynamic arm movements based on multi-channel surface EMG signals crossing the joints, leading to application of myoelectrically controlled exoskeleton robots for upper-limb rehabilitation. Twenty subjects were recruited for this study including 10 stroke subjects and 10 able-bodied subjects. The subjects performed free arm reaching movements in the horizontal plane with an exoskeleton robot. The shoulder, elbow and wrist movements and surface EMG signals from six muscles crossing the three joints were recorded. A non-linear autoregressive exogenous (NARX model was developed to continuously decode the shoulder, elbow and wrist movements based solely on the EMG signals. The shoulder, elbow and wrist movements were decoded accurately based only on the EMG inputs in all the subjects, with the variance accounted for (VAF > 98% for all three joints. The proposed approach is capable of simultaneously and continuously decoding multi-joint movements of the human arm by taking into account the non-linear mappings between the muscle EMGs and joint movements, which may provide less effortful control of robotic exoskeletons for rehabilitation training of individuals with neurological disorders and arm impairment.

  8. Analysis of prosody in finger braille using electromyography.

    Science.gov (United States)

    Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira

    2006-01-01

    Finger braille is one of the communication methods for the deaf blind. The interpreter types braille codes on the fingers of deaf blind. Finger braille seems to be the most suitable medium for real-time communication by its speed and accuracy of transmitting characters. We hypothesize that the prosody information exists in the time structure and strength of finger braille typing. Prosody is the paralinguistic information that has functions to transmit the sentence structure, prominence, emotions and other form of information in real time communication. In this study, we measured the surface electromyography (sEMG) of finger movement to analyze the typing strength of finger braille. We found that the typing strength increases at the beginning of a phrase and a prominent phrase. The result shows the possibility that the prosody in the typing strength of finger braille can be applied to create an interpreter system for the deafblind.

  9. Spatial distribution of surface EMG on trapezius and lumbar muscles of violin and cello players in single note playing.

    Science.gov (United States)

    Afsharipour, Babak; Petracca, Francesco; Gasparini, Mauro; Merletti, Roberto

    2016-12-01

    Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16×4) grid, 10mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16×2 electrode grids (IED=10mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1bow/s) or detaché tip/tail (8bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A "muscle activity index" (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of

  10. Differential effects of type of keyboard playing task and tempo on surface EMG amplitudes of forearm muscles

    Directory of Open Access Journals (Sweden)

    Hyun Ju eChong

    2015-09-01

    Full Text Available Despite increasing interest in keyboard playing as a strategy for repetitive finger exercises in fine motor skill development and hand rehabilitation, comparative analysis of task-specific finger movements relevant to keyboard playing has been less extensive. This study examined whether there were differences in surface EMG activity levels of forearm muscles associated with different keyboard playing tasks. Results demonstrated higher muscle activity with sequential keyboard playing in a random pattern compared to individuated playing or sequential playing in a successive pattern. Also, the speed of finger movements was found as a factor that affect muscle activity levels, demonstrating that faster tempo elicited significantly greater muscle activity than self-paced tempo. The results inform our understanding of the type of finger movements involved in different types of keyboard playing at different tempi so as to consider the efficacy and fatigue level of keyboard playing as an intervention for amateur pianists or individuals with impaired fine motor skills.

  11. Experiences in the creation of an electromyography database to help hand amputated persons.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Heynen, Simone; Hager, Anne-Gabrielle Mittaz; Castellimi, Claudio; Caputo, Barbara; Müller, Henning

    2012-01-01

    Currently, trans-radial amputees can only perform a few simple movements with prosthetic hands. This is mainly due to low control capabilities and the long training time that is required to learn controlling them with surface electromyography (sEMG). This is in contrast with recent advances in mechatronics, thanks to which mechanical hands have multiple degrees of freedom and in some cases force control. To help improve the situation, we are building the NinaPro (Non-Invasive Adaptive Prosthetics) database, a database of about 50 hand and wrist movements recorded from several healthy and currently very few amputated persons that will help the community to test and improve sEMG-based natural control systems for prosthetic hands. In this paper we describe the experimental experiences and practical aspects related to the data acquisition.

  12. Intramuscular pressure and EMG relate during static contractions but dissociate with movement and fatigue

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Jensen, Bente R.; Hargens, Allan R.

    2004-01-01

    Intramuscular pressure (IMP) and electromyography (EMG) mirror muscle force in the nonfatigued muscle during static contractions. The present study explores whether the constant IMP-EMG relationship with increased force may be extended to dynamic contractions and to fatigued muscle. IMP and EMG...... with speed of abduction. In the nonfatigued supraspinatus muscle, a linear relationship was found between IMP and EMG; in contrast, during fatigue and recovery, significant timewise changes of the IMP-to-EMG ratio occurred. The results indicate that IMP should be included along with EMG when mechanical load...... sharing between muscles is evaluated during dynamic and fatiguing contractions....

  13. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    Science.gov (United States)

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  14. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shin-Hong; Wu, Xuan-Han

    2012-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference. PMID:22368481

  15. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Directory of Open Access Journals (Sweden)

    Xuan-Han Wu

    2012-01-01

    Full Text Available Surface electromyography (sEMG is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference.

  16. Effect of a combined inversion and plantarflexion surface on ankle kinematics and EMG activities in landing

    Directory of Open Access Journals (Sweden)

    Divya Bhaskaran

    2015-12-01

    Conclusion: These findings suggest that compared to the inversion surface, the combined plantarflexion and inversion surface seems to provide a more unstable surface condition for lateral ankle sprains during landing.

  17. The impact of shoulder abduction loading on EMG-based intention detection of hand opening and closing after stroke.

    Science.gov (United States)

    Lan, Yiyun; Yao, Jun; Dewald, Julius P A

    2011-01-01

    Many stroke patients are subject to limited hand functions in the paretic arm due to a significant loss of Corticospinal Tract (CST) fibers. A possible solution for this problem is to classify surface Electromyography (EMG) signals generated by hand movements and uses that to implement Functional Electrical Stimulation (FES). However, EMG usually presents an abnormal muscle coactivation pattern shown as increased coupling between muscles within and/or across joints after stroke. The resulting Abnormal Muscle Synergies (AMS) could make the classification more difficult in individuals with stroke, especially when attempting to use the hand together with other joints in the paretic arm. Therefore, this study is aimed at identifying the impact of AMS following stroke on EMG pattern recognition between two hand movements. In an effort to achieve this goal, 7 chronic hemiparetic chronic stroke subjects were recruited and asked to perform hand opening and closing movements at their paretic arm while being either fully supported by a virtual table or loaded with 25% of subject's maximum shoulder abduction force. During the execution of motor tasks EMG signals from the wrist flexors and extensors were simultaneously acquired. Our results showed that increased synergy-induced activity at elbow flexors, induced by increasing shoulder abduction loading, deteriorated the performance of EMG pattern recognition for hand opening for those with a weak grasp strength and EMG activity. However, no such impact on hand closing has yet been observed possibly because finger/wrist flexion is facilitated by the shoulder abduction-induced flexion synergy.

  18. Muscle-fiber conduction velocity and electromyography as diagnostic tools in patients with suspected inflammatory myopathy: a prospective study.

    NARCIS (Netherlands)

    Blijham, P.J.; Hengstman, G.J.D.; Laak, H.J. ter; Engelen, B.G.M. van; Zwarts, M.J.

    2004-01-01

    Combinations of different techniques can increase the diagnostic yield from neurophysiological examination of muscle. In 25 patients with suspected inflammatory myopathy, we prospectively performed needle electromyography (EMG) and measured muscle-fiber conduction velocity (MFCV) in a single muscle,

  19. Differential effects of type of keyboard playing task and tempo on surface EMG amplitudes of forearm muscles

    Science.gov (United States)

    Chong, Hyun Ju; Kim, Soo Ji; Yoo, Ga Eul

    2015-01-01

    Despite increasing interest in keyboard playing as a strategy for repetitive finger exercises in fine motor skill development and hand rehabilitation, comparative analysis of task-specific finger movements relevant to keyboard playing has been less extensive. This study examined, whether there were differences in surface EMG activity levels of forearm muscles associated with different keyboard playing tasks. Results demonstrated higher muscle activity with sequential keyboard playing in a random pattern compared to individuated playing or sequential playing in a successive pattern. Also, the speed of finger movements was found as a factor that affect muscle activity levels, demonstrating that faster tempo elicited significantly greater muscle activity than self-paced tempo. The results inform our understanding of the type of finger movements involved in different types of keyboard playing at different tempi. This helps to consider the efficacy and fatigue level of keyboard playing tasks when being used as an intervention for amateur pianists or individuals with impaired fine motor skills. PMID:26388798

  20. A cross-sectional electromyography assessment in linear scleroderma patients

    Science.gov (United States)

    2014-01-01

    Background Muscle atrophy and asymmetric extremity growth is a common feature of linear scleroderma (LS). Extra-cutaneous features are also common and primary neurologic involvement, with sympathetic dysfunction, may have a pathogenic role in subcutaneous and muscle atrophy. The aim was investigate nerve conduction and muscle involvement by electromyography in pediatric patients with LS. Methods We conducted a retrospective review of LS pediatric patients who had regular follow up at a single pediatric center from 1997–2013. We selected participants if they had consistently good follow up and enrolled consecutive patients in the study. We examined LS photos as well as clinical, serological and imaging findings. Electromyograms (EMG) were performed with bilateral symmetric technique, using surface and needle electrodes, comparing the affected side with the contralateral side. Abnormal muscle activity was categorized as a myopathic or neurogenic pattern. Results Nine LS subjects were selected for EMG, 2 with Parry-Romberg/Hemifacial Atrophy Syndrome, 7 linear scleroderma of an extremity and 2 with mixed forms (linear and morphea). Electromyogram analysis indicated that all but one had asymmetric myopathic pattern in muscles underlying the linear streaks. Motor and sensory nerve conduction was also evaluated in upper and lower limbs and one presented a neurogenic pattern. Masticatory muscle testing showed a myopathic pattern in the atrophic face of 2 cases with head and face involvement. Conclusion In our small series of LS patients, we found a surprising amount of muscle dysfunction by EMG. The muscle involvement may be possibly related to a secondary peripheral nerve involvement due to LS inflammation and fibrosis. Further collaborative studies to confirm these findings are needed. PMID:25053924

  1. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    Science.gov (United States)

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  2. Evaluation of muscle fatigue of wheelchair basketball players with spinal cord injury using recurrence quantification analysis of surface EMG.

    Science.gov (United States)

    Uzun, S; Pourmoghaddam, A; Hieronymus, M; Thrasher, T A

    2012-11-01

    Wheelchair basketball is the most popular exercise activity among individuals with spinal cord injury (SCI). The purpose of this study was to investigate muscular endurance and fatigue in wheelchair basketball athletes with SCI using surface electromyography (SEMG) and maximal torque values. SEMG characteristics of 10 wheelchair basketball players (WBP) were compared to 13 able-bodied basketball players and 12 sedentary able-bodied subjects. Participants performed sustained isometric elbow flexion at 50% maximal voluntary contraction until exhaustion. Elbow flexion torque and SEMG signals were recorded from three elbow flexor muscles: biceps brachii longus, biceps brachii brevis and brachioradialis. SEMG signals were clustered into 0.5-s epochs with 50% overlap. Root mean square (RMS) and median frequency (MDF) of SEMG signals were calculated for each muscle and epoch as traditional fatigue monitoring. Recurrence quantification analysis was used to extract the percentage of determinism (%DET) of SEMG signals. The slope of the %DET for basketball players and WBP showed slower increase with time than the sedentary able-bodied control group for three different elbow flexor muscles, while no difference was observed for the slope of the %DET between basketball and WBP. This result indicated that the athletes are less fatigable during the task effort than the nonathletes. Normalized MDF slope decay exhibited similar results between the groups as %DET, while the slope of the normalized RMS failed to show any significant differences among the groups (p > 0.05). MDF and %DET could be useful for the evaluation of muscle fatigue in wheelchair basketball training. No conclusions about special training for WBP could be determined.

  3. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  4. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    Science.gov (United States)

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Influence of post-stroke spasticity on EMG-force coupling and force steadiness in biceps brachii.

    Science.gov (United States)

    Carlyle, Jennilee K; Mochizuki, George

    2018-02-01

    Individuals with spasticity after stroke experience a decrease in force steadiness which can impact function. Alterations in the strength of EMG-force coupling may contribute to the reduction in force steadiness observed in spasticity. The aim was to determine the extent to which force steadiness and EMG-force coupling is affected by post-stroke spasticity. This cross-sectional study involved individuals with upper limb spasticity after stroke. Participants were required to generate and maintain isometric contractions of the elbow flexors at varying force levels. Coefficient of variation of force, absolute force, EMG-force cross-correlation function peak and peak latency was measured from both limbs with surface electromyography and isometric dynamometry. Statistically significant differences were observed between the affected and less affected limbs for all outcome measures. Significant main effects of force level were also observed. Force steadiness was not statistically significantly correlated with EMG-force coupling; however, both force steadiness and absolute force were associated with the level of impairment as measured by the Chedoke McMaster Stroke Assessment Scale. Spasticity after stroke uncouples the relationship between EMG and force and is associated with reduced force steadiness during isometric contractions; however, these features of control are not associated in individuals with spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Design of sEMG assembly to detect external anal sphincter activity: a proof of concept.

    Science.gov (United States)

    Shiraz, Arsam; Leaker, Brian; Mosse, Charles Alexander; Solomon, Eskinder; Craggs, Michael; Demosthenous, Andreas

    2017-10-31

    Conditional trans-rectal stimulation of the pudendal nerve could provide a viable solution to treat hyperreflexive bladder in spinal cord injury. A set threshold of the amplitude estimate of the external anal sphincter surface electromyography (sEMG) may be used as the trigger signal. The efficacy of such a device should be tested in a large scale clinical trial. As such, a probe should remain in situ for several hours while patients attend to their daily routine; the recording electrodes should be designed to be large enough to maintain good contact while observing design constraints. The objective of this study was to arrive at a design for intra-anal sEMG recording electrodes for the subsequent clinical trials while deriving the possible recording and processing parameters. Having in mind existing solutions and based on theoretical and anatomical considerations, a set of four multi-electrode probes were designed and developed. These were tested in a healthy subject and the measured sEMG traces were recorded and appropriately processed. It was shown that while comparatively large electrodes record sEMG traces that are not sufficiently correlated with the external anal sphincter contractions, smaller electrodes may not maintain a stable electrode tissue contact. It was shown that 3 mm wide and 1 cm long electrodes with 5 mm inter-electrode spacing, in agreement with Nyquist sampling, placed 1 cm from the orifice may intra-anally record a sEMG trace sufficiently correlated with external anal sphincter activity. The outcome of this study can be used in any biofeedback, treatment or diagnostic application where the activity of the external anal sphincter sEMG should be detected for an extended period of time.

  7. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    Directory of Open Access Journals (Sweden)

    Necmettin Sezgin

    2012-01-01

    Full Text Available The analysis and classification of electromyography (EMG signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions.

  8. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    Science.gov (United States)

    Sezgin, Necmettin

    2012-01-01

    The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379

  9. A Simple Network to Remove Interference in Surface EMG Signal from Single Gene Affected Phenylketonuria Patients for Proper Diagnosis

    Science.gov (United States)

    Mohanty, Madhusmita; Basu, Mousumi; Pattanayak, Deba Narayan; Mohapatra, Sumant Kumar

    2018-04-01

    Recently Autosomal Recessive Single Gene (ARSG) diseases are highly effective to the children within the age of 5-10 years. One of the most ARSG disease is a Phenylketonuria (PKU). This single gene disease is associated with mutations in the gene that encodes the enzyme phenylalanine hydroxylase (PAH, Gene 612349). Through this mutation process, PAH of the gene affected patient can not properly manufacture PAH as a result the patients suffer from decreased muscle tone which shows abnormality in EMG signal. Here the extraction of the quality of the PKU affected EMG (PKU-EMG) signal is a keen interest, so it is highly necessary to remove the added ECG signal as well as the biological and instrumental noises. In the Present paper we proposed a method for detection and classification of the PKU affected EMG signal. Here Discrete Wavelet Transformation is implemented for extraction of the features of the PKU affected EMG signal. Adaptive Neuro-Fuzzy Inference System (ANFIS) network is used for the classification of the signal. Modified Particle Swarm Optimization (MPSO) and Modified Genetic Algorithm (MGA) are used to train the ANFIS network. Simulation result shows that the proposed method gives better performance as compared to existing approaches. Also it gives better accuracy of 98.02% for the detection of PKU-EMG signal. The advantages of the proposed model is to use MGA and MPSO to train the parameters of ANFIS network for classification of ECG and EMG signal of PKU affected patients. The proposed method obtained the high SNR (18.13 ± 0.36 dB), SNR (0.52 ± 1.62 dB), RE (0.02 ± 0.32), MSE (0.64 ± 2.01), CC (0.99 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02). From authors knowledge, this is the first time a composite method is used for diagnosis of PKU affected patients. The accuracy (98.02%), sensitivity (100%) and specificity (98.59%) helps for proper clinical treatment. It can help for readers

  10. Preliminary investigation of an electromyography-controlled video game as a home program for persons in the chronic phase of stroke recovery.

    Science.gov (United States)

    Donoso Brown, Elena V; McCoy, Sarah Westcott; Fechko, Amber S; Price, Robert; Gilbertson, Torey; Moritz, Chet T

    2014-08-01

    To investigate the preliminary effectiveness of surface electromyography (sEMG) biofeedback delivered via interaction with a commercial computer game to improve motor control in chronic stroke survivors. Single-blinded, 1-group, repeated-measures design: A1, A2, B, A3 (A, assessment; B, intervention). Laboratory and participants' homes. A convenience sample of persons (N=9) between 40 and 75 years of age with moderate to severe upper extremity motor impairment and at least 6 months poststroke completed the study. The electromyography-controlled video game system targeted the wrist muscle activation with the goal of increasing selective muscle activation. Participants received several laboratory training sessions with the system and then were instructed to use the system at home for 45 minutes, 5 times per week for the following 4 weeks. Primary outcome measures included duration of system use, sEMG during home play, and pre/post sEMG measures during active wrist motion. Secondary outcomes included kinematic analysis of movement and functional outcomes, including the Wolf Motor Function Test and the Chedoke Arm and Hand Activity Inventory-9. One third of participants completed or exceeded the recommended amount of system use. Statistically significant changes were observed on both game play and pre/post sEMG outcomes. Limited carryover, however, was observed on kinematic or functional outcomes. This preliminary investigation indicates that use of the electromyography-controlled video game impacts muscle activation. Limited changes in kinematic and activity level outcomes, however, suggest that the intervention may benefit from the inclusion of a functional activity component. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Development of a 3D workspace shoulder assessment tool incorporating electromyography and an inertial measurement unit-a preliminary study.

    Science.gov (United States)

    Aslani, Navid; Noroozi, Siamak; Davenport, Philip; Hartley, Richard; Dupac, Mihai; Sewell, Philip

    2018-06-01

    Traditional shoulder range of movement (ROM) measurement tools suffer from inaccuracy or from long experimental setup times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a 'frozen' shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291 ± 538 deg 2 among all six healthy individuals and a ROM surface area of 13571 ± 308 deg 2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace. Graphical abstract The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. The assessment tool consists of an IMU sensor, an EMG sensor, a microcontroller and a Bluetooth module. The assessment tool was attached to subjects arm. Individuals were instructed to move their arms with the elbow fully extended. They were then asked to provide the maximal voluntary elevation envelope of the arm in 3D space in multiple attempts starting from a small movement envelope going to the biggest

  12. Detection of compensatory balance responses using wearable electromyography sensors for fall-risk assessment.

    Science.gov (United States)

    Nouredanesh, Mina; Kukreja, Sunil L; Tung, James

    2016-08-01

    Loss of balance is prevalent in older adults and populations with gait and balance impairments. The present paper aims to develop a method to automatically distinguish compensatory balance responses (CBRs) from normal gait, based on activity patterns of muscles involved in maintaining balance. In this study, subjects were perturbed by lateral pushes while walking and surface electromyography (sEMG) signals were recorded from four muscles in their right leg. To extract sEMG time domain features, several filtering characteristics and segmentation approaches are examined. The performance of three classification methods, i.e., k-nearest neighbor, support vector machines, and random forests, were investigated for accurate detection of CBRs. Our results show that features extracted in the 50-200Hz band, segmented using peak sEMG amplitudes, and a random forest classifier detected CBRs with an accuracy of 92.35%. Moreover, our results support the important role of biceps femoris and rectus femoris muscles in stabilization and consequently discerning CBRs. This study contributes towards the development of wearable sensor systems to accurately and reliably monitor gait and balance control behavior in at-home settings (unsupervised conditions), over long periods of time, towards personalized fall risk assessment tools.

  13. Diagnostic accuracy of the electromyography parameters associated with anterior knee pain in the diagnosis of patellofemoral pain syndrome.

    Science.gov (United States)

    Ferrari, Deisi; Kuriki, Heloyse Uliam; Silva, Cristiano Rocha; Alves, Neri; Mícolis de Azevedo, Fábio

    2014-08-01

    To assess the diagnostic accuracy of the surface electromyography (sEMG) parameters associated with referred anterior knee pain in diagnosing patellofemoral pain syndrome (PFPS). Sensitivity and specificity analysis. Physical rehabilitation center and laboratory of biomechanics and motor control. Pain-free subjects (n=29) and participants with PFPS (n=22) selected by convenience. Not applicable. The diagnostic accuracy was calculated for sEMG parameters' reliability, precision, and ability to differentiate participants with and without PFPS. The selected sEMG parameter associated with anterior knee pain was considered as an index test and was compared with the reference standard for the diagnosis of PFPS. Intraclass correlation coefficient, SEM, independent t tests, sensitivity, specificity, negative and positive likelihood ratios, and negative and positive predictive values were used for the statistical analysis. The medium-frequency band (B2) parameter was reliable (intraclass correlation coefficient=.80-.90), precise (SEM=2.71-3.87 normalized unit), and able to differentiate participants with and without PFPS (Ppain showed positive diagnostic accuracy values (specificity, .87; sensitivity, .70; negative likelihood ratio, .33; positive likelihood ratio, 5.63; negative predictive value, .72; and positive predictive value, .86). The results provide evidence to support the use of EMG signals (B2-frequency band of 45-96 Hz) of the vastus lateralis and vastus medialis muscles with referred anterior knee pain in the diagnosis of PFPS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG.

    Science.gov (United States)

    Belbasis, Aaron; Fuss, Franz Konstantin

    2018-01-01

    Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG) system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG), comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue) comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency) obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD) showed a higher time dependency ( R 2 = 0.84) compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue). In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical muscle

  15. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG

    Directory of Open Access Journals (Sweden)

    Aaron Belbasis

    2018-04-01

    Full Text Available Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG, comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD showed a higher time dependency (R2 = 0.84 compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue. In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical

  16. Assessment of work-related muscle strain by using surface EMG during test contractions interposed between work periods of simulateted mushroom picking

    DEFF Research Database (Denmark)

    Ohashi, Jun-Ya; Blangsted, Anne Katrine; Nielsen, Pernille Kofoed

    2010-01-01

    Surface electromyograms(EMG) during test contractions (TCs) were studied to assess the muscle strain in simulated mushroom picking. Additionally, the duration of the TC for the effective assessment was investigated. Nine female subjects performed standardized shoulder abduction and a stooped...... posture for one minute as TCs. Each experiment consisted of a 60-min rest, three work periods (W1-W3), a 30-min rest, and two work periods (W4 and W5) separated by a 30-min rest period. The duration of each work period was about 20 min. A total of 18 TCs was performed between the work periods and every 10...

  17. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    Directory of Open Access Journals (Sweden)

    Karin Lienhard

    2015-01-01

    Full Text Available The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG spectrum recorded during whole-body vibration (WBV exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05, and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05. This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity.

  18. Engagement and EMG in serious gaming : Experimenting with sound and dynamics in the levee patroller training game

    NARCIS (Netherlands)

    Schuurink, E.L.; Houtkamp, J.; Toet, A.

    2008-01-01

    We measured the effects of sound and visual dynamic elements on user experience of a serious game, with special interest in engagement and arousal. Engagement was measured through questionnaires and arousal through the SAM and electromyography (EMG). We adopted the EMG of the corrugator (frown

  19. The utility of EMG interference pattern analysis in botulinum toxin treatment of torticollis: A randomised, controlled and blinded study

    DEFF Research Database (Denmark)

    Werdelin, L; Dalager, T; Fuglsang-Frederiksen, Anders

    2011-01-01

    OBJECTIVE: The significance of electromyography (EMG) guidance in botulinum toxin (BT) treatment has been much debated. The aim of this study was to evaluate if EMG guidance in the treatment of torticollis in BT-naive patients had a better outcome than treatment after clinical evaluation alone...

  20. Seizure detection algorithms based on EMG signals

    DEFF Research Database (Denmark)

    Conradsen, Isa

    Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective...... on the amplitude of the signal. The other algorithm was based on information of the signal in the frequency domain, and it focused on synchronisation of the electrical activity in a single muscle during the seizure. Results: The amplitude-based algorithm reliably detected seizures in 2 of the patients, while...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....

  1. [Evaluation of the electromyography activity of pelvic floor muscle during postural exercises using the Wii Fit Plus©. Analysis and perspectives in rehabilitation].

    Science.gov (United States)

    Steenstrup, B; Giralte, F; Bakker, E; Grise, P

    2014-12-01

    The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. siGnum: graphical user interface for EMG signal analysis.

    Science.gov (United States)

    Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh

    2015-01-01

    Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.

  3. Muscle Fatigue in the Three Heads of the Triceps Brachii During a Controlled Forceful Hand Grip Task with Full Elbow Extension Using Surface Electromyography.

    Science.gov (United States)

    Ali, Asraf; Sundaraj, Kenneth; Badlishah Ahmad, R; Ahamed, Nizam Uddin; Islam, Anamul; Sundaraj, Sebastian

    2015-06-27

    The objective of the present study was to investigate the time to fatigue and compare the fatiguing condition among the three heads of the triceps brachii muscle using surface electromyography during an isometric contraction of a controlled forceful hand grip task with full elbow extension. Eighteen healthy subjects concurrently performed a single 90 s isometric contraction of a controlled forceful hand grip task and full elbow extension. Surface electromyographic signals from the lateral, long and medial heads of the triceps brachii muscle were recorded during the task for each subject. The changes in muscle activity among the three heads of triceps brachii were measured by the root mean square values for every 5 s period throughout the total contraction period. The root mean square values were then analysed to determine the fatiguing condition for the heads of triceps brachii muscle. Muscle fatigue in the long, lateral, and medial heads of the triceps brachii started at 40 s, 50 s, and 65 s during the prolonged contraction, respectively. The highest fatiguing rate was observed in the long head (slope = -2.863), followed by the medial head (slope = -2.412) and the lateral head (slope = -1.877) of the triceps brachii muscle. The results of the present study concurs with previous findings that the three heads of the triceps brachii muscle do not work as a single unit, and the fiber type/composition is different among the three heads.

  4. A Discrete-Time Algorithm for Stiffness Extraction from sEMG and Its Application in Antidisturbance Teleoperation

    Directory of Open Access Journals (Sweden)

    Peidong Liang

    2016-01-01

    Full Text Available We have developed a new discrete-time algorithm of stiffness extraction from muscle surface electromyography (sEMG collected from human operator’s arms and have applied it for antidisturbance control in robot teleoperation. The variation of arm stiffness is estimated from sEMG signals and transferred to a telerobot under variable impedance control to imitate human motor control behaviours, particularly for disturbance attenuation. In comparison to the estimation of stiffness from sEMG, the proposed algorithm is able to reduce the nonlinear residual error effect and to enhance robustness and to simplify stiffness calibration. In order to extract a smoothing stiffness enveloping from sEMG signals, two enveloping methods are employed in this paper, namely, fast linear enveloping based on low pass filtering and moving average and amplitude monocomponent and frequency modulating (AM-FM method. Both methods have been incorporated into the proposed stiffness variance estimation algorithm and are extensively tested. The test results show that stiffness variation extraction based on the two methods is sensitive and robust to attenuation disturbance. It could potentially be applied for teleoperation in the presence of hazardous surroundings or human robot physical cooperation scenarios.

  5. Mandibular kinematics and masticatory muscles EMG in patients with short lasting TMD of mild-moderate severity.

    Science.gov (United States)

    De Felício, Cláudia Maria; Mapelli, Andrea; Sidequersky, Fernanda Vincia; Tartaglia, Gianluca M; Sforza, Chiarella

    2013-06-01

    Mandibular kinematic and standardized surface electromyography (sEMG) characteristics of masticatory muscles of subjects with short lasting TMD of mild-moderate severity were examined. Volunteers were submitted to clinical examination and questionnaire of severity. Ten subjects with TMD (age 27.3years, SD 7.8) and 10 control subjects without TMD, matched by age, were selected. Mandibular movements were recorded during free maximum mouth opening and closing (O-C) and unilateral, left and right, gum chewing. sEMG of the masseter and temporal muscles was performed during maximum teeth clenching either on cotton rolls or in intercuspal position, and during gum chewing. sEMG indices were obtained. Subjects with TMD, relative to control subjects, had lower relative mandibular rotation at the end of mouth opening, larger mean number of intersection between interincisal O-C paths during mastication and smaller asymmetry between working and balancing side, with participation beyond the expected of the contralateral muscles (Pkinematic parameters and the EMG indices of the static test, although some changes in the mastication were observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Wireless sEMG System with a Microneedle-Based High-Density Electrode Array on a Flexible Substrate.

    Science.gov (United States)

    Kim, Minjae; Gu, Gangyong; Cha, Kyoung Je; Kim, Dong Sung; Chung, Wan Kyun

    2017-12-30

    Surface electromyography (sEMG) signals reflect muscle contraction and hence, can provide information regarding a user's movement intention. High-density sEMG systems have been proposed to measure muscle activity in small areas and to estimate complex motion using spatial patterns. However, conventional systems based on wet electrodes have several limitations. For example, the electrolyte enclosed in wet electrodes restricts spatial resolution, and these conventional bulky systems limit natural movements. In this paper, a microneedle-based high-density electrode array on a circuit integrated flexible substrate for sEMG is proposed. Microneedles allow for high spatial resolution without requiring conductive substances, and flexible substrates guarantee stable skin-electrode contact. Moreover, a compact signal processing system is integrated with the electrode array. Therefore, sEMG measurements are comfortable to the user and do not interfere with the movement. The system performance was demonstrated by testing its operation and estimating motion using a Gaussian mixture model-based, simplified 2D spatial pattern.

  7. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.

    Science.gov (United States)

    Ying, Rex; Wall, Christine E

    2016-12-08

    Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Combining Electromyography and Tactile Myography to Improve Hand and Wrist Activity Detection in Prostheses

    Directory of Open Access Journals (Sweden)

    Noémie Jaquier

    2017-10-01

    Full Text Available Despite recent advances in prosthetics and assistive robotics in general, robust simultaneous and proportional control of dexterous prosthetic devices remains an unsolved problem, mainly because of inadequate sensorization. In this paper, we study the application of regression to muscle activity, detected using a flexible tactile sensor recording muscle bulging in the forearm (tactile myography—TMG. The sensor is made of 320 highly sensitive cells organized in an array forming a bracelet. We propose the use of Gaussian process regression to improve the prediction of wrist, hand and single-finger activation, using TMG, surface electromyography (sEMG; the traditional approach in the field, and a combination of the two. We prove the effectiveness of the approach for different levels of activations in a real-time goal-reaching experiment using tactile data. Furthermore, we performed a batch comparison between the different forms of sensorization, using a Gaussian process with different kernel distances.

