WorldWideScience

Sample records for surface electromyogram semg

  1. Effect of age and gender on the surface electromyogram during various levels of isometric contraction.

    Science.gov (United States)

    Arjunan, Sridhar; Kumar, Dinesh; Kalra, Chandan; Burne, John; Bastos, Teodiano

    2011-01-01

    This study reports the effects of age and gender on the surface electromyogram while performing isometric contraction. Experiments were conducted with two age groups--Young (Age: 20-29) and Old (Age: 60-69) where they performed sustained isometric contractions at various force levels (50%, 75%, 100% of maximum voluntary contraction). Traditional features such as root mean square (RMS) and median frequency (MDF) were computed from the recorded sEMG. The result indicates that the MDF of sEMG was not significantly affected by age, but was impacted by gender in both age groups. Also there was a significant change in the RMS of sEMG with age and gender at all levels of contraction. The results also indicate a large inter-subject variation. This study will provide an understanding of the underlying physiological effects of muscle contraction and muscle fatigue in different cohorts.

  2. Estimation of the neural drive to the muscle from surface electromyograms

    Science.gov (United States)

    Hofmann, David

    Muscle force is highly correlated with the standard deviation of the surface electromyogram (sEMG) produced by the active muscle. Correctly estimating this quantity of non-stationary sEMG and understanding its relation to neural drive and muscle force is of paramount importance. The single constituents of the sEMG are called motor unit action potentials whose biphasic amplitude can interfere (named amplitude cancellation), potentially affecting the standard deviation (Keenan etal. 2005). However, when certain conditions are met the Campbell-Hardy theorem suggests that amplitude cancellation does not affect the standard deviation. By simulation of the sEMG, we verify the applicability of this theorem to myoelectric signals and investigate deviations from its conditions to obtain a more realistic setting. We find no difference in estimated standard deviation with and without interference, standing in stark contrast to previous results (Keenan etal. 2008, Farina etal. 2010). Furthermore, since the theorem provides us with the functional relationship between standard deviation and neural drive we conclude that complex methods based on high density electrode arrays and blind source separation might not bear substantial advantages for neural drive estimation (Farina and Holobar 2016). Funded by NIH Grant Number 1 R01 EB022872 and NSF Grant Number 1208126.

  3. Independence Between Two Channels of Surface Electromyogram Signal to Measure the Loss of Motor Units

    Directory of Open Access Journals (Sweden)

    Arjunan Sridhar P.

    2015-06-01

    Full Text Available This study has investigated the relationship in the connectivity of motor units in surface electromyogram (sEMG of biceps brachii muscle. It is hypothesized that with ageing, there is reduction/loss in number of motor units, leading to reduction in the independence between the channels of the recorded muscle activity. Two channels of sEMG were recorded during three levels of isometric muscle contraction: 50 %, 75 % and 100 % maximal voluntary contraction (MVC. 73 subjects (age range 20-70 participated in the experiments. The independence in channel index (ICI between the two sEMG recording locations was computed using the independent components and Frobenius norm. ANOVA Statistical analysis was performed to test the effect of age (loss of motor units and level of contraction on ICI. The results show that the ICI among the older cohort was significantly lower compared with the younger adults. This research study has shown that the reduction in number of motor units is reflected by the reduction in the ICI of the sEMG signal.

  4. Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior.

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant

    2016-01-01

    Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20-30 years) and 18 older (60-85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG's maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes.

  5. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.

    Science.gov (United States)

    Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant

    2010-10-21

    Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73

  6. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors

    Directory of Open Access Journals (Sweden)

    Kumar Dinesh

    2010-10-01

    Full Text Available Abstract Background Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. Methods SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS, Mean absolute value (MAV, Variance (VAR and Waveform length (WL and the proposed fractal features: fractal dimension (FD and maximum fractal length (MFL were computed. Multi-variant analysis of variance (MANOVA was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN classifier to decode the desired subtle movements. Results The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination

  7. Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior

    Directory of Open Access Journals (Sweden)

    Ariba Siddiqi

    2016-01-01

    Full Text Available Age-related neuromuscular change of Tibialis Anterior (TA is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD as suitable features to identify age-associated changes in the surface electromyogram (sEMG. Eighteen younger (20–30 years and 18 older (60–85 years cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG’s maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes.

  8. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Sridhar P. Arjunan

    2014-01-01

    Full Text Available The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC. Six features were considered in this study: normalised spectral index (NSM5, median frequency, root mean square, waveform length, normalised root mean square (NRMS, and increase in synchronization (IIS index. Analysis of variance (ANOVA and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P0.05.

  9. Computation and evaluation of features of surface electromyogram to identify the force of muscle contraction and muscle fatigue.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh

    2014-01-01

    The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P 0.05).

  10. Motor unit number index (MUNIX) derivation from the relationship between the area and power of surface electromyogram: a computer simulation and clinical study

    Science.gov (United States)

    Miralles, Francesc

    2018-06-01

    Objective. The motor unit number index (MUNIX) is a technique based on the surface electromyogram (sEMG) that is gaining acceptance as a method for monitoring motor neuron loss, because it is reliable and produces less discomfort than other electrodiagnostic techniques having the same intended purpose. MUNIX assumes that the relationship between the area of sEMG obtained at increasing levels of muscle activation and the values of a variable called ‘ideal case motor unit count’ (ICMUC), defined as the product of the ratio between area and power of the compound muscle action potential (CMAP) by that of the sEMG, is described by a decreasing power function. Nevertheless, the reason for this comportment is unknown. The objective of this work is to investigate if the definition of MUNIX could derive from more basic properties of the sEMG. Approach. The CMAP and sEMG epochs obtained at different levels of muscle activation from (1) the abductor pollicis brevis (APB) muscle of persons with and without a carpal tunnel syndrome (CTS) and (2) from a computer model of sEMG generation previously published were analysed. Main results. MUNIX reflects the power relationship existing between the area and power of a sEMG. The exponent of this function was smaller in patients with motor CTS than in the rest of the subjects. The analysis of the relationship between the area and power of a sEMG could aid in distinguishing a MUNIX reduction due to a motoneuron loss from that due to a loss of muscle fibre. Significance. MUNIX is derived from the relationship between the area and power of a sEMG. This relationship changes when there is a loss of motor units (MUs), which partially explains the diagnostic sensibility of MUNIX. Although the reasons for this change are unknown, it could reflect an increase in the proportion of MUs of great amplitude.

  11. Estimating the progression of muscle fatigue based on dependence between motor units using high density surface electromyogram.

    Science.gov (United States)

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    In this study we have tested the hypothesis regarding the increase in synchronization with the onset of muscle fatigue. For this aim, we have investigated the difference in the synchronicity between high density surface electromyogram (sEMG) channels of the rested muscles and when at the limit of endurance. Synchronization was measured by computing and normalizing the mutual information between the sEMG signals recorded from the high-density array electrode locations. Ten volunteers (Age range: 21 and 35 years; Mean age = 26 years; Male = 6, Female = 4) participated in our experiment. The participants performed isometric dorsiflexion of their dominate foot at two levels of contraction; 40% and 80% of their maximum voluntary contraction (MVC) until task failure. During the experiment an array of 64 electrodes (16 by 4) placed over the TA parallel to the muscle fiber was used to record the HD-sEMG. Normalized Mutual Information (NMI) between electrodes was calculated using the HD-sEMG data and then analyzed. The results show that that the average NMI of the TA significantly increased during fatigue at both levels of contraction. There was a statistically significant difference between NMI of the rested muscle compared with it being at the point of task failure.

  12. Blind source identification from the multichannel surface electromyogram

    International Nuclear Information System (INIS)

    Holobar, A; Farina, D

    2014-01-01

    The spinal circuitries combine the information flow from the supraspinal centers with the afferent input to generate the neural codes that drive the human skeletal muscles. The muscles transform the neural drive they receive from alpha motor neurons into motor unit action potentials (electrical activity) and force. Thus, the output of the spinal cord circuitries can be examined noninvasively by measuring the electrical activity of skeletal muscles at the surface of the skin i.e. the surface electromyogram (EMG). The recorded multi-muscle EMG activity pattern is generated by mixing processes of neural sources that need to be identified from the recorded signals themselves, with minimal or no a priori information available. Recently, multichannel source separation techniques that rely minimally on a priori knowledge of the mixing process have been developed and successfully applied to surface EMG. They act at different scales of information extraction to identify: (a) the activation signals shared by synergistic skeletal muscles, (b) the specific neural activation of individual muscles, separating it from that of nearby muscles i.e. from crosstalk, and (c) the spike trains of the active motor neurons. This review discusses the assumptions made by these methods, the challenges and limitations, as well as examples of their current applications. (topical review)

  13. A computational model to investigate the effect of pennation angle on surface electromyogram of Tibialis Anterior.

    Directory of Open Access Journals (Sweden)

    Diptasree Maitra Ghosh

    Full Text Available This study has described and experimentally validated the differential electrodes surface electromyography (sEMG model for tibialis anterior muscles during isometric contraction. This model has investigated the effect of pennation angle on the simulated sEMG signal. The results show that there is no significant effect of pennation angle in the range 0° to 20° to the single fibre action potential shape recorded on the skin surface. However, the changes with respect to pennation angle are observed in sEMG amplitude, frequency and fractal dimension. It is also observed that at different levels of muscle contractions there is similarity in the relationships with Root Mean Square, Median Frequency, and Fractal Dimension of the recorded and simulated sEMG signals.

  14. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design

    Science.gov (United States)

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Verhagen Metman, Leo; Corcos, Daniel M.

    2013-06-01

    Objective. We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and essential tremor (ET). Approach. The tremor prediction algorithm uses a set of spectral (Fourier and wavelet) and nonlinear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results. The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance. The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle and the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage.

  15. Age related neuromuscular changes in sEMG of m. Tibialis Anterior using higher order statistics (Gaussianity & linearity test).

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.

  16. Use of sEMG in identification of low level muscle activities: features based on ICA and fractal dimension.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Arjunan, Sridhar

    2009-01-01

    This paper has experimentally verified and compared features of sEMG (Surface Electromyogram) such as ICA (Independent Component Analysis) and Fractal Dimension (FD) for identification of low level forearm muscle activities. The fractal dimension was used as a feature as reported in the literature. The normalized feature values were used as training and testing vectors for an Artificial neural network (ANN), in order to reduce inter-experimental variations. The identification accuracy using FD of four channels sEMG was 58%, and increased to 96% when the signals are separated to their independent components using ICA.

  17. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.

    Science.gov (United States)

    Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M

    2008-06-01

    Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.

  18. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    Science.gov (United States)

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Optimal spatio-temporal filter for the reduction of crosstalk in surface electromyogram

    Science.gov (United States)

    Mesin, Luca

    2018-02-01

    Objective. Crosstalk can pose limitations to the applications of surface electromyogram (EMG). Its reduction can help in the identification of the activity of specific muscles. The selectivity of different spatial filters was tested in the literature both in simulations and experiments: their performances are affected by many factors (e.g. anatomy, conduction properties of the tissues and dimension/location of the electrodes); moreover, they reduce crosstalk by decreasing the detection volume, recording data that represent only the activity of a small portion of the muscle of interest. In this study, an alternative idea is proposed, based on a spatio-temporal filter. Approach. An adaptive method is applied, which filters both in time and among different channels, providing a signal that maximally preserves the energy of the EMG of interest and discards that of nearby muscles (increasing the signal to crosstalk ratio, SCR). Main results. Tests with simulations and experimental data show an average increase of the SCR of about 2 dB with respect to the single or double differential data processed by the filter. This allows to reduce the bias induced by crosstalk in conduction velocity and force estimation. Significance. The method can be applied to few channels, so that it is useful in applicative studies (e.g. clinics, gate analysis, rehabilitation protocols with EMG biofeedback and prosthesis control) where limited and not selective information is usually available.

  20. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    Science.gov (United States)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  1. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K

    2011-01-01

    The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

  2. sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.

    Science.gov (United States)

    Castro, Maria Claudia F; Colombini, Esther L; Aquino, Plinio T; Arjunan, Sridhar P; Kumar, Dinesh K

    2014-11-25

    Automatic and accurate identification of elbow angle from surface electromyogram (sEMG) is essential for myoelectric controlled upper limb exoskeleton systems. This requires appropriate selection of sEMG features, and identifying the limitations of such a system.This study has demonstrated that it is possible to identify three discrete positions of the elbow; full extension, right angle, and mid-way point, with window size of only 200 milliseconds. It was seen that while most features were suitable for this purpose, Power Spectral Density Averages (PSD-Av) performed best. The system correctly classified the sEMG against the elbow angle for 100% cases when only two discrete positions (full extension and elbow at right angle) were considered, while correct classification was 89% when there were three discrete positions. However, sEMG was unable to accurately determine the elbow position when five discrete angles were considered. It was also observed that there was no difference for extension or flexion phases.

  3. Unspoken vowel recognition using facial electromyogram.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Yau, Wai C; Weghorn, Hans

    2006-01-01

    The paper aims to identify speech using the facial muscle activity without the audio signals. The paper presents an effective technique that measures the relative muscle activity of the articulatory muscles. Five English vowels were used as recognition variables. This paper reports using moving root mean square (RMS) of surface electromyogram (SEMG) of four facial muscles to segment the signal and identify the start and end of the utterance. The RMS of the signal between the start and end markers was integrated and normalised. This represented the relative muscle activity of the four muscles. These were classified using back propagation neural network to identify the speech. The technique was successfully used to classify 5 vowels into three classes and was not sensitive to the variation in speed and the style of speaking of the different subjects. The results also show that this technique was suitable for classifying the 5 vowels into 5 classes when trained for each of the subjects. It is suggested that such a technology may be used for the user to give simple unvoiced commands when trained for the specific user.

  4. A sEMG model with experimentally based simulation parameters.

    Science.gov (United States)

    Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P

    2010-01-01

    A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.

  5. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN

    Directory of Open Access Journals (Sweden)

    Changcheng Wu

    2017-06-01

    Full Text Available The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space from the electromyogram (EMG signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG and the Generalized Regression Neural Network (GRNN is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method.

  6. Generating Human-Like Velocity-Adapted Jumping Gait from sEMG Signals for Bionic Leg’s Control

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2017-01-01

    Full Text Available In the case of dynamic motion such as jumping, an important fact in sEMG (surface Electromyogram signal based control on exoskeletons, myoelectric prostheses, and rehabilitation gait is that multichannel sEMG signals contain mass data and vary greatly with time, which makes it difficult to generate compliant gait. Inspired by the fact that muscle synergies leading to dimensionality reduction may simplify motor control and learning, this paper proposes a new approach to generate flexible gait based on muscle synergies extracted from sEMG signal. Two questions were discussed and solved, the first one concerning whether the same set of muscle synergies can explain the different phases of hopping movement with various velocities. The second one is about how to generate self-adapted gait with muscle synergies while alleviating model sensitivity to sEMG transient changes. From the experimental results, the proposed method shows good performance both in accuracy and in robustness for producing velocity-adapted vertical jumping gait. The method discussed in this paper provides a valuable reference for the sEMG-based control of bionic robot leg to generate human-like dynamic gait.

  7. Muscular Activities Measurements of Forward Lean and Upright Sitting Motorcycling Postures via Surface Electromyography (sEMG

    Directory of Open Access Journals (Sweden)

    Ma’arof Muhammad Izzat Nor

    2017-01-01

    Full Text Available Motorcycling postures are generically speculated to be physical and physiologically demanding – which in-turn may lead to motorcycling fatigue, and then becoming a possible factor to road accident. The objective of this study was to measure the muscular activities of various motorcycling postures. High muscular activity reading will signifies that motorcycling is indeed physically and physiologically demanding to the motorcyclist. For this particular study, the following postures were tested: i forward lean, ii upright sitting, and iii neutral sitting (as control. Surface electromyography (sEMG measurement was conducted on the following muscles: i extensor carpi radialis, ii upper trapezius iii latissimus dorsi, and iv erector spinae. The results showed that for all test subjects, the muscular activities readings for the forward lean posture was actually close to neutral sitting’s. Whilst, the upright sitting had showed much higher muscular activities measurement instead. Conclusively, this study had proven that any types of discomforts associated with the forward lean posture is not originated from muscular activities. Whereas, confirming that any discomforts in regards to the upright sitting is indeed related to muscular activities. Further studies are warranted to discover the actual risk factors that causes physical and physiological discomforts for the forward lean motorcycling posture.

  8. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.

    Science.gov (United States)

    Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang

    2018-02-24

    This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.

  9. Investigation of the load on the lumbar region in nursing technique's movements - relation between twist and surface electromyogram.

    Science.gov (United States)

    Maekawa, Yasuko; Shiozaki, Akira; Majima, Yukie

    2009-01-01

    This study measured the twist angle of the lumbar region and the surface electromyogram (EMG) and examined their mutual relation to elucidate the degree and influence of factors of "twist" in nursing techniques as a cause of lower back pain. Using a goniometer (two-way angle and twist sensors) and an EMG(SX230; DKH Co., Ltd.), we conducted measurements by affixing the goniometer on the lumbar vertebral column and EMG sensor at four points of right and left sides of L2 and L4 (of the erector muscle of the spine). The measured nursing techniques were three common methods of "transferring a patient from bed to wheelchair," which is said to impart a heavy load on the lumbar region. Results show that the correlation value between the twist angle rate and mean energy is likely to be greater, suggesting that the magnitude of the load on the lumbar region should be related to the twist speed rather than to the twist angle of the movement itself.

  10. The assessment of muscle strain with surface electromyograms during simulated mushroom picking

    DEFF Research Database (Denmark)

    Ohashi, Jun-Ya; Blangsted, Anne Katrine; Kofoed Nielsen, Pernille B.

    2008-01-01

    Muscle strain was assessed with surface EMG during simulated mushroom picking. Nine female subjects performed five periods of work (W1-W5). The duration of each period was about 20 min. W1, W2 and W3 were separated by a short break of several minutes. W3, W4 and W5 were separated by a rest period...

  11. A Simulation Based Analysis of Motor Unit Number Index (MUNIX) Technique Using Motoneuron Pool and Surface Electromyogram Models

    Science.gov (United States)

    Li, Xiaoyan; Rymer, William Zev; Zhou, Ping

    2013-01-01

    Motor unit number index (MUNIX) measurement has recently achieved increasing attention as a tool to evaluate the progression of motoneuron diseases. In our current study, the sensitivity of the MUNIX technique to changes in motoneuron and muscle properties was explored by a simulation approach utilizing variations on published motoneuron pool and surface electromyogram (EMG) models. Our simulation results indicate that, when keeping motoneuron pool and muscle parameters unchanged and varying the input motor unit numbers to the model, then MUNIX estimates can appropriately characterize changes in motor unit numbers. Such MUNIX estimates are not sensitive to different motor unit recruitment and rate coding strategies used in the model. Furthermore, alterations in motor unit control properties do not have a significant effect on the MUNIX estimates. Neither adjustment of the motor unit recruitment range nor reduction of the motor unit firing rates jeopardizes the MUNIX estimates. The MUNIX estimates closely correlate with the maximum M wave amplitude. However, if we reduce the amplitude of each motor unit action potential rather than simply reduce motor unit number, then MUNIX estimates substantially underestimate the motor unit numbers in the muscle. These findings suggest that the current MUNIX definition is most suitable for motoneuron diseases that demonstrate secondary evidence of muscle fiber reinnervation. In this regard, when MUNIX is applied, it is of much importance to examine a parallel measurement of motor unit size index (MUSIX), defined as the ratio of the maximum M wave amplitude to the MUNIX. However, there are potential limitations in the application of the MUNIX methods in atrophied muscle, where it is unclear whether the atrophy is accompanied by loss of motor units or loss of muscle fiber size. PMID:22514208

  12. Assessing the Therapeutic Effect of 630 nm Light-Emitting Diodes Irradiation on the Recovery of Exercise-Induced Hand Muscle Fatigue with Surface Electromyogram

    Directory of Open Access Journals (Sweden)

    Dandan Yang

    2012-01-01

    Full Text Available This paper aims to investigate the effect of light emitting diode therapy (LEDT on exercise-induced hand muscle fatigue by measuring the surface electromyography (sEMG of flexor digitorum superficialis. Ten healthy volunteers were randomly placed in the equal sized LEDT group and control group. All subjects performed a sustained fatiguing isometric contraction with the combination of four fingertips except thumb at 30% of maximal voluntary contraction (MVC until exhaustion. The active LEDT or an identical passive rest therapy was then applied to flexor digitorum superficialis. Each subject was required to perform a re-fatigue task immediately after therapy which was the same as the pre-fatigue task. Average rectified value (ARV and fractal dimension (FD of sEMG were calculated. ARV and FD were significantly different between active LEDT and passive rest groups at 20%–50%, 70%–80%, and 100% of normalized contraction time (P<0.05. Compared to passive rest, active LEDT induced significantly smaller increase in ARV values and decrease in FD values, which shows that LEDT is effective on the recovery of muscle fatigue. Our preliminary results also suggest that ARV and FD are potential replacements of biochemical markers to assess the effects of LEDT on muscle fatigue.

  13. sEMG Signal Acquisition Strategy towards Hand FES Control

    Directory of Open Access Journals (Sweden)

    Cinthya Lourdes Toledo-Peral

    2018-01-01

    Full Text Available Due to damage of the nervous system, patients experience impediments in their daily life: severe fatigue, tremor or impaired hand dexterity, hemiparesis, or hemiplegia. Surface electromyography (sEMG signal analysis is used to identify motion; however, standardization of electrode placement and classification of sEMG patterns are major challenges. This paper describes a technique used to acquire sEMG signals for five hand motion patterns from six able-bodied subjects using an array of recording and stimulation electrodes placed on the forearm and its effects over functional electrical stimulation (FES and volitional sEMG combinations, in order to eventually control a sEMG-driven FES neuroprosthesis for upper limb rehabilitation. A two-part protocol was performed. First, personalized templates to place eight sEMG bipolar channels were designed; with these data, a universal template, called forearm electrode set (FELT, was built. Second, volitional and evoked movements were recorded during FES application. 95% classification accuracy was achieved using two sessions per movement. With the FELT, it was possible to perform FES and sEMG recordings simultaneously. Also, it was possible to extract the volitional and evoked sEMG from the raw signal, which is highly important for closed-loop FES control.

  14. Influences of combined therapies with traditional Chinese medicine on pulmonary function and surface average electromyogram ratio in adolescent idiopathic scoliosis patients

    Directory of Open Access Journals (Sweden)

    Jia-ping SHEN

    2016-09-01

    Full Text Available Objective  To evaluate the influences of traditional Chinese medicinal combined therapies on pulmonary function and surface average electromyogram (AEMG ratio in adolescent idiopathic scoliosis patients. Methods  One hundred and twenty outpatients with mild and moderate adolescent idiopathic scoliosis were randomly divided into a Traditional Chinese Medicine (TCM group and a brace group. TCM group patients underwent i Navigation of the spinal balance (twice a day, 40min/ time, until to skeletal maturity; ii Balance manipulation (twice a week, 25min/time, lasted 12 months; iii Small needle-knife therapy (once a week, 10 times. The brace group patients were treated with a Milwaukee brace. The Cobb angle was measured after 12 and 24 months of treatment, pulmonary function was determined after 12 months of treatment, and AEMG ratio of the surface electromyogram was measured 6, 12, 18 and 24 months after treatment, and intergroup comparison was performed. Results  The Cobb angle significantly decreased in both groups 12 months after treatment (P0.05 in the TCM group and brace group, respectively, 12 months after treatment and 62.5% and 34.7% (P<0.05, respectively, 24 months aftertreatment. Pulmonary function was significantly improved 12 months after treatment in TCM group (P<0.05 but significantly decreased in brace group (P<0.05. The AEMG ratio was significantly reduced (P<0.01 and tended to remain at 1 after stopping treatment in TCM group, showed that the muscle imbalance existed on both sides of the scoliosis, but was adverse in brace group (P<0.05, showed that the muscle imbalance aggravated. No side effect of the therapeutic method was found. Conclusions  The spinal balance therapy based on traditional Chinese medicine theory has excellent therapeutic efficacy and safety, and can significantly ameliorate the imbalance existed on both sides of the scoliosis, improve lung function index, and have better compliance. The AEMG ratio is a

  15. SEMG analysis of astronaut upper arm during isotonic muscle actions with normal standing posture

    Science.gov (United States)

    Qianxiang, Zhou; Chao, Ma; Xiaohui, Zheng

    sEMG analysis of astronaut upper arm during isotonic muscle actions with normal standing posture*1 Introduction Now the research on the isotonic muscle actions by using Surface Electromyography (sEMG) is becoming a pop topic in fields of astronaut life support training and rehabilitations. And researchers paid more attention on the sEMG signal processes for reducing the influence of noise which is produced during monitoring process and the fatigue estimation of isotonic muscle actions with different force levels by using the parameters which are obtained from sEMG signals such as Condition Velocity(CV), Median Frequency(MDF), Mean Frequency(MNF) and so on. As the lucubrated research is done, more and more research on muscle fatigue issue of isotonic muscle actions are carried out with sEMG analysis and subjective estimate system of Borg scales at the same time. In this paper, the relationship between the variable for fatigue based on sEMG and the Borg scale during the course of isotonic muscle actions of the upper arm with different contraction levels are going to be investigated. Methods 13 young male subjects(23.4±2.45years, 64.7±5.43Kg, 171.7±5.41cm) with normal standing postures were introduced to do isotonic actions of the upper arm with different force levels(10% MVC, 30%MVC and 50%MVC). And the MVC which means maximal voluntary contraction was obtained firstly in the experiment. Also the sEMG would be recorded during the experiments; the Borg scales would be recorded for each contraction level. By using one-third band octave method, the fatigue variable (p) based on sEMG were set up and it was expressed as p = i g(fi ) · F (fi ). And g(fi ) is defined as the frequent factor which was 0.42+0.5 cos(π fi /f0 )+0.08 cos(2π fi /f0 ), 0 f0 . According to the equations, the p could be computed and the relationship between variable p and the Borg scale would be investigated. Results In the research, three kinds of fitted curves between variable p and Borg

  16. Onset Detection in Surface Electromyographic Signals: A Systematic Comparison of Methods

    Directory of Open Access Journals (Sweden)

    Claus Flachenecker

    2001-06-01

    Full Text Available Various methods to determine the onset of the electromyographic activity which occurs in response to a stimulus have been discussed in the literature over the last decade. Due to the stochastic characteristic of the surface electromyogram (SEMG, onset detection is a challenging task, especially in weak SEMG responses. The performance of the onset detection methods were tested, mostly by comparing their automated onset estimations to the manually determined onsets found by well-trained SEMG examiners. But a systematic comparison between methods, which reveals the benefits and the drawbacks of each method compared to the other ones and shows the specific dependence of the detection accuracy on signal parameters, is still lacking. In this paper, several classical threshold-based approaches as well as some statistically optimized algorithms were tested on large samples of simulated SEMG data with well-known signal parameters. Rating between methods is performed by comparing their performance to that of a statistically optimal maximum likelihood estimator which serves as reference method. In addition, performance was evaluated on real SEMG data obtained in a reaction time experiment. Results indicate that detection behavior strongly depends on SEMG parameters, such as onset rise time, signal-to-noise ratio or background activity level. It is shown that some of the threshold-based signal-power-estimation procedures are very sensitive to signal parameters, whereas statistically optimized algorithms are generally more robust.

  17. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.

    Science.gov (United States)

    Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis

    2018-02-01

    Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.

  18. A COMPARATIVE-STUDY OF ELECTROMYOGRAMS OF THE MASSETER, TEMPORALIS, AND ANTERIOR DIGASTRIC MUSCLES OBTAINED BY SURFACE AND INTRAMUSCULAR ELECTRODES - RAW-EMG

    NARCIS (Netherlands)

    KOOLE, P; DEJONGH, HJ; BOERING, G

    Electromyographic activity was synchronously recorded by surface and intramuscular electrodes in the same muscle. The activity of the left masseter, left temporalis, and both bellies of the anterior digastric muscle was studied by this double registration technique. In rest position no

  19. Fractal feature of sEMG from Flexor digitorum superficialis muscle correlated with levels of contraction during low-level finger flexions.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh R

    2010-01-01

    This research paper reports an experimental study on identification of the changes in fractal properties of surface Electromyogram (sEMG) with the changes in the force levels during low-level finger flexions. In the previous study, the authors have identified a novel fractal feature, Maximum fractal length (MFL) as a measure of strength of low-level contractions and has used this feature to identify various wrist and finger movements. This study has tested the relationship between the MFL and force of contraction. The results suggest that changes in MFL is correlated with the changes in contraction levels (20%, 50% and 80% maximum voluntary contraction (MVC)) during low-level muscle activation such as finger flexions. From the statistical analysis and by visualisation using box-plot, it is observed that MFL (p ≈ 0.001) is a more correlated to force of contraction compared to RMS (p≈0.05), even when the muscle contraction is less than 50% MVC during low-level finger flexions. This work has established that this fractal feature will be useful in providing information about changes in levels of force during low-level finger movements for prosthetic control or human computer interface.

  20. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shin-Hong; Wu, Xuan-Han

    2012-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference. PMID:22368481

  1. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Directory of Open Access Journals (Sweden)

    Xuan-Han Wu

    2012-01-01

    Full Text Available Surface electromyography (sEMG is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference.

  2. Evaluation of novel algorithm embedded in a wearable sEMG device for seizure detection

    DEFF Research Database (Denmark)

    Conradsen, Isa; Beniczky, Sandor; Wolf, Peter

    2012-01-01

    We implemented a modified version of a previously published algorithm for detection of generalized tonic-clonic seizures into a prototype wireless surface electromyography (sEMG) recording device. The method was modified to require minimum computational load, and two parameters were trained...... on prior sEMG data recorded with the device. Along with the normal sEMG recording, the device is able to set an alarm whenever the implemented algorithm detects a seizure. These alarms are annotated in the data file along with the signal. The device was tested at the Epilepsy Monitoring Unit (EMU......) at the Danish Epilepsy Center. Five patients were included in the study and two of them had generalized tonic-clonic seizures. All patients were monitored for 2–5 days. A double-blind study was made on the five patients. The overall result showed that the device detected four of seven seizures and had a false...

  3. Design of sEMG assembly to detect external anal sphincter activity: a proof of concept.

    Science.gov (United States)

    Shiraz, Arsam; Leaker, Brian; Mosse, Charles Alexander; Solomon, Eskinder; Craggs, Michael; Demosthenous, Andreas

    2017-10-31

    Conditional trans-rectal stimulation of the pudendal nerve could provide a viable solution to treat hyperreflexive bladder in spinal cord injury. A set threshold of the amplitude estimate of the external anal sphincter surface electromyography (sEMG) may be used as the trigger signal. The efficacy of such a device should be tested in a large scale clinical trial. As such, a probe should remain in situ for several hours while patients attend to their daily routine; the recording electrodes should be designed to be large enough to maintain good contact while observing design constraints. The objective of this study was to arrive at a design for intra-anal sEMG recording electrodes for the subsequent clinical trials while deriving the possible recording and processing parameters. Having in mind existing solutions and based on theoretical and anatomical considerations, a set of four multi-electrode probes were designed and developed. These were tested in a healthy subject and the measured sEMG traces were recorded and appropriately processed. It was shown that while comparatively large electrodes record sEMG traces that are not sufficiently correlated with the external anal sphincter contractions, smaller electrodes may not maintain a stable electrode tissue contact. It was shown that 3 mm wide and 1 cm long electrodes with 5 mm inter-electrode spacing, in agreement with Nyquist sampling, placed 1 cm from the orifice may intra-anally record a sEMG trace sufficiently correlated with external anal sphincter activity. The outcome of this study can be used in any biofeedback, treatment or diagnostic application where the activity of the external anal sphincter sEMG should be detected for an extended period of time.

  4. Comparison of sEMG processing methods during whole-body vibration exercise.

    Science.gov (United States)

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-12-01

    The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    Science.gov (United States)

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  6. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  7. SEMG activity of jaw-closing muscles during biting with different unilateral occlusal supports.

    Science.gov (United States)

    Wang, M-Q; He, J-J; Zhang, J-H; Wang, K; Svensson, P; Widmalm, S E

    2010-09-01

    The aim of this study was to test the hypothesis that experimental and reversible changes of occlusion affect the levels of surface electromyographic (SEMG) activity in the anterior temporalis and masseter areas during unilateral maximal voluntary biting (MVB) in centric and eccentric position. Changes were achieved by letting 21 healthy subjects bite with and without a cotton roll between the teeth. The placement alternated between sides and between premolar and molar areas. The SEMG activity level was lower when biting in eccentric position without than with a cotton roll between teeth (P 0.05). In the anterior temporalis area, the balancing side SEMG activity was lower in eccentric than in centric but only in molar-supported biting (P = 0.026). These results support that the masseter and anterior temporalis muscles have different roles in keeping the mandible in balance during unilateral supported MVB. Changes in occlusal stability achieved by biting with versus without a cotton roll were found to affect the SEMG activity levels.

  8. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    Directory of Open Access Journals (Sweden)

    Karin Lienhard

    2015-01-01

    Full Text Available The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG spectrum recorded during whole-body vibration (WBV exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05, and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05. This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity.

  9. A model for generating Surface EMG signal of m. Tibialis Anterior.

    Science.gov (United States)

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar P

    2014-01-01

    A model that simulates surface electromyogram (sEMG) signal of m. Tibialis Anterior has been developed and tested. This has a firing rate equation that is based on experimental findings. It also has a recruitment threshold that is based on observed statistical distribution. Importantly, it has considered both, slow and fast type which has been distinguished based on their conduction velocity. This model has assumed that the deeper unipennate half of the muscle does not contribute significantly to the potential induced on the surface of the muscle and has approximated the muscle to have parallel structure. The model was validated by comparing the simulated and the experimental sEMG signal recordings. Experiments were conducted on eight subjects who performed isometric dorsiflexion at 10, 20, 30, 50, 75, and 100% maximal voluntary contraction. Normalized root mean square and median frequency of the experimental and simulated EMG signal were computed and the slopes of the linearity with the force were statistically analyzed. The gradients were found to be similar (p>0.05) for both experimental and simulated sEMG signal, validating the proposed model.

  10. Optimal Elbow Angle for Extracting sEMG Signals During Fatiguing Dynamic Contraction

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2015-09-01

    Full Text Available Surface electromyographic (sEMG activity of the biceps muscle was recorded from 13 subjects. Data was recorded while subjects performed dynamic contraction until fatigue and the signals were segmented into two parts (Non-Fatigue and Fatigue. An evolutionary algorithm was used to determine the elbow angles that best separate (using Davies-Bouldin Index, DBI both Non-Fatigue and Fatigue segments of the sEMG signal. Establishing the optimal elbow angle for feature extraction used in the evolutionary process was based on 70% of the conducted sEMG trials. After completing 26 independent evolution runs, the best run containing the optimal elbow angles for separation (Non-Fatigue and Fatigue was selected and then tested on the remaining 30% of the data to measure the classification performance. Testing the performance of the optimal angle was undertaken on nine features extracted from each of the two classes (Non-Fatigue and Fatigue to quantify the performance. Results showed that the optimal elbow angles can be used for fatigue classification, showing 87.90% highest correct classification for one of the features and on average of all eight features (including worst performing features giving 78.45%.