  9. Application of advanced biomechanical methods in studying low back pain – recent development in estimation of lower back loads and large-array surface electromyography and findings

    Directory of Open Access Journals (Sweden)

    Bazrgari B

    2017-07-01

    Full Text Available Babak Bazrgari,1 Ting Xia2 1F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 2Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA Abstract: Low back pain (LBP is a major public health problem and the leading disabling musculoskeletal disorder globally. A number of biomechanical methods using kinematic, kinetic and/or neuromuscular approaches have been used to study LBP. In this narrative review, we report recent developments in two biomechanical methods: estimation of lower back loads and large-array surface electromyography (LA-SEMG and the findings associated with LBP. The ability to estimate lower back loads is very important for the prevention and the management of work-related low back injuries based on the mechanical loading model as one category of LBP classification. The methods used for estimation of lower back loads vary from simple rigid link-segment models to sophisticated, optimization-based finite element models. In general, reviewed reports of differences in mechanical loads experienced in lower back tissues between patients with LBP and asymptomatic individuals are not consistent. Such lack of consistency is primarily due to differences in activities under which lower back mechanical loads were investigated as well as heterogeneity of patient populations. The ability to examine trunk neuromuscular behavior is particularly relevant to the motor control model, another category of LBP classification. LA-SEMG not only is noninvasive but also provides spatial resolution within and across muscle groups. Studies using LA-SEMG showed that healthy individuals exhibit highly organized, symmetric back muscle activity patterns, suggesting an orderly recruitment of muscle fibers. In contrast, back muscle activity patterns in LBP patients are asymmetric or multifocal, suggesting lack of orderly muscle recruitment. LA-SEMG was also shown capable of

  10. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study

    Directory of Open Access Journals (Sweden)

    John M. Vasudevan

    2016-01-01

    Full Text Available Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete’s typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants’ natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes’ averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis.

  11. Modulation of EMG-EMG Coherence in a Choice Stepping Task

    Directory of Open Access Journals (Sweden)

    Ippei Nojima

    2018-02-01

    Full Text Available The voluntary step execution task is a popular measure for identifying fall risks among elderly individuals in the community setting because most falls have been reported to occur during movement. However, the neurophysiological functions during this movement are not entirely understood. Here, we used electromyography (EMG to explore the relationship between EMG-EMG coherence, which reflects common oscillatory drive to motoneurons, and motor performance associated with stepping tasks: simple reaction time (SRT and choice reaction time (CRT tasks. Ten healthy elderly adults participated in the study. Participants took a single step forward in response to a visual imperative stimulus. EMG-EMG coherence was analyzed for 1000 ms before the presentation of the stimulus (stationary standing position from proximal and distal tibialis anterior (TA and soleus (SOL muscles. The main result showed that all paired EMG-EMG coherences in the alpha and beta frequency bands were greater in the SRT than the CRT task. This finding suggests that the common oscillatory drive to the motoneurons during the SRT task occurred prior to taking a step, whereas the lower value of corticospinal activity during the CRT task prior to taking a step may indicate an involvement of inhibitory activity, which is consistent with observations from our previous study (Watanabe et al., 2016. Furthermore, the beta band coherence in intramuscular TA tended to positively correlate with the number of performance errors that are associated with fall risks in the CRT task, suggesting that a reduction in the inhibitory activity may result in a decrease of stepping performance. These findings could advance the understanding of the neurophysiological features of postural adjustments in elderly individuals.

  12. EMG BioanalyzerBR para a análise de sinais eletromiográficos na deglutição EMG BioanalyzerBR for analyzing electromyographic signals when swallowing

    Directory of Open Access Journals (Sweden)

    Paulo Feodrippe

    2012-06-01

    Full Text Available OBJETIVO: descrever as etapas de construção do EMG BioanalyzerBR (versão 1.0 e demonstrar a sua aplicabilidade na análise de parâmetros fornecidos pela eletromiografia de superfície (EMGs. MÉTODOS: trata-se de um estudo descritivo do software de análise desenvolvido para analisar parâmetros obtidos na eletromiografia de superfície de músculos envolvidos na deglutição. Este software foi escrito em um ambiente de desenvolvimento utilizado por pesquisadores do mundo todo, de fácil acessibilidade e programação: o SCILAB. RESULTADOS: esta ferramenta se mostrou eficaz para a análise e transferência de dados nos registros curtos, contendo em média 10s de duração, porém para registros mais longos com duração maior que 20s apresentou falhas que não prejudicaram o cálculo após algumas tentativas. CONCLUSÃO: apesar das dificuldades, O EMG BioanalyzerBR possibilitou a realização das marcações canal por canal e quantas marcações fossem necessárias de forma simultânea,e desta forma a tabulação dos dados ficou mais rápida e com margem de falhas humanas reduzidas, porém com necessidade de aprimoramentos para a versão 2.0.PURPOSE: to describe the construction phases of EMG BioanalyzerBR (version 1.0 and demonstrate its applicability in analyzing parameters provided by surface electromyography (EMG. METHOD: it is a descriptive analysis software developed in order to analyze the parameters obtained in surface electromyography of muscles involved in swallowing. This software was written in a development environment used by worldwide researchers, with easy accessibility and programming: Scilab. RESULTS: this tool has proved effective for analyzing transferring short data records, having on average 10 seconds duration, but for with longest periods above 20s there were some failures that did not harm the calculation after a few tries. CONCLUSION: despite the difficulties, EMG BioanalyzerBR fostered the development of channel

  13. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    Science.gov (United States)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  14. Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry

    Science.gov (United States)

    Dong, Wentao; Zhu, Chen; Hu, Wei; Xiao, Lin; Huang, Yong'an

    2018-01-01

    Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces (HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography (sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation (such as >30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger, back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely. Project supported by the National Natural Science Foundation of China (Nos. 51635007, 91323303).

  15. Discrete vs. Continuous Mapping of Facial Electromyography for Human-Machine-Interface Control: Performance and Training Effects

    Science.gov (United States)

    Cler, Meredith J.; Stepp, Cara E.

    2015-01-01

    Individuals with high spinal cord injuries are unable to operate a keyboard and mouse with their hands. In this experiment, we compared two systems using surface electromyography (sEMG) recorded from facial muscles to control an onscreen keyboard to type five-letter words. Both systems used five sEMG sensors to capture muscle activity during five distinct facial gestures that were mapped to five cursor commands: move left, move right, move up, move down, and “click”. One system used a discrete movement and feedback algorithm in which the user produced one quick facial gesture, causing a corresponding discrete movement to an adjacent letter. The other system was continuously updated and allowed the user to control the cursor’s velocity by relative activation between different sEMG channels. Participants were trained on one system for four sessions on consecutive days, followed by one crossover session on the untrained system. Information transfer rates (ITRs) were high for both systems compared to other potential input modalities, both initially and with training (Session 1: 62.1 bits/min, Session 4: 105.1 bits/min). Users of the continuous system showed significantly higher ITRs than the discrete users. Future development will focus on improvements to both systems, which may offer differential advantages for users with various motor impairments. PMID:25616053

  16. The risk of hematoma following extensive electromyography of the lumbar paraspinal muscles

    Science.gov (United States)

    London, Zachary; Quint, Douglas J.; Haig, Andrew J.; Yamakawa, Karen S. J.

    2012-01-01

    Introduction The purpose of this study is to provide a controlled trial looking at the risk of paraspinal hematoma formation following extensive paraspinal muscle electromyography. Methods 54 subjects ages 55-80 underwent MRI of the lumbar spine before or shortly after electromyography using the paraspinal mapping technique. A neuroradiologist, blinded to the temporal relationship between the EMG and MRI, reviewed the MRIs to look for hematomas in or around the paraspinal muscles. Results Two MRIs demonstrated definite paraspinal hematomas, while 10 were found to have possible hematomas. All hematomas were hematoma and either the timing of the EMG or the use of aspirin or other non-steroidal anti-inflammatory drugs. Discussion Paraspinal electromyography can be considered safe in the general population and those taking non-steroidal anti-inflammatory drugs. PMID:22644875

  17. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects.

    Science.gov (United States)

    Cao, Liu; Wang, Ying; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Zheng, Dingchang

    2017-01-01

    The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF) magnetic stimulation on surface electromyography (SEMG) signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body) with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects). The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject's deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS), median frequency (MDF), and sample entropy (SampEn), were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant ( p 0.05). In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p < 0.001) and MDF and SampEn were significantly smaller (all p < 0.001).

  18. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Liu Cao

    2017-01-01

    Full Text Available The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF magnetic stimulation on surface electromyography (SEMG signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject’s deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS, median frequency (MDF, and sample entropy (SampEn, were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant (p0.05. In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p<0.001 and MDF and SampEn were significantly smaller (all p<0.001.

  19. Muscle glycogen reduction in man: relationship between surface EMG activity and oxygen uptake kinetics during heavy exercise.

    Science.gov (United States)

    Osborne, Mark A; Schneider, Donald A

    2006-01-01

    The purpose of this study was to determine whether muscle glycogen reduction prior to exercise would alter muscle fibre recruitment pattern and change either on-transient O2 uptake (VO2) kinetics or the VO2 slow component. Eight recreational cyclists (VO2peak, 55.6 +/- 1.3 ml kg (-1) min(-1)) were studied during 8 min of heavy constant-load cycling performed under control conditions (CON) and under conditions of reduced type I muscle glycogen content (GR). VO2 was measured breath-by-breath for the determination of VO2 kinetics using a double-exponential model with independent time delays. VO2 was higher in the GR trial compared to the CON trial as a result of augmented phase I and II amplitudes, with no difference between trials in the phase II time constant or the magnitude of the slow component. The mean power frequency (MPF) of electromyography activity for the vastus medialis increased over time during both trials, with a greater rate of increase observed in the GR trial compared to the CON trial. The results suggest that the recruitment of additional type II motor units contributed to the slow component in both trials. An increase in fat metabolism and augmented type II motor unit recruitment contributed to the higher VO2 in the GR trial. However, the greater rate of increase in the recruitment of type II motor units in the GR trial may not have been of sufficient magnitude to further elevate the slow component when VO2 was already high and approaching VO2peak .

  20. Pathological tremor prediction using surface EMG and acceleration: potential use in “ON-OFF” demand driven deep brain stimulator design

    Science.gov (United States)

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Metman, Leo Verhagen; Corcos, Daniel M.

    2013-01-01

    Objective We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and Essential tremor (ET). Approach The tremor prediction algorithm uses a set of spectral (fourier and wavelet) and non-linear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle as well as the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage. PMID:23658233

  1. A computational model to investigate the effect of pennation angle on surface electromyogram of Tibialis Anterior.

    Directory of Open Access Journals (Sweden)

    Diptasree Maitra Ghosh

    Full Text Available This study has described and experimentally validated the differential electrodes surface electromyography (sEMG model for tibialis anterior muscles during isometric contraction. This model has investigated the effect of pennation angle on the simulated sEMG signal. The results show that there is no significant effect of pennation angle in the range 0° to 20° to the single fibre action potential shape recorded on the skin surface. However, the changes with respect to pennation angle are observed in sEMG amplitude, frequency and fractal dimension. It is also observed that at different levels of muscle contractions there is similarity in the relationships with Root Mean Square, Median Frequency, and Fractal Dimension of the recorded and simulated sEMG signals.

  2. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.

    Science.gov (United States)

    Ngeo, Jimson G; Tamei, Tomoya; Shibata, Tomohiro

    2014-08-14

    Surface electromyography (EMG) signals are often used in many robot and rehabilitation applications because these reflect motor intentions of users very well. However, very few studies have focused on the accurate and proportional control of the human hand using EMG signals. Many have focused on discrete gesture classification and some have encountered inherent problems such as electro-mechanical delays (EMD). Here, we present a new method for estimating simultaneous and multiple finger kinematics from multi-channel surface EMG signals. In this study, surface EMG signals from the forearm and finger kinematic data were extracted from ten able-bodied subjects while they were tasked to do individual and simultaneous multiple finger flexion and extension movements in free space. Instead of using traditional time-domain features of EMG, an EMG-to-Muscle Activation model that parameterizes EMD was used and shown to give better estimation performance. A fast feed forward artificial neural network (ANN) and a nonparametric Gaussian Process (GP) regressor were both used and evaluated to estimate complex finger kinematics, with the latter rarely used in the other related literature. The estimation accuracies, in terms of mean correlation coefficient, were 0.85 ± 0.07, 0.78 ± 0.06 and 0.73 ± 0.04 for the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and the distal interphalangeal (DIP) finger joint DOFs, respectively. The mean root-mean-square error in each individual DOF ranged from 5 to 15%. We show that estimation improved using the proposed muscle activation inputs compared to other features, and that using GP regression gave better estimation results when using fewer training samples. The proposed method provides a viable means of capturing the general trend of finger movements and shows a good way of estimating finger joint kinematics using a muscle activation model that parameterizes EMD. The results from this study demonstrates a potential control

  3. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke.

    Science.gov (United States)

    Stein, Joel; Narendran, Kailas; McBean, John; Krebs, Kathryn; Hughes, Richard

    2007-04-01

    Robot-assisted exercise shows promise as a means of providing exercise therapy for weakness that results from stroke or other neurological conditions. Exoskeletal or "wearable" robots can, in principle, provide therapeutic exercise and/or function as powered orthoses to help compensate for chronic weakness. We describe a novel electromyography (EMG)-controlled exoskeletal robotic brace for the elbow (the active joint brace) and the results of a pilot study conducted using this brace for exercise training in individuals with chronic hemiparesis after stroke. Eight stroke survivors with severe chronic hemiparesis were enrolled in this pilot study. One subject withdrew from the study because of scheduling conflicts. A second subject was unable to participate in the training protocol because of insufficient surface EMG activity to control the active joint brace. The six remaining subjects each underwent 18 hrs of exercise training using the device for a period of 6 wks. Outcome measures included the upper-extremity component of the Fugl-Meyer scale and the modified Ashworth scale of muscle hypertonicity. Analysis revealed that the mean upper-extremity component of the Fugl-Meyer scale increased from 15.5 (SD 3.88) to 19 (SD 3.95) (P = 0.04) at the conclusion of training for the six subjects who completed training. Combined (summated) modified Ashworth scale for the elbow flexors and extensors improved from 4.67 (+/-1.2 SD) to 2.33 (+/-0.653 SD) (P = 0.009) and improved for the entire upper limb as well. All subjects tolerated the device, and no complications occurred. EMG-controlled powered elbow orthoses can be successfully controlled by severely impaired hemiparetic stroke survivors. This technique shows promise as a new modality for assisted exercise training after stroke.

  4. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array.

    Science.gov (United States)

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping

    2017-11-01

    This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  5. Electromyography and the study of sports movements: a review.

    Science.gov (United States)

    Clarys, J P; Cabri, J

    1993-10-01

    Within electromyography (EMG), a particular specialty has been developed wherein the aim is to use EMG for the study of muscular function and co-ordination. This area of research is usually called kinesiological EMG. The general aims of kinesiological EMG are to analyse the function and co-ordination of muscles in different movements and postures, in healthy subjects as well as in the disabled, in skilled actions as well as during training, in humans as well as in animals, under laboratory conditions as well as during daily or vocational activities. This is often done by a combination of electromyographical and kinesiological or biomechanical measurement techniques. Because there are over 400 skeletal muscles in the human body and both irregular and complex involvement of the muscles may occur in neuromuscular diseases and in voluntary occupational or sports movements, it is impossible to sample all of the muscles of the entire body during the performance of complex motor skills. In addition, the measurement of kinesiological EMG in sport and specific field circumstances, such as the track and/or soccer field, the alpine ski slope, the swimming pool and the ice rink, demands a specific technological and methodological approach, adaptable to both the field and the sport circumstances. Sport movement techniques and skills, training approaches and methods, ergonomic verification of the human-machine interaction have, amongst others, a highly specialized muscular activity in common. The knowledge of such muscular action in all its aspects, its evaluation and its feedback should allow for the optimization of movement, of sports materials, of training possibilities and, in the end, of sports performance. Drawing conclusions from a review of the EMG research of 32 sports, covering over 100 different complex skills, including methodological approaches, is an impossible task. We have attempted to set standards concerning the EMG methodology at the beginning of this review

  6. An ICA-EBM-Based sEMG Classifier for Recognizing Lower Limb Movements in Individuals With and Without Knee Pathology.

    Science.gov (United States)

    Naik, Ganesh R; Selvan, S Easter; Arjunan, Sridhar P; Acharyya, Amit; Kumar, Dinesh K; Ramanujam, Arvind; Nguyen, Hung T

    2018-03-01

    Surface electromyography (sEMG) data acquired during lower limb movements has the potential for investigating knee pathology. Nevertheless, a major challenge encountered with sEMG signals generated by lower limb movements is the intersubject variability, because the signals recorded from the leg or thigh muscles are contingent on the characteristics of a subject such as gait activity and muscle structure. In order to cope with this difficulty, we have designed a three-step classification scheme. First, the multichannel sEMG is decomposed into activities of the underlying sources by means of independent component analysis via entropy bound minimization. Next, a set of time-domain features, which would best discriminate various movements, are extracted from the source estimates. Finally, the feature selection is performed with the help of the Fisher score and a scree-plot-based statistical technique, prior to feeding the dimension-reduced features to the linear discriminant analysis. The investigation involves 11 healthy subjects and 11 individuals with knee pathology performing three different lower limb movements, namely, walking, sitting, and standing, which yielded an average classification accuracy of 96.1% and 86.2%, respectively. While the outcome of this study per se is very encouraging, with suitable improvement, the clinical application of such an sEMG-based pattern recognition system that distinguishes healthy and knee pathological subjects would be an attractive consequence.

  7. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

    Science.gov (United States)

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140

  8. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    Science.gov (United States)

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  9. The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks.

    Science.gov (United States)

    Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S

    2017-07-01

    Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

  10. Multichannel noninvasive human-machine interface via stretchable µm thick sEMG patches for robot manipulation

    Science.gov (United States)

    Zhou, Ying; Wang, Youhua; Liu, Runfeng; Xiao, Lin; Zhang, Qin; Huang, YongAn

    2018-01-01

    Epidermal electronics (e-skin) emerging in recent years offer the opportunity to noninvasively and wearably extract biosignals from human bodies. The conventional processes of e-skin based on standard microelectronic fabrication processes and a variety of transfer printing methods, nevertheless, unquestionably constrains the size of the devices, posing a serious challenge to collecting signals via skin, the largest organ in the human body. Herein we propose a multichannel noninvasive human-machine interface (HMI) using stretchable surface electromyography (sEMG) patches to realize a robot hand mimicking human gestures. Time-efficient processes are first developed to manufacture µm thick large-scale stretchable devices. With micron thickness, the stretchable µm thick sEMG patches show excellent conformability with human skin and consequently comparable electrical performance with conventional gel electrodes. Combined with the large-scale size, the multichannel noninvasive HMI via stretchable µm thick sEMG patches successfully manipulates the robot hand with eight different gestures, whose precision is as high as conventional gel electrodes array.

  11. Wavelet transform analysis of electromyography kung fu strikes data.

    Science.gov (United States)

    Neto, Osmar Pinto; Marzullo, Ana Carolina de Miranda

    2009-11-01

    In martial arts and contact sports strikes are performed at near maximum speeds. For that reason, electromyography (EMG) analysis of such movements is non-trivial. This paper has three main goals: firstly, to investigate the differences in the EMG activity of muscles during strikes performed with and without impacts; secondly, to assess the advantages of using Sum of Significant Power (SSP) values instead of root mean square (rms) values when analyzing EMG data; and lastly to introduce a new method of calculating median frequency values using wavelet transforms (WMDF). EMG data of the deltoid anterior (DA), triceps brachii (TB) and brachioradialis (BR) muscles were collected from eight Kung Fu practitioners during strikes performed with and without impacts. SSP results indicated significant higher muscle activity (p = 0.023) for the strikes with impact. WMDF results, on the other hand, indicated significant lower values (p = 0. 007) for the strikes with impact. SSP results presented higher sensitivity than rms to quantify important signal differences and, at the same time, presented lower inter-subject coefficient of variations. The result of increase in SSP values and decrease in WMDF may suggest better synchronization of motor units for the strikes with impact performed by the experienced Kung Fu practitioners. Key PointsThe results show higher muscle activity and lower electromyography median frequencies for strikes with impact compared to strikes without.SSP results presented higher sensitivity and lower inter-subject coefficient of variations than rms results.Kung Fu palm strikes with impact may present better motor units' synchronization than strikes without.

  12. WAVELET TRANSFORM ANALYSIS OF ELECTROMYOGRAPHY KUNG FU STRIKES DATA

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Miranda Marzullo

    2009-11-01

    Full Text Available In martial arts and contact sports strikes are performed at near maximum speeds. For that reason, electromyography (EMG analysis of such movements is non-trivial. This paper has three main goals: firstly, to investigate the differences in the EMG activity of muscles during strikes performed with and without impacts; secondly, to assess the advantages of using Sum of Significant Power (SSP values instead of root mean square (rms values when analyzing EMG data; and lastly to introduce a new method of calculating median frequency values using wavelet transforms (WMDF. EMG data of the deltoid anterior (DA, triceps brachii (TB and brachioradialis (BR muscles were collected from eight Kung Fu practitioners during strikes performed with and without impacts. SSP results indicated significant higher muscle activity (p = 0.023 for the strikes with impact. WMDF results, on the other hand, indicated significant lower values (p = 0. 007 for the strikes with impact. SSP results presented higher sensitivity than rms to quantify important signal differences and, at the same time, presented lower inter-subject coefficient of variations. The result of increase in SSP values and decrease in WMDF may suggest better synchronization of motor units for the strikes with impact performed by the experienced Kung Fu practitioners

  13. Utilization and yield of nerve conduction studies and electromyography in older adults

    LENUS (Irish Health Repository)

    Mello, S

    2016-02-01

    Older adults are at increased risk of both central and peripheral neurological disorders. Impaired nerve and muscle deficits contribute to morbidity and reduced quality of life. Our aim was to define the utilization and yield of nerve conduction studies (NCS) and electromyography (EMG) in older adults. We reviewed NCS and EMG records for all patients older than age 65 in the year 2012. Of 1,530 NCS and EMGs performed, 352 (23%) were in patients older than 65 (mean age 73.7, 52% male). Two hundred and eighty-eight (83.7%) of NCS were abnormal as were 102 (71.8%) of EMGs. The likelihood of having an abnormal test result increased with increasing age. The most common diagnosis was peripheral neuropathy 231 (65.4%). The incidence of peripheral neuropathy is particularly high in this age group, and detection is vital to prevent morbidity and improve quality of life.

  14. Masticatory Muscle Sleep Background EMG Activity is Elevated in Myofascial TMD Patients

    Science.gov (United States)

    Raphael, Karen G.; Janal, Malvin N.; Sirois, David A.; Dubrovsky, Boris; Wigren, Pia E.; Klausner, Jack J.; Krieger, Ana C.; Lavigne, Gilles J.

    2013-01-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n=124) with a demographically matched control group without TMD (n=46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artifacts were removed. Results indicated that median background EMG during these non SB-event periods was significantly higher (pcases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0–10 numerical scale) on post sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. PMID:24237356

  15. Detection of driving fatigue by using noncontact EMG and ECG signals measurement system.

    Science.gov (United States)

    Fu, Rongrong; Wang, Hong

    2014-05-01

    Driver fatigue can be detected by constructing a discriminant mode using some features obtained from physiological signals. There exist two major challenges of this kind of methods. One is how to collect physiological signals from subjects while they are driving without any interruption. The other is to find features of physiological signals that are of corresponding change with the loss of attention caused by driver fatigue. Driving fatigue is detected based on the study of surface electromyography (EMG) and electrocardiograph (ECG) during the driving period. The noncontact data acquisition system was used to collect physiological signals from the biceps femoris of each subject to tackle the first challenge. Fast independent component analysis (FastICA) and digital filter were utilized to process the original signals. Based on the statistical analysis results given by Kolmogorov-Smirnov Z test, the peak factor of EMG (p fatigue of drivers. The discriminant criterion of fatigue was obtained from the training samples by using Mahalanobis distance, and then the average classification accuracy was given by 10-fold cross-validation. The results showed that the method proposed in this paper can give well performance in distinguishing the normal state and fatigue state. The noncontact, onboard vehicle drivers' fatigue detection system was developed to reduce fatigue-related risks.

  16. A comparison of two gluteus maximus EMG maximum voluntary isometric contraction positions

    Directory of Open Access Journals (Sweden)

    Bret Contreras

    2015-09-01

    Full Text Available Background. The purpose of this study was to compare the peak electromyography (EMG of the most commonly-used position in the literature, the prone bent-leg (90° hip extension against manual resistance applied to the distal thigh (PRONE, to a novel position, the standing glute squeeze (SQUEEZE.Methods. Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg, before three maximum voluntary isometric contraction (MVIC trials for each position were obtained in a randomized, counterbalanced fashion.Results. No statistically significant (p < 0.05 differences were observed between PRONE (upper: 91.94%; lower: 94.52% and SQUEEZE (upper: 92.04%; lower: 85.12% for both the upper and lower gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects.Conclusions. In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples.

  17. Effect of a Short Time Concentric Versus Eccentric Training Program on Electromyography Activity and Peak Torque of Quadriceps

    DEFF Research Database (Denmark)

    Carvalho, Alberto; Caserotti, Paolo; Carvalho, C.

    2014-01-01

    The purpose of this study was to examine the effect of an 8-week concentric (CON) versus eccentric (ECC) isokinetic training program on the electromyography (EMG) signal amplitude of vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF). Also, the isometric (ISO) and dynamic maximum...

  18. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.

    Science.gov (United States)

    Lobo-Prat, Joan; Nizamis, Kostas; Janssen, Mariska M H P; Keemink, Arvid Q L; Veltink, Peter H; Koopman, Bart F J M; Stienen, Arno H A

    2017-07-12

    Adults with Duchenne muscular dystrophy (DMD) can benefit from devices that actively support their arm function. A critical component of such devices is the control interface as it is responsible for the human-machine interaction. Our previous work indicated that surface electromyography (sEMG) and force-based control with active gravity and joint-stiffness compensation were feasible solutions for the support of elbow movements (one degree of freedom). In this paper, we extend the evaluation of sEMG- and force-based control interfaces to simultaneous and proportional control of planar arm movements (two degrees of freedom). Three men with DMD (18-23 years-old) with different levels of arm function (i.e. Brooke scores of 4, 5 and 6) performed a series of line-tracing tasks over a tabletop surface using an experimental active arm support. The arm movements were controlled using three control methods: sEMG-based control, force-based control with stiffness compensation (FSC), and force-based control with no compensation (FNC). The movement performance was evaluated in terms of percentage of task completion, tracing error, smoothness and speed. For subject S1 (Brooke 4) FNC was the preferred method and performed better than FSC and sEMG. FNC was not usable for subject S2 (Brooke 5) and S3 (Brooke 6). Subject S2 presented significantly lower movement speed with sEMG than with FSC, yet he preferred sEMG since FSC was perceived to be too fatiguing. Subject S3 could not successfully use neither of the two force-based control methods, while with sEMG he could reach almost his entire workspace. Movement performance and subjective preference of the three control methods differed with the level of arm function of the participants. Our results indicate that all three control methods have to be considered in real applications, as they present complementary advantages and disadvantages. The fact that the two weaker subjects (S2 and S3) experienced the force-based control

  19. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.

    Science.gov (United States)

    Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit

    2017-07-01

    Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.

  20. Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement

    Directory of Open Access Journals (Sweden)

    Shuxiang Guo

    2015-04-01

    Full Text Available The surface electromyography (sEMG technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS, Detrended Fluctuation Analysis (DFA, Weight Peaks (WP, and Muscular Model (MM and two classifiers (Neural Networks (NN and Support Vector Machine (SVM, for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7% during the training process while SVM performed better in real-time experiments (85.9%. For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7% while MM performed the best during real-time tests (94.3%. The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement.

  1. Eletromiografia de superfície no diagnóstico da dominância lateral em crianças: aspectos psicomotores Surface electromyography in diagnosis of lateral dominance in children: psychomotor aspects

    Directory of Open Access Journals (Sweden)

    Ceme Ferreira Jordy

    1995-09-01

    Full Text Available A dominância lateral foi verificada pelo eletromiograma de superfície em 100 crianças neurologicamente normais. Foram usados estímulos verbais durante os registros eletromiográficos. Em comparação com o diagnóstico clínico, a eletromiografia se revelou mais precisa, excluindo influências subjetivas nos resultados. Destrismo foi diagnosticado em 90 pacientes, canhotismo em 3 e dominância indefinida em 7. Mecanismos de ordem psicomotora são sugeridos para justificar as respostas motoras provocadas por estímulos verbais com conteúdo afetivo.Surface electromyography was used to verify the lateral dominance in 100 six to fourteen years old normal children. Electromyographic records were obtained during verbal stimulation. Dexterity was found in 90, sinistrality in 3 and indefinite dominance in 7 patients. Comparing with results from clinical examination, the electromyography seems more accurate and easy to perform. The responses obtained after verbal stimulations were attributed to a psychomotor phenomenon. Mechanisms involved in the production of muscle contractions after verbal stimulation, were not proved. Pharmacologic action of cathecolamines on the central motor neural subsystems is advanced.

  2. Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity

    Directory of Open Access Journals (Sweden)

    Minjae Kim

    2015-07-01

    Full Text Available Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode.

  3. Intelligent Noise Removal from EMG Signal Using Focused Time-Lagged Recurrent Neural Network

    Directory of Open Access Journals (Sweden)

    S. N. Kale

    2009-01-01

    Full Text Available Electromyography (EMG signals can be used for clinical/biomedical application and modern human computer interaction. EMG signals acquire noise while traveling through tissue, inherent noise in electronics equipment, ambient noise, and so forth. ANN approach is studied for reduction of noise in EMG signal. In this paper, it is shown that Focused Time-Lagged Recurrent Neural Network (FTLRNN can elegantly solve to reduce the noise from EMG signal. After rigorous computer simulations, authors developed an optimal FTLRNN model, which removes the noise from the EMG signal. Results show that the proposed optimal FTLRNN model has an MSE (Mean Square Error as low as 0.000067 and 0.000048, correlation coefficient as high as 0.99950 and 0.99939 for noise signal and EMG signal, respectively, when validated on the test dataset. It is also noticed that the output of the estimated FTLRNN model closely follows the real one. This network is indeed robust as EMG signal tolerates the noise variance from 0.1 to 0.4 for uniform noise and 0.30 for Gaussian noise. It is clear that the training of the network is independent of specific partitioning of dataset. It is seen that the performance of the proposed FTLRNN model clearly outperforms the best Multilayer perceptron (MLP and Radial Basis Function NN (RBF models. The simple NN model such as the FTLRNN with single-hidden layer can be employed to remove noise from EMG signal.

  4. Effect of a pelvic belt on EMG activity during manual load lifting

    Directory of Open Access Journals (Sweden)

    Marcelo Pinto Pereira

    2009-04-01

    Full Text Available Manual lifting (ML capacity is still a matter of concern for industry administrators and electromyography (EMG seems to be a good alternative for the evaluation of muscles involved in this task. However, the reliability of these measures is very important. Thus, the objective of this study was to evaluate the influence of a pelvic belt on EMG activity of the erector spinus (ES and rectus femoralis (RF muscles during ML and during maximal voluntary contractions (MVC of trunk extension performed before (baseline and after ML. In addition, the variabilityin the EMG signal normalized by the following three different methods was evaluated: peak EMG activity, mean EMG activity, and EMG activity obtained during MVC. Eight volunteers performed ML of 15% and 25% of their body weight for 1 minute in the presence or absence of a pelvic belt. The coefficient of variation (CV of the EMG signal obtained for the ES and RF muscles was calculated during ML. Load cell traction values and the electromyographic variables RMS, median frequency, mean power frequency and total power of the ES muscle were obtained during MVC. The results showed lower CV (smaller variability when the EMG signal was normalized by peak activity, with this method thus being preferable. During MVC, only the load cell traction value differed from baseline after ML of 25% body weight without the pelvic belt (p=0.035, a finding suggesting rapid recovery of ES muscle after ML for 1 minute.

  5. Is there any change in pelvic floor electromyography during the first 6 months after radical retropubic prostatectomy?

    Science.gov (United States)

    Hacad, Claudia R; Glazer, Howard I; Zambon, João Paulo C; Burti, Juliana S; Almeida, Fernando G

    2015-03-01

    The aim of this study is to determine electromyographic pelvic floor muscles activity during the first 6 months post RRP and its relationship to urinary continence. Thirty-eight men (mean age of 63.1 ± 5.7 year) with prostate cancer scheduled for open radical retropubic prostatectomy were evaluated. pelvic radiotherapy, systemic or neurologic diseases, pre-operative International Prostate Symptoms Score (IPSS) >7 and OABq ≥8. Surface electromyography (sEMG) evaluation, IPSS, Urinary Distress Inventory, Incontinence Impact Questionnaire, and Overactive Bladder Questionnaire-short form were applied before and at 1, 3, and 6 months after RRP. Six months after surgery, 18 men (47.4 %) presented urinary leakage. The sEMG evaluations within the first 6 months presented changes in fast contraction amplitude (p = 0.006), rest amplitude after fast contraction (p = 0.04), 10 s sustained contraction mean amplitude (p = 0.024) and final rest amplitude (p = 0.011). We observed that continent and incontinent patients as a group presented electromyographic changes during the first 6 months after radical prostatectomy that could be justified by the denervation/reinnervation of the external urethral sphincter. This finding is consistent with the adaptation of the pelvic floor musculature to the new urethral sphincter condition following surgery.

  6. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1992-01-01

    changes in human muscle. The aim of this study was to develop a method by which EMG and NMR spectroscopy measurements could be performed simultaneously. All measurements were performed in a whole body 1.5 Tesla NMR scanner. A calf muscle ergometer, designed for use in a whole body NMR scanner, was used....... The subject had the left foot strapped to the ergometer. The anterior tibial EMG was recorded by bipolar surface electrodes. A surface coil was strapped to the anterior tibial muscle next to the EMG electrodes. Simultaneous measurements of surface EMG and surface coil 31P NMR spectroscopy were performed...

  7. An implementation of movement classification for prosthesis control using custom-made EMG system

    Directory of Open Access Journals (Sweden)

    Mejić Luka

    2017-01-01

    Full Text Available Electromyography (EMG is a well known technique used for recording electrical activity produced by human muscles. In the last few decades, EMG signals are used as a control input for prosthetic hands. There are several multifunctional myoelectric prosthetic hands for amputees on the market, but so forth, none of these devices permits the natural control of more than two degrees of freedom. In this paper we present our implementation of the pattern classification using custom made components (electrodes and an embedded EMG amplifier. The components were evaluated in offline and online tests, in able bodied as well as amputee subjects. This type of control is based on computing the time domain features of the EMG signals recorded from the forearm and using these features as input for a Linear Discriminant Analysis (LDA classifier estimating the intention of the prosthetic user. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III - 41007

  8. Effects of load on good morning kinematics and EMG activity

    Directory of Open Access Journals (Sweden)

    Andrew David Vigotsky

    2015-01-01

    Full Text Available Many strength and conditioning coaches utilize the good morning (GM to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

  9. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Directory of Open Access Journals (Sweden)

    E. F. Shair

    2017-01-01

    Full Text Available Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs, where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG signal is used to monitor the workers’ muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird’s eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.

  10. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Science.gov (United States)

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  11. Are chronic neck pain, scapular dyskinesis and altered scapulothoracic muscle activity interrelated?: A case-control study with surface and fine-wire EMG.

    Science.gov (United States)

    Castelein, Birgit; Cools, Ann; Parlevliet, Thierry; Cagnie, Barbara

    2016-12-01

    The function of the scapula is important in normal neck function and might be disturbed in patients with neck pain. The surrounding muscular system is important for the function of the scapula. To date, it is not clear if patients with idiopathic neck pain show altered activity of these scapulothoracic muscles. Therefore, the objective of this study was to investigate differences in deeper and superficial lying scapulothoracic muscle activity between patients with idiopathic neck pain and healthy controls during arm elevation, and to identify the influence of scapular dyskinesis on muscle activity. Scapular dyskinesis was rated with the yes/no method. The deeper lying (Levator Scapulae, Pectoralis Minor (Pm) and Rhomboid major) and superficial lying (Trapezius and Serratus Anterior) scapulothoracic muscles' activity was investigated with fine-wire and surface EMG, respectively, in 19 female subjects with idiopathic neck pain (age 28.3±10.1years, average duration of neck pain 45.6±36.3months) and 19 female healthy control subjects (age 29.3±11.7years) while performing scaption and towel wall slide. Possible interactions or differences between subject groups, scapular dyskinesis groups or phases of the task were studied with a linear mixed model. Higher Pm activity during the towel wallslide (p=0.024, mean difference 8.8±3.3% MVIC) was shown in patients with idiopathic neck pain in comparison with healthy controls. For the MT, a significant group∗dyskinesis interaction effect was found during scaption which revealed that patients with neck pain and scapular dyskinesis showed lower Middle Trapezius (MT) activity in comparison with healthy controls with scapular dyskinesis (p=0.029, mean difference 5.1±2.2% MVIC). In the presence of idiopathic neck pain, higher Pm activity during the towel wallslide was found. Patients with neck pain and scapular dyskinesis showed lower MT activity in comparison with healthy controls with scapular dyskinesis during scaption

  12. Recognition of Handwriting from Electromyography

    Science.gov (United States)

    Linderman, Michael; Lebedev, Mikhail A.; Erlichman, Joseph S.

    2009-01-01

    Handwriting – one of the most important developments in human culture – is also a methodological tool in several scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time, a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated into both algorithm-generated handwriting traces and font characters using decoding algorithms. Our results demonstrate the feasibility of recreating handwriting solely from EMG signals – the finding that can be utilized in computer peripherals and myoelectric prosthetic devices. Moreover, this approach may provide a rapid and sensitive method for diagnosing a variety of neurogenerative diseases before other symptoms become clear. PMID:19707562

  13. EMG biofeedback training in adult attention-deficit/hyperactivity disorder: An active (control) training?

    Science.gov (United States)

    Barth, Beatrix; Mayer, Kerstin; Strehl, Ute; Fallgatter, Andreas J; Ehlis, Ann-Christine

    2017-06-30

    The present study aimed at revealing neurophysiological effects induced by electromyography (EMG) based biofeedback, considered as a semi-active control condition in neurofeedback studies, in adult attention-deficit/hyperactivity disorder (ADHD) patients. 20 adult ADHD patients trained their muscle activity in the left and right supraspinatus muscle over the course of 30 EMG biofeedback sessions. Changes induced by the EMG feedback were evaluated at a clinical and neurophysiological level; additionally, the relation between changes in EEG activity recorded at the vertex over the training course and changes of symptom severity over the treatment course were assessed in order to investigate the mechanisms underlying clinical effects of EMG biofeedback. Participants showed significant behavioral improvements on a self-rating scale. There was a significant increase in alpha power, but no significant changes in the delta frequency range; changes in the theta and beta frequency range were not significant after adjustment for multiple comparisons. No statistically significant correlation was found between changes in EEG frequency bands and changes in ADHD symptoms. The current results assessed by means of a single-electrode EEG constitute a starting point regarding a clearer understanding of mechanisms underlying clinical effects of EMG biofeedback. Although we did not reveal systematic effects induced by EMG feedback on brain activity it remains an open question whether EMG biofeedback induces changes in brain regions or parameters we did not gather in the present study (e.g. motor cortex). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Novel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2010-05-01

    Full Text Available Surface Electromyography (sEMG activity of the biceps muscle was recorded from ten subjects performing isometric contraction until fatigue. A novel feature (1D spectro_std was used to extract the feature that modeled three classes of fatigue, which enabled the prediction and detection of fatigue. Initial results of class separation were encouraging, discriminating between the three classes of fatigue, a longitudinal classification on Non-Fatigue and Transition-to-Fatigue shows 81.58% correct classification with accuracy 0.74 of correct predictions while the longitudinal classification on Transition-to-Fatigue and Fatigue showed lower average correct classification of 66.51% with a positive classification accuracy 0.73 of correct prediction. Comparison of the 1D spectro_std with other sEMG fatigue features on the same dataset show a significant improvement in classification, where results show a significant 20.58% (p < 0.01 improvement when using the 1D spectro_std to classify Non-Fatigue and Transition-to-Fatigue. In classifying Transition-to-Fatigue and Fatigue results also show a significant improvement over the other features giving 8.14% (p < 0.05 on average of all compared features.

  15. A novel method for EMG decomposition based on matched filters

    Directory of Open Access Journals (Sweden)

    Ailton Luiz Dias Siqueira Júnior

    Full Text Available Introduction Decomposition of electromyography (EMG signals into the constituent motor unit action potentials (MUAPs can allow for deeper insights into the underlying processes associated with the neuromuscular system. The vast majority of the methods for EMG decomposition found in the literature depend on complex algorithms and specific instrumentation. As an attempt to contribute to solving these issues, we propose a method based on a bank of matched filters for the decomposition of EMG signals. Methods Four main units comprise our method: a bank of matched filters, a peak detector, a motor unit classifier and an overlapping resolution module. The system’s performance was evaluated with simulated and real EMG data. Classification accuracy was measured by comparing the responses of the system with known data from the simulator and with the annotations of a human expert. Results The results show that decomposition of non-overlapping MUAPs can be achieved with up to 99% accuracy for signals with up to 10 active motor units and a signal-to-noise ratio (SNR of 10 dB. For overlapping MUAPs with up to 10 motor units per signal and a SNR of 20 dB, the technique allows for correct classification of approximately 71% of the MUAPs. The method is capable of processing, decomposing and classifying a 50 ms window of data in less than 5 ms using a standard desktop computer. Conclusion This article contributes to the ongoing research on EMG decomposition by describing a novel technique capable of delivering high rates of success by means of a fast algorithm, suggesting its possible use in future real-time embedded applications, such as myoelectric prostheses control and biofeedback systems.

  16. Power frequency spectrum analysis of surface EMG signals of upper limb muscles during elbow flexion - A comparison between healthy subjects and stroke survivors.

    Science.gov (United States)

    Angelova, Silvija; Ribagin, Simeon; Raikova, Rositsa; Veneva, Ivanka

    2018-02-01

    After a stroke, motor units stop working properly and large, fast-twitch units are more frequently affected. Their impaired functions can be investigated during dynamic tasks using electromyographic (EMG) signal analysis. The aim of this paper is to investigate changes in the parameters of the power/frequency function during elbow flexion between affected, non-affected, and healthy muscles. Fifteen healthy subjects and ten stroke survivors participated in the experiments. Electromyographic data from 6 muscles of the upper limbs during elbow flexion were filtered and normalized to the amplitudes of EMG signals during maximal isometric tasks. The moments when motion started and when the flexion angle reached its maximal value were found. Equal intervals of 0.3407 s were defined between these two moments and one additional interval before the start of the flexion (first one) was supplemented. For each of these intervals the power/frequency function of EMG signals was calculated. The mean (MNF) and median frequencies (MDF), the maximal power (MPw) and the area under the power function (APw) were calculated. MNF was always higher than MDF. A significant decrease in these frequencies was found in only three post-stroke survivors. The frequencies in the first time interval were nearly always the highest among all intervals. The maximal power was nearly zero during first time interval and increased during the next ones. The largest values of MPw and APw were found for the flexor muscles and they increased for the muscles of the affected arm compared to the non-affected one of stroke survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Eletromiografia de superfície para avaliação dos músculos do assoalho pélvico feminino: revisão de literatura Evaluation of female pelvic floor muscles using surface electromyography: literature review

    Directory of Open Access Journals (Sweden)

    Ana Paula Magalhães Resende

    2011-09-01

    Full Text Available A eletromiografia de superfície tem grande importância clínica e de pesquisa para o fisioterapeuta. Apesar de captar a atividade elétrica promovida pelo recrutamento das unidades motoras, há boa correlação entre o número de unidades ativadas e a força muscular. É um dos métodos de maior especificidade na avaliação do assoalho pélvico, embora não haja consenso em relação à sua aplicação. Essa revisão de literatura foi desenvolvida com o objetivo de agrupar as informações sobre o uso da eletromiografia de superfície na avaliação do assoalho pélvico. Foram pesquisados artigos nas bases de dados Medline, PubMed, Lilacs, SciELO e Biblioteca Cochrane, e selecionados os que avaliassem o assoalho pélvico feminino por meio de eletromiografia de superfície. Apesar de sua metodologia ainda carecer de padronização, é um instrumento que deve ser considerado nas pesquisas científicas em nosso meio, pois parece apresentar boa reprodutibilidade e confiabilidade. Pacientes com disfunções do assoalho pélvico possuem alterações no tempo de ativação dos músculos do assoalho pélvico (MAP e músculos abdominais. Quanto à gestação e puerpério, ainda faltam evidências sobre possíveis alterações da ativação elétrica dos MAP nesses períodos.Surface electromyography has clinical and research importance for the physiotherapist. Although capturing electrical activity promoted by recruitment of motor units, there is a good correlation between the number of activated units and muscle strength. This is one of the methods of higher specificity in pelvic floor evaluation, although the lack of consensus regarding its application. The aim of this literature review was to cluster information regarding to the use of surface electromyography in the evaluation of pelvic floor. Papers were searched in Medline, Pubmed Lilacs, SciELO and Cochrane Library. Were selected papers which methods used surface electromyography to evaluate the

  18. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    Science.gov (United States)

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  19. EMG and oxygen uptake responses during slow and fast ramp exercise in humans.

    Science.gov (United States)

    Scheuermann, Barry W; Tripse McConnell, Joyce H; Barstow, Thomas J

    2002-01-01

    This study examined the relationship between muscle recruitment patterns using surface electromyography (EMG) and the excess O(2) uptake (Ex.V(O(2))) that accompanies slow (SR, 8 W min(-1)) but not fast (FR, 64 W min(-1)) ramp increases in work rate (WR) during exercise on a cycle ergometer. Nine subjects (2 females) participated in this study (25 +/- 2 years, +/- S.E.M.). EMG was obtained from the vastus lateralis and medialis and analysed in the time (root mean square, RMS) and frequency (median power frequency, MDPF) domain. Results for each muscle were averaged to provide an overall response and expressed relative to a maximal voluntary contraction (%MVC). Delta.V(O(2))/DeltaWR was calculated for exercise below (S(1)) and above (S(2)) the lactate threshold (LT) using linear regression. The increase in RMS relative to the increase in WR for exercise below the LT (DeltaRMS/DeltaWR-S(1)) was determined using linear regression. Due to non-linearities in RMS above the LT, DeltaRMS/DeltaWR-S(2) is reported as the difference in RMS (DeltaRMS) and the difference in WR (DeltaWR) at end-exercise and the LT. SR was associated with a higher (P exercise is not associated with the recruitment of additional motor units since Ex.V(O(2)) was observed during SR only. Compared to the progressive decrease in MDPF observed during FR, the MDPF remained relatively constant during SR suggesting that either (i) there was no appreciable recruitment of the less efficient type II muscle fibres, at least in addition to those recruited initially at the onset of exercise, or (ii) the decrease in MDPF associated with fatigue was offset by the addition of a higher frequency of type II fibres recruited to replace the fatigued motor units.

  20. Diagnosis of cauda equina abnormalities by using electromyography, discography, and epidurography in dogs

    International Nuclear Information System (INIS)

    Sisson, A.F.; LeCouteur, R.A.; Ingram, J.T.; Park, R.D.; Child, G.

    1992-01-01

    Electromyography (EMG), L7-S1 discography and epidurography were investigated in 15 dogs with clinical signs of cauda equina dysfunction and in 7 control dogs without such clinical signs. Electromyography of paraspinal and pelvic limb muscles was done in 13 of 15 affected dogs. An L7-S1 discogram followed by an epidurogram was performed in all 22 dogs using 20% iopamidol. Results of discograms, epidurograms, and gross necropsy examinations were normal in six of seven control dogs. The one dog in which these studies were abnormal had a mild L7-S1 disc protrusion that did not result in nerve root compression at necropsy. Electromyographic analysis was 100% accurate in predicting the presence or absence of cauda equina disease. None of the results of discograms were falsely negative. Twelve of 15 discograms in clinically affected dogs indicated dorsal disc protrusion, but 2 of these protrusions were found to be noncompressive at surgery (13% error). Abnormal epidurograms occurred in 9 of 15 clinically affected dogs. There was one false positive and two false negatives (20% error). Electromyography was a sensitive screening technique for the presence of cauda equina disease. Discography may be more sensitive for detection of L7-S1 disc protrusion than epidurography. An abnormal radiographic contrast study of the cauda equina may only be useful when combined with an abnormal EMG

  1. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    Science.gov (United States)

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  2. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    Science.gov (United States)

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  3. Electroencephalogram–Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy

    Directory of Open Access Journals (Sweden)

    Yunyuan Gao

    2018-01-01

    Full Text Available The coupling strength between electroencephalogram (EEG and electromyography (EMG signals during motion control reflects the interaction between the cerebral motor cortex and muscles. Therefore, neuromuscular coupling characterization is instructive in assessing motor function. In this study, to overcome the limitation of losing the characteristics of signals in conventional time series symbolization methods, a variable scale symbolic transfer entropy (VS-STE analysis approach was proposed for corticomuscular coupling evaluation. Post-stroke patients (n = 5 and healthy volunteers (n = 7 were recruited and participated in various tasks (left and right hand gripping, elbow bending. The proposed VS-STE was employed to evaluate the corticomuscular coupling strength between the EEG signal measured from the motor cortex and EMG signal measured from the upper limb in both the time-domain and frequency-domain. Results showed a greater strength of the bi-directional (EEG-to-EMG and EMG-to-EEG VS-STE in post-stroke patients compared to healthy controls. In addition, the strongest EEG–EMG coupling strength was observed in the beta frequency band (15–35 Hz during the upper limb movement. The predefined coupling strength of EMG-to-EEG in the affected side of the patient was larger than that of EEG-to-EMG. In conclusion, the results suggested that the corticomuscular coupling is bi-directional, and the proposed VS-STE can be used to quantitatively characterize the non-linear synchronization characteristics and information interaction between the primary motor cortex and muscles.

  4. Electromyography findings of the cricopharyngeus in association with ipsilateral pharyngeal and laryngeal muscles.

    Science.gov (United States)

    Halum, Stacey L; Shemirani, Nima L; Merati, Albert L; Jaradeh, Safwan; Toohill, Robert J

    2006-04-01

    We reviewed a large series of cricopharyngeal (CP) muscle electromyography (EMG) results and compared them with the EMG results from the inferior constrictor (IC), thyroarytenoid, (TA), cricothyroid (CT), and posterior cricoarytenoid (PCA) muscles. We performed a retrospective review of all CP muscle EMG reports from studies performed between January 1996 and June 2003. All of the tested elements from the CP muscle EMG reports were recorded. The EMG results were recorded for the ipsilateral IC, TA, CT, and PCA muscles if they were simultaneously tested. Each muscle result was classified as normal, neurogenic inactive axonal injury (IAI), or neurogenic active axonal injury (AAI), and the muscle findings were compared. A patient chart review was performed to determine a clinical correlation. Fifty-nine patients underwent CP muscle EMG. Eighteen patients had bilateral EMG studies, making a total of 77 CP muscle studies. Nineteen sets of CP muscle results were normal, 43 demonstrated neurogenic IAI, and 15 demonstrated neurogenic AAI. The ipsilateral IC and CP muscles had the same innervation status in 27 of 28 studies (p muscle was studied simultaneously with the CP muscle, 31 of 50 studies had the same innervation status (p = .005). The ipsilateral CT and CP muscles demonstrated the same innervation status in 40 of 50 studies (p muscle findings and between the CP and CT muscle findings were both stronger than the correlation between the CP and TA muscle findings (p muscle findings have the strongest correlation with IC muscle findings, followed by the CT and TA muscles. This outcome does not support theories indicating that the recurrent laryngeal nerve innervates the CP muscle in all cases.

  5. Review: Painless EMG in Children

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadi

    2003-12-01

    Full Text Available Thanks to new techniques in Pediatric Neurology , nowadays we are more able to detect and differentiate different diseases of the nerves and muscles in children . Although these techniques are sometimes more sensitive and specific than EMG in children, but EMG and NCV study has its specific role in pediatric neurology and this is because of more availability and feasibility of these tests in children . One of the main Limitations of EMG techniques especially in pediatric age group is the pain induced by the insertion of needle electrodes into muscle as well as electrical stimulations needed to do NCV and other studies. So, all the experts in the field are trying to find some methods to reduce the pain induced by this technique . I have tried to introduce some of these methods after a brief explanation about pediatric EMG technique.

  6. Electromyography

    Science.gov (United States)

    ... problem affecting the median nerve in the arm) Duchenne muscular dystrophy (inherited disease that involves muscle weakness) Facioscapulohumeral muscular dystrophy (Landouzy-Dejerine; disease of ...

  7. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed.

    Directory of Open Access Journals (Sweden)

    Alberto Mendez-Villanueva

    Full Text Available The physiological equivalents of power output maintenance and recovery during repeated-sprint exercise (RSE remain to be fully elucidated. In an attempt to improve our understanding of the determinants of RSE performance we therefore aimed to determine its recovery following exhaustive exercise (which affected intramuscular and neural factors concomitantly with those of intramuscular concentrations of adenosine triphosphate [ATP], phosphocreatine [PCr] and pH values and electromyography (EMG activity (a proxy for net motor unit activity changes. Eight young men performed 10, 6-s all-out sprints on a cycle ergometer, interspersed with 30 s of recovery, followed, after 6 min of passive recovery, by five 6-s sprints, again interspersed by 30 s of passive recovery. Biopsies of the vastus lateralis were obtained at rest, immediately after the first 10 sprints and after 6 min of recovery. EMG activity of the vastus lateralis was obtained from surface electrodes throughout exercise. Total work (TW, [ATP], [PCr], pH and EMG amplitude decreased significantly throughout the first ten sprints (P<0.05. After 6 min of recovery, TW during sprint 11 recovered to 86.3±7.7% of sprint 1. ATP and PCr were resynthesized to 92.6±6.0% and 85.3±10.3% of the resting value, respectively, but muscle pH and EMG amplitude remained depressed. PCr resynthesis was correlated with TW done in sprint 11 (r = 0.79, P<0.05 and TW done during sprints 11 to 15 (r = 0.67, P<0.05. There was a ∼2-fold greater decrease in the TW/EMG ratio in the last five sprints (sprint 11 to 15 than in the first five sprints (sprint 1 to 5 resulting in a disproportionate decrease in mechanical power (i.e., TW in relation to EMG. Thus, we conclude that the inability to produce power output during repeated sprints is mostly mediated by intramuscular fatigue signals probably related with the control of PCr metabolism.

  8. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.

    Science.gov (United States)

    Akhtar, Aadeel; Aghasadeghi, Navid; Hargrove, Levi; Bretl, Timothy

    2017-08-01

    In this paper, we quantify the extent to which shoulder orientation, upper-arm electromyography (EMG), and forearm EMG are predictors of distal arm joint angles during reaching in eight subjects without disability as well as three subjects with a unilateral transhumeral amputation and targeted reinnervation. Prior studies have shown that shoulder orientation and upper-arm EMG, taken separately, are predictors of both elbow flexion/extension and forearm pronation/supination. We show that, for eight subjects without disability, shoulder orientation and upper-arm EMG together are a significantly better predictor of both elbow flexion/extension during unilateral (R 2 =0.72) and mirrored bilateral (R 2 =0.72) reaches and of forearm pronation/supination during unilateral (R 2 =0.77) and mirrored bilateral (R 2 =0.70) reaches. We also show that adding forearm EMG further improves the prediction of forearm pronation/supination during unilateral (R 2 =0.82) and mirrored bilateral (R 2 =0.75) reaches. In principle, these results provide the basis for choosing inputs for control of transhumeral prostheses, both by subjects with targeted motor reinnervation (when forearm EMG is available) and by subjects without target motor reinnervation (when forearm EMG is not available). In particular, we confirm that shoulder orientation and upper-arm EMG together best predict elbow flexion/extension (R 2 =0.72) for three subjects with unilateral transhumeral amputations and targeted motor reinnervation. However, shoulder orientation alone best predicts forearm pronation/supination (R 2 =0.88) for these subjects, a contradictory result that merits further study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nonlinear smooth orthogonal decomposition of kinematic features of sawing reconstructs muscle fatigue evolution as indicated by electromyography.

    Science.gov (United States)

    Segala, David B; Gates, Deanna H; Dingwell, Jonathan B; Chelidze, David

    2011-03-01

    Tracking or predicting physiological fatigue is important for developing more robust training protocols and better energy supplements and/or reducing muscle injuries. Current methodologies are usually impractical and/or invasive and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify more optimal fatigue coordinates and provide a lower-dimensional reconstruction of local fatigue dynamics than the linear SOD. Both linear and nonlinear SODs were applied to PSW features estimated from measured kinematics to reconstruct muscle fatigue dynamics in subjects performing a sawing motion. Ten healthy young right-handed subjects pushed a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles were measured from the right upper extremity in addition to surface electromyography (EMG) recordings. The SOD coordinates of kinematic PSW features were compared against independently measured fatigue markers (i.e., mean and median EMG spectrum frequencies of individual muscle groups). This comparison was based on a least-squares linear fit of a fixed number of the dominant SOD coordinates to the appropriate local fatigue markers. Between subject variability showed that at most four to five nonlinear SOD coordinates were needed to reconstruct fatigue in local muscle groups, while on average 15 coordinates were needed for the linear SOD. Thus, the nonlinear coordinates provided a one-order-of-magnitude improvement over the linear ones.

  10. Electromyography comparison of the effects of various footwear in the activity patterns of the peroneus longus and brevis muscles.

    Science.gov (United States)

    Roca-Dols, Andrea; Losa-Iglesias, Marta Elena; Sánchez-Gómez, Rubén; López-López, Daniel; Becerro-de-Bengoa-Vallejo, Ricardo; Calvo-Lobo, César

    2018-06-01

    Peroneus longus and brevis (PLB) disorders are commonly in people with lateral ligamentous instability, ankle pain, lateral hindfoot pain and structures of the proximal compartment of the lower legs and their muscle activity is believed to be influenced by different footwear types. The proposal of this research is to evaluate the effects of five types of footwear with respect to the barefoot condition and analyze the activity patterns of PLB muscles in healthy subjects during the gait cycle. Thirty healthy subjects were recruited in a laboratory in this cross-sectional research design. While walking, electromyography (EMG) activity was measured from PLB via surface electrodes in six experimental conditions: 1) barefoot, 2) minimalist, 3) pronated control, 4) air chamber, 5) ethyl-vinyl-acetate (EVA) and 6) boost. These data were obtained and compared. The peroneus brevis showed significant reductions in the peak amplitude of the five footwear types (minimalist, pronation control, air chamber, EVA and boost) with respect to the barefoot condition in the propulsion phase of the gait cycle during walking (P = 0.034; P footwear types with respect to the barefoot condition in the propulsion phase of the gait cycle during running (P = 0.005; P = 0.038; P = 0.019; P = 0.025; P = 0.021). The EMG activity patterns of the PLB muscles may depend on the use of different types of sport shoes such as minimalist, pronation control, air chamber, EVA and boost footwear with respect the barefoot condition in different phases of the gait cycle during walking and running. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.

    Science.gov (United States)

    Han, Hyonyoung; Jo, Sungho; Kim, Jung

    2015-07-01

    This paper proposes the feasibility of a stiffness measurement for muscle contraction force estimation under muscle fatigue conditions. Bioelectric signals have been widely studied for the estimation of the contraction force for physical human-robot interactions, but the correlation between the biosignal and actual motion is decreased under fatigue conditions. Muscle stiffness could be a useful contraction force estimator under fatigue conditions because it measures the same physical quantity as the muscle contraction that generates the force. Electromyography (EMG), mechanomyography (MMG), and a piezoelectric resonance-based active muscle stiffness sensor were used to analyze the biceps brachii under isometric muscle fatigue conditions with reference force sensors at the end of the joint. Compared to EMG and MMG, the change in the stiffness signal was smaller (p fatigue condition changed fatigue conditions. This result indicates that the muscle stiffness signal is less sensitive to muscle fatigue than other biosignals. This investigation provides insights into methods of monitoring and compensating for muscle fatigue.

  12. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy.

    Science.gov (United States)

    Yoo, Ji Won; Lee, Dong Ryul; Cha, Young Joo; You, Sung Hyun

    2017-01-01

    The purpose of the present study was to compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps (T:B) muscle activity imbalance and elbow joint movement coordination during a reaching motor taskOBJECTIVE: To compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps muscle activity imbalance and elbow joint movement coordination during a reaching motor task in normal children and children with spastic cerebral palsy (CP). 18 children with spastic CP (2 females; mean±standard deviation = 9.5 ± 1.96 years) and 8 normal children (3 females; mean ± standard deviation = 9.75 ± 2.55 years) were recruited from a local community center. All children with CP first underwent one intensive session of EMG feedback (30 minutes), followed by one session of the EMG-VR feedback (30 minutes) after a 1-week washout period. Clinical tests included elbow extension range of motion (ROM), biceps muscle strength, and box and block test. EMG triceps and biceps (T:B) muscle activity imbalance and reaching movement acceleration coordination were concurrently determined by EMG and 3-axis accelerometer measurements respectively. Independent t-test and one-way repeated analysis of variance (ANOVA) were performed at p augmented by virtual reality exercise games in children with spastic CP. The augmented EMG and VR feedback produced better neuromuscular balance control in the elbow joint than the EMG biofeedback alone.

  13. Associations between apparent diffusion coefficient and electromyography parameters in myositis-A preliminary study.

    Science.gov (United States)

    Meyer, Hans-Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    MRI is widely used in several muscle disorders. Diffusion-weighted imaging (DWI) is an emergent imaging modality sensitive to microstructural alterations in tissue. The apparent diffusion coefficient (ADC) is used to quantify the random motion of water molecules. Electromyography (EMG) is a clinically used diagnostic tool in myositis. The aim of this study was to elucidate possible associations between ADC values and EMG findings in myositis patients. Seven patients (eight investigated muscles) with myositis (mean age 51.43 ± 19 years) were included in this study. The diagnosis was confirmed by histopathology in every case. DWI was obtained with a 1.5-T scanner using two b-values 0 and 1000 s/mm². In all patients, a needle electromyography (EMG) was performed within 3 days to the MRI. The following EMG parameters were studied: motor unit action potential (MUAP) amplitudes and durations, as well as pathological spontaneous activity. Spearman's correlation coefficient was used to analyze associations between investigated parameters. The estimated mean ADC mean value was 1.51 ± 0.29 × 10 -3  mm²/s, mean ADC min was 1.28 ± 0.27 × 10 -3  mm²/s, and mean ADC max was 1.73 ± 0.28 × 10 -3  mm²/s. Correlation analysis identified significant associations between ADC mean and duration of the MUAP (p   = .78 P = .0279) and between ADC min and duration of the MUAP (p = .85, P = .01). There were no significant differences according to pathological spontaneous activity. ADC mean and ADC min showed strong positive correlations with the duration of the MUAP in myositis patients. Both modalities might similarly reflect muscle fiber loss in myositis patients.