  11. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  12. Transforming insect electromyograms into pneumatic muscle control

    Science.gov (United States)

    Rutter, Brandon; Mu, Laiyong; Ritzmann, Roy; Quinn, Roger

    2006-05-01

    Robots can serve as hardware models for testing biological hypotheses. Both for this reason and to improve the state of the art of robotics, we strive to incorporate biological principles of insect locomotion into robotic designs. Previous research has resulted in a line of robots with leg designs based on walking and climbing movements of the cockroach Blaberus discoidalis. The current version, Robot V, uses muscle-like Braided Pneumatic Actuators (BPAs). In this paper, we use recorded electromyograms (EMGs) to drive robot joint motion. A muscle activation model was developed that transforms EMGs recorded from behaving cockroaches into appropriate commands for the robot. The transform is implemented by multiplying the EMG by an input gain thus generating an input pressure signal, which is used to drive a one-way closed loop pressure controller. The actuator then can be modeled as a capacitance with input rectification. The actuator exhaust valve is given a leak rate, making the transform a leaky integrator for air pressure, which drives the output force of the actuator. We find parameters of this transform by minimizing the difference between the robot motion produced and that observed in the cockroach. Although we have not reproduced full-amplitude cockroach motion using this robot, results from evaluation on reduced-amplitude cockroach angle data strongly suggest that braided pneumatic actuators can be used as part of a physical model of a biological system.

  13. A Discrete-Time Algorithm for Stiffness Extraction from sEMG and Its Application in Antidisturbance Teleoperation

    Directory of Open Access Journals (Sweden)

    Peidong Liang

    2016-01-01

    Full Text Available We have developed a new discrete-time algorithm of stiffness extraction from muscle surface electromyography (sEMG collected from human operator’s arms and have applied it for antidisturbance control in robot teleoperation. The variation of arm stiffness is estimated from sEMG signals and transferred to a telerobot under variable impedance control to imitate human motor control behaviours, particularly for disturbance attenuation. In comparison to the estimation of stiffness from sEMG, the proposed algorithm is able to reduce the nonlinear residual error effect and to enhance robustness and to simplify stiffness calibration. In order to extract a smoothing stiffness enveloping from sEMG signals, two enveloping methods are employed in this paper, namely, fast linear enveloping based on low pass filtering and moving average and amplitude monocomponent and frequency modulating (AM-FM method. Both methods have been incorporated into the proposed stiffness variance estimation algorithm and are extensively tested. The test results show that stiffness variation extraction based on the two methods is sensitive and robust to attenuation disturbance. It could potentially be applied for teleoperation in the presence of hazardous surroundings or human robot physical cooperation scenarios.

  14. Wireless sEMG System with a Microneedle-Based High-Density Electrode Array on a Flexible Substrate.

    Science.gov (United States)

    Kim, Minjae; Gu, Gangyong; Cha, Kyoung Je; Kim, Dong Sung; Chung, Wan Kyun

    2017-12-30

    Surface electromyography (sEMG) signals reflect muscle contraction and hence, can provide information regarding a user's movement intention. High-density sEMG systems have been proposed to measure muscle activity in small areas and to estimate complex motion using spatial patterns. However, conventional systems based on wet electrodes have several limitations. For example, the electrolyte enclosed in wet electrodes restricts spatial resolution, and these conventional bulky systems limit natural movements. In this paper, a microneedle-based high-density electrode array on a circuit integrated flexible substrate for sEMG is proposed. Microneedles allow for high spatial resolution without requiring conductive substances, and flexible substrates guarantee stable skin-electrode contact. Moreover, a compact signal processing system is integrated with the electrode array. Therefore, sEMG measurements are comfortable to the user and do not interfere with the movement. The system performance was demonstrated by testing its operation and estimating motion using a Gaussian mixture model-based, simplified 2D spatial pattern.

  15. 3D-printing soft sEMG sensing structures

    NARCIS (Netherlands)

    Wolterink, Gerjan; Sanders, Remco; Muijzer, Frodo; van Beijnum, Bert-Jan; Krijnen, Gijs

    2017-01-01

    This paper describes the development and characterization of soft and flexible 3D-printed sEMG electrodes. The electrodes are printed in one go on a low cost consumer multi-material FDM printer. The printed structures do not need any further production steps to give them conductive properties.

  16. Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry

    Science.gov (United States)

    Dong, Wentao; Zhu, Chen; Hu, Wei; Xiao, Lin; Huang, Yong'an

    2018-01-01

    Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces (HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography (sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation (such as >30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger, back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely. Project supported by the National Natural Science Foundation of China (Nos. 51635007, 91323303).

  17. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    Science.gov (United States)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  18. Multichannel noninvasive human-machine interface via stretchable µm thick sEMG patches for robot manipulation

    Science.gov (United States)

    Zhou, Ying; Wang, Youhua; Liu, Runfeng; Xiao, Lin; Zhang, Qin; Huang, YongAn

    2018-01-01

    Epidermal electronics (e-skin) emerging in recent years offer the opportunity to noninvasively and wearably extract biosignals from human bodies. The conventional processes of e-skin based on standard microelectronic fabrication processes and a variety of transfer printing methods, nevertheless, unquestionably constrains the size of the devices, posing a serious challenge to collecting signals via skin, the largest organ in the human body. Herein we propose a multichannel noninvasive human-machine interface (HMI) using stretchable surface electromyography (sEMG) patches to realize a robot hand mimicking human gestures. Time-efficient processes are first developed to manufacture µm thick large-scale stretchable devices. With micron thickness, the stretchable µm thick sEMG patches show excellent conformability with human skin and consequently comparable electrical performance with conventional gel electrodes. Combined with the large-scale size, the multichannel noninvasive HMI via stretchable µm thick sEMG patches successfully manipulates the robot hand with eight different gestures, whose precision is as high as conventional gel electrodes array.

  19. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2015-12-01

    Objective. The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Approach. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Main results. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Significance. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.

  20. Synchronous monitoring of muscle dynamics and electromyogram

    Science.gov (United States)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  1. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling

    Directory of Open Access Journals (Sweden)

    Iban Latasa, Alfredo Cordova, Armando Malanda, Javier Navallas, Ana Lavilla-Oiz, Javier Rodriguez-Falces

    2016-03-01

    Full Text Available Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively of the sEMG power spectrum were calculated. The main findings were: (1 Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing exercise periods. (2 Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3 Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test.

  2. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.

    Science.gov (United States)

    Lobo-Prat, Joan; Nizamis, Kostas; Janssen, Mariska M H P; Keemink, Arvid Q L; Veltink, Peter H; Koopman, Bart F J M; Stienen, Arno H A

    2017-07-12

    Adults with Duchenne muscular dystrophy (DMD) can benefit from devices that actively support their arm function. A critical component of such devices is the control interface as it is responsible for the human-machine interaction. Our previous work indicated that surface electromyography (sEMG) and force-based control with active gravity and joint-stiffness compensation were feasible solutions for the support of elbow movements (one degree of freedom). In this paper, we extend the evaluation of sEMG- and force-based control interfaces to simultaneous and proportional control of planar arm movements (two degrees of freedom). Three men with DMD (18-23 years-old) with different levels of arm function (i.e. Brooke scores of 4, 5 and 6) performed a series of line-tracing tasks over a tabletop surface using an experimental active arm support. The arm movements were controlled using three control methods: sEMG-based control, force-based control with stiffness compensation (FSC), and force-based control with no compensation (FNC). The movement performance was evaluated in terms of percentage of task completion, tracing error, smoothness and speed. For subject S1 (Brooke 4) FNC was the preferred method and performed better than FSC and sEMG. FNC was not usable for subject S2 (Brooke 5) and S3 (Brooke 6). Subject S2 presented significantly lower movement speed with sEMG than with FSC, yet he preferred sEMG since FSC was perceived to be too fatiguing. Subject S3 could not successfully use neither of the two force-based control methods, while with sEMG he could reach almost his entire workspace. Movement performance and subjective preference of the three control methods differed with the level of arm function of the participants. Our results indicate that all three control methods have to be considered in real applications, as they present complementary advantages and disadvantages. The fact that the two weaker subjects (S2 and S3) experienced the force-based control

  3. Estimation of continuous thumb angle and force using electromyogram classification

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Siddiqi

    2016-09-01

    Full Text Available Human hand functions range from precise minute handling to heavy and robust movements. Remarkably, 50% of all hand functions are made possible by the thumb. Therefore, developing an artificial thumb that can mimic the actions of a real thumb precisely is a major achievement. Despite many efforts dedicated to this area of research, control of artificial thumb movements in resemblance to our natural movement still poses as a challenge. Most of the development in this area is based on discontinuous thumb position control, which makes it possible to recreate several of the most important functions of the thumb but does not result in total imitation. This work looks into the classification of electromyogram signals from thumb muscles for the prediction of thumb angle and force during flexion motion. For this purpose, an experimental setup is developed to measure the thumb angle and force throughout the range of flexion and simultaneously gather the electromyogram signals. Further, various features are extracted from these signals for classification and the most suitable feature set is determined and applied to different classifiers. A “piecewise discretization” approach is used for continuous angle prediction. Breaking away from previous research studies, the frequency-domain features performed better than the time-domain features, with the best feature combination turning out to be median frequency–mean frequency–mean power. As for the classifiers, the support vector machine proved to be the most accurate classifier giving about 70% accuracy for both angle and force classification and close to 50% for joint angle–force classification.

  4. Novel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2010-05-01

    Full Text Available Surface Electromyography (sEMG activity of the biceps muscle was recorded from ten subjects performing isometric contraction until fatigue. A novel feature (1D spectro_std was used to extract the feature that modeled three classes of fatigue, which enabled the prediction and detection of fatigue. Initial results of class separation were encouraging, discriminating between the three classes of fatigue, a longitudinal classification on Non-Fatigue and Transition-to-Fatigue shows 81.58% correct classification with accuracy 0.74 of correct predictions while the longitudinal classification on Transition-to-Fatigue and Fatigue showed lower average correct classification of 66.51% with a positive classification accuracy 0.73 of correct prediction. Comparison of the 1D spectro_std with other sEMG fatigue features on the same dataset show a significant improvement in classification, where results show a significant 20.58% (p < 0.01 improvement when using the 1D spectro_std to classify Non-Fatigue and Transition-to-Fatigue. In classifying Transition-to-Fatigue and Fatigue results also show a significant improvement over the other features giving 8.14% (p < 0.05 on average of all compared features.

  5. Using gastrocnemius sEMG and plasma α-synuclein for the prediction of freezing of gait in Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Wang

    Full Text Available Freezing of gait (FOG is a complicated gait disturbance in Parkinson's disease (PD and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS and Freezing of gait questionnaire (FOG-Q. Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG and without FOG (PD-FOG, based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups.

  6. An ICA-EBM-Based sEMG Classifier for Recognizing Lower Limb Movements in Individuals With and Without Knee Pathology.

    Science.gov (United States)

    Naik, Ganesh R; Selvan, S Easter; Arjunan, Sridhar P; Acharyya, Amit; Kumar, Dinesh K; Ramanujam, Arvind; Nguyen, Hung T

    2018-03-01

    Surface electromyography (sEMG) data acquired during lower limb movements has the potential for investigating knee pathology. Nevertheless, a major challenge encountered with sEMG signals generated by lower limb movements is the intersubject variability, because the signals recorded from the leg or thigh muscles are contingent on the characteristics of a subject such as gait activity and muscle structure. In order to cope with this difficulty, we have designed a three-step classification scheme. First, the multichannel sEMG is decomposed into activities of the underlying sources by means of independent component analysis via entropy bound minimization. Next, a set of time-domain features, which would best discriminate various movements, are extracted from the source estimates. Finally, the feature selection is performed with the help of the Fisher score and a scree-plot-based statistical technique, prior to feeding the dimension-reduced features to the linear discriminant analysis. The investigation involves 11 healthy subjects and 11 individuals with knee pathology performing three different lower limb movements, namely, walking, sitting, and standing, which yielded an average classification accuracy of 96.1% and 86.2%, respectively. While the outcome of this study per se is very encouraging, with suitable improvement, the clinical application of such an sEMG-based pattern recognition system that distinguishes healthy and knee pathological subjects would be an attractive consequence.

  7. A Review of Sleep Disorder Diagnosis by Electromyogram Signal Analysis.

    Science.gov (United States)

    Shokrollahi, Mehrnaz; Krishnan, Sridhar

    2015-01-01

    Sleep and sleep-related problems play a role in a large number of human disorders and affect every field of medicine. It is estimated that 50 to 70 million Americans suffer from a chronic sleep disorder, which hinders their daily life, affects their health, and confers a significant economic burden to society. The negative public health consequences of sleep disorders are enormous and could have long-term effects, including increased risk of hypertension, diabetes, obesity, heart attack, stroke and in some cases death. Polysomnographic modalities can monitor sleep cycles to identify disrupted sleep patterns, adjust the treatments, increase therapeutic options and enhance the quality of life of recording the electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG). Although the skills acquired by medical facilitators are quite extensive, it is just as important for them to have access to an assortment of technologies and to further improve their monitoring and treatment capabilities. Computer-aided analysis is one advantageous technique that could provide quantitative indices for sleep disorder screening. Evolving evidence suggests that Parkinson's disease may be associated with rapid eye movement sleep behavior disorder (RBD). With this article, we are reviewing studies that are related to EMG signal analysis for detection of neuromuscular diseases that result from sleep movement disorders. As well, the article describes the recent progress in analysis of EMG signals using temporal analysis, frequency-domain analysis, time-frequency, and sparse representations, followed by the comparison of the recent research.

  8. Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Elham Ghoochani

    2011-03-01

    Full Text Available Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigue. Muscle fatigue in shoulders and neck is one of the most prevalent problems reported with computer users especially during typing. Surface electromyography (SEMG signals are used for detecting muscle fatigue as a non-invasive method. Material and Methods: Nine healthy females volunteered for signal recoding during typing. EMG signals were recorded from the trapezius muscle, which is subjected to muscle fatigue during typing.  After signal analysis and feature extraction, detecting and predicting muscle fatigue was performed by using the MLP artificial neural network. Results: Recorded signals were analyzed in time and frequency domains for feature extraction. Results of classification showed that the MLP neural network can detect and predict muscle fatigue during typing with 80.79 % ± 1.04% accuracy. Conclusion: Intelligent classification and prediction of muscle fatigue can have many applications in human factors engineering (ergonomics, rehabilitation engineering and biofeedback equipment for mitigating the injuries of repetitive works.

  9. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation.

    Science.gov (United States)

    Delph, Michael A; Fischer, Sarah A; Gauthier, Phillip W; Luna, Carlos H Martinez; Clancy, Edward A; Fischer, Gregory S

    2013-06-01

    Stroke affects 750,000 people annually, and 80% of stroke survivors are left with weakened limbs and hands. Repetitive hand movement is often used as a rehabilitation technique in order to regain hand movement and strength. In order to facilitate this rehabilitation, a robotic glove was designed to aid in the movement and coordination of gripping exercises. This glove utilizes a cable system to open and close a patients hand. The cables are actuated by servomotors, mounted in a backpack weighing 13.2 lbs including battery power sources. The glove can be controlled in terms of finger position and grip force through switch interface, software program, or surface myoelectric (sEMG) signal. The primary control modes of the system provide: active assistance, active resistance and a preprogrammed mode. This project developed a working prototype of the rehabilitative robotic glove which actuates the fingers over a full range of motion across one degree-of-freedom, and is capable of generating a maximum 15N grip force.

  10. Study of the SEMG probability distribution of the paretic tibialis anterior muscle

    International Nuclear Information System (INIS)

    Cherniz, AnalIa S; Bonell, Claudia E; Tabernig, Carolina B

    2007-01-01

    The surface electromyographic signal is a stochastic signal that has been modeled as a Gaussian process, with a zero mean. It has been experimentally proved that this probability distribution can be adjusted with less error to a Laplacian type distribution. The selection of estimators for the detection of changes in the amplitude of the muscular signal depends, among other things, on the type of distribution. In the case of subjects with lesions to the superior motor neuron, the lack of central control affects the muscular tone, the force and the patterns of muscular movement involved in activities such as the gait cycle. In this work, the distribution types of the SEMG signal amplitudes of the tibialis anterior muscle are evaluated during gait, both in two healthy subjects and in two hemiparetic ones in order to select the estimators that best characterize them. It was observed that the Laplacian distribution function would be the one that best adjusts to the experimental data in the studied subjects, although this largely depends on the subject and on the data segment analyzed

  11. Study of the SEMG probability distribution of the paretic tibialis anterior muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cherniz, AnalIa S; Bonell, Claudia E; Tabernig, Carolina B [Laboratorio de Ingenieria de Rehabilitacion e Investigaciones Neuromusculares y Sensoriales, Facultad de Ingenieria, UNER, Oro Verde (Argentina)

    2007-11-15

    The surface electromyographic signal is a stochastic signal that has been modeled as a Gaussian process, with a zero mean. It has been experimentally proved that this probability distribution can be adjusted with less error to a Laplacian type distribution. The selection of estimators for the detection of changes in the amplitude of the muscular signal depends, among other things, on the type of distribution. In the case of subjects with lesions to the superior motor neuron, the lack of central control affects the muscular tone, the force and the patterns of muscular movement involved in activities such as the gait cycle. In this work, the distribution types of the SEMG signal amplitudes of the tibialis anterior muscle are evaluated during gait, both in two healthy subjects and in two hemiparetic ones in order to select the estimators that best characterize them. It was observed that the Laplacian distribution function would be the one that best adjusts to the experimental data in the studied subjects, although this largely depends on the subject and on the data segment analyzed.

  12. Electromyogram refinement using muscle synergy based regulation of uncertain information.

    Science.gov (United States)

    Min, Kyuengbo; Shin, Duk; Lee, Jongho; Kakei, Shinji

    2018-04-27

    Electromyogram signal (EMG) measurement frequently experiences uncertainty attributed to issues caused by technical constraints such as cross talk and maximum voluntary contraction. Due to these problems, individual EMGs exhibit uncertainty in representing their corresponding muscle activations. To regulate this uncertainty, we proposed an EMG refinement, which refines EMGs with regulating the contribution redundancy of the signals from EMGs to approximating torques through EMG-driven torque estimation (EDTE) using the muscular skeletal forward dynamic model. To regulate this redundancy, we must consider the synergistic contribution redundancy of muscles, including "unmeasured" muscles, to approximating torques, which primarily causes redundancy of EDTE. To suppress this redundancy, we used the concept of muscle synergy, which is a key concept of analyzing the neurophysiological regulation of contribution redundancy of muscles to exerting torques. Based on this concept, we designed a muscle-synergy-based EDTE as a framework for EMG refinement, which regulates the abovementioned uncertainty of individual EMGs in consideration of unmeasured muscles. In achieving the proposed EMG refinement, the most considerable point is to suppress a large change such as overestimation attributed to enhancement of the contribution of particular muscles to estimating torques. Therefore it is reasonable to refine EMGs by minimizing the change in EMGs. To evaluate this model, we used a Bland-Altman plot, which quantitatively evaluates the proportional bias of refined signals to EMGs. Through this evaluation, we showed that the proposed EDTE minimizes the bias while approximating torques. Therefore this minimization optimally regulates the uncertainty of EMGs and thereby leads to optimal EMG refinement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity

    Directory of Open Access Journals (Sweden)

    Minjae Kim

    2015-07-01

    Full Text Available Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode.

  14. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model.

    Science.gov (United States)

    Eskes, Merijn; Balm, Alfons J M; van Alphen, Maarten J A; Smeele, Ludi E; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional movements are necessary to predict remaining functional outcome. We aim to evaluate how volunteer-specific MAPs derived from surface electromyographic (sEMG) signals control a biomechanical face model. Muscle activity of seven facial muscles in six volunteers was measured bilaterally with sEMG. A triple camera set-up recorded 3D lip movement. The generic face model in ArtiSynth was adapted to our needs. We controlled the model using the volunteer-specific MAPs. Three activation strategies were tested: activating all muscles [Formula: see text], selecting the three muscles showing highest muscle activity bilaterally [Formula: see text]-this was calculated by taking the mean of left and right muscles and then selecting the three with highest variance-and activating the muscles considered most relevant per instruction [Formula: see text], bilaterally. The model's lip movement was compared to the actual lip movement performed by the volunteers, using 3D correlation coefficients [Formula: see text]. The correlation coefficient between simulations and measurements with [Formula: see text] resulted in a median [Formula: see text] of 0.77. [Formula: see text] had a median [Formula: see text] of 0.78, whereas with [Formula: see text] the median [Formula: see text] decreased to 0.45. We demonstrated that MAPs derived from noninvasive sEMG measurements can control movement of the lips in a generic finite element face model with a median [Formula: see text] of 0.78. Ultimately, this is important to show the patient-specific residual movement using the patient's own MAPs. When the required treatment tools and personalisation techniques for geometry and anatomy become available, this may

  15. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data.

    Science.gov (United States)

    Palermo, Francesca; Cognolato, Matteo; Gijsberts, Arjan; Muller, Henning; Caputo, Barbara; Atzori, Manfredo

    2017-07-01

    Control methods based on sEMG obtained promising results for hand prosthetics. Control system robustness is still often inadequate and does not allow the amputees to perform a large number of movements useful for everyday life. Only few studies analyzed the repeatability of sEMG classification of hand grasps. The main goals of this paper are to explore repeatability in sEMG data and to release a repeatability database with the recorded experiments. The data are recorded from 10 intact subjects repeating 7 grasps 12 times, twice a day for 5 days. The data are publicly available on the Ninapro web page. The analysis for the repeatability is based on the comparison of movement classification accuracy in several data acquisitions and for different subjects. The analysis is performed using mean absolute value and waveform length features and a Random Forest classifier. The accuracy obtained by training and testing on acquisitions at different times is on average 27.03% lower than training and testing on the same acquisition. The results obtained by training and testing on different acquisitions suggest that previous acquisitions can be used to train the classification algorithms. The inter-subject variability is remarkable, suggesting that specific characteristics of the subjects can affect repeatibility and sEMG classification accuracy. In conclusion, the results of this paper can contribute to develop more robust control systems for hand prostheses, while the presented data allows researchers to test repeatability in further analyses.

  16. Electromyogram median power frequency in dynamic exercise at medium exercise intensities

    NARCIS (Netherlands)

    Ament, W; Bonga, GJJ; Hof, AL; Verkerke, GJ

    The electromyogram (EMG) median power Frequency of the calf muscles was investigated during an exhausting treadmill exercise and a 20-min recovery period. The exercise was an uphill run at a speed of 5 km . h(-1) and a gradient of 20%. During exercise there was no decrease of EMG median power

  17. Pathological tremor prediction using surface EMG and acceleration: potential use in “ON-OFF” demand driven deep brain stimulator design

    Science.gov (United States)

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Metman, Leo Verhagen; Corcos, Daniel M.

    2013-01-01

    Objective We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and Essential tremor (ET). Approach The tremor prediction algorithm uses a set of spectral (fourier and wavelet) and non-linear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle as well as the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage. PMID:23658233

  18. Virtual Control of Prosthetic Hand Based on Grasping Patterns and Estimated Force from Semg

    Directory of Open Access Journals (Sweden)

    Zhu Gao-Ke

    2016-01-01

    Full Text Available Myoelectric prosthetic hands aim to serve upper limb amputees. The myoelectric control of the hand grasp action is a kind of real-time or online method. Thus it is of great necessity to carry on a study of online prosthetic hand electrical control. In this paper, the strategy of simultaneous EMG decoding of grasping patterns and grasping force was realized by controlling a virtual multi-degree-freedom prosthetic hand and a real one-degree-freedom prosthetic hand simultaneously. The former realized the grasping patterns from the recognition of the sEMG pattern. The other implemented the grasping force from sEMG force decoding. The results show that the control method is effective and feasible.

  19. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain.

    Science.gov (United States)

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter; Bojsen-Møller, Jens; Finni, Taija

    2014-07-15

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity and Achilles tendon GU. A longitudinal study design with control (n = 10) and patient (n = 10) groups was used. Surface electromyography (SEMG) from four ankle plantar flexors and GU from the same muscles and the Achilles tendon were measured during submaximal intermittent isometric plantar flexion task. The results indicated that the symptomatic leg was weaker (P eccentric rehabilitation. Additionally, the rehabilitation resulted in greater GU in both soleus (P tendon GU than the controls (P effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative activity in the symptomatic leg compared with both the asymptomatic and control legs (P Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle. Copyright © 2014 the American Physiological Society.

  20. Monitorando a deglutição através da eletromiografia de superfície Monitoring swallowing with surface electromyography

    Directory of Open Access Journals (Sweden)

    Maria das Graças Wanderley de Sales Coriolano

    2010-06-01

    Full Text Available OBJETIVO: descrever o método de registro da eletromiografia de superfície através da utilização de um protocolo desenvolvido para o estudo da deglutição e demonstrar a deglutição de um paciente com doença de Parkinson e de um sujeito normal através do registro da eletromiografia de superfície (EMGs. MÉTODOS: para ilustrar os parâmetros eletrofisiológicos registrados após execução do protocolo foram utilizados dois voluntários do sexo feminino, sendo um sem doença e outro apresentando doença de Parkinson (DP no estágio III de acordo com a escala de Hoehn e Yahr. Os parâmetros analisados pelo foram: a duração da atividade elétrica durante a deglutição, a amplitude (rms e o limite de disfagia. RESULTADOS: os resultados mostram diferenças entre os eletromiogramas ilustrativos. CONCLUSÃO: a EMGs pode ser utilizada como método de avaliação e monitorização da deglutição de sujeitos sem doença e com DP.PURPOSE: to describe the registering method of the surface electromyography (sEMG through the use of a protocol developed for swallowing study and to demonstrate the swallowing pattern of a patient with Parkinson’s disease and of normal individuals through the sEMG registering. METHODS: to illustrate the registered electrophysiologic parameters execution of the protocol we used two volunteers of the feminine gender, being one without disease and the other one with Parkinson’s disease (PD in III period of training in accordance with the scale of Hoehn and Yahr. The analyzed parameters had been the duration of the electric activity during swallowing, the amplitude (rms and the dysphagia limit. RESULTS: the results show differences amongst the illustrative electromyograms. CONCLUSION: sEMG can be used as method for evaluating and monitoring the swallowing pattern of citizens with no disease and with PD.

  1. INFLUENCE OF POSTURE ON THE RELATION BETWEEN SURFACE ELECTROMYOGRAM AMPLITUDE AND BACK MUSCLE MOMENT - CONSEQUENCES FOR THE USE OF SURFACE ELECTROMYOGRAM TO MEASURE BACK LOAD

    NARCIS (Netherlands)

    MOUTON, LJ; HOF, AL; DEJONGH, HJ; EISMA, WH

    1991-01-01

    The aim of the study was to analyse the effect of posture on the relation between EMG amplitude and moment of the back muscles in different subjects, in order to gain a better insight into the possibilities of EMG as a means of measuring individual back load. Eight healthy subjects participated in

  2. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals.

    Science.gov (United States)

    Kahl, Lorenz; Hofmann, Ulrich G

    2016-11-01

    This work compared the performance of six different fatigue detection algorithms quantifying muscle fatigue based on electromyographic signals. Surface electromyography (sEMG) was obtained by an experiment from upper arm contractions at three different load levels from twelve volunteers. Fatigue detection algorithms mean frequency (MNF), spectral moments ratio (SMR), the wavelet method WIRM1551, sample entropy (SampEn), fuzzy approximate entropy (fApEn) and recurrence quantification analysis (RQA%DET) were calculated. The resulting fatigue signals were compared considering the disturbances incorporated in fatiguing situations as well as according to the possibility to differentiate the load levels based on the fatigue signals. Furthermore we investigated the influence of the electrode locations on the fatigue detection quality and whether an optimized channel set is reasonable. The results of the MNF, SMR, WIRM1551 and fApEn algorithms fell close together. Due to the small amount of subjects in this study significant differences could not be found. In terms of disturbances the SMR algorithm showed a slight tendency to out-perform the others. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Bilateral electromyogram response latency following platform perturbation in unilateral transtibial prosthesis users: influence of weight distribution and limb position.

    Science.gov (United States)

    Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn

    2013-01-01

    Appropriate muscular response following an external perturbation is essential in preventing falls. Transtibial prosthesis users lack a foot-ankle complex and associated sensorimotor structures on the side with the prosthesis. The effect of this lack on rapid responses of the lower limb to external surface perturbations is unknown. The aim of the present study was to compare electromyogram (EMG) response latencies of otherwise healthy, unilateral, transtibial prosthesis users (n = 23, mean +/- standard deviation [SD] age = 48 +/- 14 yr) and a matched control group (n = 23, mean +/- SD age = 48 +/- 13 yr) following sudden support-surface rotations in the pitch plane (toes-up and toes-down). Perturbations were elicited in various weight-bearing and limb-perturbed conditions. The results indicated that transtibial prosthesis users have delayed responses of multiple muscles of the lower limb following perturbation, both in the intact and residual limbs. Weight-bearing had no influence on the response latency in the residual limb, but did on the intact limb. Which limb received the perturbation was found to influence the muscular response, with the intact limb showing a significantly delayed response when the perturbation was received only on the side with a prosthesis. These delayed responses may represent an increased risk of falling for individuals who use transtibial prostheses.

  4. Automated Algorithm for Generalized Tonic–Clonic Epileptic Seizure Onset Detection Based on sEMG Zero-Crossing Rate

    DEFF Research Database (Denmark)

    Conradsen, Isa; Beniczky, Sándor; Hoppe, Karsten

    2012-01-01

    were analyzed from 11 consecutive patients. Our method is based on a high-pass filtering with a cutoff at 150 Hz, and monitoring a count of zero crossings with a hysteresis of $\\pm 50\\,\\mu \\hbox{V}$ . Based on data from one sEMG electrode (on the deltoid muscle), we achieved a sensitivity of 100...

  5. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Directory of Open Access Journals (Sweden)

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  6. Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises

    Directory of Open Access Journals (Sweden)

    Gerold R. Ebenbichler

    2017-05-01

    Full Text Available Purpose: To investigate the differences in neural control of back muscles activated during the eccentric vs. the concentric portions of a cyclic, submaximal, fatiguing trunk extension exercise via the analysis of amplitude and time-frequency parameters derived from surface electromyographic (SEMG data.Methods: Using back dynamometers, 87 healthy volunteers performed three maximum voluntary isometric trunk extensions (MVC's, an isometric trunk extension at 80% MVC, and 25 cyclic, dynamic trunk extensions at 50% MVC. Dynamic testing was performed with the trunk angular displacement ranging from 0° to 40° and the trunk angular velocity set at 20°/s. SEMG data was recorded bilaterally from the iliocostalis lumborum at L1, the longissimus dorsi at L2, and the multifidus muscles at L5. The initial value and slope of the root mean square (RMS-SEMG and the instantaneous median frequency (IMDF-SEMG estimates derived from the SEMG recorded during each exercise cycle were used to investigate the differences in MU control marking the eccentric vs. the concentric portions of the exercise.Results: During the concentric portions of the exercise, the initial RMS-SEMG values were almost twice those observed during the eccentric portions of the exercise. The RMS-SEMG values generally increased during the concentric portions of the exercise while they mostly remained unchanged during the eccentric portions of the exercise with significant differences between contraction types. Neither the initial IMDF-SEMG values nor the time-course of the IMDF-SEMG values significantly differed between the eccentric and the concentric portions of the exercise.Conclusions: The comparison of the investigated SEMG parameters revealed distinct neural control strategies during the eccentric vs. the concentric portions of the cyclic exercise. We explain these differences by relying upon the principles of orderly recruitment and common drive governing motor unit behavior.

  7. Reliability of surface EMG measurements from the suprahyoid muscle complex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Pedersen, Asger Roer

    2017-01-01

    of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy participants over days. Methods: Seventeen healthy participants were recruited. Measurements were performed twice with one week...... on stimulus type/intensity) had significantly different MEP values between day 1 and day 2 for single pulse and paired pulse TMS. A large stimulus artefact resulted in MEP responses that could not be assessed in four participants. Conclusions: The assessment of the SMC using sEMG following TMS was poorly...... reliable for ≈50% of participants. Although using sEMG to assess swallowing musculature function is easier to perform clinically and more comfortable to patients than invasive measures, as the measurement of muscle activity using TMS is unreliable, the use of sEMG for this muscle group is not recommended...

  8. A novel approach for SEMG signal classification with adaptive local binary patterns.

    Science.gov (United States)

    Ertuğrul, Ömer Faruk; Kaya, Yılmaz; Tekin, Ramazan

    2016-07-01

    Feature extraction plays a major role in the pattern recognition process, and this paper presents a novel feature extraction approach, adaptive local binary pattern (aLBP). aLBP is built on the local binary pattern (LBP), which is an image processing method, and one-dimensional local binary pattern (1D-LBP). In LBP, each pixel is compared with its neighbors. Similarly, in 1D-LBP, each data in the raw is judged against its neighbors. 1D-LBP extracts feature based on local changes in the signal. Therefore, it has high a potential to be employed in medical purposes. Since, each action or abnormality, which is recorded in SEMG signals, has its own pattern, and via the 1D-LBP these (hidden) patterns may be detected. But, the positions of the neighbors in 1D-LBP are constant depending on the position of the data in the raw. Also, both LBP and 1D-LBP are very sensitive to noise. Therefore, its capacity in detecting hidden patterns is limited. To overcome these drawbacks, aLBP was proposed. In aLBP, the positions of the neighbors and their values can be assigned adaptively via the down-sampling and the smoothing coefficients. Therefore, the potential to detect (hidden) patterns, which may express an illness or an action, is really increased. To validate the proposed feature extraction approach, two different datasets were employed. Achieved accuracies by the proposed approach were higher than obtained results by employed popular feature extraction approaches and the reported results in the literature. Obtained accuracy results were brought out that the proposed method can be employed to investigate SEMG signals. In summary, this work attempts to develop an adaptive feature extraction scheme that can be utilized for extracting features from local changes in different categories of time-varying signals.

  9. Effect of electrocardiographic contamination on surface electromyography assessment of back muscles.

    Science.gov (United States)

    Hu, Yong; Mak, Joseph N F; Luk, Keith D K

    2009-02-01

    The purpose of this study was to demonstrate the relative effect of electrocardiography (ECG) on back muscle surface electromyography (SEMG) parameters and their corresponding sensitivity in low back pain (LBP) assessment. Back muscle SEMG activities were recorded from 17 healthy subjects and 18 chronic LBP patients under static postures (straight sitting and upright standing), and dynamic action (flexion-extension). ECG cancellation based on independent component analysis (ICA) method was performed. Root mean square (RMS) and median frequency (MF) of raw and denoised SEMG data were computed respectively. Multiple comparisons were then performed. A consistent trend of change (increased MF and decreased RMS) followed ECG removal was noticed. In particular, in SEMG measurements under static postures, a significant decrease in RMS (pcorruption by ECG artifacts on SEMG measurements was found to be more serious and prominent in static postures than that in dynamic action. After ECG removal, significant improvements in the ability of SEMG to discriminate LBP patients from healthy subjects were seen in RMS amplitude recorded while standing (peffect of ECG contamination on back muscles SEMG parameters and LBP assessment.