  14. Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals.

    Directory of Open Access Journals (Sweden)

    Peng Ren

    Full Text Available Preterm delivery increases the risk of infant mortality and morbidity, and therefore developing reliable methods for predicting its likelihood are of great importance. Previous work using uterine electromyography (EMG recordings has shown that they may provide a promising and objective way for predicting risk of preterm delivery. However, to date attempts at utilizing computational approaches to achieve sufficient predictive confidence, in terms of area under the curve (AUC values, have not achieved the high discrimination accuracy that a clinical application requires. In our study, we propose a new analytical approach for assessing the risk of preterm delivery using EMG recordings which firstly employs Empirical Mode Decomposition (EMD to obtain their Intrinsic Mode Functions (IMF. Next, the entropy values of both instantaneous amplitude and instantaneous frequency of the first ten IMF components are computed in order to derive ratios of these two distinct components as features. Discrimination accuracy of this approach compared to those proposed previously was then calculated using six differently representative classifiers. Finally, three different electrode positions were analyzed for their prediction accuracy of preterm delivery in order to establish which uterine EMG recording location was optimal signal data. Overall, our results show a clear improvement in prediction accuracy of preterm delivery risk compared with previous approaches, achieving an impressive maximum AUC value of 0.986 when using signals from an electrode positioned below the navel. In sum, this provides a promising new method for analyzing uterine EMG signals to permit accurate clinical assessment of preterm delivery risk.

  15. Analysis of scapular muscle EMG activity in patients with idiopathic neck pain: a systematic review.

    Science.gov (United States)

    Castelein, Birgit; Cools, Ann; Bostyn, Emma; Delemarre, Jolien; Lemahieu, Trees; Cagnie, Barbara

    2015-04-01

    It is proposed that altered scapular muscle function can contribute to abnormal loading of the cervical spine. However, it is not clear if patients with idiopathic neck pain show altered activity of the scapular muscles. The aim of this paper was to systematically review the literature regarding the differences or similarities in scapular muscle activity, measured by electromyography ( = EMG), between patients with chronic idiopathic neck pain compared to pain-free controls. Case-control (neck pain/healthy) studies investigating scapular muscle EMG activity (amplitude, timing and fatigue parameters) were searched in Pubmed and Web of Science. 25 articles were included in the systematic review. During rest and activities below shoulder height, no clear differences in mean Upper Trapezius ( = UT) EMG activity exist between patients with idiopathic neck pain and a healthy control group. During overhead activities, no conclusion for scapular EMG amplitude can be drawn as a large variation of results were reported. Adaptation strategies during overhead tasks are not the same between studies. Only one study investigated timing of the scapular muscles and found a delayed onset and shorter duration of the SA during elevation in patients with idiopathic neck pain. For scapular muscle fatigue, no definite conclusions can be made as a wide variation and conflicting results are reported. Further high quality EMG research on scapular muscles (broader than the UT) is necessary to understand/draw conclusions on how scapular muscles react in the presence of idiopathic neck pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    Science.gov (United States)

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  17. EMG of the hip adductor muscles in six clinical examination tests.

    Science.gov (United States)

    Lovell, Gregory A; Blanch, Peter D; Barnes, Christopher J

    2012-08-01

    To assess activation of muscles of hip adduction using EMG and force analysis during standard clinical tests, and compare athletes with and without a prior history of groin pain. Controlled laboratory study. 21 male athletes from an elite junior soccer program. Bilateral surface EMG recordings of the adductor magnus, adductor longus, gracilis and pectineus as well as a unilateral fine-wire EMG of the pectineus were made during isometric holds in six clinical examination tests. A load cell was used to measure force data. Test type was a significant factor in the EMG output for all four muscles (all muscles p stronger than Hips 45, Hips 90 and Side lay. BMI (body mass index) was a significant factor (p Muscle EMG varied significantly with clinical test position. Athletes with previous groin injury had a significant fall in some EMG outputs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. EMG-Torque Dynamics Change With Contraction Bandwidth.

    Science.gov (United States)

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  19. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    Science.gov (United States)

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  20. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    Science.gov (United States)

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  1. Low-back electromyography (EMG data-driven load classification for dynamic lifting tasks.

    Directory of Open Access Journals (Sweden)

    Deema Totah

    Full Text Available Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task.Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs, while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset.Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10% to 81% (±7%. The average recall for each class ranged from 69-92%.These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications.Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user.

  2. The effect of isolating the paretic limb on weight-bearing distribution and EMG activity during squats in hemiplegic and healthy individuals.

    Science.gov (United States)

    Lee, Dong-Kyu; An, Duk-Hyun; Yoo, Won-Gyu; Hwang, Byong-Yong; Kim, Tae-Ho; Oh, Jae-Seop

    2017-05-01

    Neural reorganization for movement therapy after a stroke is thought to be an important mechanism that facilitates motor recovery. However, there is a lack of evidence for the effectiveness of exercise programs in improving the lower limbs. We investigated the immediate effect of isolating the paretic limb using different foot positions ((i) foot parallel; both feet parallel, (ii) foot asymmetry; paretic foot backward by 10 cm, and (iii) foot lifting; nonparetic foot lifting by normalization to 25% of knee height) on weight-bearing distribution and electromyography (EMG) of the thigh muscle during squats. In total, 20 patients with hemiplegia and 16 healthy subjects randomly performed three squat conditions in which the knee joint was flexed to 30°. Weight distribution was measured using the BioRescue system. Muscle activity was measured using a surface EMG system. Patients with hemiplegia exhibited significantly decreased weight bearing on the paretic foot at 0° and 30° knee flexion compared with the nondominant foot of a healthy subject. The muscle activity of the quadriceps was significantly lower in patients with hemiplegia compared to healthy subjects. Weight bearing and EMG activity of the quadriceps femoris on the paretic or nondominant side significantly increased during a knee flexion of 30° with under the foot asymmetry and foot lifting positions compared with the parallel foot position. Isolating the paretic limb using the asymmetric foot positions and lifting of the foot during squats might help patients with hemiplegia to improve weight-bearing and achieve greater activation of the quadriceps muscle in the paretic limb.

  3. Simultaneous EEG and EMG biofeedback for peak performance in musicians.

    Science.gov (United States)

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada; Georgiev, Dejan

    2008-07-01

    The aim of this study was to determine the effects of alpha neurofeedback and EMG biofeedback protocols for improvement of musical performance in violinists. The sample consisted of 12 music students (10 violinists and 2 viola players) from the Faculty of Music, Skopje (3 males, mean age of 20 +/- 0 and 9 females, mean age = 20.89 +/- 2.98). Six of them had a low alpha peak frequency (APF) ( 10 Hz). The sample was randomized in two groups. The students from the experimental group participated in 20 sessions of biofeedback (alpha/EMG), combined with music practice, while the students from the control group did only music practice. Average absolute power, interhemispheric coherence in the alpha band, alpha peak frequency (APF), individual alpha band width (IABW), amount of alpha suppression (AAS) and surface forehead integrated EMG power (IEMG), as well as a score on musical performance and inventories measuring anxiety, were assessed. Alpha-EEG/EMG-biofeedback was associated with a significant increase in average alpha power, APF and IABW in all the participants and with decreases in IEMG only in high-APF musicians. The biofeedback training success was positively correlated with the alpha power, IcoH, APF, IABW and baseline level of APF and IABW. Alpha-EEG/EMG biofeedback is capable of increasing voluntary self-regulation and the quality of musical performance. The efficiency of biofeedback training depends on the baseline EEG alpha activity status, in particular the APF.

  4. Latent Factors Limiting the Performance of sEMG-Interfaces

    Directory of Open Access Journals (Sweden)

    Sergey Lobov

    2018-04-01

    Full Text Available Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures’ fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying “problematic” gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces.

  5. Treatment Efficacy of Electromyography versus Fiberscopy-Guided Botulinum Toxin Injection in Adductor Spasmodic Dysphonia Patients: A Prospective Comparative Study

    Science.gov (United States)

    Kim, Jae Wook; Park, Jae Hong; Park, Ki Nam; Lee, Seung Won

    2014-01-01

    Introduction. This study prospectively evaluates and compares the treatment efficacy of botulinum toxin injection under electromyography guidance (EMG group) and percutaneous botulinum toxin injection under flexible fiberscopic guidance (fiberscopy group). Methods. Thirty patients with adductor spasmodic dysphonia (ADSD), who had never received treatment, were randomly allocated into EMG- or fiberscopy-guided botulinum toxin injections between March 2008 and February 2010. We assessed acoustic and aerodynamic voice parameters, and the voice handicap index (VHI) before injection and at 1, 3, and 6 months after injection. Results. The mean total dosage of botulinum toxin was similar for both groups: 1.7 ± 0.5 U for the EMG group and 1.8 ± 0.4 U for the fiberscopy group (P > 0.05). There were no significant differences in outcomes between the two groups in either the duration of effectiveness or complications such as breathy voice and aspiration. Conclusion. Botulinum toxin injection under fiberscopic guidance is a viable alternative to EMG-guided botulinum toxin injection for the treatment of adductor spasmodic dysphonia when EMG equipment is unavailable. PMID:25383369

  6. Treatment Efficacy of Electromyography versus Fiberscopy-Guided Botulinum Toxin Injection in Adductor Spasmodic Dysphonia Patients: A Prospective Comparative Study

    Directory of Open Access Journals (Sweden)

    Jae Wook Kim

    2014-01-01

    Full Text Available Introduction. This study prospectively evaluates and compares the treatment efficacy of botulinum toxin injection under electromyography guidance (EMG group and percutaneous botulinum toxin injection under flexible fiberscopic guidance (fiberscopy group. Methods. Thirty patients with adductor spasmodic dysphonia (ADSD, who had never received treatment, were randomly allocated into EMG- or fiberscopy-guided botulinum toxin injections between March 2008 and February 2010. We assessed acoustic and aerodynamic voice parameters, and the voice handicap index (VHI before injection and at 1, 3, and 6 months after injection. Results. The mean total dosage of botulinum toxin was similar for both groups: 1.7 ± 0.5 U for the EMG group and 1.8 ± 0.4 U for the fiberscopy group (P>0.05. There were no significant differences in outcomes between the two groups in either the duration of effectiveness or complications such as breathy voice and aspiration. Conclusion. Botulinum toxin injection under fiberscopic guidance is a viable alternative to EMG-guided botulinum toxin injection for the treatment of adductor spasmodic dysphonia when EMG equipment is unavailable.

  7. Treatment efficacy of electromyography versus fiberscopy-guided botulinum toxin injection in adductor spasmodic dysphonia patients: a prospective comparative study.

    Science.gov (United States)

    Kim, Jae Wook; Park, Jae Hong; Park, Ki Nam; Lee, Seung Won

    2014-01-01

    This study prospectively evaluates and compares the treatment efficacy of botulinum toxin injection under electromyography guidance (EMG group) and percutaneous botulinum toxin injection under flexible fiberscopic guidance (fiberscopy group). Thirty patients with adductor spasmodic dysphonia (ADSD), who had never received treatment, were randomly allocated into EMG- or fiberscopy-guided botulinum toxin injections between March 2008 and February 2010. We assessed acoustic and aerodynamic voice parameters, and the voice handicap index (VHI) before injection and at 1, 3, and 6 months after injection. The mean total dosage of botulinum toxin was similar for both groups: 1.7 ± 0.5 U for the EMG group and 1.8 ± 0.4 U for the fiberscopy group (P > 0.05). There were no significant differences in outcomes between the two groups in either the duration of effectiveness or complications such as breathy voice and aspiration. Botulinum toxin injection under fiberscopic guidance is a viable alternative to EMG-guided botulinum toxin injection for the treatment of adductor spasmodic dysphonia when EMG equipment is unavailable.

  8. Effects of eccentric exercise on trapezius electromyography during computer work with active and passive pauses

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    ) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40s over 2 days, before, immediately and 24h after eccentric exercise. Surface EMG signals were recorded from four parts of the trapezius during computer work. FINDINGS: EMG amplitude during computer work decreased......BACKGROUND: The aim of this laboratory study was to investigate the effects of eccentric exercises on the trapezius muscle spatial electromyographic (EMG) activity during computer work with active and passive pauses. METHODS: Twelve healthy male subjects performed computer work with passive (relax...... immediately after exercise (Pwork with active pauses compared with passive ones (P

  9. Quantitative electromyography in ambulatory boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Verma, Sumit; Lin, Jenny; Travers, Curtis; McCracken, Courtney; Shah, Durga

    2017-12-01

    This study's objective was to evaluate quantitative electromyography (QEMG) using multiple-motor-unit (multi-MUP) analysis in Duchenne muscular dystrophy (DMD). Ambulatory DMD boys, aged 5-15 years, were evaluated with QEMG at 6-month intervals over 14 months. EMG was performed in the right biceps brachii (BB) and tibialis anterior (TA) muscles. Normative QEMG data were obtained from age-matched healthy boys. Wilcoxon signed-rank tests were performed. Eighteen DMD subjects were enrolled, with a median age of 7 (interquartile range 7-10) years. Six-month evaluations were performed on 14 subjects. QEMG showed significantly abnormal mean MUP duration in BB and TA muscles, with no significant change over 6 months. QEMG is a sensitive electrophysiological marker of myopathy in DMD. Preliminary data do not reflect a significant change in MUP parameters over a 6-month interval; long-term follow-up QEMG studies are needed to understand its role as a biomarker for disease progression. Muscle Nerve 56: 1361-1364, 2017. © 2017 Wiley Periodicals, Inc.

  10. EMG signals characterization in three states of contraction by fuzzy network and feature extraction

    CERN Document Server

    Mokhlesabadifarahani, Bita

    2015-01-01

    Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.

  11. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions

    Directory of Open Access Journals (Sweden)

    Nurhazimah Nazmi

    2016-08-01

    Full Text Available In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.

  12. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke.

    Science.gov (United States)

    Hu, Xiao-Ling; Tong, Raymond Kai-yu; Ho, Newmen S K; Xue, Jing-jing; Rong, Wei; Li, Leonard S W

    2015-09-01

    Augmented physical training with assistance from robot and neuromuscular electrical stimulation (NMES) may introduce intensive motor improvement in chronic stroke. To compare the rehabilitation effectiveness achieved by NMES robot-assisted wrist training and that by robot-assisted training. This study was a single-blinded randomized controlled trial with a 3-month follow-up. Twenty-six hemiplegic subjects with chronic stroke were randomly assigned to receive 20-session wrist training with an electromyography (EMG)-driven NMES robot (NMES robot group, n = 11) and with an EMG-driven robot (robot group, n = 15), completed within 7 consecutive weeks. Clinical scores, Fugl-Meyer Assessment (FMA), Modified Ashworth Score (MAS), and Action Research Arm Test (ARAT) were used to evaluate the training effects before and after the training, as well as 3 months later. An EMG parameter, muscle co-contraction index, was also applied to investigate the session-by-session variation in muscular coordination patterns during the training. The improvement in FMA (shoulder/elbow, wrist/hand) obtained in the NMES robot group was more significant than the robot group (P rehabilitation progress. © The Author(s) 2014.

  13. Effects of electrocardiography contamination and comparison of ECG removal methods on upper trapezius electromyography recordings.

    Science.gov (United States)

    Marker, Ryan J; Maluf, Katrina S

    2014-12-01

    Electromyography (EMG) recordings from the trapezius are often contaminated by the electrocardiography (ECG) signal, making it difficult to distinguish low-level muscle activity from muscular rest. This study investigates the influence of ECG contamination on EMG amplitude and frequency estimations in the upper trapezius during muscular rest and low-level contractions. A new method of ECG contamination removal, filtered template subtraction (FTS), is described and compared to 30 Hz high-pass filter (HPF) and averaged template subtraction (ATS) methods. FTS creates a unique template of each ECG artifact using a low-pass filtered copy of the contaminated signal, which is subtracted from contaminated periods in the original signal. ECG contamination results in an over-estimation of EMG amplitude during rest in the upper trapezius, with negligible effects on amplitude and frequency estimations during low-intensity isometric contractions. FTS and HPF successfully removed ECG contamination from periods of muscular rest, yet introduced errors during muscle contraction. Conversely, ATS failed to fully remove ECG contamination during muscular rest, yet did not introduce errors during muscle contraction. The relative advantages and disadvantages of different ECG contamination removal methods should be considered in the context of the specific motor tasks that require analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy.

    Science.gov (United States)

    Ferguson, Sue A; Allread, W Gary; Le, Peter; Rose, Joseph; Marras, William S

    2013-12-01

    The objective of this study was to quantify shoulder muscle fatigue during repetitive exertions similar to motions found in automobile assembly tasks. Shoulder musculoskeletal disorders (MSDs) are a common and costly problem in automotive manufacturing. Ten subjects participated in the study. There were three independent variables: shoulder angle, frequency, and force. There were two types of dependent measures: percentage change in near-infrared spectroscopy (NIRS) measures and change in electromyography (EMG) median frequency. The anterior deltoid and trapezius muscles were measured for both NIRS and EMG. Also, EMG was collected on the middle deltoid and biceps muscles. The results showed that oxygenated hemoglobin decreased significantly due to the main effects (shoulder angle, frequency, and force). The percentage change in oxygenated hemoglobin had a significant interaction attributable to force and repetition for the anterior deltoid muscle, indicating that as repetition increased, the magnitude of the differences between the forces increased. The interaction of repetition and shoulder angle was also significant for the percentage change in oxygenated hemoglobin. The median frequency decreased significantly for the main effects; however, no interactions were statistically significant. There was significant shoulder muscle fatigue as a function of shoulder angle, task frequency, and force level. Furthermore, percentage change in oxygenated hemoglobin had two statistically significant interactions, enhancing our understanding of these risk factors. Ergonomists should examine interactions of force and repetition as well as shoulder angle and repetition when evaluating the risk of shoulder MSDs.

  15. Comparison of Efficiencies of Michigan Neuropathy Screening Instrument, Neurothesiometer, and Electromyography for Diagnosis of Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Turkan Mete

    2013-01-01

    Full Text Available Aim. This study compares the effectiveness of Michigan Neuropathy Screening Instrument (MNSI, neurothesiometer, and electromyography (EMG in detecting diabetic peripheral neuropathy in patients with diabetes type 2. Materials and Methods. 106 patients with diabetes type 2 treated at the outpatient clinic of Ankara Numune Education and Research Hospital Department of Endocrinology between September 2008 and May 2009 were included in this study. Patients were evaluated by glycemic regulation tests, MNSI (questionnaire and physical examination, EMG (for detecting sensorial and motor defects in right median, ulnar, posterior tibial, and bilateral sural nerves, and neurothesiometer (for detecting alterations in cold and warm sensations as well as vibratory sensations. Results. According to the MNSI score, there was diabetic peripheral neuropathy in 34 (32.1% patients (score ≥2.5. However, when the patients were evaluated by EMG and neurothesiometer, neurological impairments were detected in 49 (46.2% and 79 (74.5% patients, respectively. Conclusion. According to our findings, questionnaires and physical examination often present lower diabetic peripheral neuropathy prevalence. Hence, we recommend that in the evaluation of diabetic patients neurological tests should be used for more accurate results and thus early treatment options to prevent neuropathic complications.

  16. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.

    Science.gov (United States)

    Ho, N S K; Tong, K Y; Hu, X L; Fung, K L; Wei, X J; Rong, W; Susanto, E A

    2011-01-01

    An exoskeleton hand robotic training device is specially designed for persons after stroke to provide training on their impaired hand by using an exoskeleton robotic hand which is actively driven by their own muscle signals. It detects the stroke person's intention using his/her surface electromyography (EMG) signals from the hemiplegic side and assists in hand opening or hand closing functional tasks. The robotic system is made up of an embedded controller and a robotic hand module which can be adjusted to fit for different finger length. Eight chronic stroke subjects had been recruited to evaluate the effects of this device. The preliminary results showed significant improvement in hand functions (ARAT) and upper limb functions (FMA) after 20 sessions of robot-assisted hand functions task training. With the use of this light and portable robotic device, stroke patients can now practice more easily for the opening and closing of their hands at their own will, and handle functional daily living tasks at ease. A video is included together with this paper to give a demonstration of the hand robotic system on chronic stroke subjects and it will be presented in the conference. © 2011 IEEE

  17. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals.

    Science.gov (United States)

    Kahl, Lorenz; Hofmann, Ulrich G

    2016-11-01

    This work compared the performance of six different fatigue detection algorithms quantifying muscle fatigue based on electromyographic signals. Surface electromyography (sEMG) was obtained by an experiment from upper arm contractions at three different load levels from twelve volunteers. Fatigue detection algorithms mean frequency (MNF), spectral moments ratio (SMR), the wavelet method WIRM1551, sample entropy (SampEn), fuzzy approximate entropy (fApEn) and recurrence quantification analysis (RQA%DET) were calculated. The resulting fatigue signals were compared considering the disturbances incorporated in fatiguing situations as well as according to the possibility to differentiate the load levels based on the fatigue signals. Furthermore we investigated the influence of the electrode locations on the fatigue detection quality and whether an optimized channel set is reasonable. The results of the MNF, SMR, WIRM1551 and fApEn algorithms fell close together. Due to the small amount of subjects in this study significant differences could not be found. In terms of disturbances the SMR algorithm showed a slight tendency to out-perform the others. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. A COMPARATIVE-STUDY OF ELECTROMYOGRAMS OF THE MASSETER, TEMPORALIS, AND ANTERIOR DIGASTRIC MUSCLES OBTAINED BY SURFACE AND INTRAMUSCULAR ELECTRODES - RAW-EMG

    NARCIS (Netherlands)

    KOOLE, P; DEJONGH, HJ; BOERING, G

    Electromyographic activity was synchronously recorded by surface and intramuscular electrodes in the same muscle. The activity of the left masseter, left temporalis, and both bellies of the anterior digastric muscle was studied by this double registration technique. In rest position no

  19. Relationship among the myelography, MRI and EMG in young patients with low back pain or radiating pain

    International Nuclear Information System (INIS)

    Jang, Ji Youn; Kim, Dong Hun; Park, Young Jae

    2006-01-01

    We wanted to evaluate the relationship among the myelography, magnetic resonance imaging (MRI), and electromyography (EMG) findings in young patients with low back pain, and we wanted to assess the significance of the spinal geometric measurements as well as type of disc herniation seen on MRI. Forty-four young men with lower back pain were included, and they were all clinically suspected of suffering with lumbar disc herniation. All of them underwent myelography, MRI and EMG. We measured spinal geometry including the anteroposterior diameters of the central canal and thecal sac, the interlaminar distance, the width of the lateral recess and the thickness of the ligamentum flavum, and we evaluated for root deviation as well as disc herniation on the MRIs. We compared the types of disc herniation on MRI with the myelography and EMG findings. Also, we investigated the correlation of the spinal geometric measurements on MRI with the EMG and myelography findings. The types of disc herniation on MRI were not significantly related to the myelography (ρ = 0.298) and EMG findings (ρ = 0.372). The EMG findings were not related to either the myelography findings (ρ = 0.435) or the spinal geometric measurements (ρ > 0.05) on MRI. Nerve root compression that was noted on myelography was related to the thecal sac AP diameter (ρ = 0.016) and the width of the lateral recess (ρ = 0.011). There were no correlations between myelography and the findings of root deviation on MRI (ρ = 0.052). MRI can play an excellent diagnostic role for young patients with radiculopathy or lower back pain. It could increase the diagnostic accuracy if it is used in conjunction with myelography and EMG. The narrowing of thecal sac AP diameter and the width of lateral recess rather than the type of disc herniation on MRI were well correlated with the myelography and EMG findings

  20. Laryngeal electromyography in movement disorders: preliminary data

    Directory of Open Access Journals (Sweden)

    Kimaid Paulo A.T.

    2004-01-01

    Full Text Available This study describes preliminary laryngeal electromyography (LEMG data and botulinum toxin treatment in patients with dysphonia due to movement disorders. Twenty-five patients who had been clinically selected for botulinum toxin administration were examined, 19 with suspected laryngeal dystonia or spasmodic dysphonia (SD, 5 with vocal tremor, and 1 with Gilles de la Tourette syndrome (GTS. LEMG evaluations were performed before botulinum toxin administration using monopolar electrodes. Electromyography was consistent with dystonia in 14 patients and normal in 5, and differences in frequency suggesting essential tremor in 3 and Parkinson tremors in 2. The different LEMG patterns and significant improvement in our patients from botulinum toxin therapy has led us to perform laryngeal electromyography as a routine in UNICAMP movement disorders ambulatory.

  1. Recognition of grasp types through principal components of DWT based EMG features.

    Science.gov (United States)

    Kakoty, Nayan M; Hazarika, Shyamanta M

    2011-01-01

    With the advancement in machine learning and signal processing techniques, electromyogram (EMG) signals have increasingly gained importance in man-machine interaction. Multifingered hand prostheses using surface EMG for control has appeared in the market. However, EMG based control is still rudimentary, being limited to a few hand postures based on higher number of EMG channels. Moreover, control is non-intuitive, in the sense that the user is required to learn to associate muscle remnants actions to unrelated posture of the prosthesis. Herein lies the promise of a low channel EMG based grasp classification architecture for development of an embedded intelligent prosthetic controller. This paper reports classification of six grasp types used during 70% of daily living activities based on two channel forearm EMG. A feature vector through principal component analysis of discrete wavelet transform coefficients based features of the EMG signal is derived. Classification is through radial basis function kernel based support vector machine following preprocessing and maximum voluntary contraction normalization of EMG signals. 10-fold cross validation is done. We have achieved an average recognition rate of 97.5%. © 2011 IEEE

  2. A Study on EMG-based Biometrics

    OpenAIRE

    Jin Su Kim; Sung Bum Pan

    2017-01-01

    Biometrics is a technology that recognizes user's information by using unique physical features of his or her body such as face, fingerprint, and iris. It also uses behavioral features such as signature, electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). Among them, the EMG signal is a sign generated when the muscles move, which can be used in various fields such as motion recognition, personal identification, and disease diagnosis. In this paper, we analyze EMG-ba...

  3. Ultrasonography for the diagnosis of tendinitis and electromyography for the diagnosis of peripheral neuropathy and upper limb radiculopathy: rheumatologists' perspectives.

    Science.gov (United States)

    Helfenstein, Milton; Ferreira, Mario Soares; Maia, Anna Beatriz Assad; Siena, César Augusto Fávaro; Techy, Antonio

    2013-01-01

    To ascertain the value ascribed by Brazilian rheumatologists to ultrasonography (US) for diagnosing tendinitis and to electromyography (EMG) for diagnosing peripheral neuropathy and upper limb radiculopathy. In total, 165 rheumatologists answered an anonymous survey (sent via the internet) concerning the two exams, with respect to the following characteristics: reliability, diagnostic accuracy, the importance and necessity of these tests for diagnostic The study revealed that most of the rheumatologists recognised that these exams are operator-dependent, that clinicians do not rely entirely on the results, that these exams are not mandatory for the diagnoses listed, and that professionals who perform these exams should be better trained to provide reliable results. The Brazilian rheumatologists believe the following: the results of these exams should be interpreted with caution and are not definitive for diagnosis; musculoskeletal US and EMG should be performed by trained professionals; and there must be better preparation of the professionals who perform these exams.

  4. EOG-sEMG Human Interface for Communication.

    Science.gov (United States)

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  5. Comparative study of PCA in classification of multichannel EMG signals.

    Science.gov (United States)

    Geethanjali, P

    2015-06-01

    Electromyographic (EMG) signals are abundantly used in the field of rehabilitation engineering in controlling the prosthetic device and significantly essential to find fast and accurate EMG pattern recognition system, to avoid intrusive delay. The main objective of this paper is to study the influence of Principal component analysis (PCA), a transformation technique, in pattern recognition of six hand movements using four channel surface EMG signals from ten healthy subjects. For this reason, time domain (TD) statistical as well as auto regression (AR) coefficients are extracted from the four channel EMG signals. The extracted statistical features as well as AR coefficients are transformed using PCA to 25, 50 and 75 % of corresponding original feature vector space. The classification accuracy of PCA transformed and non-PCA transformed TD statistical features as well as AR coefficients are studied with simple logistic regression (SLR), decision tree (DT) with J48 algorithm, logistic model tree (LMT), k nearest neighbor (kNN) and neural network (NN) classifiers in the identification of six different movements. The Kruskal-Wallis (KW) statistical test shows that there is a significant reduction (P PCA transformed features compared to non-PCA transformed features. SLR with non-PCA transformed time domain (TD) statistical features performs better in accuracy and computational power compared to other features considered in this study. In addition, the motion control of three drives for six movements of the hand is implemented with SLR using TD statistical features in off-line with TMSLF2407 digital signal controller (DSC).

  6. Synergy of EMG patterns in gait as an objective measure of muscle selectivity in children with spastic cerebral palsy.

    Science.gov (United States)

    Zwaan, Esther; Becher, Jules G; Harlaar, Jaap

    2012-01-01

    Selective motor control (SMC) is an important determinant of functioning in cerebral palsy (CP). Currently its assessment is based on subjective clinical tests with a low sensitivity. Electromyography (EMG) profiles during gait represent muscle coordination and might be used to assess SMC. EMG measurements during gait were processed into a measure of extensor synergy and thigh synergy. This was obtained in two groups of children with CP, and 30 typically developing children. Extensor synergy in CP was higher (0.95) than in healthy children (0.77), thigh synergy was almost equal in both groups. GMFM scores in the first group of 39 children with CP did not correlate to EMG based synergy measures. In a second group of 38 children with CP, a clear relation of clinical SMC score with extensor synergy was found, but only a weak relation with thigh synergy. Although an extensor synergy was validated at group level, our results present no convincing evidence for the use of EMG during gait to assess SMC in individual subjects with CP. Since gait involves both synergistic and selective contractions, the inherent motor control properties of this task will not allow for an assessment of selectivity comparable to the ability to perform isolated movements. Nevertheless, our results support the sensitive nature of EMG to represent an aberrant motor control in CP. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    Science.gov (United States)

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG

  8. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    Science.gov (United States)

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Surface electromyography assessment of muscle activation patterns while sitting down in young healthy women and patients with ankylosing spondylitis [Povrchové elektromyografické hodnocení svalové aktivity ve zkoušce posazení u zdravých mladých žen a u pacientů s ankylozující spondylitidou

    Directory of Open Access Journals (Sweden)

    Petr Uhlíř

    2011-03-01

    Full Text Available BACKGROUND: Muscle activation patterns depend on many factors. Surface electromyography (SEMG can reveal these patterns in subjects of different ages and health states. We studied patterns of muscle activation in two groups of subjects - healthy young women (as a control group and patients with ankylosing spondylitis. OBJECTIVE: The aim of this study was to register and compare muscle activation patterns while sitting down in these two groups in four situations with different positions of the lower and upper limbs. METHODS: Muscle activity was registered with the use of 8 channel surface polyelectromyography (Noraxon-Myosystem 1400A. We tested the following muscles bilaterally while the subjects were sitting down (tibialis anterior muscle, medial head of the gastrocnemius muscle, gluteus maximus muscle, erectores spinae muscles. The onset of each individual muscle's activity was determined by calculating the sum of the mean value of the SEMG baseline plus 10% of the maximum value of amplitude (peak. RESULTS: It was registered that the medial head of the gastrocnemius muscle and/or erectores spinae muscles were activated as the first ones in both groups of the subjects under study in most of the studied postural situations. We registered differences in timing (sequence of muscle activation among various studied body and limb positions (P–, P+, PD–, and PN–. A great degree of variability in the sequence of muscle activation was revealed, depending on the positions of the upper and lower limbs. CONCLUSIONS: We did not find any unique patterns of muscle activation in either of the two groups under study.[VÝCHODISKA: Časové zapojování (aktivace svalů je závislé na mnoha faktorech. Povrchová polyelektromyografie zachycuje vzorce zapojování svalů u probandů rozdílného věku a zdravotního stavu v různých podmínkách. CÍLE: Cílem studie byla registrace a hodnocení pořadí zapojování svalů v průběhu sedání u t

  10. Electromyography and vaginal pressure of the pelvic floor muscles in women with recurrent vulvovaginal candidiasis and vulvodynia.

    Science.gov (United States)

    Polpeta, Nádia Cristina; Giraldo, Paulo César; Juliato, Cássia Raquel Teatin; Yoshida, Laura Pagotto; do Amaral, Rose Luce Gomes; Eleutério, José

    2012-01-01

    To evaluate the electrical potentials and pressure exerted by the pelvic floor muscles in women with recurrent vulvovaginal candidiasis (RVVC) or vulvodynia as compared to control women. A cross-sectional study performed in the Female Outpatient Clinic of Genital Infections in the Department of Obstetrics and Gynecology of the Universidade Estadual de Campinas analyzed and compared electromyography (EMG) and vaginal pressure of the pelvic floor muscles in 61 women. Of these 61 women, 19 had vulvodynia, 12 had RVVC and 30 women had no disorder (control group). For data collection, the instrument used was the Miotool Uro device and its software Biotrainer (Miotec Ltd., Porto Alegre, Rio Grande do Sul, Brazil). The EMG evaluation of the pelvic floor muscles showed significantly lower values in the vulvodynia group (tonic contractions) and RVVC group (phasic and tonic contractions) when compared to the control group. No significant differences in basal tone EMG and vaginal pressure values at rest or during pelvic floor muscle contractions were found among groups. The maximum time of sustained contraction in patients with RVVC or vulvodynia was significantly lower (p < 0.0001) than in controls. Women with vulvodynia and RVVC have more frequent pelvic floor muscle dysfunction than controls when observed by EMG evaluation.

  11. Eletromiograma de superfície durante stress experimental como subsídio no diagnóstico da cefaléia tensional: resultados em 100 casos Surface scalp and neck electromyography with stress as diagnostic criterion in chronic tension headache: results in 100 cases

    Directory of Open Access Journals (Sweden)

    Ceme Ferreira Jordy

    1995-09-01

    Full Text Available Eletromiograma de superfície foi realizado no crânio e pescoço, durante stress provocado por frio, em 100 pacientes sofrendo cefaléia crônica isolada. Os resultados de diagnóstico obtidos com a eletromiografia revelaram erro de 24% a 32% na avaliação clínica da cefaléia tensional segundo os critérios anamnésicos referendados pelo Comitê de Classificação das Cefaléias, da Sociedade Internacional de Cefaléia (1988. A eletromiografia durante stress é proposta como novo critério de diagnóstico da Cefaléia tensional.We report the use of surface scalp and neck electromyography during experimental stress state in a series of 100 out-patients suffering from chronic tension headache. Results revealed a 24% to 32% of diagnostic errors in the diagnostic obtained by routine anamnestic procedures and following the criteria recommended by the Headache Classification Commitee of the International Headache Society (1988. The electromyography with stress is proposed as a new diagnostic criterion for tension headache.

  12. Tensor veli palatini electromyography for monitoring Eustachian tube rehabilitation in otitis media.

    Science.gov (United States)

    Picciotti, P M; Della Marca, G; D'Alatri, L; Lucidi, D; Rigante, M; Scarano, E

    2017-05-01

    The pathogenesis of otitis media is related to Eustachian tube dysfunction. The tensor veli palatini muscle actively opens the Eustachian tube and promotes middle-ear ventilation. This study describes a technique for paratubal electromyography that uses a surface, non-invasive electrode able to record tensor veli palatini muscle activity during swallowing. Twenty otitis media patients and 10 healthy patients underwent tensor veli palatini electromyography. Activity of this muscle before and after Eustachian tube rehabilitation was also assessed. In 78.5 per cent of patients, the electromyography duration phase and/or amplitude were reduced in the affected side. The muscle action potential was impaired in all patients who underwent Eustachian tube rehabilitation. This study confirmed that Eustachian tube muscle dysfunction has a role in otitis media pathogenesis and showed that muscle activity increases after Eustachian tube rehabilitation therapy.

  13. Plantarflexor muscle function in healthy and chronic Achilles tendon pain subjects evaluated by the use of EMG and PET imaging

    DEFF Research Database (Denmark)

    Masood, Tahir; Kalliokoski, Kari; Bojsen-Møller, Jens

    2014-01-01

    BACKGROUND: Achilles tendon pathologies may alter the coordinative strategies of synergistic calf muscles. We hypothesized that both surface electromyography and positron emission tomography would reveal differences between symptomatic and asymptomatic legs in Achilles tendinopathy patients and b...

  14. Generating Control Commands From Gestures Sensed by EMG

    Science.gov (United States)

    Wheeler, Kevin R.; Jorgensen, Charles

    2006-01-01

    An effort is under way to develop noninvasive neuro-electric interfaces through which human operators could control systems as diverse as simple mechanical devices, computers, aircraft, and even spacecraft. The basic idea is to use electrodes on the surface of the skin to acquire electromyographic (EMG) signals associated with gestures, digitize and process the EMG signals to recognize the gestures, and generate digital commands to perform the actions signified by the gestures. In an experimental prototype of such an interface, the EMG signals associated with hand gestures are acquired by use of several pairs of electrodes mounted in sleeves on a subject s forearm (see figure). The EMG signals are sampled and digitized. The resulting time-series data are fed as input to pattern-recognition software that has been trained to distinguish gestures from a given gesture set. The software implements, among other things, hidden Markov models, which are used to recognize the gestures as they are being performed in real time. Thus far, two experiments have been performed on the prototype interface to demonstrate feasibility: an experiment in synthesizing the output of a joystick and an experiment in synthesizing the output of a computer or typewriter keyboard. In the joystick experiment, the EMG signals were processed into joystick commands for a realistic flight simulator for an airplane. The acting pilot reached out into the air, grabbed an imaginary joystick, and pretended to manipulate the joystick to achieve left and right banks and up and down pitches of the simulated airplane. In the keyboard experiment, the subject pretended to type on a numerical keypad, and the EMG signals were processed into keystrokes. The results of the experiments demonstrate the basic feasibility of this method while indicating the need for further research to reduce the incidence of errors (including confusion among gestures). Topics that must be addressed include the numbers and arrangements

  15. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    Science.gov (United States)

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  16. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN

    Directory of Open Access Journals (Sweden)

    Changcheng Wu

    2017-06-01

    Full Text Available The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space from the electromyogram (EMG signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG and the Generalized Regression Neural Network (GRNN is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method.

  17. Coherence explored between emotion components: evidence from event-related potentials and facial electromyography.

    Science.gov (United States)

    Gentsch, Kornelia; Grandjean, Didier; Scherer, Klaus R

    2014-04-01

    Componential theories assume that emotion episodes consist of emergent and dynamic response changes to relevant events in different components, such as appraisal, physiology, motivation, expression, and subjective feeling. In particular, Scherer's Component Process Model hypothesizes that subjective feeling emerges when the synchronization (or coherence) of appraisal-driven changes between emotion components has reached a critical threshold. We examined the prerequisite of this synchronization hypothesis for appraisal-driven response changes in facial expression. The appraisal process was manipulated by using feedback stimuli, presented in a gambling task. Participants' responses to the feedback were investigated in concurrently recorded brain activity related to appraisal (event-related potentials, ERP) and facial muscle activity (electromyography, EMG). Using principal component analysis, the prediction of appraisal-driven response changes in facial EMG was examined. Results support this prediction: early cognitive processes (related to the feedback-related negativity) seem to primarily affect the upper face, whereas processes that modulate P300 amplitudes tend to predominantly drive cheek region responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Evaluation of muscular activity duration in shoulders with rotator cuff tears using inertial sensors and electromyography

    International Nuclear Information System (INIS)

    Duc, Cyntia; Aminian, Kamiar; Pichonnaz, Claude; Farron, Alain; Jolles, Brigitte M; Bassin, Jean-Philippe

    2014-01-01

    Shoulder disorders, including rotator cuff tears, affect the shoulder function and result in adapted muscle activation. Although these adaptations have been studied in controlled conditions, free-living activities have not been investigated. Based on the kinematics measured with inertial sensors and portable electromyography, the objectives of this study were to quantify the duration of the muscular activation in the upper trapezius (UT), medial deltoid (MD) and biceps brachii (BB) during motion and to investigate the effect of rotator cuff tear in laboratory settings and daily conditions. The duration of movements and muscular activations were analysed separately and together using the relative time of activation (T EMG/mov ). Laboratory measurements showed the parameter’s reliability through movement repetitions (ICC > 0.74) and differences in painful shoulders compared with healthy ones (p < 0.05): longer activation for UT; longer activation for MD during abduction and tendency to shorter activation in other movements; shorter activation for BB. In daily conditions, T EMG/mov for UT was longer, whereas it was shorter for MD and BB (p < 0.05). Moreover, significant correlations were observed between these parameters and clinical scores. This study thus provides new insights into the rotator cuff tear effect on duration of muscular activation in daily activity. (paper)

  19. EMG finger movement classification based on ANFIS

    Science.gov (United States)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  20. Specialized Nerve Tests: EMG, NCV and SSEP

    Science.gov (United States)

    ... Treatment Spondylolisthesis BLOG FIND A SPECIALIST Treatments Specialized Nerve Tests: EMG, NCV and SSEP Ajay Jawahar MD ... spinal cord is the thick, whitish bundle of nerve tissue that extends from the lowest part of ...

  1. Patterns of variation across primates in jaw-muscle electromyography during mastication.

    Science.gov (United States)

    Vinyard, Christopher J; Wall, Christine E; Williams, Susan H; Hylander, William L

    2008-08-01

    Biologists that study mammals continue to discuss the evolution of and functional variation in jaw-muscle activity during chewing. A major barrier to addressing these issues is collecting sufficient in vivo data to adequately capture neuromuscular variation in a clade. We combine data on jaw-muscle electromyography (EMG) collected during mastication from 14 species of primates and one of treeshrews to assess patterns of neuromuscular variation in primates. All data were collected and analyzed using the same methods. We examine the variance components for EMG parameters using a nested ANOVA design across successive hierarchical factors from chewing cycle through species for eight locations in the masseter and temporalis muscles. Variation in jaw-muscle EMGs was not distributed equally across hierarchical levels. The timing of peak EMG activity showed the largest variance components among chewing cycles. Relative levels of recruitment of jaw muscles showed the largest variance components among chewing sequences and cycles. We attribute variation among chewing cycles to (1) changes in food properties throughout the chewing sequence, (2) variation in bite location, and (3) the multiple ways jaw muscles can produce submaximal bite forces. We hypothesize that variation among chewing sequences is primarily related to variation in properties of food. The significant proportion of variation in EMGs potentially linked to food properties suggests that experimental biologists must pay close attention to foods given to research subjects in laboratory-based studies of feeding. The jaw muscles exhibit markedly different variance components among species suggesting that primate jaw muscles have evolved as distinct functional units. The balancing-side deep masseter (BDM) exhibits the most variation among species. This observation supports previous hypotheses linking variation in the timing and activation of the BDM to symphyseal fusion in anthropoid primates and in strepsirrhines

  2. [The effect of EMG level by EMG biofeedback with progressive muscle relaxation training on tension headache].

    Science.gov (United States)

    Ro, U J; Kim, N C; Kim, H S

    1990-08-01

    The purpose of this study is to assess if EMG biofeedback training with progressive muscle relaxation training is effective in reducing the EMG level in patients with tension headaches. This study which lasted from 23 October to 30 December 1989, was conducted on 10 females who were diagnosed as patients with tension headaches and selected from among volunteers at C. University in Seoul. The process of the study was as follows: First, before the treatment, the baseline was measured for two weeks and the level of EMG was measured five times in five minutes. And then EMG biofeedback training was used for six weeks, 12 sessions in all, and progressive muscle relaxation was done at home by audio tape over eight weeks. Each session was composed of a 5-minute baseline, two 5-minute EMG biofeedback training periods and a 5-minute self-control stage. Each stage was followed by a five minute rest period. So each session took a total of 40 minutes. The EMG level was measured by EMG biofeedback (Autogenic-Cyborg: M 130 EMG module). The results were as follows: 1. The average age of the subjects was 44.1 years and the average history of headache was 10.6 years (range: 6 months-20 years). 2. The level of EMG was lowest between the third and the fourth week of the training except in Cases I and IV. 3. The patients began to show a nonconciliatory attitude at the first session of the fifth week of the training.

  3. Electromyography analysis of natural mastication behavior using varying mouthful quantities of two types of gels.

    Science.gov (United States)

    Kohyama, Kaoru; Gao, Zhihong; Ishihara, Sayaka; Funami, Takahiro; Nishinari, Katsuyoshi

    2016-07-01

    The objectives of this study were to examine the effects of mouthful quantities and mechanical properties of gels on natural mastication behaviors using electromyography (EMG). Two types of hydrocolloid gels (A and K) with similar fracture loads but different moduli and fracture strains were served to eleven normal women in 3-, 6-, 12-, and 24-g masses in a randomized order. EMG activities from both masseter muscles were recorded during natural mastication. Because of the similar fracture loads, the numbers of chews, total muscle activities, and entire oral processing times were similar for similar masses of both gel types. Prior to the first swallow, the more elastic K gel with a higher fracture strain required higher muscle activities than the brittle A gel, which had higher modulus. Majority of subjects had preferred sides of chewing, but all subjects with or without preferred sides used both masseters during the consumption of gels. Similar effects of masses and types of gels were observed in EMG activities of both sides of masseters. Contributions of the dominant side of chewing were diminished with increasing masses of gels, and the mass dependency on ratio of the dominant side was more pronounced with K gel. More repetitions of smaller masses required greater muscle activities and longer periods for the consumption of 24-g gel portions. Reduction in the masses with an increased number of repetitions necessitated slower eating and more mastication to consume the gel portions. These observations suggest that chewing using both sides is more effective and unconsciously reduces mastication times during the consumption of gels. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A New Method to Detect Driver Fatigue Based on EMG and ECG Collected by Portable Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-11-01

    Full Text Available Recently, detection and prediction on driver fatigue have become interest of research worldwide. In the present work, a new method is built to effectively evaluate driver fatigue based on electromyography (EMG and electrocardiogram (ECG collected by portable real-time and non-contact sensors. First, under the non-disturbance condition for driver’s attention, mixed physiological signals (EMG, ECG and artefacts are collected by non-contact sensors located in a cushion on the driver’s seat. EMG and ECG are effectively separated by FastICA, and de-noised by empirical mode decomposition (EMD. Then, three physiological features, complexity of EMG, complexity of ECG, and sample entropy (SampEn of ECG, are extracted and analysed. Principal components are obtained by principal components analysis (PCA and are used as independent variables. Finally, a mathematical model of driver fatigue is built, and the accuracy of the model is up to 91%. Moreover, based on the questionnaire, the calculation results of model are consistent with real fatigue felt by the participants. Therefore, this model can effectively detect driver fatigue.

  5. An internet-based wearable watch-over system for elderly and disabled utilizing EMG and accelerometer.

    Science.gov (United States)

    Kishimoto, M; Yoshida, T; Hayasaka, T; Mori, D; Imai, Y; Matsuki, N; Ishikawa, T; Yamaguchi, T

    2009-01-01

    An effective way for preventing injuries and diseases among the elderly is to monitor their daily lives. In this regard, we propose the use of a "Hyper Hospital Network", which is an information support system for elderly people and patients. In the current study, we developed a wearable system for monitoring electromyography (EMG) and acceleration using the Hyper Hospital Network plan. The current system is an upgraded version of our previous system for gait analysis (Yoshida et al. [13], Telemedicine and e-Health 13 703-714), and lets us monitor decreases in exercise and the presence of a hemiplegic gait more accurately. To clarify the capabilities and reliability of the system, we performed three experimental evaluations: one to verify the performance of the wearable system, a second to detect a hemiplegic gait, and a third to monitor EMG and accelerations simultaneously. Our system successfully detected a lack of exercise by monitoring the iEMG in healthy volunteers. Moreover, by using EMG and acceleration signals simultaneously, the reliability of the Hampering Index (HI) for detecting hemiplegia walking was improved significantly. The present study provides useful knowledge for the development of a wearable computer designed to monitor the physical conditions of older persons and patients.

  6. What do facial expressions of emotion express in young children? The relationship between facial display and EMG measures

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2014-04-01

    Full Text Available The present paper explored the relationship between emotional facial response and electromyographic modulation in children when they observe facial expression of emotions. Facial responsiveness (evaluated by arousal and valence ratings and psychophysiological correlates (facial electromyography, EMG were analyzed when children looked at six facial expressions of emotions (happiness, anger, fear, sadness, surprise and disgust. About EMG measure, corrugator and zygomatic muscle activity was monitored in response to different emotional types. ANOVAs showed differences for both EMG and facial response across the subjects, as a function of different emotions. Specifically, some emotions were well expressed by all the subjects (such as happiness, anger and fear in terms of high arousal, whereas some others were less level arousal (such as sadness. Zygomatic activity was increased mainly for happiness, from one hand, corrugator activity was increased mainly for anger, fear and surprise, from the other hand. More generally, EMG and facial behavior were highly correlated each other, showing a “mirror” effect with respect of the observed faces.

  7. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model

    Directory of Open Access Journals (Sweden)

    Shaowei Yao

    2018-04-01

    Full Text Available Various rehabilitation robots have been employed to recover the motor function of stroke patients. To improve the effect of rehabilitation, robots should promote patient participation and provide compliant assistance. This paper proposes an adaptive admittance control scheme (AACS consisting of an admittance filter, inner position controller, and electromyography (EMG-driven musculoskeletal model (EDMM. The admittance filter generates the subject's intended motion according to the joint torque estimated by the EDMM. The inner position controller tracks the intended motion, and its parameters are adjusted according to the estimated joint stiffness. Eight healthy subjects were instructed to wear the ankle exoskeleton robot, and they completed a series of sinusoidal tracking tasks involving ankle dorsiflexion and plantarflexion. The robot was controlled by the AACS and a non-adaptive admittance control scheme (NAACS at four fixed parameter levels. The tracking performance was evaluated using the jerk value, position error, interaction torque, and EMG levels of the tibialis anterior (TA and gastrocnemius (GAS. For the NAACS, the jerk value and position error increased with the parameter levels, and the interaction torque and EMG levels of the TA tended to decrease. In contrast, the AACS could maintain a moderate jerk value, position error, interaction torque, and TA EMG level. These results demonstrate that the AACS achieves a good tradeoff between accurate tracking and compliant assistance because it can produce a real-time response to stiffness changes in the ankle joint. The AACS can alleviate the conflict between accurate tracking and compliant assistance and has potential for application in robot-assisted rehabilitation.

  8. FEATURE EXTRACTION FOR EMG BASED PROSTHESES CONTROL

    Directory of Open Access Journals (Sweden)

    R. Aishwarya

    2013-01-01

    Full Text Available The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as time- and frequency-domain properties. Time series analysis using Auto Regressive (AR model and Mean frequency which is tolerant to white Gaussian noise are used as feature extraction techniques. EMG Histogram is used as another feature vector that was seen to give more distinct classification. The work was done with SEMG dataset obtained from the NINAPRO DATABASE, a resource for bio robotics community. Eight classes of hand movements hand open, hand close, Wrist extension, Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite to little finger are taken into consideration and feature vectors are extracted. The feature vectors can be given to an artificial neural network for further classification in controlling the prosthetic arm which is not dealt in this paper.

  9. A sEMG model with experimentally based simulation parameters.

    Science.gov (United States)

    Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P

    2010-01-01

    A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.

  10. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis.

    Science.gov (United States)

    Tabard-Fougère, Anne; Rose-Dulcina, Kevin; Pittet, Vincent; Dayer, Romain; Vuillerme, Nicolas; Armand, Stéphane

    2018-02-01

    Electromyography (EMG) is an important parameter in Clinical Gait Analysis (CGA), and is generally interpreted with timing of activation. EMG amplitude comparisons between individuals, muscles or days need normalization. There is no consensus on existing methods. The gold standard, maximum voluntary isometric contraction (MVIC), is not adapted to pathological populations because patients are often unable to perform an MVIC. The normalization method inspired by the isometric grade 3 of manual muscle testing (isoMMT3), which is the ability of a muscle to maintain a position against gravity, could be an interesting alternative. The aim of this study was to evaluate the within- and between-day reliability of the isoMMT3 EMG normalizing method during gait compared with the conventional MVIC method. Lower limb muscles EMG (gluteus medius, rectus femoris, tibialis anterior, semitendinosus) were recorded bilaterally in nine healthy participants (five males, aged 29.7±6.2years, BMI 22.7±3.3kgm -2 ) giving a total of 18 independent legs. Three repeated measurements of the isoMMT3 and MVIC exercises were performed with an EMG recording. EMG amplitude of the muscles during gait was normalized by these two methods. This protocol was repeated one week later. Within- and between-day reliability of normalization tasks were similar for isoMMT3 and MVIC methods. Within- and between-day reliability of gait EMG normalized by isoMMT3 was higher than with MVIC normalization. These results indicate that EMG normalization using isoMMT3 is a reliable method with no special equipment needed and will support CGA interpretation. The next step will be to evaluate this method in pathological populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Experimental pain leads to reorganisation of trapezius electromyography during computer work with active and passive pauses

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    The aim of this laboratory study was to investigate acute effects of experimental muscle pain on spatial electromyographic (EMG) activity of the trapezius muscle during computer work with active and passive pauses. Twelve healthy male subjects performed four sessions of computer work for 2 min...... in one day, with passive (relax) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40 s without and with presence of experimental pain. Surface EMG signals were recorded from four parts of the trapezius. The centroid of exposure variation analysis along the time axis...... was lower during computer work with active pauses when compared with passive one in all muscle parts (P

  12. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy, and electromyography.

    Science.gov (United States)

    Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.

  13. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    Science.gov (United States)

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  14. Age related neuromuscular changes in sEMG of m. Tibialis Anterior using higher order statistics (Gaussianity & linearity test).

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.

  15. Natural mediotrusive contact: does it affect the masticatory and neck EMG activity during tooth grinding?

    Science.gov (United States)

    Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo

    2016-07-01

    There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. Fifteen subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, p = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.

  16. Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition.

    Science.gov (United States)

    Chen, Wen-Lin; Shih, Yuh-Chuan; Chi, Chia-Fen

    2010-06-01

    This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. Hand exposure in cold conditions is unavoidable and significantly affects manual performance. Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. The findings could be helpful to building safety guidelines for working in cold environments.

  17. A Study on EMG-based Biometrics

    Directory of Open Access Journals (Sweden)

    Jin Su Kim

    2017-05-01

    Full Text Available Biometrics is a technology that recognizes user's information by using unique physical features of his or her body such as face, fingerprint, and iris. It also uses behavioral features such as signature, electrocardiogram (ECG, electromyogram (EMG, and electroencephalogram (EEG. Among them, the EMG signal is a sign generated when the muscles move, which can be used in various fields such as motion recognition, personal identification, and disease diagnosis. In this paper, we analyze EMG-based biometrics and implement a motion recognition and personal identification system. The system extracted features using non-uniform filter bank and Waveform Length (WL, and reduces the dimension using Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. Afterward, it classified the features using Euclidean Distance (ED, Support Vector Machine (SVM and K Nearest Neighbors (KNN. As a result of the motion recognition experiment, 95% of acquired EMG data and 84.66% of UCI data were obtained and as a result of the personal recognition experiment, 85% of acquired EMG data and 88.66% of UCI data were obtained.

  18. Automated real-time detection of tonic-clonic seizures using a wearable EMG device

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Conradsen, Isa; Henning, Oliver

    2018-01-01

    OBJECTIVE: To determine the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) using a wearable surface EMG device. METHODS: We prospectively tested the technical performance and diagnostic accuracy of real-time seizure detection using a wearable surface EMG device....... The seizure detection algorithm and the cutoff values were prespecified. A total of 71 patients, referred to long-term video-EEG monitoring, on suspicion of GTCS, were recruited in 3 centers. Seizure detection was real-time and fully automated. The reference standard was the evaluation of video-EEG recordings...

  19. Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques.

    Science.gov (United States)

    Pereira, Suzana Matheus; Ruschel, Caroline; Hubert, Marcel; Machado, Leandro; Roesler, Helio; Fernandes, Ricardo Jorge; Vilas-Boas, João Paulo

    2015-01-01

    This study aimed to analyse the kinematic, kinetic and electromyographic characteristics of four front crawl flip turn technique variants. The variants distinguished from each other by differences in body position (i.e., dorsal, lateral, ventral) during rolling, wall support, pushing and gliding phases. Seventeen highly trained swimmers (17.9 ± 3.2 years old) participated in interventional sessions and performed three trials of each variant, being monitored with a 3-D video system, a force platform and an electromyography (EMG) system. Studied variables: rolling time and distance, wall support time, push-off time, peak force and horizontal impulse at wall support and push-off, centre of mass horizontal velocity at the end of the push-off, gliding time, centre of mass depth, distance, average and final velocity during gliding, total turn time and electrical activity of Gastrocnemius Medialis, Tibialis Anterior, Biceps Femoris and Vastus Lateralis muscles. Depending on the variant, total turn time ranged from 2.37 ± 0.32 to 2.43 ± 0.33 s, push-off force from 1.86 ± 0.33 to 1.92 ± 0.26 BW and centre of mass velocity during gliding from 1.78 ± 0.21 to 1.94 ± 0.22 m · s(-1). The variants were not distinguishable in terms of kinematical, kinetic and EMG parameters during the rolling, wall support, pushing and gliding phases.

  20. Electromyography in cervical dystonia: changes after botulinum and trihexyphenidyl

    NARCIS (Netherlands)

    Brans, J. W.; Aramideh, M.; Koelman, J. H.; Lindeboom, R.; Speelman, J. D.; Ongerboer de Visser, B. W.

    1998-01-01

    BACKGROUND: The value of physical examination in detecting involved neck muscles in cervical dystonia (CD) is uncertain and little is known about changes in electromyographic (EMG) features after botulinum toxin type A (BTA) treatment. METHODS: In a double-blind, randomized study we recorded the EMG

  1. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis.

    Science.gov (United States)

    Graham, Ryan B; Wachowiak, Mark P; Gurd, Brendon J

    2015-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in

  2. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis.

    Directory of Open Access Journals (Sweden)

    Ryan B Graham

    Full Text Available Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG. Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs to our previous data to comprehensively evaluate: 1 differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power, and 2 muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue

  3. Two cases of childhood narcolepsy mimicking epileptic seizures in video-EEG/EMG.

    Science.gov (United States)

    Yanagishita, Tomoe; Ito, Susumu; Ohtani, Yui; Eto, Kaoru; Kanbayashi, Takashi; Oguni, Hirokazu; Nagata, Satoru

    2018-06-06

    Narcolepsy is characterized by excessive sleepiness, hypnagogic hallucinations, and sleep paralysis, and can occur with or without cataplexy. Here, we report two children with narcolepsy presenting with cataplexy mimicking epileptic seizures as determined by long-term video-electroencephalography (EEG) and electromyography (EMG) monitoring. Case 1 was a 15-year-old girl presenting with recurrent episodes of "convulsions" and loss of consciousness, who was referred to our hospital with a diagnosis of epilepsy showing "convulsions" and "complex partial seizures". The long-term video-polygraph showed a clonic attack lasting for 15 s, which corresponded to 1-2 Hz with interruption of mentalis EMG discharges lasting for 70-300 ms without any EEG changes. Narcolepsy was suspected due to the attack induced by hearty laughs and the presence of sleep attacks, and confirmed by low orexin levels in cerebrospinal fluid (CSF). Case 2 was an 11-year-old girl presenting with recurrent episodes of myoclonic attacks simultaneously with dropping objects immediately after hearty laughs, in addition to sleep attacks, hypnagogic hallucinations, and sleep paralysis. The long-term video-polygraph showed a subtle attack, characterized by dropping chopsticks from her hand, which corresponded to an interruption of ongoing deltoid EMG discharges lasting 140 ms without any EEG changes. A diagnosis of narcolepsy was confirmed by the low orexin levels in CSF. These cases demonstrate that children with narcolepsy may have attacks of cataplexy that resemble clonic or myoclonic seizures. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters.

    Science.gov (United States)

    Menegaldo, Luciano L

    2017-12-01

    State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.

  5. The Effect of Local Anesthetic Volume Within the Adductor Canal on Quadriceps Femoris Function Evaluated by Electromyography

    DEFF Research Database (Denmark)

    Grevstad, Ulrik; Jæger, Pia; Kløvgaard, Johan

    2016-01-01

    BACKGROUND: Single-injection adductor canal block (ACB) provides analgesia after knee surgery. Which nerves that are blocked by an ACB and what influence-if any-local anesthetic volume has on the effects remain undetermined. We hypothesized that effects on the nerve to the vastus medialis muscle......, they received a femoral nerve block and a placebo ACB. The effect on the vastus medialis (primary endpoint) and the vastus lateralis was evaluated using noninvasive electromyography (EMG). Quadriceps femoris muscle strength was evaluated using a dynamometer. RESULTS: There was a statistically significant......L was used (P = 0.0001). No statistically significant differences were found between volume and effect on the vastus lateralis (P = 0.81) or in muscle strength (P = 0.15). CONCLUSIONS: For ACB, there is a positive correlation between local anesthetic volume and effect on the vastus medialis muscle. Despite...

  6. Proximal Neuromuscular Control Protects Against Hamstring Injuries in Male Soccer Players: A Prospective Study With Electromyography Time-Series Analysis During Maximal Sprinting.

    Science.gov (United States)

    Schuermans, Joke; Danneels, Lieven; Van Tiggelen, Damien; Palmans, Tanneke; Witvrouw, Erik

    2017-05-01

    With their unremittingly high incidence rate and detrimental functional repercussions, hamstring injuries remain a substantial problem in male soccer. Proximal neuromuscular control ("core stability") is considered to be of key importance in primary and secondary hamstring injury prevention, although scientific evidence and insights on the exact nature of the core-hamstring association are nonexistent at present. The muscle activation pattern throughout the running cycle would not differ between participants based on injury occurrence during follow-up. Case-control study; Level of evidence, 3. Sixty amateur soccer players participated in a multimuscle surface electromyography (sEMG) assessment during maximal acceleration to full-speed sprinting. Subsequently, hamstring injury occurrence was registered during a 1.5-season follow-up period. Hamstring, gluteal, and trunk muscle activity time series during the airborne and stance phases of acceleration were evaluated and statistically explored for a possible causal association with injury occurrence and absence from sport during follow-up. Players who did not experience a hamstring injury during follow-up had significantly higher amounts of gluteal muscle activity during the front swing phase ( P = .027) and higher amounts of trunk muscle activity during the backswing phase of sprinting ( P = .042). In particular, the risk of sustaining a hamstring injury during follow-up lowered by 20% and 6%, with a 10% increment in normalized muscle activity of the gluteus maximus during the front swing and the trunk muscles during the backswing, respectively ( P hamstring injury occurrence in male soccer players. Higher amounts of gluteal and trunk muscle activity during the airborne phases of sprinting were associated with a lower risk of hamstring injuries during follow-up. Hence, the present results provide a basis for improved, evidence-based rehabilitation and prevention, particularly focusing on increasing neuromuscular

  7. History of electromyography and nerve conduction studies: A tribute to the founding fathers.

    Science.gov (United States)

    Kazamel, Mohamed; Warren, Paula Province

    2017-09-01

    The early development of nerve conduction studies (NCS) and electromyography (EMG) was linked to the discovery of electricity. This relationship had been concluded by observing the effect of applying electricity to the body of an animal and discovering that nerves and muscles themselves could produce electricity. We attempt to review the historical evolution of NCS and EMG over the last three centuries by reviewing the landmark publications of Galvani, Adrian, Denny-Brown, Larrabee, and Lambert. In 1771, Galvani showed that electrical stimulation of animal muscle tissue produced contraction and, thereby, the concept of animal electricity was born. In 1929, Adrian devised a method to record a single motor unit potential by connecting concentric needle electrodes to an amplifier and a loud speaker. In 1938, Denny-Brown described the fasciculation potentials and separated them from fibrillations. Toward the end of World War II, Larrabee began measuring the compound muscle action potential in healthy and injured nerves of war victims. In 1957, Lambert and Eaton described the electrophysiologic features of a new myasthenic syndrome associated with lung carcinoma. Overall, research on this topic was previously undertaken by neurophysiologists and then later by neurologists, with Adrian most likely being the first neurologist to be involved. The field greatly benefited from the invention of equipment that was capable of amplifying small bioelectrical currents by the beginning of the 20th century. Significant scientific and technical advances were later made during and after World War II which provided a large patient population with nerve injuries to study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fatigue effects upon sticking region and electromyography in a six-repetition maximum bench press.