  10. Radio-transmitted electromyogram signals as indicators of swimming speed in lake trout and brown trout

    DEFF Research Database (Denmark)

    Thorstad, E.B.; Økland, F.; Koed, Anders

    2000-01-01

    Swimming speed and average electromyogram (EMG) pulse intervals were highly correlated in individual lake trout Salvelinus namaycush (r(2)=0.52-0.89) and brown trout Salmo trutta (r(2)=0.45-0.96). High correlations were found also for pooled data in both lake trout (r(2)=0.90) and brown trout...... of the Ema stock (r(2)=0.96) and Laerdal stock (r(2)=0.96). The linear relationship between swimming speed and average EMG pulse intervals differed significantly among lake trout and the brown trout stocks. This successful calibration of EMGs to swimming speed opens the possibility of recording swimming...... speed of free swimming lake trout and brown trout in situ. EMGs can also be calibrated to oxygen consumption to record energy expenditure. (C) 2000 The Fisheries Society of the British Isles...

  11. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy.

    Science.gov (United States)

    Taelman, Joachim; Vanderhaegen, Joke; Robijns, Mieke; Naulaers, Gunnar; Spaepen, Arthur; Van Huffel, Sabine

    2011-01-01

    This study looks at various parameters, derived from surface electromyography (sEMG) and Near Infrared Spectroscopy (NIRS) and their relationship in muscle fatigue during a static elbow flexion until exhaustion as well as during a semidynamic exercise.We found a linear increasing trend for a corrected amplitude parameter and a linear decreasing slope for the frequency content of the sEMG signal. The tissue oxygenation index (TOI) extracted from NIRS recordings showed a four-phase response for all the subjects. A strong correlation between frequency content of the sEMG signal and TOI was established. We can conclude that both sEMG and NIRS give complementary information concerning muscle fatigue.

  12. Development of a Compact Wireless Laplacian Electrode Module for Electromyograms and Its Human Interface Applications

    Directory of Open Access Journals (Sweden)

    Akira Ichikawa

    2013-02-01

    Full Text Available In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs. One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a the masseter, (b trapezius, (c anterior tibialis and (d flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module.

  13. Restoration of continence following rectopexy for rectal prolapse and recovery of the internal anal sphincter electromyogram.

    Science.gov (United States)

    Farouk, R; Duthie, G S; Bartolo, D C; MacGregor, A B

    1992-05-01

    Twenty-two patients with full-thickness rectal prolapse underwent ambulatory fine wire electromyography of the internal and sphincter (IAS), external and sphincter and puborectalis, together with anorectal manometry, using a computerized system. Examinations were performed both before and 3 to 4 months after rectopexy. The median (interquartile range (i.q.r.)) preoperative IAS electromyogram (EMG) frequency was 0.18 (0.05-0.31) Hz and the median (i.q.r.) preoperative resting anal pressure was 28 (15-64) cmH2O. An improvement in the IAS EMG frequency, median (i.q.r.) 0.29 (0.19-0.38) Hz (P less than 0.03), and resting anal pressure, median (i.q.r.) 41 (20-72) cmH2O (P less than 0.05), was recorded after operation, but these variables remained significantly lower than those found in normal controls: median (i.q.r.) IAS EMG frequency 0.44 (0.36-0.48) Hz and median (i.q.r.) resting anal pressure 92 (74-98) cmH2O. We suggest that repair of the prolapse allows the IAS to recover by removing the cause of persistent rectoanal inhibition.

  14. Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue

    OpenAIRE

    ŞAYLİ, Ömer; AKIN, Ata; ÇOTUK, Hasan Birol

    2014-01-01

    In this study, the process of muscular fatigue was examined using surface electromyography (sEMG) and continuous-wave near-infrared spectroscopy (cw-NIRS) simultaneously during an isometric hand grip exercise at 50% and 75% of the maximal voluntary contraction (MVC), sustained until volitional fatigue. The mean frequency of the sEMG decreased during the whole exercise, whereas the root mean square had a tendency to increase. Oxyhemoglobin/deoxyhemoglobin concentration changes computed ...

  15. Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-09-01

    Full Text Available Electromyogram (EMG contains rich information for motion decoding. As one of its major applications, EMG-pattern recognition (PR-based control of prostheses has been proposed and investigated in the field of rehabilitation robotics for decades. These prostheses can offer a higher level of dexterity compared to the commercially available ones. However, limited progress has been made toward clinical application of EMG-PR-based prostheses, due to their unsatisfactory robustness against various interferences during daily use. These interferences may lead to misclassifications of motion intentions, which damage the control performance of EMG-PR-based prostheses. A number of studies have applied methods that undergo a postprocessing stage to determine the current motion outputs, based on previous outputs or other information, which have proved effective in reducing erroneous outputs. In this study, we proposed a postprocessing strategy that locks the outputs during the constant contraction to block out occasional misclassifications, upon detecting the motion onset using a threshold. The strategy was investigated using three different motion onset detectors, namely mean absolute value, Teager–Kaiser energy operator, or mechanomyogram (MMG. Our results indicate that the proposed strategy could suppress erroneous outputs, during rest and constant contractions in particular. In addition, with MMG as the motion onset detector, the strategy was found to produce the most significant improvement in the performance, reducing the total errors up to around 50% (from 22.9 to 11.5% in comparison to the original classification output in the online test, and it is the most robust against threshold value changes. We speculate that motion onset detectors that are both smooth and responsive would further enhance the efficacy of the proposed postprocessing strategy, which would facilitate the clinical application of EMG-PR-based prosthetic control.

  16. Electromyogram biofeedback training for daytime clenching and its effect on sleep bruxism.

    Science.gov (United States)

    Sato, M; Iizuka, T; Watanabe, A; Iwase, N; Otsuka, H; Terada, N; Fujisawa, M

    2015-02-01

    Bruxism contributes to the development of temporomandibular disorders as well as causes dental problems. Although it is an important issue in clinical dentistry, no treatment approaches have been proven effective. This study aimed to use electromyogram (EMG) biofeedback (BF) training to improve awake bruxism (AB) and examine its effect on sleep bruxism (SB). Twelve male participants (mean age, 26·8 ± 2·5 years) with subjective symptoms of AB or a diagnosis of SB were randomly divided into BF (n = 7) and control (CO, n = 5) groups to undergo 5-h daytime and night-time EMG measurements for three consecutive weeks. EMG electrodes were placed over the temporalis muscle on the habitual masticatory side. Those in the BF group underwent BF training to remind them of the occurrence of undesirable clenching activity when excessive EMG activity of certain burst duration was generated in week 2. Then, EMGs were recorded at week 3 as the post-BF test. Those in the CO group underwent EMG measurement without any EMG BF training throughout the study period. Although the number of tonic EMG events did not show statistically significant differences among weeks 1-3 in the CO group, events in weeks 2 and 3 decreased significantly compared with those in week 1, both daytime and night-time, in the BF group (P < 0·05, Scheffé's test). This study results suggest that EMG BF to improve AB tonic EMG events can also provide an effective approach to regulate SB tonic EMG events. © 2014 John Wiley & Sons Ltd.

  17. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.

    Science.gov (United States)

    Ding, Qichuan; Han, Jianda; Zhao, Xingang

    2017-09-01

    Due to the couplings among joint-relative muscles, it is a challenge to accurately estimate continuous multi-joint movements from multi-channel sEMG signals. Traditional approaches always build a nonlinear regression model, such as artificial neural network, to predict the multi-joint movement variables using sEMG as inputs. However, the redundant sEMG-data are always not distinguished; the prediction errors cannot be evaluated and corrected online as well. In this work, a correlation-based redundancy-segmentation method is proposed to segment the sEMG-vector including redundancy into irredundant and redundant subvectors. Then, a general state-space framework is developed to build the motion model by regarding the irredundant subvector as input and the redundant one as measurement output. With the built state-space motion model, a closed-loop prediction-correction algorithm, i.e., the unscented Kalman filter (UKF), can be employed to estimate the multi-joint angles from sEMG, where the redundant sEMG-data are used to reject model uncertainties. After having fully employed the redundancy, the proposed method can provide accurate and smooth estimation results. Comprehensive experiments are conducted on the multi-joint movements of the upper limb. The maximum RMSE of the estimations obtained by the proposed method is 0.16±0.03, which is significantly less than 0.25±0.06 and 0.27±0.07 (p < 0.05) obtained by common neural networks.

  18. Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects.

    Science.gov (United States)

    Kent, Benjamin A; Karnati, Nareen; Engeberg, Erik D

    2014-03-21

    Due to their limited dexterity, it is currently not possible to use a commercially available prosthetic hand to unscrew or screw objects without using elbow and shoulder movements. For these tasks, prosthetic hands function like a wrench, which is unnatural and limits their use in tight working environments. Results from timed rotational tasks with human subjects demonstrate the clinical need for increased dexterity of prosthetic hands, and a clinically viable solution to this problem is presented for an anthropomorphic artificial hand. Initially, a human hand motion analysis was performed during a rotational task. From these data, human hand synergies were derived and mapped to an anthropomorphic artificial hand. The synergy for the artificial hand is controlled using conventional dual site electromyogram (EMG) signals. These EMG signals were mapped to the developed synergy to control four joints of the dexterous artificial hand simultaneously.Five limb absent and ten able-bodied test subjects participated in a comparison study to complete a timed rotational task as quickly as possible with their natural hands (except for one subject with a bilateral hand absence), eight commercially available prosthetic hands, and the proposed synergy controller. Each test subject used two to four different artificial hands. With the able-bodied subjects, the developed synergy controller reduced task completion time by 177% on average. The limb absent subjects completed the task faster on average than with their own prostheses by 46%. There was a statistically significant improvement in task completion time with the synergy controller for three of the four limb absent participants with integrated prostheses, and was not statistically different for the fourth. The proposed synergy controller reduced average task completion time compared to commercially available prostheses. Additionally, the synergy controller is able to function in a small workspace and requires less physical

  19. Dexterous hand gestures recognition based on low-density sEMG signals for upper-limb forearm amputees

    Directory of Open Access Journals (Sweden)

    John Jairo Villarejo Mayor

    2017-08-01

    Full Text Available Abstract Introduction Intuitive prosthesis control is one of the most important challenges in order to reduce the user effort in learning how to use an artificial hand. This work presents the development of a novel method for pattern recognition of sEMG signals able to discriminate, in a very accurate way, dexterous hand and fingers movements using a reduced number of electrodes, which implies more confidence and usability for amputees. Methods The system was evaluated for ten forearm amputees and the results were compared with the performance of able-bodied subjects. Multiple sEMG features based on fractal analysis (detrended fluctuation analysis and Higuchi’s fractal dimension combined with traditional magnitude-based features were analyzed. Genetic algorithms and sequential forward selection were used to select the best set of features. Support vector machine (SVM, K-nearest neighbors (KNN and linear discriminant analysis (LDA were analyzed to classify individual finger flexion, hand gestures and different grasps using four electrodes, performing contractions in a natural way to accomplish these tasks. Statistical significance was computed for all the methods using different set of features, for both groups of subjects (able-bodied and amputees. Results The results showed average accuracy up to 99.2% for able-bodied subjects and 98.94% for amputees using SVM, followed very closely by KNN. However, KNN also produces a good performance, as it has a lower computational complexity, which implies an advantage for real-time applications. Conclusion The results show that the method proposed is promising for accurately controlling dexterous prosthetic hands, providing more functionality and better acceptance for amputees.

  20. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  1. Surface electromyography as a screening method for evaluation of dysphagia and odynophagia

    Science.gov (United States)

    Vaiman, Michael; Eviatar, Ephraim

    2009-01-01

    Objective Patients suspected of having swallowing disorders, could highly benefit from simple diagnostic screening before being referred to specialist evaluations. The article analyzes various instrumental methods of dysphagia assessment, introduces surface electromyography (sEMG) to carry out rapid assessment of such patients, and debates proposed suggestions for sEMG screening protocol in order to identify abnormal deglutition. Data sources Subject related books and articles from 1813 to 2007 were obtained through library search, MEDLINE (1949–2007) and EMBASE (1975–2007). Methods Specifics steps for establishing the protocol for applying the technique for screening purposes (e.g., evaluation of specific muscles), the requirements for diagnostic sEMG equipment, the sEMG technique itself, and defining the tests suitable for assessing deglutition (e.g., saliva, normal, and excessive swallows and uninterrupted drinking of water) are presented in detail. SEMG is compared with other techniques in terms of cost, timing, involvement of radiation, etc. Results According to the published data, SEMG of swallowing is a simple and reliable method for screening and preliminary differentiation among dysphagia and odynophagia of various origins. This noninvasive radiation-free examination has a low level of discomfort, and is simple, time-saving and inexpensive to perform. The major weakness of the method seems to be inability for precise diagnostic of neurologically induced dysphagia. Conclusion With standardization of the technique and an established normative database, sEMG might serve as a reliable screening method for optimal patient management but cannot serve for proper investigation of neurogenic dysphagia. PMID:19232090

  2. [Perinatal model of human transition from hypogravity to the earth's gravity based on the electromyogram nonlinear characteristics].

    Science.gov (United States)

    Meĭgal, A Iu; Voroshilov, A S

    2009-01-01

    Interferential electromyogram (iEMG) was analyzed in healthy newborn infants (n=29) during the first 24 hours of life as a model of transition from hypogravity (intrauterine immersion) to the Earth's gravity (postnatal period). Nonlinear instruments of iEMG analysis (correlation dimension, entropy and fractal dimension) reflected the complexity, chaotic character and predictability of signals from the leg and arm antagonistic muscles. Except for m. gastrocnemius, in all other musles iEMG fractal dimension was shown to grow as the postnatal period extended. Low fractal and correlation dimensions and entropy marked flexor muscles, particularly against low iEMG amplitude suggesting a better congenital programming for the flexors as compared to the extensors. It is concluded that the early ontogenesis model can be practicable in studying the evolution and states of antigravity functions.

  3. Neural network committees for finger joint angle estimation from surface EMG signals

    Directory of Open Access Journals (Sweden)

    Reddy Narender P

    2009-01-01

    Full Text Available Abstract Background In virtual reality (VR systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG together with the actual joint angle measurements were obtained while the subject was performing flexion-extension rotation of the index finger at three speeds. Several neural networks were trained to predict the joint angle from the parameters extracted from the SEMG signals. The best networks were selected to form six committees. The neural network committees were evaluated using data from new subjects. Results There was hysteresis in the measured SMEG signals during the flexion-extension cycle. However, neural network committees were able to predict the joint angle with reasonable accuracy. RMS errors ranged from 0.085 ± 0.036 for fast speed finger-extension to 0.147 ± 0.026 for slow speed finger extension, and from 0.098 ± 0.023 for the fast speed finger flexion to 0.163 ± 0.054 for slow speed finger flexion. Conclusion Although hysteresis was observed in the measured SEMG signals, the committees of neural networks were able to predict the finger joint angle from SEMG signals.

  4. Surface EMG signals based motion intent recognition using multi-layer ELM

    Science.gov (United States)

    Wang, Jianhui; Qi, Lin; Wang, Xiao

    2017-11-01

    The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.

  5. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  6. Mechanomyography versus Electromyography, in monitoring the muscular fatigue

    Directory of Open Access Journals (Sweden)

    Tarata Mihai T

    2003-02-01

    Full Text Available Abstract Background The use of the mechanomyogram (MMG which detects muscular vibrations generated by fused individual fiber twitches has been refined. The study addresses a comparison of the MMG and surface electromyogram (SEMG in monitoring muscle fatigue. Methods The SEMG and MMG were recorded simultaneously from the same territory of motor units in two muscles (Biceps, Brachioradialis of the human (n = 18, during sustained contraction at 25 % MVC (maximal voluntary contraction. Results The RMS (root mean square of the SEMG and MMG increased with advancing fatigue; MF (median frequency of the PSD (power density spectra progressively decreased from the onset of the contraction. These findings (both muscles, all subjects, demonstrate both through the SEMG and MMG a central component of the fatigue. The MF regression slopes of MMG were closer to each other between men and women (Biceps 1.55%; Brachialis 13.2% than were the SEMG MF slopes (Biceps 25.32%; Brachialis 17.72%, which shows a smaller inter-sex variability for the MMG vs. SEMG. Conclusion The study presents another quantitative comparison (MF, RMS of MMG and SEMG, showing that MMG signal can be used for indication of the degree of muscle activation and for monitoring the muscle fatigue when the application of SEMG is not feasible (chronical implants, adverse environments contaminated by electrical noise.

  7. Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue.

    Science.gov (United States)

    Gonzalez-Izal, Miriam; Lusa Cadore, Eduardo; Izquierdo, Mikel

    2014-03-01

    Concentric (CON) and eccentric (ECC) contractions may involve different mechanisms related to changes in sarcolemma status and the consequent alteration of action potential transmission along muscle fibers. Muscle conduction velocity (CV), surface electromyography signal (sEMG), muscle quality, and blood lactate concentrations were analyzed during CON and ECC actions. Compared with ECC, the CON protocol resulted in greater muscle force losses, blood lactate concentrations, and changes in sEMG parameters. Similar reductions in CV were detected in both protocols. Higher echo intensity values were observed 2 days after ECC due to greater muscle damage. The effects of the muscle damage produced by ECC exercise on the transmission of action potentials along muscle fibers (measured as the CV) may be comparable with the effects of hydrogen accumulation produced by CON exercise (related to greater lactate concentrations), which causes greater force loss and change in other sEMG variables during CON than during ECC actions.

  8. Use of electromyogram telemetry to assess the behavior of the Iberian barbel (Luciobarbus bocagei Steindachner, 1864) in a pool-type fishway

    OpenAIRE

    Alexandre, C.M.; Quintella, B.R.; Silva, A.T.; Mateus, C.S.; Romão, F.; Branco, P.; Ferreira, M.T.; Almeida, P.R.

    2013-01-01

    Decline in fish species populations due to river regulation by dams and weirs promoted the development of fishways, which are becoming one of the most common measures for the restoration of connectivity in rivers. Fishways efficiency can be species specific and thus monitoring and evaluation, and subsequent adjustments to design and hydraulic features, are required to inform potential users prior to installation. In this study we tested the applicability of electromyogram telemetr...

  9. Evidence of long term muscle fatigue following prolonged intermittent contractions based on mechano- and electromyograms

    DEFF Research Database (Denmark)

    Søgaard, K; Blangsted, A K; Jørgensen, L V

    2003-01-01

    The focus of the present study is the long term element of muscle fatigue provoked by prolonged intermittent contractions at submaximal force levels and analysed by force, surface electromyography (EMG) and mechanomyogram (MMG). It was hypothesized that fatigue related changes in mechanical...... performance of the biceps muscle are more strongly reflected in low than in high force test contractions, more prominent in the MMG than in the EMG signal and less pronounced following contractions controlled by visual compared to proprioceptive feedback. Further, it was investigated if fatigue induced by 30...... min intermittent contractions at 30% as well as 10% of maximal voluntary contraction (MVC) lasted more than 30 min recovery. In six male subjects the EMG and MMG were recorded from the biceps brachii muscle during three sessions with fatiguing exercise at 10% with visual feedback and at 30% MVC...

  10. Surface electromyographic patterns of masticatory, neck, and trunk muscles in temporomandibular joint dysfunction patients undergoing anterior repositioning splint therapy.

    Science.gov (United States)

    Tecco, Simona; Tetè, Stefano; D'Attilio, Michele; Perillo, Letizia; Festa, Felice

    2008-12-01

    The aim of this study was to investigate the surface electromyographic (sEMG) activity of neck, trunk, and masticatory muscles in subjects with temporomandibular joint (TMJ) internal derangement treated with anterior mandibular repositioning splints. sEMG activities of the muscles in 34 adult subjects (22 females and 12 males; mean age 30.4 years) with TMJ internal derangement were compared with a control group of 34 untreated adults (20 females and 14 males; mean age 31.8 years). sEMG activities of seven muscles (anterior and posterior temporalis, masseter, posterior cervicals, sternocleidomastoid, and upper and lower trapezius) were studied bilaterally, with the mandible in the rest position and during maximal voluntary clenching (MVC), at the beginning of therapy (T0) and after 10 weeks of treatment (T1). Paired and Student's t-tests were undertaken to determine differences between the T0 and T1 data and in sEMG activity between the study and control groups. At T0, paired masseter, sternocleidomastoid, and cervical muscles, in addition to the left anterior temporal and right lower trapezius, showed significantly greater sEMG activity (P = 0.0001; P = 0.0001; for left cervical, P = 0.03; for right cervical, P = 0.0001; P = 0.006 and P = 0.007 muscles, respectively) compared with the control group. This decreased over the remaining study period, such that after treatment, sEMG activity revealed no statistically significant difference when compared with the control group. During MVC at T0, paired masseter and anterior and posterior temporalis muscles showed significantly lower sEMG activity (P = 0.03; P = 0.005 and P = 0.04, respectively) compared with the control group. In contrast, at T1 sEMG activity significantly increased (P = 0.02; P = 0.004 and P = 0.04, respectively), but no difference was observed in relation to the control group. Splint therapy in subjects with internal disk derangement seems to affect sEMG activity of the masticatory, neck, and trunk

  11. The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics.

    Science.gov (United States)

    Atzori, Manfredo; Muller, Henning

    2015-01-01

    The dexterous natural control of robotic prosthetic hands with non-invasive techniques is still a challenge: surface electromyography gives some control capabilities but these are limited, often not natural and require long training times; the application of pattern recognition techniques recently started to be applied in practice. While results in the scientific literature are promising they have to be improved to reach the real needs. The Ninapro database aims to improve the field of naturally controlled robotic hand prosthetics by permitting to worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark database. Currently, the Ninapro database includes data from 67 intact subjects and 11 amputated subject performing approximately 50 different movements. The data are aimed at permitting the study of the relationships between surface electromyography, kinematics and dynamics. The Ninapro acquisition protocol was created in order to be easy to be reproduced. Currently, the number of datasets included in the database is increasing thanks to the collaboration of several research groups.

  12. Electromyogram and perceived fatigue changes in the trapezius muscle during typewriting and recovery.

    Science.gov (United States)

    Kimura, Mitsutoshi; Sato, Hirotaka; Ochi, Mamoru; Hosoya, Satoshi; Sadoyama, Tsugutake

    2007-05-01

    The purpose of the present study was to investigate the development and recovery of muscle fatigue in the upper trapezius muscle by analyzing electromyographic signals. Six male subjects performed a simulated typewriting task for four 25-min sessions. During fatigue and the following rest periods, subjective fatigue and surface electromyography (EMG) from the trapezius muscle during isometric contraction at 30% maximum voluntary contraction (MVC) were periodically measured in the interval. We detected a significant decrease in muscle fiber conduction velocity (MFCV) (P = 0.008) and median frequency (MDF) (P = 0.026) as well as an increase in root mean square (RMS) (P = 0.039) and subjective fatigue (P = 0.0004) during the fatigue period. During the recovery period, subjective fatigue decreased drastically and significantly (P = 0.0004), however, the EMG parameters did not recover completely. Thus, physiological muscle fatigue in the trapezius developed in accordance with subjective muscle fatigue during typewriting. On the other hand, differences between the physiological and subjective parameters were found during recovery. Further studies should be necessary to reveal the discrepancy could be a major factor of a transition from temporal phenomena to serious chronic muscle fatigue and to identify the necessity of some guidelines to prevent VDT work-related chronic muscle fatigue in the trapezius.

  13. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain

    DEFF Research Database (Denmark)

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter

    2014-01-01

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity......, while the asymptomatic leg displayed higher uptake for medial gastrocnemius and flexor hallucis longus (P tendon GU than the controls (P effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative...... within- or between-group differences. Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle....

  14. Validity and Reliability of Surface Electromyography Measurements from a Wearable Athlete Performance System

    Directory of Open Access Journals (Sweden)

    Scott K. Lynn, Casey M. Watkins, Megan A. Wong, Katherine Balfany, Daniel F. Feeney

    2018-06-01

    Full Text Available The Athos ® wearable system integrates surface electromyography (sEMG electrodes into the construction of compression athletic apparel. The Athos system reduces the complexity and increases the portability of collecting EMG data and provides processed data to the end user. The objective of the study was to determine the reliability and validity of Athos as compared with a research grade sEMG system. Twelve healthy subjects performed 7 trials on separate days (1 baseline trial and 6 repeated trials. In each trial subjects wore the wearable sEMG system and had a research grade sEMG system’s electrodes placed just distal on the same muscle, as close as possible to the wearable system’s electrodes. The muscles tested were the vastus lateralis (VL, vastus medialis (VM, and biceps femoris (BF. All testing was done on an isokinetic dynamometer. Baseline testing involved performing isometric 1 repetition maximum tests for the knee extensors and flexors and three repetitions of concentric-concentric knee flexion and extension at MVC for each testing speed: 60, 180, and 300 deg/sec. Repeated trials 2-7 each comprised 9 sets where each set included three repetitions of concentric-concentric knee flexion-extension. Each repeated trial (2-7 comprised one set at each speed and percent MVC (50%, 75%, 100% combination. The wearable system and research grade sEMG data were processed using the same methods and aligned in time. The amplitude metrics calculated from the sEMG for each repetition were the peak amplitude, sum of the linear envelope, and 95th percentile. Validity results comprise two main findings. First, there is not a significant effect of system (Athos or research grade system on the repetition amplitude metrics (95%, peak, or sum. Second, the relationship between torque and sEMG is not significantly different between Athos and the research grade system. For reliability testing, the variation across trials and averaged across speeds was 0.8%, 7

  15. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation

    Directory of Open Access Journals (Sweden)

    Wentao Sun

    2018-05-01

    Full Text Available Estimating muscle force by surface electromyography (sEMG is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs in two steps: (1 learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2 extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  16. The management of lactose intolerance among primary care physicians and its correlation with management by gastroenterologists: the SEPD-SEMG national survey

    Directory of Open Access Journals (Sweden)

    Federico Argüelles-Arias

    2015-09-01

    Full Text Available Introduction and aims: The understanding of lactose intolerance (LI is limited in some professional settings. Sociedad Española de Patología Digestiva (SEPD and Sociedad Española de Medicina General (SEMG have developed a survey in order to: a Analyze primary care physicians (PCPs knowledge and clinical management; and b to compare results with those of a previous survey of Spanish gastroenterologists (GEs. Material and methods: An online questionnaire was sent to SEMG members with 27 items on various issues: Demographics, occupational characteristics, outlook on LI, diagnostic tests, treatment, and follow-up. Results were compared to those from a survey of GEs. Results: A total of 456 PCPs responded, versus 477 GEs. PCPs had an older mean age and longer professional experience. Level of understanding of LI was similar, albeit a higher proportion of PCPs lacked epidemiological awareness (p 0.001, and LI symptoms as overlapping those of irritable bowel syndrome (93.5 vs. 88.2%; p = 0.005, although symptoms perceived as suspicious of LI were similar in both groups. Dietary recommendations were recognized as the primary therapeutic approach. Conclusion: This study reveals the outlook of PCPs on LI, and allows comparison with that of GEs, as a basis for the development of strategies aimed at improving LI understanding, approach and management in our setting.

  17. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2009-01-01

    The aim of this study was to investigate motor unit (MU) characteristics of the biceps brachii in post-stroke patients, using high-density surface electromyography (sEMG). Eighteen chronic hemiparetic stroke patients took part. The Fugl-Meyer score for the upper extremity was assessed. Subjects

  18. Evaluation of muscle fatigue of wheelchair basketball players with spinal cord injury using recurrence quantification analysis of surface EMG.

    Science.gov (United States)

    Uzun, S; Pourmoghaddam, A; Hieronymus, M; Thrasher, T A

    2012-11-01

    Wheelchair basketball is the most popular exercise activity among individuals with spinal cord injury (SCI). The purpose of this study was to investigate muscular endurance and fatigue in wheelchair basketball athletes with SCI using surface electromyography (SEMG) and maximal torque values. SEMG characteristics of 10 wheelchair basketball players (WBP) were compared to 13 able-bodied basketball players and 12 sedentary able-bodied subjects. Participants performed sustained isometric elbow flexion at 50% maximal voluntary contraction until exhaustion. Elbow flexion torque and SEMG signals were recorded from three elbow flexor muscles: biceps brachii longus, biceps brachii brevis and brachioradialis. SEMG signals were clustered into 0.5-s epochs with 50% overlap. Root mean square (RMS) and median frequency (MDF) of SEMG signals were calculated for each muscle and epoch as traditional fatigue monitoring. Recurrence quantification analysis was used to extract the percentage of determinism (%DET) of SEMG signals. The slope of the %DET for basketball players and WBP showed slower increase with time than the sedentary able-bodied control group for three different elbow flexor muscles, while no difference was observed for the slope of the %DET between basketball and WBP. This result indicated that the athletes are less fatigable during the task effort than the nonathletes. Normalized MDF slope decay exhibited similar results between the groups as %DET, while the slope of the normalized RMS failed to show any significant differences among the groups (p > 0.05). MDF and %DET could be useful for the evaluation of muscle fatigue in wheelchair basketball training. No conclusions about special training for WBP could be determined.

  19. Exercise muscle fatigue detection system implementation via wireless surface electromyography and empirical mode decomposition.

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2013-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. A wireless Bluetooth transmission sEMG measurement system with a sampling frequency of 2 KHz is developed. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. As fatigue increases, the power spectrum of the sEMG shifts toward lower frequencies. The goal of this study is to evaluate the sensitivity of empirical mode decomposition (EMD) quantifying the electrical manifestations of the local muscle fatigue during exercising in health people. We also compared this method with the raw data and discrete wavelet transform (DWT). Five male and five female volunteers participated. Each subject was asked to run on a multifunctional pedaled elliptical trainer for about 30 minutes, twice a week, and there were a total of six recording times for each subject with a wireless EMG recording system. The results show that sensitivity of the highest frequency component of EMD is better than the highest frequency component of DWT, and raw data.

  20. Duration of observation required in detecting fasciculation potentials in amyotrophic lateral sclerosis using high-density surface EMG

    Directory of Open Access Journals (Sweden)

    Zhou Ping

    2012-10-01

    Full Text Available Abstract Background High-density surface electromyography (HD-SEMG has recently emerged as a potentially useful tool in the evaluation of amyotrophic lateral sclerosis (ALS. This study addresses a practical constraint that arises when applying HD-SEMG for supporting the diagnosis of ALS; specifically, how long the surface EMG should be recorded before one can be confident that fasciculation potentials (FPs are absent in a muscle being tested. Methods HD-SEMG recordings of 29 muscles from 11 ALS patients were analyzed. We used the distribution of intervals between FPs, and estimated the observation duration needed to record from one to five FPs with a probability approaching unity. Such an approach was previously tested by Mills with a concentric needle electrode. Results We found that the duration of recording was up to 70 s in order to record a single FP with a probability approaching unity. Increasing recording time to 2 minutes, the probability of recording five FPs approached approximately 0.95. Conclusions HD-SEMG appears to be a suitable method for capturing FPs comparable to intramuscular needle EMG.

  1. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements

    OpenAIRE

    Krasoulis, Agamemnon; Kyranou, Iris; Erden, Mustapha Suphi; Nazarpour, Kianoush; Vijayakumar, Sethu

    2017-01-01

    Background Myoelectric pattern recognition systems can decode movement intention to drive upper-limb prostheses. Despite recent advances in academic research, the commercial adoption of such systems remains low. This limitation is mainly due to the lack of classification robustness and a simultaneous requirement for a large number of electromyogram (EMG) electrodes. We propose to address these two issues by using a multi-modal approach which combines surface electromyography (sEMG) with inert...

  2. Time-varying surface electromyography topography as a prognostic tool for chronic low back pain rehabilitation.

    Science.gov (United States)

    Hu, Yong; Kwok, Jerry Weilun; Tse, Jessica Yuk-Hang; Luk, Keith Dip-Kei

    2014-06-01

    Nonsurgical rehabilitation therapy is a commonly used strategy to treat chronic low back pain (LBP). The selection of the most appropriate therapeutic options is still a big challenge in clinical practices. Surface electromyography (sEMG) topography has been proposed to be an objective assessment of LBP rehabilitation. The quantitative analysis of dynamic sEMG would provide an objective tool of prognosis for LBP rehabilitation. To evaluate the prognostic value of quantitative sEMG topographic analysis and to verify the accuracy of the performance of proposed time-varying topographic parameters for identifying the patients who have better response toward the rehabilitation program. A retrospective study of consecutive patients. Thirty-eight patients with chronic nonspecific LBP and 43 healthy subjects. The accuracy of the time-varying quantitative sEMG topographic analysis for monitoring LBP rehabilitation progress was determined by calculating the corresponding receiver-operating characteristic (ROC) curves. Physiologic measure was the sEMG during lumbar flexion and extension. Patients who suffered from chronic nonspecific LBP without the history of back surgery and any medical conditions causing acute exacerbation of LBP during the clinical test were enlisted to perform the clinical test during the 12-week physiotherapy (PT) treatment. Low back pain patients were classified into two groups: "responding" and "nonresponding" based on the clinical assessment. The responding group referred to the LBP patients who began to recover after the PT treatment, whereas the nonresponding group referred to some LBP patients who did not recover or got worse after the treatment. The results of the time-varying analysis in the responding group were compared with those in the nonresponding group. In addition, the accuracy of the analysis was analyzed through ROC curves. The time-varying analysis showed discrepancies in the root-mean-square difference (RMSD) parameters between the

  3. Validity and Reliability of Surface Electromyography in the Assessment of Primary Muscle Tension Dysphonia.

    Science.gov (United States)

    Khoddami, Seyyedeh Maryam; Talebian, Saeed; Izadi, Farzad; Ansari, Noureddin Nakhostin

    2017-05-01

    The study aims to evaluate the reliability and the discriminative validity of surface electromyography (sEMG) in the assessment of patients with primary muscle tension dysphonia (MTD). The study design is cross-sectional. Fifteen patients with primary MTD (mean age: 34.07 ± 10.99 years) and 15 healthy volunteers (mean age: 34.53 ± 10.63 years) were included. All participants underwent evaluation of sEMG to record the electrical activity of the thyrohyoid and cricothyroid muscles. The outcome measures were the root mean square (RMS), activity peak, duration, and time to the peak activity, which were obtained during /a/ and /i/ prolongation for test-retest reliability. The test-retest reliability was good to excellent for the RMS and peak activity measures (intraclass correlation coefficient [agreement] [ICC agreement ] = 0.49-0.98). The reliability for the activity duration was poor to excellent (ICC agreement  = 0.19-0.9). Poor test-retest reliability was found for the time to peak measure (ICC agreement  = 0.15-0.37). The standard error of measurement for all sEMG measures was between 0.41 and 2.05. The smallest detectable change (SDC) was calculated between 1.13 and 5.66. The highest SDC values were obtained for the peak and the lowest SDCs were documented for the duration (5.66 and 1.13, respectively). All sEMG measures were not able to discriminate between the MTD patients and healthy subjects (P > 0.05). The sEMG is a reliable tool to measure the RMS, the peak activity, and the activity duration in primary MTD. However, it is not able to discriminate the patients with primary MTD from healthy subjects. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Swallowing in patients with Parkinson's disease: a surface electromyography study.

    Science.gov (United States)

    Ws Coriolano, Maria das Graças; R Belo, Luciana; Carneiro, Danielle; G Asano, Amdore; Al Oliveira, Paulo José; da Silva, Douglas Monteiro; G Lins, Otávio

    2012-12-01

    Our goal was to study deglutition of Parkinson's disease (PD) patients and normal controls (NC) using surface electromyography (sEMG). The study included 15 patients with idiopathic PD and 15 age-matched normal controls. Surface electromyography was collected over the suprahyoid muscle group. Conditions were the following: swallow at once 10 and 20 ml of water and 5 and 10 ml of yogurt of firm consistency, and freely drink 100 ml of water. During swallowing, durations of sEMG were significantly longer in PD patients than in normal controls but no significant differences of amplitudes were found. Eighty percent of the PD patients and 20 % of the NC needed more than one swallow to consume 20 ml of water, while 70 % of the PD patients and none of the NC needed more than one swallow to consume 5 ml of yogurt. PD patients took significantly more time and needed significantly more swallows to drink 100 ml of water than normal controls. We conclude that sEMG might be a simple and useful tool to study and monitor deglutition in PD patients.

  5. Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K

    2007-01-01

    The paper reports the use of fractal theory and fractal dimension to study the non-linear properties of surface electromyogram (sEMG) and to use these properties to classify subtle hand actions. The paper reports identifying a new feature of the fractal dimension, the bias that has been found to be useful in modelling the muscle activity and of sEMG. Experimental results demonstrate that the feature set consisting of bias values and fractal dimension of the recordings is suitable for classification of sEMG against the different hand gestures. The scatter plots demonstrate the presence of simple relationships of these features against the four hand gestures. The results indicate that there is small inter-experimental variation but large inter-subject variation. This may be due to differences in the size and shape of muscles for different subjects. The possible applications of this research include use in developing prosthetic hands, controlling machines and computers.

  6. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.

    Science.gov (United States)

    Soylu, Abdullah Ruhi; Arpinar-Avsar, Pinar

    2010-08-01

    The effects of fatigue on maximum voluntary contraction (MVC) parameters were examined by using force and surface electromyography (sEMG) signals of the biceps brachii muscles (BBM) of 12 subjects. The purpose of the study was to find the sEMG time interval of the MVC recordings which is not affected by the muscle fatigue. At least 10s of force and sEMG signals of BBM were recorded simultaneously during MVC. The subjects reached the maximum force level within 2s by slightly increasing the force, and then contracted the BBM maximally. The time index of each sEMG and force signal were labeled with respect to the time index of the maximum force (i.e. after the time normalization, each sEMG or force signal's 0s time index corresponds to maximum force point). Then, the first 8s of sEMG and force signals were divided into 0.5s intervals. Mean force, median frequency (MF) and integrated EMG (iEMG) values were calculated for each interval. Amplitude normalization was performed by dividing the force signals to their mean values of 0s time intervals (i.e. -0.25 to 0.25s). A similar amplitude normalization procedure was repeated for the iEMG and MF signals. Statistical analysis (Friedman test with Dunn's post hoc test) was performed on the time and amplitude normalized signals (MF, iEMG). Although the ANOVA results did not give statistically significant information about the onset of the muscle fatigue, linear regression (mean force vs. time) showed a decreasing slope (Pearson-r=0.9462, pfatigue starts after the 0s time interval as the muscles cannot attain their peak force levels. This implies that the most reliable interval for MVC calculation which is not affected by the muscle fatigue is from the onset of the EMG activity to the peak force time. Mean, SD, and range of this interval (excluding 2s gradual increase time) for 12 subjects were 2353, 1258ms and 536-4186ms, respectively. Exceeding this interval introduces estimation errors in the maximum amplitude calculations

  7. Evaluation of upper limb muscle fatigue based on surface electromyography.

    Science.gov (United States)

    Zhou, Qianxiang; Chen, Yuhong; Ma, Chao; Zheng, Xiaohui

    2011-10-01

    Fatigue is believed to be a major contributory factor to occupational injuries in machine operators. The development of accurate and usable techniques to measure operator fatigue is therefore important. In this study, we used a novel method based on surface electromyography (sEMG) of the biceps brachii and the Borg scale to evaluate local muscle fatigue in the upper limb after isometric muscle action. Thirteen young males performed isometric actions with the upper limb at different force levels. sEMG activities of the biceps brachii were recorded during the actions. Borg scales were used to evaluate the subjective sensation of local fatigue of the biceps brachii after the actions. sEMG activities were analyzed using the one-third band octave method, and an equation to determine the degree of fatigue was derived based on the relationship between the variable and the Borg scale. The results showed that the relationship could be expressed by a conic curve, and could be used to evaluate muscle fatigue during machine operation.

  8. The face of pain--a pilot study to validate the measurement of facial pain expression with an improved electromyogram method.

    Science.gov (United States)

    Wolf, Karsten; Raedler, Thomas; Henke, Kai; Kiefer, Falk; Mass, Reinhard; Quante, Markus; Wiedemann, Klaus

    2005-01-01

    The purpose of this pilot study was to establish the validity of an improved facial electromyogram (EMG) method for the measurement of facial pain expression. Darwin defined pain in connection with fear as a simultaneous occurrence of eye staring, brow contraction and teeth chattering. Prkachin was the first to use the video-based Facial Action Coding System to measure facial expressions while using four different types of pain triggers, identifying a group of facial muscles around the eyes. The activity of nine facial muscles in 10 healthy male subjects was analyzed. Pain was induced through a laser system with a randomized sequence of different intensities. Muscle activity was measured with a new, highly sensitive and selective facial EMG. The results indicate two groups of muscles as key for pain expression. These results are in concordance with Darwin's definition. As in Prkachin's findings, one muscle group is assembled around the orbicularis oculi muscle, initiating eye staring. The second group consists of the mentalis and depressor anguli oris muscles, which trigger mouth movements. The results demonstrate the validity of the facial EMG method for measuring facial pain expression. Further studies with psychometric measurements, a larger sample size and a female test group should be conducted.

  9. [Detection of surface EMG signal using active electrode].

    Science.gov (United States)

    He, Qinghua; Peng, Chenglin; Wu, Baoming; Wang, He

    2003-09-01

    Research of surface electromyogram(EMG) signal is important in rehabilitation medicine, sport medicine and clinical diagnosis, accurate detection of signal is the base of quantitative analysis of surface EMG signal. In this article were discussed how to reduce possible noise in the detection of surface EMG. Considerations on the design of electrode unit were presented. Instrumentation amplifier AD620 was employed to design a bipolar active electrode for use in surface EMG detection. The experiments showed that active electrode could be used to improve signal/noise ratio, reduce noise and detect surface EMG signal effectively.

  10. Use of multiple-site performance-contingent SEMG reward programming in pediatric rehabilitation: a retrospective review.

    Science.gov (United States)

    Bolek, Jeffrey E

    2006-09-01

    We completed a retrospective review of the effectiveness of multi-site, performance-contingent reward programming on functional change in motor performance of 16 treatment resistant children. Patients were previously treated in physical or occupational therapy for head control, standing balance training, sitting and upper extremity use (brachial plexus injury). They then participated in a program that utilized multiple surface electromyography sites the use of which was rewarded with videos for performing the correct constellation of recruitment pattern (e.g., contracting some muscles while relaxing others). Onset of reward was calibrated for each patient and transfer of skill to outside the clinic was encouraged by linking a verbal cue to the correct motor plan. Fourteen of the 16 patients improved. The implications of the use of this technique in the treatment of motor dysfunction is discussed.

  11. Analysis of the times involved in processing and communication in a lower limb simulation system controlled by SEMG

    Science.gov (United States)

    Profumieri, A.; Bonell, C.; Catalfamo, P.; Cherniz, A.

    2016-04-01

    Virtual reality has been proposed for different applications, including the evaluation of new control strategies and training protocols for upper limb prostheses and for the study of new rehabilitation programs. In this study, a lower limb simulation environment commanded by surface electromyography signals is evaluated. The time delays generated by the acquisition and processing stages for the signals that would command the knee joint, were measured and different acquisition windows were analysed. The subjective perception of the quality of simulation was also evaluated when extra delays were added to the process. The results showed that the acquisition window is responsible for the longest delay. Also, the basic implemented processes allowed for the acquisition of three signal channels for commanding the simulation. Finally, the communication between different applications is arguably efficient, although it depends on the amount of data to be sent.

  12. Surface EMG and intra-socket force measurement to control a prosthetic device

    Science.gov (United States)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  13. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography

    Science.gov (United States)

    Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.

    2016-01-01

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155

  14. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.

    Science.gov (United States)

    Sartori, Massimo; Farina, Dario; Lloyd, David G

    2014-11-28

    Current electromyography (EMG)-driven musculoskeletal models are used to estimate joint moments measured from an individual׳s extremities during dynamic movement with varying levels of accuracy. The main benefit is the underlying musculoskeletal dynamics is simulated as a function of realistic, subject-specific, neural-excitation patterns provided by the EMG data. The main disadvantage is surface EMG cannot provide information on deeply located muscles. Furthermore, EMG data may be affected by cross-talk, recording and post-processing artifacts that could adversely influence the EMG׳s information content. This limits the EMG-driven model׳s ability to calculate the multi-muscle dynamics and the resulting joint moments about multiple degrees of freedom. We present a hybrid neuromusculoskeletal model that combines calibration, subject-specificity, EMG-driven and static optimization methods together. In this, the joint moment tracking errors are minimized by balancing the information content extracted from the experimental EMG data and from that generated by a static optimization method. Using movement data from five healthy male subjects during walking and running we explored the hybrid model׳s best configuration to minimally adjust recorded EMGs and predict missing EMGs while attaining the best tracking of joint moments. Minimally adjusted and predicted excitations substantially improved the experimental joint moment tracking accuracy than current EMG-driven models. The ability of the hybrid model to predict missing muscle EMGs was also examined. The proposed hybrid model enables muscle-driven simulations of human movement while enforcing physiological constraints on muscle excitation patterns. This might have important implications for studying pathological movement for which EMG recordings are limited.

  15. Reproducibility of 3D kinematics and surface electromyography measurements of mastication.

    Science.gov (United States)

    Remijn, Lianne; Groen, Brenda E; Speyer, Renée; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G

    2016-03-01

    The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the masticatory muscles were obtained over two sessions with four conditions: two food textures (biscuit and bread) of two sizes (small and large). Twelve healthy adults (mean age 29.1 years) completed the study. The second to the fifth chewing cycle of 5 bites were used for analyses. The reproducibility per outcome variable was calculated with an intraclass correlation coefficient (ICC) and a Bland-Altman analysis was applied to determine the standard error of measurement relative error of measurement and smallest detectable differences of all variables. ICCs ranged from 0.71 to 0.98 for all outcome variables. The outcome variables consisted of four bite and fourteen chewing cycle variables. The relative standard error of measurement of the bite variables was up to 17.3% for 'time-to-swallow', 'time-to-transport' and 'number of chewing cycles', but ranged from 31.5% to 57.0% for 'change of chewing side'. The relative standard error of measurement ranged from 4.1% to 24.7% for chewing cycle variables and was smaller for kinematic variables than sEMG variables. In general, measurements obtained with 3D kinematics and sEMG are reproducible techniques to assess the mastication process. The duration of the chewing cycle and frequency of chewing were the best reproducible measurements. Change of chewing side could not be reproduced. The published measurement error and smallest detectable differences will aid the interpretation of the results of future clinical studies using the same study variables. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Surface EMG characteristics of people with multiple sclerosis during static contractions of the knee extensors.

    Science.gov (United States)

    Scott, Sasha M; Hughes, Adrienne R; Galloway, Stuart D R; Hunter, Angus M

    2011-01-01

    This study was designed to determine whether any alterations existed in surface electromyography (sEMG) in people with multiple sclerosis (MS) during isometric contractions of the knee extensors. Fifteen people with MS and 14 matched controls (mean ± SD age and body mass index 53·7 ± 10·5 versus 54·6 ± 9·6 years and 27·7 ± 6·1 versus 26·5 ± 4, respectively) completed 20%, 40%, 60% and 80% of their maximal voluntary contraction (MVC) of the knee extensors. sEMG was recorded from the vastus lateralis where muscle fibre conduction velocity (MFCV) and sEMG amplitude (RMS) were assessed. Body composition was determined using dual-energy X-ray absorptiometry and physical activity with the use of accelerometry. People with MS showed significantly (P<0·05) faster MFCV during MVC (6·6 ± 2·7 versus 4·7 ± 1·4 m s(-1) ) and all submaximal contractions, while RMS was significantly (P<0·05) less (0·11 ± 0·03 versus 0·24 ± 0·06 mV) in comparison with the controls. MVC along with specific thigh lean mass to torque, rate of force development and mean physical activity were significantly (P<0·01) less in PwMS. People with MS have elevated MFCV alongside reduced RMS during isometric contraction. This elevation in MFCV should be accounted for when interpreting sEMG from people with MS. © 2010 University of Stirling. Clinical physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  17. Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor

    Directory of Open Access Journals (Sweden)

    Dong Sun

    2012-01-01

    Full Text Available The human hand has multiple degrees of freedom (DOF for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  18. Hand motion classification using a multi-channel surface electromyography sensor.

    Science.gov (United States)

    Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong

    2012-01-01

    The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  19. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    Science.gov (United States)

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

  20. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    Science.gov (United States)

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  1. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    Directory of Open Access Journals (Sweden)

    Ho Chit Siu

    2018-02-01

    Full Text Available Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG, but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  2. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles.

    Science.gov (United States)

    Chowdhury, Suman Kanti; Nimbarte, Ashish D; Jaridi, Majid; Creese, Robert C

    2013-10-01

    Assessment of neuromuscular fatigue is essential for early detection and prevention of risks associated with work-related musculoskeletal disorders. In recent years, discrete wavelet transform (DWT) of surface electromyography (SEMG) has been used to evaluate muscle fatigue, especially during dynamic contractions when the SEMG signal is non-stationary. However, its application to the assessment of work-related neck and shoulder muscle fatigue is not well established. Therefore, the purpose of this study was to establish DWT analysis as a suitable method to conduct quantitative assessment of neck and shoulder muscle fatigue under dynamic repetitive conditions. Ten human participants performed 40min of fatiguing repetitive arm and neck exertions while SEMG data from the upper trapezius and sternocleidomastoid muscles were recorded. The ten of the most commonly used wavelet functions were used to conduct the DWT analysis. Spectral changes estimated using power of wavelet coefficients in the 12-23Hz frequency band showed the highest sensitivity to fatigue induced by the dynamic repetitive exertions. Although most of the wavelet functions tested in this study reasonably demonstrated the expected power trend with fatigue development and recovery, the overall performance of the "Rbio3.1" wavelet in terms of power estimation and statistical significance was better than the remaining nine wavelets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features.

    Science.gov (United States)

    Karthick, P A; Makaram, Navaneethakrishna; Ramakrishnan, S

    2014-01-01

    Muscle fatigue is a neuromuscular condition where muscle performance decreases due to sustained or intense contraction. It is experienced by both normal and abnormal subjects. In this work, an attempt has been made to analyze the progression of muscle fatigue in biceps brachii muscles using surface electromyography (sEMG) signals. The sEMG signals are recorded from fifty healthy volunteers during dynamic contractions under well defined protocol. The acquired signals are preprocessed and segmented in to six equal parts for further analysis. The features, such as activity, mobility, complexity, sample entropy and spectral entropy are extracted from all six zones. The results are found showing that the extracted features except complexity feature have significant variations in differentiating non-fatigue and fatigue zone respectively. Thus, it appears that, these features are useful in automated analysis of various neuromuscular activities in normal and pathological conditions.

  4. A more precise, repeatable and diagnostic alternative to surface electromyography

    DEFF Research Database (Denmark)

    Harrison, Adrian P

    2018-01-01

    Acoustic myography (AMG) enables a detailed and accurate measurement of those muscles involved in a particular movement and is independent of electrical signals between the nerve and muscle, measuring solely muscle contractions, unlike surface electromyography (sEMG). With modern amplifiers....../coordination (E-score), spatial summation (S-score) and temporal summation (T-score). It is concluded that modern AMG units have the potential to accurately assess patients with neuromuscular and musculoskeletal complaints in hospital clinics, home monitoring situations as well as sports settings....

  5. The correlation between surface electromyography and bite force of mastication muscles in Asian young adults.

    Science.gov (United States)

    Yen, Cheng-I; Mao, Shih-Hsuan; Chen, Chih-Hao; Chen, Chien-Tzung; Lee, Ming-Yih

    2015-05-01

    Mastication function is related to mandible movement, muscle strength, and bite force. No standard device for measuring bite force has been developed. A linear relationship between electromyographic activity and bite force has been reported by several investigators, but data on the reliability of this relationship remain limited in Asian young adults. The purpose of this study was to develop a clinically applicable, reliable, quantitative, and noninvasive system to measure the kinetic mastication function and observe the correlation between surface electromyography (sEMG) and bite force. The study group consisted of 41 young healthy adults (24 men and 17 women). Surface electromyography was used to evaluate bilateral temporalis and masseter muscle activities, and an occlusal bite force system was used concurrently to measure the bite force during maximal voluntary biting. Bilateral symmetry was compared, and the correlation between EMG and bite force was calculated. The sEMG signals were 107.7±55.0 μV and 106.0±56.0 μV (P=0.699) on right and left temporalis muscles and 183.7±86.2 μV and 194.8±94.3 μV (P=0.121) on right and left masseter muscles, respectively. The bite force was 5.0±3.2 kg on the right side and 5.7±4.0 kg on the left side (P=0.974). A positive correlation between sEMG and bite force was observed. The correlation coefficient between the temporalis muscle and bite force was 0.512, and that between the masseter muscle and bite force was 0.360. No significant difference between the bilateral electromyographic activities of the temporalis and masseter muscles and bilateral bite force was observed in young healthy adults in Taiwan. A positive correlation between sEMG signals and bite force was noted. By combining sEMG and bite force, we developed a clinically applicable, quantitative, reliable, and noninvasive system for evaluating mastication function by using characteristics of biofeedback.

  6. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.

    Science.gov (United States)

    Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S

    2018-02-01

    Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to

  7. Preferred sensor sites for surface EMG signal decomposition

    International Nuclear Information System (INIS)

    Zaheer, Farah; Roy, Serge H; De Luca, Carlo J

    2012-01-01

    Technologies for decomposing the electromyographic (EMG) signal into its constituent motor unit action potential trains have become more practical by the advent of a non-invasive methodology using surface EMG (sEMG) sensors placed on the skin above the muscle of interest (De Luca et al 2006 J. Neurophysiol. 96 1646–57 and Nawab et al 2010 Clin. Neurophysiol. 121 1602–15). This advancement has widespread appeal among researchers and clinicians because of the ease of use, reduced risk of infection, and the greater number of motor unit action potential trains obtained compared to needle sensor techniques. In this study we investigated the influence of the sensor site on the number of identified motor unit action potential trains in six lower limb muscles and one upper limb muscle with the intent of locating preferred sensor sites that provided the greatest number of decomposed motor unit action potential trains, or motor unit yield. Sensor sites rendered varying motor unit yields throughout the surface of a muscle. The preferred sites were located between the center and the tendinous areas of the muscle. The motor unit yield was positively correlated with the signal-to-noise ratio of the detected sEMG. The signal-to-noise ratio was inversely related to the thickness of the tissue between the sensor and the muscle fibers. A signal-to-noise ratio of 3 was found to be the minimum required to obtain a reliable motor unit yield. (paper)

  8. Testing of motor unit synchronization model for localized muscle fatigue.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  9. Evaluating the Training Effects of Two Swallowing Rehabilitation Therapies Using Surface Electromyography--Chin Tuck Against Resistance (CTAR) Exercise and the Shaker Exercise.

    Science.gov (United States)

    Sze, Wei Ping; Yoon, Wai Lam; Escoffier, Nicolas; Rickard Liow, Susan J

    2016-04-01

    In this study, the efficacy of two dysphagia interventions, the Chin Tuck against Resistance (CTAR) and Shaker exercises, were evaluated based on two principles in exercise science-muscle-specificity and training intensity. Both exercises were developed to strengthen the suprahyoid muscles, whose contractions facilitate the opening of the upper esophageal sphincter, thereby improving bolus transfer. Thirty-nine healthy adults performed two trials of both exercises in counter-balanced order. Surface electromyography (sEMG) recordings were simultaneously collected from suprahyoid muscle group and sternocleidomastoid muscle during the exercises. Converging results using sEMG amplitude analyses suggested that the CTAR was more specific in targeting the suprahyoid muscles than the Shaker exercise. Fatigue analyses on sEMG signals further indicated that the suprahyoid muscle group were equally or significantly fatigued (depending on metric), when participants carried out CTAR compared to the Shaker exercise. Importantly, unlike during Shaker exercise, the sternocleidomastoid muscles were significantly less activated and fatigued during CTAR. Lowering the chin against resistance is therefore sufficiently specific and intense to fatigue the suprahyoid muscles.

  10. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    Science.gov (United States)

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  11. Application of advanced biomechanical methods in studying low back pain – recent development in estimation of lower back loads and large-array surface electromyography and findings

    Directory of Open Access Journals (Sweden)

    Bazrgari B

    2017-07-01

    Full Text Available Babak Bazrgari,1 Ting Xia2 1F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 2Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA Abstract: Low back pain (LBP is a major public health problem and the leading disabling musculoskeletal disorder globally. A number of biomechanical methods using kinematic, kinetic and/or neuromuscular approaches have been used to study LBP. In this narrative review, we report recent developments in two biomechanical methods: estimation of lower back loads and large-array surface electromyography (LA-SEMG and the findings associated with LBP. The ability to estimate lower back loads is very important for the prevention and the management of work-related low back injuries based on the mechanical loading model as one category of LBP classification. The methods used for estimation of lower back loads vary from simple rigid link-segment models to sophisticated, optimization-based finite element models. In general, reviewed reports of differences in mechanical loads experienced in lower back tissues between patients with LBP and asymptomatic individuals are not consistent. Such lack of consistency is primarily due to differences in activities under which lower back mechanical loads were investigated as well as heterogeneity of patient populations. The ability to examine trunk neuromuscular behavior is particularly relevant to the motor control model, another category of LBP classification. LA-SEMG not only is noninvasive but also provides spatial resolution within and across muscle groups. Studies using LA-SEMG showed that healthy individuals exhibit highly organized, symmetric back muscle activity patterns, suggesting an orderly recruitment of muscle fibers. In contrast, back muscle activity patterns in LBP patients are asymmetric or multifocal, suggesting lack of orderly muscle recruitment. LA-SEMG was also shown capable of

  12. Surface electromyography and ultrasound evaluation of pelvic floor muscles in hyperandrogenic women.

    Science.gov (United States)

    Vassimon, Flávia Ignácio Antonio; Ferreira, Cristine Homsi Jorge; Martins, Wellington Paula; Ferriani, Rui Alberto; Batista, Roberta Leopoldino de Andrade; Bo, Kari

    2016-04-01

    High levels of androgens increase muscle mass. Due to the characteristics of hyperandrogenism in polycystic ovary syndrome (PCOS), it is plausible that women with PCOS may have increased pelvic floor muscle (PFM) thickness and neuromuscular activity levels compared with controls. The aim of this study was to assess PFM thickness and neuromuscular activity among hyperandrogenic women with PCOS and controls. This was an observational, cross-sectional, case-control study evaluating PFM by ultrasound (US) and surface electromyography (sEMG) in nonobese women with and without PCOS. Seventy-two women were divided into two groups: PCOS (n = 33) and controls (n = 39). PFM thickness during contraction was assessed by US (Vingmed CFM 800). Pelvic floor muscle activity was assessed by sEMG (MyoTrac Infinit) during contractions at different time lengths: quick, and 8 and 60 s. Descriptive analysis, analysis of variance (ANOVA), and Student's t test were used for statistical analyses. There were no significant differences in PFM sEMG activity between PCOS and controls in any of the contractions: quick contraction (73.23 mV/ 71.56 mV; p = 0.62), 8 s (55.77 mV/ 54.17 mV; p = 0.74), and 60 s (49.26 mV/ 47.32 mV; p = 0.68), respectively. There was no difference in PFM thickness during contractions evaluated by US between PCOS and controls (12.78 mm/ 13.43 mm; p =  .48). This study did not find statistically significant differences in pelvic floor muscle thickness or in muscle activity between PCOS women and controls.

  13. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  14. Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals.

    Science.gov (United States)

    Karthick, P A; Venugopal, G; Ramakrishnan, S

    2016-01-01

    Analysis of neuromuscular fatigue finds various applications ranging from clinical studies to biomechanics. Surface electromyography (sEMG) signals are widely used for these studies due to its non-invasiveness. During cyclic dynamic contractions, these signals are nonstationary and cyclostationary. In recent years, several nonstationary methods have been employed for the muscle fatigue analysis. However, cyclostationary based approach is not well established for the assessment of muscle fatigue. In this work, cyclostationarity associated with the biceps brachii muscle fatigue progression is analyzed using sEMG signals and Spectral Correlation Density (SCD) functions. Signals are recorded from fifty healthy adult volunteers during dynamic contractions under a prescribed protocol. These signals are preprocessed and are divided into three segments, namely, non-fatigue, first muscle discomfort and fatigue zones. Then SCD is estimated using fast Fourier transform accumulation method. Further, Cyclic Frequency Spectral Density (CFSD) is calculated from the SCD spectrum. Two features, namely, cyclic frequency spectral area (CFSA) and cyclic frequency spectral entropy (CFSE) are proposed to study the progression of muscle fatigue. Additionally, degree of cyclostationarity (DCS) is computed to quantify the amount of cyclostationarity present in the signals. Results show that there is a progressive increase in cyclostationary during the progression of muscle fatigue. CFSA shows an increasing trend in muscle fatiguing contraction. However, CFSE shows a decreasing trend. It is observed that when the muscle progresses from non-fatigue to fatigue condition, the mean DCS of fifty subjects increases from 0.016 to 0.99. All the extracted features found to be distinct and statistically significant in the three zones of muscle contraction (p < 0.05). It appears that these SCD features could be useful in the automated analysis of sEMG signals for different neuromuscular conditions.

  15. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Directory of Open Access Journals (Sweden)

    Menon Carlo

    2011-09-01

    Full Text Available Abstract Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2 values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS was shown to have high isometric torque estimation accuracy combined with very short training times.

  16. Assessment of Diaphragm and External Intercostals Fatigue from Surface EMG using Cervical Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2008-03-01

    Full Text Available This study was designed: (1 to test the reliability of surface electromyography (sEMG recording of the diaphragm and external intercostals contractions response to cervical magnetic stimulation (CMS, (2 to examine the amount and the types of inspiratory muscle fatigue that developed after maximum voluntary ventilation (MVV maneuvers.Ten male college students without physical disability (22.1±2.0 years old participated in the study and each completed a control (quiet breathing trial and a fatigue (MVV maneuvers trial sequentially. In the quiet breathing trial, the subjects maintained quiet breathing for five minutes. The subjects performed five maximal static inspiratory efforts and received five CMS before and after the quiet breathing. In the MVV trial, subjects performed five maximal inspiratory efforts and received five CMS before, immediately after, and ten minutes after two sets of MVV maneuvers performed five minutes apart. Maximal inspiratory pressure (PImax, sEMG of diaphragm and external intercostals during maximal static inspiratory efforts and during CMS were recorded. In the quiet breathing trial, high intraclass correlation coefficients (ICC=0.95-0.99 were observed in all the variables. In the MVV trial, the PImax, the EMG amplitude and the median power frequency during maximal static inspiratory efforts significantly decreased in both the diaphragm and the external intercostals immediately after the MVV maneuvers Sensors 2008, 8 2175 (P 0.05. It is concluded that the sEMG recordings of the diaphragm during maximal static inspiratory efforts and in response to CMS allow reproducible sequential assessment of diaphragm contractility. MVV maneuvers resulted in inspiratory muscles fatigue, possibly central fatigue.

  17. SURFACE ELECTROMYOGRAPHY IN BIOMECHANICS: APPLICATIONS AND SIGNAL ANALYSIS ASPECTS

    Directory of Open Access Journals (Sweden)

    DEAK GRAłIELA-FLAVIA

    2009-12-01

    Full Text Available Surface electromyography (SEMG is a technique for detecting and recording the electrical activity of the muscles using surface electrodes. The EMG signal is used in biomechanics mainly as an indicator of the initiation of muscle activation, as an indicator of the force produced by a contracting muscle, and as an index ofthe fatigue occurring within a muscle. EMG, used as a method of investigation, can tell us if the muscle is active or not, if the muscle is more or less active, when it is on or off, how much active is it, and finally, if it fatigues.The purpose of this article is to discuss some specific EMG signal analysis aspects with emphasis on comparison type analysis and frequency fatigue analysis.

  18. The reliability of a maximal isometric hip strength and simultaneous surface EMG screening protocol in elite, junior rugby league athletes.

    Science.gov (United States)

    Charlton, Paula C; Mentiplay, Benjamin F; Grimaldi, Alison; Pua, Yong-Hao; Clark, Ross A

    2017-02-01

    Firstly to describe the reliability of assessing maximal isometric strength of the hip abductor and adductor musculature using a hand held dynamometry (HHD) protocol with simultaneous wireless surface electromyographic (sEMG) evaluation of the gluteus medius (GM) and adductor longus (AL). Secondly, to describe the correlation between isometric strength recorded with the HHD protocol and a laboratory standard isokinetic device. Reliability and correlational study. A sample of 24 elite, male, junior, rugby league athletes, age 16-20 years participated in repeated HHD and isometric Kin-Com (KC) strength testing with simultaneous sEMG assessment, on average (range) 6 (5-7) days apart by a single assessor. Strength tests included; unilateral hip abduction (ABD) and adduction (ADD) and bilateral ADD assessed with squeeze (SQ) tests in 0 and 45° of hip flexion. HHD demonstrated good to excellent inter-session reliability for all outcome measures (ICC (2,1) =0.76-0.91) and good to excellent association with the laboratory reference KC (ICC (2,1) =0.80-0.88). Whilst intra-session, inter-trial reliability of EMG activation and co-activation outcome measures ranged from moderate to excellent (ICC (2,1) =0.70-0.94), inter-session reliability was poor (all ICC (2,1) Isometric strength testing of the hip ABD and ADD musculature using HHD may be measured reliably in elite, junior rugby league athletes. Due to the poor inter-session reliability of sEMG measures, it is not recommended for athlete screening purposes if using the techniques implemented in this study. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Reliability of surface electromyography timing parameters in gait in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-02-01

    The aims of this study were to validate a computerised method to detect muscle activity from surface electromyography (SEMG) signals in gait in patients with cervical spondylotic myelopathy (CSM), and to evaluate the test-retest reliability of the activation times designated by this method. SEMG signals were recorded from rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG), during gait in 12 participants with CSM on two separate test days. Four computerised activity detection methods, based on the Teager-Kaiser Energy Operator (TKEO), were applied to a subset of signals and compared to visual interpretation of muscle activation. The most accurate method was then applied to all signals for evaluation of test-retest reliability. A detection method based on a combined slope and amplitude threshold showed the highest agreement (87.5%) with visual interpretation. With respect to reliability, the standard error of measurement (SEM) of the timing of RF, TA and MG between test days was 5.5% stride duration or less, while the SEM of BF was 9.4%. The timing parameters of RF, TA and MG designated by this method were considered sufficiently reliable for use in clinical practice, however the reliability of BF was questionable.

  20. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    Science.gov (United States)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  1. Surface electromyography based muscle fatigue analysis for stroke patients at different Brunnstrom stages.

    Science.gov (United States)

    Yinjun Tu; Zhe Zhang; Xudong Gu; Qiang Fang

    2016-08-01

    Muscle fatigue analysis has been an important topic in sport and rehabilitation medicine due to its role in muscle performance evaluation and pathology investigation. This paper proposes a surface electromyography (sEMG) based muscle fatigue analysis approach which was specifically designed for stroke rehabilitation applications. 14 stroke patients from 5 different Brunnstrom recovery stage groups were involved in the experiment and features including median frequency and mean power frequency were extracted from the collected sEMG samples for investigation. After signal decomposition, the decline of motor unit firing rate of patients from different groups had also been studied. Statistically significant presence of fatigue had been observed in deltoideus medius and extensor digitorum communis of patients at early recovery stages (P0.01). It had also been discovered that the motor unit firing frequency declines with a range positively correlated to the recovery stage during repetitive movements. Based on the experiment result, it can be verified that as the recovery stage increases, the central nervous system's control ability strengthens and the patient motion becomes more stable and resistive to fatigue.

  2. Simultaneous Force Regression and Movement Classification of Fingers via Surface EMG within a Unified Bayesian Framework.

    Science.gov (United States)

    Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer

    2018-01-01

    This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.

  3. Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Adrian Bingham

    2017-12-01

    Full Text Available This study has developed a technique for identifying the presence of muscle fatigue based on the spatial changes of the normalised mutual information (NMI between multiple high density surface electromyography (HD-sEMG channels. Muscle fatigue in the tibialis anterior (TA during isometric contractions at 40% and 80% maximum voluntary contraction levels was investigated in ten healthy participants (Age range: 21 to 35 years; Mean age = 26 years; Male = 4, Female = 6. HD-sEMG was used to record 64 channels of sEMG using a 16 by 4 electrode array placed over the TA. The NMI of each electrode with every other electrode was calculated to form an NMI distribution for each electrode. The total NMI for each electrode (the summation of the electrode’s NMI distribution highlighted regions of high dependence in the electrode array and was observed to increase as the muscle fatigued. To summarise this increase, a function, M(k, was defined and was found to be significantly affected by fatigue and not by contraction force. The technique discussed in this study has overcome issues regarding electrode placement and was used to investigate how the dependences between sEMG signals within the same muscle change spatially during fatigue.

  4. FEATURE EXTRACTION FOR EMG BASED PROSTHESES CONTROL

    Directory of Open Access Journals (Sweden)

    R. Aishwarya

    2013-01-01

    Full Text Available The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as time- and frequency-domain properties. Time series analysis using Auto Regressive (AR model and Mean frequency which is tolerant to white Gaussian noise are used as feature extraction techniques. EMG Histogram is used as another feature vector that was seen to give more distinct classification. The work was done with SEMG dataset obtained from the NINAPRO DATABASE, a resource for bio robotics community. Eight classes of hand movements hand open, hand close, Wrist extension, Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite to little finger are taken into consideration and feature vectors are extracted. The feature vectors can be given to an artificial neural network for further classification in controlling the prosthetic arm which is not dealt in this paper.

  5. EOG-sEMG Human Interface for Communication.

    Science.gov (United States)

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  6. Effect of age on changes in motor units functional connectivity.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh

    2015-08-01

    With age, there is a change in functional connectivity of motor units in muscle. This leads to reduced muscle strength. This study has investigated the effect of age on the changes in the motor unit recruitment by measuring the mutual information between multiple channels of surface electromyogram (sEMG) of biceps brachii muscle. It is hypothesised that with ageing, there is a reduction in number of motor units, which can lead to an increase in the dependency of remaining motor units. This increase can be observed in the mutual information between the multiple channels of the muscle activity. Two channels of sEMG were recorded during the maximum level of isometric contraction. 28 healthy subjects (Young: age range 20-35years and Old: age range - 60-70years) participated in the experiments. The normalized mutual information (NMI), a measure of dependency factor, was computed for the sEMG recordings. Statistical analysis was performed to test the effect of age on NMI. The results show that the NMI among the older cohort was significantly higher when compared with the young adults.