    Science.gov (United States)

    van den Tillaar, Roland; Saeterbakken, Atle Hole

    2013-01-01

    The aim of the study was to examine the sticking region and concomitant neuromuscular activation of the prime movers during six-repetition maximum (RM) bench pressing. We hypothesised that both peak velocities would decrease and that the electromyography (EMG) of the prime movers (deltoid, major pectoralis and triceps) would increase during the pre-sticking and sticking region during the six repetitions due to fatigue. Thirteen resistance-trained males (age 22.8 ± 2.2 years, stature 1.82 ± 0.06 m, body mass 83.4 ± 7.6 kg) performed 6-RM bench presses. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, and triceps brachii during the pre-, sticking and post-sticking region of each repetition in a 6-RM bench press were analysed. For both the sticking as the post-sticking region, the time increased significantly from the first to the sixth repetition. Vertical barbell height at the start of sticking region was lower, while the height at the end of the sticking region and post-sticking region did not change during the six repetitions. It was concluded that in 6-RM bench pressing performance, the sticking region is a poor mechanical force region due to the unchanged barbell height at the end of the sticking region. Furthermore, when fatigue occurs, the pectoralis and the deltoid muscles are responsible for surpassing the sticking region as indicated by their increased activity during the pre- and sticking region during the six-repetitions bench press.

  9. Neck Kinematics and Electromyography While Wearing Head Supported Mass During Running.

    Science.gov (United States)

    Hanks, Matthew M; Sefton, JoEllen M; Oliver, Gretchen D

    2018-01-01

    Advanced combat helmets (ACH) coupled with night-vision goggles (NVG) are required for tactical athletes during training and service. Head and neck injuries due to head supported mass (HSM) are a common occurrence in military personnel. The current study aimed to investigate the effects of HSM on neck muscle fatigue that may lead to chronic stress and injury of the head and neck. Subjects wore an ACH and were affixed with electromagnetic sensors to obtain kinematic data, as well as EMG electrodes to obtain muscle activations of bilateral sternocleidomastoid, upper trapezius, and paraspinal muscles while running on a treadmill. Subjects performed a 2-min warmup at a walking pace, a 5-min warmup jog, running at a pace equal to 90% maximum heart rate until absolute fatigue, and lastly a 2-min cooldown at a walking pace. Kinematic and EMG data were collected over each 2-min interval. Days later, the same subjects wore the same ACH in addition to the NVG and performed the same protocol as the first session. This study showed significant differences in muscle activation of the right upper trapezius [F(1,31) = 10.100] and both sternocleidomastoid [F(1,31) = 12.280] muscles from pre-fatigue to absolute fatigue. There were no significant differences noted in the kinematic variables. This study suggests that HSM can fatigue bilateral neck flexors and rotators, as well as fatigue the neck extensors and rotators on the contralateral side of the mounted NVG.Hanks MM, Sefton JM, Oliver GD. Neck kinematics and electromyography while wearing head supported mass during running. Aerosp Med Hum Perform. 2018; 89(1):9-13.

  10. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K

    2011-01-01

    The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

  11. EMG monitoring during functional non-surgical therapy of Achilles tendon rupture.

    Science.gov (United States)

    Hüfner, Tobias; Wohifarth, Kai; Fink, Matthias; Thermann, H; Rollnik, Jens D

    2002-07-01

    After surgical therapy of Achilles tendon rupture, neuromuscular changes may persist, even one year after surgery. We were interested whether these changes are also evident following a non-surgical functional therapy (Variostabil therapy boot/Adidas). Twenty-one patients with complete Achilles tendon rupture were enrolled in the study (mean age 38.5 years, range 24 to 60; 18 men, three women) and followed-up clinically and with surface EMG of the gastrocnemius muscles after four, eight, 12 weeks, and one year after rupture. EMG differences between the affected and non-affected side could only be observed at baseline and after four weeks following Achilles tendon rupture. The results from our study show that EMG changes are not found following non-surgical functional therapy.

  12. Reliability of MUAP properties in multi-channel array EMG recordings of trapezius and SCM

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Preece, S.; Hermens, Hermanus J.

    2007-01-01

    Muscle activity can be assessed non-invasively by means of surface electrodes places at the skin overlyin a muscle. When multiy-channel array electrodes are used, it is possible to extract motor unit action potentials (MUAP's) from the EMG signals with a segmentation approach based on the Continuous

  13. Improving the Transparency of an Exoskeleton Knee Joint Based on the Understanding of Motor Intent Using Energy Kernel Method of EMG.

    Science.gov (United States)

    Chen, Xing; Zeng, Yan; Yin, Yuehong

    2017-06-01

    Transparent control is still highly challenging for robotic exoskeletons, especially when a simple strategy is expected for a large-impedance device. To improve the transparency for late-phase rehabilitation when "patient-in-charge" mode is necessary, this paper aims at adaptive identification of human motor intent, and proposed an iterative prediction-compensation motion control scheme for an exoskeleton knee joint. Based on the analysis of human-machine interactive mechanism (HMIM) and the semiphenomenological biomechanical model of muscle, an online adaptive predicting controller is designed using a focused time-delay neural network (FTDNN) with the inputs of electromyography (EMG), position and interactive force, where the activation level of muscle is estimated from EMG using a novel energy kernel method. The compensating controller is designed using the normative force-position control paradigm. Initial experiments on the human-machine integrated knee system validated the effectiveness and ease of use of the proposed control scheme.

  14. Olfactory ensheathing glia transplantation combined with LASERPONCTURE in human spinal cord injury: Results measured by electromyography monitoring.

    Science.gov (United States)

    Bohbot, Albert

    2010-01-01

    Preliminary results were measured by electromyography monitoring (electromyoscan) on three subjects suffering from spinal cord injury and who underwent a double therapy. The aim of this study was to evaluate regained voluntary activity below the injury in subjects who received a double therapy: 1) an olfactory ensheathing glia (OEG) transplantation using procedures developed by Dr. Hongyun Huang at the Xishan Hospital and Rehabilitation Centre, Beijing, China, and 2) LASERPONCTURE developed by Albert Bohbot, Laboratoire de Recherches sur le LASERPONCTURE, La Chapelle Montlinard, France. Materials uses were the LASERPONCTURE device developed by Albert Bohbot; the PROCOMP5 equipment with softwares BIOGRAPH INFINITI 5 and REHAB SUITE; the sensors MYOSCAN-PRO EMG (SA9401M-50) to record muscle activity, and FLEX/PRO-SA9309M to record skin conductance were fixed on the skin. An infrared laser, whose frequencies and power settings cannot be disclosed due to its proprietary nature, was applied after an OEG injection performed according to Dr. Hongyun Huang's procedures. Three cases, two males and one female, were selected for this study. Presentation and comments of the graphs recordings of voluntary muscle activity below the injury are provided. This preliminary study suggests that the double therapy restores some voluntary muscle activity as measured by electromyography monitoring.

  15. Young, healthy subjects can reduce the activity of calf muscles when provided with EMG biofeedback in upright stance

    Directory of Open Access Journals (Sweden)

    Taian M. Vieira

    2016-04-01

    Full Text Available Recent evidence suggests the minimisation of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimising the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimise the level of muscle activation during standing without increasing the excursion of the centre of pressure (CoP. CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from ten healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects’ responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P<0.05 and an increase in tibialis anterior EMG (~10%; P<0.05. Furthermore, CoP mean position significantly shifted backward (~30 mm. In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at

  16. Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG Signals, Using Nonlinear Autoregressive Exogenous (NARX Model

    Directory of Open Access Journals (Sweden)

    Ali Akbar Akbari

    2014-08-01

    Full Text Available Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG, as an experimental technique,is concerned with the development, recording, and analysis of myoelectric signals. EMG-based research is making progress in the development of simple, robust, user-friendly, and efficient interface devices for the amputees. Materials and Methods Prediction of muscular activity and motion patterns is a common, practical problem in prosthetic organs. Recurrent neural network (RNN models are not only applicable for the prediction of time series, but are also commonly used for the control of dynamical systems. The prediction can be assimilated to identification of a dynamic process. An architectural approach of RNN with embedded memory is Nonlinear Autoregressive Exogenous (NARX model, which seems to be suitable for dynamic system applications. Results Performance of NARX model is verified for several chaotic time series, which are applied as input for the neural network. The results showed that NARX has the potential to capture the model of nonlinear dynamic systems. The R-value and MSE are  and  , respectively. Conclusion  EMG signals of deltoid and pectoralis major muscles are the inputs of the NARX  network. It is possible to obtain EMG signals of muscles in other arm motions to predict the lost functions of the absent arm in above-elbow amputees, using NARX model.

  17. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography.

    Science.gov (United States)

    Hegyi, A; Péter, A; Finni, T; Cronin, N J

    2018-03-01

    Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Design of microcontroller-based EMG and the analysis of EMG signals.

    Science.gov (United States)

    Güler, Nihal Fatma; Hardalaç, Firat

    2002-04-01

    In this work, a microcontroller-based EMG designed and tested on 40 patients. When the patients are in rest, the fast Fourier transform (FFT) analysis was applied to EMG signals recorded from right leg peroneal region. The histograms are constructed from the results of the FFT analysis. The analysis results shows that the amplitude of fibrillation potential of the muscle fiber of 30 patients measured from peroneal region is low and the duration is short. This is the reason why the motor nerves degenerated and 10 patients were found to be healthy.

  19. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees

    DEFF Research Database (Denmark)

    Waris, Asim; Niazi, Imran Khan; Jamil, Mohsin

    2018-01-01

    While several studies have demonstrated the short-term performance of pattern recognition systems, long-term investigations are very limited. In this study, we investigated changes in classification performance over time. Ten able-bodied individuals and six amputees took part in this study. EMG s...... difference between training and testing day increases. Furthermore, for iEMG, performance in amputees was directly proportional to the size of the residual limb.......While several studies have demonstrated the short-term performance of pattern recognition systems, long-term investigations are very limited. In this study, we investigated changes in classification performance over time. Ten able-bodied individuals and six amputees took part in this study. EMG...... was computed for all possible combinations between the days. For all subjects, surface sEMG (7.2 ± 7.6%), iEMG (11.9 ± 9.1%) and cEMG (4.6 ± 4.8%) were significantly different (P 

  20. Muscle networks: Connectivity analysis of EMG activity during postural control

    Science.gov (United States)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  1. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Chingyi Nam

    2017-12-01

    Full Text Available BackgroundImpaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG-driven neuromuscular electrical stimulation (NMES robotic hand was designed previously, whereas its rehabilitation effects were not investigated.ObjectivesThis study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke.MethodA clinical trial with single-group design was conducted on chronic stroke participants (n = 15 who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA, the Action Research Arm Test (ARAT, the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS. Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs of the target muscles in the upper limb.ResultsSignificant improvements in the FMA shoulder/elbow and wrist/hand scores (P < 0.05, the ARAT (P < 0.05, and in the MAS (P < 0.05 were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD and biceps brachii (P < 0.05, as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii (P < 0.05.ConclusionThe upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later.Trial registration

  2. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke.

    Science.gov (United States)

    Nam, Chingyi; Rong, Wei; Li, Waiming; Xie, Yunong; Hu, Xiaoling; Zheng, Yongping

    2017-01-01

    Impaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand was designed previously, whereas its rehabilitation effects were not investigated. This study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke. A clinical trial with single-group design was conducted on chronic stroke participants ( n  = 15) who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA), the Action Research Arm Test (ARAT), the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS). Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs) of the target muscles in the upper limb. Significant improvements in the FMA shoulder/elbow and wrist/hand scores ( P  < 0.05), the ARAT ( P  < 0.05), and in the MAS ( P  < 0.05) were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD) and biceps brachii ( P  < 0.05), as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii ( P  < 0.05). The upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later. ClinicalTrials.gov. NCT02117089; date of registration: April

  3. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    Science.gov (United States)

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P hypnosis, it appears that part of that EMG is of biological origin. © 2015 John Wiley & Sons Ltd.

  4. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    Science.gov (United States)

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  5. sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.

    Science.gov (United States)

    Castro, Maria Claudia F; Colombini, Esther L; Aquino, Plinio T; Arjunan, Sridhar P; Kumar, Dinesh K

    2014-11-25

    Automatic and accurate identification of elbow angle from surface electromyogram (sEMG) is essential for myoelectric controlled upper limb exoskeleton systems. This requires appropriate selection of sEMG features, and identifying the limitations of such a system.This study has demonstrated that it is possible to identify three discrete positions of the elbow; full extension, right angle, and mid-way point, with window size of only 200 milliseconds. It was seen that while most features were suitable for this purpose, Power Spectral Density Averages (PSD-Av) performed best. The system correctly classified the sEMG against the elbow angle for 100% cases when only two discrete positions (full extension and elbow at right angle) were considered, while correct classification was 89% when there were three discrete positions. However, sEMG was unable to accurately determine the elbow position when five discrete angles were considered. It was also observed that there was no difference for extension or flexion phases.

  6. Controlling pneumatic artificial muscles in exoskeletons with surface electromyography

    NARCIS (Netherlands)

    Groenhuis, Vincent; Chandrapal, Mervin; Stramigioli, Stefano; Chen, XiaoQi

    2014-01-01

    Powered exoskeletons are gaining more interest in the last few years, as useful devices to provide assistance to elderly and disabled people. Many different types of powered exoskeletons have been studied in the past. In this research paper, a soft lower limb exoskeleton driven by pneumatic

  7. Surface electromyography in personalised modelling of the head and neck

    NARCIS (Netherlands)

    Eskes, Merijn

    2017-01-01

    Preoperative estimation of function loss is subjective and unreliable since it depends on the personal expertise of individual physicians. Moreover, each patient is unique and will respond differently to the various treatment options. The Virtual Therapy Group is developing tools to make this tough

  8. Observation and imitation of actions performed by humans, androids, and robots: an EMG study

    Science.gov (United States)

    Hofree, Galit; Urgen, Burcu A.; Winkielman, Piotr; Saygin, Ayse P.

    2015-01-01

    Understanding others’ actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others’ behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants’ arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action

  9. Discrimination of Parkinsonian Tremor From Essential Tremor by Voting Between Different EMG Signal Processing Techniques

    Directory of Open Access Journals (Sweden)

    A Hossen

    2014-06-01

    Full Text Available Parkinson's disease (PD and essential tremor (ET are the two most common disorders that cause involuntary muscle shaking movements, or what is called "tremor”. PD is a neurodegenerative disease caused by the loss of dopamine receptors which control and adjust the movement of the body. On the other hand, ET is a neurological movement disorder which also causes tremors and shaking, but it is not related to dopamine receptor loss; it is simply a tremor. The differential diagnosis between these two disorders is sometimes difficult to make clinically because of the similarities of their symptoms; additionally, the available tests are complex and expensive. Thus, the objective of this paper is to discriminate between these two disorders with simpler, cheaper and easier ways by using electromyography (EMG signal processing techniques. EMG and accelerometer records of 39 patients with PD and 41 with ET were acquired from the Hospital of Kiel University in Germany and divided into a trial group and a test group. Three main techniques were applied: the wavelet-based soft-decision technique, statistical signal characterization (SSC of the spectrum of the signal, and SSC of the amplitude variation of the Hilbert transform. The first technique resulted in a discrimination efficiency of 80% on the trial set and 85% on the test set. The second technique resulted in an efficiency of 90% on the trial set and 82.5% on the test set. The third technique resulted in an 87.5% efficiency on the trial set and 65.5% efficiency on the test set. Lastly, a final vote was done to finalize the discrimination using these three techniques, and as a result of the vote, accuracies of 92.5%, 85.0% and 88.75% were obtained on the trial data, test data and total data, respectively.

  10. Effect of instructions on EMG during the bench press in trained and untrained males.

    Science.gov (United States)

    Daniels, Rebecca J; Cook, Summer B

    2017-10-01

    Strength and rehabilitation professionals strive to emphasize certain muscles used during an exercise and it may be possible to alter muscle recruitment strategies with varying instructions. This study aimed to determine whether resistance trained and untrained males could selectively activate the pectoralis major or triceps brachii during the bench press according to various instructions. This study included 13 trained males (21.5±2.9years old, 178.7±7.0cm, 85.7±10.7kg) and 12 untrained males (20.3±1.6years old, 178.8±9.4cm, 74.6±17.3kg). Participants performed a bench press one-repetition maximum (1-RM) test, 3 uninstructed repetitions at 80% 1-RM and two more sets of three repetitions with instructions to isolate the chest or arm muscles. Electromyography (EMG) was obtained from the pectoralis major, anterior deltoid, and the long head and short head of the triceps brachii. Maximum EMG activity normalized to 1-RM for each muscle was averaged over the three repetitions for each set and compared between the uninstructed, chest-instructed and arm-instructed conditions among the groups. The trained participants had a greater 1-RM (126.2±30.6kg) than the untrained participants (61.6±14.8kg) (P0.05). When the group data was combined, short head of the triceps activity was significantly lower in the chest instruction (80.1±19.3%) when compared to the uninstructed (85.6±23.3%; P=0.01) and arm-instructed (86.0±23.2; P=0.01) conditions. It can be concluded that instructions can affect muscle activation during the bench press, and this is not dependent on training status. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Observation and Imitation of Actions Performed by Humans, Androids and Robots: An EMG study

    Directory of Open Access Journals (Sweden)

    Galit eHofree

    2015-06-01

    Full Text Available Understanding others’ actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others’ behavior via embodied motor simulation. Recently, action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One key question this approach enables is what aspects of similarity between the observer and the observed agent facilitate motor simulation? Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are tuned to process other biological entities. In this study, we used humanoid robots with different degrees of humanlikeness in appearance and motion along with electromyography (EMG to measure muscle activity in participants’ arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion, a Robot (mechanical appearance and motion and an Android (biological appearance, mechanical motion. Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action understanding and the underlying

  12. Anal sphincter electromyography in patients with Anorectal Dysfunctions

    International Nuclear Information System (INIS)

    Trinchet Soler, Rafael; Hidalgo Marrero, Yanet; Espichicoque Megret, Arianne; Manzano Suarez, Jianeya; Perez Gonzales, Ruth Maite

    2009-01-01

    The purpose of this work is to evaluate the electromyography value of anal sphincter in patients with anorectal dysfunctions. Anorectal dysfunctions are frequent reason of pediatric consultation in children, especially with anal incontinence. A study of series of cases in patient with anorectal dysfunctions was carried out from January 2002 to January of 2006. 65 patients were studied. Anorectal malformations (ARM) represented the predominant affection with 38 patients (58.5%), prevailing the male sex in 25 patients (65.8%). Encopresis and intestinal agagliosis dicrease was observed. Sphincter was found before surgical treatment through electromyography in patients with anorectal malformations and colostomy; in those with definitive operation and open colostomy, it avoided the operation in a patient that did not have muscular activity of the external sphincter. In children already operated and with closed colostomy several electromyography changes were observed in correspondence with different incontinence grades. In encopresis cases the study was useful to rule out sphincter functional alterations. Electromyography was pathological in all the operated patients of intestinal aganglionosis. This procedure was very useful for anal incontinence study that helped to determine and establish the prognosis. (author)

  13. Laryngeal Electromyography for Prognosis of Vocal Fold Paralysis.

    Science.gov (United States)

    Pardo-Maza, Adriana; García-Lopez, Isabel; Santiago-Pérez, Susana; Gavilán, Javier

    2017-01-01

    This study aimed to determine the value of laryngeal electromyography in the prognosis of vocal fold paralysis. This is a retrospective descriptive study. This study included 80 patients diagnosed with unilateral or bilateral vocal fold paralysis on flexible laryngoscopy between 2002 and 2014 in a tertiary medical center. Laryngeal electromyography using a standardized protocol was performed; the outcome measures were classified and analyzed into two groups according to the degree of injury. Group 1 included patients with mild to moderate injury, and group 2 included patients with severe to complete injury. Prognosis was correlated with vocal fold motion recovery status with a minimum of 6 months of follow-up since the symptoms onset using positive and negative predictive values. Sixty patients showed acute or chronic recurrent laryngeal neuropathy in laryngeal electromyography. Twelve of 41 patients included in group 1 recovered motion, and 30 of 35 patients included in group 2 did not recover, resulting in 88.2% of positive predictive value and 35.7% of negative predictive value. Our data confirm that laryngeal electromyography is a useful clinical tool in predicting poor recovery in patients with vocal fold paralysis. It allows identification of candidates for early intervention. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton

    Directory of Open Access Journals (Sweden)

    Aaron J. Young

    2017-06-01

    Full Text Available BackgroundDespite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller.MethodsWe tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects’ metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers using a force treadmill and motion capture.ResultsCompared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% (p = 0.005 and biological hip torque control reduced metabolic cost by 7% (p = 0.261. Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control.ConclusionMyoelectric control had more advantages (metabolic cost and muscle activity reduction compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific

  15. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    Science.gov (United States)

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a

  16. Evaluación electromiográfica de los músculos masticadores durante la fuerza máxima de mordedura Electromyography evaluations of the masticator muscles during the maximum bite force

    Directory of Open Access Journals (Sweden)

    M.J.P. Coelho-Ferraz

    2008-12-01

    Full Text Available La actividad de los músculos masetero y de la porción anterior temporal de ambos lados, derecho e izquierdo, respectivamente, durante la fuerza máxima de mordedura fue estudiada en voluntarios sanos. El estudio incluyó a 17 voluntarios adultos de ambos sexos, edad promedia de 25 años, que no evidenciaban ningún indicio de disfunción temporomandibular y eran relacionados con la Facultad de Odontología de Piracicaba. Se registraron los datos electromiográficos en ambos lados de la cara del masetero y de la porción anterior de los músculos temporal y suprahioideo en las posiciones postural e isométrica. Se utilizaron electrodos de superficie pasivos para niños, de Ag/AgCl, con forma circular y descargables de Meditrace® Kendall-LTP, modelo Chicopee MA01. Éstos se conectaron a un preamplificador con una ganancia de 20x que formaba un circuito de diferenciales. Se captaron los registros de las señales eléctricas utilizando un equipo EMG-8OOC de EMG System of Brazil, Ltd., de ocho canales, a una frecuencia de 2 KHz con 16 bitios de resolución y un filtro digital con un paso de banda de 20 a 500 Hz. Se utilizó también un transductor de presión que consistía en un tubo de goma con un sensor de presión (MPX 5700* (Motorola SPS, Austin, TX, EE.UU. para registrar la fuerza máxima de mordedura. El análisis estadístico incluyó la correlación lineal, la prueba t emparejada y el análisis de la varianza. Se consideró estadísticamente significativa una probabilidad de pHealthy individuals were examined in terms of the pattern of activity of the masseter and temporal muscles in their anterior portion of both right and left sides, respectively, with the maximum bite force. The study consisted in seventeen adult volunteers with no sign of apparent temporomandibular dysfunction, of both genders, connected to the School of Dentistry of Piracicaba, with average age of 25 years old. The electromyography data were obtained, bilaterally, of

  17. Functional Neuromuscular Stimulation Controlled by Surface Electromyographic Signals Produced by Volitional Activation of the Same Muscle

    DEFF Research Database (Denmark)

    Sennels, Søren; Biering-Sørensen, Fin; Andersen, Ole Trier

    1997-01-01

    In order to use the volitional electromyography (EMG) as a control signal for the stimulation of the same muscle, it is necessary to eliminate the stimulation artifacts and the muscle responses caused by the stimulation. The stimulation artifacts, caused by the electric field in skin and tissue...

  18. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Luis Manuel Vaca Benitez

    2013-01-01

    Full Text Available The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive systems. In this work, we first give an overview of different kinds of neuromuscular diseases, review different forms of therapy, and explain possible fields of rehabilitation and benefits of robotic aided rehabilitation. Next, the mechanical design and control scheme of an upper limb orthosis for rehabilitation are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance provided by the device. As input to the model fused sensor data from the orthosis and physiology data in terms of electromyography (EMG signals are used.

  19. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

    Science.gov (United States)

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  20. Imaging seizure activity: a combined EEG/EMG-fMRI study in reading epilepsy.

    Science.gov (United States)

    Salek-Haddadi, Afraim; Mayer, Thomas; Hamandi, Khalid; Symms, Mark; Josephs, Oliver; Fluegel, Dominique; Woermann, Friedrich; Richardson, Mark P; Noppeney, Uta; Wolf, Peter; Koepp, Matthias J

    2009-02-01

    To characterize the spatial relationship between activations related to language-induced seizure activity, language processing, and motor control in patients with reading epilepsy. We recorded and simultaneously monitored several physiological parameters [voice-recording, electromyography (EMG), electrocardiography (ECG), electroencephalography (EEG)] during blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in nine patients with reading epilepsy. Individually tailored language paradigms were used to induce and record habitual seizures inside the MRI scanner. Voxel-based morphometry (VBM) was used for structural brain analysis. Reading-induced seizures occurred in six out of nine patients. One patient experienced abundant orofacial reflex myocloni during silent reading in association with bilateral frontal or generalized epileptiform discharges. In a further five patients, symptoms were only elicited while reading aloud with self-indicated events. Consistent activation patterns in response to reading-induced myoclonic seizures were observed within left motor and premotor areas in five of these six patients, in the left striatum (n = 4), in mesiotemporal/limbic areas (n = 4), in Brodmann area 47 (n = 3), and thalamus (n = 2). These BOLD activations were overlapping or adjacent to areas physiologically activated during language and facial motor tasks. No subtle structural abnormalities common to all patients were identified using VBM, but one patient had a left temporal ischemic lesion. Based on the findings, we hypothesize that reflex seizures occur in reading epilepsy when a critical mass of neurons are activated through a provoking stimulus within corticoreticular and corticocortical circuitry subserving normal functions.

  1. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    Science.gov (United States)

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  2. Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors.

    Science.gov (United States)

    Kim, Seongjung; Kim, Jongman; Ahn, Soonjae; Kim, Youngho

    2018-04-18

    Deaf people use sign or finger languages for communication, but these methods of communication are very specialized. For this reason, the deaf can suffer from social inequalities and financial losses due to their communication restrictions. In this study, we developed a finger language recognition algorithm based on an ensemble artificial neural network (E-ANN) using an armband system with 8-channel electromyography (EMG) sensors. The developed algorithm was composed of signal acquisition, filtering, segmentation, feature extraction and an E-ANN based classifier that was evaluated with the Korean finger language (14 consonants, 17 vowels and 7 numbers) in 17 subjects. E-ANN was categorized according to the number of classifiers (1 to 10) and size of training data (50 to 1500). The accuracy of the E-ANN-based classifier was obtained by 5-fold cross validation and compared with an artificial neural network (ANN)-based classifier. As the number of classifiers (1 to 8) and size of training data (50 to 300) increased, the average accuracy of the E-ANN-based classifier increased and the standard deviation decreased. The optimal E-ANN was composed with eight classifiers and 300 size of training data, and the accuracy of the E-ANN was significantly higher than that of the general ANN.

  3. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    Directory of Open Access Journals (Sweden)

    Luka Peternel

    Full Text Available In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  4. The Comparing the Leg Muscles Electromyography during Single Leg Drop Landing in Pesplanus and Normal Men

    Directory of Open Access Journals (Sweden)

    mostafa bazvand

    2016-03-01

    Full Text Available Objective: pesplanus is one of the changes that brings about changes in muscle activation patterns. Being aware of muscles activity changes in various standing positions among pesplanus patients provides insights into preventing lower extremity injuries in this population. The aim of this study was to compare leg muscles electromyography during various standing positions in pesplanus and normal subjects. Methods: 60 healthy male university students, 30 subjects with pesplanus deformity (with average age 23/54±3/57 year, average height 175/34±7/62 cm, average weight 74/87±10/72 kg and 30 normal subjects (with average age 22/97±2/38 year, average height 176/6±5/59 cm, average weight 73/58±8/36 kg participated in this comparative study. Deformity of pesplanus was assessed with navicular drop test. Each subject performed single-leg landing dropping from 30cm height onto a force platform where muscles activity was recorded with EMG device. For data analysis, Matlab and Spss softwares were used and independent sample t-test was used to compare the dependent variables at a significance level of P &le 0/05. Results: Significant differences were observed between the two groups for the activities of the longus peroneus and anterior tibialis muscles ( p&le0/05 while no significant differences were observed in other muscles. Conclusion: The changes in the normal structure of the foot might affect muscle activities during standing, which can cause changes in the injury patterns. Therefore, it is proposed that focusing on corrective exercises and therapy plan can reduce these risks.

  5. Generating Human-Like Velocity-Adapted Jumping Gait from sEMG Signals for Bionic Leg’s Control

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2017-01-01

    Full Text Available In the case of dynamic motion such as jumping, an important fact in sEMG (surface Electromyogram signal based control on exoskeletons, myoelectric prostheses, and rehabilitation gait is that multichannel sEMG signals contain mass data and vary greatly with time, which makes it difficult to generate compliant gait. Inspired by the fact that muscle synergies leading to dimensionality reduction may simplify motor control and learning, this paper proposes a new approach to generate flexible gait based on muscle synergies extracted from sEMG signal. Two questions were discussed and solved, the first one concerning whether the same set of muscle synergies can explain the different phases of hopping movement with various velocities. The second one is about how to generate self-adapted gait with muscle synergies while alleviating model sensitivity to sEMG transient changes. From the experimental results, the proposed method shows good performance both in accuracy and in robustness for producing velocity-adapted vertical jumping gait. The method discussed in this paper provides a valuable reference for the sEMG-based control of bionic robot leg to generate human-like dynamic gait.

  6. Use of sEMG in identification of low level muscle activities: features based on ICA and fractal dimension.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Arjunan, Sridhar

    2009-01-01

    This paper has experimentally verified and compared features of sEMG (Surface Electromyogram) such as ICA (Independent Component Analysis) and Fractal Dimension (FD) for identification of low level forearm muscle activities. The fractal dimension was used as a feature as reported in the literature. The normalized feature values were used as training and testing vectors for an Artificial neural network (ANN), in order to reduce inter-experimental variations. The identification accuracy using FD of four channels sEMG was 58%, and increased to 96% when the signals are separated to their independent components using ICA.

  7. Electromyography variables during the golf swing: a literature review.

    Science.gov (United States)

    Marta, Sérgio; Silva, Luís; Castro, Maria António; Pezarat-Correia, Pedro; Cabri, Jan

    2012-12-01

    The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers. Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A mechatronics platform to study prosthetic hand control using EMG signals.

    Science.gov (United States)

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time

  9. EMG biofeedback of the abductor pollicis brevis in piano performance.

    Science.gov (United States)

    Montes, R; Bedmar, M; Sol Martin, M

    1993-06-01

    The aim of the present study was to apply EMG biofeedback as an auxiliary to piano teaching techniques. We studied the changes in integrated electromyographic activity, using the abductor pollicis brevis functioning as an agonist during the teaching of identical selective movements of piano playing in two groups, one with EMG biofeedback and the other following traditional method of instruction. The analysis of variance revealed an increase in the peak amplitude and the relaxation rate values for the biofeedback group. These results have implications for the application of piano playing techniques and reveal EMG biofeedback as an aid in the teaching of thumb attack with the abductor pollicis brevis as agonist.

  10. Investigating Facial Electromyography as an Indicator of Cognitive Workload

    Science.gov (United States)

    2017-02-22

    operator’s ability to perform at the level required to prevent hazardous consequences (Young & Stanton, 2002). Cognitive overload and underload can both...the operator’s performance to lessen performance abatement induced by cognitive overload or underload (Wilson & Russell, 2007; Hoepf, Middendorf...Investigating Facial Electromyography as an Indicator of Cognitive Workload 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  11. Contemporary linkages between EMG, kinetics and stroke rehabilitation

    OpenAIRE

    Wolf, Steven L.; Butler, Andrew J.; Alberts, Jay L.; Kim, Min Wook

    2005-01-01

    EMG and kinetic measures have been primary tools in the study of movement and have provided the foundation for much of the work presented in this journal. Recently, novel ways of combining these tools have provided opportunities to examine elements of motor learning and brain plasticity. This presentation reviews the quantification of EMG within the context of transcranial magnetic stimulation. This vehicle permits acquisition of measures that are fundamental to examining prospects for cortic...

  12. Identificación de Tareas Isométricas y Dinámicas del Miembro Superior Basada en EMG de Alta Densidad

    Directory of Open Access Journals (Sweden)

    Mónica Rojas- Martínez

    2017-10-01

    Full Text Available Resumen: La identificación de tareas y estimación del movimiento voluntario basados en electromiografía (EMG constituyen un problema conocido que involucra diferentes áreas en sistemas expertos, particularmente la de reconocimiento de patrones, con muchas aplicaciones posibles en dispositivos de asistencia y rehabilitación. La información que proporciona puede resultar útil para el control de exoesqueletos o brazos robóticos utilizados en terapias activas. La tecnología emergente de electromiografía de alta densidad (HD-EMG abre nuevas posibilidades para extraer información neural y ya ha sido reportado que la distribución espacial de mapas de intensidad HD-EMG es una característica valiosa en la identificación de tareas isométricas (contracciones que no producen cambio en la longitud del músculo. Este estudio explora la utilización de la distribución espacial de la actividad mioeléctrica y lleva a cabo identificación de tareas durante ejercicios dinámicos a diferentes velocidades que son mucho más cercanos a los que se utilizan habitualmente en las terapias de rehabilitación. Con este objetivo, se registraron señales HD-EMG en un grupo de sujetos sanos durante la realización de un conjunto de tareas isométricas y dinámicas del miembro superior. Los resultados indican que la distribución espacial es una característica muy útil en la identificación, no solo de contracciones isométricas sino también de contracciones dinámicas, mejorando la eficiencia y naturalidad del control de dispositivos de rehabilitación para que se adapte mejor al usuario. Abstract: Identification of tasks and estimation of volitional movement based on electromyography (EMG constitute a known problem that involves different areas in the field of expert systems and particularly pattern recognition, with many possible applications in assistive and rehabilitation devices. The obtained information can be very useful to control exoskeletons or

  13. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.

    Science.gov (United States)

    Ao, Di; Song, Rong; Gao, JinWu

    2017-08-01

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  14. Effects of Acupuncture Therapy on the EMG Activity of the Rectus Femoris and Tibialis Anterior during Maximal Voluntary Isometric Contraction in College Students

    Directory of Open Access Journals (Sweden)

    Se In Jang

    2017-12-01

    Full Text Available Acupuncture has been increasingly used in the treatment of muscle damage associated with sports activities. However, studies on the immediate effects of one-time acupuncture on the muscles of athletes are clearly lacking. Thus, this study aimed to examine the effects of acupuncture therapy on the maximal voluntary isometric contraction (MVIC electromyography (EMG of the rectus femoris and tibialis anterior muscles. This study was conducted among 20 healthy male college students who had no musculoskeletal disease. The participants were subjected to 3 different experimental conditions and subsequently grouped based on these conditions: real acupuncture, sham acupuncture, and control. A 7-day washout period was implemented to avoid any transient effects on the physiological and psychological conditions of the participants. Subsequently, an electromyogram patch was attached on the most developed area in the middle of the origin and insertion of the rectus femoris and tibialis anterior muscles. The percent MVIC, which was used to standardize the signal from the electromyogram, was determined, and the maximal value from the MVIC of the rectus femoris and tibialis anterior muscles was measured. The MVIC EMG activities of both femoris (F = 6.633, p = 0.003 and tibialis anterior (F = 5.216, p = 0.008 muscles were significantly different among all groups. Accordingly, the results of a posthoc test showed that the real acupuncture group had higher MVIC EMG activities in the femoris (p = 0.002 and tibialis anterior (p = 0.006 muscles compared with the control group. These results suggest that treatment with real acupuncture resulted in significantly higher MVIC EMG activities of the rectus femoris and tibialis anterior muscles than the other treatments. Hence, acupuncture may be helpful in the improvement of muscle strength among athletes in the physical fitness field.

  15. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model.

    Science.gov (United States)

    Honert, Eric C; Zelik, Karl E

    2016-01-01

    Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)-multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2-7%. During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling approach presented

  16. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model.

    Directory of Open Access Journals (Sweden)

    Eric C Honert

    Full Text Available Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs. However, such interpretations are confounded by multiarticular (multi-joint musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL-multiarticular MTUs crossing the ankle and metatarsophalangeal (toe joints.We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG. Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power.The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97, while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2-7%.During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling

  17. Static stretching vs. dynamic warm-ups: a comparison of their effects on torque and electromyography output of the quadriceps and hamstring muscles.

    Science.gov (United States)

    Williams, N; Coburn, J; Gillum, T

    2015-11-01

    The aim of this paper was to determine if two different warm-up protocols differently affect torque of the quadriceps and hamstrings, and electromyography (EMG) output of the rectus femoris (RF) and vastus lateralis (VL) when completing 30 maximal leg extensions and curls. Twenty-one healthy male (N.=8) and female (N.=13) subjects volunteered to participate in a familiarization session and three testing sessions. The three testing sessions control, dynamic, and static were completed in a counterbalanced order on non-consecutive days. First, subjects warmed-up on a treadmill for five minutes before completing six dynamic movements, six static-stretches, or no stretches. They then rested for five minutes before completing 30 maximal leg extensions and curls at a speed of 60 s-1. A significant decrease in quadriceps torque output over time was determined for the dynamic protocol when compared to the control (Phamstring torque or EMG output of the RF and VL. Short duration static-stretching has the ability to increase peak and average torque of the leg extensors, while some types of anaerobic exercise involving maximal contractions to fatigue may be hindered by performing dynamic movements as part of the warm-up.

  18. Motion tracking and electromyography assist the removal of mirror hand contributions to fNIRS images acquired during a finger tapping task performed by children with cerebral palsy

    Science.gov (United States)

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2013-03-01

    Functional neurological imaging has been shown to be valuable in evaluating brain plasticity in children with cerebral palsy (CP). In recent studies it has been demonstrated that functional near-infrared spectroscopy (fNIRS) is a viable and sensitive method for imaging motor cortex activities in children with CP. However, during unilateral finger tapping tasks children with CP often exhibit mirror motions (unintended motions in the non-tapping hand), and current fNIRS image formation techniques do not account for this. Therefore, the resulting fNIRS images contain activation from intended and unintended motions. In this study, cortical activity was mapped with fNIRS on four children with CP and five controls during a finger tapping task. Finger motion and arm muscle activation were concurrently measured using motion tracking cameras and electromyography (EMG). Subject-specific regressors were created from motion capture and EMG data and used in a general linear model (GLM) analysis in an attempt to create fNIRS images representative of different motions. The analysis provided an fNIRS image representing activation due to motion and muscle activity for each hand. This method could prove to be valuable in monitoring brain plasticity in children with CP by providing more consistent images between measurements. Additionally, muscle effort versus cortical effort was compared between control and CP subjects. More cortical effort was required to produce similar muscle effort in children with CP. It is possible this metric could be a valuable diagnostic tool in determining response to treatment.

  19. Optimal Elbow Angle for Extracting sEMG Signals During Fatiguing Dynamic Contraction

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2015-09-01

    Full Text Available Surface electromyographic (sEMG activity of the biceps muscle was recorded from 13 subjects. Data was recorded while subjects performed dynamic contraction until fatigue and the signals were segmented into two parts (Non-Fatigue and Fatigue. An evolutionary algorithm was used to determine the elbow angles that best separate (using Davies-Bouldin Index, DBI both Non-Fatigue and Fatigue segments of the sEMG signal. Establishing the optimal elbow angle for feature extraction used in the evolutionary process was based on 70% of the conducted sEMG trials. After completing 26 independent evolution runs, the best run containing the optimal elbow angles for separation (Non-Fatigue and Fatigue was selected and then tested on the remaining 30% of the data to measure the classification performance. Testing the performance of the optimal angle was undertaken on nine features extracted from each of the two classes (Non-Fatigue and Fatigue to quantify the performance. Results showed that the optimal elbow angles can be used for fatigue classification, showing 87.90% highest correct classification for one of the features and on average of all eight features (including worst performing features giving 78.45%.

  20. EMG changes in thigh and calf muscles in fin swimming exercise.

    Science.gov (United States)

    Jammes, Y; Delliaux, S; Coulange, M; Jammes, C; Kipson, N; Brerro-Saby, C; Bregeon, F

    2010-08-01

    Because previous researchers have reported a reduced lactic acid production that accompanies a delayed or an absent ventilatory threshold (VTh) in water-based exercise, we hypothesized that the metaboreflex, activated by muscle acidosis, might be absent in fin swimming. This motor response, delaying the occurrence of fatigue, is characterized by a decreased median frequency (MF) of electromyographic (EMG) power spectrum. Seven healthy subjects performed a maximal fin swimming exercise protocol with simultaneous recordings of surface EMGs in VASTUS MEDIALIS (VM), TIBIALIS ANTERIOR (TA) and GASTROCNEMIUS MEDIALIS (GM). We computed the root mean square (RMS) and MF and recorded the compound evoked muscle potential (M-wave) in VM. We also measured the propulsive force and oxygen uptake (VO (2)), and determined VTh. VTh was absent in 4/7 subjects and measured at 70-90% of VO (2max) in the other three. In the three studied muscles, the global EMG activity (RMS) increased while the MF decreased in proportion of VO (2), the MF changes being significantly higher in VM (-29%) and GM (-39%) than in TA (-19%). Because no M-wave changes were noted, the MF decline was attributed to the recruitment of low-frequency, fatigue-resistant motor units. Our most important finding is the persistence of the metaboreflex even in a situation of reduced muscle acidosis. (c) Georg Thieme Verlag KG Stuttgart . New York.

  1. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  2. Analysis of applied forces and electromyography of back and shoulders muscles when performing a simulated hand scaling task.

    Science.gov (United States)

    Porter, William; Gallagher, Sean; Torma-Krajewski, Janet

    2010-05-01

    Hand scaling is a physically demanding task responsible for numerous overexertion injuries in underground mining. Scaling requires the miner to use a long pry bar to remove loose rock, reducing the likelihood of rock fall injuries. The experiments described in this article simulated "rib" scaling (scaling a mine wall) from an elevated bucket to examine force generation and electromyographic responses using two types of scaling bars (steel and fiberglass-reinforced aluminum) at five target heights ranging from floor level to 176 cm. Ten male and six female subjects were tested in separate experiments. Peak and average force applied at the scaling bar tip and normalized electromyography (EMG) of the left and right pairs of the deltoid and erectores spinae muscles were obtained. Work height significantly affected peak prying force during scaling activities with highest force capacity at the lower levels. Bar type did not affect force generation. However, use of the lighter fiberglass bar required significantly more muscle activity to achieve the same force. Results of these studies suggest that miners scale points on the rock face that are below their knees, and reposition the bucket as often as necessary to do so. Published by Elsevier Ltd.

  3. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    Science.gov (United States)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  4. Hip abductors and thigh muscles strength ratios and their relation to electromyography amplitude during split squat and walking lunge exercises

    Directory of Open Access Journals (Sweden)

    Petr Stastny

    2015-06-01

    Full Text Available Background: The hip abductors (HAB, quadriceps (Q and hamstrings (H reciprocal strength ratios are predictors of electromyography (EMG amplitude during load carrying walking at moderate intensity. Therefore, these strength ratios might predict also the EMG during the exercises as walking lunge (WL or split squat (SSq at submaximal intensity. Objective: To determine whether the EMG amplitude of vastus mediali (VM, vastus laterali (VL, biceps femoris (BF and gluteus medius (Gmed is associated with muscle strength ratio during SSqs and WLs. To determine whether the EMG amplitude differs between individuals with HAB/H ratio above and below one and between individuals with H/Q or HAB/Q ratio above and below 0.5 during SSqs and WLs. Methods: 17 resistance-trained men (age 29.6 ± 4.6 years with at least 3 years of strength training performed in cross-sectional design 5 s maximal voluntary isometric contractions (MVIC on an isokinetic dynamometer for knee extension, knee flexion, and hip abduction. The MVIC was used to normalize the EMG signal and estimate the individual strength ratios. Than participants performed WL and SSq for a 5 repetition maximum, to find out muscle activity at submaximal intensity of exercise. Results: The H/Q ratio was associated by Kendall's tau (τ with VM (τ = .33 and BF (τ = -.71 amplitude, HAB/Q ratio was associated with BF (τ = -.43 and Gmed (τ = .38 amplitude, as well as HAB/H was associated with VM (τ = -.41 and Gmed (τ = .74 amplitude. ANOVA results showed significant differences between SSq and WL (F(4, 79 = 10, p < .001, ηp2 = .34 in Gmed amplitude, where WL resulted in higher Gmed amplitude compared to SSq. Other significant differences were found between H/Q groups (F(4, 29 = 3, p = .04, ηp2 = .28 in VM and Gmed amplitude, where group with H/Q > 0.5 showed higher VMO amplitude and lower Gmed amplitude. Furthermore, significant difference was found

  5. Early Stroke Rehabilitation of the Upper Limb Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation-Robotic Arm

    Directory of Open Access Journals (Sweden)

    Qiuyang Qian

    2017-09-01

    Full Text Available BackgroundEffective poststroke motor rehabilitation depends on repeated limb practice with voluntary efforts. An electromyography (EMG-driven neuromuscular electrical stimulation (NMES-robot arm was designed for the multi-joint physical training on the elbow, the wrist, and the fingers.ObjectivesTo investigate the training effects of the device-assisted approach on subacute stroke patients and to compare the effects with those achieved by the traditional physical treatments.MethodThis study was a pilot randomized controlled trial with a 3-month follow-up. Subacute stroke participants were randomly assigned into two groups, and then received 20-session upper limb training with the EMG-driven NMES-robotic arm (NMES-robot group, n = 14 or the time-matched traditional therapy (the control, n = 10. For the evaluation of the training effects, clinical assessments including Fugl-Meyer Assessment (FMA, Modified Ashworth Score (MAS, Action Research Arm Test (ARAT, and Function Independence Measurement (FIM were conducted before, after the rehabilitation training, and 3 months later. Session-by-session EMG parameters in the NMES-robot group, including normalized co-contraction Indexes (CI and EMG activation level of target muscles, were used to monitor the progress in muscular coordination patterns.ResultsSignificant improvements were obtained in FMA (full score and shoulder/elbow, ARAT, and FIM [P < 0.001, effect sizes (EFs > 0.279] for both groups. Significant improvement in FMA wrist/hand was only observed in the NMES-robot group (P < 0.001, EFs = 0.435 after the treatments. Significant reduction in MAS wrist was observed in the NMES-robot group after the training (P < 0.05, EFs = 0.145 and the effects were maintained for 3 months. MAS scores in the control group were elevated following training (P < 0.05, EFs > 0.24, and remained at an elevated level when assessed 3 months later. The EMG parameters

  6. Fasciculation potentials in high-density surface EMG.

    NARCIS (Netherlands)

    Drost, G.; Kleine, B.U.; Stegeman, D.F.; Engelen, B.G.M. van; Zwarts, M.J.

    2007-01-01

    Fasciculation potentials (FPs) are observed in healthy individuals, but also in patients with neurogenic disorders. The exact site of origin and the clinical relevance in distinguishing, for example, amyotrophic lateral sclerosis (ALS) from other neurogenic diseases based on specific characteristics

  7. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors.

    Science.gov (United States)

    Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-01-14

    Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.

  8. Electrotactile EMG feedback improves the control of prosthesis grasping force

    Science.gov (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  9. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    Science.gov (United States)

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  10. Emotion in Stories: Facial EMG Evidence for Both Mental Simulation and Moral Evaluation

    Directory of Open Access Journals (Sweden)

    Björn 't Hart

    2018-04-01

    Full Text Available Facial electromyography research shows that corrugator supercilii (“frowning muscle” activity tracks the emotional valence of linguistic stimuli. Grounded or embodied accounts of language processing take such activity to reflect the simulation or “reenactment” of emotion, as part of the retrieval of word meaning (e.g., of “furious” and/or of building a situation model (e.g., for “Mark is furious”. However, the same muscle also expresses our primary emotional evaluation of things we encounter. Language-driven affective simulation can easily be at odds with the reader's affective evaluation of what language describes (e.g., when we like Mark being furious. To examine what happens in such cases, we independently manipulated simulation valence and moral evaluative valence in short narratives. Participants first read about characters behaving in a morally laudable or objectionable fashion: this immediately led to corrugator activity reflecting positive or negative affect. Next, and critically, a positive or negative event befell these same characters. Here, the corrugator response did not track the valence of the event, but reflected both simulation and moral evaluation. This highlights the importance of unpacking coarse notions of affective meaning in language processing research into components that reflect simulation and evaluation. Our results also call for a re-evaluation of the interpretation of corrugator EMG, as well as other affect-related facial muscles and other peripheral physiological measures, as unequivocal indicators of simulation. Research should explore how such measures behave in richer and more ecologically valid language processing, such as narrative; refining our understanding of simulation within a framework of grounded language comprehension.

  11. The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics.

    Science.gov (United States)

    Atzori, Manfredo; Muller, Henning

    2015-01-01

    The dexterous natural control of robotic prosthetic hands with non-invasive techniques is still a challenge: surface electromyography gives some control capabilities but these are limited, often not natural and require long training times; the application of pattern recognition techniques recently started to be applied in practice. While results in the scientific literature are promising they have to be improved to reach the real needs. The Ninapro database aims to improve the field of naturally controlled robotic hand prosthetics by permitting to worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark database. Currently, the Ninapro database includes data from 67 intact subjects and 11 amputated subject performing approximately 50 different movements. The data are aimed at permitting the study of the relationships between surface electromyography, kinematics and dynamics. The Ninapro acquisition protocol was created in order to be easy to be reproduced. Currently, the number of datasets included in the database is increasing thanks to the collaboration of several research groups.

  12. Deep learning with convolutional neural networks: a resource for the control of robotic prosthetic hands via electromyography

    Directory of Open Access Journals (Sweden)

    Manfredo Atzori

    2016-09-01

    Full Text Available Motivation: Natural control methods based on surface electromyography and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications and commercial prostheses are in the best case capable to offer natural control for only a few movements. Objective: In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its capabilities for the natural control of robotic hands via surface electromyography by providing a baseline on a large number of intact and amputated subjects. Methods: We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 hand amputated subjects. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets.Results: The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods but lower than the results obtained with the best reference methods in our tests. Significance: The results show that convolutional neural networks with a very simple architecture can produce accuracy comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters can be fundamental for the analysis of surface electromyography data. Finally, the results suggest that deeper and more complex networks may increase dexterous control robustness, thus contributing to bridge the gap between the market and scientific research

  13. Patellofemoral pain syndrome: electromyography in a frequency domain analysis

    Science.gov (United States)

    Catelli, D. S.; Kuriki, H. U.; Polito, L. F.; Azevedo, F. M.; Negrão Filho, R. F.; Alves, N.

    2011-09-01

    The Patellofemoral Pain Syndrome (PFPS), has a multifactorial etiology and affects approximately 7 to 15% of the population, mostly women, youth, adults and active persons. PFPS causes anterior or retropatelar pain that is exacerbated during functional motor gestures, such as up and down stairs or spending long periods of time sitting, squatting or kneeling. As the diagnostic evaluation of this syndrome is still indirect, different mechanisms and methodologies try to make a classification that distinguishes patients with PFPS in relation to asymptomatic. Thereby, the purpose of this investigation was to determine the characteristics of the electromyographic (EMG) signal in the frequency domain of the vastus medialis oblique (VMO) and vastus lateralis (VL) in patients with PFPS, during the ascent of stairs. 33 young women (22 control group and 11 PFPS group), were evaluated by EMG during ascent of stairs. The VMO mean power frequency (MPF) and the VL frequency 95% (F95) were lower in symptomatic individuals. This may be related to the difference in muscle recruitment strategy exerted by each muscle in the PFPS group compared to the control group.

  14. Assessing the Therapeutic Effect of 630 nm Light-Emitting Diodes Irradiation on the Recovery of Exercise-Induced Hand Muscle Fatigue with Surface Electromyogram

    Directory of Open Access Journals (Sweden)

    Dandan Yang

    2012-01-01

    Full Text Available This paper aims to investigate the effect of light emitting diode therapy (LEDT on exercise-induced hand muscle fatigue by measuring the surface electromyography (sEMG of flexor digitorum superficialis. Ten healthy volunteers were randomly placed in the equal sized LEDT group and control group. All subjects performed a sustained fatiguing isometric contraction with the combination of four fingertips except thumb at 30% of maximal voluntary contraction (MVC until exhaustion. The active LEDT or an identical passive rest therapy was then applied to flexor digitorum superficialis. Each subject was required to perform a re-fatigue task immediately after therapy which was the same as the pre-fatigue task. Average rectified value (ARV and fractal dimension (FD of sEMG were calculated. ARV and FD were significantly different between active LEDT and passive rest groups at 20%–50%, 70%–80%, and 100% of normalized contraction time (P<0.05. Compared to passive rest, active LEDT induced significantly smaller increase in ARV values and decrease in FD values, which shows that LEDT is effective on the recovery of muscle fatigue. Our preliminary results also suggest that ARV and FD are potential replacements of biochemical markers to assess the effects of LEDT on muscle fatigue.

  15. Emotional facial expressions evoke faster orienting responses, but weaker emotional responses at neural and behavioural levels compared to scenes: A simultaneous EEG and facial EMG study.

    Science.gov (United States)

    Mavratzakis, Aimee; Herbert, Cornelia; Walla, Peter

    2016-01-01

    In the current study, electroencephalography (EEG) was recorded simultaneously with facial electromyography (fEMG) to determine whether emotional faces and emotional scenes are processed differently at the neural level. In addition, it was investigated whether these differences can be observed at the behavioural level via spontaneous facial muscle activity. Emotional content of the stimuli did not affect early P1 activity. Emotional faces elicited enhanced amplitudes of the face-sensitive N170 component, while its counterpart, the scene-related N100, was not sensitive to emotional content of scenes. At 220-280ms, the early posterior negativity (EPN) was enhanced only slightly for fearful as compared to neutral or happy faces. However, its amplitudes were significantly enhanced during processing of scenes with positive content, particularly over the right hemisphere. Scenes of positive content also elicited enhanced spontaneous zygomatic activity from 500-750ms onwards, while happy faces elicited no such changes. Contrastingly, both fearful faces and negative scenes elicited enhanced spontaneous corrugator activity at 500-750ms after stimulus onset. However, relative to baseline EMG changes occurred earlier for faces (250ms) than for scenes (500ms) whereas for scenes activity changes were more pronounced over the whole viewing period. Taking into account all effects, the data suggests that emotional facial expressions evoke faster attentional orienting, but weaker affective neural activity and emotional behavioural responses compared to emotional scenes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Empathy, Einfühlung, and aesthetic experience: the effect of emotion contagion on appreciation of representational and abstract art using fEMG and SCR.

    Science.gov (United States)

    Gernot, Gerger; Pelowski, Matthew; Leder, Helmut

    2017-03-17

    Since the advent of the concept of empathy in the scientific literature, it has been hypothesized, although not necessarily empirically verified, that empathic processes are essential to aesthetic experiences of visual art. We tested how the ability to "feel into" ("Einfühlung") emotional content-a central aspect of art empathy theories-affects the bodily responses to and the subjective judgments of representational and abstract paintings. The ability to feel into was measured by a standardized pre-survey on "emotional contagion"-the ability to pick up and mirror, or in short to "feel into", emotions, which often overlaps with higher general or interpersonal empathetic abilities. Participants evaluated the artworks on several aesthetic dimensions (liking, valence, moving, and interest), while their bodily reactions indicative of empathetic engagement (facial electromyography-EMG, and skin conductance responses-SCR) were recorded. High compared to low emotion contagion participants showed both more congruent and more intense bodily reactions (EMG and SCR) and aesthetic evaluations (higher being moved, valence, and interest) and also liked the art more. This was largely the case for both representational and abstract art, although stronger with the representational category. Our findings provide tentative evidence for recent arguments by art theorists for a close "empathic" mirroring of emotional content. We discuss this interpretation, as well as a potential tie between emotion contagion and a general increase in emotion intensity, both of which may impact, in tandem, the experience and evaluation of art.

  17. EMG patterns during assisted walking in the exoskeleton

    Directory of Open Access Journals (Sweden)

    Francesca eSylos-Labini

    2014-06-01

    Full Text Available Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  18. EMG based FES for post-stroke rehabilitation

    Science.gov (United States)

    Piyus, Ceethal K.; Anjaly Cherian, V.; Nageswaran, Sharmila

    2017-11-01

    Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG Abstract—Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG based FES system can be used for effective upper limb motor re-education in post stroke upper limb rehabilitation. The governing feature of the designed system is its synchronous activation, in which the FES stimulation is dependent on the amplitude of the EMG signal acquired from the unaffected upper limb muscle of the hemiplegic patient. This proportionate operation eliminates the undesirable damage to the patient’s skin by generating stimulus in proportion to voluntary EMG signals. This feature overcomes the disadvantages of currently available manual motor re-education systems. This model can be used in home-based post stroke rehabilitation, to effectively improve the upper limb functions.

  19. Trapezius muscle EMG as predictor of mental stress

    NARCIS (Netherlands)

    Wijsman, J.L.P; Grundlehner, B.; Penders, J.; Hermens, Hermanus J.

    Stress is a growing problem in society and can cause musculoskeletal complaints. It would be useful to measure stress for prevention of stress-related health problems. An experiment is described in which EMG signals of the upper trapezius muscle were measured with a wireless system during three

  20. EMG patterns during assisted walking in the exoskeleton

    Science.gov (United States)

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  1. 3D-printing soft sEMG sensing structures

    NARCIS (Netherlands)

    Wolterink, Gerjan; Sanders, Remco; Muijzer, Frodo; van Beijnum, Bert-Jan; Krijnen, Gijs

    2017-01-01

    This paper describes the development and characterization of soft and flexible 3D-printed sEMG electrodes. The electrodes are printed in one go on a low cost consumer multi-material FDM printer. The printed structures do not need any further production steps to give them conductive properties.

  2. EMG Biofeedback Training Versus Systematic Desensitization for Test Anxiety Reduction

    Science.gov (United States)

    Romano, John L.; Cabianca, William A.

    1978-01-01

    Biofeedback training to reduce test anxiety among university students was investigated. Biofeedback training with systematic desensitization was compared to an automated systematic desensitization program not using EMG feedback. Biofeedback training is a useful technique for reducing test anxiety, but not necessarily more effective than systematic…

  3. A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.

    Science.gov (United States)

    Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca

    2015-10-01

    Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.

  4. Improved Gender Recognition during Stepping Activity for Rehab Application Using the Combinatorial Fusion Approach of EMG and HRV

    Directory of Open Access Journals (Sweden)

    Nor Aziyatul Izni Mohd Rosli

    2017-03-01

    Full Text Available Gender recognition is trivial for a physiotherapist, but it is considered a challenge for computers. The electromyography (EMG and heart rate variability (HRV were utilized in this work for gender recognition during exercise using a stepper. The relevant features were extracted and selected. The selected features were then fused to automatically predict gender recognition. However, the feature selection for gender classification became a challenge to ensure better accuracy. Thus, in this paper, a feature selection approach based on both the performance and the diversity between the two features from the rank-score characteristic (RSC function in a combinatorial fusion approach (CFA (Hsu et al. was employed. Then, the features from the selected feature sets were fused using a CFA. The results were then compared with other fusion techniques such as naive bayes (NB, decision tree (J48, k-nearest neighbor (KNN and support vector machine (SVM. Besides, the results were also compared with previous researches in gender recognition. The experimental results showed that the CFA was efficient and effective for feature selection. The fusion method was also able to improve the accuracy of the gender recognition rate. The CFA provides much better gender classification results which is 94.51% compared to Barani’s work (90.34%, Nazarloo’s work (92.50%, and other classifiers.

  5. A critical period of corticomuscular and EMG-EMG coherence detection in healthy infants aged 9-25weeks

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Herskind, Anna; Li, Xi

    2017-01-01

    The early postnatal development of functional corticospinal connections in human infants is not fully clarified. We used EEG and EMG to investigate the development of corticomuscular and intramuscular coherence as indicators of functional corticospinal connectivity in healthy infants aged 1-66 we...

  6. Boundary element analysis of the directional sensitivity of the concentric EMG electrode.

    Science.gov (United States)

    Henneberg, K A; Plonsey, R

    1993-07-01

    Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded waveforms by uniformly averaging the tissue potential at the coordinates of one- or two-dimensional electrode models. By employing the boundary element method, this paper improves earlier models of the concentric EMG electrode by including an accurate geometric representation of the electrode, as well as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick-up range. Potentials from fibers located behind the tip or along the cannula are recorded with reversed polarity compared to those located in front of the tip. Rotation of the electrode about its axis was found to alter the duration, the peak-to-peak amplitude, and the rise time of waveforms recorded from a moving dipole.

  7. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.

    Science.gov (United States)

    Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit

    2015-03-01

    An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the

  8. EMG analysis in 78 cases with motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiubin

    2000-01-01

    This paper analysed the FMGs of 78 cases with the motor neuron disease(MND). The EMG of all patients showed following characteristics that the average duration of wave prolonged, the average voltage increased and it was found that fibrillation and fasciculatton potentials appeared spontaneously. The fibrillation potential of ENG waa related to course of disease. In the patients whose course of disease was short, the fibri llation potential increased obviously, while in the cases of chronic MND, It usually decreased. The motor nerve conduction velocity of most pa tients (41%) reduced, however, the sensory nerve conduction velocity was normal but two. We reviewed some references about EMG of the motor neuron disease and discussed their characteristics and mechanism

  9. Generalized approach to bilateral control for EMG driven exoskeleton

    Directory of Open Access Journals (Sweden)

    Gradetsky Valery

    2017-01-01

    Full Text Available The paper discusses a generalized approach to bilateral control for EMG driven exoskeleton systems. In this paper we consider a semi-automatic mechatronic system that is controlled via human muscle activity (EMG level. The problem is to understand how the movement of the exoskeleton effects on the control. The considered system can be described in terms of bilateral control. This means the existence of force feedback from the object via the exoskeleton links and drives to operator. The simulation of the considered model was held on the MATLAB Simulink. The mathematical model of the bilateral system with exoskeleton and operator was developed. Transient functions for different dynamic parameters were obtained. It was shown that force feedback is essential for the R&D of such systems.

  10. Paracetamol 325 mg/tramadol 37.5 mg effect on pain during needle electromyography: a double-blind crossover clinical trial.

    Science.gov (United States)

    Kalantar, Seyed Sadeq; Abbasi, Mehrshad; Faghihi-Kashani, Sara; Majedi, Hossein; Ahmadi, Mona; Agah, Elmira; Tafakhori, Abbas

    2016-12-01

    Needle insertion during electromyography (EMG) may cause varying levels of pain that could lead to inaccurate assessment and premature termination of the procedure. The aim of this study is to compare paracetamol 325 mg/tramadol 37.5 mg with placebo in relieving pain before EMG. This is a randomized, crossover, placebo-controlled, double-blind clinical trial; forty-four healthy individuals, including 27 males with a mean age of 35.3 years (range 18-59 years), entered this study. The needles were inserted unilaterally 2 h after administration of two analgesic tablets of paracetamol 325 mg/tramadol 37.5 mg or two placebo tablets. The pain was scored through a 100-mm visual analog scale (VAS) immediately and 2 h after the procedure. The side effects were also recorded. Within a week, the procedure was repeated on the other upper limb, changing the treatment and placebo. The immediate and 2-h VAS scores were notably lower after administration of treatment compared to placebo (immediate pain: 17.5 ± 12.8 vs. 32.1 ± 16.0, P pain: 1.6 ± 5.6 vs. 5.8 ± 7.9, P = 0. 002). There was a higher prevalence of side effects when treatment was used (48 vs. 9 %, P pain. Further application of this medication in patients with neuromuscular disorders would warrant additional clinical trials, particularly considering the adverse events.

  11. Effect of rest-pause vs. traditional bench press training on muscle strength, electromyography, and lifting volume in randomized trial protocols.

    Science.gov (United States)

    Korak, J Adam; Paquette, Max R; Brooks, Justin; Fuller, Dana K; Coons, John M

    2017-09-01

    Rest-pause (4-s unloaded rest between repetitions) training effects on one repetition maximum (1 RM), lifting volume, and neural activation via electromyography (EMG) are currently vague in the literature and can benefit strength and conditioning professionals for resistance training programme design. Therefore, this study compared 1 RM, neural activation via (EMG), and volume differences between rest-pause vs. traditional resistance training. Trained males (N = 20) were randomly assigned to either a rest-pause or a traditional training group. Pre- and post-1 RM testing was recorded. Training sessions were completed twice a week for 4 weeks and consisted of four sets of bench press to volitional fatigue at 80% of pre-test 1 RM with a 2-min rest between sets. Total volume completed was recorded on each training day. Neural activation of the pectoralis major was measured on the first and last training days. A two-way repeated-measures ANOVA indicated both groups significantly increased their 1 RMs following the 4-week training protocol (p  .05). An independent samples t test indicated that total volume lifted was significantly higher for the rest-pause group (56,778 vs. 38,315 lbs; p < .05) throughout the protocol and independently during weeks 2, 3, and 4. While strength and neural activation changes did not differ between groups, both increased 1 RMs and the rest-pause group achieved greater increases in volume than the traditional group. If volume is the focus of training, the rest-pause method should be utilized.

  12. EMG and tibial shock upon the first attempt at barefoot running.

    Science.gov (United States)

    Olin, Evan D; Gutierrez, Gregory M

    2013-04-01

    As a potential means to decrease their risk of injury, many runners are transitioning into barefoot running. Habitually shod runners tend to heel-strike (SHS), landing on their heel first, while barefoot runners tend to mid-foot or toe-strike (BTS), landing flat-footed or on the ball of their foot before bringing down the rest of the foot including the heel. This study compared muscle activity, tibial shock, and knee flexion angle in subjects between shod and barefoot conditions. Eighteen habitually SHS recreational runners ran for 3 separate 7-minute trials, including SHS, barefoot heel-strike (BHS), and BTS conditions. EMG, tibial shock, and knee flexion angle were monitored using bipolar surface electrodes, an accelerometer, and an electrogoniometer, respectively. A one-way MANOVA for repeated measures was conducted and several significant changes were noted between SHS and BTS, including significant increases in average EMG of the medial gastrocnemius (p=.05), average and peak tibial shock (pknee flexion angle (pinjurious, these data indicate that habitually SHS runners who choose to transition into a BTS technique must undertake the process cautiously. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. THE EFFECTIVENESS OF EMG BIOFEEDBACK ON HAND FUNCTION IN SUBJECTS WITH STROKE

    Directory of Open Access Journals (Sweden)

    S. Sethana

    2014-10-01

    Full Text Available Introduction: Stroke is an event caused by the interruption of the blood supply to the brain, usually because a blood vessel bursts or blocked by a clot. Biofeedback can be defined as the technique of using equipment usually electronic to reveal to human beings about some of their internal physiological events normal and abnormal in form of auditory and visual signals. Method: The stroke patients diagnosed by neurologist were recruited from physiotherapy department and inpatients from neurology and general wards of SVIMS hospital, Tirupathi Andhra Pradesh. In the present study 30 subjects were randomly assigned to 15 experimental and 15 control groups. The subject was made to sit comfortably and the Surfaces electrodes were placed on Extensor carpi radialis, Extensor digitorum communis muscle belly and for 30minutes patient voluntarily contracts until signals displayed on screen for which visually and auditory cues are given. In control group placebo EMG where machine is turned away & has no cues. Both groups received CONVENTIONAL PHYSIOTHERAPY; for 30 minutes at a Frequency: 1 hour per day for 5days in a week, for 6weeks. Results: There was statistically significant (p<0.05 improvement in both variables from baseline to 6thweek in experimental group compared to control group. Conclusion: Our study demonstrates the potential benefits of EMG BF in improving hand function in subjects with stroke.

  14. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1994-01-01

    The bioenergetics of human skeletal muscle can be studied by 31P NMR spectroscopy (31P-MRS) and by surface electromyography (SEMG). Simultaneous 31P-MRS and SEMG permit accurate and noninvasive studies of the correlation between metabolic and electrical changes in exercising and recovering human....... A nonmagnetic ergometer was used for ankle dorsiflexions that activated only the anterior tibial muscle as verified by post exercise imaging. The coil design and the adiabatic sech/tanh pulse improved sensitivity by 45% and 56% respectively, compared with standard techniques. Simultaneous electromyographic...... recordings did not deteriorate the NMR spectra. The VARPRO time domain fitting routine was very suitable for estimating 31P muscle spectra. With these methods it was possible to accurately estimate parameters describing metabolic and electrical changes during rest, exercise and the entire recovery period...

  15. Evaluation of EMG processing techniques using Information Theory.

    Science.gov (United States)

    Farfán, Fernando D; Politti, Julio C; Felice, Carmelo J

    2010-11-12

    Electromyographic signals can be used in biomedical engineering and/or rehabilitation field, as potential sources of control for prosthetics and orthotics. In such applications, digital processing techniques are necessary to follow efficient and effectively the changes in the physiological characteristics produced by a muscular contraction. In this paper, two methods based on information theory are proposed to evaluate the processing techniques. These methods determine the amount of information that a processing technique is able to extract from EMG signals. The processing techniques evaluated with these methods were: absolute mean value (AMV), RMS values, variance values (VAR) and difference absolute mean value (DAMV). EMG signals from the middle deltoid during abduction and adduction movement of the arm in the scapular plane was registered, for static and dynamic contractions. The optimal window length (segmentation), abduction and adduction movements and inter-electrode distance were also analyzed. Using the optimal segmentation (200 ms and 300 ms in static and dynamic contractions, respectively) the best processing techniques were: RMS, AMV and VAR in static contractions, and only the RMS in dynamic contractions. Using the RMS of EMG signal, variations in the amount of information between the abduction and adduction movements were observed. Although the evaluation methods proposed here were applied to standard processing techniques, these methods can also be considered as alternatives tools to evaluate new processing techniques in different areas of electrophysiology.

  16. Evaluation of EMG processing techniques using Information Theory

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2010-11-01

    Full Text Available Abstract Background Electromyographic signals can be used in biomedical engineering and/or rehabilitation field, as potential sources of control for prosthetics and orthotics. In such applications, digital processing techniques are necessary to follow efficient and effectively the changes in the physiological characteristics produced by a muscular contraction. In this paper, two methods based on information theory are proposed to evaluate the processing techniques. Methods These methods determine the amount of information that a processing technique is able to extract from EMG signals. The processing techniques evaluated with these methods were: absolute mean value (AMV, RMS values, variance values (VAR and difference absolute mean value (DAMV. EMG signals from the middle deltoid during abduction and adduction movement of the arm in the scapular plane was registered, for static and dynamic contractions. The optimal window length (segmentation, abduction and adduction movements and inter-electrode distance were also analyzed. Results Using the optimal segmentation (200 ms and 300 ms in static and dynamic contractions, respectively the best processing techniques were: RMS, AMV and VAR in static contractions, and only the RMS in dynamic contractions. Using the RMS of EMG signal, variations in the amount of information between the abduction and adduction movements were observed. Conclusions Although the evaluation methods proposed here were applied to standard processing techniques, these methods can also be considered as alternatives tools to evaluate new processing techniques in different areas of electrophysiology.

  17. sEMG-Based Gesture Recognition with Convolution Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhen Ding

    2018-06-01

    Full Text Available The traditional classification methods for limb motion recognition based on sEMG have been deeply researched and shown promising results. However, information loss during feature extraction reduces the recognition accuracy. To obtain higher accuracy, the deep learning method was introduced. In this paper, we propose a parallel multiple-scale convolution architecture. Compared with the state-of-art methods, the proposed architecture fully considers the characteristics of the sEMG signal. Larger sizes of kernel filter than commonly used in other CNN-based hand recognition methods are adopted. Meanwhile, the characteristics of the sEMG signal, that is, muscle independence, is considered when designing the architecture. All the classification methods were evaluated on the NinaPro database. The results show that the proposed architecture has the highest recognition accuracy. Furthermore, the results indicate that parallel multiple-scale convolution architecture with larger size of kernel filter and considering muscle independence can significantly increase the classification accuracy.

  18. Value of Laryngeal Electromyography in Spasmodic Dysphonia Diagnosis and Therapy.

    Science.gov (United States)

    Yang, Qingwen; Xu, Wen; Li, Yun; Cheng, Liyu

    2015-07-01

    To investigate the role of laryngeal electromyography (LEMG) in the diagnosis and treatment of spasmodic dysphonia (SD). The clinical manifestations, characteristics of motor unit potentials (MUPs), recruitment potentials, and laryngeal nerve evoked potentials (EPs) in LEMG, as well as the changes after botulinum toxin (BTX) treatment, were analyzed in 39 patients with adductor SD. The main clinical manifestations were a strained voice and phonation interruptions; in addition, the patients displayed hyper-adducted vocal folds during phonation. LEMG revealed significantly increased amplitudes of the thyroarytenoid muscle MUPs. The recruitment potentials were in a dense bunch, discharging full interference patterns with significantly increased amplitudes; the mean and maximum amplitude of recruitment potentials were 3090 μV and 5000 μV, respectively. The amplitude of EPs of thyroarytenoid muscle increased significantly; the mean and maximum amplitudes were 10.3 mV and 26.3 mV, respectively. After BTX was injected, the LEMG revealed denervation changes, and the EPs weakened or disappeared in the injected muscle. SD could be diagnosed, and the therapeutic efficacy of SD treatments could be evaluated based on clinical characteristics combined with LEMG characteristics. The increased amplitudes of the recruitment potentials and EPs of the thyroarytenoid muscle were the characteristic indexes. After BTX was injected, denervated potential characteristics appeared in the muscles. © The Author(s) 2015.

  19. Positioning of pedicle screws in adolescent idiopathic scoliosis using electromyography

    Directory of Open Access Journals (Sweden)

    Bruno Moreira Gavassi

    2015-06-01

    Full Text Available OBJECTIVE: To analyze the occurrence of poor positioning of pedicle screws inserted with the aid of intraoperative electromyographic stimulation in the treatment of Adolescent Idiopathic Scoliosis (AIS.METHODS: This is a prospective observational study including all patients undergoing surgical treatment for AIS, between March and December 2013 at a single institution. All procedures were monitored by electromyography of the inserted pedicle screws. The position of the screws was evaluated by assessment of postoperative CT and classified according to the specific AIS classification system.RESULTS: Sixteen patients were included in the study, totalizing 281 instrumented pedicles (17.5 per patient. No patient had any neurological deficit or complaint after surgery. In the axial plane, 195 screws were found in ideal position (69.4% while in the sagittal plane, 226 screws were found in ideal position (80.4%. Considering both the axial and the sagittal planes, it was observed that 59.1% (166/281 of the screws did not violate any cortical wall.CONCLUSION: The use of pedicle screws proved to be a safe technique without causing neurological damage in AIS surgeries, even with the occurrence of poor positioning of some implants.

  20. Determination of effective treatment duration of interferential current therapy using electromyography

    OpenAIRE

    Youn, Jong-In; Lee, Ho Sub; Lee, Sangkwan

    2016-01-01

    [Purpose] This study used electromyography to measure the effective treatment duration of interferential current therapy for muscle fatigue. [Subjects and Methods] Fifteen healthy adult men volunteered to participate in the study (age: 24.2 ? 1.3?years; weight: 67.6 ? 4.92?kg; height: 176.4 ? 4.92?cm). All subjects performed 5?min of isometric back extension exercise to produce muscle fatigue, and were then treated with interferential current therapy for 15?min, with electromyography monitori...

  1. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method

    Directory of Open Access Journals (Sweden)

    Hai-peng Wang

    2017-01-01

    Full Text Available Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training.

  2. Immediate increases in quadriceps corticomotor excitability during an electromyography biofeedback intervention.

    Science.gov (United States)

    Pietrosimone, Brian; McLeod, Michelle M; Florea, David; Gribble, Phillip A; Tevald, Michael A

    2015-04-01

    The purpose of the study was to determine the effects of EMG-BF on vastus lateralis corticomotor excitability, measured via motor evoked potential (MEP) amplitudes elicited using Transcranial Magnetic Stimulation (TMS) during a maximal voluntary isometric contraction (MVIC). We also determined the effect of EMG-BF on isometric knee extensor strength. Fifteen healthy participants volunteered for this crossover study with two sessions held one-week apart. Participants were randomly assigned to condition order, during which five intervention MVICs were performed with or without EMG-BF. MEP amplitudes were collected with TMS during five knee extension contractions (5% of MVIC) at baseline and again during intervention MVICs within each session. During the control condition, participants were instructed to perform the same number of MVICs without any EMG-BF. Percent change scores were used to calculate the change in peak-to-peak MEP amplitudes that occurred during EMG-BF and Control MVICs compared to the baseline MEPs. Peak knee extension torque was recorded during MVICs prior to TMS for each condition. EMG-BF produced significantly increased MEP change scores and significantly greater torque than the control condition. The results of the current study suggest that EMG-BF may be a viable clinical method for targeting corticomotor excitability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    Directory of Open Access Journals (Sweden)

    Herrington Lee C

    2010-02-01

    Full Text Available Abstract Background The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group. Results Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03 subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the non-injured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. Conclusions This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases

  4. Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    Science.gov (United States)

    Horsley, Ian G; Herrington, Lee C; Rolf, Christer

    2010-02-25

    The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group). Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the non-injured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases.

  5. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    Science.gov (United States)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  6. Electromyography data for non-invasive naturally-controlled robotic hand prostheses.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible.

  7. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy

    Science.gov (United States)

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Roberts, Heather; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2014-01-01

    Abstract. Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electromyography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion capture or EMG data and independent component analysis was combined with a general linear model to create an fNIRS image representing activation due to the tapping hand and one image representing activation due to the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation images. PMID:26157980

  8. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.

    Science.gov (United States)

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2016-04-01

    The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.

  9. Effectiveness of Hamstring Knee Rehabilitation Exercise Performed in Training Machine vs. Elastic Resistance Electromyography Evaluation Study

    DEFF Research Database (Denmark)

    Jakobsen, M. D.; Sundstrup, E.; Andersen, C. H.

    2014-01-01

    Objective The aim of this study was to evaluate muscle activity during hamstring rehabilitation exercises performed in training machine compared with elastic resistance. Design Six women and 13 men aged 28-67 yrs participated in a crossover study. Electromyographic (EMG) activity was recorded...... inclinometers. Results Training machines and elastic resistance showed similar high levels of muscle activity (biceps femoris and semitendinosus peak normalized EMG >80%). EMG during the concentric phase was higher than during the eccentric phase regardless of exercise and muscle. However, compared with machine.......001) during hamstring curl performed with elastic resistance (7.58 +/- 0.08) compared with hamstring curl performed in a machine (5.92 +/- 0.03). Conclusions Hamstring rehabilitation exercise performed with elastic resistance induces similar peak hamstring muscle activity but slightly lower EMG values at more...

  10. Numerical simulation of explosive magnetic cumulative generator EMG-720

    Energy Technology Data Exchange (ETDEWEB)

    Deryugin, Yu N; Zelenskij, D K; Kazakova, I F; Kargin, V I; Mironychev, P V; Pikar, A S; Popkov, N F; Ryaslov, E A; Ryzhatskova, E G [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The paper discusses the methods and results of numerical simulations used in the development of a helical-coaxial explosive magnetic cumulative generator (EMG) with the stator up to 720 mm in diameter. In the process of designing, separate units were numerically modeled, as was the generator operation with a constant inductive-ohmic load. The 2-D processes of the armature acceleration by the explosion products were modeled as well as those of the formation of the sliding high-current contact between the armature and stator`s insulated turns. The problem of the armature integrity in the region of the detonation waves collision was numerically analyzed. 8 figs., 2 refs.

  11. Test of EMG-720 explosive magneto-cumulative generator

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Pikar, A S; Ryaslov, E A [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation); and others

    1997-12-31

    The results of testing of the 30 MJ explosive magnetocumulative generator EMG-720 are reported. This comparatively simple and inexpensive generator is destined for energizing a stationary electro-physical facility placed in a special explosion-protected bunker. The current increase coefficient and the energy increase factor of the generator are as high as 500 and 120, respectively. The generator operating time is 225 s, and its internal operating voltage is higher than 100 kV. (J.U.). 4 figs., 4 refs.

  12. Acute Warm-up Effects in Submaximal Athletes: An EMG Study of Skilled Violinists.

    Science.gov (United States)

    McCrary, J Matt; Halaki, Mark; Sorkin, Evgeny; Ackermann, Bronwen J

    2016-02-01

    Warm-up is commonly recommended for injury prevention and performance enhancement across all activities, yet this recommendation is not supported by evidence for repetitive submaximal activities such as instrumental music performance. The objective of this study is to quantify the effects of cardiovascular, core muscle, and musical warm-ups on muscle activity levels, musical performance, and subjective experience in skilled violinists. Fifty-five undergraduate, postgraduate, or professional violinists performed five randomly ordered 45-s musical excerpts of varying physical demands both before and after a randomly assigned 15-min, moderate-intensity cardiovascular, core muscle, musical (technical violin exercises), or inactive control warm-up protocol. Surface EMG data were obtained for 16 muscles of the trunk, shoulders, and right arm during each musical performance. Sound recording and perceived exertion (RPE) data were also obtained. Sound recordings were randomly ordered and rated for performance quality by blinded adjudicators. Questionnaire data regarding participant pain sites and fitness levels were used to stratify participants according to pain and fitness levels. Data were analyzed using two- and three-factor ANCOVA (surface EMG and sound recording) and Wilcoxon matched pairs tests (RPE). None of the three warm-up protocols had significant effects on muscle activity levels (P ≥ 0.10). Performance quality did not significantly increase (P ≥ 0.21). RPE significantly decreased (P warm-up for each of the three experimental warm-ups; control condition RPE did not significantly decrease (P > 0.23). Acute physiological and musical benefits from cardiovascular, core muscle, and musical warm-ups in skilled violinists are limited to decreases in RPE. This investigation provides data from the performing arts in support of sports medical evidence suggesting that warm-up only effectively enhances maximal strength and power performance.

  13. Electromyography of the thigh muscles during lifting tasks in kneeling and squatting postures

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, S.; Pollard, J.; Porter, W.L. [NIOSH, Pittsburgh, PA (United States). Pittsburgh Research Laboratory

    2011-07-01

    Underground coal miners who work in low-seam mines frequently handle materials in kneeling or squatting postures. To assess quadriceps and hamstring muscle demands in these postures, nine participants performed lateral load transfers in kneeling and squatting postures, during which electromyographic (EMG) data were collected. EMG activity was obtained at five points throughout the transfer for three quadriceps muscles and two hamstring muscles from each thigh. ANOVA results indicated that EMG data for nine of 10 thigh muscles were affected by an interaction between posture and angular position of the load lifted (p <0.001). Muscles of the right thigh were most active during the lifting portion of the task (lifting a block from the participant's right) and activity decreased as the block was transferred to the left. Left thigh muscles showed the opposite pattern. EMG activity for the majority of thigh muscles was affected by the size of the base of support provided by different postures, with lower EMG activity observed with a larger base of support and increased activity in postures where base of support was reduced (p<0.05). Thigh EMG activity was lowest in postures with fully flexed knees, which may explain worker preference for this posture. However, such postures are also associated with increased risk of meniscal damage.

  14. Using Electromyography to Detect the Weightings of the Local Muscle Factors to the Increase of Perceived Exertion During Stepping Exercise

    Directory of Open Access Journals (Sweden)

    Miao-Ju Hsu

    2008-06-01

    Full Text Available Rate of perceived exertion (RPE is a clinically convenient indicator for monitoring exercise intensity in cardiopulmonary rehabilitation. It might not be sensitive enough for clinicians to determine the patients’ physiological status because its association with the cardiovascular system and local muscle factors is unknown. This study used the electromyographic sensor to detect the local muscle fatigue and stabilization of patella, and analyzed the relationship between various local muscle and cardiovascular factors and the increase of RPE during stepping exercise, a common exercise program provided in cardiopulmonary rehabilitation. Ten healthy adults (4 males and 6 females participated in this study. Each subject used their right bare foot to step up onto a 23-cm-high step at a constant speed until the RPE score reached 20. The RPE, heart rate (HR, and surface EMG of the rectus femoris (RF, vastus medialis, and vastus lateralis were recorded at 1-minute intervals during the stepping exercise. The generalized estimating equations (GEE analysis indicated that the increase in RPE significantly correlated with the increase in HR, and decrease in median frequency (MF of the EMG power spectrum of the RF. Experimental results suggest that the increase in RPE during stepping exercise was influenced by the cardiovascular status, localized muscle fatigue in the lower extremities. The weighting of the local muscle factors was more than half of the weighting of the cardiovascular factor.

  15. Grid investments in a Nordic perspective. Report to EMG

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-15

    In a letter of 20 November 2008, the Electricity Market Group (EMG) under the Nordic Council of Ministers requested NordREG to carry out an assignment related to transmission network investments in the Nordic countries. The assignment to NordREG was divided into two tasks; to map the differences in the legislation and licensing processes in the Nordic countries and to analyse these differences and possible ways of financing common network investment projects. In the second half of 2009 the consultant Econ Poeyry was engaged to support in the finalisation of this project, mainly concerning possibilities for Nordic financing. The final text is however the sole responsibility of the task force. A draft version of the final report was delivered to EMG in December 2009. At the same time the report was sent to the Nordic TSOs together with an invitation to a workshop at Gardermoen on 26 January 2010. The comments from the TSOs are included in appendix 2 of the report

  16. Intention detection of gait initiation using EMG and kinematic data.

    Science.gov (United States)

    Wentink, E C; Beijen, S I; Hermens, H J; Rietman, J S; Veltink, P H

    2013-02-01

    Gait initiation in transfemoral amputees (TFA) is different from non-amputees. This is mainly caused by the lack of stability and push-off from the prosthetic leg. Adding control and artificial push-off to the prosthesis may therefore be beneficial to TFA. In this study the feasibility of real-time intention detection of gait initiation was determined by mimicking the TFA situation in non-amputees. EMG and inertial sensor data was measured in 10 non-amputees. Only data available in TFA was used to determine if gait initiation can be predicted in time to control a transfemoral prosthesis to generate push-off and stability. Toe-off and heel-strike of the leading limb are important parameters to be detected, to control a prosthesis and to time push-off. The results show that toe-off and heel-strike of the leading limb can be detected using EMG and kinematic data in non-amputees 130-260 ms in advance. This leaves enough time to control a prosthesis. Based on these results we hypothesize that similar results can be found in TFA, allowing for adequate control of a prosthesis during gait initiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ventilatory threshold during incremental running can be estimated using EMG shorts

    International Nuclear Information System (INIS)

    Tikkanen, Olli; Vilavuo, Toivo; Finni, Taija; Hu, Min; Cheng, Sulin; Tolvanen, Pekka

    2012-01-01

    The present study examined whether shorts with textile electromyographic (EMG) electrodes can be used to detect second ventilatory threshold (V T2 ) during incremental treadmill running. Thirteen recreationally active (REC) and eight endurance athletes were measured for EMG, heart rate, blood lactate and respiratory gases during VO 2max test (3 min ramps, 1 km ⋅ h −1 increments). V T2 , onset of blood lactate accumulation (OBLA) and EMG threshold (EMG T ) were determined. In athletes, OBLA occurred at 56 ± 6 mL ⋅ kg −1  ⋅ min −1 , V T2 occurred at 59 ± 6 mL ⋅ kg −1  ⋅ min −1 , and EMG T at 62 ± 6 mL ⋅ kg −1  ⋅ min −1 without significant differences between methods (analysis of variance: ANOVA). In REC participants, OBLA occurred at 40 ± 10 mL ⋅ kg −1  ⋅ min −1 , V T2 occurred at 43 ± 7 mL ⋅ kg −1  ⋅ min −1 , and EMG T at 41 ± 9 mL ⋅ kg −1  ⋅ min −1 without significant differences between methods (ANOVA). For the entire group, correlation between EMG T and V T2 was 0.86 (P < 0.001) and 0.84 (P < 0.001) between EMG T and OBLA. Limits of agreement between EMG T and V T2 were narrower in athletes than in REC participants. Thus, it is concluded that estimation of V T2 using EMG T in athletes is more valid than in REC participants. In practice, experienced runners could use online feedback from EMG garments to monitor whether their running intensity is near V T2 . (paper)

  18. Ventilatory threshold during incremental running can be estimated using EMG shorts.

    Science.gov (United States)

    Tikkanen, Olli; Hu, Min; Vilavuo, Toivo; Tolvanen, Pekka; Cheng, Sulin; Finni, Taija

    2012-04-01

    The present study examined whether shorts with textile electromyographic (EMG) electrodes can be used to detect second ventilatory threshold (V(T2)) during incremental treadmill running. Thirteen recreationally active (REC) and eight endurance athletes were measured for EMG, heart rate, blood lactate and respiratory gases during VO(2max) test (3 min ramps, 1 km·h(-1) increments). V(T)(2), onset of blood lactate accumulation (OBLA) and EMG threshold (EMG(T)) were determined. In athletes, OBLA occurred at 56 ± 6 mL·kg(-1)·min(-1), V(T2) occurred at 59 ± 6 mL·kg(-1)·min(-1), and EMG(T) at 62 ± 6 mL·kg(-1)·min(-1) without significant differences between methods (analysis of variance: ANOVA). In REC participants, OBLA occurred at 40 ± 10 mL·kg(-1)·min(-1), V(T2) occurred at 43 ± 7 mL·kg(-1)·min(-1), and EMG(T) at 41 ± 9 mL·kg(-1)·min(-1) without significant differences between methods (ANOVA). For the entire group, correlation between EMG(T) and V(T2) was 0.86 (P < 0.001) and 0.84 (P < 0.001) between EMG(T) and OBLA. Limits of agreement between EMG(T) and V(T2) were narrower in athletes than in REC participants. Thus, it is concluded that estimation of V(T2) using EMG(T) in athletes is more valid than in REC participants. In practice, experienced runners could use online feedback from EMG garments to monitor whether their running intensity is near V(T2). © 2012 Institute of Physics and Engineering in Medicine

  19. Influence of a scheduled-waiting task on EMG reactivity and oral habits among facial pain patients and no-pain controls.

    Science.gov (United States)

    Nicholson, R A; Townsend, D R; Gramling, S E

    2000-12-01

    Recent research has strongly implicated the role of psychological stress in the development of temporomandibular disorders (TMD). It is widely reported that oral habits (e.g., teeth grinding) probably provide a behavioral link between stress and the development of TMD symptomatology. Extrapolation of research in the field of adjunctive behavior to the TMD disorders suggests that oral behaviors may develop conjointly with fixed-time (FT) stimulus presentation. The current experiment extended previous research examining this possibility by assessing the influence of experimental stress on masseter EMG and oral habits among persons who met broadband criteria for TMD and no-pain controls. Oral habit activity was assessed via self-report questionnaire whereas masseter muscle activity was measured continuously via electromyography across four phases (Adaptation, Free-Play, Scheduled-Play, Recovery). The Scheduled-Play phase was designed as a stress-reactivity task that included an FT schedule. Results indicated that, consistent with the stress-reactivity model, the Scheduled-Play phase resulted in a significant increase in masseter EMG levels relative to Free-Play and Adaptation, and that this effect was significantly larger for the TMD group relative to controls. The results suggest an adjunctive behavior effect although the effect was not specific to those with facial pain. Oral habit data showed a significant phase effect with oral habits that was significantly higher during the Scheduled-Play phase relative to Adaptation. The findings are the impetus for further study regarding the mechanisms whereby oral habits are developed and maintained despite their painful consequences.

  20. Simultaneous 31P-NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: a correlation study

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1995-01-01

    A large number of studies have shown amplitude and spectral changes of the electromyogram during exercise, leading to several theories of how these changes might be related to the underlying metabolic changes. The amplitude and spectral changes are generally interpreted as changes in motor unit...... of the muscle. Simultaneous 31P-nuclear magnetic resonance spectroscopy and surface electromyography were performed during sustained static exercise and recovery in healthy volunteers and a patient with McArdle's disease. A clear dissociation between the median power frequency of the surface electromyogram...... and pH was seen in the healthy volunteers during recovery and during exercise in the patient with McArdle's disease. The results indicate that proton or lactate accumulation is not primarily responsible for the spectral changes of the surface electromyogram as previously suggested. The motor unit...

  1. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  2. TIME-OF-DAY EFFECTS ON EMG PARAMETERS DURING THE WINGATE TEST IN BOYS

    Directory of Open Access Journals (Sweden)

    Hichem Souissi

    2012-09-01

    Full Text Available In boys, muscle power and strength fluctuate with time-of-day with morning nadirs and afternoon maximum values. However, the exact underlying mechanisms of this daily variation are not studied yet. Thus, the purpose of this study was to examine the time-of-day effects on electromyographic (EMG parameters changes during a Wingate test in boys. Twenty-two boys performed a 30-s Wingate test (measurement of muscle power and fatigue at 07:00 and 17:00-h on separate days. Surface EMG activity was recorded in the Vastus lateralis, rectus femoris and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root-mean-square (RMS and mean-power-frequency (MPF were calculated. Neuromuscular efficiency (NME was estimated from the ratio of power to RMS. Muscle power (8.22 ± 0.92 vs. 8.75 ± 0.99 W·kg-1 for peak power and 6.96 ± 0. 72 vs. 7.31 ± 0.77 W·kg-1 for mean power, p < 0.001 and fatigue (30.27 ± 7.98 vs. 34.5 ± 10. 15 %, p < 0.05 during the Wingate test increased significantly from morning to evening. Likewise, MPF (102.14 ± 18.15 vs. 92.38 ± 12.39 Hz during the first 5-s, p < 0.0