  7. A novel spatiotemporal muscle activity imaging approach based on the Extended Kalman Filter.

    Science.gov (United States)

    Wang, Jing; Zhang, Yingchun; Zhu, Xiangjun; Zhou, Ping; Liu, Chenguang; Rymer, William Z

    2012-01-01

    A novel spatiotemporal muscle activity imaging (sMAI) approach has been developed using the Extended Kalman Filter (EKF) to reconstruct internal muscle activities from non-invasive multi-channel surface electromyogram (sEMG) recordings. A distributed bioelectric dipole source model is employed to describe the internal muscle activity space, and a linear relationship between the muscle activity space and the sEMG measurement space is then established. The EKF is employed to recursively solve the ill-posed inverse problem in the sMAI approach, in which the weighted minimum norm (WMN) method is utilized to calculate the initial state and a new nonlinear method is developed based on the propagating features of muscle activities to predict the recursive state. A series of computer simulations was conducted to test the performance of the proposed sMAI approach. Results show that the localization error rapidly decreases over 35% and the overlap ratio rapidly increases over 45% compared to the results achieved using the WMN method only. The present promising results demonstrate the feasibility of utilizing the proposed EKF-based sMAI approach to accurately reconstruct internal muscle activities from non-invasive sEMG recordings.

  8. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects.

    Science.gov (United States)

    Cao, Liu; Wang, Ying; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Zheng, Dingchang

    2017-01-01

    The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF) magnetic stimulation on surface electromyography (SEMG) signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body) with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects). The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject's deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS), median frequency (MDF), and sample entropy (SampEn), were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant ( p 0.05). In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p < 0.001) and MDF and SampEn were significantly smaller (all p < 0.001).

  9. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Liu Cao

    2017-01-01

    Full Text Available The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF magnetic stimulation on surface electromyography (SEMG signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject’s deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS, median frequency (MDF, and sample entropy (SampEn, were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant (p0.05. In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p<0.001 and MDF and SampEn were significantly smaller (all p<0.001.

  10. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    Science.gov (United States)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  11. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    Science.gov (United States)

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), Pexercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (Pmotor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  12. Robust Features Of Surface Electromyography Signal

    International Nuclear Information System (INIS)

    Sabri, M I; Miskon, M F; Yaacob, M R

    2013-01-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20–27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and

  13. Robust Features Of Surface Electromyography Signal

    Science.gov (United States)

    Sabri, M. I.; Miskon, M. F.; Yaacob, M. R.

    2013-12-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20-27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and show

  14. Assessment of work-related muscle strain by using surface EMG during test contractions interposed between work periods of simulateted mushroom picking

    DEFF Research Database (Denmark)

    Ohashi, Jun-Ya; Blangsted, Anne Katrine; Nielsen, Pernille Kofoed

    2010-01-01

    Surface electromyograms(EMG) during test contractions (TCs) were studied to assess the muscle strain in simulated mushroom picking. Additionally, the duration of the TC for the effective assessment was investigated. Nine female subjects performed standardized shoulder abduction and a stooped...... posture for one minute as TCs. Each experiment consisted of a 60-min rest, three work periods (W1-W3), a 30-min rest, and two work periods (W4 and W5) separated by a 30-min rest period. The duration of each work period was about 20 min. A total of 18 TCs was performed between the work periods and every 10...

  15. Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique

    Science.gov (United States)

    Abbaspour, S; Fallah, A

    2014-01-01

    Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful. Objective: Removing electrocardiogram contamination from electromyogram signals. Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and electrocardiogram signal were recorded from leg muscles, the pectoralis major muscle of the left side and V4, respectively. After the pre-processing, contaminated electromyogram signal is simulated with a combination of clean electromyogram and electrocardiogram artifact. Then, contaminated electromyogram is cleaned using adaptive subtraction method. This method contains some steps; (1) QRS detection, (2) formation of electrocardiogram template by averaging the electrocardiogram complexes, (3) using low pass filter to remove undesirable artifacts, (4) subtraction. Results: Performance of our method is evaluated using qualitative criteria, power spectrum density and coherence and quantitative criteria signal to noise ratio, relative error and cross correlation. The result of signal to noise ratio, relative error and cross correlation is equal to 10.493, 0.04 and %97 respectively. Finally, there is a comparison between proposed method and some existing methods. Conclusion: The result indicates that adaptive subtraction method is somewhat effective to remove electrocardiogram artifact from contaminated electromyogram signal and has an acceptable result. PMID:25505766

  16. Surface electromyography in orthodontics – a literature review

    Science.gov (United States)

    WoŸniak, Krzysztof; Piątkowska, Dagmara; Lipski, Mariusz; Mehr, Katarzyna

    2013-01-01

    Electromyography is the most objective and reliable technique for evaluating muscle function and efficiency by detecting their electrical potentials. It makes it possible to assess the extent and duration of muscle activity. The main aim of surface electromyography is to detect signals from many muscle fibers in the area of the detecting surface electrodes. These signals consist of a weighted summation of the spatial and temporal activity of many motor units. Hence, the analysis of the recordings is restricted to an assessment of general muscle activity, the cooperation of different muscles, and the variability of their activity over time. This study presents the main assumptions in the assessment of electrical muscle activity through the use of surface electromyography, along with its limitations and possibilities for further use in many areas of orthodontics. The main clinical uses of sEMG include the diagnostics and therapy of temporomandibular joint disorders, an assessment of the extent of stomatognathic system dysfunctions in subjects with malocclusion, and the monitoring of orthodontic therapies. PMID:23722255

  17. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.

    Science.gov (United States)

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-09-15

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no

  18. Effects of visibility and types of the ground surface on the muscle activities of the vastus medialis oblique and vastus lateralis

    Science.gov (United States)

    Park, Jeong-ki; Lee, Dong-yeop; Kim, Jin-Seop; Hong, Ji-Heon; You, Jae-Ho; Park, In-mo

    2015-01-01

    [Purpose] The purpose of this study was to compare the effects of visibility and types of ground surface (stable and unstable) during the performance of squats on the muscle activities of the vastus medialis oblique (VMO) and vastus lateralis (VL). [Subjects and Methods] The subjects were 25 healthy adults in their 20s. They performed squats under four conditions: stable ground surface (SGS) with vision-allowed; unstable ground surface (UGS) with vision-allowed; SGS with vision-blocked; and UGS with vision-blocked. The different conditions were performed on different days. Surface electromyogram (EMG) values were recorded. [Results] The most significant difference in the activity of the VMO and VL was observed when the subjects performed squats on the UGS, with their vision blocked. [Conclusion] For the selective activation of the VMO, performing squats on an UGS was effective, and it was more effective when subjects’ vision was blocked. PMID:26356407

  19. Influence on grip of knife handle surface characteristics and wearing protective gloves.

    Science.gov (United States)

    Claudon, Laurent

    2006-11-01

    Ten subjects were asked to apply maximum torques on knife handles with either their bare hand or their hand wearing a Kevlar fibre protective glove. Four knife handles (2 roughnesses, 2 hardnesses) were tested. Surface electromyograms of 6 upper limb and shoulder muscles were recorded and subject opinions on both knife handle hardness and friction in the hand were also assessed. The results revealed the significant influence of wearing gloves (pgloves greatly increased the torque independently of the other two parameters. Under the bare hand condition, a 90 degrees ShA slightly rough handle provided the greatest torque. Subject opinion agreed with the observed effects on recorded torque values except for the hardness factor, for which a preference for the 70 degrees ShA value over the 90 degrees ShA value emerged.

  20. Analysis of High-Density Surface EMG and Finger Pressure in the Left Forearm of Violin Players: A Feasibility Study.

    Science.gov (United States)

    Cattarello, Paolo; Merletti, Roberto; Petracca, Francesco

    2017-09-01

    Wrist and finger flexor muscles of the left hand were evaluated using high-density surface EMG (HDsEMG) in 17 violin players. Pressure sensors also were mounted below the second string of the violin to evaluate, simultaneously, finger pressure. Electrode grid size was 110x70 mm (12x8 electrodes with interelectrode distance=10 mm and Ø=3 mm). The study objective was to observe the activation patterns of these muscles while the violinists sequentially played four notes--SI (B), DO# (C#), RE (D), MI (E)--at 2 bows/s (one bow up in 0.5 s and one down in 0.5 s) and 4 bows/s on the second string, while producing a constant (CONST) or ramp (RAMP) sound volume. HDsEMG images obtained while playing the notes were compared with those obtained during isometric radial or ulnar flexion of the wrist or fingers. Two image descriptors provided information on image differences. Results showed that the technique was reliable and provided reliable signals, and that recognizably different sEMG images could be associated with the four notes tested, despite the variability within and between subjects playing the same note. sEMG activity of the left hand muscles and pressure on the string in the RAMP task were strongly affected in some individuals by the sound volume (controlled by the right hand) and much less in other individuals. These findings question whether there is an individual or generally optimal way of pressing violin strings with the left hand. The answer to this question might substantially modify the teaching of string instruments.

  1. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  2. Selection of suitable hand gestures for reliable myoelectric human computer interface.

    Science.gov (United States)

    Castro, Maria Claudia F; Arjunan, Sridhar P; Kumar, Dinesh K

    2015-04-09

    Myoelectric controlled prosthetic hand requires machine based identification of hand gestures using surface electromyogram (sEMG) recorded from the forearm muscles. This study has observed that a sub-set of the hand gestures have to be selected for an accurate automated hand gesture recognition, and reports a method to select these gestures to maximize the sensitivity and specificity. Experiments were conducted where sEMG was recorded from the muscles of the forearm while subjects performed hand gestures and then was classified off-line. The performances of ten gestures were ranked using the proposed Positive-Negative Performance Measurement Index (PNM), generated by a series of confusion matrices. When using all the ten gestures, the sensitivity and specificity was 80.0% and 97.8%. After ranking the gestures using the PNM, six gestures were selected and these gave sensitivity and specificity greater than 95% (96.5% and 99.3%); Hand open, Hand close, Little finger flexion, Ring finger flexion, Middle finger flexion and Thumb flexion. This work has shown that reliable myoelectric based human computer interface systems require careful selection of the gestures that have to be recognized and without such selection, the reliability is poor.

  3. New Swallowing Evaluation Using Piezoelectricity in Normal Individuals.

    Science.gov (United States)

    Sogawa, Yuichiro; Kimura, Shinji; Harigai, Toru; Sakurai, Naoki; Toyosato, Akira; Nishikawa, Taro; Inoue, Makoto; Murasawa, Akira; Endo, Naoto

    2015-12-01

    This study aimed to elucidate the relationship between the piezoelectric waveform latency, hyoid bone movement, surface electromyogram (sEMG), and the pharyngeal transit time (PTT) during swallowing. Forty-one healthy subjects were divided into three age groups: younger (20-39 years, n = 8), middle-aged (40-59 years, n = 9), and older (60-79 years, n = 24). Motion analysis of the hyoid bone using videofluorography (VF), waveform analysis of the front neck using piezoelectric films, and sEMG of the suprahyoid muscle group were performed simultaneously. Latencies of the three movement phases were defined as upward (VFS1), forward (VFS2), and returning to starting position (VFS3). The three phases of the piezoelectric waveform-from wave initiation of the negative wave to the start of the second deep negative wave; from the start of the second deep negative wave to the start of the last positive wave (SLPW); and from the SLPW to the end of the last positive wave-were defined as PS1, PS2, and PS3, respectively. VFS1-3 and PS1-3 were significantly correlated. VFS1 and PS1 latencies were significantly longer with thick liquid than with thin liquid. VFS2, PS1, and PS2 latencies were longer in the older group than in the other two groups. The start of PS1 was nearly equal to those of sEMG and VFS1. Bolus arrival time in the valleculae was statistically equal to the end of the PS1 with both thin and thick liquids. To establish the swallowing screening using Piezoelectric film, further investigation is necessary in the dysphagia patients.

  4. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    Science.gov (United States)

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this

  5. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    Directory of Open Access Journals (Sweden)

    Han Sun

    2018-03-01

    Full Text Available The novel human-computer interface (HCI using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC and Fisher discrimination (FD criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT and recognition rate (RR. The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s

  6. Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.

    Science.gov (United States)

    Durandau, Guillaume; Farina, Dario; Sartori, Massimo

    2018-03-01

    Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.

  7. Relationship between lower limb position and pelvic floor muscle surface electromyography activity in menopausal women: a prospective observational study

    Directory of Open Access Journals (Sweden)

    Halski T

    2017-01-01

    Full Text Available Tomasz Halski,1 Kuba Ptaszkowski,2 Lucyna Słupska,1 Robert Dymarek,3 Małgorzata Paprocka-Borowicz2 1Department of Physiotherapy, Opole Medical School, Opole, 2Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, 3Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland Objectives: In physiotherapeutic practice, special attention is being given to the reciprocal anatomical, physiological, and biomechanical relationship of the pelvis and the structures connected to it. However, the scientific literature shows mainly the theoretical information about their mutual connections. The lack of information about these relations from a practical aspect coupled with the paucity of scientific papers on the impact of posture changes on the pelvic floor led the authors to conduct this study. The primary aim of this study was to compare the resting and functional bioelectrical activities of pelvic floor muscles (PFMs depending on three different positions of the lower limbs (positions A, B, and C in the supine position.Materials and methods: This was a prospective observational study evaluating resting and functional activities of the PFM depending on the position of the lower limbs. The study was carried out at the Department and Clinic of Urology, University Hospital in Wroclaw, Poland and the target group were women in the menopausal period. Bioelectrical activity of PFM was recorded using a surface electromyographic instrument in the supine position. Results of the values obtained in A, B, and C positions were compared using a one-way analysis of variance.Results: In position A, the average resting surface electromyography (sEMG activity of PFM was 6.9±2.6 µV; in position B, the result was 6.9±2.5 µV and in position C, the resting sEMG activity was 5.7±1.8 µV (P=0.0102. The results of the functional bioelectrical activity of PFM were as follows: position A – 20.3

  8. Seizure Onset Detection based on one sEMG channel

    DEFF Research Database (Denmark)

    Conradsen, Isa; Beniczky, Sandor; Hoppe, Karsten

    2011-01-01

    with a Butterworth filter with a cut-off frequency of 150 Hz. The number of zero-crossings with a hysteresis of ±50μV is the only feature extracted. The number of counts in a window of 1 second and the number of windows to make a detection is tested with a leave-one-out method. On 6 patients the method performs...

  9. Patterns of motor recruitment can be determined using surface EMG.

    Science.gov (United States)

    Wakeling, James M

    2009-04-01

    Previous studies have reported how different populations of motor units (MUs) can be recruited during dynamic and locomotor tasks. It was hypothesised that the higher-threshold units would contribute higher-frequency components to the sEMG spectra due to their faster conduction velocities, and thus recruitment patterns that increase the proportion of high-threshold units active would lead to higher-frequency elements in the sEMG spectra. This idea was tested by using a model of varying recruitment coupled to a three-layer volume conductor model to generate a series of sEMG signals. The recruitment varied from (A) orderly recruitment where the lowest-threshold MUs were initially activated and higher-threshold MUs were sequentially recruited as the contraction progressed, (B) a recurrent inhibition model that started with orderly recruitment, but as the higher-threshold units were activated they inhibited the lower-threshold MUs (C) nine models with intermediate properties that were graded between these two extremes. The sEMG was processed using wavelet analysis and the spectral properties quantified by their mean frequency, and an angle theta that was determined from the principal components of the spectra. Recruitment strategies that resulted in a greater proportion of faster MUs being active had a significantly lower theta and higher mean frequency.

  10. Central motor control failure in fibromyalgia: a surface electromyography study.

    Science.gov (United States)

    Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto

    2009-07-01

    Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Eight female patients aged 55.6 +/- 13.6 years (FM group) and eight healthy female volunteers aged 50.3 +/- 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean +/- SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 +/- 0.052%/s in FM vs -0.196 +/- 0.133%/s in MCG; normalised MNF rate of changes: -0.29 +/- 0.16%/s in FM vs -0.66 +/- 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control.

  11. Spatial distribution of surface EMG on trapezius and lumbar muscles of violin and cello players in single note playing.

    Science.gov (United States)

    Afsharipour, Babak; Petracca, Francesco; Gasparini, Mauro; Merletti, Roberto

    2016-12-01

    Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16×4) grid, 10mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16×2 electrode grids (IED=10mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1bow/s) or detaché tip/tail (8bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A "muscle activity index" (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of

  12. Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump

    International Nuclear Information System (INIS)

    Ancillao, Andrea; Galli, Manuela; Rigoldi, Chiara; Albertini, Giorgio

    2014-01-01

    Fractal dimension was demonstrated to be able to characterize the complexity of biological signals. The EMG time series are well known to have a complex behavior and some other studies already tried to characterize these signals by their fractal dimension. This paper is aimed at studying the correlation between the fractal dimension of surface EMG signal recorded over Rectus Femoris muscles during a vertical jump and the height reached in that jump. Healthy subjects performed vertical jumps at different heights. Surface EMG from Rectus Femoris was recorded and the height of each jump was measured by an optoelectronic motion capture system. Fractal dimension of sEMG was computed and the correlation between fractal dimension and eight of the jump was studied. Linear regression analysis showed a very high correlation coefficient between the fractal dimension and the height of the jump for all the subjects. The results of this study show that the fractal dimension is able to characterize the EMG signal and it can be related to the performance of the jump. Fractal dimension is therefore an useful tool for EMG interpretation

  13. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    Science.gov (United States)

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  14. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  15. Efeitos da suplementação de creatina na força máxima e na amplitude do eletromiograma de mulheres fisicamente ativas Effect of creatine supplementation in maximal strength and electromyogram amplitude of physically active women

    Directory of Open Access Journals (Sweden)

    Rômulo José Dantas Medeiros

    2010-10-01

    Full Text Available A suplementação de creatina apresenta ação ergogênica na força muscular. Entretanto, não há consenso deste efeito na força isométrica máxima e na amplitude do eletromiograma (EMG. Assim, o objetivo deste estudo foi analisar os efeitos da suplementação de creatina na força isométrica máxima e na amplitude do EMG em mulheres fisicamente ativas. Vinte e sete mulheres (idade 23,04 ± 1,82 anos, massa corporal 58,37 ± 6,10kg, estatura 1,63 ± 0,05m e índice de massa corporal 21,93 ± 2,02kg/m² foram designadas aleatoriamente para os grupos creatina (GCr (n = 13 e placebo (GPL (n = 14, os quais ingeriram diariamente, durante seis dias, 20g de creatina mono-hidratada e 20g de maltodextrina, respectivamente. Antes e depois da suplementação, a força foi medida em um dinamômetro isométrico durante contração isométrica voluntária máxima (CIVM de extensão unilateral do joelho (três séries de 6s intervaladas por 180s, com captação simultânea dos valores root mean square (RMS do EMG obtido no músculo vasto lateral. A ANOVA de dois critérios de classificação (dois momentos x dois grupos e o teste de Wilcoxon foram utilizados na análise estatística dos dados paramétricos e não paramétricos (p Creatine supplementation has shown to enhance muscular strength. However, there is not a consensus on this effect on maximal isometric strength neither on electromyogram (EMG amplitude. Thus, the aim of this study was to analyze the creatine supplementation effects on maximal isometric strength and EMG amplitude in physically active women. 27 women (age 23.04 ± 1.82 years, body mass 58.37 ± 6.10kg, height 1.63±0.05m and body mass index 21.93 ± 2.02kg/m² were randomly assigned in creatine (CrG (n = 13 or placebo group (PLG (n = 14. The CrG and PLG ingested 20g/day of creatine and 20g/day of maltodextrin during six days, respectively. The strength was measured before and after supplementation using a isometric dynamometer

  16. Rumble surfaces

    CSIR Research Space (South Africa)

    National Institute for Transport and Road

    1977-01-01

    Full Text Available Rumble surfaces are intermittent short lengths of coarse-textured road surfacings on which vehicle tyres produce a rumbling sound. used in conjunction with appropriate roadsigns and markings, they can reduce accidents on rural roads by alerting...

  17. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  18. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    Science.gov (United States)

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors.

    Science.gov (United States)

    Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-01-14

    Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.

  20. Surface mining

    Science.gov (United States)

    Robert Leopold; Bruce Rowland; Reed Stalder

    1979-01-01

    The surface mining process consists of four phases: (1) exploration; (2) development; (3) production; and (4) reclamation. A variety of surface mining methods has been developed, including strip mining, auger, area strip, open pit, dredging, and hydraulic. Sound planning and design techniques are essential to implement alternatives to meet the myriad of laws,...

  1. Superhydrophobic surfaces

    Science.gov (United States)

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  2. Surface characterization

    Science.gov (United States)

    Mandla A. Tshabalala

    2005-01-01

    Surface properties of wood play an important role when wood is used or processed into different commodities such as siding, joinery, textiles, paper, sorption media or wood composites. Thus, for example, the quality and durability of a wood coating are determined by the surface properties of the wood and the coating. The same is true for wood composites, as the...

  3. Electromyographic signal and force comparisons during maximal voluntary isometric contraction in water and on dry land.

    Science.gov (United States)

    Pinto, Stephanie Santana; Liedtke, Giane Veiga; Alberton, Cristine Lima; da Silva, Eduardo Marczwski; Cadore, Eduardo Lusa; Kruel, Luiz Fernando Martins

    2010-11-01

    This study was designed to compare surface electromyographic (sEMG) signal and force production during maximal voluntary isometric contractions (MVCs) in water and on dry land. The reproducibility of sEMG and isometric force measurements between water and dry land environments was also assessed. Nine women performed MVC for elbow flexion and extension, hip flexion, and extension against identical fixed resistance in both environments. The sEMG signal from biceps brachii, triceps brachii, rectus femoris, and biceps femoris was recorded with waterproof adhesives placed over each electrode. The sEMG and force production showed no significant difference between water and dry land, except for HEX (p = 0.035). In addition, intraclass correlation coefficient values were significant and ranged from moderate to high (0.66-0.96) for sEMG and force production between environments. These results showed that the environment did not influence the sEMG and force in MVC.

  4. Subspace based adaptive denoising of surface EMG from neurological injury patients

    Science.gov (United States)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  5. Convex surfaces

    CERN Document Server

    Busemann, Herbert

    2008-01-01

    This exploration of convex surfaces focuses on extrinsic geometry and applications of the Brunn-Minkowski theory. It also examines intrinsic geometry and the realization of intrinsic metrics. 1958 edition.

  6. Surface boxplots

    KAUST Repository

    Genton, Marc G.

    2014-01-22

    In this paper, we introduce a surface boxplot as a tool for visualization and exploratory analysis of samples of images. First, we use the notion of volume depth to order the images viewed as surfaces. In particular, we define the median image. We use an exact and fast algorithm for the ranking of the images. This allows us to detect potential outlying images that often contain interesting features not present in most of the images. Second, we build a graphical tool to visualize the surface boxplot and its various characteristics. A graph and histogram of the volume depth values allow us to identify images of interest. The code is available in the supporting information of this paper. We apply our surface boxplot to a sample of brain images and to a sample of climate model outputs.

  7. Surface boxplots

    KAUST Repository

    Genton, Marc G.; Johnson, Christopher; Potter, Kristin; Stenchikov, Georgiy L.; Sun, Ying

    2014-01-01

    In this paper, we introduce a surface boxplot as a tool for visualization and exploratory analysis of samples of images. First, we use the notion of volume depth to order the images viewed as surfaces. In particular, we define the median image. We use an exact and fast algorithm for the ranking of the images. This allows us to detect potential outlying images that often contain interesting features not present in most of the images. Second, we build a graphical tool to visualize the surface boxplot and its various characteristics. A graph and histogram of the volume depth values allow us to identify images of interest. The code is available in the supporting information of this paper. We apply our surface boxplot to a sample of brain images and to a sample of climate model outputs.

  8. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  9. Martian surface

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    The surface of Mars is characterized on the basis of reformatted Viking remote-sensing data, summarizing results published during the period 1983-1986. Topics examined include impact craters, ridges and faults, volcanic studies (modeling of surface effects on volcanic activity, description and interpretation of volcanic features, and calculations on lava-ice interactions), the role of liquid water on Mars, evidence for abundant ground ice at high latitudes, water-cycle modeling, and the composition and dynamics of Martian dust

  10. Surface decontamination

    International Nuclear Information System (INIS)

    Silva, S. da; Teixeira, M.V.

    1986-06-01

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.) [pt

  11. Surface phonons

    CERN Document Server

    Wette, Frederik

    1991-01-01

    In recent years substantial progress has been made in the detection of surface phonons owing to considerable improvements in inelastic rare gas scattering tech­ niques and electron energy loss spectroscopy. With these methods it has become possible to measure surface vibrations in a wide energy range for all wave vectors in the two-dimensional Brillouin zone and thus to deduce the complete surface phonon dispersion curves. Inelastic atomic beam scattering and electron energy loss spectroscopy have started to play a role in the study of surface phonons similar to the one played by inelastic neutron scattering in the investigation of bulk phonons in the last thirty years. Detailed comparison between experimen­ tal results and theoretical studies of inelastic surface scattering and of surface phonons has now become feasible. It is therefore possible to test and to improve the details of interaction models which have been worked out theoretically in the last few decades. At this point we felt that a concise, co...

  12. Mostly surfaces

    CERN Document Server

    Schwartz, Richard Evan

    2011-01-01

    This book presents a number of topics related to surfaces, such as Euclidean, spherical and hyperbolic geometry, the fundamental group, universal covering surfaces, Riemannian manifolds, the Gauss-Bonnet Theorem, and the Riemann mapping theorem. The main idea is to get to some interesting mathematics without too much formality. The book also includes some material only tangentially related to surfaces, such as the Cauchy Rigidity Theorem, the Dehn Dissection Theorem, and the Banach-Tarski Theorem. The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis.

  13. Surface rights

    Directory of Open Access Journals (Sweden)

    Regina Célia Corrêa Landim

    2009-06-01

    Full Text Available In many cities of Brazil, social inequality is illustrated by violence, poverty, and unemployment located next to luxurious residential towers and armored passenger cars. In the face of this situation, the National Movement of Urban Reform encouraged the inclusion of the social function of property in Brazil's new constitution of 1988. Surface rights represent an urbanistic instrument in the city statute that is best aligned to the constitutional principles and urban policies. The current article compares two laws that govern the principle of surface rights and provides a brief history of the evolution of the state based on illuminism and the consequent change in paradigm affecting individual rights, including property and civil rights, and their interpretation under the Constitution. The article concludes by suggesting the use of land surface rights in a joint operation, matching the ownership of the property with urban planning policies and social interest.

  14. Attack surfaces

    DEFF Research Database (Denmark)

    Gruschka, Nils; Jensen, Meiko

    2010-01-01

    The new paradigm of cloud computing poses severe security risks to its adopters. In order to cope with these risks, appropriate taxonomies and classification criteria for attacks on cloud computing are required. In this work-in-progress paper we present one such taxonomy based on the notion...... of attack surfaces of the cloud computing scenario participants....

  15. Surface smoothness

    DEFF Research Database (Denmark)

    Tummala, Sudhakar; Dam, Erik B.

    2010-01-01

    accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used....... We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers....

  16. Muscle fiber velocity and electromyographic signs of fatigue in fibromyalgia

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Rasker, Johannes J.; Henriquez, N.R.; Verheijen, W.G.; Zwarts, M.J.

    2012-01-01

    Introduction: Fibromyalgia (FM) is a disorder of widespread muscular pain. We investigated possible differences in surface electromyography (sEMG) in clinically unaffected muscle between patients with FM and controls. Methods: sEMG was performed on the biceps brachii muscle of 13 women with FM and

  17. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  18. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.

    Science.gov (United States)

    Li, Zhijun; Wang, Baocheng; Sun, Fuchun; Yang, Chenguang; Xie, Qing; Zhang, Weidong

    2014-05-01

    This paper investigates two surface electromyogram (sEMG)-based control strategies developed for a power-assist exoskeleton arm. Different from most of the existing position control approaches, this paper develops force control methods to make the exoskeleton robot behave like humans in order to provide better assistance. The exoskeleton robot is directly attached to a user's body and activated by the sEMG signals of the user's muscles, which reflect the user's motion intention. In the first proposed control method, the forces of agonist and antagonist muscles pair are estimated, and their difference is used to produce the torque of the corresponding joints. In the second method, linear discriminant analysis-based classifiers are introduced as the indicator of the motion type of the joints. Then, the classifier's outputs together with the estimated force of corresponding active muscle determine the torque control signals. Different from the conventional approaches, one classifier is assigned to each joint, which decreases the training time and largely simplifies the recognition process. Finally, the extensive experiments are conducted to illustrate the effectiveness of the proposed approaches.

  19. Community Gardens as Health Promoters: Effects on Mental and Physical Stress Levels in Adults with and without Mental Disabilities

    Directory of Open Access Journals (Sweden)

    Nugrahaning Sani Dewi

    2017-01-01

    Full Text Available The study focuses on psychological and physical effects of stress while performing community garden activities of various intensity levels. The aim of this study was to determine the psychological and physical effects in adults with (case group and without (control group mental disabilities. Salivary α-amylase (sAA levels and the stress response scale (SRS-18 were used for the psychological analysis (n = 42. For physical assessment (n = 13, electrocardiogram (ECG, surface electromyogram (sEMG, and respiration rate were continuously measured while performing the activities using a multichannel telemetry system. The results showed that following the activities, the case group exhibited decreasing sAA levels while control group exhibited increasing sAA levels. However, both groups exhibited lower SRS-18 results following the activities. Compared with the control group, the case group had a significantly lower increase in the ratio of the heart rate (IRHR (5.5% during low-intensity work (filling pots with soil, but a significantly higher IRHR (16.7% during high-intensity work (turning over soil. The case group experienced significantly higher levels of fatigue during high-intensity work (digging than during the rest condition. These findings indicate that appropriate workload allocation, according to health, is necessary in the community garden setting because reducing the intensity of work assignments for people with mental disabilities will reduce their physical stress.

  20. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    Science.gov (United States)

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  1. Surfaces of Building Practice

    OpenAIRE

    Surynková, Petra

    2009-01-01

    My diploma thesis Surfaces of Building Practice deals with the basic properties of surfaces, their mathematical description, categorization, and application in technical practice. Each studied surface is defined and its process of construction and parametrical description is listed. The thesis studies selected types of surfaces in details - these surfaces include surfaces of revolution, ruled surfaces, screw surfaces, and translational surfaces. An application of each studied surfaces is show...

  2. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.

    Science.gov (United States)

    de Moura, Karina de O A; Balbinot, Alexandre

    2018-05-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method

  3. Surface excitation parameter for rough surfaces

    International Nuclear Information System (INIS)

    Da, Bo; Salma, Khanam; Ji, Hui; Mao, Shifeng; Zhang, Guanghui; Wang, Xiaoping; Ding, Zejun

    2015-01-01

    Graphical abstract: - Highlights: • Instead of providing a general mathematical model of roughness, we directly use a finite element triangle mesh method to build a fully 3D rough surface from the practical sample. • The surface plasmon excitation can be introduced to the realistic sample surface by dielectric response theory and finite element method. • We found that SEP calculated based on ideal plane surface model are still reliable for real sample surface with common roughness. - Abstract: In order to assess quantitatively the importance of surface excitation effect in surface electron spectroscopy measurement, surface excitation parameter (SEP) has been introduced to describe the surface excitation probability as an average number of surface excitations that electrons can undergo when they move through solid surface either in incoming or outgoing directions. Meanwhile, surface roughness is an inevitable issue in experiments particularly when the sample surface is cleaned with ion beam bombardment. Surface roughness alters not only the electron elastic peak intensity but also the surface excitation intensity. However, almost all of the popular theoretical models for determining SEP are based on ideal plane surface approximation. In order to figure out whether this approximation is efficient or not for SEP calculation and the scope of this assumption, we proposed a new way to determine the SEP for a rough surface by a Monte Carlo simulation of electron scattering process near to a realistic rough surface, which is modeled by a finite element analysis method according to AFM image. The elastic peak intensity is calculated for different electron incident and emission angles. Assuming surface excitations obey the Poisson distribution the SEPs corrected for surface roughness are then obtained by analyzing the elastic peak intensity for several materials and for different incident and emission angles. It is found that the surface roughness only plays an

  4. Interacting proteins on human spermatozoa: adaptive evolution of the binding of semenogelin I to EPPIN.

    Directory of Open Access Journals (Sweden)

    Erick J R Silva

    Full Text Available Semenogelin I (SEMG1 is found in human semen coagulum and on the surface of spermatozoa bound to EPPIN. The physiological significance of the SEMG1/EPPIN interaction on the surface of spermatozoa is its capacity to modulate sperm progressive motility. The present study investigates the hypothesis that the interacting surface of SEMG1 and EPPIN co-evolved within the Hominoidea time scale, as a result of adaptive pressures applied by their roles in sperm protection and reproductive fitness. Our results indicate that some amino acid residues of SEMG1 and EPPIN possess a remarkable deficiency of variation among hominoid primates. We observe a distinct residue change unique to humans within the EPPIN sequence containing a SEMG1 interacting surface, namely His92. In addition, Bayes Empirical Bayes analysis for positive selection indicates that the SEMG1 Cys239 residue underwent positive selection in humans, probably as a consequence of its role in increasing the binding affinity of these interacting proteins. We confirm the critical role of Cys239 residue for SEMG1 binding to EPPIN and inhibition of sperm motility by showing that recombinant SEMG1 mutants in which Cys239 residue was changed to glycine, aspartic acid, histidine, serine or arginine have reduced capacity to interact to EPPIN and to inhibit human sperm motility in vitro. In conclusion, our results indicate that EPPIN and SEMG1 rapidly co-evolved in primates due to their critical role in the modulation of sperm motility in the semen coagulum, providing unique insights into the molecular co-evolution of sperm surface interacting proteins.

  5. Cryogenic Selective Surfaces

    Data.gov (United States)

    National Aeronautics and Space Administration — Selective surfaces have wavelength dependent emissivity/absorption. These surfaces can be designed to reflect solar radiation, while maximizing infrared emittance,...

  6. Characterization of solid surfaces

    National Research Council Canada - National Science Library

    Kane, Philip F; Larrabee, Graydon B

    1974-01-01

    .... A comprehensive review of surface analysis, this important volume surveys both principles and techniques of surface characterization, describes instrumentation, and suggests the course of future research...

  7. Open algebraic surfaces

    CERN Document Server

    Miyanishi, Masayoshi

    2000-01-01

    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  8. Differential contributions of ankle plantarflexors during submaximal isometric muscle action

    DEFF Research Database (Denmark)

    Masood, Tahir; Bojsen-Møller, Jens; Kalliokoski, Kari K

    2014-01-01

    The objective of this study was to investigate the relative contributions of superficial and deep ankle plantarflexors during repetitive submaximal isometric contractions using surface electromyography (SEMG) and positron emission tomography (PET). Myoelectric signals were obtained from twelve...

  9. Surfaces with Natural Ridges

    DEFF Research Database (Denmark)

    Brander, David; Markvorsen, Steen

    2015-01-01

    We discuss surfaces with singularities, both in mathematics and in the real world. For many types of mathematical surface, singularities are natural and can be regarded as part of the surface. The most emblematic example is that of surfaces of constant negative Gauss curvature, all of which...

  10. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  11. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail; Pottmann, Helmut; Grohs, Philipp

    2011-01-01

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ

  12. Surface Topography Hinders Bacterial Surface Motility.

    Science.gov (United States)

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  13. SURFACE PHOTOMETRY OF LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    DEBLOK, WJG; VANDERHULST, JM; BOTHUN, GD

    1995-01-01

    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  14. Surface phonons and elastic surface waves

    Science.gov (United States)

    Büscher, H.; Klein-Heßling, W.; Ludwig, W.

    Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag (100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. [1 a, b] was not very accurate.

  15. Surface phonons and elastic surface waves

    International Nuclear Information System (INIS)

    Buescher, H.; Klein-Hessling, W.; Ludwig, W.

    1993-01-01

    Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag(100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. was not very accurate. (orig.)

  16. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R E

    1987-11-01

    The aims of this research are the creation of new surface forms and the determination of geometric and physical properties of surfaces. The full sweep from constructive mathematics through the implementation of algorithms and the interactive computer graphics display of surfaces is utilized. Both three-dimensional and multi- dimensional surfaces are considered. Particular emphasis is given to the scientific computing solution of Department of Energy problems. The methods that we have developed and that we are proposing to develop allow applications such as: Producing smooth contour maps from measured data, such as weather maps. Modeling the heat distribution inside a furnace from sample measurements. Terrain modeling based on satellite pictures. The investigation of new surface forms includes the topics of triangular interpolants, multivariate interpolation, surfaces defined on surfaces and monotone and/or convex surfaces. The geometric and physical properties considered include contours, the intersection of surfaces, curvatures as a interrogation tool, and numerical integration.

  17. Mechanics of active surfaces

    Science.gov (United States)

    Salbreux, Guillaume; Jülicher, Frank

    2017-09-01

    We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.

  18. [Recognition of walking stance phase and swing phase based on moving window].

    Science.gov (United States)

    Geng, Xiaobo; Yang, Peng; Wang, Xinran; Geng, Yanli; Han, Yu

    2014-04-01

    Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.

  19. Facial electromyogram and heart-rate correlates of a paradoxical attitude change to antinuclear war information

    International Nuclear Information System (INIS)

    Vigne, J.J.; Dale, J.A.; Klions, H.L.

    1988-01-01

    The effects of film images versus film descriptions of the effects of nuclear explosions (versus a no-film control) on corrugator muscle tension, heart rate, attitude and mood were investigated. The last 5 min. of the images were associated with more corrugator tension for that condition when compared to the last 5 min. of the description condition. The groups did not differ in heart rate but women in both groups showed an increase in heart rate whereas men in both groups showed a decrease in heart rate. Film groups did not differ in their significant increases in anxiety, hostility, and depression on the Multiple Adjective Affect Checklist. On the pretest there was no significant correlation between scores on Betts' Questionnaire Upon Mental Imagery and scores on Goldenring and Doctor's index of concern for nuclear war. The vivid-image film group showed a decrease in concern for nuclear war when compared to the descriptive film group and the no-film control

  20. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  1. Advanced Surface Technology

    DEFF Research Database (Denmark)

    Møller, Per; Nielsen, Lars Pleht

    of the components. It covers everything from biocompatible surfaces of IR absorbent or reflective surfaces to surfaces with specific properties within low friction, hardness, corrosion, colors, etc. The book includes more than 400 pages detailing virtually all analysis methods for examining at surfaces.......This new significant book on advanced modern surface technology in all its variations, is aimed at both teaching at engineering schools and practical application in industry. The work covers all the significant aspects of modern surface technology and also describes how new advanced techniques make...

  2. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  3. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  4. Induced surface stress at crystal surfaces

    International Nuclear Information System (INIS)

    Dahmen, K.

    2002-05-01

    Changes of the surfaces stress Δτ (s) can be studied by observing the bending of thin crystalline plates. With this cantilever method one can gain the induced change of surface stress Δτ (s) from the bending of plates with the help of elasticity theory. For elastic isotropic substrates the relevant relations are known. Here the relations are generalized to elastic anisotropic crystals with a C 2v - Symmetry. The equilibrium shapes of crystalline plates oriented along the (100)-, (110)-, or (111)-direction which are clamped along one edge are calculated with a numeric method under the load of a homogeneous but pure isotropic or anisotropic surface stress. The results can be displayed with the dimensionality, so that the effect of clamping can be described in a systematic way. With these tabulated values one can evaluate cantilever experiments exactly. These results are generalized to cantilever methods for determining magnetoelastic constants. It is shown which magnetoelastic constants are measured in domains of thin films with ordered structures. The eigenshape and the eigenfrequency of plates constraint through a clamping at one side are calculated. These results give a deeper understanding of the elastic anisotropy. The induced surface stress of oxygen on the (110)-surface of molybdenum is measured along the principle directions Δτ [001] and Δτ [ anti 110] . The anisotropy of the surface stress is found for the p(2 x 2)-reconstruction. Lithium induces a tensile surface stress on the Molybdenum (110)-surface up to a coverage of Θ = 0, 3 monolayer. For a higher coverage the induced stress drops and reaches a level of less than -1, 2 N/m at one monolayer. It is shown, that cobalt induces a linear increasing stress with respect to the coverage on the (100)-surface of copper with a value of 2, 4GPa. The copper (100)-surface is bombarded with accelerated ions in the range between 800-2200 eV. The resulting induced compressive stress (Δτ (s) < 0) of the order

  5. Smooth polyhedral surfaces

    KAUST Repository

    Gü nther, Felix; Jiang, Caigui; Pottmann, Helmut

    2017-01-01

    Polyhedral surfaces are fundamental objects in architectural geometry and industrial design. Whereas closeness of a given mesh to a smooth reference surface and its suitability for numerical simulations were already studied extensively, the aim of our work is to find and to discuss suitable assessments of smoothness of polyhedral surfaces that only take the geometry of the polyhedral surface itself into account. Motivated by analogies to classical differential geometry, we propose a theory of smoothness of polyhedral surfaces including suitable notions of normal vectors, tangent planes, asymptotic directions, and parabolic curves that are invariant under projective transformations. It is remarkable that seemingly mild conditions significantly limit the shapes of faces of a smooth polyhedral surface. Besides being of theoretical interest, we believe that smoothness of polyhedral surfaces is of interest in the architectural context, where vertices and edges of polyhedral surfaces are highly visible.

  6. Surface Prognostic Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Prognostic Charts are historical surface prognostic (forecast) charts created by the United States Weather Bureau. They include fronts, isobars, cloud, and...

  7. Integrated Surface Dataset (Global)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Surface (ISD) Dataset (ISD) is composed of worldwide surface weather observations from over 35,000 stations, though the best spatial coverage is...

  8. Smooth polyhedral surfaces

    KAUST Repository

    Günther, Felix

    2017-03-15

    Polyhedral surfaces are fundamental objects in architectural geometry and industrial design. Whereas closeness of a given mesh to a smooth reference surface and its suitability for numerical simulations were already studied extensively, the aim of our work is to find and to discuss suitable assessments of smoothness of polyhedral surfaces that only take the geometry of the polyhedral surface itself into account. Motivated by analogies to classical differential geometry, we propose a theory of smoothness of polyhedral surfaces including suitable notions of normal vectors, tangent planes, asymptotic directions, and parabolic curves that are invariant under projective transformations. It is remarkable that seemingly mild conditions significantly limit the shapes of faces of a smooth polyhedral surface. Besides being of theoretical interest, we believe that smoothness of polyhedral surfaces is of interest in the architectural context, where vertices and edges of polyhedral surfaces are highly visible.

  9. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  10. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  11. Decontamination of floor surfaces

    International Nuclear Information System (INIS)

    Smirous, F.

    1983-01-01

    Requirements are presented put on the surfaces of floors of radiochemical workplaces. The mechanism is described of retaining the contaminant in the surface of the flooring, ways of reducing the hazards of floor surface contamination, decontamination techniques and used decontamination agents. (J.P.)

  12. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  13. Relationships between Paraspinal Muscle Activity and Lumbar Inter-Vertebral Range of Motion

    Directory of Open Access Journals (Sweden)

    Alister du Rose

    2016-01-01

    Full Text Available Control of the lumbar spine requires contributions from both the active and passive sub-systems. Identifying interactions between these systems may provide insight into the mechanisms of low back pain. However, as a first step it is important to investigate what is normal. The purpose of this study was to explore the relationships between the lumbar inter-vertebral range of motion and paraspinal muscle activity during weight-bearing flexion in healthy controls using quantitative fluoroscopy (QF and surface electromyography (sEMG. Contemporaneous lumbar sEMG and QF motion sequences were recorded during controlled active flexion of 60° using electrodes placed over Longissimus thoracis pars thoracis (TES, Longissimus thoracis pars lumborum (LES, and Multifidus (LMU. Normalised root mean square (RMS sEMG amplitude data were averaged over five epochs, and the change in amplitude between epochs was calculated. The sEMG ratios of LMU/LES LMU/TES and LES/TES were also determined. QF was used to measure the maximum inter-vertebral range of motion from L2-S1, and correlation coefficients were calculated between sEMG amplitude variables and these measurements. Intra- and inter-session sEMG amplitude repeatability was also assessed for all three paraspinal muscles. The sEMG amplitude measurements were highly repeatable, and sEMG amplitude changes correlated significantly with L4-5 and L5-S1 IV-RoMmax (r = −0.47 to 0.59. The sEMG amplitude ratio of LES/TES also correlated with L4-L5 IV-RoMmax (r = −0.53. The relationships found may be important when considering rehabilitation for low back pain.

  14. Relationships between Paraspinal Muscle Activity and Lumbar Inter-Vertebral Range of Motion.

    Science.gov (United States)

    du Rose, Alister; Breen, Alan

    2016-01-05

    Control of the lumbar spine requires contributions from both the active and passive sub-systems. Identifying interactions between these systems may provide insight into the mechanisms of low back pain. However, as a first step it is important to investigate what is normal. The purpose of this study was to explore the relationships between the lumbar inter-vertebral range of motion and paraspinal muscle activity during weight-bearing flexion in healthy controls using quantitative fluoroscopy (QF) and surface electromyography (sEMG). Contemporaneous lumbar sEMG and QF motion sequences were recorded during controlled active flexion of 60° using electrodes placed over Longissimus thoracis pars thoracis (TES), Longissimus thoracis pars lumborum (LES), and Multifidus (LMU). Normalised root mean square (RMS) sEMG amplitude data were averaged over five epochs, and the change in amplitude between epochs was calculated. The sEMG ratios of LMU/LES LMU/TES and LES/TES were also determined. QF was used to measure the maximum inter-vertebral range of motion from L2-S1, and correlation coefficients were calculated between sEMG amplitude variables and these measurements. Intra- and inter-session sEMG amplitude repeatability was also assessed for all three paraspinal muscles. The sEMG amplitude measurements were highly repeatable, and sEMG amplitude changes correlated significantly with L4-5 and L5-S1 IV-RoMmax (r = -0.47 to 0.59). The sEMG amplitude ratio of LES/TES also correlated with L4-L5 IV-RoMmax (r = -0.53). The relationships found may be important when considering rehabilitation for low back pain.

  15. Sulfide Mineral Surfaces

    International Nuclear Information System (INIS)

    Rosso, Kevin M.; Vaughan, David J.

    2006-01-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  16. Sulfide Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by

  17. Surface for dummies

    CERN Document Server

    Rathbone, Andy

    2014-01-01

    Make Microsoft's Surface work-and play-just the way you want it to Microsoft's Surface tablet has the features and personality you're looking for, with a robust environment for business computing that doesn't skimp on fun. Surface for Dummies, 2nd Edition explains how Windows 8.1 Pro and Windows RT differ, and helps you decide which Surface model is best for you. Step by step, this book walks you through both the hardware and software features of the Surface, including the touch cover and type cover, Windows RT and Windows 8.1 Pro operating systems, and the coveted Office Home & Student 2013 s

  18. Radioactive surface contamination monitors

    International Nuclear Information System (INIS)

    Aoyama, Kei; Minagoshi, Atsushi; Hasegawa, Toru

    1994-01-01

    To reduce radiation exposure and prevent contamination from spreading, each nuclear power plant has established a radiation controlled area. People and articles out of the controlled area are checked for the surface contamination of radioactive materials with surface contamination monitors. Fuji Electric has repeatedly improved these monitors on the basis of user's needs. This paper outlines typical of a surface contamination monitor, a personal surface contamination monitor, an article surface contamination monitor and a laundry monitor, and the whole-body counter of an internal contamination monitor. (author)

  19. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  20. On rationally supported surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Juttler, B.; Sir, Z.

    2008-01-01

    We analyze the class of surfaces which are equipped with rational support functions. Any rational support function can be decomposed into a symmetric (even) and an antisymmetric (odd) part. We analyze certain geometric properties of surfaces with odd and even rational support functions....... In particular it is shown that odd rational support functions correspond to those rational surfaces which can be equipped with a linear field of normal vectors, which were discussed by Sampoli et al. (Sampoli, M.L., Peternell, M., Juttler, B., 2006. Rational surfaces with linear normals and their convolutions...... with rational surfaces. Comput. Aided Geom. Design 23, 179-192). As shown recently, this class of surfaces includes non-developable quadratic triangular Bezier surface patches (Lavicka, M., Bastl, B., 2007. Rational hypersurfaces with rational convolutions. Comput. Aided Geom. Design 24, 410426; Peternell, M...

  1. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  2. Age and Electromyographic Frequency Alterations during Walking in Children with Cerebral Palsy

    OpenAIRE

    Lauer, Richard T.; Pierce, Samuel R.; Tucker, Carole A.; Barbe, Mary F.; Prosser, Laura A.

    2009-01-01

    The use of surface electromyography (sEMG) recorded during ambulation has provided valuable insight into motor development and changes with age in the pediatric population. However, no studies have reported sEMG differences with age in the children with cerebral palsy (CP). In this study, data from 50 children were divided retrospectively into four groups, representing either an older (above the age of 7 years) or younger (below the age of 7 years) age group with either typical development (T...

  3. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    Science.gov (United States)

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  5. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  6. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail

    2011-10-30

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ) + λ(sin φ, cos φ, 0), where A,B,C,D ε ℝ are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. © 2011 Springer-Verlag.

  7. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  8. Make your Boy surface

    OpenAIRE

    Ogasa, Eiji

    2013-01-01

    This is an introductory article on the Boy surface. Boy found that RP2 can be immersed into R3 and published it 1901. (The image of) the immersion is called the Boy surface after Boy's discovery. We have created a way to construct the Boy surface by using a pair of scissors, a piece of paper, and a strip of scotch tape. In this article we introduce the way.

  9. Encyclopedia of analytical surfaces

    CERN Document Server

    Krivoshapko, S N

    2015-01-01

    This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions  and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.

  10. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  11. Surface science and catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1985-02-01

    Modern surface science studies have explored a large number of metal catalyst systems. Three classes of catalytic reactions can be identified: (1) those that occur over the metal surface; (2) reactions that take place on top of a strongly adsorbed overlayer and (3) reactions that occur on co-adsorbate modified surfaces. Case histories for each class are presented. 44 refs., 13 figs., 3 tabs

  12. [Characteristics of opening movement in patients with unilateral mastication].

    Science.gov (United States)

    Jia, Ling; Wang, Yun; Wang, Mengya

    2016-08-01

    To analyze characteristics of mandibular movement in patients with unilateral mastication.
 Undergraduate students in oral medicine from Grade 2011 and 2012 in Wannan Medical College were enrolled for this study by cluster sampling method, which include 30 people with unilateral mastication and 30 people with bilateral mastication. The surface electromyogram (sEMG) of masseter muscle and anterovent of digastric muscle were recorded and the trajectory of mandibular incisor point was recorded simultaneously in the maximum opening and closing movement. The results were analyzed by SPSS 19.0 software.
 Average electrical peak of left anterior digastric muscle and right anterior digastric muscle in the unilateral chewing group was lower than that in the bilateral chewing group (P<0.05). The jaw tangent point trajectory was separate in the unilateral chewing group. There were significant differences at the opening type between the 2 groups. The vertical displacement and the sagittal displacement in the unilateral chewing group were significantly lower than those in the bilateral chewing group (P<0.01). There was significant positive correlation between the average peak potential of masseter muscle and displacement on the right side.
 Average electrical peak of left masseter muscle, left anterior digastric muscle, and right anterior digastric muscle decreases in the unilateral chewing group. Jaw tracking in most people deflects to the working side. Opening and closing jaw tracking is separate in 50% unilateral chewing individuals with the decreased opening degree. Unilateral chewing leads to changes in muscle performance accompanied by trajectory anomalies.

  13. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  14. Surface science an introduction

    CERN Document Server

    Hudson, John

    1991-01-01

    The whole field of surface science is covered in this work. Starting with a description of the structure and thermodynamics of clean surfaces, the book goes on to discuss kinetic theory of gases and molecular beam formation. This is followed by a largesection on gas-surface interactions, and another major section on energetic particle-surface interactions. The final chapter provides the background to crystal nucleation and growth. The approach adopted is interdisciplinary and slanted towards theexperimental side, with practical analytical techniques being used to illustrate general princi

  15. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  16. Inverse relationship between the complexity of midfoot kinematics and muscle activation in patients with medial tibial stress syndrome

    DEFF Research Database (Denmark)

    Rathleff, M S; Samani, Afshin; Olesen, C G

    2011-01-01

    Medial tibial stress syndrome is a common overuse injury characterized by pain located on the medial side of the lower leg during weight bearing activities such as gait. The purpose of this study was to apply linear and nonlinear methods to compare the structure of variability of midfoot kinematics...... and surface electromyographic (SEMG) signals between patients with medial tibial stress syndrome and healthy controls during gait. Fourteen patients diagnosed with medial tibial stress syndrome and 11 healthy controls were included from an orthopaedic clinic. SEMG from tibialis anterior and the soleus muscles...... as well as midfoot kinematics were recorded during 20 consecutive gait cycles. Permuted sample entropy and permutation entropy were used as a measure of complexity from SEMG signals and kinematics. SEMG signals in patients with medial tibial stress syndrome were characterized by higher structural...

  17. [Ocular surface system integrity].

    Science.gov (United States)

    Safonova, T N; Pateyuk, L S

    2015-01-01

    The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.

  18. Pseudospherical surfaces with singularities

    DEFF Research Database (Denmark)

    Brander, David

    2017-01-01

    We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...

  19. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  20. Random surfaces and strings

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-08-01

    The theory of strings is the theory of random surfaces. I review the present attempts to regularize the world sheet of the string by triangulation. The corresponding statistical theory of triangulated random surfaces has a surprising rich structure, but the connection to conventional string theory seems non-trivial. (orig.)

  1. Stiction in surface micromachining

    NARCIS (Netherlands)

    Tas, Niels Roelof; Sonnenberg, A.H.; Jansen, Henricus V.; Legtenberg, R.; Legtenberg, Rob; Elwenspoek, Michael Curt

    1996-01-01

    Due to the smoothness of the surfaces in surface micromachining, large adhesion forces between fabricated structures and the substrate are encountered. Four major adhesion mechanisms have been analysed: capillary forces, hydrogen bridging, electrostatic forces and van der Waals forces. Once contact

  2. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  3. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  4. Protective Surfacing for Playgrounds.

    Science.gov (United States)

    Frost, Joe L.

    Noting that 90 percent of serious playground injuries result from falls to hard surfaces, this paper reviews the advantages and disadvantages of various playground surfacing materials in terms of cost, climate, durability, aesthetics, and play value. Findings are based on the personal experience of the author, government documents, laboratory…

  5. Chapter 8:Surface Characterization

    Science.gov (United States)

    Mandla A. Tshabalala; Joseph Jakes; Mark R. VanLandingham; Shaoxia Wang; Jouko. Peltonen

    2013-01-01

    Surface properties of wood play an important role when wood is used or processed into different commodities such as siding, joinery, textiles, paper, sorption media, or wood composites. Thus, for example, the quality and durability of a wood coating are determined by the surface properties of the wood and the coating. The same is true for wood composites where the...

  6. Response Surface Methodology

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.

    2014-01-01

    Abstract: This chapter first summarizes Response Surface Methodology (RSM), which started with Box and Wilson’s article in 1951 on RSM for real, non-simulated systems. RSM is a stepwise heuristic that uses first-order polynomials to approximate the response surface locally. An estimated polynomial

  7. Surface Loving and Surface Avoiding modes

    OpenAIRE

    Combe, Nicolas; Huntzinger, Jean Roch; Morillo, Joseph

    2008-01-01

    International audience; We theoretically study the propagation of sound waves in GaAs/AlAs superlattices focussing on periodic modes in the vicinity of the band gaps. Based on analytical and numerical calculations, we show that these modes are the product of a quickly oscillating function times a slowly varying envelope function. We carefully study the phase of the envelope function compared to the surface of a semi-infinite superlattice. Especially, the dephasing of the superlattice compared...

  8. Workbench surface editor of brain cortical surface

    Science.gov (United States)

    Dow, Douglas E.; Nowinski, Wieslaw L.; Serra, Luis

    1996-04-01

    We have developed a 3D reach-in tool to manually reconstruct 3D cortical surface patches from 2D brain atlas images. The first application of our cortex editor is building 3D functional maps, specifically Brodmann's areas. This tool may also be useful in clinical practice to adjust incorrectly mapped atlas regions due to the deforming effect of lesions. The cortex editor allows a domain expert to control the correlation of control points across slices. Correct correlation has been difficult for 3D reconstruction algorithms because the atlas slices are far apart and because of the complex topology of the cortex which differs so much from slice to slice. Also, higher precision of the resulting surfaces is demanded since these define 3D brain atlas features upon which future stereotactic surgery may be based. The cortex editor described in this paper provides a tool suitable for a domain expert to use in defining the 3D surface of a Brodmann's area.

  9. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all

  10. Rough Surface Contact

    Directory of Open Access Journals (Sweden)

    T Nguyen

    2017-06-01

    Full Text Available This paper studies the contact of general rough curved surfaces having nearly identical geometries, assuming the contact at each differential area obeys the model proposed by Greenwood and Williamson. In order to account for the most general gross geometry, principles of differential geometry of surface are applied. This method while requires more rigorous mathematical manipulations, the fact that it preserves the original surface geometries thus makes the modeling procedure much more intuitive. For subsequent use, differential geometry of axis-symmetric surface is considered instead of general surface (although this “general case” can be done as well in Chapter 3.1. The final formulas for contact area, load, and frictional torque are derived in Chapter 3.2.

  11. Super Riemann surfaces

    International Nuclear Information System (INIS)

    Rogers, Alice

    1990-01-01

    A super Riemann surface is a particular kind of (1,1)-dimensional complex analytic supermanifold. From the point of view of super-manifold theory, super Riemann surfaces are interesting because they furnish the simplest examples of what have become known as non-split supermanifolds, that is, supermanifolds where the odd and even parts are genuinely intertwined, as opposed to split supermanifolds which are essentially the exterior bundles of a vector bundle over a conventional manifold. However undoubtedly the main motivation for the study of super Riemann surfaces has been their relevance to the Polyakov quantisation of the spinning string. Some of the papers on super Riemann surfaces are reviewed. Although recent work has shown all super Riemann surfaces are algebraic, some areas of difficulty remain. (author)

  12. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  13. Surface preparation of niobium

    International Nuclear Information System (INIS)

    Kneisel, P.

    1980-01-01

    Any discussion of surface preparation for superconducting rf-surfaces is certainly connected with the question what is the best recipe for achieving high Q-values and high break-down fields. Since the break-down in a cavity is not understood so far and because several mechanisms play a role, it also is not possible to give one recipe which always works. Nevertheless in the past certain preparation techniques for niobium surfaces have been developed and certain rules for preparation can be applied. In the following the to-days state of the art will be described and it is attempted to give a short description of the surface in conjunction with the methods of surface treatments, which generally can be applied to niobium cavities. (orig./WTR)

  14. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  15. Land Surface Data Assimilation

    Science.gov (United States)

    Houser, P. R.

    2012-12-01

    Information about land surface water, energy and carbon conditions is of critical importance to real-world applications such as agricultural production, water resource management, flood prediction, water supply, weather and climate forecasting, and environmental preservation. While ground-based observational networks are improving, the only practical way to observe these land surface states on continental to global scales is via satellites. Remote sensing can make spatially comprehensive measurements of various components of the terrestrial system, but it cannot provide information on the entire system (e.g. evaporation), and the observations represent only an instant in time. Land surface process models may be used to predict temporal and spatial terrestrial dynamics, but these predictions are often poor, due to model initialization, parameter and forcing, and physics errors. Therefore, an attractive prospect is to combine the strengths of land surface models and observations (and minimize the weaknesses) to provide a superior terrestrial state estimate. This is the goal of land surface data assimilation. Data Assimilation combines observations into a dynamical model, using the model's equations to provide time continuity and coupling between the estimated fields. Land surface data assimilation aims to utilize both our land surface process knowledge, as embodied in a land surface model, and information that can be gained from observations. Both model predictions and observations are imperfect and we wish to use both synergistically to obtain a more accurate result. Moreover, both contain different kinds of information, that when used together, provide an accuracy level that cannot be obtained individually. Model biases can be mitigated using a complementary calibration and parameterization process. Limited point measurements are often used to calibrate the model(s) and validate the assimilation results. This presentation will provide a brief background on land

  16. PREFACE: Nanostructured surfaces

    Science.gov (United States)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  17. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  18. Antibacterial Au nanostructured surfaces.

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  19. Electrokinetics on superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Papadopoulos, Periklis; Deng Xu; Vollmer, Doris; Butt, Hans-Jürgen

    2012-01-01

    On a superhydrophobic surface a liquid is exposed to a large air-water interface. The reduced wall friction is expected to cause a higher electro-osmotic mobility. On the other hand, the low charge density of a superhydrophobic surface reduces the electro-osmotic mobility. Due to a lack of experimental data it has not been clear so far whether the reduced wall friction or the reduced charge density dominate the electrokinetic mobilities. To separate the relative contributions of electrophoresis and electro-osmosis, the mobilities of colloids on a negatively charged hydrophilic, a superhydrophobic (Cassie) and a partially hydrophilized superhydrophobic (Cassie composite) coating were measured. To vary the charge density as well as its sign with respect to those of the colloids the partially hydrophilized surfaces were coated with polyelectrolytes. We analyzed the electrokinetic mobilities of negatively charged polystyrene colloids dispersed in aqueous medium on porous hydrophilic and superhydrophobic surfaces by confocal laser scanning electron microscopy. In all cases, the external electric field was parallel to the surface. The total electrokinetic mobilities on the superhydrophobic (Cassie) and negatively charged partially hydrophilized (Cassie composite) surfaces were similar, showing that electro-osmosis is small compared to electrophoresis. The positively charged Cassie composite surfaces tend to ‘trap’ the colloids due to attracting electrostatic interactions and rough morphology, reducing the mobility. Thus, either the charge density of the coatings in the Cassie composite state or its slip length is too low to enhance electro-osmosis.

  20. Plasma-surface interactions

    International Nuclear Information System (INIS)

    Goeckner, M J; Nelson, C T; Sant, S P; Jindal, A K; Joseph, E A; Zhou, B S; Padron-Wells, G; Jarvis, B; Pierce, R; Overzet, L J

    2008-01-01

    Materials processing is at a crossroads. Currently a large fraction of industrially viable materials processing is via plasmas. Until recently it has been economical to just examine the influence the plasma properties on the desired surface processes and through this ultimately optimize manufacturing. For example, it is well known that the surface processes (etch or deposition), occur in the top few mono-layers of the surface. Thus, in film growth one requires that molecules from the gas-phase land and bond on the surface. However as processing has reached the nano-scale, development of viable processes has become more and more difficult. In part, this is because of all of the free parameters that exist in plasmas. To overcome this economic issue, tool vendors and semiconductor companies have turned to complex computational models of processing plasmas. For those models to work, one requires a through understanding of all of the gas-phase and surface-phase processes that are exhibited in plasmas. Unfortunately, these processes, particularly those at the surface, are not well understood. In this article we describe a viable model of the surface-phase based on cross sections for processes that occur. While originally developed of fluorocarbon systems, the model also appears to be applicable to hydrocarbon systems.

  1. Plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckner, M J; Nelson, C T; Sant, S P; Jindal, A K; Joseph, E A; Zhou, B S; Padron-Wells, G; Jarvis, B; Pierce, R; Overzet, L J [Department of Electrical Engineering, University of Texas at Dallas (United States)], E-mail: goeckner@utdallas.edu

    2008-10-01

    Materials processing is at a crossroads. Currently a large fraction of industrially viable materials processing is via plasmas. Until recently it has been economical to just examine the influence the plasma properties on the desired surface processes and through this ultimately optimize manufacturing. For example, it is well known that the surface processes (etch or deposition), occur in the top few mono-layers of the surface. Thus, in film growth one requires that molecules from the gas-phase land and bond on the surface. However as processing has reached the nano-scale, development of viable processes has become more and more difficult. In part, this is because of all of the free parameters that exist in plasmas. To overcome this economic issue, tool vendors and semiconductor companies have turned to complex computational models of processing plasmas. For those models to work, one requires a through understanding of all of the gas-phase and surface-phase processes that are exhibited in plasmas. Unfortunately, these processes, particularly those at the surface, are not well understood. In this article we describe a viable model of the surface-phase based on cross sections for processes that occur. While originally developed of fluorocarbon systems, the model also appears to be applicable to hydrocarbon systems.

  2. Surface science techniques

    CERN Document Server

    Walls, JM

    2013-01-01

    This volume provides a comprehensive and up to the minute review of the techniques used to determine the nature and composition of surfaces. Originally published as a special issue of the Pergamon journal Vacuum, it comprises a carefully edited collection of chapters written by specialists in each of the techniques and includes coverage of the electron and ion spectroscopies, as well as the atom-imaging methods such as the atom probe field ion microscope and the scanning tunnelling microscope. Surface science is an important area of study since the outermost surface layers play a crucial role

  3. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  4. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  5. Surface physics : experimental

    International Nuclear Information System (INIS)

    Padalia, B.D.

    1978-01-01

    In this report, discussion is confined to some important ultra high vacuum surface techniques such as ultra-violet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and the low energy electron diffraction (LEED). An attempt is made to cover the basic principles and the experimental details of XPS and AES. Selected examples illustrating the potentialities of the above techniques to solve the important basic as well as applied problems relating to surfaces are presented. Salient features of the available commercial machines in which UPS, AES and LEED are combined to facilitate surface examination sequentially or simultaneously under identical experimental conditions are indicated. (auth.)

  6. Architectural Knitted Surfaces

    DEFF Research Database (Denmark)

    Mossé, Aurélie

    2010-01-01

    WGSN reports from the Architectural Knitted Surfaces workshop recently held at ShenkarCollege of Engineering and Design, Tel Aviv, which offered a cutting-edge insight into interactive knitted surfaces. With the increasing role of smart textiles in architecture, the Architectural Knitted Surfaces...... workshop brought together architects and interior and textile designers to highlight recent developments in intelligent knitting. The five-day workshop was led by architects Ayelet Karmon and Mette Ramsgaard Thomsen, together with Amir Cang and Eyal Sheffer from the Knitting Laboratory, in collaboration...

  7. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  8. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  9. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  10. Iowa Bedrock Surface Elevation

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented...

  11. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael; Kilian, Martin; Schiftner, Alexander; Mitra, Niloy J.; Pottmann, Helmut; Pauly, Mark

    2010-01-01

    with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication

  12. Vortices on hyperbolic surfaces

    International Nuclear Information System (INIS)

    Manton, Nicholas S; Rink, Norman A

    2010-01-01

    It is shown that Abelian Higgs vortices on a hyperbolic surface M can be constructed geometrically from holomorphic maps f: M → N, where N is also a hyperbolic surface. The fields depend on f and on the metrics of M and N. The vortex centres are the ramification points, where the derivative of f vanishes. The magnitude of the Higgs field measures the extent to which f is locally an isometry. Witten's construction of vortices on the hyperbolic plane is rederived, and new examples of vortices on compact surfaces and on hyperbolic surfaces of revolution are obtained. The interpretation of these solutions as SO(3)-invariant, self-dual SU(2) Yang-Mills fields on R 4 is also given.

  13. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  14. Average nuclear surface properties

    International Nuclear Information System (INIS)

    Groote, H. von.

    1979-01-01

    The definition of the nuclear surface energy is discussed for semi-infinite matter. This definition is extended also for the case that there is a neutron gas instead of vacuum on the one side of the plane surface. The calculations were performed with the Thomas-Fermi Model of Syler and Blanchard. The parameters of the interaction of this model were determined by a least squares fit to experimental masses. The quality of this fit is discussed with respect to nuclear masses and density distributions. The average surface properties were calculated for different particle asymmetry of the nucleon-matter ranging from symmetry beyond the neutron-drip line until the system no longer can maintain the surface boundary and becomes homogeneous. The results of the calculations are incorporated in the nuclear Droplet Model which then was fitted to experimental masses. (orig.)

  15. Mexico - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mexican Surface Daily Observations taken at 94 observatories located throughout Mexico, beginning in 1872 and going up through 1981. The data resided on paper...

  16. Switching between pitch surfaces

    DEFF Research Database (Denmark)

    Rago, Vincenzo; Silva, João R; Brito, João

    2018-01-01

    Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch...... surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising...... on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations...

  17. Surface vibrational spectroscopy (EELS)

    International Nuclear Information System (INIS)

    Okuyama, Hiroshi

    2006-01-01

    Adsorbed states of hydrogen on metal surfaces have been studied by means of electron energy loss spectroscopy (EELS). In this article, typical spectra and analysis as well as recent development are introduced. (author)

  18. Surface Weather Observations Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  19. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  20. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  1. Automated galaxy surface photometry

    International Nuclear Information System (INIS)

    Cawson, M.G.M.; Kibblewhite, E.J.; Disney, M.J.; Phillipps, S.

    1987-01-01

    Two-dimensional surface photometry of a very large number of galaxies on a deep Schmidt plate has been obtained using the Automatic Plate Measuring System (APM). A method of photometric calibration, suitable for APM measurements, via pixel-by-pixel comparison with CCD frames of a number of the brighter galaxies is described and its advantages are discussed. The same method is used to demonstrate the consistency of measurement of the APM machine when used for surface photometry. (author)

  2. Surface electromyographic evaluation of jaw muscles in children with unilateral crossbite and lateral shift in the early mixed dentition. Sexual dimorphism

    Science.gov (United States)

    Lenguas, Leticia; Alarcón, José-Antonio; Venancio, Filipa; Kassem, Marta

    2012-01-01

    Objectives: To examine the activity of jaw muscles at rest and during maximal voluntary clenching (MVC) in children with unilateral posterior crossbite (UPXB) and functional lateral shift in the early mixed dentition and to evaluate sex differences. Material and Methods: The sample included 30 children (15 males, 15 females) aged 6 to 10 years old, with UPXB and functional mandibular lateral shift (≥1.5 mm) in the early mixed dentition. sEMG activity coming from the muscle areas (anterior temporalis [AT], posterior temporalis [PT], masseter [MA] and suprahyoid [SH]) were obtained from both the crossbite (XB) and noncrossbite (NONXB) sides at mandibular rest position. sEMG acti-vity of the bilateral AT and MA muscles sides was obtained during MVC. Asymmetry and activity indexes were calculated for each muscle area at rest and during MVC; the MA/TA ratio during MVC was also determined. Results: At rest, no differences were found between sexes for any muscle areas or asymmetry and activity indexes. No differences were found between XB and NONXB sides. During MVC, however, significant sex differences were found in AT and MA activity, with higher sEMG values in males than in females, on both XB and NONXB sides. Asymmetry indexes, activity indexes and MA/AT ratios did not show significant differences between the sexes. Activity was symmetric both in males and in females. Conclusions: At rest, no sex differences were found, but during MVC males showed higher activity than did females in both XB and NONXB AT and MA muscle areas. Muscular activity was symmetrical at rest and during MVC in both sexes. Sexual dimorphism should be considered in the diagnosis and treatment of UPXB and lateral shift in the early mixed dentition. Key words:Unilateral crossbite, mandibular shift, jaw muscles, sEMG, early mixed dentition. PMID:22926468

  3. Surface Relief of Mapping

    Science.gov (United States)

    Costa, Manuel F.; Almeida, Jose B.

    1989-02-01

    We will describe in this communication a noncont act method of measuring surface profile, it does not require any surface preparation, and it can be used with a very large range of surfaces from highly reflecting to non reflecting ones and as complex as textile surfaces. This method is reasonably immune to dispersion and diffraction, which usually make very difficult the application of non contact profilometry methods to a wide range of materials and situations, namely on quality control systems in industrial production lines. The method is based on the horizontal shift of the bright spot on a horizontal surface when this is illuminated with an oblique beam and moved vertically. in order to make the profilometry the sample is swept by an oblique light beam and the bright spot position is compared with a reference position. The bright spot must be as small as possible, particularly in very irregular surfaces; so the light beam diameter must be as small as possible and the incidence angle must not be too small. The sensivity of a system based on this method will be given, mostly, by the reception optical system.

  4. Modification of rubber surface by UV surface grafting

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Kim, Jin Kuk; Ryu, Sung Hun

    2006-01-01

    Rubber surface is subjected to ultraviolet radiation (UV) in the presence of allylamine and radiation sensitizer benzophenone (BP). Fourier transform infrared spectral studies reveal the presence of allylamine on the surface. The presence of irregular needle shapes on the surface as observed in scanning electron micrographs also confirms the polymerized allylamine on the surface. Allylamine coatings have been further confirmed from atomic force microscopy (AFM) analysis. Thermogravimetric analysis (TGA) reveals that allylamine coating on the rubber surface lowers the thermal degradation rate. The contact angle between the water and rubber surface decreases for the modified rubber surface confirming the surface modification due to UV surface grafting

  5. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  6. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  7. Surface chemistry theory and applications

    CERN Document Server

    Bikerman, J J

    2013-01-01

    Surface Chemistry Theory and Applications focuses on liquid-gas, liquid-liquid, solid-gas, solid-liquid, and solid-solid surfaces. The book first offers information on liquid-gas surfaces, including surface tension, measurement of surface tension, rate of capillarity rise, capillary attraction, bubble pressure and pore size, and surface tension and temperature. The text then ponders on liquid-liquid and solid-gas surfaces. Discussions focus on surface energy of solids, surface roughness and cleanness, adsorption of gases and vapors, adsorption hysteresis, interfacial tension, and interfacial t

  8. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces

    KAUST Repository

    Kä ferbö ck, Florian; Pottmann, Helmut

    2013-01-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties

  9. Viscoelastic Surface Waves

    Science.gov (United States)

    Borcherdt, R. D.

    2007-12-01

    General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.

  10. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  11. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  12. Surface states and spectra

    International Nuclear Information System (INIS)

    Jaksic, V.; Last, Y.; California Inst. of Tech., Pasadena, CA

    2001-01-01

    Let Z + d+1 =Z d x Z + , let H 0 be the discrete Laplacian on the Hilbert space l 2 (Z + d+1 ) with a Dirichlet boundary condition, and let V be a potential supported on the boundary ∂Z + d+1 . We introduce the notions of surface states and surface spectrum of the operator H=H 0 +V and explore their properties. Our main result is that if the potential V is random and if the disorder is either large or small enough, then in dimension two H has no surface spectrum on σ(H 0 ) with probability one. To prove this result we combine Aizenman-Molchanov theory with techniques of scattering theory. (orig.)

  13. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  14. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  15. From analysis to surface

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    it with a “ground truth” analysis of the same music pro- duced by a human expert (see, in particular, [5]). In this paper, we explore the problem of generating an encoding of the musical surface of a work automatically from a systematic encoding of an analysis. The ability to do this depends on one having...... an effective (i.e., comput- able), correct and complete description of some aspect of the structure of the music. Generating the surface struc- ture of a piece from an analysis in this manner serves as a proof of the analysis' correctness, effectiveness and com- pleteness. We present a reductive analysis......In recent years, a significant body of research has focused on developing algorithms for computing analyses of mu- sical works automatically from encodings of these works' surfaces [3,4,7,10,11]. The quality of the output of such analysis algorithms is typically evaluated by comparing...

  16. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  17. Photochemistry on solid surfaces

    CERN Document Server

    Matsuura, T

    1989-01-01

    The latest developments in photochemistry on solid surfaces, i.e. photochemistry in heterogeneous systems, including liquid crystallines, are brought together for the first time in a single volume. Distinguished photochemists from various fields have contributed to the book which covers a number of important applications: molecular photo-devices for super-memory, photochemical vapor deposition to produce thin-layered electronic semiconducting materials, sensitive optical media, the control of photochemical reactions pathways, etc. Photochemistry on solid surfaces is now a major field and this

  18. Surface and nanomolecular catalysis

    CERN Document Server

    Richards, Ryan

    2006-01-01

    Using new instrumentation and experimental techniques that allow scientists to observe chemical reactions and molecular properties at the nanoscale, the authors of Surface and Nanomolecular Catalysis reveal new insights into the surface chemistry of catalysts and the reaction mechanisms that actually occur at a molecular level during catalysis. While each chapter contains the necessary background and explanations to stand alone, the diverse collection of chapters shows how developments from various fields each contributed to our current understanding of nanomolecular catalysis as a whole. The

  19. Solid lubricants and surfaces

    CERN Document Server

    Braithwaite, E R

    1964-01-01

    Solid Lubricants and Surfaces deals with the theory and use of solid lubricants, particularly in colloidal form. Portions of this book are devoted to graphite and molybdenum disulfides, which are widely used solid lubricants in colloidal form. An extensive literature on the laboratory examination of hundreds of solids as potential lubricants is also provided in this text. Other topics discussed include the metals and solid lubricants; techniques for examining surfaces; other solid lubricants; metal shaping; and industrial uses of solid-lubricant dispersions. This publication is beneficial to e

  20. Surface science techniques

    CERN Document Server

    Bracco, Gianangelo

    2013-01-01

    The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.

  1. Photometric Lunar Surface Reconstruction

    Science.gov (United States)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  2. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  3. Hyperpolarized Nanodiamond Surfaces.

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Waddington, David E J; Reilly, David J

    2017-01-11

    The widespread use of nanodiamond as a biomedical platform for drug-delivery, imaging, and subcellular tracking applications stems from its nontoxicity and unique quantum mechanical properties. Here, we extend this functionality to the domain of magnetic resonance, by demonstrating that the intrinsic electron spins on the nanodiamond surface can be used to hyperpolarize adsorbed liquid compounds at low fields and room temperature. By combining relaxation measurements with hyperpolarization, spins on the surface of the nanodiamond can be distinguished from those in the bulk liquid. These results are likely of use in signaling the controlled release of pharmaceutical payloads.

  4. Organometallic chemistry of metal surfaces

    International Nuclear Information System (INIS)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures

  5. Wetting of real surfaces

    CERN Document Server

    Bormashenko, Edward Yu

    2013-01-01

    The problem of wetting and drop dynamics on various surfaces is very interesting from both the scientificas well as thepractical viewpoint, and subject of intense research.The results are scattered across papers in journals, sothis workwill meet the need for a unifying, comprehensive work.

  6. Optimization of surface maintenance

    International Nuclear Information System (INIS)

    Oeverland, E.

    1990-01-01

    The present conference paper deals with methods of optimizing the surface maintenance of steel-made offshore installations. The paper aims at identifying important approaches to the problems regarding the long-range planning of an economical and cost effective maintenance program. The methods of optimization are based on the obtained experiences from the maintenance of installations on the Norwegian continental shelf. 3 figs

  7. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-26

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, socalled panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects. © 2010 ACM.

  8. Dynamical triangulated fermionic surfaces

    International Nuclear Information System (INIS)

    Ambjoern, J.; Varsted, S.

    1990-12-01

    We perform Monte Carlo simulations of randomly triangulated random surfaces which have fermionic world-sheet scalars θ i associated with each vertex i in addition to the usual bosonic world-sheet scalar χ i μ . The fermionic degrees of freedom force the internal metrics of the string to be less singular than the internal metric of the pure bosonic string. (orig.)

  9. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-25

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, so-called panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects.

  10. Music Mixing Surface

    DEFF Research Database (Denmark)

    Gelineck, Steven; Büchert, Morten; Andersen, Jesper

    2013-01-01

    This paper presents a multi-touch based interface for mixing music. The goal of the interface is to provide users with a more intuitive control of the music mix by implementing the so-called stage metaphor control scheme, which is especially suitable for multi-touch surfaces. Specifically, we...

  11. Surface segregation during irradiation

    International Nuclear Information System (INIS)

    Rehn, L.E.; Lam, N.Q.

    1985-10-01

    Gibbsian adsorption is known to alter the surface composition of many alloys. During irradiation, four additional processes that affect the near-surface alloy composition become operative: preferential sputtering, displacement mixing, radiation-enhanced diffusion and radiation-induced segregation. Because of the mutual competition of these five processes, near-surface compositional changes in an irradiation environment can be extremely complex. Although ion-beam induced surface compositional changes were noted as long as fifty years ago, it is only during the past several years that individual mechanisms have been clearly identified. In this paper, a simple physical description of each of the processes is given, and selected examples of recent important progress are discussed. With the notable exception of preferential sputtering, it is shown that a reasonable qualitative understanding of the relative contributions from the individual processes under various irradiation conditions has been attained. However, considerably more effort will be required before a quantitative, predictive capability can be achieved. 29 refs., 8 figs

  12. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  13. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  14. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael; Kilian, Martin; Schiftner, Alexander; Mitra, Niloy J.; Pottmann, Helmut; Pauly, Mark

    2010-01-01

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, socalled panels, that can be manufactured with a

  15. Laser surface cleaning

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  16. Tritium-surface interactions

    International Nuclear Information System (INIS)

    Kirkaldy, J.S.

    1983-06-01

    The report deals broadly with tritium-surface interactions as they relate to a fusion power reactor enterprise, viz., the vacuum chamber, first wall, peripherals, pumping, fuel recycling, isotope separation, repair and maintenance, decontamination and safety. The main emphasis is on plasma-surface interactions and the selection of materials for fusion chamber duty. A comprehensive review of the international (particularly U.S.) research and development is presented based upon a literature review (about 1 000 reports and papers) and upon visits to key laboratories, Sandia, Albuquerque, Sandia, Livermore and EGβG Idaho. An inventory of Canadian expertise and facilities for RβD on tritium-surface interactions is also presented. A number of proposals are made for the direction of an optimal Canadian RβD program, emphasizing the importance of building on strength in both the technological and fundamental areas. A compendium of specific projects and project areas is presented dealing primarily with plasma-wall interactions and permeation, anti-permeation materials and surfaces and health, safety and environmental considerations. Potential areas of industrial spinoff are identified

  17. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  18. Transversal Surfaces of Timelike Ruled Surfaces in Minkowski 3-Space

    OpenAIRE

    Önder, Mehmet

    2012-01-01

    In this study we give definitions and characterizations of transversal surfaces of timelike ruled surfaces. We study some special cases such as the striction curve is a geodesic, an asymptotic line or a line of curvature. Moreover, we obtain developable conditions for transversal surfaces of a timelike ruled surface.

  19. In-surface confinement of topological insulator nanowire surface states

    International Nuclear Information System (INIS)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-01-01

    The bandstructures of [110] and [001] Bi 2 Te 3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects

  20. In-surface confinement of topological insulator nanowire surface states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fan W., E-mail: fanchen@purdue.edu [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); Jauregui, Luis A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Tan, Yaohua [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, Michael [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Klimeck, Gerhard [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Chen, Yong P. [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States)

    2015-09-21

    The bandstructures of [110] and [001] Bi{sub 2}Te{sub 3} nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  1. In-surface confinement of topological insulator nanowire surface states

    Science.gov (United States)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-09-01

    The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  2. Characterisation of surface roughness for ultra-precision freeform surfaces

    International Nuclear Information System (INIS)

    Li Huifen; Cheung, C F; Lee, W B; To, S; Jiang, X Q

    2005-01-01

    Ultra-precision freeform surfaces are widely used in many advanced optics applications which demand for having surface roughness down to nanometer range. Although a lot of research work has been reported on the study of surface generation, reconstruction and surface characterization such as MOTIF and fractal analysis, most of them are focused on axial symmetric surfaces such as aspheric surfaces. Relative little research work has been found in the characterization of surface roughness in ultra-precision freeform surfaces. In this paper, a novel Robust Gaussian Filtering (RGF) method is proposed for the characterisation of surface roughness for ultra-precision freeform surfaces with known mathematic model or a cloud of discrete points. A series of computer simulation and measurement experiments were conducted to verify the capability of the proposed method. The experimental results were found to agree well with the theoretical results

  3. Evaluation of Surface Fatigue Strength Based on Surface Temperature

    Science.gov (United States)

    Deng, Gang; Nakanishi, Tsutomu

    Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.

  4. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  5. Drop Impact on Superheated Surfaces

    NARCIS (Netherlands)

    Tran, Tuan; Staat, Erik-Jan; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2012-01-01

    At the impact of a liquid droplet on a smooth surface heated above the liquid’s boiling point, the droplet either immediately boils when it contacts the surface (“contact boiling”), or without any surface contact forms a Leidenfrost vapor layer towards the hot surface and bounces back (“gentle film

  6. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing

    2017-10-24

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  7. The surface analysis methods

    International Nuclear Information System (INIS)

    Deville, J.P.

    1998-01-01

    Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.)

  8. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  9. Surface Plasmon Nanophotonics

    CERN Document Server

    Brongersma, Mark L

    2007-01-01

    The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. These excitations can be exploited to manipulate electromagnetic waves at optical frequencies ("light") in new ways that are unthinkable in conventional dielectric structures. The field of plasmon nanophotonics is rapidly developing and impacting a wide range of areas including: electronics, photonics, chemistry, biology, and medicine. The book will highlight several exciting new discoveries that have been made, while providing a clear discussion of the underlying physics, the nanofabrication issues...

  10. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  11. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  12. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing; Hanafy, Sherif; Schuster, Gerard T.

    2017-01-01

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  13. Antibacterial Metallic Touch Surfaces

    Directory of Open Access Journals (Sweden)

    Victor M. Villapún

    2016-08-01

    Full Text Available Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in methodologies defined in these standards are highlighted. Our review will also cover the most relevant factors that define the antimicrobial performance of metals, namely, the effect of humidity, material geometry, chemistry, physical properties and oxidation of the material. The state of the art in contact-killing materials will be described. Finally, the effect of cleaning products, including disinfectants, on the antimicrobial performance, either by direct contact or by altering the touch surface chemistry on which the microbes attach, will be discussed. We offer our outlook, identifying research areas that require further development and an overview of potential future directions of this exciting field.

  14. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  15. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  16. Curves and Surfaces

    Science.gov (United States)

    1990-01-01

    joint work with Bj6rn Jawerth and Brad Lucier. Courbes et Surfaces CHAMONIX - MONT BLANC 21-27juin 1990 QUASI-Eh4TERPOIANT’S DE TYPE DE SZASZ ...t) =ect, c > 0, t e lR, et, G(IR,) = (f e C(1R: IlfiI sup ( if (t)I / (p(t), t e IR+) < +oo) L’opdrateur de Szasz -Mirakyan Sn de C,(IR+) dans G[a,b

  17. Fuzzy Riemann surfaces

    International Nuclear Information System (INIS)

    Arnlind, Joakim; Hofer, Laurent; Hoppe, Jens; Bordemann, Martin; Shimada, Hidehiko

    2009-01-01

    We introduce C-Algebras (quantum analogues of compact Riemann surfaces), defined by polynomial relations in non-commutative variables and containing a real parameter that, when taken to zero, provides a classical non-linear, Poisson-bracket, obtainable from a single polynomial C(onstraint) function. For a continuous class of quartic constraints, we explicitly work out finite dimensional representations of the corresponding C-Algebras.

  18. Single Crystal Surfaces

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2014-06-01

    The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10-15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force ( t, T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O-2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.

  19. Amphoteric surface active agents

    Directory of Open Access Journals (Sweden)

    Eissa, A.M. F.

    1995-10-01

    Full Text Available 2-[trimethyl ammonium, triethyl ammonium, pyridinium and 2-amino pyridinium] alkanoates, four series of surface active agents containing carbon chain C12, C14, C16 and C18carbon atoms, were prepared. Their structures were characterized by microanalysis, infrared (IR and nuclear magnetic resonance (NMR. Surface and interfacial tension, Krafft point, wetting time, emulsification power, foaming height and critical micelle concentration (cmc were determined and a comparative study was made between their chemical structure and surface active properties. Antimicrobial activity of these surfactants was also determined.

    Se prepararon cuatro series de agentes tensioactivos del tipo 2-[trimetil amonio, trietil amonio, piridinio y 2-amino piridinio] alcanoatos, que contienen cadenas carbonadas con C12, C14, C16 y C18 átomos de carbono.
    Se determinaron la tensión superficial e interfacial, el punto de Krafft, el tiempo humectante, el poder de emulsionamiento, la altura espumante y la concentración critica de miscela (cmc y se hizo un estudio comparativo entre la estructura química y sus propiedades tensioactivas. Se determinó también la actividad antimicrobiana de estos tensioactivos. Estas estructuras se caracterizaron por microanálisis, infrarrojo (IR y resonancia magnética nuclear (RMN.

  20. Microplates with adaptive surfaces.

    Science.gov (United States)

    Akbulut, Meshude; Lakshmi, Dhana; Whitcombe, Michael J; Piletska, Elena V; Chianella, Iva; Güven, Olgun; Piletsky, Sergey A

    2011-11-14

    Here we present a new and versatile method for the modification of the well surfaces of polystyrene microtiter plates (microplates) with poly(N-phenylethylene diamine methacrylamide), (poly-NPEDMA). The chemical grafting of poly-NPEDMA to the surface of microplates resulted in the formation of thin layers of a polyaniline derivative bearing pendant methacrylamide double bonds. These were used as the attachment point for various functional polymers through photochemical grafting of various, for example, acrylate and methacrylate, polymers with different functionalities. In a model experiment, we have modified poly-NPEDMA-coated microplates with a small library of polymers containing different functional groups using a two-step approach. In the first step, double bonds were activated by UV irradiation in the presence of N,N-diethyldithiocarbamic acid benzyl ester (iniferter). This enabled grafting of the polymer library in the second step by UV irradiation of solutions of the corresponding monomers in the microplate wells. The uniformity of coatings was confirmed spectrophotometrically, by microscopic imaging and by contact angle measurements (CA). The feasibility of the current technology has been shown by the generation of a small library of polymers grafted to the microplate well surfaces and screening of their affinity to small molecules, such as atrazine, a trio of organic dyes, and a model protein, bovine serum albumin (BSA). The stability of the polymers, reproducibility of measurement, ease of preparation, and cost-effectiveness make this approach suitable for applications in high-throughput screening in the area of materials research.

  1. Mapping stellar surface features

    International Nuclear Information System (INIS)

    Noah, P.V.

    1987-01-01

    New photometric and spectroscopic observations of the RS Canum Venaticorum binaries Sigma Geminorum and UX Arietis are reported along with details of the Doppler-imaging program SPOTPROF. The observations suggest that the starspot activity on Sigma Gem has decreased to 0.05 magnitude in two years. A photometric spot model for September 1984 to January 1985 found that a single spot covering 2% of the surface and 1000 K cooler than the surrounding photosphere could model the light variations. Equivalent-width observations contemporaneous with the photometric observations did not show any significant variations. Line-profile models from SPOTPROF predict that the variation of the equivalent width of the 6393 A Fe I line should be ∼ 1mA. Photometric observations of UX Ari from January 1984 to March 1985 show an 0.3 magnitude variation indicating a large spot group must cover the surface. Contemporaneous spectroscopic observations show asymmetric line profiles. The Doppler imaging and the photometric light-curve models were used in an iterative method to describe the stellar surface-spot distribution and successfully model both the photometric and the spectroscopic variations

  2. Surface roughening under ion bombardment

    International Nuclear Information System (INIS)

    Bhatia, C.S.

    1982-01-01

    Ion bombardment can cause roughening of a surface. Inadequate step coverage and poor adhesion of films on such surfaces are of concern. An extreme case of surface roughening results in cone formation under ion bombardment. The results of the investigation, using scanning electron microscopy, is discussed in terms of the role of (a) embedded particles, (b) impurities and (c) surface migration in cone formation on the target surface. (Auth.)

  3. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  4. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  5. Biomechanical aspects of playing surfaces.

    Science.gov (United States)

    Nigg, B M; Yeadon, M R

    1987-01-01

    The purpose of this paper is to discuss some biomechanical aspects of playing surfaces with special focus on (a) surface induced injuries, (b) methodologies used to assess surfaces and (c) findings from various sports. The paper concentrates primarily on questions related to load on the athlete's body. Data from epidemiological studies suggest strongly that the surface is an important factor in the aetiology of injuries. Injury frequencies are reported to be significantly different for different surfaces in several sports. The methodologies used to assess surfaces with respect to load or performance include material tests and tests using experimental subjects. There is only little correlation between the results of these two approaches. Material tests used in many standardized test procedures are not validated which suggests that one should exercise restraint in the interpretation of these results. Point elastic surfaces are widely studied while area elastic surfaces have received little attention to date. Questions of energy losses on sport surfaces have rarely been studied scientifically.

  6. Surface treatment of zirconia ceramics

    International Nuclear Information System (INIS)

    1980-01-01

    A method of chemically micropitting and/or microcratering at least a portion of a smooth surface of an impervious zirconia-base ceramic is described, comprising (a) contacting the smooth surface with a liquid leachant selected from concentrated sulphuric acid, ammonium bisulphate, alkali metal bisulphates and mixtures thereof at a temperature of at least 250 0 C for a period of time sufficient to effect micropitting and/or microcratering generally uniformly distributed throughout the microstructure of the resultant leached surface; (b) removing the leached surface from contact with the leachant; (c) contacting the leached surface with hydrochloric acid to effect removal from the leached surface of a residue thereon comprising sulphate of metal elements including zirconium in the ceramic; (d) removing the leached surface from contact with the hydrochloric acid; and (e) rinsing the leached surface with water to effect removal of acid residue from that surface. (author)

  7. Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    Nina GRIDINA

    2013-02-01

    Full Text Available Performed in this paper is numerical modeling of the angular dependence for light reflectivity R(F in surface plasmon-polariton resonance (SPR realized in Kretschmann geometry when studying the interface gold/suspension of spherical particles (cells in the assumption that the dielectric permittivity of particles suspension is described by the theory of effective medium. It has been shown that availability of suspended particles in solution inevitably results in appearance of an intermediate layer with the ε gradient between gold surface and suspension bulk, as a result of which the SPR angle shifts to lower values. Near the critical angle, the first derivative dR/dF demonstrates a clearly pronounced peak, which allows determining the value for suspension bulk and the gradient in the intermediate layer. Obtained in our experiments were SPR curves for two suspensions of erythrocytes – the dense one (erythrocyte mass after centrifuging and loose solution (whole blood. In the case of erythrocyte mass, fitting the experimental and calculated curves enabled us to quantitatively determine the bulk value for this erythrocyte mass (εb =1.96, thickness of the intermediate layer dm (300…400 nm and gradient in the intermediate layer. On the contrary, the SPR curve for whole blood appeared to be close to that of pure plasma. This fact allows only estimation of the thickness dm~2000...3000 nm as well as minimum ε value in the intermediate layer, which is close to that of plasma (ε = 1.79. Also, discussed is the mechanism of influence of the cell shape near the gold surface on the SPR effect.

  8. Anionic surface binders

    OpenAIRE

    Aljaž-Rožič Mateja; Hočevar Nežka

    2004-01-01

    The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer) are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When opt...

  9. Distributed Surface Force

    Science.gov (United States)

    2014-06-01

    surface missile SSN nuclear powered attack submarine ST Singapore Technologies T-AKE Lewis and Clarke class TDSI Temasek Defense Systems Institute TRL...total of 313 (Department of the Navy N8 Department 2013). This 306-ship plan includes 12 SSBNs, 48 SSNs , 11 aircraft carriers, 88 cruisers and...MoCil • • West Reef Barque Canada Stloal frinc2 of wales Bank • Reef fat Grair9r Bani< Aneoyna Cltf •Mari\\eles • • • • Nlenwl Bank Ardaser n Dalas

  10. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    Science.gov (United States)

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  11. Concepts in surface physics

    CERN Document Server

    Desjonquères, M -C

    1993-01-01

    This textbook is intended as an introduction to surface science for graduate students. It began as a course of lectures that we gave at the University of Paris (Orsay). Its main objectives are twofold: to provide the reader with a compre­ hensive presentation of the basic principles and concepts of surface physics and to show the usefulness of these concepts in the real world by referring to experiments. It starts at a rather elementary level since it only requires a knowledge of solid state physics, quantum mechanics, thermodynamics and statistical physics which does not exceed the background usually taught to students early in their university courses. However, since it finally reaches an advanced level, we have tried to render it as self-contained as possible so that it remains accessible even to an unexperienced reader. Furthermore, the emphasis has been put on a pedagogical level rather than on a technical level. In this spirit, whenever possible, models which are simplified, but which contain the featu...

  12. Decontamination of body surface

    International Nuclear Information System (INIS)

    Harase, Chieko.

    1989-01-01

    There are two important points for an effective application of decontamination procedures. One is the organizing method of responsible decontamination teams. The team should be directed by medical doctor with the knowledge of decontamination of radionuclides. The other point is the place of application of the decontamination. Hospitals and clinics, especially with a department of nuclear medicine, or specialized units such as an emergency medical center are preferable. Before decontamination procedures are initiated, adequate monitoring of the body surface should be undertaken by a competent person in order to demarcate the areas which are contaminated. There are fundamental principles which are applicable to all decontamination procedures. (1) Precautions must always be taken to prevent further spread of contamination during decontamination operations. (2) Mild decontamination methods should be tried before resorting to treatment which can damage the body surface. The specific feature of each contamination varies widely in radionuclides involved, place and area of the contamination, condition of the contaminated skin such as whether the skin is wounded or not, and others. Soap and water are usually good detergents in most cases. If they fail, orange oil cream (SUPERDECONCREAM, available from Tokyo Engineering Co.) specially prepared for decontamination of radionuclides of most fission and corrosion products may be used. Contaminated hair should be washed several times with an efficient shampoo. (author)

  13. Pose Space Surface Manipulation

    Directory of Open Access Journals (Sweden)

    Yusuke Yoshiyasu

    2012-01-01

    Full Text Available Example-based mesh deformation techniques produce natural and realistic shapes by learning the space of deformations from examples. However, skeleton-based methods cannot manipulate a global mesh structure naturally, whereas the mesh-based approaches based on a translational control do not allow the user to edit a local mesh structure intuitively. This paper presents an example-driven mesh editing framework that achieves both global and local pose manipulations. The proposed system is built with a surface deformation method based on a two-step linear optimization technique and achieves direct manipulations of a model surface using translational and rotational controls. With the translational control, the user can create a model in natural poses easily. The rotational control can adjust the local pose intuitively by bending and twisting. We encode example deformations with a rotation-invariant mesh representation which handles large rotations in examples. To incorporate example deformations, we infer a pose from the handle translations/rotations and perform pose space interpolation, thereby avoiding involved nonlinear optimization. With the two-step linear approach combined with the proposed multiresolution deformation method, we can edit models at interactive rates without losing important deformation effects such as muscle bulging.

  14. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces

    KAUST Repository

    Käferböck, Florian

    2013-06-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application. 2013 Elsevier B.V.

  15. Test surfaces useful for calibration of surface profilometers

    Science.gov (United States)

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  16. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  17. Theory of quasiparticle surface states in semiconductor surfaces

    International Nuclear Information System (INIS)

    Hybertsen, M.S.; Louie, S.G.

    1988-01-01

    A first-principles theory of the quasiparticle surface-state energies on semiconductor surfaces is developed. The surface properties are calculated using a repeated-slab geometry. Many-body effects due to the electron-electron interaction are represented by the electron self-energy operator including the full surface Green's function and local fields and dynamical screening effects in the Coulomb interaction. Calculated surface-state energies for the prototypical Si(111):As and Ge(111):As surfaces are presented. The calculated energies and dispersions for the occupied surface states (resonances) are in excellent agreement with recent angle-resolved photoemission data. Predictions are made for the position of empty surface states on both surfaces which may be experimentally accessible. The resulting surface state gap at Gamma-bar for Si(111):As agrees with recent scanning-tunneling-spectroscopy measurements. Comparison of the present results to eigenvalues from the local-density-functional calculation reveals substantial corrections for the gaps between empty and occupied surface states. This correction is found to depend on the character of the surface states involved

  18. On-surface synthesis on a bulk insulator surface

    Science.gov (United States)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic

  19. GEWEX Surface Radiation Budget (SRB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NASA/GEWEX Surface Radiation Budget (SRB) Release-3.0 data sets contains global 3-hourly, daily, monthly/3-hourly, and monthly averages of surface and top-of...

  20. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  1. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  2. Solid surfaces : some theoretical aspects

    International Nuclear Information System (INIS)

    Das, M.P.

    1978-01-01

    An appraisal of the current situation concerning some of the theoretical aspects of solid surfaces is presented. First of all the characterization of the surfaces that involves the surface geometry and atomic composition for both the clean and adsorbed surfaces is discussed. Under this, the methods for determining the surface structure (such as low energy electron diffraction, field electron and field ion microscopy, photo emission spectroscopy and atomic scattering) and methods for determining the surface composition by the Auger electron spectroscopy are outlined. In the second part, emphasis is on the electronic structure of the clean and adsorbed surfaces. The measurements of ultra-violet and X-ray photo electron spectra are shown to yield the information about the surface electronic structure. In this context the many body effects such as, shake-up and relaxation energy etc. are discussed. Finally the status of the theory in relation to the experiments on angular resolved and polarization dependent photo emission are presented. (auth.)

  3. Classical strings and minimal surfaces

    International Nuclear Information System (INIS)

    Urbantke, H.

    1986-01-01

    Real Lorentzian forms of some complex or complexified Euclidean minimal surfaces are obtained as an application of H.A. Schwarz' solution to the initial value problem or a search for surfaces admitting a group of Poincare transformations. (Author)

  4. Computer representation of molecular surfaces

    International Nuclear Information System (INIS)

    Max, N.L.

    1981-01-01

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered

  5. Solvay Conference on Surface Science

    CERN Document Server

    1988-01-01

    The articles collected in this volume give a broad overview of the current state of surface science. Pioneers in the field and researchers met together at this Solvay Conference to discuss important new developments in surface science, with an emphasis on the common area between solid state physics and physical chemistry. The contributions deal with the following subjects: structure of surfaces, surface science and catalysis, two-dimensional physics and phase transitions, scanning tunneling microscopy, surface scattering and surface dynamics, chemical reactions at surfaces, solid-solid interfaces and superlattices, and surface studies with synchrotron radiation. On each of these subjects an introductory review talk and a number of short research contributions are followed by extensive discussions, which appear in full in the text. This nineteenth Solvay Conference commemorates the 75th anniversary of the Solvay Institutes.

  6. Emerging trends in surface metrology

    DEFF Research Database (Denmark)

    Lonardo, P.M.; Lucca, D.A.; De Chiffre, Leonardo

    2002-01-01

    Recent advancements and some emerging trends in the methods and instruments used for surface and near surface characterisation are presented, considering the measurement of both topography and physical properties. In particular, surfaces that present difficulties in measurement or require new...... procedures are considered, with emphasis on measurements approaching the nanometre scale. Examples of new instruments and promising innovations for roughness measurement and surface integrity characterisation are presented. The new needs for tolerancing, traceability and calibration are also addressed....

  7. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich...... platform for applications of surface photonics. Most of these surface waves are directional and as such their propagation can be effectively controlled by changing wavelength or material parameters tuning....

  8. Flow over riblet curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  9. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  10. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  11. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  12. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura

    2017-01-13

    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  13. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  14. Nonlinear surface Alfven waves

    International Nuclear Information System (INIS)

    Cramer, N.F.

    1991-01-01

    The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)

  15. Measurement of complex surfaces

    International Nuclear Information System (INIS)

    Brown, G.M.

    1993-05-01

    Several of the components used in coil fabrication involve complex surfaces and dimensions that are not well suited to measurements using conventional dimensional measuring equipment. Some relatively simple techniques that are in use in the SSCL Magnet Systems Division (MSD) for incoming inspection will be described, with discussion of their suitability for specific applications. Components that are submitted for MSD Quality Assurance (QA) dimensional inspection may be divided into two distinct categories; the first category involves components for which there is an approved drawing and for which all nominal dimensions are known; the second category involves parts for which 'reverse engineering' is required, the part is available but there are no available drawings or dimensions. This second category typically occurs during development of coil end parts and coil turn filler parts where it is necessary to manually shape the part and then measure it to develop the information required to prepare a drawing for the part

  16. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura; Alabastri, Alessandro; Bonanni, Simon; Majewska, Roksana; Dattoli, Elisabetta; Barberio, Marianna; Candeloro, Patrizio; Perozziello, Gerardo; Mollace, Vincenzo; Di Fabrizio, Enzo M.; Gentile, Francesco

    2017-01-01

    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  17. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  18. Surface mobilities on solid materials

    International Nuclear Information System (INIS)

    Binh, V.T.

    1983-01-01

    This book constitutes the proceedings of the NATO Advanced Study Institute on Surface Mobilities on Solid Materials held in France in 1981. The goal of the two-week meeting was to review up-to-date knowledge on surface diffusion, both theoretical and experimental, and to highlight those areas in which much more knowledge needs to be accumulated. Topics include theoretical aspects of surface diffusion (e.g., microscopic theories of D at zero coverage; statistical mechanical models and surface diffusion); surface diffusion at the atomic level (e.g., FIM studies of surface migration of single adatoms and diatomic clusters; field emission studies of surface diffusion of adsorbates); foreign adsorbate mass transport; self-diffusion mass transport (e.g., different driving forces for the matter transport along surfaces; measurements of the morphological evolution of tips); the role of surface diffusion in some fundamental and applied sciences (e.g. adatomadatom pair interactions and adlayer superstructure formation; surface mobility in chemical reactions and catalysis); and recent works on surface diffusion (e.g., preliminary results on surface self-diffusion measurements on nickel and chromium tips)

  19. Alternative model of random surfaces

    International Nuclear Information System (INIS)

    Ambartzumian, R.V.; Sukiasian, G.S.; Savvidy, G.K.; Savvidy, K.G.

    1992-01-01

    We analyse models of triangulated random surfaces and demand that geometrically nearby configurations of these surfaces must have close actions. The inclusion of this principle drives us to suggest a new action, which is a modified Steiner functional. General arguments, based on the Minkowski inequality, shows that the maximal distribution to the partition function comes from surfaces close to the sphere. (orig.)

  20. Congruences of totally geodesic surfaces

    International Nuclear Information System (INIS)

    Plebanski, J.F.; Rozga, K.

    1989-01-01

    A general theory of congruences of totally geodesic surfaces is presented. In particular their classification, based on the properties of induced affine connections, is provided. In the four-dimensional case canonical forms of the metric tensor admitting congruences of two-dimensional totally geodesic surfaces of rank one are given. Finally, congruences of two-dimensional extremal surfaces are studied. (author)

  1. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  2. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  3. The surface learned from nature

    Science.gov (United States)

    Lim, H.; Kim, W. D.

    2010-07-01

    In this work, I would like to introduce the emerging surface of nature. The surface in nature, has the multi and optimized function with well organized structure. There are so many examples that we learn and apply to technology. First example is self-cleaning surface. Some plants (such as lotus leaf, taro leaf) and the wings of many large-winged insects (such as moth, butterfly, dragonfly) remain their surface clean in the very dirty environment. This self cleaning effect is accomplished by the superhydrophobic surfaces which exhibit the water contact angle of more than 150° with low sliding angle. Generally, the superhydrophobic surface is made up the two factors. One is the surface composition having the low surface tension energy. The other is the surface morphology of hierarchical structure of micro and nano size. Because almost nature surface have the hierarchical structures range from macro to nano size, their topography strength their function to adjust the life in nature environment. The other example is the surface to use for drag reduction. The skin friction drag causes eruptions of air or water resulting in greater drag as the speed is increased. This drag requires more energy to overcome. The shark skin having the fine sharp-edged grooves about 0.1 mm wide known riblet reduces in skin friction drag by being far away the vortex. Among a lot of fuctional surface, the most exciting surface the back of stenocara a kind of desert beetles. Stenocara use the micrometre-sized patterns of hydrophobic, wax-coated and hydrophilic, non-waxy regions on their backs to capture water from fog. This fog-collecting structure improves the water collection of fog-capture film, condenser, engine, and future building. Here, the efforts to realize these emerging functional surfaces in nature on technology are reported with the fabrication method and their properties, especially for the control of surface wettability.

  4. Enhanced photochemistry on metal surfaces

    International Nuclear Information System (INIS)

    Goncher, G.M.; Parsons, C.A.; Harris, C.B.

    1984-01-01

    Due to the fast relaxation of molecular excited states in the vicinity of a metal or semiconductor surface, few observations of surface photochemistry have been reported. The following work concerns the surface-enhanced photo-reactions of a variety of physisorbed molecules on roughened Ag surfaces. In summary, photodecomposition leads to a graphitic surface carbon product which is monitored via surface-enhanced Raman scattering. In most cases an initial two-photon molecular absorption step followed by further absorption and fragmentation is thought to occur. Enhancement of the incident fields occurs through roughness-mediated surface plasmon resonances. This mechanism provides the amplified electromagnetic surface fields responsible for the observed photodecomposition. The photodecomposition experiments are performed under ultra-high vacuum. Surface characterization of the roughened surfaces was done by Scanning Electron Microscopy (SEM), and electron-stimulated emission. The SEM revealed morphology on the order of 300-400 A. This size of roughness feature, when modelled as isolated spheres should exhibit the well-known Mie resonances for light of the correct wavelengths. For protrusions existing on a surface these Mie resonances can be thought of as a coupling of the light with the surface plasmon. Experimental verification of these resonances was provided by the electron-stimulated light emission results. These showed that a polished Ag surface emitted only the expected transition radiation at the frequency of the Ag bulk plasmon. Upon roughening, however, a broad range of lower frequencies extending well into the visible are seen from electron irradiation of the surface. Large enhancements are expected for those frequencies which are able to couple into the surface modes

  5. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  6. Dual Orlicz geominimal surface area

    Directory of Open Access Journals (Sweden)

    Tongyi Ma

    2016-02-01

    Full Text Available Abstract The L p $L_{p}$ -geominimal surface area was introduced by Lutwak in 1996, which extended the important concept of the geominimal surface area. Recently, Wang and Qi defined the p-dual geominimal surface area, which belongs to the dual Brunn-Minkowski theory. In this paper, based on the concept of the dual Orlicz mixed volume, we extend the dual geominimal surface area to the Orlicz version and give its properties. In addition, the isoperimetric inequality, a Blaschke-Santaló type inequality, and the monotonicity inequality for the dual Orlicz geominimal surface areas are established.

  7. Surface tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Kurita, Gen-ichi; Azumi, Masafumi; Takeda, Tatsuoki

    1985-10-01

    Surface tearing modes in tokamaks are studied numerically and analytically. The eigenvalue problem is solved to obtain the growth rate and the mode structure. We investigate in detail dependences of the growth rate of the m/n = 2/1 resistive MHD modes on the safety factor at the plasma surface, current profile, wall position, and resistivity. The surface tearing mode moves the plasma surface even when the wall is close to the surface. The stability diagram for these modes is presented. (author)

  8. Phase diagrams for surface alloys

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per

    1997-01-01

    We discuss surface alloy phases and their stability based on surface phase diagrams constructed from the surface energy as a function of the surface composition. We show that in the simplest cases of pseudomorphic overlayers there are four generic classes of systems, characterized by the sign...... is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...

  9. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  10. Dynamical speckles in watery surfaces

    International Nuclear Information System (INIS)

    Llovera-Gonzalez, J.J.; Moreno-Yeras, A.; Garcia-Diaz, M.; Alvarez-Salgado, Y.

    2009-01-01

    Recovery of watery surfaces with monolayer of surfactant substances is of interest in diverse technological applications. The format ion and study of molecular monolayer deposited in these surfaces require the application of measurements techniques that allow evaluating the recovery grade locally without modifying practically the studied surface. In this paper the preliminary results obtained by the authors it plows exposed applying the technique of dynamic speckle interferometry in watery surfaces and their consideration like to possible resource to measure the grade of local recovery of these surfaces on the it bases that the speckles pattern dog reveal the dynamics of evaporation that takes place in the same ones. (Author)

  11. Laser surface texturing of tool steel: textured surfaces quality evaluation

    Science.gov (United States)

    Šugár, Peter; Šugárová, Jana; Frnčík, Martin

    2016-05-01

    In this experimental investigation the laser surface texturing of tool steel of type 90MnCrV8 has been conducted. The 5-axis highly dynamic laser precision machining centre Lasertec 80 Shape equipped with the nano-second pulsed ytterbium fibre laser and CNC system Siemens 840 D was used. The planar and spherical surfaces first prepared by turning have been textured. The regular array of spherical and ellipsoidal dimples with a different dimensions and different surface density has been created. Laser surface texturing has been realized under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of ablated surfaces has been performed using scanning electron microscopy (SEM) technique. The results show limited possibility of ns pulse fibre laser application to generate different surface structures for tribological modification of metallic materials. These structures were obtained by varying the processing conditions between surface ablation, to surface remelting. In all cases the areas of molten material and re-cast layers were observed on the bottom and walls of the dimples. Beside the influence of laser beam parameters on the machined surface quality during laser machining of regular hemispherical and elipsoidal dimple texture on parabolic and hemispherical surfaces has been studied.

  12. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  13. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Polaron-Driven Surface Reconstructions

    Directory of Open Access Journals (Sweden)

    Michele Reticcioli

    2017-09-01

    Full Text Available Geometric and electronic surface reconstructions determine the physical and chemical properties of surfaces and, consequently, their functionality in applications. The reconstruction of a surface minimizes its surface free energy in otherwise thermodynamically unstable situations, typically caused by dangling bonds, lattice stress, or a divergent surface potential, and it is achieved by a cooperative modification of the atomic and electronic structure. Here, we combined first-principles calculations and surface techniques (scanning tunneling microscopy, non-contact atomic force microscopy, scanning tunneling spectroscopy to report that the repulsion between negatively charged polaronic quasiparticles, formed by the interaction between excess electrons and the lattice phonon field, plays a key role in surface reconstructions. As a paradigmatic example, we explain the (1×1 to (1×2 transition in rutile TiO_{2}(110.

  15. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Science.gov (United States)

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  16. [Evaluation of the electromyography activity of pelvic floor muscle during postural exercises using the Wii Fit Plus©. Analysis and perspectives in rehabilitation].

    Science.gov (United States)

    Steenstrup, B; Giralte, F; Bakker, E; Grise, P

    2014-12-01

    The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Verification of anti-fatigue effect of anserine by angle fatigue indicator based on median frequency changes of electromyograms

    Directory of Open Access Journals (Sweden)

    Hirohisa Kishi

    2013-10-01

    Full Text Available ABSTRACT: Objective: Anserine, which is abundant in avian species and in a wide range of fish such as bonito and tuna, is reported to have anti-fatigue effect. Although chicken soup and bonito soup is traditionally used to recover from physical fatigue, it is generally difficult to verify the effect in humans. This study was to directly demonstrate the anti-fatigue effect of oceanic anserine in humans. Methods: Edible-grade anserine was purified from fish extract with food-grade reagents. Subjects were 17 healthy male volunteers (35.5 ± 5 yr., 75.5 ± 5.0 kg. Each subject performed the isometric exercise tolerance test (ETT on the rectus femoris muscle twice (Ex_1, Ex_2 both for anserine and water conditions on a different day. Median frequency changes (MDF during Functional Foods in Health and Disease 2013; 3(10 389-399 ETTs were calculated and regression curves were calculated over a frequency range of 21-214 Hz. The difference, or angle, between the slopes of Ex_1 and Ex_2 MDF regression curves, which corresponds to the degree of fatigue, was defined as an angle fatigue index and compared between anserine and water intake conditions. Results: MDF decreased during ETTs in most patients and the slopes of regression curves were larger in Ex_2 than in Ex_1. Angle fatigue index for water (control was significantly larger than that for anserine (p<0.01, paired t-test, n=17. The result indicates that anserine have an anti-fatigue effect on skeletal muscle in humans. Conclusions: We proposed the angle fatigue index as a touchstone of the muscle fatigue. The index indicates that anserine is effective to reduce the muscle fatigue in humans.

  18. Joint cross-correlation analysis reveals complex, time-dependent functional relationship between cortical neurons and arm electromyograms

    Science.gov (United States)

    Zhuang, Katie Z.; Lebedev, Mikhail A.

    2014-01-01

    Correlation between cortical activity and electromyographic (EMG) activity of limb muscles has long been a subject of neurophysiological studies, especially in terms of corticospinal connectivity. Interest in this issue has recently increased due to the development of brain-machine interfaces with output signals that mimic muscle force. For this study, three monkeys were implanted with multielectrode arrays in multiple cortical areas. One monkey performed self-timed touch pad presses, whereas the other two executed arm reaching movements. We analyzed the dynamic relationship between cortical neuronal activity and arm EMGs using a joint cross-correlation (JCC) analysis that evaluated trial-by-trial correlation as a function of time intervals within a trial. JCCs revealed transient correlations between the EMGs of multiple muscles and neural activity in motor, premotor and somatosensory cortical areas. Matching results were obtained using spike-triggered averages corrected by subtracting trial-shuffled data. Compared with spike-triggered averages, JCCs more readily revealed dynamic changes in cortico-EMG correlations. JCCs showed that correlation peaks often sharpened around movement times and broadened during delay intervals. Furthermore, JCC patterns were directionally selective for the arm-reaching task. We propose that such highly dynamic, task-dependent and distributed relationships between cortical activity and EMGs should be taken into consideration for future brain-machine interfaces that generate EMG-like signals. PMID:25210153

  19. Use of the Photo-Electromyogram to Objectively Diagnose and Monitor Treatment of Post-TBI Light Sensitivity

    Science.gov (United States)

    2015-10-01

    triggering of the cameras shutters, needed for 3D operation, we have adapted an Arduino Nano device to generate user-specified sequences of TTL signals...In order to ensure synchronous triggering of the cameras shutters, needed for 3D operation, we have adapted an Arduino Nano device to generate user

  20. Use of the Photo-Electromyogram to Objectively Diagnose and Monitor Treatment of Post-TBI Light Sensitivity

    Science.gov (United States)

    2013-10-01

    which we will mount the electrodes. The 3D printer can print the molding on-site using a flexible and soft polymer resin, whose properties we can...injury. Mil Med. 2012 Jul;177(7):804-13. PubMed PMID: 22808887. 5: Belliveau MJ, Jordan DR. Relief of refractory photo-oculodynia with botulinum ... toxin . J Neuroophthalmol. 2012 Sep;32(3):293. doi: 10.1097/WNO.0b013e3182585b5d. PubMed PMID: 22549562. 6: Digre KB, Brennan KC. Shedding light

  1. Sea surface stability parameters

    International Nuclear Information System (INIS)

    Weber, A.H.; Suich, J.E.

    1978-01-01

    A number of studies dealing with climatology of the Northwest Atlantic Ocean have been published in the last ten years. These published studies have dealt with directly measured meteorological parameters, e.g., wind speed, temperature, etc. This information has been useful because of the increased focus on the near coastal zone where man's activities are increasing in magnitude and scope, e.g., offshore power plants, petroleum production, and the subsequent environmental impacts of these activities. Atmospheric transport of passive or nonpassive material is significantly influenced by the turbulence structure of the atmosphere in the region of the atmosphere-ocean interface. This research entails identification of the suitability of standard atmospheric stability parameters which can be used to determine turbulence structure; the calculation of these parameters for the near-shore and continental shelf regions of the U.S. east coast from Cape Hatteras to Miami, Florida; and the preparation of a climatology of these parameters. In addition, a climatology for average surface stress for the same geographical region is being prepared

  2. Mercury's Densely Cratered Surface

    Science.gov (United States)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.Image Credit: NASA/JPL/Northwestern University

  3. Evaporation rates and surface profiles on heterogeneous surfaces with mass transfer and surface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flytzani-Stephanopoulos, M; Schmidt, L D

    1979-01-01

    Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.

  4. Topographic characterization of glazed surfaces

    International Nuclear Information System (INIS)

    Froeberg, Linda; Hupa, Leena

    2008-01-01

    Detailed characterization of surface microstructure, i.e. phase composition and surface geometry, has become an important criterion of glazed ceramics. Topographic characterization is an important parameter in, e.g. estimating the influence of additional films on the average roughness of a surface. Also, the microscaled and nanoscaled roughnesses correlate with the cleanability and the self-cleaning properties of the surfaces. In this work the surface geometry of several matte glazes were described by topography and roughness as given by whitelight confocal microscopy and atomic force microscopy. Different measuring parameters were compared to justify the usefulness of the techniques in giving a comprehensive description of the surface microstructure. The results suggest that confocal microscopy is well suited for giving reliable topographical parameters for matte surfaces with microscaled crystals in the surfaces. Atomic force microscopy was better suited for smooth surfaces or for describing the local topographic parameters of closely limited areas, e.g. the surroundings of separate crystals in the surface

  5. Topographic characterization of glazed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Froeberg, Linda [Process Chemistry Centre, Abo Akademi University, FI-20500 Turku (Finland)], E-mail: lfroberg@abo.fi; Hupa, Leena [Process Chemistry Centre, Abo Akademi University, FI-20500 Turku (Finland)

    2008-01-15

    Detailed characterization of surface microstructure, i.e. phase composition and surface geometry, has become an important criterion of glazed ceramics. Topographic characterization is an important parameter in, e.g. estimating the influence of additional films on the average roughness of a surface. Also, the microscaled and nanoscaled roughnesses correlate with the cleanability and the self-cleaning properties of the surfaces. In this work the surface geometry of several matte glazes were described by topography and roughness as given by whitelight confocal microscopy and atomic force microscopy. Different measuring parameters were compared to justify the usefulness of the techniques in giving a comprehensive description of the surface microstructure. The results suggest that confocal microscopy is well suited for giving reliable topographical parameters for matte surfaces with microscaled crystals in the surfaces. Atomic force microscopy was better suited for smooth surfaces or for describing the local topographic parameters of closely limited areas, e.g. the surroundings of separate crystals in the surface.

  6. Surface parameter characterization of surface vibrations in linear chains

    International Nuclear Information System (INIS)

    Majlis, N.; Selzer, S.; Puszkarski, H.; Diep-The-Hung

    1982-12-01

    We consider the vibrations of a linear monatomic chain with a complex surface potential defined by the surface pinning parameter a=Aesup(-i psi). It is found that in the case of a semi-infinite chain a is connected with the surface vibration wave number k=s+it by the exact relations: s=psi, t=lnA. We also show that the solutions found can be regarded as approximate ones (in the limit L>>1) for surface vibrations of a finite chain consisting of L atoms. (author)

  7. The influence of the surface atomic structure on surface diffusion

    International Nuclear Information System (INIS)

    Ghaleb, Dominique

    1984-03-01

    This work represents the first quantitative study of the influence of the surface atomic structure on surface diffusion (in the range: 0.2 Tf up 0.5 Tf; Tf: melting temperature of the substrate). The analysis of our results on a microscopic scale shows low formation and migration energies for adatoms; we can describe the diffusion on surfaces with a very simple model. On (110) surfaces at low temperature the diffusion is controlled by the exchange mechanism; at higher temperature direct jumps of adatoms along the channels contribute also to the diffusion process. (author) [fr

  8. [Influence of different surface treatments on porcelain surface topography].

    Science.gov (United States)

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  9. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  10. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model

    NARCIS (Netherlands)

    Eskes, M.; Balm, A.J.M.; van Alphen, M.J.A.; Smeele, L.E.; Stavness, I.; van der Heijden, F.

    2018-01-01

    Purpose: Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional

  11. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model

    NARCIS (Netherlands)

    Eskes, Merijn; Balm, Alfons J. M.; van Alphen, Maarten J. A.; Smeele, Ludi E.; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Purpose Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional

  12. The influence of foot arch on ankle joint torques andon sEMG signal amplitude in selected lower leg muscles

    Directory of Open Access Journals (Sweden)

    Żebrowska Kinga

    2016-09-01

    Full Text Available Introduction: This study sought to assess the influence of proper foot arch on electromyographic activity of selected lower limb muscles. The aim of this work was to evaluate the effects of foot arch on the activity of selected muscles and to determine whether electromyography might help to identify types of flat feet resulting from muscle- or ligament-related causes.

  13. Modelling nanostructures with vicinal surfaces

    International Nuclear Information System (INIS)

    Mugarza, A; Schiller, F; Kuntze, J; Cordon, J; Ruiz-Oses, M; Ortega, J E

    2006-01-01

    Vicinal surfaces of the (111) plane of noble metals are characterized by free-electron-like surface states that scatter at one-dimensional step edges, making them ideal model systems to test the electronic properties of periodic lateral nanostructures. Here we use high-resolution, angle-resolved photoemission to analyse the evolution of the surface state on a variety of vicinal surface structures where both the step potential barrier and the superlattice periodicity can vary. A transition in the electron dimensionality is found as we vary the terrace size in single-phase step arrays. In double-phase, periodic faceted surfaces, we observe surface states that characterize each of the phases

  14. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  15. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  16. Surface characterization of ceramic materials

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Salmeron, M.

    1976-01-01

    In recent years several techniques have become available to characterize the structure and chemical composition of surfaces of ceramic materials. These techniques utilize electron scattering and scattering of ions from surfaces. Low-energy electron diffraction is used to determine the surface structure, Auger electron spectroscopy and other techniques of electron spectroscopy (ultraviolet and photoelectron spectroscopies) are employed to determine the composition of the surface. In addition the oxidation state of surface atoms may be determined using these techniques. Ion scattering mass spectrometry and secondary ion mass spectrometry are also useful in characterizing surfaces and their reactions. These techniques, their applications and the results of recent studies are discussed. 12 figures, 52 references, 2 tables

  17. Surface diffusion of sorbed radionuclides

    International Nuclear Information System (INIS)

    Berry, J.A.; Bond, K.A.

    1991-01-01

    Surface diffusion has in the past been invoked to explain rates of radionuclide migration which were greater than those predicted. Results were generally open to interpretation but the possible existence of surface diffusion, whereby sorbed radionuclides could potentially migrate at much enhanced rates, necessitated investigation. In this work through-diffusion experiments have shown that although surface diffusion does exist for some nuclides, the magnitude of the phenomenon is not sufficient to affect repository safety assessment modelling. (author)

  18. How old is surface science?

    International Nuclear Information System (INIS)

    Paparazzo, E.

    2004-01-01

    Philosophical and literary testimonies from the Classical World (5th century B.C. to 3rd century A.D.) involving solid surfaces are reviewed. Plato thought the surface to be a real entity, whereas Aristotle considered it to possess an unqualified existence, i.e. not to be a substance, but just an accidental entity. The Old Stoics asserted that surfaces do not possess any physical existence, although the Stoic philosopher Posidonius--apparently the only exception in his school--held them to exist both in thought and reality. While both the Atomists and the Epicureans were very little interested in them, the Sceptic philosopher Sextus Empiricus considered surfaces to be the limits of a body, although he maintained that both the view that they are corporeal or the view that they are incorporeal present unsurmountable difficulties. Among Roman authors, the testimony from Pliny the Elder is mostly concerned with metallic surfaces, chemical change occurring there, and surface treatments used in antiquity. Besides the philosophical motivations, the implications of the testimonies are discussed in the light of surface science. The purely geometrical surface of Plato is found to compare favorably to single-crystal surface, Posidonius' 'corporeal' surface is best likened to an air-oxidized, or otherwise ambient-modified surface, and ancient accounts on mixture are compared to XPS results obtained in adhesion studies of enameled steels. I argue that the long-standing dominance of Aristotle's view from antiquity onwards may have had a part in delaying theoretical speculation into solid surfaces

  19. Nonlinear optical studies of surfaces

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1994-07-01

    The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980's that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect

  20. Spectra of resonance surface photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G. [Budker Nuclear Physics Institute, Novosibirsk (Russian Federation)

    1995-09-01

    The theory of nonactivated electron transfer between atoms interacting reasonantly with coherent radiation and a metal surface is developed. The spectral resonances in photoabsorption and surface photoionization are found to be related to nonlinear interference effects in the interaction between discrete atomic levels and the continuum formed by the quasi-continuous electron spectrum of a normal metal. The asymmetry in the resonance surface photoionization spectrum is shown to have a shape typical of the Fano autoionization resonances. 18 refs.

  1. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  2. Wettability of natural superhydrophobic surfaces.

    Science.gov (United States)

    Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P

    2014-08-01

    Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Surfaces allowing for fractional statistics

    International Nuclear Information System (INIS)

    Aneziris, Charilaos.

    1992-07-01

    In this paper we give a necessary condition in order for a geometrical surface to allow for Abelian fractional statistics. In particular, we show that such statistics is possible only for two-dimentional oriented surfaces of genus zero, namely the sphere S 2 , the plane R 2 and the cylindrical surface R 1 *S 1 , and in general the connected sum of n planes R 2 -R 2 -R 2 -...-R 2 . (Author)

  4. Surface-Activated Coupling Reactions Confined on a Surface.

    Science.gov (United States)

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density

  5. Antibacterial surface design - Contact kill

    Science.gov (United States)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  6. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted...... instability of vicinal metal surfaces is at variance with the almost generally observed stability of these surfaces. We argue that the unstable orientations undergo a defaceting transition at relatively low temperatures, driven by the high vibrational entropy of steps....

  7. Entropic Repulsion Between Fluctuating Surfaces

    Science.gov (United States)

    Janke, W.

    The statistical mechanics of fluctuating surfaces plays an important role in a variety of physical systems, ranging from biological membranes to world sheets of strings in theories of fundamental interactions. In many applications it is a good approximation to assume that the surfaces possess no tension. Their statistical properties are then governed by curvature energies only, which allow for gigantic out-of-plane undulations. These fluctuations are the “entropic” origin of long-range repulsive forces in layered surface systems. Theoretical estimates of these forces for simple model surfaces are surveyed and compared with recent Monte Carlo simulations.

  8. Minimal Surfaces for Hitchin Representations

    DEFF Research Database (Denmark)

    Li, Qiongling; Dai, Song

    2018-01-01

    . In this paper, we investigate the properties of immersed minimal surfaces inside symmetric space associated to a subloci of Hitchin component: $q_n$ and $q_{n-1}$ case. First, we show that the pullback metric of the minimal surface dominates a constant multiple of the hyperbolic metric in the same conformal...... class and has a strong rigidity property. Secondly, we show that the immersed minimal surface is never tangential to any flat inside the symmetric space. As a direct corollary, the pullback metric of the minimal surface is always strictly negatively curved. In the end, we find a fully decoupled system...

  9. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  10. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  11. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  12. Investigation of surface roughness on etched glass surfaces

    International Nuclear Information System (INIS)

    Papa, Z.; Budai, J.; Farkas, B.; Toth, Z.

    2011-01-01

    Roughening the surface of solar cells is a common practice within the photovoltaic industry as it reduces reflectance, and thus enhances the performance of devices. In this work the relationship between reflectance characterized by the haze parameter, surface roughness and optical properties was investigated. To achieve this goal, model samples were prepared by hydrofluoric acid etching of glass for various times and measured by optical microscopy, spectroscopic ellipsometry, scanning electron microscopy, and atomic force microscopy. Our investigation showed that the surface reflectance was decreased not only by the roughening of the surface but also by the modification of the depth profile and lowering of the refractive index of the surface domain of the samples.

  13. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  14. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces

    Science.gov (United States)

    Thakkar, Manan; Busse, Angela; Sandham, Neil

    2017-02-01

    Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface

  15. Surface migration in sorption processes

    International Nuclear Information System (INIS)

    Rasmuson, A.; Neretnieks, J.

    1983-03-01

    Diffusion rates of sorbing chemical species in granites and clays are in several experiments within the KBS study, higher than can be explained by pore diffusion only. One possible additional transport mechanism is transport of of sorbed molecules/ions along the intrapore surfaces. As a first step a literature investigation on on solid surfaces has been conducted. A lot of experimental evidence of the mobility of the sorbed molecules has been gathered through the years, particulary for metal surfaces and chemical engineering systems. For clays however, there are only a few articles, and for granites none. Two types of surface migration models have been proposed in the litterature: i) Surface flow as a result of a gradient in spreading pressure. ii) Surface diffusion as a result of a gradient in concentration. The surface flow model has only been applied to gaseous systems. However, it should be equally applicable to liquid systems. The models i) and ii) are conceptually very different. However, the resulting expressions for surface flux are complicated and it will not be an easy task to distinguish between them. There seem to be three ways of discriminating between the transport mechanisms: a) Temperature dependence. b) Concentration dependence. c) Order of magnitude. (Forf)

  16. Wetting of the diamond surface

    International Nuclear Information System (INIS)

    Hansen, J.O.

    1987-01-01

    The surface conditions which lead to a wide variation in the wettability of diamond surfaces have been investigated using macroscopic surfaces to allow for the crystal anisotropy. A wetting balance method of calculating adhesion tension and hence contact angle has been used for diamonds having major faces near the [111] and [110] lattice planes. Three classes of behaviour have been identified. Surface analyses by Rutherford Backscattering of helium ions, X-ray Photoelectron Spectroscopy and Low Energy Electron Diffraction (LEED) have been used to define the role of the oxygen coverage of the surface in the transition I → O → H. Ferric ion has a hydrophilizing effect on the diamond surface, thought to be the consequence of attachment to the hydroxyl groups at the surface by a ligand mechanism. Other transition metal ions did not show this effect. The phenomenon of hydration of the surface, i.e. progressively more hydrophilic behaviour on prolonged exposure to liquid water, has been quantified. Imbibition or water penetration at microcracks are thought unlikely, and a water cluster build-up at hydrophilic sites is thought to be the best explanation. Dynamic studies indicate little dependence of the advancing contact angle on velocity for velocities up to 10 -4 m/s, and slight dependence of the receding contact angle. Hence advancing angles by this technique are similar to equilibrated contact angles found by optical techniques, but the receding angles are lower than found by other non-dynamic measurements

  17. Surface Detection using Round Cut

    DEFF Research Database (Denmark)

    Dahl, Vedrana Andersen; Dahl, Anders Bjorholm; Larsen, Rasmus

    2014-01-01

    similar adaptations for triangle meshes, our method is capable of capturing complex geometries by iteratively refining the surface, where we obtain a high level of robustness by applying explicit mesh processing to intermediate results. Our method uses on-surface data support, but it also exploits data...

  18. Basic Concepts of Surface Physics

    Energy Technology Data Exchange (ETDEWEB)

    Degras, D A

    1974-07-01

    The basic concepts of surface physics are given in this paper which deals mainly with the thermodynamics of metal surfaces. one finds also a short review of vibrational and electronic properties. Written for a Summer School, the text provides numerous references.

  19. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.; Zbořil, Radek; Petr, Jan; Bakandritsos, Aristides; Krysmann, Marta; Giannelis, Emmanuel P.

    2012-01-01

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  20. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  1. Fluorescence Imaging Reveals Surface Contamination

    Science.gov (United States)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  2. It's About Making Surfaces Invisible

    Indian Academy of Sciences (India)

    It's About Making Surfaces Invisible ... light is reflected from the surface between two media. The in- tensity of ... The reflection from each new interface and the combined reflec- .... Let us see the requirements of a material for a good stamp. The.

  3. Surface Organization Influences Bistable Vision

    Science.gov (United States)

    Graf, Erich W.; Adams, Wendy J.

    2008-01-01

    A priority for the visual system is to construct 3-dimensional surfaces from visual primitives. Information is combined across individual cues to form a robust representation of the external world. Here, it is shown that surface completion relying on multiple visual cues influences relative dominance during binocular rivalry. The shape of a…

  4. Computational Complexity of Combinatorial Surfaces

    NARCIS (Netherlands)

    Vegter, Gert; Yap, Chee K.

    1990-01-01

    We investigate the computational problems associated with combinatorial surfaces. Specifically, we present an algorithm (based on the Brahana-Dehn-Heegaard approach) for transforming the polygonal schema of a closed triangulated surface into its canonical form in O(n log n) time, where n is the

  5. A bag with soft surface

    International Nuclear Information System (INIS)

    Il-Tong Cheon.

    1991-02-01

    The MIT bag has a sharply edged surface. It seems to be unnatural. Taking vector mesons into account, we discuss effects of a smooth surface of the bag constructed by superposition of the MIT bags with various radii on the baryon magnetic moments. (author). 9 refs, 2 figs, 2 tabs

  6. Interference effects with surface plasmons

    NARCIS (Netherlands)

    Kuzmin, Nikolay Victorovich

    2008-01-01

    A surface plasmon is a purely two-dimensional electromagnetic excitation bound to the interface between metal and dielectric and quickly decaying away from it. A surface plasmon is able to concentrate light on sub-wavelength scales – a feature that is attractive for nano-photonics and integrated

  7. Work surface for soluble plutonium

    International Nuclear Information System (INIS)

    Silver, G.L.

    2005-01-01

    A three-dimensional work surface for aqueous plutonium is illustrated. It is constructed by means of estimating work as a function of the ambient pH and redox potential in a plutonium solution. The surface is useful for illustrating the chemistry of disproportionation reactions. Work expressions are easier to use than work integrals. (author)

  8. Trapped surfaces in spherical stars

    International Nuclear Information System (INIS)

    Bizon, P.; Malec, E.; O'Murchadha, N.

    1988-01-01

    We give necessary and sufficient conditions for the existence of trapped surfaces in spherically symmetric spacetimes. These conditions show that the formation of trapped surfaces depends on both the degree of concentration and the average flow of the matter. The result can be considered as a partial validation of the cosmic-censorship hypothesis

  9. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  10. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  11. Ion surface collisions on surfaces relevant for fusion devices

    International Nuclear Information System (INIS)

    Rasul, B.; Endstrasser, N.; Zappa, F.; Grill, V.; Scheier, P.; Mark, T.

    2006-01-01

    Full text: One of the great challenges of fusion research is the compatibility of reactor grade plasmas with plasma facing materials coating the inner walls of a fusion reactor. The question of which surface coating should be used is of particular interest for the design of ITER. The impact of energetic plasma particles leads to sputtering of wall material into the plasma. A possible solution for the coating of plasma facing walls would be the use of special carbon surfaces. Investigations of these various surfaces have been started at BESTOF ion-surface collision apparatus. Experiment beam of singly charged molecular ions of hydrocarbon molecules, i.e. C 2 H + 4 , is generated in a Nier-type electron impact ionization source at an electron energy of about 70 eV. In the first double focusing mass spectrometer the ions are mass and energy analyzed and afterwards refocused onto a surface. The secondary reaction products are monitored using a Time Of Flight mass spectrometer. The secondary ion mass spectra are recorded as a function of the collision energy for different projectile ions and different surfaces. A comparison of these spectra show for example distinct changes in the survival probability of the same projectile ion C 2 H + 4 for different surfaces. (author)

  12. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  13. Modern techniques of surface science

    CERN Document Server

    Woodruff, D Phil

    2016-01-01

    This fully revised, updated and reorganised third edition provides a thorough introduction to the characterisation techniques used in surface science and nanoscience today. Each chapter brings together and compares the different techniques used to address a particular research question, including how to determine the surface composition, surface structure, surface electronic structure, surface microstructure at different length scales (down to sub-molecular), and the molecular character of adsorbates and their adsorption or reaction properties. Readers will easily understand the relative strengths and limitations of the techniques available to them and, ultimately, will be able to select the most suitable techniques for their own particular research purposes. This is an essential resource for researchers and practitioners performing materials analysis, and for senior undergraduate students looking to gain a clear understanding of the underlying principles and applications of the different characterisation tec...

  14. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  15. Surface states in photonic crystals

    Directory of Open Access Journals (Sweden)

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  16. Computational approach to Riemann surfaces

    CERN Document Server

    Klein, Christian

    2011-01-01

    This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first...

  17. Surface science and heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1980-05-01

    The catalytic reactions studied include hydrocarbon conversion over platinum, the transition metal-catalyzed hydrogenation of carbon monoxide, and the photocatalyzed dissociation of water over oxide surfaces. The method of combined surface science and catalytic studies is similar to those used in synthetic organic chemistry. The single-crystal models for the working catalyst are compared with real catalysts by comparing the rates of cyclopropane ring opening on platinum and the hydrogenation of carbon monoxide on rhodium single crystal surface with those on practical commercial catalyst systems. Excellent agreement was obtained for these reactions. This document reviews what was learned about heterogeneous catalysis from these surface science approaches over the past 15 years and present models of the active catalyst surface

  18. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  19. Physics of Surfaces and Interfaces

    CERN Document Server

    Ibach, Harald

    2006-01-01

    This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. The Physics of Surfaces and Interfaces is designed as a handbook for the researcher as well as a study-text for graduate students in physics or chemistry with special interest in the surface sciences, material science, or the nanosciences. The experienced researcher, professional or academic teacher will appreciate the opportunity to share many insights and ideas that have grown out of the author's long experience. Readers will likewise appreciate the wide range of topics treated, each supported by extensive references. Graduate students will benefit f...

  20. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T.

    1995-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects