WorldWideScience

Sample records for surface elastin receptor

  1. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    International Nuclear Information System (INIS)

    Skopinska-Wisniewska, J.; Sionkowska, A.; Kaminska, A.; Kaznica, A.; Jachimiak, R.; Drewa, T.

    2009-01-01

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in biomaterial

  2. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Skopinska-Wisniewska, J., E-mail: joanna@chem.uni.torun.pl [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Sionkowska, A.; Kaminska, A. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Kaznica, A.; Jachimiak, R.; Drewa, T. [Collegium Medicum, Nicolaus Copernicus University, Karlowicz 24, 85-092 Bydgoszcz (Poland)

    2009-07-15

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in

  3. The Elastin Receptor Complex: a unique matricellular receptor with high anti-tumoral potential

    Directory of Open Access Journals (Sweden)

    Amandine eScandolera

    2016-03-01

    Full Text Available Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDP, named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although several receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-3, their main receptor remains the Elastin Receptor Complex (ERC. This heterotrimer comprises a peripheral subunit, named Elastin Binding Protein (EBP, associated to the Protective Protein/Cathepsin A (PPCA. The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1. The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered.

  4. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors.

    Science.gov (United States)

    Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander

    2015-12-01

    We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Elastin receptor (S-gal) occupancy by elastin peptides modulates T-cell response during murine emphysema.

    Science.gov (United States)

    Meghraoui-Kheddar, Aïda; Pierre, Alexandre; Sellami, Mehdi; Audonnet, Sandra; Lemaire, Flora; Le Naour, Richard

    2017-09-01

    Chronic obstructive pulmonary disease and emphysema are associated with increased elastin peptides (EP) production because of excessive breakdown of lung connective tissue. We recently reported that exposure of mice to EP elicited hallmark features of emphysema. EP effects are largely mediated through a receptor complex that includes the elastin-binding protein spliced-galactosidase (S-gal). In previous studies, we established a correlation between cytokine production and S-gal protein expression in EP-treated immune cells. In this study, we investigated the S-gal-dependent EP effects on T-helper (Th) and T-cytotoxic (Tc) responses during murine EP-triggered pulmonary inflammation. C57BL/6J mice were endotracheally instilled with the valine-glycine-valine-alanine-proline-glycine (VGVAPG) elastin peptide, and, 21 days after treatment, local and systemic T-lymphocyte phenotypes were analyzed at cytokine and transcription factor expression levels by multicolor flow cytometry. Exposure of mice to the VGVAPG peptide resulted in a significant increase in the proportion of the CD4 + and CD8 + T cells expressing the cytokines IFN-γ or IL-17a and the transcription factors T-box expressed in T cells or retinoic acid-related orphan receptor-γt (RORγt) without effects on IL-4 and Gata-binding protein 3 to DNA sequence [A/T]GATA[A/G] expression. These effects were maximized when each T-cell subpopulation was challenged ex vivo with EP, and they were inhibited in vivo when an analogous peptide antagonizing the EP/S-gal interactions was instilled together with the VGVAPG peptide. This study demonstrates that, during murine emphysema, EP-S-gal interactions contribute to a Th-1 and Th-17 proinflammatory T-cell response combined with a Tc-1 response. Our study also highlights the S-gal receptor as a putative pharmacological target to modulate such an immune response. Copyright © 2017 the American Physiological Society.

  6. Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein

    International Nuclear Information System (INIS)

    Mecham, R.P.; Hinek, A.; Entwistle, R.; Wrenn, D.S.; Griffin, G.L.; Senior, R.M.

    1989-01-01

    Elastin binding proteins from plasma membranes of elastin-producing cells were isolated by affinity chromatography on immobilized elastin peptides. Three proteins of 67, 61, and 55 kDa were released from the elastin resin by guanidine/detergent, soluble elastin peptides, synthetic peptide VGVAPG, or galactoside sugars, but not by synthetic RGD-containing peptide or sugars not related to galactose. All three proteins incorporated radiolabel upon extracellular iodination and contained [ 3 H]leucine following metabolic labeling, confirming that each is a synthetic product of the cell. The 67-kDa protein could be released from the cell surface with lactose-containing buffers, whereas solubilization of the 61- and 55-kDa components required the presence of detergent. Although all three proteins were retained on elastin affinity columns, the 61- and 55-kDa components were retained only in the presence of 67-kDa protein, suggesting that the 67-kDa protein binds elastin and the 61- and 55-kDa proteins bind to the 67-kDa protein. The authors propose that the 67-, 61-, and 55-kDa proteins constitute an elastin-receptor complex that forms a transmembrane link between the extracellular matrix and the intracellular compartment

  7. Fabricated Elastin.

    Science.gov (United States)

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Soluble elastin peptides in cardiovascular homeostasis: Foe or ally.

    Science.gov (United States)

    Qin, Zhenyu

    2015-05-01

    Elastin peptides, also known as elastin-derived peptides or elastokines, are soluble polypeptides in blood and tissue. The blood levels of elastin peptides are usually low but can increase during cardiovascular diseases, such as atherosclerosis, aortic aneurysm and diabetes with vascular complications. Generally, elastin peptides are derived from the degradation of insoluble elastic polymers. The biological activities of elastin peptides are bidirectional, e.g., a pro-inflammatory effect on monocyte migration induction vs. a protective effect on vasodilation promotion. However, recent in vivo studies have demonstrated that elastin peptides promote the formation of atherosclerotic plaques in hypercholesterolemic mice and induce hyperglycemia and elevations in plasma lipid levels in fasted mice. More important, the detrimental effects induced by elastin peptides can be largely inhibited by genetic or pharmacological blockade of the elastin receptor complex or by neutralization of an antibody against elastin peptides. These studies indicate new therapeutic strategies for the treatment of cardiovascular diseases by targeting elastin peptide metabolism. Therefore, the goal of this review is to summarize current knowledge about elastin peptides relevant to cardiovascular pathologies to further delineate their potential application in cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Molecular-level characterization of elastin-like constructs and human aortic elastin

    DEFF Research Database (Denmark)

    Heinz, Andrea; Schräder, Christoph U; Baud, Stéphanie

    2014-01-01

    This study aimed to characterize the structures of two elastin-like constructs, one composed of a cross-linked elastin-like polypeptide and the other one of cross-linked tropoelastin, and native aortic elastin. The structures of the insoluble materials and human aortic elastin were investigated...... quantification revealed that the cross-linking degree of the two in vitro cross-linked materials was significantly lower than that of native elastin. Molecular dynamics simulations were performed, based on molecular species identified in the samples, to follow the formation of elastin cross-links. The results...... provide evidence for the significance of the GVGTP hinge region of domain 23 for the formation of elastin cross-links. Overall, this work provides important insight into structural similarities and differences between elastin-like constructs and native elastin. Furthermore, it represents a step toward...

  10. Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome.

    Science.gov (United States)

    Wanga, Shaynah; Hibender, Stijntje; Ridwan, Yanto; van Roomen, Cindy; Vos, Mariska; van der Made, Ingeborg; van Vliet, Nicole; Franken, Romy; van Riel, Luigi Amjg; Groenink, Maarten; Zwinderman, Aeilko H; Mulder, Barbara Jm; de Vries, Carlie Jm; Essers, Jeroen; de Waard, Vivian

    2017-11-01

    Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1 C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation and

  11. Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation.

    Science.gov (United States)

    Ham, Sun Ah; Yoo, Taesik; Hwang, Jung Seok; Kang, Eun Sil; Paek, Kyung Shin; Park, Chankyu; Kim, Jin-Hoi; Do, Jeong Tae; Seo, Han Geuk

    2014-10-01

    Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis. We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin. These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy. In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660. Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Elastin-derived peptides are new regulators of insulin resistance development in mice

    DEFF Research Database (Denmark)

    Blaise, Sébastien; Romier, Béatrice; Kawecki, Charlotte

    2013-01-01

    . In the current study, we show that elastin-derived peptides (EDPs) may be involved in the development of insulin resistance (IRES) in mice. In chow-fed mice, acute or chronic intravenous injections of EDPs induced hyperglycemic effects associated with glucose uptake reduction and IRES in skeletal muscle, liver......, and adipose tissue. Based on in vivo, in vitro, and in silico approaches, we propose that this IRES is due to interaction between the insulin receptor (IR) and the neuraminidase-1 subunit of the elastin receptor complex triggered by EDPs. This interplay was correlated with decreased sialic acid levels...

  13. Physiological regulation of extracellular matrix collagen and elastin in the arterial wall of rats by noradrenergic tone and angiotensin II.

    Science.gov (United States)

    Dab, Houcine; Kacem, Kamel; Hachani, Rafik; Dhaouadi, Nadra; Hodroj, Wassim; Sakly, Mohsen; Randon, Jacques; Bricca, Giampiero

    2012-03-01

    The interactions between the effects of the sympathetic nervous system (SNS) and angiotensin II (ANG II) on vascular extracellular matrix (ECM) synthesis were determined in rats. The mRNA and protein content of collagen I, collagen III and elastin in the abdominal aorta (AA) and femoral artery (FA) was investigated in Wistar-Kyoto rats treated for 5 weeks with guanethidine, a sympathoplegic, losartan, an ANG II AT1 receptor (AT1R) blocker, or both. The effects of noradrenaline (NE) and ANG II on collagen III and elastin mRNA, and the receptor involved, were tested in cultured vascular smooth muscle cells (VSMCs) in vitro. Guanethidine increased collagen types I and III and decreased elastin, while losartan had an opposite effect, although without effect on collagen III. The combination of treatments abrogated changes induced by simple treatment with collagen I and elastin, but increased collagen III mRNA in AA and not in FA. NE stimulated collagen III mRNA via β receptors and elastin via α1 and α2 receptors. ANG II stimulated collagen III but inhibited elastin mRNA via AT1R. Overall, SNS and ANG II exert opposite and antagonistic effects on major components of ECM in the vascular wall. This may be of relevance for the choice of a therapeutic strategy in vascular diseases.

  14. Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes That Cause Thoracic Aortic Aneurysms and Dissections Disrupt This Structure.

    Science.gov (United States)

    Karimi, Ashkan; Milewicz, Dianna M

    2016-01-01

    The medial layer of the aorta confers elasticity and strength to the aortic wall and is composed of alternating layers of smooth muscle cells (SMCs) and elastic fibres. The SMC elastin-contractile unit is a structural unit that links the elastin fibres to the SMCs and is characterized by the following: (1) layers of elastin fibres that are surrounded by microfibrils; (2) microfibrils that bind to the integrin receptors in focal adhesions on the cell surface of the SMCs; and (3) SMC contractile filaments that are linked to the focal adhesions on the inner side of the membrane. The genes that are altered to cause thoracic aortic aneurysms and aortic dissections encode proteins involved in the structure or function of the SMC elastin-contractile unit. Included in this gene list are the genes encoding protein that are structural components of elastin fibres and microfibrils, FBN1, MFAP5, ELN, and FBLN4. Also included are genes that encode structural proteins in the SMC contractile unit, including ACTA2, which encodes SMC-specific α-actin and MYH11, which encodes SMC-specific myosin heavy chain, along with MYLK and PRKG1, which encode kinases that control SMC contraction. Finally, mutations in the gene encoding the protein linking integrin receptors to the contractile filaments, FLNA, also predispose to thoracic aortic disease. Thus, these data suggest that functional SMC elastin-contractile units are important for maintaining the structural integrity of the aorta. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  15. Regulation of elastin synthesis in developing sheep nuchal ligament by elastin mRNA levels

    International Nuclear Information System (INIS)

    Davidson, J.M.; Smith, K.; Shibahara, S.; Tolstoshev, P.; Crystal, R.G.

    1982-01-01

    Levels of elastin production in explant culture of fetal sheep nuchal ligament and corresponding levels of translatable elastin mRNA were determined in parallel studies during a period of rapid growth of the embryo. The identity of the explant culture and cell-free proucts was confirmed by peptide mapping, immunoprecipitation, and the characteristic lack of histidine and methionine. Elastin production was quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and radioimmune precipitation. The translation products could be labeled with methionine only when NH 2 -terminally donated as f-Met-tRNA/sup Met//sub f/. Explant cultures showed a large rise in elastin production from 70 days after conception to 150 days after conception. Cell free translation of RNA demonstrated a parallel in elastin mRNA levels and in elastin mRNA per cell. It appears, therefore, that the marked emphasis the differentiating muchal ligament places on elastin production is modulated, at least in part, by the quantities of available elastin in mRNA

  16. The OmpL37 surface-exposed protein is expressed by pathogenic Leptospira during infection and binds skin and vascular elastin.

    Science.gov (United States)

    Pinne, Marija; Choy, Henry A; Haake, David A

    2010-09-07

    Pathogenic Leptospira spp. shed in the urine of reservoir hosts into freshwater can be transmitted to a susceptible host through skin abrasions or mucous membranes causing leptospirosis. The infection process involves the ability of leptospires to adhere to cell surface and extracellular matrix components, a crucial step for dissemination and colonization of host tissues. Therefore, the elucidation of novel mediators of host-pathogen interaction is important in the discovery of virulence factors involved in the pathogenesis of leptospirosis. In this study, we assess the functional roles of transmembrane outer membrane proteins OmpL36 (LIC13166), OmpL37 (LIC12263), and OmpL47 (LIC13050), which we recently identified on the leptospiral surface. We determine the capacity of these proteins to bind to host tissue components by enzyme-linked immunosorbent assay. OmpL37 binds elastin preferentially, exhibiting dose-dependent, saturating binding to human skin (K(d), 104±19 nM) and aortic elastin (K(d), 152±27 nM). It also binds fibrinogen (K(d), 244±15 nM), fibrinogen fragment D (K(d), 132±30 nM), plasma fibronectin (K(d), 359±68 nM), and murine laminin (K(d), 410±81 nM). The binding to human skin elastin by both recombinant OmpL37 and live Leptospira interrogans is specifically enhanced by rabbit antiserum for OmpL37, suggesting the involvement of OmpL37 in leptospiral binding to elastin and also the possibility that host-generated antibodies may promote rather than inhibit the adherence of leptospires to elastin-rich tissues. Further, we demonstrate that OmpL37 is recognized by acute and convalescent leptospirosis patient sera and also by Leptospira-infected hamster sera. Finally, OmpL37 protein is detected in pathogenic Leptospira serovars and not in saprophytic Leptospira. Thus, OmpL37 is a novel elastin-binding protein of pathogenic Leptospira that may be promoting attachment of Leptospira to host tissues.

  17. Transmural variation in elastin fiber orientation distribution in the arterial wall.

    Science.gov (United States)

    Yu, Xunjie; Wang, Yunjie; Zhang, Yanhang

    2018-01-01

    The complex three-dimensional elastin network is a major load-bearing extracellular matrix (ECM) component of an artery. Despite the reported anisotropic behavior of arterial elastin network, it is usually treated as an isotropic material in constitutive models. Our recent multiphoton microscopy study reported a relatively uniform elastin fiber orientation distribution in porcine thoracic aorta when imaging from the intima side (Chow et al., 2014). However it is questionable whether the fiber orientation distribution obtained from a small depth is representative of the elastin network structure in the arterial wall, especially when developing structure-based constitutive models. To date, the structural basis for the anisotropic mechanical behavior of elastin is still not fully understood. In this study, we examined the transmural variation in elastin fiber orientation distribution in porcine thoracic aorta and its association with elastin anisotropy. Using multi-photon microscopy, we observed that the elastin fibers orientation changes from a relatively uniform distribution in regions close to the luminal surface to a more circumferential distribution in regions that dominate the media, then to a longitudinal distribution in regions close to the outer media. Planar biaxial tensile test was performed to characterize the anisotropic behavior of elastin network. A new structure-based constitutive model of elastin network was developed to incorporate the transmural variation in fiber orientation distribution. The new model well captures the anisotropic mechanical behavior of elastin network under both equi- and nonequi-biaxial loading and showed improvements in both fitting and predicting capabilities when compared to a model that only considers the fiber orientation distribution from the intima side. We submit that the transmural variation in fiber orientation distribution is important in characterizing the anisotropic mechanical behavior of elastin network and

  18. Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin.

    Science.gov (United States)

    Keeley, Fred W; Bellingham, Catherine M; Woodhouse, Kimberley A

    2002-02-28

    Elastin is the major extracellular matrix protein of large arteries such as the aorta, imparting characteristics of extensibility and elastic recoil. Once laid down in tissues, polymeric elastin is not subject to turnover, but is able to sustain its mechanical resilience through thousands of millions of cycles of extension and recoil. Elastin consists of ca. 36 domains with alternating hydrophobic and cross-linking characteristics. It has been suggested that these hydrophobic domains, predominantly containing glycine, proline, leucine and valine, often occurring in tandemly repeated sequences, are responsible for the ability of elastin to align monomeric chains for covalent cross-linking. We have shown that small, recombinantly expressed polypeptides based on sequences of human elastin contain sufficient information to self-organize into fibrillar structures and promote the formation of lysine-derived cross-links. These cross-linked polypeptides can also be fabricated into membrane structures that have solubility and mechanical properties reminiscent of native insoluble elastin. Understanding the basis of the self-organizational ability of elastin-based polypeptides may provide important clues for the general design of self-assembling biomaterials.

  19. Elastin in the Liver

    Directory of Open Access Journals (Sweden)

    Jiri Kanta

    2016-10-01

    Full Text Available A characteristic feature of liver cirrhosis is the accumulation of large amounts of connective tissue with the prevailing content of type I collagen. Elastin is a minor connective tissue component in normal liver but it is actively synthesized by hepatic stellate cells and portal fibroblasts in diseased liver. The accumulation of elastic fibers in later stages of liver fibrosis may contribute to the decreasing reversibility of the disease with advancing time. Elastin is formed by polymerization of tropoelastin monomers. It is an amorphous protein highly resistant to the action of proteases that forms the core of elastic fibers. Microfibrils surrounding the core are composed of fibrillins that bind a number of proteins involved in fiber formation. They include microfibril-associated glycoproteins (MAGPs, microfibrillar-associated proteins (MFAPs and fibulins. Lysyl oxidase (LOX and lysyl oxidase-like proteins (LOXLs are responsible for tropoelastin cross-linking and polymerization. TGF-β complexes attached to microfibrils release this cytokine and influence the behavior of the cells in the neighborhood. The role of TGF-β as the main profibrotic cytokine in the liver is well-known and the release of the cytokines of TGF-β superfamily from their storage in elastic fibers may affect the course of fibrosis. Elastic fibres are often studied in the tissues where they provide elasticity and resilience but their role is no longer viewed as purely mechanical. Tropoelastin, elastin polymer and elastin peptides resulting from partial elastin degradation influence fibroblastic and inflammatory cells as well as angiogenesis. A similar role may be performed by elastin in the liver. This article reviews the results of the research of liver elastic fibers on the backgound of the present knowledge of elastin biochemistry and physiology. The regulation of liver elastin synthesis and degradation may be important for the outcome of liver fibrosis.

  20. Aluminum Chloride Pretreatment of Elastin Inhibits Elastolysis by Matrix Metalloproteinases and Leads to Inhibition of Elastin-Oriented Calcification

    OpenAIRE

    Bailey, Michael; Xiao, Hui; Ogle, Matthew; Vyavahare, Naren

    2001-01-01

    Calcification of elastin occurs in many pathological cardiovascular diseases including atherosclerosis. We have previously shown that purified elastin when subdermally implanted in rats undergoes severe calcification and aluminum chloride (AlCl3) pretreatment of elastin inhibits calcification. In the present study we investigated whether matrix metalloproteinase (MMP) binding to elastin and elastin degradation is prevented by AlCl3 pretreatment. Subdermal implantation of AlCl3-pretreated elas...

  1. Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly-l-lysine for cartilage tissue engineering.

    Science.gov (United States)

    Kuo, Yung-Chih; Ku, Hao-Fu; Rajesh, Rajendiran

    2017-09-01

    Cartilage has limited ability to self-repair due to the absence of blood vessels and nerves. The application of biomaterial scaffolds using biomimetic extracellular matrix (ECM)-related polymers has become an effective approach to production of engineered cartilage. Chitosan/γ-poly(glutamic acid) (γ-PGA) scaffolds with different mass ratios were prepared using genipin as a cross-linker and a freeze-drying method, and their surfaces were modified with elastin, human serum albumin (HSA) and poly-l-lysine (PLL). The scaffolds were formed through a complex between NH 3 + of chitosan and COO - of γ-PGA, confirmed by Fourier transform infrared spectroscopy, and exhibited an interconnected porous morphology in field emission scanning electron microscopy analysis. The prepared chitosan/γ-PGA scaffolds, at a 3:1 ratio, obtained the required porosity (90%), pore size (≥100μm), mechanical strength (compressive strength>4MPa, Young's modulus>4MPa) and biodegradation (30-60%) for articular cartilage tissue engineering applications. Surface modification of the scaffolds showed positive indications with improved activity toward cell proliferation (deoxyribonucleic acid), cell adhesion and ECM (glycoaminoglycans and type II collagen) secretion of bovine knee chondrocytes compared with unmodified scaffolds. In caspase-3 detection, elastin had a higher inhibitory effect on chondrocyte apoptosis in vitro, followed by HSA, and then PLL. We concluded that utilizing chitosan/γ-PGA scaffolds with surface active biomolecules, including elastin, HSA and PLL, can effectively promote the growth of chondrocytes, secrete ECM and improve the regenerative ability of cartilaginous tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Remote Exosites of the Catalytic Domain of Matrix Metalloproteinase-12 Enhance Elastin Degradation┼

    Science.gov (United States)

    Fulcher, Yan G.; Van Doren, Steven R.

    2011-01-01

    How does matrix metalloproteinase-12 (MMP-12 or metalloelastase) degrade elastin with high specific activity? NMR suggested soluble elastin to cover surfaces of MMP-12 far from its active site. Two of these surfaces have been found, by mutagenesis guided by the BINDSIght approach, to affect degradation and affinity for elastin substrates but not a small peptide substrate. Main exosite 1 has been extended out to Asp124 that binds calcium. Novel exosite 2 comprises residues from the II–III loop and β-strand I near the back of the catalytic domain. The high exposure of these distal exosites may make them accessible to elastin made more flexible by partial hydrolysis. Importantly, combination of a lesion at each of exosites 1 and 2 and active site decreased catalytic competence towards soluble elastin by 13- to 18-fold to the level of MMP-3, homologue and poor elastase. Double mutant cycle analysis of conservative mutations of Met156 (exosite 2) and either Asp124 (exosite 1) or Ile180 (active site) had additive effects. Compared to polar substitutions observed in other MMPs, Met156 enhanced affinity and Ile180 kcat for soluble elastin. Both residues detracted from the higher folding stability with polar mutations. This resembles the trend in enzymes of an inverse relationship between folding stability and activity. Restoring Asp124 from combination mutants enhanced kcat for soluble elastin. In elastin degradation, exosites 1 and 2 contributed independently of each other and Ile180 at the active site, but with partial coupling to Ala182 near the active site. The concept of weak, separated interactions coalescing somewhat independently can be extended to this proteolytic digestion of a protein from fibrils. PMID:21967233

  3. Vascular nanomedicine: Site specific delivery of elastin stabilizing therapeutics to damaged arteries

    Science.gov (United States)

    Sinha, Aditi

    improved resistance to elastolytic digestion. We further show that the same polyphenols interact with monomeric tropoelastin released by the vascular cells and dramatically increasing their self-assembly in-vitro. In addition, we demonstrate the elastogenic ability of these polyphenols in aiding the crosslinking of tropoelastin released by aneurysmal cells converting it into mature elastin. Finally, we developed a nanoparticle system functionalized with elastin antibody on the surface that, upon systemic delivery, can recognize and bind to sites of damaged elastin in the aorta. We are able to show that this nanoparticle system works in representative animal models for MAC and AAA. These nanoparticles demonstrated spatial and functional specificity for degraded elastin. In conclusion, our work is focused on understanding the role of elastin degradation in vascular calcification and aortic aneurysms. We tested approaches to halt elastin degradation and to regenerate elastin in arteries so that homeostasis can be achieved.

  4. Circulating elastin peptides, role in vascular pathology.

    Science.gov (United States)

    Robert, L; Labat-Robert, J

    2014-12-01

    The atherosclerotic process starts with the degradation of elastic fibers. Their presence was demonstrated in the circulation as well as several of their biological properties elucidated. We described years ago a procedure to obtain large elastin peptides by organo-alkaline hydrolysis, κ-elastin. This method enabled also the preparation of specific antibodies used to determine elastin peptides, as well as anti-elastin antibodies in body fluids and tissue extracts. Elastin peptides were determined in a large number of human blood samples. Studies were carried out to explore their pharmacological properties. Similar recent studies by other laboratories confirmed our findings and arose new interest in circulating elastin peptides for their biological activities. This recent trend justified the publication of a review of the biological and pathological activities of elastin peptides demonstrated during our previous studies, subject of this article. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats.

    Science.gov (United States)

    Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Lopez, Lianet; Kantores, Crystal; Jankov, Robert P; Tanswell, A Keith

    2015-07-01

    Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2 was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation. Copyright © 2015 the American Physiological Society.

  6. Isolation of intact elastin fibers devoid of microfibrils.

    NARCIS (Netherlands)

    Daamen, W.F.; Hafmans, T.G.M.; Veerkamp, J.H.; Kuppevelt, A.H.M.S.M. van

    2005-01-01

    Purification protocols for elastin generally result in greatly damaged elastin fibers and this likely influences the biological response. We here describe a novel protocol for the isolation of elastin whereby the fibers stay intact, and introduce the term "elastin fiber" for intact elastic fibers

  7. Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides

    Science.gov (United States)

    Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan

    2014-03-01

    The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.

  8. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  9. Fingerprinting Desmosine-Containing Elastin Peptides

    Science.gov (United States)

    Schräder, Christoph U.; Heinz, Andrea; Majovsky, Petra; Schmelzer, Christian E. H.

    2015-05-01

    Elastin is a vital protein of the extracellular matrix of jawed vertebrates and provides elasticity to numerous tissues. It is secreted in the form of its soluble precursor tropoelastin, which is subsequently cross-linked in the course of the elastic fiber assembly. The process involves the formation of the two tetrafunctional amino acids desmosine (DES) and isodesmosine (IDES), which are unique to elastin. The resulting high degree of cross-linking confers remarkable properties, including mechanical integrity, insolubility, and long-term stability to the protein. These characteristics hinder the structural elucidation of mature elastin. However, MS2 data of linear and cross-linked peptides released by proteolysis can provide indirect insights into the structure of elastin. In this study, we performed energy-resolved collision-induced dissociation experiments of DES, IDES, their derivatives, and DES-/IDES-containing peptides to determine characteristic product ions. It was found that all investigated compounds yielded the same product ion clusters at elevated collision energies. Elemental composition determination using the exact masses of these ions revealed molecular formulas of the type CxHyN, suggesting that the pyridinium core of DES/IDES remains intact even at relatively high collision energies. The finding of these specific product ions enabled the development of a similarity-based scoring algorithm that was successfully applied on LC-MS/MS data of bovine elastin digests for the identification of DES-/IDES-cross-linked peptides. This approach facilitates the straightforward investigation of native cross-links in elastin.

  10. Prolyl hydroxylation in elastin is not random.

    Science.gov (United States)

    Schmelzer, Christian E H; Nagel, Marcus B M; Dziomba, Szymon; Merkher, Yulia; Sivan, Sarit S; Heinz, Andrea

    2016-10-01

    This study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues. Enzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools. It was confirmed at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%-24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both the species and the tissue, however, is independent of age. The fact that the highest hydroxylation degrees of proline residues were found for elastin from the intervertebral disc and knowledge of elastin arrangement in this tissue suggest that hydroxylation plays a biomechanical role. Interestingly, a proline-rich domain of tropoelastin (domain 24), which contains several repeats of bioactive motifs, does not show any hydroxyproline residues in the mammals studied. The results show that prolyl hydroxylation is not a coincidental feature and may contribute to the adaptation of the properties of elastin to meet the functional requirements of different tissues. The study for the first time shows that prolyl hydroxylation is highly regulated in elastin. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mechanistic Insights into Elastin Degradation by Pseudolysin, the Major Virulence Factor of the Opportunistic Pathogen Pseudomonas aeruginosa

    Science.gov (United States)

    Yang, Jie; Zhao, Hui-Lin; Ran, Li-Yuan; Li, Chun-Yang; Zhang, Xi-Ying; Su, Hai-Nan; Shi, Mei; Zhou, Bai-Cheng; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2015-01-01

    Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1’ positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1’ sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection. PMID:25905792

  12. GABA promotes elastin synthesis and elastin fiber formation in normal human dermal fibroblasts (HDFs).

    Science.gov (United States)

    Uehara, Eriko; Hokazono, Hideki; Hida, Mariko; Sasaki, Takako; Yoshioka, Hidekatsu; Matsuo, Noritaka

    2017-06-01

    The multiple physiological effects of γ-aminobutyric acid (GABA) as a functional food component have been recently reported. We previously reported that GABA upregulated the expression of type I collagen in human dermal fibroblasts (HDFs), and that oral administration of GABA significantly increased skin elasticity. However, details of the regulatory mechanism still remain unknown. In this study, we further examined the effects of GABA on elastin synthesis and elastin fiber formation in HDFs. Real-time PCR indicated that GABA significantly increased the expression of tropoelastin transcript in a dose-dependent manner. Additionally, the expression of fibrillin-1, fibrillin-2, and fibulin-5/DANCE, but not lysyl oxidase and latent transforming factor-β-binding protein 4, were also significantly increased in HDFs. Finally, immunohistochemical analysis confirmed that treatment with GABA dramatically increased the formation of elastic fibers in HDFs. Taken together, our results showed that GABA improves skin elasticity in HDFs by upregulating elastin synthesis and elastin fiber formation.

  13. Induction and regulation of murine emphysema by elastin peptides.

    Science.gov (United States)

    Sellami, Mehdi; Meghraoui-Kheddar, Aïda; Terryn, Christine; Fichel, Caroline; Bouland, Nicole; Diebold, Marie-Daniele; Guenounou, Moncef; Héry-Huynh, Stéphanie; Le Naour, Richard

    2016-01-01

    Emphysema is the major component of chronic obstructive pulmonary disease (COPD). During emphysema, elastin breakdown in the lung tissue originates from the release of large amounts of elastase by inflammatory cells. Elevated levels of elastin-derived peptides (EP) reflect massive pulmonary elastin breakdown in COPD patients. Only the EP containing the GXXPG conformational motif with a type VIII β-turn are elastin receptor ligands inducing biological activities. In addition, the COOH-terminal glycine residue of the GXXPG motif seems a prerequisite to the biological activity. In this study, we endotracheally instilled C57BL/6J mice with GXXPG EP and/or COOH-terminal glycine deleted-EP whose sequences were designed by molecular dynamics and docking simulations. We investigated their effect on all criteria associated with the progression of murine emphysema. Bronchoalveolar lavages were recovered to analyze cell profiles by flow cytometry and lungs were prepared to allow morphological and histological analysis by immunostaining and confocal microscopy. We observed that exposure of mice to EP elicited hallmark features of emphysema with inflammatory cell accumulation associated with increased matrix metalloproteinases and desmosine expression and of remodeling of parenchymal tissue. We also identified an inactive COOH-terminal glycine deleted-EP that retains its binding-activity to EBP and that is able to inhibit the in vitro and in vivo activities of emphysema-inducing EP. This study demonstrates that EP are key actors in the development of emphysema and that they represent pharmacological targets for an alternative treatment of emphysema based on the identification of EP analogous antagonists by molecular modeling studies. Copyright © 2016 the American Physiological Society.

  14. Cues for cellular assembly of vascular elastin networks

    Science.gov (United States)

    Kothapalli, Chandrasekhar R.

    Elastin, a structural protein distributed in the extracellular matrix of vascular tissues is critical to the maintenance of vascular mechanics, besides regulation of cell-signaling pathways involved in injury response and morphogenesis. Thus, congenital absence or disease-mediated degradation of vascular elastin and its malformation within native vessels due to innately poor elastin synthesis by adult vascular cells compromise vascular homeostasis. Current elastin regenerative strategies using tissue engineering principles are limited by the progressive destabilization of tropoelastin mRNA expression in adult vascular cells and the unavailability of scaffolds that can provide cellular cues necessary to up-regulate elastin synthesis and regenerate faithful mimics of native elastin. Since our earlier studies demonstrated the elastogenic utility of hyaluronan (HA)-based cues, we have currently sought to identify a unique set of culture conditions based on HA fragments (0.756-2000 kDa), growth factors (TGF-beta1, IGF-1) and other biomolecules (Cu2+ ions, LOX), which will together enhance synthesis, crosslinking, maturation and fibrous elastin matrix formation by adult SMCs, under both healthy and inflammatory conditions. It was observed that TGF-beta1 (1 ng/mL) together with HA oligomers (0.2 microg/mL) synergistically suppressed SMC proliferation, enhanced tropoelastin (8-fold) and matrix elastin synthesis (5.5-fold), besides improving matrix yield (4.5-fold), possibly by increasing production and activity of lysyl oxidase (LOX). Though addition of IGF-1 alone did not offer any advantage, HA fragments (20-200 kDa) in the presence of IGF-1 stimulated tropoelastin and soluble elastin synthesis more than 2.2-fold, with HMW HA contributing for ˜5-fold increase in crosslinked matrix elastin synthesis. Similarly, 0.1 M of Cu2+ ions, alone or together with HA fragments stimulated synthesis of tropoelastin (4-fold) and crosslinked matrix elastin (4.5-fold), via increases in

  15. Degradation of tropoelastin and skin elastin by neprilysin

    DEFF Research Database (Denmark)

    Mora Huertas, Angela C.; Schmelzer, Christian E. H.; Luise, Chiara

    2018-01-01

    was to investigate the degradation of fibrillar skin elastin by neprilysin and the influence of the donor's age on the degradation process using mass spectrometry and bioinformatics approaches. The results showed that cleavage by neprilysin is dependent on previous damage of elastin. While neprilysin does not cleave...... young and intact skin elastin well, it degrades elastin fibers from older donors, which may further promote aging processes. With regards to the cleavage behavior of neprilysin, a strong preference for Gly at P1 was found, while Gly, Ala and Val were well accepted at P1' upon cleavage of tropoelastin...... and skin elastin. The results of the study indicate that the progressive release of bioactive elastin peptides by neprilysin upon skin aging may enhance local tissue damage and accelerate extracellular matrix aging processes....

  16. Prolyl hydroxylation in elastin is not random

    DEFF Research Database (Denmark)

    Schmelzer, Christian E H; Nagel, Marcus B M; Dziomba, Szymon

    2016-01-01

    BACKGROUND: This study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues. METHODS: Enzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools. RESULTS: It was confirmed...... at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences...... of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%-24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both...

  17. Alternative Splicing and Tissue-specific Elastin Misassembly Act as Biological Modifiers of Human Elastin Gene Frameshift Mutations Associated with Dominant Cutis Laxa*

    Science.gov (United States)

    Sugitani, Hideki; Hirano, Eiichi; Knutsen, Russell H.; Shifren, Adrian; Wagenseil, Jessica E.; Ciliberto, Christopher; Kozel, Beth A.; Urban, Zsolt; Davis, Elaine C.; Broekelmann, Thomas J.; Mecham, Robert P.

    2012-01-01

    Elastin is the extracellular matrix protein in vertebrates that provides elastic recoil to blood vessels, the lung, and skin. Because the elastin gene has undergone significant changes in the primate lineage, modeling elastin diseases in non-human animals can be problematic. To investigate the pathophysiology underlying a class of elastin gene mutations leading to autosomal dominant cutis laxa, we engineered a cutis laxa mutation (single base deletion) into the human elastin gene contained in a bacterial artificial chromosome. When expressed as a transgene in mice, mutant elastin was incorporated into elastic fibers in the skin and lung with adverse effects on tissue function. In contrast, only low levels of mutant protein incorporated into aortic elastin, which explains why the vasculature is relatively unaffected in this disease. RNA stability studies found that alternative exon splicing acts as a modifier of disease severity by influencing the spectrum of mutant transcripts that survive nonsense-mediated decay. Our results confirm the critical role of the C-terminal region of tropoelastin in elastic fiber assembly and suggest tissue-specific differences in the elastin assembly pathway. PMID:22573328

  18. Biophysical characterization of a de novo elastin

    Science.gov (United States)

    Greenland, Kelly Nicole

    Natural human elastin is found in tissue such as the lungs, arteries, and skin. This protein is formed at birth with no mechanism present to repair or supplement the initial quantity formed. As a result, the functionality and durability of elastin's elasticity is critically important. To date, the mechanics of this ability to stretch and recoil is not fully understood. This study utilizes de novo protein design to create a small library of simplistic versions of elastin-like proteins, demonstrate the elastin-like proteins, maintain elastin's functionality, and inquire into its structure using solution nuclear magnetic resonance (NMR). Elastin is formed from cross-linked tropoelastin. Therefore, the first generation of designed proteins consisted of one protein that utilized homogony of interspecies tropoelastin by using three common domains, two hydrophobic and one cross-linking domains. Basic modifications were made to open the hydrophobic region and also to make the protein easier to purify and characterize. The designed protein maintained its functionality, self-aggregating as the temperature increased. Uniquely, the protein remained self-aggregated as the temperature returned below the critical transition temperature. Self-aggregation was additionally induced by increasing salt concentrations and by modifying the pH. The protein appeared to have little secondary structure when studied with solution NMR. These results fueled a second generation of designed elastin-like proteins. This generation contained variations designed to study the cross-linking domain, one specific hydrophobic domain, and the effect of the length of the elastin-like protein. The cross-linking domain in one variation has been significantly modified while the flanking hydrophobic domains have remained unchanged. This characterization of this protein will answer questions regarding the specificity of the homologous nature of the cross-linking domain of tropoelastin across species. A second

  19. Interaction between fatty acid and the elastin network

    NARCIS (Netherlands)

    Vreeswijk, van J.

    1995-01-01

    The aim of the present study was to investigate the interaction between salts of fatty acids (FAS) and elastin. Absorption of fatty acids in elastin may affect the elasticity of elastin-containing tissue. Such phenomena could, for instance, be of relevance for the understanding of the

  20. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    Science.gov (United States)

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  1. Molecular-level insights into aging processes of skin elastin.

    Science.gov (United States)

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang; Heyroth, Frank; Heinz, Andrea

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Molecular-level insights into aging processes of skin elastin

    DEFF Research Database (Denmark)

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating...... the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin...... pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26...

  3. The Effect of Static Stretch on Elastin Degradation in Arteries

    Science.gov (United States)

    Chow, Ming-Jay; Choi, Myunghwan; Yun, Seok Hyun; Zhang, Yanhang

    2013-01-01

    Previously we have shown that gradual changes in the structure of elastin during an elastase treatment can lead to important transition stages in the mechanical behavior of arteries [1]. However, in vivo arteries are constantly being loaded due to systolic and diastolic pressures and so understanding the effects of loading on the enzymatic degradation of elastin in arteries is important. With biaxial tensile testing, we measured the mechanical behavior of porcine thoracic aortas digested with a mild solution of purified elastase (5 U/mL) in the presence of a static stretch. Arterial mechanical properties and biochemical composition were analyzed to assess the effects of mechanical stretch on elastin degradation. As elastin is being removed, the dimensions of the artery increase by more than 20% in both the longitude and circumference directions. Elastin assays indicate a faster rate of degradation when stretch was present during the digestion. A simple exponential decay fitting confirms the time constant for digestion with stretch (0.11±0.04 h−1) is almost twice that of digestion without stretch (0.069±0.028 h−1). The transition from J-shaped to S-shaped stress vs. strain behavior in the longitudinal direction generally occurs when elastin content is reduced by about 60%. Multiphoton image analysis confirms the removal/fragmentation of elastin and also shows that the collagen fibers are closely intertwined with the elastin lamellae in the medial layer. After removal of elastin, the collagen fibers are no longer constrained and become disordered. Release of amorphous elastin during the fragmentation of the lamellae layers is observed and provides insights into the process of elastin degradation. Overall this study reveals several interesting microstructural changes in the extracellular matrix that could explain the resulting mechanical behavior of arteries with elastin degradation. PMID:24358135

  4. Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling.

    Science.gov (United States)

    Kristensen, Jacob H; Karsdal, Morten A; Sand, Jannie Mb; Willumsen, Nicholas; Diefenbach, Claudia; Svensson, Birte; Hägglund, Per; Oersnes-Leeming, Diana J

    2015-05-03

    During the pathological destruction of lung tissue, neutrophil elastase (NE) degrades elastin, one of the major constituents of lung parenchyma. However there are no non-invasive methods to quantify NE degradation of elastin. We selected specific elastin fragments generated by NE for antibody generation and developed an ELISA assay (EL-NE) for the quantification of NE-degraded elastin. Monoclonal antibodies were developed against 10 NE-specific cleavage sites on elastin. One EL-NE assay was tested for analyte stability, linearity and intra- and inter-assay variation. The NE specificity was demonstrated using elastin cleaved in vitro with matrix metalloproteinases (MMPs), cathepsin G (CatG), NE and intact elastin. Clinical relevance was assessed by measuring levels of NE-generated elastin fragments in serum of patients diagnosed with idiopathic pulmonary fibrosis (IPF, n = 10) or lung cancer (n = 40). Analyte recovery of EL-NE for human serum was between 85% and 104%, the analyte was stable for four freeze/thaw cycles and after 24 h storage at 4°C. EL-NE was specific for NE-degraded elastin. Levels of NE-generated elastin fragments for elastin incubated in the presence of NE were 900% to 4700% higher than those seen with CatG or MMP incubation or in intact elastin. Serum levels of NE-generated elastin fragments were significantly increased in patients with IPF (137%, p = 0.002) and in patients with lung cancer (510%, p elastin. The EL-NE assay was able to specifically quantify NE-degraded elastin in serum. Serum levels of NE-degraded elastin might be used to detect excessive lung tissue degradation in lung cancer and IPF.

  5. Procyanidins-crosslinked aortic elastin scaffolds with distinctive anti-calcification and biological properties.

    Science.gov (United States)

    Wang, Xiaoya; Zhai, Wanyin; Wu, Chengtie; Ma, Bing; Zhang, Jiamin; Zhang, Hongfeng; Zhu, Ziyan; Chang, Jiang

    2015-04-01

    Elastin, a main component of decellularized extracellular matrices and elastin-containing materials, has been used for tissue engineering applications due to their excellent biocompatibility. However, elastin is easily calcified, leading to the decrease of life span for elastin-based substitutes. How to inhibit the calcification of elastin-based scaffolds, but maintain their good biocompatibility, still remains significantly challenging. Procyanidins (PC) are a type of natural polyphenols with crosslinking ability. To investigate whether pure elastin could be crosslinked by PC with anti-calcification effect, PC was first used to crosslink aortic elastin. Results show that PC can crosslink elastin and effectively inhibit elastin-initiated calcification. Further experiments reveal the possible mechanisms for the anti-calcification of PC crosslinking including (1) inhibiting inflammation cell attachment, and secretion of inflammatory factors such as MMPs and TNF-α, (2) preventing elastin degradation by elastase, and (3) direct inhibition of mineral nucleation in elastin. Moreover, the PC-crosslinked aortic elastin maintains natural structure with high pore volume (1111 μL/g), large pore size (10-300 μm) and high porosity (75.1%) which facilitates recellularization of scaffolds in vivo, and displays excellent hemocompatibility, anti-thrombus and anti-inflammatory potential. The advantages of PC-crosslinked porous aortic elastin suggested that it can serve as a promising scaffold for tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Mechanical contribution of lamellar and interlamellar elastin along the mouse aorta.

    Science.gov (United States)

    Clark, T E; Lillie, M A; Vogl, A W; Gosline, J M; Shadwick, R E

    2015-10-15

    The mechanical properties of aortic elastin vary regionally, but the microstructural basis for this variation is unknown. This study was designed to identify the relative contributions of lamellar and interlamellar elastin to circumferential load bearing in the mouse thoracic and abdominal aortas. Forces developed in uniaxial tests of samples of fresh and autoclaved aorta were correlated with elastin content and morphology obtained from histology and multiphoton laser scanning microscopy. Autoclaving should render much of the interlamellar elastin mechanically incompetent. In autoclaved tissue force per unit sample width correlated with lamellar elastin content (P≪0.001) but not total elastin content. In fresh tissue at low strain where elastin dominates the mechanical response, forces were higher than in the autoclaved tissue, but force did not correlate with total elastin content. Therefore although interlamellar elastin likely contributed to the stiffness in the fresh aorta, its contribution appeared not in proportion to its quantity. In both fresh and autoclaved tissue, elastin stiffness consistently decreased along the abdominal aorta, a key area for aneurysm development, and this difference could not be fully accounted for on the basis of either lamellar or total elastin content. These findings are relevant to the development of mathematical models of arterial mechanics, particularly for mouse models of arterial diseases involving elastic tissue. In microstructural based models the quantity of each mural constituent determines its contribution to the total response. This study shows elastin's mechanical response cannot necessarily be accounted for on the basis of fibre quantity, orientation, and modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ferroelectric switching of elastin

    Science.gov (United States)

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  8. Elastin as a biomaterial for tissue engineering.

    NARCIS (Netherlands)

    Daamen, W.F.; Veerkamp, J.H.; Hest, J.C.M. van; Kuppevelt, A.H.M.S.M. van

    2007-01-01

    Biomaterials based upon elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. This interest is fuelled by the remarkable properties of this structural protein, such as elasticity, self-assembly, long-term stability, and biological activity.

  9. Extraction and characterization of elastin from poultry skin

    Energy Technology Data Exchange (ETDEWEB)

    Nadalian, Mehdi; Yusop, Salma Mohamad; Mustapha, Wan Aida Wan; Babji, Abdul Salam [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Azman, Mohd Azri [Strategic Livestock Research Centre, Malaysian Agricultural Research and Development Institute, MARDI Headquarters, 43400, Serdang, Selangor (Malaysia)

    2013-11-27

    Poultry by-products have a great economic potential that need to be exploited. Poultry skin could be utilized to produce elastin, which is often incorporated in the production of functional food or medicine due to its antioxidative properties. This study was conducted to determine the physicochemical and microstructural characteristics of elastins isolated from broiler and spent hen skin. Analyses including proximate and amino acid composition along with transmission electron microscopy (TEM) were carried out. In this study, elastin was successfully extracted from broiler and spent hen skin using three successive solvents extract of NaCl, acetone and NaOH respectively. It was apparent that the fat content of extracted elastin from broiler skin was higher (P < 0.05) than spent hen’s, with both samples recording less than 1% fat. Moreover, broiler skin elastin also had a higher protein content (68.3%) than spent hen’s (67.8%). Both skin sources contained glycine as the major amino acid (19–20%), followed by glutamic acid, proline, alanine and arginine. The results of TEM indicated that the use of collagenase enzyme or further purification efforts should be incorporated along with the extraction methods used because of the presence of collagen and other debris in the resultant elastin.

  10. Extraction and characterization of elastin from poultry skin

    International Nuclear Information System (INIS)

    Nadalian, Mehdi; Yusop, Salma Mohamad; Mustapha, Wan Aida Wan; Babji, Abdul Salam; Azman, Mohd Azri

    2013-01-01

    Poultry by-products have a great economic potential that need to be exploited. Poultry skin could be utilized to produce elastin, which is often incorporated in the production of functional food or medicine due to its antioxidative properties. This study was conducted to determine the physicochemical and microstructural characteristics of elastins isolated from broiler and spent hen skin. Analyses including proximate and amino acid composition along with transmission electron microscopy (TEM) were carried out. In this study, elastin was successfully extracted from broiler and spent hen skin using three successive solvents extract of NaCl, acetone and NaOH respectively. It was apparent that the fat content of extracted elastin from broiler skin was higher (P < 0.05) than spent hen’s, with both samples recording less than 1% fat. Moreover, broiler skin elastin also had a higher protein content (68.3%) than spent hen’s (67.8%). Both skin sources contained glycine as the major amino acid (19–20%), followed by glutamic acid, proline, alanine and arginine. The results of TEM indicated that the use of collagenase enzyme or further purification efforts should be incorporated along with the extraction methods used because of the presence of collagen and other debris in the resultant elastin

  11. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, S M [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, J X [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Luo, T S [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, H L [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Zhao, J J [Department of Skin, Affiliated Xiehe Hospital, Fujian Medical University, Fuzhou 350001 (China)

    2007-07-15

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue.

  12. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Luo, T S; Chen, H L; Zhao, J J

    2007-01-01

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue

  13. Acquired Localized Cutis Laxa due to Increased Elastin Turnover

    DEFF Research Database (Denmark)

    Nygaard, Rie Harboe; Maynard, Scott; Schjerling, Peter

    2016-01-01

    Cutis laxa is a rare disease characterized by abnormal skin wrinkling and laxity, due to decreased elastin synthesis or structural extracellular matrix defects. We have explored elastin metabolism in a case of adult onset cutis laxa localized to the upper body of a woman. For this purpose, we...... obtained skin biopsies from affected and unaffected skin areas of the patient and analyzed these with microscopy, polymerase chain reaction, western blotting and cell culture experiments. Skin from the affected area lacked elastin fibers in electron microscopy but had higher mRNA expression of elastin...... and total RNA. Levels of an apparent tropoelastin degradation product were higher in the affected area. Fibroblast cultures from the affected area were able to produce elastin and showed higher proliferation and survival after oxidative and UVB stress compared to fibroblasts from the unaffected area...

  14. Comparison of five procedures for the purification of insoluble elastin.

    NARCIS (Netherlands)

    Daamen, W.F.; Hafmans, T.G.M.; Veerkamp, J.H.; Kuppevelt, A.H.M.S.M. van

    2001-01-01

    Elastin is an insoluble, highly cross-linked protein, providing elasticity to organs like lung. aorta, and ligaments. Despite its remarkable mechanical properties. elastin has found little use as a biomaterial. Purification of intact elastin from elastic fibres presents a major challenge, among

  15. Effect of glucose on the biomechanical function of arterial elastin.

    Science.gov (United States)

    Wang, Yunjie; Zeinali-Davarani, Shahrokh; Davis, Elaine C; Zhang, Yanhang

    2015-09-01

    Elastin is essential to provide elastic support for blood vessels. As a remarkably long-lived protein, elastin can suffer from cumulative effects of exposure to biochemical damages, which can greatly compromise its biomechanical properties. Non-enzymatic glycation is one of the main mechanisms of aging and its effect is magnified in diabetic patients. The purpose of this study is to investigate the effects of glucose on mechanical properties of isolated porcine aortic elastin. Elastin samples were incubated in 2 M glucose solution and were allowed to equilibrate for 4, 7, 14, 21 or 28 days at 37 °C. Equibiaxial tensile tests were performed to study the changes of elastic properties of elastin due to glycation. Significant decreases in tissue dimension were observed after 7 days glucose incubation. Elastin samples treated for 14, 21 or 28 days demonstrate a significant increase in hysteresis in the stress-stretch curves, indicating a greater energy loss due to glucose treatment. Both the longitudinal and the circumferential directions show significant increases in tangent modulus with glucose treatment, however only significant increases are observed after 7 days for the circumferential direction. An eight-chain statistical mechanics based microstructural model was used to study the hyperelastic and orthotropic behavior of the glucose-treated elastin and the material parameters were estimated using a nonlinear least squares method. Material parameters in the model were related to elastin density and fiber orientation, and, hence, the possible microstructural changes in glucose-treated elastin. Estimated material parameters show a general increasing trend in elastin density per unit volume with glucose incubation. The simulation results also indicate that more elastic fibers are aligned in the longitudinal and circumferential directions, rather than in the radial direction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Adherence of B16-F10 melanoma cells to elastin

    International Nuclear Information System (INIS)

    Zetter, B.R.; Netland, P.A.

    1986-01-01

    B16-F10 melanoma cells selectivity colonize lung tissue in vivo. The authors have previously shown that these cells adhere preferentially to lung tissue in vitro. To quantify the binding of B16-F10 cells to isolated components of lung tissue, the authors devised a dot-blot cell adhesion assay. Samples were absorbed to 4 mm dots of nylon based paper under non-denaturing conditions, blocked with albumin or hemoglobin, and incubated with radiolabelled cells for 30 min. at 4 0 C. 125 -I labelled B16-F10 cells demonstrated a dose dependent binding to mouse lung elastin. Autoradiography and scanning electron microscopy demonstrated that cells localized preferentially to the elastin dots. The melanoma cells bound more strongly to elastin relative to laminin, fibronectin, collagen types I and IV or heparan sulfate. Neither elastin-associated microfibrillar protein nor fragments of elastin produced by alkali or acid treatment demonstrated significant binding activity for these cells. The findings demonstrate that in addition to its unique mechanical properties that confer elasticity to tissues, elastin can also function as a cell adhesion molecule. The localization of elastin in the lung and its adhesive properties reported here suggest that elastin may facilitate the arrest and eventual colonization of circulating B16-F10 melanoma cells in the mouse lung

  17. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    Science.gov (United States)

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

  18. Does human leukocyte elastase degrade intact skin elastin?

    DEFF Research Database (Denmark)

    Schmelzer, Christian E H; Jung, Michael C; Wohlrab, Johannes

    2012-01-01

    This study aimed to investigate the susceptibility of intact fibrillar human elastin to human leukocyte elastase and cathepsin G. Elastin is a vital protein of the extracellular matrix of vertebrates, and provides exceptional properties including elasticity and tensile strength to many tissues...... and organs, including the aorta, lung, cartilage, elastic ligaments and skin, and is thus critical for their long-term function. Mature elastin is an insoluble and extremely durable protein that undergoes very little turnover, but sustained exposure to proteases may lead to irreversible and severe damage......, and thus to functional loss of the elastic fiber network. Hence, it is a key issue to understand which enzymes actually initiate elastolysis under certain pathological conditions or during intrinsic aging. In this paper, we provide a complete workflow for isolation of pure and intact elastin from very...

  19. Elastin Fiber Accumulation in Liver Correlates with the Development of Hepatocellular Carcinoma.

    Science.gov (United States)

    Yasui, Yutaka; Abe, Tokiya; Kurosaki, Masayuki; Higuchi, Mayu; Komiyama, Yasuyuki; Yoshida, Tsubasa; Hayashi, Tsuguru; Kuwabara, Konomi; Takaura, Kenta; Nakakuki, Natsuko; Takada, Hitomi; Tamaki, Nobuharu; Suzuki, Shoko; Nakanishi, Hiroyuki; Tsuchiya, Kaoru; Itakura, Jun; Takahashi, Yuka; Hashiguchi, Akinori; Sakamoto, Michiie; Izumi, Namiki

    2016-01-01

    The fibrosis stage, which is evaluated by the distribution pattern of collagen fibers, is a major predictor for the development of hepatocellular carcinoma (HCC) for patients with hepatitis C. Meanwhile, the role of elastin fibers has not yet been elucidated. The present study was conducted to determine the significance of quantifying both collagen and elastin fibers. We enrolled 189 consecutive patients with hepatitis C and advanced fibrosis. Using Elastica van Gieson-stained whole-slide images of pretreatment liver biopsies, collagen and elastin fibers were evaluated pixel by pixel (0.46 μm/pixel) using an automated computational method. Consequently, fiber amount and cumulative incidences of HCC within 3 years were analyzed. There was a significant correlation between collagen and elastin fibers, whereas variation in elastin fiber was greater than in collagen fiber. Both collagen fiber (p = 0.008) and elastin fiber (p elastin fiber (p = 0.002) in addition to higher collagen fiber (p = 0.05) showed significantly higher incidences of HCC. With regard to elastin fiber, this difference remained significant in F3 patients. Furthermore, for patients with a higher collagen fiber amount, higher elastin was a significant predictor for HCC development (p = 0.02). Computational analysis is a novel technique for quantification of fibers with the added value of conventional staging. Elastin fiber is a predictor for the development of HCC independently of collagen fiber and F stage.

  20. Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Daskalova, A.; Nathala, Chandra S.R.; Bliznakova, I.; Stoyanova, E.; Zhelyazkova, A.; Ganz, T.; Lueftenegger, S.; Husinsky, W.

    2014-01-01

    We report on the structural investigation of self-organized micropores generated in thin gelatin, collagen, and collagen–elastin films after single and multishot irradiation with pulse durations ranging from 30–100 fs at 800 nm. We systematically studied the effect of laser parameters: laser energy, number of pulses, and pulse duration on the development of the micropores. This work showed that applying laser pulses at different rates significantly modified the thin film surface. The results clearly revealed that femtosecond laser treatment of thin films of biomaterials: gelatin, collagen and collagen–elastin, results in creation of micro/nanopores with different size of cavity formations. Experimentally, it is demonstrated that it is possible to influence the dimensions of the pore sizes, ranging from 100 nm to 2 μm by tuning the laser parameters. We are currently further exploring the possibility of structuring these biomaterials by applying a time delay between separate pulses. First results from cell culture experiments on laser created surface foam of collagen–elastin were successfully obtained, showing the potential of the method to cultivate cells on superficial porous substrates and the preferable selectivity of the cells to proliferate on the laser modified parts of the biopolymer substrate.

  1. Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Daskalova, A., E-mail: a_daskalova@code.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Nathala, Chandra S.R. [IAP, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria); Femtolasers Productions GmbH, Fernkorngasse10, 1100 Vienna (Austria); Bliznakova, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Stoyanova, E. [IBIR, Department of Molecular Immunology, Bulgarian Academy of Sciences, 73, Tzarigradsko Chaussee blvd., 1113 Sofia (Bulgaria); Zhelyazkova, A. [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Ganz, T. [Femtolasers Productions GmbH, Fernkorngasse10, 1100 Vienna (Austria); Lueftenegger, S.; Husinsky, W. [IAP, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)

    2014-02-15

    We report on the structural investigation of self-organized micropores generated in thin gelatin, collagen, and collagen–elastin films after single and multishot irradiation with pulse durations ranging from 30–100 fs at 800 nm. We systematically studied the effect of laser parameters: laser energy, number of pulses, and pulse duration on the development of the micropores. This work showed that applying laser pulses at different rates significantly modified the thin film surface. The results clearly revealed that femtosecond laser treatment of thin films of biomaterials: gelatin, collagen and collagen–elastin, results in creation of micro/nanopores with different size of cavity formations. Experimentally, it is demonstrated that it is possible to influence the dimensions of the pore sizes, ranging from 100 nm to 2 μm by tuning the laser parameters. We are currently further exploring the possibility of structuring these biomaterials by applying a time delay between separate pulses. First results from cell culture experiments on laser created surface foam of collagen–elastin were successfully obtained, showing the potential of the method to cultivate cells on superficial porous substrates and the preferable selectivity of the cells to proliferate on the laser modified parts of the biopolymer substrate.

  2. Elastin in the human intervertebral disk. A histological and biochemical study comparing it with elastin in the human yellow ligament.

    Science.gov (United States)

    Mikawa, Y; Hamagami, H; Shikata, J; Yamamuro, T

    1986-01-01

    The elastic fiber and elastin in the human yellow ligament and intervertebral disk were studied histologically and biochemically. The elastic fiber in the human intervertebral disk, which until now had not been clearly identified microscopically, was observed clearly. We found the distribution of the elastic fiber in the intervertebral disk to be very sparse and irregular, and its diameter was small, being about one-tenth of that found in the yellow ligament. The elastin contents of the yellow ligament and intervertebral disk were 46.7% +/- 0.9% and 1.7% +/- 0.2% respectively (mean +/- SE) of the total dry weight. The amino acid composition of elastin in the yellow ligament is similar to that of other tissue, as reported in the literature; however, that found in the intervertebral disk is significantly different. It would appear, therefore, that the elastin in the intervertebral disk is of a different type from that found elsewhere.

  3. Broadband diffuse optical characterization of elastin for biomedical applications.

    Science.gov (United States)

    Konugolu Venkata Sekar, Sanathana; Beh, Joo Sin; Farina, Andrea; Dalla Mora, Alberto; Pifferi, Antonio; Taroni, Paola

    2017-10-01

    Elastin is a key structural protein of dynamic connective tissues widely found in the extracellular matrix of skin, arteries, lungs and ligaments. It is responsible for a range of diseases related to aging of biological tissues. The optical characterization of elastin can open new opportunities for its investigation in biomedical studies. In this work, we present the absorption spectra of elastin using a broadband (550-1350nm) diffuse optical spectrometer. Distortions caused by fluorescence and finite bandwidth of the laser source on estimated absorption were effectively accounted for in measurements and data analysis and compensated. A comprehensive summary and comparison between collagen and elastin is presented, highlighting distinct features for its accurate quantification in biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Elastin distribution in the normal uterus, uterine leiomyomas, adenomyosis and adenomyomas: a comparison.

    Science.gov (United States)

    Zheng, Wei-Qiang; Ma, Rong; Zheng, Jian-Ming; Gong, Zhi-Jing

    2006-04-01

    To describe the histologic distribution of elastin in the nonpregnant human uterus, uterine leiomyomas, adenomyosis and adenomyomas. Uteri were obtained from women undergoing hysterectomy for benign conditions, including 26 cases of uterine leiomyomas, 24 cases of adenomyosis, 18 adenomyomas and 6 cases of autopsy specimens. Specific histochemical staining techniques were employed in order to demonstrate the distribution of elastin. The distribution of elastin components in the uterus was markedly uneven and showed a decreasing gradient from outer to inner myometrium. No elastin was present within leiomyomas, adenomyomas or adenomyosis. The distribution of elastin may help explain the normal function of the myometrium in labor. It implies that the uneven distribution of elastin components and absence of elastin within leiomyomas, adenomyomas and adenomyosis could be of some clinical significance. The altered elastin distribution in disease states may help explain such symptoms as dysmenorrhea in uterine endometriosis.

  5. Liberation of Desmosine and Isodesmosine as Amino Acids from Insoluble Elastin by Elastolytic Proteases

    Science.gov (United States)

    Umeda, Hideyuki; Aikawa, Masanori; Libby, Peter

    2011-01-01

    The development of atherosclerotic lesions and abdominal aortic aneurysms involves degradation and loss of extracellular matrix components, such as collagen and elastin. Releases of the elastin cross-links desmosine (DES) and isodesmosine (IDE) may reflect elastin degradation in cardiovascular diseases. This study investigated the production of soluble elastin cross-linking structures by proteinases implicated in arterial diseases. Recombinant MMP-12 and neutrophil elastase liberated DES and IDE as amino acids from insoluble elastin. DES and IDE were also released from insoluble elastin exposed to monocyte/macrophage cell lines or human primary macrophages derived from peripheral blood monocytes. Elastin oxidized by reactive oxygen species (ROS) liberated more unconjugated DES and IDE than did non-oxidized elastin when incubated with MMP-12 or neutrophil elastase. These results support the exploration of free DES and IDE as biomarkers of elastin degradation. PMID:21726534

  6. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Sell, S A [Virginia Commonwealth University, Richmond, VA 23298 (United States); McClure, M J [Virginia Commonwealth University, Richmond, VA 23298 (United States); Barnes, C P [Virginia Commonwealth University, Richmond, VA 23298 (United States); Knapp, D C [Virginia Commonwealth University, Richmond, VA 23298 (United States); Walpoth, B H [University Hospital, 1211 Geneva 14 (Switzerland); Simpson, D G [Virginia Commonwealth University, Richmond, VA 23298 (United States); Bowlin, G L [Virginia Commonwealth University, Richmond, VA 23298 (United States)

    2006-06-15

    An electrospun cardiovascular graft composed of polydioxanone (PDO) and elastin has been designed and fabricated with mechanical properties to more closely match those of native arterial tissue, while remaining conducive to tissue regeneration. PDO was chosen to provide mechanical integrity to the prosthetic, while elastin provides elasticity and bioactivity (to promote regeneration in vitro/in situ). It is the elastic nature of elastin that dominates the low-strain mechanical response of the vessel to blood flow and prevents pulsatile energy from being dissipated as heat. Uniaxial tensile and suture retention tests were performed on the electrospun grafts to demonstrate the similarities of the mechanical properties between the grafts and native vessel. Dynamic compliance measurements produced values that ranged from 1.2 to 5.6%/100 mmHg for a set of three different mean arterial pressures. Results showed the 50:50 ratio to closely mimic the compliance of native femoral artery, while grafts that contained less elastin exceeded the suture retention strength of native vessel. Preliminary cell culture studies showed the elastin-containing grafts to be bioactive as cells migrated through their full thickness within 7 days, but failed to migrate into pure PDO scaffolds. Electrospinning of the PDO and elastin-blended composite into a conduit for use as a small diameter vascular graft has extreme potential and warrants further investigation as it thus far compares favorably to native vessel.

  7. Fluorescence, aggregation properties and FT-IR microspectroscopy of elastin and collagen fibers.

    Science.gov (United States)

    Vidal, Benedicto de Campos

    2014-10-01

    Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Design of an elastin-layered dermal regeneration template.

    Science.gov (United States)

    Mithieux, Suzanne M; Weiss, Anthony S

    2017-04-01

    We demonstrate a novel approach for the production of tunable quantities of elastic fibers. We also show that exogenous tropoelastin is rate-limiting for elastin synthesis regardless of the age of the dermal fibroblast donor. Additionally, we provide a strategy to further enhance synthesis by older cells through the application of conditioned media. We show that this approach delivers an elastin layer on one side of the leading dermal repair template for contact with the deep dermis in order to deliver prefabricated elastic fibers to a physiologically appropriate site during subsequent surgery. This system is attractive because it provides for the first time a viable path for sufficient, histologically detectable levels of patient elastin into full-thickness wound sites that have until now lacked this elastic underlayer. The scars of full thickness wounds typically lack elasticity. Elastin is essential for skin elasticity and is enriched in the deep dermis. This paper is significant because it shows that: (1) we can generate elastic fibers in tunable quantities, (2) tropoelastin is the rate-limiting component in elastin synthesis in vitro, (3) we can generate elastin fibers regardless of donor age, (4) we describe a novel approach to further increase the numbers and thickness of elastic fibers for older donors, (5) we improve on Integra Dermal Regeneration Template and generate a new hybrid biomaterial intended to subsequently surgically deliver these elastic fibers, (6) the elastic fiber layer is presented on the side of Integra that is intended for delivery into its physiologically appropriate site i.e. the deep dermis. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Investigation of water-soluble elastin as a multifunctional cosmetic material: Moisturizing and whitening effects.

    Science.gov (United States)

    Inoue, Asako; Hikima, Tomohiro; Taniguchi, Suguru; Nose, Takeru; Maeda, Iori

    Elastin and collagen are extracellular matrix proteins that are widely distributed in the body. Although elastin essentially functions as a skin moisturizer, there have been few reports on its other fundamental chemical and biological functions. In this study, we investigated the moisturizing and whitening (tyrosinase inhibition) effects of elastin to examine its usefulness as a cosmetic material. Water-soluble hot alkali pig aorta (HAPA)-elastin was prepared from pig aorta using the hot alkali method. HAPA-elastin showed a widely distributed molecular weight and had a coacervation property that mediated reversible self-assembly of its molecules with increasing temperature. Amino acid analysis of HAPA-elastin showed a high content (81.5%) of hydrophobic amino acids such as Gly, Ala, Val, and Pro. Des (desmosine) and Ide (isodesmosine), which are characteristic amino acids of elastin, accounted for more than 0.4% of the total amino acid content. HAPA-elastin showed a moisture-retaining property. The water content of skin samples treated with and without HAPA-elastin was 77.2% ± 7.8% and 49.4% ± 10.1%, respectively. HAPA-elastin also inhibited tyrosinase activity by 11.3% ± 3.9%. The results obtained indicate that elastin has a useful function as a cosmetic material.

  10. Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling

    DEFF Research Database (Denmark)

    Kristensen, Jacob Hull; Karsdal, Morten A.; Sand, Jannie M. B.

    2015-01-01

    Background: During the pathological destruction of lung tissue, neutrophil elastase (NE) degrades elastin, one of the major constituents of lung parenchyma. However there are no non-invasive methods to quantify NE degradation of elastin. We selected specific elastin fragments generated by NE for ...

  11. A cytokine axis regulates elastin formation and degradation

    Science.gov (United States)

    Sproul, Erin P.; Argraves, W. Scott

    2013-01-01

    Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093

  12. Levels of circulating MMP-7 degraded elastin are elevated in pulmonary disorders.

    Science.gov (United States)

    Kristensen, J H; Larsen, L; Dasgupta, B; Brodmerkel, C; Curran, M; Karsdal, M A; Sand, J M B; Willumsen, N; Knox, A J; Bolton, C E; Johnson, S R; Hägglund, P; Svensson, B; Leeming, D J

    2015-11-01

    Elastin is a signature protein of the lungs. Matrix metalloproteinase-7 (MMP-7) is important in lung defence mechanisms and degrades elastin. However, MMP-7 activity in regard to elastin degradation has never been quantified serologically in patients with lung diseases. An assay for the quantification of MMP-7 generated elastin fragments (ELM7) was therefore developed to investigate MMP-7 derived elastin degradation in pulmonary disorders such as idiopathic pulmonary fibrosis (IPF) and lung cancer. Monoclonal antibodies (mABs) were raised against eight carefully selected MMP-7 cleavage sites on elastin. After characterisation and validation of the mABs, one mAB targeting the ELM7 fragment was chosen. ELM7 fragment levels were assessed in serum samples from patients diagnosed with IPF (n=123, baseline samples, CTgov reg. NCT00786201), and lung cancer (n=40) and compared with age- and sex-matched controls. The ELM7 assay was specific towards in vitro MMP-7 degraded elastin and the ELM7 neoepitope but not towards other MMP-7 derived elastin fragments. Serum ELM7 levels were significantly increased in IPF (113%, pelastin fragments can be quantified in serum and may reflect pathological lung tissue turnover in several important lung diseases. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Effects of brachytherapy on gene expressions of elastin and elastase

    International Nuclear Information System (INIS)

    Li Junming; Zhou Jingqun; Hu Bin; Li Shuguo

    2004-01-01

    Objective: To study the effects of brachytherapy on the gene expressions of elastin and elastase in cultured rat vascular smooth muscle cells (VSMCs). Methods: Rat VSMCs cultured in DMEM containing 10% FBS were irradiated by 60 Co γ-rays at 0, 7, 14, 28 Gy respectively. Then mRNA levels of elastin and elastase were determined by reverse transcription competitive PCR(RT-PCR). Results: Brachytherapy inhibited the expressions of elastase. Elastase mRNA decreased 25.3% and 50.1% in VSMC irradiated with 14, 28 Gy, respectively (P<0.05). The elastin mRNA level increased 80.7% and 102.3% in VSMC irradiated with 14, 25 Gy, respectively (P<0.05). Conclusion: Brachytherapy inhabits the expressions of elastase and increased elastin in VSMC cells

  14. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.

    Science.gov (United States)

    Hong, Yanqing; Zhu, Xueke; Wang, Ping; Fu, Haitian; Deng, Chao; Cui, Li; Wang, Qiang; Fan, Xuerong

    2016-04-01

    Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications.

  15. Temperature-sensitive elastin-mimetic dendrimers: Effect of peptide length and dendrimer generation to temperature sensitivity.

    Science.gov (United States)

    Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki

    2014-06-01

    Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.

  16. Elastin is a key regulator of outward remodeling in arteriovenous fistulas.

    Science.gov (United States)

    Wong, C Y; Rothuizen, T C; de Vries, M R; Rabelink, T J; Hamming, J F; van Zonneveld, A J; Quax, P H A; Rotmans, J I

    2015-04-01

    Maturation failure is the major limitation of arteriovenous fistulas (AVFs) as hemodialysis access conduits. Indeed, 30-50% of AVFs fail to mature due to intimal hyperplasia and insufficient outward remodeling. Elastin has emerged as an important determinant of vascular remodeling. Here the role of elastin in AVF remodeling in elastin haplodeficient (eln(+/-)) mice undergoing AVF surgery has been studied. Unilateral AVFs between the branch of the jugular vein and carotid artery in an end to side manner were created in wild-type (WT) C57BL/6 (n = 11) and in eln(+/-) mice (n = 9). Animals were killed at day 21 and the AVFs were analyzed histologically and at an mRNA level using real-time quantitative polymerase chain reaction. Before AVF surgery, a marked reduction in elastin density in the internal elastic lamina (IEL) of eln(+/-) mice was observed. AVF surgery resulted in fragmentation of the venous internal elastic lamina in both groups while the expression of the tropoelastin mRNA was 53% lower in the eln(+/-) mice than in WT mice (p elastin has an important role in vascular remodeling following AVF creation, in which a lower amount of elastin results in enhanced outward remodeling. Interventions targeting elastin degradation might be a viable option in order to improve AVF maturation. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Insights into the role of elastin in vocal fold health and disease

    Science.gov (United States)

    Moore, Jaime

    2011-01-01

    Elastic fibers are large, complex and surprisingly poorly understood extracellular matrix (ECM) macromolecules. The elastin fiber, generated from a single human gene - elastin (ELN), is a self assembling integral protein that endows critical mechanic proprieties to elastic tissues and organs such as the skin, lungs, and arteries. The biology of elastic fibers is complex because they have multiple components, a tightly regulated developmental deposition, a multi-step hierarchical assembly and unique biomechanical functions. Elastin is present in vocal folds, where it plays a pivotal role in the quality of phonation. This review article provides an overview of the genesis of elastin and its wide- ranging structure and function. Specific distribution within the vocal fold lamina propria across the lifespan in normal and pathological states and its contribution to vocal fold biomechanics will be examined. Elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. The properties of various elastin– based materials will be discussed and their current and future applications evaluated. A new level of understanding of the biomechanical properties of vocal fold elastin composites and their molecular basis should lead to new strategies for elastic fiber repair and regeneration in aging and disease. PMID:21708449

  18. Processing and characterization of α-elastin electrospun membranes

    Science.gov (United States)

    Araujo, J.; Padrão, J.; Silva, J. P.; Dourado, F.; Correia, D. M.; Botelho, G.; Gomez Ribelles, J. L.; Lanceros-Méndez, S.; Sencadas, V.

    2014-06-01

    Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water were electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 μm width were achieved. After cross-linking with glutaraldehyde, α-elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ˜80 °C. Moreover, α-Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for random and aligned fibers mats in a PBS solution was 330±10 kPa and 732±165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.

  19. Elastin Degradation by Cathepsin V Requires Two Exosites*

    Science.gov (United States)

    Du, Xin; Chen, Nelson L. H.; Wong, Andre; Craik, Charles S.; Brömme, Dieter

    2013-01-01

    Cathepsin V is a highly effective elastase and has been implicated in physiological and pathological extracellular matrix degradation. However, its mechanism of action remains elusive. Whereas human cathepsin V exhibits a potent elastolytic activity, the structurally homologous cathepsin L, which shares a 78% amino acid sequence, has only a minimal proteolytic activity toward insoluble elastin. This suggests that there are distinct structural domains that play an important role in elastinolysis. In this study, a total of 11 chimeras of cathepsins V and L were generated to identify elastin-binding domains in cathepsin V. Evaluation of these chimeras revealed two exosites contributing to the elastolytic activity of cathepsin V that are distant from the active cleft of the protease and are located in surface loop regions. Replacement of exosite 1 or 2 with analogous residues from cathepsin L led to a 75 and 43% loss in the elastolytic activity, respectively. Replacement of both exosites yielded a non-elastase variant similar to that of cathepsin L. Identification of these exosites may contribute to the design of inhibitors that will only affect the elastolytic activity of cysteine cathepsins without interfering with other physiological protease functions. PMID:24121514

  20. Mechanistic Insight into the Elastin Degradation Process by the Metalloprotease Myroilysin from the Deep-Sea Bacterium Myroides profundi D25

    Science.gov (United States)

    Yang, Jie; Zhao, Hui-Lin; Tang, Bai-Lu; Chen, Xiu-Lan; Su, Hai-Nan; Zhang, Xi-Ying; Song, Xiao-Yan; Zhou, Bai-Cheng; Xie, Bin-Bin; Weiss, Anthony S.; Zhang, Yu-Zhong

    2015-01-01

    Elastases have been widely studied because of their important uses as medicine and meat tenderizers. However, there are relatively few studies on marine elastases. Myroilysin, secreted by Myroides profundi D25 from deep-sea sediment, is a novel elastase. In this study, we examined the elastin degradation mechanism of myroilysin. When mixed with insoluble bovine elastin, myroilysin bound hydrophobically, suggesting that this elastase may interact with the hydrophobic domains of elastin. Consistent with this, analysis of the cleavage pattern of myroilysin on bovine elastin and recombinant tropoelastin revealed that myroilysin preferentially cleaves peptide bonds with hydrophobic residues at the P1 and/or P1′ positions. Scanning electron microscopy (SEM) of cross-linked recombinant tropoelastin degraded by myroilysin showed preferential damages of spherules over cross-links, as expected for a hydrophobic preference. The degradation process of myroilysin on bovine elastin fibres was followed by light microscopy and SEM, revealing that degradation begins with the formation of crevices and cavities at the fibre surface, with these openings increasing in number and size until the fibre breaks into small pieces, which are subsequently fragmented. Our results are helpful for developing biotechnological applications for myroilysin. PMID:25793427

  1. Monoclonal anti-elastin antibody labelled with technetium-99m

    International Nuclear Information System (INIS)

    Oliveira, Marcia B.N. de; Silva, Claudia R. da; Araujo, Adriano C. de; Bernardo Filho, Mario; Porto, Luis Cristovao M.S.; Gutfilen, Bianca; Souza, J.E.Q.; Frier, Malcolm

    1999-01-01

    Technetium-99m ( 99m Tc) is widely employed in nuclear medicine due to its desirable physical, chemical and biological properties. Moreover, it is easily available and normally is inexpensive. A reducing agent is necessary to label cells and molecules with 99m Tc and stannous chloride (Sn C L 2 ) is usually employed. Elastin is the functional protein component of the elastic fiber and it is related with some diseases such as arteriosclerosis, pulmonary emphysema and others. The present study refers to the preparation of the 99m Tc labeled monoclonal anti-elastin antibody. The monoclonal antibody was incubated with an excess of 2-iminothiolane. The free thiol groups created, were capable of binding with the reduced technetium. Labeling was an exchange reaction with 99m Tc-glucoheptonate. The labeled preparation was left at 4 deg C for one hour. Then, it was passed through a Sephadex G50 column. Various fractions were collected and counted. A peak corresponding to the radiolabeled antibody was obtained. Stability studies of the labelled anti-elastin were performed at 0,3 6, 24 hours, at both 4 deg C or room temperature. The biodistribution pattern of the 99m Tc-anti-elastin was studied in healthy male Swiss mice. The immunoreactivity was also determined. An useful labeled-anti-elastin was obtained to future immunoscintigraphic investigations. (author)

  2. Pulmonary alveolar macrophages (PAM) engulf and regain elastin particles and do not respond to some stimuli of neutrophil (PMN) elastinolysis

    International Nuclear Information System (INIS)

    Tricomi, S.M.; Hyers, T.M.; Yu, S.Y.; Liao, J.J.

    1986-01-01

    Elastin degradation by PMN and by PAM differs in the proteinases produced and in the method of cellular attack on the substrate. To further characterize the elastinolytic mechanisms of these two cells, 14 C-labelled bovine ligament elastin was dried onto 24-well culture plates and live cells were placed on the substrate in culture medium. Incubation times were 4 hours for PMN and 20 hours for PAM. Elastinolytic activity was determined by counting 14 C-elastin peptides in the supernatant. By lidocaine release of PAM from the surface, 14 C-elastin retained by the cell was measured. Studies on rabbit PAM showed that 40% of dpm remain associated with the cell at 20 hours. Transmission electron microscopy of human PAM confirmed that PAM can engulf and retain elastin particles at 4 and 24 hours of incubation when in close contact with the substrate. Of the number of dpm released by PMN in 4 hours, PAM in 20 hours released only 23% of that number into supernatant and retained 17% closely associated with the cell after lidocaine treatment. Platelet factor 4, a protein released by platelets upon aggregation which stimulates activity of PMN elastase on elastin, was shown to enhance elastinolysis by whole PMN by 57% at 10 μg/ml in this assay. Platelet factor 4 did not enhance elastinolysis by PAM at concentrations up to 100 μg/ml

  3. Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction.

    Science.gov (United States)

    Jin, Minfei; Chen, Ying; Zhou, Yun; Mei, Yan; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-04-05

    Pelvic floor dysfunction (PFD) is a group of clinical conditions including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). The abnormality of collagen and elastin metabolism in pelvic connective tissues is implicated in SUI and POP. To reconstitute the connective tissues with normal distribution of collagen and elastin, we transduced elastin to bone marrow-derived mesenchymal stem cells (BMSC). Elastin-expressing BMSCs were then differentiated to fibroblasts using bFGF, which produced collagen and elastin. To achieve the sustained release of bFGF, we formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP). In an in vitro cell culture system of 7 days, when no additional bFGF was administrated, the initial PLGA-loaded bFGF NP induced prolonged production of collagen and elastin from elastin-expressing BMSCs. In vivo, co-injection of PLGA-loaded bFGF NP and elastin-expressing BMSCs into the PFD rats significantly improved the outcome of urodynamic tests. Together, these results provided an efficient model of connective tissue engineering using BMSC and injectable PLGA-loaded growth factors. Our results provided the first instance of a multidisciplinary approach, combining both stem cell and nanoparticle technologies, for the treatment of PFD.

  4. Chromosomal mapping of quantitative trait loci controlling elastin content in rat aorta.

    Science.gov (United States)

    Gauguier, Dominique; Behmoaras, Jacques; Argoud, Karène; Wilder, Steven P; Pradines, Christelle; Bihoreau, Marie Thérèse; Osborne-Pellegrin, Mary; Jacob, Marie Paule

    2005-03-01

    Extracellular matrix molecules such as elastin and collagens provide mechanical support to the vessel wall. In addition to its structural role, elastin is a regulator that maintains homeostasis through biologic signaling. Genetically determined minor modifications in elastin and collagen in the aorta could influence the onset and evolution of arterial pathology, such as hypertension and its complications. We previously demonstrated that the inbred Brown Norway (BN) rat shows an aortic elastin deficit in both abdominal and thoracic segments, partly because of a decrease in tropoelastin synthesis when compared with the LOU rat, that elastin gene polymorphisms in these strains do not significantly account for. After a genome-wide search for quantitative trait loci (QTL) influencing the aortic elastin, collagen, and cell protein contents in an F2 population derived from BN and LOU rats, we identified on chromosomes 2 and 14, 3 QTL specifically controlling elastin levels, and a further highly significant QTL on chromosome 17 linked to the level of cell proteins. We also mapped 3 highly significant QTL linked to body weight (on chromosomes 1 and 3) and heart weight (on chromosome 1) in the cross. This study demonstrates the polygenic control of the content of key components of the arterial wall. Such information represents a first step in understanding possible mechanisms involved in dysregulation of these parameters in arterial pathology.

  5. Elastin-like Polypeptide Linkers for Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Ott, Wolfgang; Jobst, Markus A; Bauer, Magnus S; Durner, Ellis; Milles, Lukas F; Nash, Michael A; Gaub, Hermann E

    2017-06-27

    Single-molecule force spectroscopy (SMFS) is by now well established as a standard technique in biophysics and mechanobiology. In recent years, the technique has benefitted greatly from new approaches to bioconjugation of proteins to surfaces. Indeed, optimized immobilization strategies for biomolecules and refined purification schemes are being steadily adapted and improved, which in turn has enhanced data quality. In many previously reported SMFS studies, poly(ethylene glycol) (PEG) was used to anchor molecules of interest to surfaces and/or cantilever tips. The limitation, however, is that PEG exhibits a well-known trans-trans-gauche to all-trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain, particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows alternative approaches for precisely defining elastic properties of proteins linked to surfaces.

  6. Molecular modeling of protein materials: case study of elastin

    International Nuclear Information System (INIS)

    Tarakanova, Anna; Buehler, Markus J

    2013-01-01

    Molecular modeling of protein materials is a quickly growing area of research that has produced numerous contributions in fields ranging from structural engineering to medicine and biology. We review here the history and methods commonly employed in molecular modeling of protein materials, emphasizing the advantages for using modeling as a complement to experimental work. We then consider a case study of the protein elastin, a critically important ‘mechanical protein’ to exemplify the approach in an area where molecular modeling has made a significant impact. We outline the progression of computational modeling studies that have considerably enhanced our understanding of this important protein which endows elasticity and recoil to the tissues it is found in, including the skin, lungs, arteries and the heart. A vast collection of literature has been directed at studying the structure and function of this protein for over half a century, the first molecular dynamics study of elastin being reported in the 1980s. We review the pivotal computational works that have considerably enhanced our fundamental understanding of elastin's atomistic structure and its extraordinary qualities—focusing on two in particular: elastin's superb elasticity and the inverse temperature transition—the remarkable ability of elastin to take on a more structured conformation at higher temperatures, suggesting its effectiveness as a biomolecular switch. Our hope is to showcase these methods as both complementary and enriching to experimental approaches that have thus far dominated the study of most protein-based materials. (topical review)

  7. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification.

    NARCIS (Netherlands)

    Daamen, W.F.; Nillesen, S.T.M.; Wismans, P.G.P.; Reinhardt, D.; Hafmans, T.G.M.; Veerkamp, J.H.; Kuppevelt, A.H.M.S.M. van

    2008-01-01

    Elastin is the prime protein in elastic tissues that contributes to elasticity of, for example, lung, aorta, and skin. Upon injury, elastic fibers are not readily replaced, which hampers tissue regeneration. Incorporation of solubilized elastin (hydrolyzed insoluble elastin fibers or elastin

  8. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.

    Science.gov (United States)

    Suyama, Keitaro; Taniguchi, Suguru; Tatsubo, Daiki; Maeda, Iori; Nose, Takeru

    2016-04-01

    Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature-dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin-derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin-derived polypeptide (Val-Pro-Gly-Val-Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n>40) is required for coacervation. In the present study, a series of elastin-derived peptide (Phe-Pro-Gly-Val-Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin-derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature-dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet-turn-sheet motif involving a type II β-turn-like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin-derived peptides, but also as base materials for developing various temperature-sensitive biomedical and industrial products. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. Induction of protein body formation in plant leaves by elastin-like polypeptide fusions

    Directory of Open Access Journals (Sweden)

    Joensuu Jussi J

    2009-08-01

    Full Text Available Abstract Background Elastin-like polypeptides are synthetic biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the simple non-chromatographic purification of recombinant proteins. In addition, elastin-like polypeptide fusions have been shown to enhance the accumulation of a range of different recombinant proteins in plants, thus addressing the major limitation of plant-based expression systems, which is a low production yield. This study's main objectives were to determine the general utility of elastin-like polypeptide protein fusions in various intracellular compartments and to elucidate elastin-like polypeptide's mechanism of action for increasing recombinant protein accumulation in the endoplasmic reticulum of plants. Results The effect of elastin-like polypeptide fusions on the accumulation of green fluorescent protein targeted to the cytoplasm, chloroplasts, apoplast, and endoplasmic reticulum was evaluated. The endoplasmic reticulum was the only intracellular compartment in which an elastin-like polypeptide tag was shown to significantly enhance recombinant protein accumulation. Interestingly, endoplasmic reticulum-targeted elastin-like polypeptide fusions induced the formation of a novel type of protein body, which may be responsible for elastin-like polypeptide's positive effect on recombinant protein accumulation by excluding the heterologous protein from normal physiological turnover. Although expressed in the leaves of plants, these novel protein bodies appeared similar in size and morphology to the prolamin-based protein bodies naturally found in plant seeds. The elastin-like polypeptide-induced protein bodies were highly mobile organelles, exhibiting various dynamic patterns of movement throughout the cells, which were dependent on intact actin microfilaments and a functional actomyosin motility system. Conclusion An endoplasmic reticulum-targeted elastin-like polypeptide fusion approach

  10. Elastin overexpression by cell-based gene therapy preserves matrix and prevents cardiac dilation

    Science.gov (United States)

    Li, Shu-Hong; Sun, Zhuo; Guo, Lily; Han, Mihan; Wood, Michael F G; Ghosh, Nirmalya; Alex Vitkin, I; Weisel, Richard D; Li, Ren-Ke

    2012-01-01

    After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re-establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full-length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P elastin showed the greatest functional improvement (P elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell-based gene therapy provides a new approach to cardiac regeneration. PMID:22435995

  11. Insights into the degradation of human elastin by matrilysin-1

    DEFF Research Database (Denmark)

    Heinz, Andrea; Taddese, Samuel; Sippl, Wolfgang

    2011-01-01

    Human matrilysin-1 (MMP-7) is one of the most potent elastases besides macrophage elastase in the family of matrix metalloproteinases (MMPs). It has been reported to provide macrophages with the highest elastinolytic capacity and plays key roles in diseases such as emphysema and cancer. Describin...... into the degradation of human elastin by MMP-7 and may aid in the development of approaches to treat elastin-degrading diseases.......Human matrilysin-1 (MMP-7) is one of the most potent elastases besides macrophage elastase in the family of matrix metalloproteinases (MMPs). It has been reported to provide macrophages with the highest elastinolytic capacity and plays key roles in diseases such as emphysema and cancer. Describing...... the enzymatic turnover of matrix components helps to understand the molecular basis of disease processes. Hence, in this work, the cleavage behavior of MMP-7 with respect to its natural substrate human elastin was investigated using mass spectrometric (MS) techniques and molecular modeling. Elastin peptides...

  12. Elastin in large artery stiffness and hypertension

    Science.gov (United States)

    Wagenseil, Jessica E.; Mecham, Robert P.

    2012-01-01

    Large artery stiffness, as measured by pulse wave velocity (PWV), is correlated with high blood pressure and may be a causative factor in essential hypertension. The extracellular matrix components, specifically the mix of elastin and collagen in the vessel wall, determine the passive mechanical properties of the large arteries. Elastin is organized into elastic fibers in the wall during arterial development in a complex process that requires spatial and temporal coordination of numerous proteins. The elastic fibers last the lifetime of the organism, but are subject to proteolytic degradation and chemical alterations that change their mechanical properties. This review discusses how alterations in the amount, assembly, organization or chemical properties of the elastic fibers affect arterial stiffness and blood pressure. Strategies for encouraging or reversing alterations to the elastic fibers are addressed. Methods for determining the efficacy of these strategies, by measuring elastin amounts and arterial stiffness, are summarized. Therapies that have a direct effect on arterial stiffness through alterations to the elastic fibers in the wall may be an effective treatment for essential hypertension. PMID:22290157

  13. Matrix ageing and vascular impacts: focus on elastin fragmentation.

    Science.gov (United States)

    Duca, Laurent; Blaise, Sébastien; Romier, Béatrice; Laffargue, Muriel; Gayral, Stéphanie; El Btaouri, Hassan; Kawecki, Charlotte; Guillot, Alexandre; Martiny, Laurent; Debelle, Laurent; Maurice, Pascal

    2016-06-01

    Cardiovascular diseases (CVDs) are the leading cause of death worldwide and represent a major problem of public health. Over the years, life expectancy has considerably increased throughout the world, and the prevalence of CVD is inevitably rising with the growing ageing of the population. The normal process of ageing is associated with progressive deterioration in structure and function of the vasculature, commonly called vascular ageing. At the vascular level, extracellular matrix (ECM) ageing leads to molecular alterations in long half-life proteins, such as elastin and collagen, and have critical effects on vascular diseases. This review highlights ECM alterations occurring during vascular ageing with a specific focus on elastin fragmentation and also the contribution of elastin-derived peptides (EDP) in age-related vascular complications. Moreover, current and new pharmacological strategies aiming at minimizing elastin degradation, EDP generation, and associated biological effects are discussed. These strategies may be of major relevance for preventing and/or delaying vascular ageing and its complications. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  14. Effect of Elastin Digestion on the Quasi-static Tensile Response of Medial Collateral Ligament

    Science.gov (United States)

    Henninger, Heath B.; Underwood, Clayton J.; Romney, Steven J.; Davis, Grant L.; Weiss, Jeffrey A.

    2014-01-01

    Elastin is a structural protein that provides resilience to biological tissues. We examined the contributions of elastin to the quasi-static tensile response of porcine medial collateral ligament through targeted disruption of the elastin network with pancreatic elastase. Elastase concentration and treatment time were varied to determine a dose response. Whereas elastin content decreased with increasing elastase concentration and treatment time, the change in peak stress after cyclic loading reached a plateau above 1 U/ml elastase and 6 hr treatment. For specimens treated with 2 U/ml elastase for 6 hr, elastin content decreased approximately 35%. Mean peak tissue strain after cyclic loading (4.8%, p≥0.300), modulus (275 MPa, p≥0.114) and hysteresis (20%, p≥0.553) were unaffected by elastase digestion, but stress decreased significantly after treatment (up to 2 MPa, p≤0.049). Elastin degradation had no effect on failure properties, but tissue lengthened under the same pre-stress. Stiffness in the linear region was unaffected by elastase digestion, suggesting that enzyme treatment did not disrupt collagen. These results demonstrate that elastin primarily functions in the toe region of the stress-strain curve, yet contributes load support in the linear region. The increase in length after elastase digestion suggests that elastin may pre-stress and stabilize collagen crimp in ligaments. PMID:23553827

  15. Circulating Anti-Elastin Antibody Levels and Arterial Disease Characteristics: Associations with Arterial Stiffness and Atherosclerosis.

    Science.gov (United States)

    Lee, Seung-Hyun; Shin, Kihyuk; Park, Sungha; Kang, Seok-Min; Choi, Donghoon; Lee, Seung-Hyo; Lee, Sang-Hak

    2015-11-01

    Elastin is a major arterial structural protein, and elastin-derived peptides are related to arterial change. We previously reported on a novel assay developed using aortic elastin peptides; however, its clinical implications remain unclear. In this study, we assessed whether anti-elastin antibody titers reflect the risk of coronary artery disease (CAD) or its characteristics. We included 174 CAD patients and 171 age- and sex-matched controls. Anti-elastin antibody titers were quantified by enzyme-linked immunosorbent assay. Parameters of arterial stiffness, including the augmentation index (AI) and heart-to-femoral pulse wave velocity (hfPWV), were measured non-invasively. The clinical and angiographic characteristics of CAD patients were also evaluated. Associations between anti-elastin levels and vascular characteristics were examined by linear regression analysis. The median blood level of anti-elastin was significantly lower in the CAD group than in the controls [197 arbitrary unit (a.u.) vs. 63 a.u., pelastin were significantly lower in men and in subjects with hypertension, diabetes mellitus, hyperlipidemia, or high hfPWV. Nevertheless, anti-elastin levels were not dependent on atherothrombotic events or the angiographic severity of CAD. In a multivariate analysis, male sex (β=-0.38, pelastin levels. Lower levels of anti-elastin are related to CAD. The association between antibody titers and CAD is linked to arterial stiffness rather than the advancement of atherosclerosis.

  16. The action of neutrophil serine proteases on elastin and its precursor

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Jahreis, Günther

    2012-01-01

    This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass...... spectrometric techniques. Moreover, the release of bioactive peptides from elastin by the three proteases was studied. Tropoelastin was comprehensively degraded by all three proteases, whereas less cleavage occurred in mature cross-linked elastin. An analysis of the cleavage site specificities of the three...... proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P(1), which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr...

  17. Development of Tissue-Engineered Ligaments: Elastin Promotes Regeneration of the Rabbit Medial Collateral Ligament.

    Science.gov (United States)

    Hirukawa, Masaki; Katayama, Shingo; Sato, Tatsuya; Yamada, Masayoshi; Kageyama, Satoshi; Unno, Hironori; Suzuki, Yoshiaki; Miura, Yoshihiro; Shiratsuchi, Eri; Hasegawa, Masahiro; Miyamoto, Keiichi; Horiuchi, Takashi

    2017-12-21

    When ligaments are injured, reconstructive surgery is sometimes required to restore function. Methods of reconstructive surgery include transplantation of an artificial ligament and autotransplantation of a tendon. However, these methods have limitations related to the strength of the bone-ligament insertion and biocompatibility of the transplanted tissue after surgery. Therefore, it is necessary to develop new reconstruction methods and pursue the development of artificial ligaments. Elastin is a major component of elastic fibers and ligaments. However, the role of elastin in ligament regeneration has not been described. Here, we developed a rabbit model of a medial collateral ligament (MCL) rupture and treated animal knees with exogenous elastin [100 µg/(0.5 mL·week)] for 6 or 12 weeks. Elastin treatment increased gene expression and protein content of collagen and elastin (gene expression, 6-fold and 42-fold, respectively; protein content, 1.6-fold and 1.9-fold, respectively), and also increased the elastic modulus of MCL increased with elastin treatment (2-fold) compared with the controls. Our data suggest that elastin is involved in the regeneration of damaged ligaments. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    Science.gov (United States)

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.

  19. High-performance liquid chromatographic quantitation of desmosine plus isodesmosine in elastin and whole tissue hydrolysates

    International Nuclear Information System (INIS)

    Soskel, N.T.

    1987-01-01

    Quantitation of desmosine and isodesmosine, the major crosslinks in elastin, has been of interest because of their uniqueness and use as markers of that protein. Accurate measurement of these crosslinks may allow determination of elastin degradation in vivo and elastin content in tissues, obviating lengthy extraction procedures. We have developed a method of quantitating desmosine plus isodesmosine in hydrolysates of tissue and insoluble elastin using high-performance liquid chromatographic separation and absorbance detection that is rapid (21-35 min) and sensitive (accurate linearity from 100 pmol to 5 nmol). This method has been used to quantitate desmosines in elastin from bovine nuchal ligament and lung and in whole aorta from hamsters. The ability to completely separate [ 3 H]lysine from desmosine plus isodesmosine allows the method to be used to study incorporation of lysine into crosslinks in elastin

  20. Preparation of alpha-elastin nanoparticles by gamma irradiation

    International Nuclear Information System (INIS)

    Fujimoto, Mari; Okamoto, Kouji; Furuta, Masakazu

    2009-01-01

    Nanoparticles were prepared by utilizing the thermosensitive aggregation of alpha-elastin and gamma ray crosslinking. Three different heating process, 'Slow heating', 'Fast heating', and 'Heat shock', were applied for the aggregation of the alpha-elastin and examined to yield nanoparticles by gamma rays crosslinking. As a result, only 'Slow heating' process yielded nanoparticles with diameters of about ca. 300 nm above cloud point (CP) and about ca. 100 nm below CP, and a narrow size distribution above 1.0 mg/ml concentration (exclude 1.0 mg/ml).

  1. Modulated growth, stability and interactions of liquid-like coacervate assemblies of elastin.

    Science.gov (United States)

    Muiznieks, Lisa D; Cirulis, Judith T; van der Horst, Astrid; Reinhardt, Dieter P; Wuite, Gijs J L; Pomès, Régis; Keeley, Fred W

    2014-06-01

    Elastin self-assembles from monomers into polymer networks that display elasticity and resilience. The first major step in assembly is a liquid-liquid phase separation known as coacervation. This process represents a continuum of stages from initial phase separation to early growth of droplets by coalescence and later "maturation" leading to fiber formation. Assembly of tropoelastin-rich globules is on pathway for fiber formation in vivo. However, little is known about these intermediates beyond their size distribution. Here we investigate the contribution of sequence and structural motifs from full-length tropoelastin and a set of elastin-like polypeptides to the maturation of coacervate assemblies, observing their growth, stability and interaction behavior, and polypeptide alignment within matured globules. We conclude that maturation is driven by surface properties, leading to stabilization of the interface between the hydrophobic interior and aqueous solvent, potentially through structural motifs, and discuss implications for droplet interactions in fiber formation. Copyright © 2014. Published by Elsevier B.V.

  2. Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery.

    Science.gov (United States)

    Kim, Jae Dong; Jung, Youn Jae; Woo, Chang Hee; Choi, Young Chan; Choi, Ji Suk; Cho, Yong Woo

    2017-01-01

    Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media. The PEGylated human α-elastin nanoparticles (PhENPs) showed a narrow size distribution with an average diameter of 330±33nm and were able to encapsulate significant amounts of insulin and bovine serum albumin (BSA) upon simple mixing at low temperature in water and subsequent heating to physiological temperature. The release profiles of insulin and BSA showed sustained release for 72h. Overall, the thermo-responsive self-assembled PhENPs provide a useful tool for a range of protein delivery and tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Mechanical, structural, and dynamical modifications of cholesterol exposed porcine aortic elastin.

    Science.gov (United States)

    Bilici, Kubra; Morgan, Steven W; Silverstein, Moshe C; Wang, Yunjie; Sun, Hyung Jin; Zhang, Yanhang; Boutis, Gregory S

    2016-11-01

    Elastin is a protein of the extracellular matrix that contributes significantly to the elasticity of connective tissues. In this study, we examine dynamical and structural modifications of aortic elastin exposed to cholesterol by NMR spectroscopic and relaxation methodologies. Macroscopic measurements are also presented and reveal that cholesterol treatment may cause a decrease in the stiffness of tissue. 2 H NMR relaxation techniques revealed differences between the relative populations of water that correlate with the swelling of the tissue following cholesterol exposure. 13 C magic-angle-spinning NMR spectroscopy and relaxation methods indicate that cholesterol treated aortic elastin is more mobile than control samples. Molecular dynamics simulations on a short elastin repeat VPGVG in the presence of cholesterol are used to investigate the energetic and entropic contributions to the retractive force, in comparison to the same peptide in water. Peptide stiffness is observed to reduce following cholesterol exposure due to a decrease in the entropic force. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading.

    Science.gov (United States)

    Henninger, Heath B; Valdez, William R; Scott, Sara A; Weiss, Jeffrey A

    2015-10-01

    Elastin is a highly extensible structural protein network that provides near-elastic resistance to deformation in biological tissues. In ligament, elastin is localized between and along the collagen fibers and fascicles. When ligament is stretched along the primary collagen axis, elastin supports a relatively high percentage of load. We hypothesized that elastin may also provide significant load support under elongation transverse to the primary collagen axis and shear along the collagen axis. Quasi-static transverse tensile and shear material tests were performed to quantify the mechanical contributions of elastin during deformation of porcine medial collateral ligament. Dose response studies were conducted to determine the level of elastase enzymatic degradation required to produce a maximal change in the mechanical response. Maximal changes in peak stress occurred after 3h of treatment with 2U/ml porcine pancreatic elastase. Elastin degradation resulted in a 60-70% reduction in peak stress and a 2-3× reduction in modulus for both test protocols. These results demonstrate that elastin provides significant resistance to elongation transverse to the collagen axis and shear along the collagen axis while only constituting 4% of the tissue dry weight. The magnitudes of the elastin contribution to peak transverse and shear stress were approximately 0.03 MPa, as compared to 2 MPa for axial tensile tests, suggesting that elastin provides a highly anisotropic contribution to the mechanical response of ligament and is the dominant structural protein resisting transverse and shear deformation of the tissue. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Preparation of alpha-elastin nanoparticles by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Mari [Department of Biological Science, Graduate school of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Okamoto, Kouji [Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502 (Japan); Furuta, Masakazu [Department of Biological Science, Graduate school of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan)], E-mail: mfuruta@b.s.osakafu-u.ac.jp

    2009-12-15

    Nanoparticles were prepared by utilizing the thermosensitive aggregation of alpha-elastin and gamma ray crosslinking. Three different heating process, 'Slow heating', 'Fast heating', and 'Heat shock', were applied for the aggregation of the alpha-elastin and examined to yield nanoparticles by gamma rays crosslinking. As a result, only 'Slow heating' process yielded nanoparticles with diameters of about ca. 300 nm above cloud point (CP) and about ca. 100 nm below CP, and a narrow size distribution above 1.0 mg/ml concentration (exclude 1.0 mg/ml)

  6. Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells.

    Science.gov (United States)

    Kawakami, Shoji; Minamisawa, Susumu

    2015-08-01

    The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth. © 2015 Japan Pediatric Society.

  7. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-01-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. - Highlights: ► Hyaluronic acid (HA) has been functionalized with ethylenediamine (EDA). ► Amino groups of HA-EDA allow the reaction with α-elastin and ethylene glycol diglycidyl ether (EGDGE). ► Chemical scaffolds of HA-EDA-graft-α-elastin/EGDGE have been characterized. ► The presence of α-elastin affects porosity, swelling and enzymatic degradation of scaffolds. ► The presence of α-elastin improves attachment, viability and proliferation of fibroblasts and smooth muscle cells

  8. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabio Salvatore [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Pitarresi, Giovanna, E-mail: giovanna.pitarresi@unipa.it [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo (Italy); Fiorica, Calogero [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Rigogliuso, Salvatrice; Ghersi, Giulio [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Biologia Cellulare, Università degli Studi di Palermo, Viale delle Scienze ed. 16, 90128, Palermo (Italy); Giammona, Gaetano [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); IBIM-CNR, Via Ugo La Malfa 153, 90146 Palermo (Italy)

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. - Highlights: ► Hyaluronic acid (HA) has been functionalized with ethylenediamine (EDA). ► Amino groups of HA-EDA allow the reaction with α-elastin and ethylene glycol diglycidyl ether (EGDGE). ► Chemical scaffolds of HA-EDA-graft-α-elastin/EGDGE have been characterized. ► The presence of α-elastin affects porosity, swelling and enzymatic degradation of scaffolds. ► The presence of α-elastin improves attachment, viability and proliferation of fibroblasts and smooth muscle cells.

  9. Computational smart polymer design based on elastin protein mutability.

    Science.gov (United States)

    Tarakanova, Anna; Huang, Wenwen; Weiss, Anthony S; Kaplan, David L; Buehler, Markus J

    2017-05-01

    Soluble elastin-like peptides (ELPs) can be engineered into a range of physical forms, from hydrogels and scaffolds to fibers and artificial tissues, finding numerous applications in medicine and engineering as "smart polymers". Elastin-like peptides are attractive candidates as a platform for novel biomaterial design because they exhibit a highly tunable response spectrum, with reversible phase transition capabilities. Here, we report the design of the first virtual library of elastin-like protein models using methods for enhanced sampling to study the effect of peptide chemistry, chain length, and salt concentration on the structural transitions of ELPs, exposing associated molecular mechanisms. We describe the behavior of the local molecular structure under increasing temperatures and the effect of peptide interactions with nearest hydration shell water molecules on peptide mobility and propensity to exhibit structural transitions. Shifts in the magnitude of structural transitions at the single-molecule scale are explained from the perspective of peptide-ion-water interactions in a library of four unique elastin-like peptide systems. Predictions of structural transitions are subsequently validated in experiment. This library is a valuable resource for recombinant protein design and synthesis as it elucidates mechanisms at the single-molecule level, paving a feedback path between simulation and experiment for smart material designs, with applications in biomedicine and diagnostic devices. Copyright © 2017. Published by Elsevier Ltd.

  10. Proline-poor hydrophobic domains modulate the assembly and material properties of polymeric elastin.

    Science.gov (United States)

    Muiznieks, Lisa D; Reichheld, Sean E; Sitarz, Eva E; Miao, Ming; Keeley, Fred W

    2015-10-01

    Elastin is a self-assembling extracellular matrix protein that provides elasticity to tissues. For entropic elastomers such as elastin, conformational disorder of the monomer building block, even in the polymeric form, is essential for elastomeric recoil. The highly hydrophobic monomer employs a range of strategies for maintaining disorder and flexibility within hydrophobic domains, particularly involving a minimum compositional threshold of proline and glycine residues. However, the native sequence of hydrophobic elastin domain 30 is uncharacteristically proline-poor and, as an isolated polypeptide, is susceptible to formation of amyloid-like structures comprised of stacked β-sheet. Here we investigated the biophysical and mechanical properties of multiple sets of elastin-like polypeptides designed with different numbers of proline-poor domain 30 from human or rat tropoelastins. We compared the contributions of these proline-poor hydrophobic sequences to self-assembly through characterization of phase separation, and to the tensile properties of cross-linked, polymeric materials. We demonstrate that length of hydrophobic domains and propensity to form β-structure, both affecting polypeptide chain flexibility and cross-link density, play key roles in modulating elastin mechanical properties. This study advances the understanding of elastin sequence-structure-function relationships, and provides new insights that will directly support rational approaches to the design of biomaterials with defined suites of mechanical properties. © 2015 Wiley Periodicals, Inc.

  11. Elastins from patients with Williams-Beuren syndrome and healthy individuals differ on the molecular level

    DEFF Research Database (Denmark)

    Heinz, Andrea; Huertas, Angela C Mora; Schräder, Christoph U

    2016-01-01

    Williams-Beuren syndrome (WBS) is a congenital disorder, which involves the heterozygous deletion of the elastin gene and other genes on chromosome 7. Clinical symptoms that are associated with hemizygosity of the essential extracellular matrix protein elastin include premature aging of the skin...... and supravalvular aortic stenosis. However, only little is known about the molecular basis of structural abnormalities in the connective tissue of WBS patients. Therefore, for the first time this study aimed to systematically characterize and compare the structure and amount of elastin present in skin and aortic...... tissue from WBS patients and healthy individuals. Elastin fibers were isolated from tissue biopsies, and it was found that skin of WBS patients contains significantly less elastin compared to skin of healthy individuals. Scanning electron microscopy and mass spectrometric measurements combined...

  12. Levels of circulating MMP-7 degraded elastin are elevated in pulmonary disorders

    DEFF Research Database (Denmark)

    Kristensen, J.H.; Larsen, L.; Dasgupta, B.

    2015-01-01

    for the quantification of MMP-7 generated elastin fragments (ELM7) was therefore developed to investigate MMP-7 derived elastin degradation in pulmonary disorders such as idiopathic pulmonary fibrosis (IPF) and lung cancer. Design and methods:  Monoclonal antibodies (mABs) were raised against eight carefully selected...

  13. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    International Nuclear Information System (INIS)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S

    2017-01-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling. (topical review)

  14. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    Science.gov (United States)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S.

    2017-04-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.

  15. Elastin and Mechanics of Pig Pericardial Resistance Arteries (pPRA)

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Leurgans, Thomas; Rosenstand, Kristoffer

    Resistance arteries are remodeled in hypertension and diabetes. Elastin was reported to play a role herein. The parietal pericardium is opened during cardio-thoracic surgeries and might be a valuable biopsy for research in cardio-vascular diseases. We tested the hypothesis that resistance arteries...... can be isolated from the pericardium to study the micro-architecture of elastin and vascular wall mechanics. The pericardium of pigs served to test the hypothesis. pPRAs were microdissected. Their structure was examined using multiphoton excitation fluorescence microscopy. Diameter......-tension and pressure-diameter-length relationships were recorded in myographs. Findings are compared to rodent mesenteric resistance arteries and –basilar arteries (rMRA, rBA) with comparable lumen diameter (±300µm at 100mmHg). pPRA have no clear external elastic lamina (present in rMRA, but not rBA), scant elastin...

  16. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    Science.gov (United States)

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  17. Elastin aging and lipid oxidation products in human aorta

    Directory of Open Access Journals (Sweden)

    Kamelija Zarkovic

    2015-04-01

    Full Text Available Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA, (4-hydroxynonenal, malondialdehyde, acrolein, form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development.

  18. Elastin cross-linking in the skin from patients with amyotrophic lateral sclerosis

    Science.gov (United States)

    Ono, S.; Yamauchi, M.

    1994-01-01

    Two cross-links unique to elastin, desmosine and isodesmosine were measured and compared in skin tissue (left upper arm) from 10 patients with amyotrophic lateral sclerosis (ALS) and from seven age-matched controls. The contents of desmosine and isodesmosine were significantly decreased (p elastin is affected in ALS.

  19. Elastin Is Differentially Regulated by Pressure Therapy in a Porcine Model of Hypertrophic Scar.

    Science.gov (United States)

    Carney, Bonnie C; Liu, Zekun; Alkhalil, Abdulnaser; Travis, Taryn E; Ramella-Roman, Jessica; Moffatt, Lauren T; Shupp, Jeffrey W

    Beneficial effects of pressure therapy for hypertrophic scars have been reported, but the mechanisms of action are not fully understood. This study evaluated elastin and its contribution to scar pliability. The relationship between changes in Vancouver Scar Scale (VSS) scores of pressure-treated scars and differential regulation of elastin was assessed. Hypertrophic scars were created and assessed weekly using VSS and biopsy procurement. Pressure treatment began on day 70 postinjury. Treated scars were compared with untreated shams. Treatment lasted 2 weeks, through day 84, and scars were assessed weekly through day 126. Transcript and protein levels of elastin were quantified. Pressure treatment resulted in lower VSS scores compared with sham-treated scars. Pliability (VSSP) was a key contributor to this difference. At day 70 pretreatment, VSSP = 2. Without treatment, sham-treated scars became less pliable, while pressure-treated scars became more pliable. The percentage of elastin in scars at day 70 was higher than in uninjured skin. Following treatment, the percentage of elastin increased and continued to increase through day 126. Untreated sham scars did not show a similar increase. Quantification of Verhoeff-Van Gieson staining corroborated the findings and immunofluorescence revealed the alignment of elastin fibers. Pressure treatment results in increased protein level expression of elastin compared with sham-untreated scars. These findings further characterize the extracellular matrix's response to the application of pressure as a scar treatment, which will contribute to the refinement of rehabilitation practices and ultimately improvements in functional and psychosocial outcomes for patients.

  20. Elastin structure and its involvement in skin photoageing.

    Science.gov (United States)

    Weihermann, A C; Lorencini, M; Brohem, C A; de Carvalho, C M

    2017-06-01

    Skin aging is a complex process that may be caused by factors that are intrinsic and extrinsic to the body. Ultraviolet (UV) radiation represents one of the main sources of skin damage over the years and characterizes a process known as photoaging. Among the changes that affect cutaneous tissue with age, the loss of elastic properties caused by changes in elastin production, increased degradation and/or processing produces a substantial impact on tissue esthetics and health. The occurrence of solar elastosis is one of the main markers of cutaneous photoaging and is characterized by disorganized and non-functional deposition of elastic fibers. The occurrence of UV radiation-induced alternative splicing of the elastin gene, which leads to inadequate synthesis of the proteins required for the correct assembly of elastic fibers, is a potential explanation for this phenomenon. Innovative studies have been fundamental for the elucidation of rarely explored photoaging mechanisms and have enabled the identification of effective therapeutic alternatives such as cosmetic products. This review addresses cutaneous photoaging and the changes that affect elastin in this process. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers.

    Science.gov (United States)

    Muiznieks, Lisa D; Keeley, Fred W

    2016-10-01

    Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin-like sequences as a strategy to rationally increase the strength of elastin-based materials while maintaining extensibility. We demonstrate a thermo-responsive phase separation and spontaneous colloid-like droplet formation from silk-elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross-linked materials. Silk-elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin-only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693-703, 2016. © 2016 Wiley Periodicals, Inc.

  2. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials

    DEFF Research Database (Denmark)

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther

    2013-01-01

    -link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. CONCLUSIONS: The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin......BACKGROUND: Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. METHODS: Small peptides containing...... and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. RESULTS: MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally...

  3. Elastin aging and lipid oxidation products in human aorta.

    Science.gov (United States)

    Zarkovic, Kamelija; Larroque-Cardoso, Pauline; Pucelle, Mélanie; Salvayre, Robert; Waeg, Georg; Nègre-Salvayre, Anne; Zarkovic, Neven

    2015-01-01

    Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs) are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA), (4-hydroxynonenal, malondialdehyde, acrolein), form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation

    Science.gov (United States)

    2012-01-01

    Background Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases. Methods Elastin fragments were identified by mass-spectrometry and one sequence, generated by MMP-9 and -12 (ELN-441), was selected for monoclonal antibody generation and used in the development of an ELISA. Soluble and insoluble elastin from lung was cleaved in vitro and the time-dependent release of fragments was assessed in the ELN-441 assay. The release of ELN-441 in human serum from patients with chronic obstructive pulmonary disease (COPD) (n = 10) and idiopathic pulmonary fibrosis (IPF) (n = 29) were compared to healthy matched controls (n = 11). Results The sequence ELN-441 was exclusively generated by MMP-9 and -12 and was time-dependently released from soluble lung elastin. ELN-441 levels were 287% higher in patients diagnosed with COPD (p elastin. This fragment was elevated in serum from patients with the lung diseases IPF and COPD, however these data needs to be validated in larger clinical settings. PMID:22818364

  5. Effect of gamma radiation on tissue elastin content and serum elastolytic activity in rats

    International Nuclear Information System (INIS)

    Drozdz, M.; Olczyk, K.; Piwowarczyk, B.; Stawiarska, B.

    1981-01-01

    The elastin content of aorta, heart, skin and lungs as well as the serum elastolytic activity were determined in rats exposed to radiation. It was found that a single irradiation of rats with gamma rays (500 r) caused a decrease of the elastin content in all examined tissues. The serum elastolytic activity in the irradiated rats was increased. It is suggested that elastin degradation following radiation may be caused by changes in its molecular structure and possibly, due to increased serum elastolytic activity. (author)

  6. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    Science.gov (United States)

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  7. Deficient Circumferential Growth Is the Primary Determinant of Aortic Obstruction Attributable to Partial Elastin Deficiency.

    Science.gov (United States)

    Jiao, Yang; Li, Guangxin; Korneva, Arina; Caulk, Alexander W; Qin, Lingfeng; Bersi, Matthew R; Li, Qingle; Li, Wei; Mecham, Robert P; Humphrey, Jay D; Tellides, George

    2017-05-01

    Williams syndrome is characterized by obstructive aortopathy attributable to heterozygous loss of ELN , the gene encoding elastin. Lesions are thought to result primarily from excessive smooth muscle cell (SMC) proliferation and consequent medial expansion, although an initially smaller caliber and increased stiffness of the aorta may contribute to luminal narrowing. The relative contributions of such abnormalities to the obstructive phenotype had not been defined. We quantified determinants of luminal stenosis in thoracic aortas of Eln -/- mice incompletely rescued by human ELN . Moderate obstruction was largely because of deficient circumferential growth, most prominently of ascending segments, despite increased axial growth. Medial thickening was evident in these smaller diameter elastin-deficient aortas, with medial area similar to that of larger diameter control aortas. There was no difference in cross-sectional SMC number between mutant and wild-type genotypes at multiple stages of postnatal development. Decreased elastin content was associated with medial fibrosis and reduced aortic distensibility because of increased structural stiffness but preserved material stiffness. Elastin-deficient SMCs exhibited greater contractile-to-proliferative phenotypic modulation in vitro than in vivo. We confirmed increased medial collagen without evidence of increased medial area or SMC number in a small ascending aorta with thickened media of a Williams syndrome subject. Deficient circumferential growth is the predominant mechanism for moderate obstructive aortic disease resulting from partial elastin deficiency. Our findings suggest that diverse aortic manifestations in Williams syndrome result from graded elastin content, and SMC hyperplasia causing medial expansion requires additional elastin loss superimposed on ELN haploinsufficiency. © 2017 American Heart Association, Inc.

  8. Fabrication of Thermo-Responsive Molecular Layers from Self-Assembling Elastin-Like Oligopeptides Containing Cell-Binding Domain for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tomoyuki Koga

    2015-01-01

    Full Text Available Novel thermo-responsive elastin-like oligopeptides containing cell-binding epitope (Arg-Gly-Asp-Ser sequence; arginine-glycine-aspartic acid-serine (RGDS-elastin-like peptides (ELP and RGDS-deg-ELP; were newly prepared as building blocks of self-assembled molecular layer for artificial extra cellular matrix. A detailed analysis of the conformation of the oligo(ELPs in water and their self-assembling behavior onto hydrophobic surfaces were performed by using circular dichroism, Fourier transform infrared spectroscopy (FTIR, atomic force microscopy and water contact angle measurements. The experimental results revealed that both oligo(ELPs self-assembled onto hydrophobic surfaces and formed molecular layers based on their thermo-responsive conformational change from hydrous random coil to dehydrated β-turn structure. Effective cell adhesion and spreading behaviors were observed on these self-assembled oligo(ELP layers. In addition, attached cells were found to be recovered successfully as a cell-sheet by temperature-induced disassembly of oligo(ELP layer. This achievement provides an important insight to construct novel oligopeptide-based nano-surfaces for the design of smart artificial extra-cellular matrix.

  9. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    Science.gov (United States)

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non

  10. Small Artery Elastin Distribution and Architecture-Focus on Three Dimensional Organization.

    Science.gov (United States)

    Hill, Michael A; Nourian, Zahra; Ho, I-Lin; Clifford, Philip S; Martinez-Lemus, Luis; Meininger, Gerald A

    2016-11-01

    The distribution of ECM proteins within the walls of resistance vessels is complex both in variety of proteins and structural arrangement. In particular, elastin exists as discrete fibers varying in orientation across the adventitia and media as well as often resembling a sheet-like structure in the case of the IEL. Adding to the complexity is the tissue heterogeneity that exists in these structural arrangements. For example, small intracranial cerebral arteries lack adventitial elastin while similar sized arteries from skeletal muscle and intestinal mesentery exhibit a complex adventitial network of elastin fibers. With regard to the IEL, several vascular beds exhibit an elastin sheet with punctate holes/fenestrae while in others the IEL is discontinuous and fibrous in appearance. Importantly, these structural patterns likely sub-serve specific functional properties, including mechanosensing, control of external forces, mechanical properties of the vascular wall, cellular positioning, and communication between cells. Of further significance, these processes are altered in vascular disorders such as hypertension and diabetes mellitus where there is modification of ECM. This brief report focuses on the three-dimensional wall structure of small arteries and considers possible implications with regard to mechanosensing under physiological and pathophysiological conditions. © 2016 John Wiley & Sons Ltd.

  11. Elastin-like polypeptide switches: A design strategy to detect multimeric proteins.

    Science.gov (United States)

    Dhandhukia, Jugal P; Brill, Dab A; Kouhi, Aida; Pastuszka, Martha K; MacKay, J Andrew

    2017-09-01

    Elastin-Like Polypeptides (ELPs) reversibly phase separate in response to changes in temperature, pressure, concentration, pH, and ionic species. While powerful triggers, biological microenvironments present a multitude of more specific biological cues, such as antibodies, cytokines, and cell-surface receptors. To develop better biosensors and bioresponsive drug carriers, rational strategies are required to sense and respond to these target proteins. We recently reported that noncovalent association of two ELP fusion proteins to a "chemical inducer of dimerization" small molecule (1.5 kDa) induces phase separation at physiological temperatures. Having detected a small molecule, here we present the first evidence that ELP multimerization can also detect a much larger (60 kDa) protein target. To demonstrate this strategy, ELPs were biotinylated at their amino terminus and mixed with tetrameric streptavidin. At a stoichiometric ratio of [4:1], two to three biotin-ELPs associate with streptavidin into multimeric complexes with an apparent K d of 5 nM. The increased ELP density around a streptavidin core strongly promotes isothermal phase separation, which was tuned to occur at physiological temperature. This phase separation reverses upon saturation with excess streptavidin, which only favors [1:1] complexes. Together, these findings suggest that ELP association with multimeric biomolecules is a viable strategy to deliberately engineer ELPs that respond to multimeric protein substrates. © 2017 The Protein Society.

  12. A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes.

    Science.gov (United States)

    Cheney, Jorn A; Konow, Nicolai; Bearnot, Andrew; Swartz, Sharon M

    2015-05-06

    Bats fly using a thin wing membrane composed of compliant, anisotropic skin. Wing membrane skin deforms dramatically as bats fly, and its three-dimensional configurations depend, in large part, on the mechanical behaviour of the tissue. Large, macroscopic elastin fibres are an unusual mechanical element found in the skin of bat wings. We characterize the fibre orientation and demonstrate that elastin fibres are responsible for the distinctive wrinkles in the surrounding membrane matrix. Uniaxial mechanical testing of the wing membrane, both parallel and perpendicular to elastin fibres, is used to distinguish the contribution of elastin and the surrounding matrix to the overall membrane mechanical behaviour. We find that the matrix is isotropic within the plane of the membrane and responsible for bearing load at high stress; elastin fibres are responsible for membrane anisotropy and only contribute substantially to load bearing at very low stress. The architecture of elastin fibres provides the extreme extensibility and self-folding/self-packing of the wing membrane skin. We relate these findings to flight with membrane wings and discuss the aeromechanical significance of elastin fibre pre-stress, membrane excess length, and how these parameters may aid bats in resisting gusts and preventing membrane flutter. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Stepwise Mechanism of Temperature-Dependent Coacervation of the Elastin-like Peptide Analogue Dimer, (C(WPGVG)3)2.

    Science.gov (United States)

    Tatsubo, Daiki; Suyama, Keitaro; Miyazaki, Masaya; Maeda, Iori; Nose, Takeru

    2018-03-13

    Elastin-like peptides (ELPs) are distinct, repetitive, hydrophobic sequences, such as (VPGVG) n , that exhibit coacervation, the property of reversible, temperature-dependent self-association and dissociation. ELPs can be found in elastin and have been developed as new scaffold biomaterials. However, the detailed relationship between their amino acid sequences and coacervation properties remains obscure because of the structural flexibility of ELPs. In this study, we synthesized a novel, dimeric ELP analogue (H-C(WPGVG) 3 -NH 2 ) 2 , henceforth abbreviated (CW3)2, and analyzed its self-assembly properties and structural factors as indicators of coacervation. Turbidity measurements showed that (CW3)2 demonstrated coacervation at a concentration much lower than that of its monomeric form and another ELP. In addition, the coacervate held water-soluble dye molecules. Thus, potent and distinct coacervation was obtained with a remarkably short sequence of (CW3)2. Furthermore, fluorescence microscopy, dynamic light scattering, and optical microscopy revealed that the coacervation of (CW3)2 was a stepwise process. The structural factors of (CW3)2 were analyzed by molecular dynamics simulations and circular dichroism spectroscopy. These measurements indicated that helical structures primarily consisting of proline and glycine became more disordered at high temperatures with concurrent, significant exposure of their hydrophobic surfaces. This extreme change in the hydrophobic surface contributes to the potent coacervation observed for (CW3)2. These results provide important insights into more efficient applications of ELPs and their analogues, as well as the coacervation mechanisms of ELP and elastin.

  14. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering.

    Science.gov (United States)

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Aspartic acid racemisation in purified elastin from arteries as basis for age estimation.

    Science.gov (United States)

    Dobberstein, R C; Tung, S-M; Ritz-Timme, S

    2010-07-01

    Aspartic acid racemisation (AAR) results in an age-dependent accumulation of D: -aspartic acid in durable human proteins and can be used as a basis for age estimation. Routinely, age estimation based on AAR is performed by analysis of dentine. However, in forensic practise, teeth are not always available. Non-dental tissues for age estimation may be suitable for age estimation based on AAR if they contain durable proteins that can be purified and analysed. Elastin is such a durable protein. To clarify if purified elastin from arteries is a suitable sample for biochemical age estimation, AAR was determined in purified elastin from arteries from individuals of known age (n = 68 individuals, including n = 15 putrefied corpses), considering the influence of different stages of atherosclerosis and putrefaction on the AAR values. AAR was found to increase with age. The relationship between AAR and age was good enough to serve as basis for age estimation, but worse than known from dentinal proteins. Intravital and post-mortem degradation of elastin may have a moderate effect on the AAR values. Age estimation based on AAR in purified elastin from arteries may be a valuable additional tool in the identification of unidentified cadavers, especially in cases where other methods cannot be applied (e.g., no available teeth and body parts).

  16. On the mechanical role of de novo synthesized elastin in the urinary bladder wall

    NARCIS (Netherlands)

    Wognum, Silvia; Schmidt, David E.; Sacks, Michael S.

    2009-01-01

    The urinary bladder wall (UBW), which is composed of smooth muscle, collagen, and elastin, undergoes profound remodeling in response to changes in mechanical loading resulting from various pathologies. In our laboratory, we have observed the production of fibrillar elastin in the extracellular

  17. Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media.

    Science.gov (United States)

    Sugita, Shukei; Matsumoto, Takeo

    2017-06-01

    Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal-circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.

  18. Fibril Formation by pH and Temperature Responsive Silk-Elastin Block Copolymers

    NARCIS (Netherlands)

    Golinska, M.D.; Pham, T.T.H.; Werten, M.W.T.; Wolf, de F.A.; Cohen Stuart, M.A.; Gucht, van der J.

    2013-01-01

    In this report, we study the self-assembly of two silk-elastin-like proteins: one is a diblock S24E40 composed of 24 silk-like (S) repeats and 40 elastin-like (E) repeats; the other is a triblock S12C4E40, in which the S and E blocks are separated by a random coil block (C4). Upon lowering the pH,

  19. Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation

    DEFF Research Database (Denmark)

    Skjøt-Arkil, Helene; Clausen, Rikke E; Nguyen, Quoc Hai Trieu

    2012-01-01

    Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part...... are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases....

  20. Elastin Based Cell-laden Injectable Hydrogels with Tunable Gelation, Mechanical and Biodegradation Properties

    Science.gov (United States)

    Fathi, Ali; Mithieux, Suzanne M.; Wei, Hua; Chrzanowski, Wojciech; Valtchev, Peter; Weiss, Anthony S.; Dehghani, Fariba

    2015-01-01

    Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. A thermoresponsive copolymer, poly(N-isopropylacrylamide-co-polylactide-2-hydroxyethyl methacrylate-co-oligo(ethylene glycol)monomethyl ether methacrylate, was functionalized with succinimide ester groups by incorporating N-acryloxysuccinimide monomer. These ester groups were exploited to covalently bond this polymer, denoted as PNPHO, to different proteins with primary amine groups such as α-elastin in aqueous media. The incorporation of elastin through covalent bond formation with PNPHO promotes the structural stability, mechanical properties and live cell proliferation within the structure of hydrogels. Our results demonstrated that elastin-co-PNPHO solutions were injectable through fine gauge needles and converted to hydrogels in situ at 37 °C in the absence of any crosslinking reagent. By altering PNPHO content, the gelling time of these hydrogels can be finely tuned within the range of 2 to 15 min to ensure compatibility with surgical requirements. In addition, these hydrogels exhibited compression moduli in the range of 40 to 145 kPa, which are substantially higher than those of previously developed elastin-based hydrogels. These hydrogels were highly stable in the physiological environment with the evidence of 10 wt% mass loss in 30 days of incubation in a simulated environment. This class of hydrogels is in vivo bioabsorbable due to the gradual increase of the lower critical solution temperature of the copolymer to above 37 °C due to the cleavage of polylactide from

  1. Assessment of Myocardial Remodeling Using an Elastin/Tropoelastin Specific Agent with High Field Magnetic Resonance Imaging (MRI)

    OpenAIRE

    Protti, Andrea; Lavin, Begoña; Dong, Xuebin; Lorrio, Silvia; Robinson, Simon; Onthank, David; Shah, Ajay M; Botnar, Rene M

    2015-01-01

    BACKGROUND: Well-defined inflammation, proliferation, and maturation phases orchestrate the remodeling of the injured myocardium after myocardial infarction (MI) by controlling the formation of new extracellular matrix. The extracellular matrix consists mainly of collagen but also fractions of elastin. It is thought that elastin is responsible for maintaining elastic properties of the myocardium, thus reducing the risk of premature rupture. An elastin/tropoelastin-specific contrast agent (Gd-...

  2. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice

    Science.gov (United States)

    Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene

    2014-01-01

    Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853

  3. Moyamoya disease and artery tortuosity as rare phenotypes in a patient with an elastin mutation.

    Science.gov (United States)

    Ishiwata, Tsukasa; Tanabe, Nobuhiro; Shigeta, Ayako; Yokota, Hajime; Tsushima, Kenji; Terada, Jiro; Sakao, Seiichiro; Morisaki, Hiroko; Morisaki, Takayuki; Tatsumi, Koichiro

    2016-07-01

    Sporadic and familial elastin mutations can occur in large vessel stenosis such as supravalvular aortic stenosis and narrowing of the descending aorta. However, there are very few reports regarding the arteriopathy of cerebral, pulmonary or abdominal arteries in elastin mutations. We herein report the case of a Japanese female patient presenting with multiple arteriopathy including moyamoya disease, a tortuosity of abdominal arteries and pulmonary hypertension due to peripheral pulmonary artery stenosis. This case suggests the possible progression of cerebral arteriopathy including moyamoya disease in patients with elastin mutations. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Ultrasonic delineation of aortic microstructure: The relative contribution of elastin and collagen to aortic elasticity

    Science.gov (United States)

    Marsh, Jon N.; Takiuchi, Shin; Lin, Shiow Jiuan; Lanza, Gregory M.; Wickline, Samuel A.

    2004-05-01

    Aortic elasticity is an important factor in hemodynamic health, and compromised aortic compliance affects not only arterial dynamics but also myocardial function. A variety of pathologic processes (e.g., diabetes, Marfan's syndrome, hypertension) can affect aortic elasticity by altering the microstructure and composition of the elastin and collagen fiber networks within the tunica media. Ultrasound tissue characterization techniques can be used to obtain direct measurements of the stiffness coefficients of aorta by measurement of the speed of sound in specific directions. In this study we sought to define the contributions of elastin and collagen to the mechanical properties of aortic media by measuring the magnitude and directional dependence of the speed of sound before and after selective isolation of either the collagen or elastin fiber matrix. Formalin-fixed porcine aortas were sectioned for insonification in the circumferential, longitudinal, or radial direction and examined using high-frequency (50 MHz) ultrasound microscopy. Isolation of the collagen or elastin fiber matrices was accomplished through treatment with NaOH or formic acid, respectively. The results suggest that elastin is the primary contributor to aortic medial stiffness in the unloaded state, and that there is relatively little anisotropy in the speed of sound or stiffness in the aortic wall.

  5. Impact of elastin incorporation into electrochemically aligned collagen fibers on mechanical properties and smooth muscle cell phenotype.

    Science.gov (United States)

    Nguyen, Thuy-Uyen; Bashur, Chris A; Kishore, Vipuil

    2016-03-17

    Application of tissue-engineered vascular grafts (TEVGs) for the replacement of small-diameter arteries is limited due to thrombosis and intimal hyperplasia. Previous studies have attempted to address the limitations of TEVGs by developing scaffolds that mimic the composition (collagen and elastin) of native arteries to better match the mechanical properties of the graft with the native tissue. However, most existing scaffolds do not recapitulate the aligned topography of the collagen fibers found in native vessels. In the current study, based on the principles of isoelectric focusing, two different types of elastin (soluble and insoluble) were incorporated into highly oriented electrochemically aligned collagen (ELAC) fibers and the effect of elastin incorporation on the mechanical properties of the ELAC fibers and smooth muscle cell (SMC) phenotype was investigated. The results indicate that elastin incorporation significantly decreased the modulus of ELAC fibers to converge upon that of native vessels. Further, a significant increase in yield strain and decrease in Young's modulus was observed on all fibers post SMC culture compared with before the culture. Real-time polymerase chain reaction results showed a significant increase in the expression of α-smooth muscle actin and calponin on ELAC fibers with insoluble elastin, suggesting that incorporation of insoluble elastin induces a contractile phenotype in SMCs after two weeks of culture on ELAC fibers. Immunofluorescence results showed that calponin expression increased with time on all fibers. In conclusion, insoluble elastin incorporated ELAC fibers have the potential to be used for the development of functional TEVGs for the repair and replacement of small-diameter arteries.

  6. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen.

    Science.gov (United States)

    Chow, Ming-Jay; Turcotte, Raphaël; Lin, Charles P; Zhang, Yanhang

    2014-06-17

    The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces

  7. Elastin density: Link between histological and biomechanical properties of vaginal tissue in women with pelvic organ prolapse?

    Science.gov (United States)

    de Landsheere, Laurent; Brieu, Mathias; Blacher, Silvia; Munaut, Carine; Nusgens, Betty; Rubod, Chrystèle; Noel, Agnès; Foidart, Jean-Michel; Nisolle, Michelle; Cosson, Michel

    2016-04-01

    The aim of the study was to correlate histological and biomechanical characteristics of the vaginal wall in women with pelvic organ prolapse (POP). Tissue samples were collected from the anterior [point Ba; POP Questionnaire (POP-Q)] and/or posterior (point Bp; POP-Q) vaginal wall of 15 women who underwent vaginal surgery for POP. Both histological and biomechanical assessments were performed from the same tissue samples in 14 of 15 patients. For histological assessment, the density of collagen and elastin fibers was determined by combining high-resolution virtual imaging and computer-assisted digital image analysis. For biomechanical testing, uniaxial tension tests were performed to evaluate vaginal tissue stiffness at low (C0) and high (C1) deformation rates. Biomechanical testing highlights the hyperelastic behavior of the vaginal wall. At low strains (C0), vaginal tissue appeared stiffer when elastin density was low. We found a statistically significant inverse relationship between C0 and the elastin/collagen ratio (p = 0.048) in the lamina propria. However, at large strain levels (C1), no clear relationship was observed between elastin density or elastin/collagen ratio and stiffness, likely reflecting the large dispersion of the mechanical behavior of the tissue samples. Histological and biomechanical properties of the vaginal wall vary from patient to patient. This study suggests that elastin density deserves consideration as a relevant factor of vaginal stiffness in women with POP.

  8. Study of human lung elastin degradation by different elastases using high-performance liquid chromatography/mass spectrometry

    NARCIS (Netherlands)

    Barroso, Begona; Abello, Nicolas; Bischoff, Rainer

    2006-01-01

    Elastin is a structural insoluble protein which gives elasticity to tissues and organs. Although its hydrophobic and highly cross-linked nature makes it a very durable polymer, degradation of elastin in relation with several pathological conditions, such as pulmonary emphysema, has been documented.

  9. Expression and Purification of Neurotrophin-Elastin-Like Peptide Fusion Proteins for Neural Regeneration.

    Science.gov (United States)

    Johnson, Tamina; Koria, Piyush

    2016-04-01

    Neural injuries such as spinal cord injuries, traumatic brain injuries, or nerve transection injuries pose a major health problem. Neurotrophins such as nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) have been shown to improve the outcome of neural injuries in several pre-clinical models, but their use in clinics is limited by the lack of a robust delivery system that enhances their bioavailability and half-life. We describe two fusion proteins comprising NGF or BDNF fused with elastin-like peptides (ELPs). The aim of this study was to investigate the biological activity of neurotrophin-ELP (N-ELP) fusion proteins via in vitro culture models. NGF and BDNF were cloned in front of an elastin-like polypeptide sequence V40C2. These proteins were expressed in bacteria as inclusion bodies. These fusion proteins underwent solubilization via 8 M urea and purification via inverse transition cycling (ITC). We measured the particle size and the effect of temperature on precipitated particles using dynamic light scattering (DLS). We used western blot analysis to confirm the specificity of NGF-ELP to tropomyosin receptor kinase A (TrkA) antibody and to confirm the specificity of BDNF-ELP to TrkB antibody. PC12 cells were used to perform a neurite outgrowth assay to determine the biological activity of NGF-ELP. Bioactivity of BDNF-ELP was ascertained via transfecting human epithelial kidney (HEK 293-T) cells to express the TrkB receptor. The proteins were successfully purified to high homogeneity by exploiting the phase transition property of ELPs and urea, which solubilize inclusion bodies. Using PC12 neurite outgrowth assay, we further demonstrated that the biological activity of NGF was retained in the fusion. Similarly, BDNF-ELP phosphorylated the TrkB receptor, suggesting the biological activity of BDNF was also retained in the fusion. We further show that owing to the phase transition property of ELPs in the fusion, these proteins self-assembled into

  10. Hydroxyapatite and Calcified Elastin Induce Osteoblast-like Differentiation in Rat Aortic Smooth Muscle Cells

    Science.gov (United States)

    Lei, Yang; Sinha, Aditi; Nosoudi, Nasim; Grover, Ankit; Vyavahare, Naren

    2014-01-01

    Vascular calcification can be categorized into two different types. Intimal calcification related to atherosclerosis and elastin-specific medial arterial calcification (MAC). Osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) has been shown in both types; however, how this relates to initiation of vascular calcification is unclear. We hypothesize that the initial deposition of hydroxyapatite-like mineral in MAC occurs on degraded elastin first and that causes osteogenic transformation of VSMCs. To test this, rat aortic smooth muscle cells (RASMCs) were cultured on hydroxyapatite crystals and calcified aortic elastin. Using RT-PCR and specific protein assays, we demonstrate that RASMCs lose their smooth muscle lineage markers like alpha smooth muscle actin (SMA) and myosin heavy chain (MHC) and undergo chondrogenic/osteogenic transformation. This is indicated by an increase in the expression of typical chondrogenic proteins such as aggrecan, collagen type II alpha 1(Col2a1) and bone proteins such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, when calcified conditions are removed, cells return to their original phenotype. Our data supports the hypothesis that elastin degradation and calcification precedes VSMCs' osteoblast-like differentiation. PMID:24447384

  11. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.

    Science.gov (United States)

    Ryan, Alan J; O'Brien, Fergal J

    2015-12-01

    Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of gamma irradiation dose on the fabrication of α-elastin nanoparticles by gamma-ray crosslinking

    International Nuclear Information System (INIS)

    Fujimoto, Mari; Takeda, Mayuko; Okamoto, Kouji; Furuta, Masakazu

    2011-01-01

    Nanoparticles were prepared utilizing the thermosensitive aggregation of α-elastin and gamma-ray crosslinking. We investigated the effect of the α-elastin irradiation doses to verify the yield of crosslinked nanoparticles. Aqueous solution of α-elastin (10 mg/ml) was used for the aggregation on raising temperature above its cloudy point (CP), followed by gamma-ray crosslinking. A slow heating process (1.9 o C/min) effectively led to aggregation of polypeptide and irradiation with more than 15 kGy yielded stable crosslinked nanoparticles with diameters less than ca. 200 nm and a narrow size distribution.

  13. Effect of gamma irradiation dose on the fabrication of {alpha}-elastin nanoparticles by gamma-ray crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Mari; Takeda, Mayuko [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Okamoto, Kouji [Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502 (Japan); Furuta, Masakazu, E-mail: mfuruta@b.s.osakafu-u.ac.j [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan)

    2011-02-15

    Nanoparticles were prepared utilizing the thermosensitive aggregation of {alpha}-elastin and gamma-ray crosslinking. We investigated the effect of the {alpha}-elastin irradiation doses to verify the yield of crosslinked nanoparticles. Aqueous solution of {alpha}-elastin (10 mg/ml) was used for the aggregation on raising temperature above its cloudy point (CP), followed by gamma-ray crosslinking. A slow heating process (1.9 {sup o}C/min) effectively led to aggregation of polypeptide and irradiation with more than 15 kGy yielded stable crosslinked nanoparticles with diameters less than ca. 200 nm and a narrow size distribution.

  14. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.

    Science.gov (United States)

    Dunphy, Siobhán E; Bratt, Jessica A J; Akram, Khondoker M; Forsyth, Nicholas R; El Haj, Alicia J

    2014-10-01

    In this study, collagen-elastin constructs were prepared with the aim of producing a material capable of mimicking the mechanical properties of a single alveolar wall. Collagen has been used in a wide range of tissue engineering applications; however, due to its low mechanical properties its use is limited to non load-bearing applications without further manipulation using methods such as cross-linking or mechanical compression. Here, it was hypothesised that the addition of soluble elastin to a collagen hydrogel could improve its mechanical properties. Hydrogels made from collagen only and collagen plus varying amounts elastin were prepared. Young׳s modulus of each membrane was measured using the combination of a non-destructive indentation and a theoretical model previously described. An increase in Young׳s modulus was observed with increasing concentration of elastin. The use of non-destructive indentation allowed for online monitoring of the elastic moduli of cell-seeded constructs over 8 days. The addition of lung fibroblasts into the membrane increased the stiffness of the hydrogels further and cell-seeded collagen hydrogels were found to have a stiffness equal to the theoretical value for a single alveolar wall (≈5kPa). Through provision of some of the native extracellular matrix components of the lung parenchyma these scaffolds may be able to provide an initial building block toward the regeneration of new functional lung tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Assessment of Myocardial Remodeling Using an Elastin/Tropoelastin Specific Agent with High Field Magnetic Resonance Imaging (MRI).

    Science.gov (United States)

    Protti, Andrea; Lavin, Begoña; Dong, Xuebin; Lorrio, Silvia; Robinson, Simon; Onthank, David; Shah, Ajay M; Botnar, Rene M

    2015-08-13

    Well-defined inflammation, proliferation, and maturation phases orchestrate the remodeling of the injured myocardium after myocardial infarction (MI) by controlling the formation of new extracellular matrix. The extracellular matrix consists mainly of collagen but also fractions of elastin. It is thought that elastin is responsible for maintaining elastic properties of the myocardium, thus reducing the risk of premature rupture. An elastin/tropoelastin-specific contrast agent (Gd-ESMA) was used to image tropoelastin and mature elastin fibers for in vivo assessment of extracellular matrix remodeling post-MI. Gd-ESMA enhancement was studied in a mouse model of myocardial infarction using a 7 T MRI scanner and results were compared to those achieved after injection of a nonspecific control contrast agent, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). In the infarcted tissue, Gd-ESMA uptake (measured as R1 relaxation rate) steadily increased from day 3 to day 21 as a result of the synthesis of elastin/tropoelastin. R1 values were in good agreement with histological findings. A similar R1 behavior was observed in the remote myocardium. No mature cross-linked elastin was found at any time point. In contrast, Gd-DTPA uptake was only observed in the infarct with no changes in R1 values between 3 and 21 days post-MI. We demonstrate the feasibility of in vivo imaging of extracellular matrix remodeling post-MI using a tropoelastin/elastin binding MR contrast agent, Gd-ESMA. We found that tropoelastin is the main contributor to the increased MRI signal at late stages of MI where its augmentation in areas of infarction was in good agreement with the R1 increase. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  16. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.

    Science.gov (United States)

    Taniguchi, Suguru; Watanabe, Noriko; Nose, Takeru; Maeda, Iori

    2016-01-01

    Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  17. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins.

    Science.gov (United States)

    Itoh, Aiko; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu

    2017-11-01

    We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.

  18. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.

    Science.gov (United States)

    Cheney, Jorn A; Allen, Justine J; Swartz, Sharon M

    2017-04-01

    Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross-polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the

  19. Genetic Modifiers of Cardiovascular Phenotype Caused by Elastin Haploinsufficiency Act by Extrinsic Noncomplementation*

    Science.gov (United States)

    Kozel, Beth A.; Knutsen, Russell H.; Ye, Li; Ciliberto, Christopher H.; Broekelmann, Thomas J.; Mecham, Robert P.

    2011-01-01

    Elastin haploinsufficiency causes the cardiovascular complications associated with Williams-Beuren syndrome and isolated supravalvular aortic stenosis. Significant variability exists in the vascular pathology in these individuals. Using the Eln+/− mouse, we sought to identify the source of this variability. Following outcrossing of C57Bl/6J Eln+/−, two backgrounds were identified whose cardiovascular parameters deviated significantly from the parental strain. F1 progeny of the C57Bl/6J; Eln+/−x129X1/SvJ were more hypertensive and their arteries less compliant. In contrast, Eln+/− animals crossed to DBA/2J were protected from the pathologic changes associated with elastin insufficiency. Among the crosses, aortic elastin and collagen content did not correlate with quantitative vasculopathy traits. Quantitative trait locus analysis performed on F2 C57; Eln+/−x129 intercrosses identified highly significant peaks on chromosome 1 (LOD 9.7) for systolic blood pressure and on chromosome 9 (LOD 8.7) for aortic diameter. Additional peaks were identified that affect only Eln+/−, including a region upstream of Eln on chromosome 5 (LOD 4.5). Bioinformatic analysis of the quantitative trait locus peaks revealed several interesting candidates, including Ren1, Ncf1, and Nos1; genes whose functions are unrelated to elastic fiber assembly, but whose effects may synergize with elastin insufficiency to predispose to hypertension and stiffer blood vessels. Real time RT-PCR studies show background-specific increased expression of Ncf1 (a subunit of the NOX2 NAPDH oxidase) that parallel the presence of increased oxidative stress in Eln+/− aortas. This finding raises the possibility that polymorphisms in genes affecting the generation of reactive oxygen species alter cardiovascular function in individuals with elastin haploinsufficiency through extrinsic noncomplementation. PMID:22049077

  20. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK.

    Science.gov (United States)

    Martínez-Revelles, Sonia; García-Redondo, Ana B; Avendaño, María S; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R; Fortuño, Ana; Touyz, Rhian M; Martínez-González, Jose; Salaices, Mercedes; Rodríguez, Cristina; Briones, Ana M

    2017-09-01

    Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H 2 O 2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H 2 O 2 and O 2 .- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H 2 O 2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27

  1. Measurement of cross-linked elastin synthesis in bleomycin-induced pulmonary fibrosis using a highly sensitive assay for desmosine and isodesmosine

    International Nuclear Information System (INIS)

    Cantor, J.O.; Osman, M.; Keller, S.; Cerreta, J.M.; Mandl, I.; Turino, G.M.

    1984-01-01

    Cross-linked elastin synthesis was measured in the intratracheal bleomycin model of interstitial pulmonary fibrosis by incorporation of 14C-lysine into the elastin-specific crosslinks, desmosine and isodesmosine. Detection of the labeled crosslinks was facilitated by development of a highly sensitive assay utilizing thin-layer electrophoresis. The results indicate that crosslinked elastin synthesis is significantly elevated from controls (p less than 0.05) at 1 to 3 weeks after exposure to bleomycin and returns to normal by 5 weeks. The increases in labeled elastin synthesis are not directly related to changes in either total lung protein synthesis or the pool size of the 14C-lysine. In comparison with collagen and glycosaminoglycan synthesis in this model of lung injury, maximal increases in cross-linked elastin formation occur later, but overlap with the elevated synthesis of these other connective tissue components. The marked increase from normal in cross-linked elastin synthesis in this model suggests that this tissue component is an important part of the fibrotic response of the pulmonary parenchyma and may play a role in the observed alterations in lung structure and function

  2. High-yield recombinant expression and purification of marginally soluble, short elastin-like polypeptides.

    Science.gov (United States)

    Bahniuk, Markian S; Alshememry, Abdullah K; Unsworth, Larry D

    2016-12-01

    The protocol described here is designed as an extension of existing techniques for creating elastin-like polypeptides. It allows for the expression and purification of elastin-like polypeptide (ELP) constructs that are poorly expressed or have very low transition temperatures. DNA concatemerization has been modified to reduce issues caused by methylation sensitivity and inefficient cloning. Linearization of the modified expression vector has been altered to greatly increase cleavage efficiency. The purification regimen is based upon using denaturing metal affinity chromatography to fully solubilize and, if necessary, pre-concentrate the target peptide before purification by inverse temperature cycling (ITC). This protocol has been used to express multiple leucine-containing elastin-like polypeptides, with final yields of 250-660 mg per liter of cells, depending on the specific construct. This was considerably greater than previously reported yields for similar ELPs. Due to the relative hydrophobicity of the tested constructs, even compared with commonly employed ELPs, conventional methods would not have been able to be purify these peptides.

  3. Knockdown of versican 1 blocks cigarette-induced loss of insoluble elastin in human lung fibroblasts.

    Science.gov (United States)

    Xu, Lu-lu; Lu, Yun-tao; Zhang, Jing; Wu, Lian; Merrilees, Mervyn J; Qu, Jie-ming

    2015-08-15

    COPD lung is characterized by loss of alveolar elastic fibers and an increase in the chondroitin sulfate (CS) matrix proteoglycan versican V1 (V1). V1 is a known inhibitor of elastic fiber deposition and this study investigates the effects of knockdown of V1, and add-back of CS, on CCL-210 lung fibroblasts treated with cigarette smoke extract (CSE) as a model for COPD. CSE inhibited fibroblast proliferation, viability, tropoelastin synthesis, and elastin deposition, and increased V1 synthesis and secretion. V1 siRNA decreased V1 and constituent CS, did not affect tropoelastin production, but blocked the CSE-induced loss in insoluble elastin. Exogenous CS reduced insoluble elastin, even in the presence of V1 siRNA. These findings confirm that V1 and CS impair the assembly of tropoelastin monomers into insoluble fibers, and further demonstrate that specific knockdown of V1 alleviates the impaired assembly of elastin seen in cultures of pulmonary fibroblasts exposed to CSE, indicating a regulatory role for this protein in the pathophysiology of COPD. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta.

    Science.gov (United States)

    Cheheltani, Rabee; McGoverin, Cushla M; Rao, Jayashree; Vorp, David A; Kiani, Mohammad F; Pleshko, Nancy

    2014-06-21

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues.

  5. Fourier Transform Infrared Spectroscopy to Quantify Collagen and Elastin in an In Vitro Model of Extracellular Matrix Degradation in Aorta

    Science.gov (United States)

    Cheheltani, Rabee; McGoverin, Cushla M.; Rao, Jayashree; Vorp, David A.; Kiani, Mohammad F.; Pleshko, N.

    2014-01-01

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues. PMID:24761431

  6. Electrospinning of collagen and elastin for tissue engineering applications

    NARCIS (Netherlands)

    Buttafoco, L.; Kolkman, N.G.; Engbers-Buijtenhuijs, P.; Poot, Andreas A.; Dijkstra, Pieter J.; Vermes, I.; Feijen, Jan

    2006-01-01

    Meshes of collagen and/or elastin were successfully prepared by means of electrospinning from aqueous solutions. Flow rate, applied electric field, collecting distance and composition of the starting solutions determined the morphology of the obtained fibres. Addition of PEO (Mw=8×106) and NaCl was

  7. Polymorphisms in the human tropoelastin gene modify in vitro self-assembly and mechanical properties of elastin-like polypeptides.

    Directory of Open Access Journals (Sweden)

    David He

    Full Text Available Elastin is a major structural component of elastic fibres that provide properties of stretch and recoil to tissues such as arteries, lung and skin. Remarkably, after initial deposition of elastin there is normally no subsequent turnover of this protein over the course of a lifetime. Consequently, elastic fibres must be extremely durable, able to withstand, for example in the human thoracic aorta, billions of cycles of stretch and recoil without mechanical failure. Major defects in the elastin gene (ELN are associated with a number of disorders including Supravalvular aortic stenosis (SVAS, Williams-Beuren syndrome (WBS and autosomal dominant cutis laxa (ADCL. Given the low turnover of elastin and the requirement for the long term durability of elastic fibres, we examined the possibility for more subtle polymorphisms in the human elastin gene to impact the assembly and long-term durability of the elastic matrix. Surveys of genetic variation resources identified 118 mutations in human ELN, 17 being non-synonymous. Introduction of two of these variants, G422S and K463R, in elastin-like polypeptides as well as full-length tropoelastin, resulted in changes in both their assembly and mechanical properties. Most notably G422S, which occurs in up to 40% of European populations, was found to enhance some elastomeric properties. These studies reveal that even apparently minor polymorphisms in human ELN can impact the assembly and mechanical properties of the elastic matrix, effects that over the course of a lifetime could result in altered susceptibility to cardiovascular disease.

  8. Elastin-like polypeptides: the power of design for smart cell encapsulation.

    Science.gov (United States)

    Bandiera, Antonella

    2017-01-01

    Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.

  9. Gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions.

    Science.gov (United States)

    Sivrikoz, Emre; Timirci-Kahraman, Özlem; Ergen, Arzu; Zeybek, Ümit; Aksoy, Murat; Yanar, Fatih; İsbir, Turgay; Kurtoğlu, Mehmet

    2015-01-01

    The purpose of this study was to investigate the gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions and to correlate it with clinical features of plaque destabilization. The study included 44 endarterectomy specimens available from operated symptomatic carotid artery stenoses. The specimens were separated according to anatomic location: internal carotid artery (ICA), external carotid artery (ECA) and common carotid artery (CCA), and then stored in liquid nitrogen. The amounts of cDNA for elastin and fibulin-5 were determined by Quantitative real-time PCR (Q-RT-PCR). Target gene copy numbers were normalized using hypoxanthine-guanine phosphoribosyltransferase (HPRT1) gene. The delta-delta CT method was applied for relative quantification. Q-RT-PCR data showed that relative fibulin-5 gene expression was increased in ICA plaque regions when compared to CCA regions but not reaching significance (p=0.061). At the same time, no differences were observed in elastin mRNA level between different anatomic plaque regions (p>0.05). Moreover, elastin and fibulin-5 mRNA expression and clinical parameters were compared in ICA plaques versus CCA and ECA regions, respectively. Up-regulation of elastin and fibulin-5 mRNA levels in ICA were strongly correlated with family history of cardiovascular disease when compared to CCA (p<0.05). Up-regulation of fibulin-5 in ICA was significantly associated with diabetes, and elevated triglycerides and very low density lipoprotein (VLDL) when compared to ECA (p<0.05). The clinical significance is the differences between the proximal and distal regions of the lesion, associated with the ICA, CCA and ECA respectively, with increased fibulin-5 in the ICA region. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine.

    Science.gov (United States)

    Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María

    2016-11-01

    The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca 10 (PO 4 ) 5.7 (SiO 4 ) 0.3 (OH) 1.7 h 0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SN A 15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier

  11. Prophylactic effects of elastin peptide derived from the bulbus arteriosus of fish on vascular dysfunction in spontaneously hypertensive rats.

    Science.gov (United States)

    Takemori, Kumiko; Yamamoto, Ei; Ito, Hiroyuki; Kometani, Takashi

    2015-01-01

    To determine the prophylactic effects of an elastin peptide derived from the bulbus arteriosus of bonitos and prolylglycine (PG), a degradation product of elastin peptide, on vascular dysfunction in spontaneously hypertensive rats (SHRs). Male 15-week-old SHR/Izm rats were fed without (control group) or with elastin peptide (1 g/kg body weight) for 5 weeks (EP group), or were infused via an osmotic mini-pump for 4 weeks with PG (PG group) or saline (control group). Using thoracic aortas, we assessed endothelial changes by scanning electron microscopy. Vascular reactivity (contraction and relaxation) and pressure-induced distension was compared. mRNA production levels of endothelial nitric oxide synthase (eNOS) and intercellular adhesion molecule-1 (ICAM-1) were investigated by real-time-polymerase chain reaction. Aortas of the EP group displayed limited endothelial damage compared with that in the control group. Under treatment of SHRs with elastin peptide, the effect of phenylephrine returned closer to the normal level observed in normotensive Wistar-Kyoto (WKY/Izm) rats. mRNA production of eNOS (but not ICAM-1) was greater in the EP group than in the control group. Endothelial damage was suppressed and pressure-induced vascular distension was greater in the PG group than in the corresponding control group. These results suggest that elastin peptide from bonitos elicits prophylactic affects hypertension-associated vascular dysfunction by targeting the eNOS signaling pathway. PG may be a key mediator of the beneficial effects of elastin peptide. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    Science.gov (United States)

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Details of the Collagen and Elastin Architecture in the Human Limbal Conjunctiva, Tenon's Capsule and Sclera Revealed by Two-Photon Excited Fluorescence Microscopy.

    Science.gov (United States)

    Park, Choul Yong; Marando, Catherine M; Liao, Jason A; Lee, Jimmy K; Kwon, Jiwon; Chuck, Roy S

    2016-10-01

    To investigate the architecture and distribution of collagen and elastin in human limbal conjunctiva, Tenon's capsule, and sclera. The limbal conjunctiva, Tenon's capsule, and sclera of human donor corneal buttons were imaged with an inverted two-photon excited fluorescence microscope. No fixation process was necessary. The laser (Ti:sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of second harmonic generation (SHG) and autofluorescence (AF) were collected through a 425/30-nm and a 525/45-nm emission filter, respectively. Multiple, consecutive, and overlapping (z-stack) images were acquired. Collagen signals were collected with SHG, whereas elastin signals were collected with AF. The size and density of collagen bundles varied widely depending on depth: increasing from conjunctiva to sclera. In superficial image planes, collagen bundles were image planes (episclera and superficial sclera), collagen bundles were thicker (near 100 μm in width) and densely packed. Comparatively, elastin fibers were thinner and sparse. The orientation of elastin fibers was independent of collagen fibers in superficial layers; but in deep sclera, elastin fibers wove through collagen interbundle gaps. At the limbus, both collagen and elastin fibers were relatively compact and were distributed perpendicular to the limbal annulus. Two-photon excited fluorescence microscopy has enabled us to understand in greater detail the collagen and elastin architecture of the human limbal conjunctiva, Tenon's capsule, and sclera.

  14. Preparation of Photocrosslinked Fish Elastin Polypeptide/Microfibrillated Cellulose Composite Gels with Elastic Properties for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Shinya Yano

    2015-01-01

    Full Text Available Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO. First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N′-dicyclohexylcarbodiimide (DCC, a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress–strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity.

  15. Quantitative and qualitative evaluation of dermal elastin of draught horses with chronic progressive lymphoedema.

    Science.gov (United States)

    De Cock, H E V; Van Brantegem, L; Affolter, V K; Oosterlinck, M; Ferraro, G L; Ducatelle, R

    2009-01-01

    Chronic progressive lymphoedema (CPL) in horses, a disease of certain draught breeds, is associated with altered elastin metabolism. The characteristic lesions are seen in the skin of the lower (distal) limbs. This study was based on horses of susceptible breeds, with and without CPL, and on horses of a non-susceptible breed. Skin samples were obtained for examination from the neck (considered a non-affected region) and from the distal limb. The skin lesions were characterized histologically and the dermal elastic fibres were evaluated morphologically and quantitatively. In all horses the mean elastin concentrations were highest in the superficial dermis, gradually decreasing in the mid-dermis and deep dermis. As compared with horses of a non-susceptible breed, affected horses had increased amounts of dermal elastin in both the distal limb and neck, while non-affected horses of a susceptible breed had decreased amounts. The findings support an earlier hypothesis that CPL of horses is a generalized disease. Reduced efficiency of the elastic network in supporting the dermal lymphatics may explain the development of CPL.

  16. In vitro myogenesis induced by human recombinant elastin-like proteins.

    Science.gov (United States)

    D'Andrea, Paola; Scaini, Denis; Ulloa Severino, Luisa; Borelli, Violetta; Passamonti, Sabina; Lorenzon, Paola; Bandiera, Antonella

    2015-10-01

    Mammalian adult skeletal muscle has a limited ability to regenerate after injury, usage or trauma. A promising strategy for successful regenerative technology is the engineering of bio interfaces that mimic the characteristics of the extracellular matrix. Human elastin-like polypeptides (HELPs) have been synthesized as biomimetic materials that maintain some peculiar properties of the native protein. We developed a novel Human Elastin Like Polypeptide obtained by fusing the elastin-like backbone to a domain present in the α2 chain of type IV collagen, containing two RGD motives. We employed this peptide as adhesion substrate for C2C12 myoblasts and compared its effects to those induced by two other polypeptides of the HELP series. Myoblast adhered to all HELPs coatings, where they assumed morphology and cytoarchitecture that depended on the polypeptide structure. Adhesion to HELPs stimulated at a different extent cell proliferation and differentiation, the expression of Myosin Heavy Chain and the fusion of aligned fibers into multinucleated myotubes. Adhesion substrates significantly altered myotubes stiffness, measured by Atomic Force Microscopy, and differently affected the cells Ca(2+) handling capacity and the maturation of excitation-contraction coupling machinery, evaluated by Ca(2+) imaging. Overall, our findings indicate that the properties of HELP biopolymers can be exploited for dissecting the molecular connections underlying myogenic differentiation and for designing novel substrates for skeletal muscle regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy.

    Science.gov (United States)

    Cui, Jason Z; Tehrani, Arash Y; Jett, Kimberly A; Bernatchez, Pascal; van Breemen, Cornelis; Esfandiarei, Mitra

    2014-09-01

    In a mouse model of Marfan syndrome, conventional Verhoeff-Van Gieson staining displays severe fragmentation, disorganization and loss of the aortic elastic fiber integrity. However, this method involves chemical fixatives and staining, which may alter the native morphology of elastin and collagen. Thus far, quantitative analysis of fiber damage in aorta and skin in Marfan syndrome has not yet been explored. In this study, we have used an advanced noninvasive and label-free imaging technique, multiphoton microscopy to quantify fiber fragmentation, disorganization, and total volumetric density of aortic and cutaneous elastin and collagen in a mouse model of Marfan syndrome. Aorta and skin samples were harvested from Marfan and control mice aged 3-, 6- and 9-month. Elastin and collagen were identified based on two-photon excitation fluorescence and second-harmonic-generation signals, respectively, without exogenous label. Measurement of fiber length indicated significant fragmentation in Marfan vs. control. Fast Fourier transform algorithm analysis demonstrated markedly lower fiber organization in Marfan mice. Significantly reduced volumetric density of elastin and collagen and thinner skin dermis were observed in Marfan mice. Cutaneous content of elastic fibers and thickness of dermis in 3-month Marfan resembled those in the oldest control mice. Our findings of early signs of fiber degradation and thinning of skin dermis support the potential development of a novel non-invasive approach for early diagnosis of Marfan syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures.

    Science.gov (United States)

    Demuth, Dominik; Haase, Nils; Malzacher, Daniel; Vogel, Michael

    2015-08-01

    We use (13)C CP MAS NMR to investigate the dependence of elastin dynamics on the concentration and composition of the solvent at various temperatures. For elastin in pure glycerol, line-shape analysis shows that larger-scale fluctuations of the protein backbone require a minimum glycerol concentration of ~0.6 g/g at ambient temperature, while smaller-scale fluctuations are activated at lower solvation levels of ~0.2 g/g. Immersing elastin in various glycerol-water mixtures, we observe at room temperature that the protein mobility is higher for lower glycerol fractions in the solvent and, thus, lower solvent viscosity. When decreasing the temperature, the elastin spectra approach the line shape for the rigid protein at 245 K for all studied samples, indicating that the protein ceases to be mobile on the experimental time scale of ~10(-5) s. Our findings yield evidence for a strong coupling between elastin fluctuations and solvent dynamics and, hence, such interaction is not restricted to the case of protein-water mixtures. Spectral resolution of different carbon species reveals that the protein-solvent couplings can, however, be different for side chain and backbone units. We discuss these results against the background of the slaving model for protein dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Evaluation of a biomimetic 3D substrate based on the Human Elastin-like Polypeptides (HELPs) model system for elastolytic activity detection.

    Science.gov (United States)

    Corich, Lucia; Busetti, Marina; Petix, Vincenzo; Passamonti, Sabina; Bandiera, Antonella

    2017-08-10

    Elastin is a fibrous protein that confers elasticity to tissues such as skin, arteries and lung. It is extensively cross-linked, highly hydrophobic and insoluble. Nevertheless, elastin can be hydrolysed by bacterial proteases in infectious diseases, resulting in more or less severe tissue damage. Thus, development of substrates able to reliably and specifically detect pathogen-secreted elastolytic activity is needed to improve the in vitro evaluation of the injury that bacterial proteases may provoke. In this work, two human biomimetic elastin polypeptides, HELP and HELP1, as well as the matrices derived from HELP, have been probed as substrates for elastolytic activity detection. Thirty strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients were analyzed in parallel with standard substrates, to detect proteolytic and elastolytic activity. Results point to the HELP-based 3D matrix as an interesting biomimetic model of elastin to assess bacterial elastolytic activity in vitro. Moreover, this model substrate enables to further elucidate the mechanism underlying elastin degradation at molecular level, as well as to develop biomimetic material-based devices responsive to external stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Intracranial arteries in individuals with the elastin gene hemideletion of Williams syndrome.

    Science.gov (United States)

    Wint, D P; Butman, J A; Masdeu, J C; Meyer-Lindenberg, A; Mervis, C B; Sarpal, D; Morris, C A; Berman, K F

    2014-01-01

    Williams syndrome, a rare genetic disorder with a striking neurobehavioral profile characterized by extreme sociability and impaired visuospatial construction abilities, is caused by a hemideletion that includes the elastin gene, resulting in frequent supravavular aortic stenosis and other stenotic arterial lesions. Strokes have been reported in Williams syndrome. Although the extracranial carotid artery has been studied in a sample of patients with Williams syndrome, proximal intracranial arteries have not. Using MRA, we studied the intracranial vessels in 27 participants: 14 patients with Williams syndrome (age range, 18-44 years; mean age, 27.3 ± 9.1; 43% women) and 13 healthy control participants with similar age and sex distribution (age range, 22-52 years; mean age, 33.4 ± 7.6; 46% women). All participants with Williams syndrome had hemideletions of the elastin gene. Blinded to group allocation or to any other clinical data, a neuroradiologist determined the presence of intracranial vascular changes in the 2 groups. The Williams syndrome group and the healthy control group had similar patency of the proximal intracranial arteries, including the internal carotid and vertebral arteries; basilar artery; and stem and proximal branches of the anterior cerebral artery, MCA, and posterior cerebral arteries. The postcommunicating segment of the anterior cerebral artery was longer in the Williams syndrome group. Despite the elastin haploinsufficiency, the proximal intracranial arteries in Williams syndrome preserve normal patency.

  1. Three dimensional microstructural network of elastin, collagen, and cells in Achilles tendons.

    Science.gov (United States)

    Pang, Xin; Wu, Jian-Ping; Allison, Garry T; Xu, Jiake; Rubenson, Jonas; Zheng, Ming-Hao; Lloyd, David G; Gardiner, Bruce; Wang, Allan; Kirk, Thomas Brett

    2017-06-01

    Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    Science.gov (United States)

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor

  3. Deposition of insoluble elastin by pulmonary fibroblasts from patients with COPD is increased by treatment with versican siRNA.

    Science.gov (United States)

    Wu, Lian; Zhang, Jing; Qu, Jie Ming; Bai, Chun-Xue; Merrilees, Mervyn J

    2017-01-01

    A reduced content of alveolar elastic fibers is a key feature of COPD lung. Despite continued elastogenic potential by alveolar fibroblasts in the lung affected by COPD, repair of elastic fibers does not take place, which is due to increased levels of the chondroitin sulfate proteoglycan versican that inhibits the assembly of tropoelastin into fibers. In this study, primary pulmonary fibroblast cell lines from COPD and non-COPD patients were treated with a small interfering RNA (siRNA) against versican to determine if knockdown of versican could restore the deposition of insoluble elastin. Versican siRNA treatment reduced versican expression and secretion by pulmonary fibroblasts from both COPD and non-COPD patients ( P elastin in the COPD cell cultures ( P elastin (tropoelastin) in either the COPD or non-COPD cell cultures, supporting a role for versican in inhibiting assembly but not synthesis of tropoelastin. These results suggest that removal or knockdown of versican may be a possible therapeutic strategy for increasing deposition of insoluble elastin and stimulating repair of elastic fibers in COPD lung.

  4. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold.

    Science.gov (United States)

    Mahara, Atsushi; Kiick, Kristi L; Yamaoka, Tetsuji

    2017-06-01

    Herein, we demonstrate a new approach for small-caliber vascular reconstruction using a non-porous elastin-like polypeptide hydrogel tubular scaffold, based on the concept of guided vascular regeneration (GVR). The scaffolds are composed of elastin-like polypeptide, (Val-Pro-Gly-Ile-Gly) n , for compliance matching and antithrombogenicity and an Arg-Gly-Asp (RGD) motif for connective tissue regeneration. When the polypeptide was mixed with an aqueous solution of β-[Tris(hydroxymethyl)phosphino]propionic acid at 37°C, the polypeptide hydrogel was rapidly formed. The elastic modulus of the hydrogel was 4.4 kPa. The hydrogel tubular scaffold was formed in a mold and reinforced with poly(lactic acid) nanofibers. When tubular scaffolds with an inner diameter of 1 mm and length of 5 mm were implanted into rat abdominal aortae, connective tissue grew along the scaffold luminal surface from the flanking native tissues, resulting in new blood vessel tissue with a thickness of 200 μm in 1 month. In contrast, rats implanted with control scaffolds without the RGD motif died. These results indicate that the non-porous hydrogel tubular scaffold containing the RGD motif effectively induced rapid tissue regeneration and that GVR is a promising strategy for the regeneration of small-diameter blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1746-1755, 2017. © 2017 Wiley Periodicals, Inc.

  5. Cancer Nano technology Using Elastin-Like Polypeptides

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2014-01-01

    Despite progress in understanding cancer biology, this knowledge has not translated into comparable advances in the clinic. Two fundamental problems currently stalling the efficient treatment of cancer have been detecting cancer early enough for successful treatment and avoiding excessive toxicity to normal tissues. In view of this, cancer still remains one of the leading causes of mortality worldwide, affecting over 10 million new patients every year. Clearly the development of novel approaches for early detection and treatment of cancer is urgently needed to increase patient survival. Recently, nano technology-based systems have emerged as novel therapeutic modalities for cancer treatment. Tiny man made nanoparticles, much smaller than a virus, are being developed to package, transport, and deliver imaging and therapeutic agents. Co-inclusion of these agents, into nano carriers might be advantageous because they increase solubility of hydrophobic drugs, enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce side effects. Initial findings have been promising and nanoparticles have been shown to deliver therapeutic agents to target cells and effect tumor growth. To this end our lab is investigating a class of biodegradable and biocompatible polymers known as elastin-like polypeptides (ELP). Elastin like polypeptide is a bio polymer derived from the structural motif found in mammalian elastin protein and has a sequence dependent transition temperature that can be used as nano carriers to treat diseases. ELPs are characterized by the pentameric repeat VPGXG, where X can be any amino acid. All functional ELPs undergo inverse phase transition whereby below its transition temperature, they exist in a solubilized form while above its transition temperature they undergo phase separation which leads to their aggregation in solution. This process is reversible. Phase transition can also be triggered by other

  6. Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions.

    Science.gov (United States)

    Parasaram, Vaideesh; Nosoudi, Nasim; Chowdhury, Aniqa; Vyavahare, Naren

    2018-04-30

    Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts. We also studied the effect of PGG treatment in reducing MMP activity and ROS levels in cells. We exposed rat pulmonary fibroblasts to two different types of inflammatory environments i.e., tumor necrosis factor-α (TNF-α) and cigarette smoke extract (CSE) to mimic the disease. Parameters like lysyl oxidase (LOX) and elastin gene expression, MMP-9 activity in the medium, lysyl oxidase (LOX) activity and ROS levels were studied to assess the effect of PGG on pulmonary fibroblasts. CSE inhibited lysyl oxidase (LOX) enzyme activity that resulted in a decreased elastin formation. Similarly, TNF-α treated cells showed less elastin in the cell layers. Both these agents caused increase in MMP activity and ROS levels in cells. However, when supplemented with PGG treatment along with these two inflammatory agents, we saw a significant increase in elastin deposition, reduction in both MMP activity and ROS levels. Thus PGG, which has anti-inflammatory, anti-oxidant properties coupled with its ability to aid in elastic fiber formation, can be a multifunctional drug to potentially arrest the progression of emphysema. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries

    International Nuclear Information System (INIS)

    Kochová, P; Cimrman, R; Kuncová, J; Švíglerová, J; Miklíková, M; Liška, V; Tonar, Z

    2012-01-01

    The main components responsible for the mechanical behavior of the arterial wall are collagen, elastin, and smooth muscle cells (SMCs) in the medial layer. We determined the structural and mechanical changes in porcine carotid arteries after administration of Triton® X-100, elastase, and collagenase using the inflation–deflation test. The arteries were intraluminarly pressurized from 0 to 200 mmHg, and the outer diameter of the artery was measured. The pressure–strain elastic modulus was determined based on the pressure/diameter ratio. The intima–media thickness, wall thickness, thickness of the tunica adventitia layer, and the area fractions of SMCs, elastin, and collagen within the arterial wall (A A (SMC/elastin/collagen, wall)) were measured using stereological methods. The relative changes in the relevant components of the treated samples were as follows: the decrease in A A (SMC, wall) after administration of Triton® X-100 was 11% ± 7%, the decrease in A A (elastin, wall) after administration of elastase was 40% ± 22%, and the decrease in A A (collagen, wall) after the application of collagenase was 51% ± 22%. The Triton® X-100 treatment led to a decrease in the SMC content that was associated with enlargement of the arterial wall (outer diameter) for pressures up to 120 mmHg, and with mechanical stiffening of the arterial wall at higher pressures. Elastase led to a decrease in the elastin content that was associated with enlargement of the arterial wall, but not with stiffening or softening. Collagenase led to a decrease in collagen content that was associated with a change in the stiffness of the arterial wall, although the exact contribution of mechanical loading and the duration of treatment (enlargement) could not be quantified. (paper)

  8. Antibodies to elastin peptides in sera of Belgian Draught horses with chronic progressive lymphoedema.

    Science.gov (United States)

    van Brantegem, L; de Cock, H E V; Affolter, V K; Duchateau, L; Hoogewijs, M K; Govaere, J; Ferraro, G L; Ducatelle, R

    2007-09-01

    Chronic progressive lymphoedema (CPL) is a recently recognised disease of the lymphatic system characterised by lesions in the skin of the lower legs in several draught horse breeds, including the Belgian Draught hourse. Clinical signs slowly progress and result in severe disfigurement of the limbs. Ideally, supportive treatment should be started early in the disease process. However early diagnosis and monitoring progression of CPL is still a challenge. Elastin changes, characterised by morphological alterations as well as increased desmosine levels, in the skin of the distal limbs of horses affected with CPL are probably associated with a marked release of elastin degradation products, which elicit production of circulating anti-elastin antibodies (AEAbs) in the serum. An enzyme-linked immunosorbent assay (ELISA) for detection of serum AEAbs may document elastin breakdown. An ELISA technique was used to evaluate levels of AEAbs in sera of 97 affected Belgian Draught horses that were clinically healthy except for possible skin lesions, associated with CPL in their distal limbs. The horses were divided into 5 groups according to the severity of these skin lesions: normal horses (Group 1, n = 36), horses with mild lesions (Group 2, n = 43), horses with moderate lesions (Group 3, n = 8), horses with severe lesions (Group 4, n = 10) and, as a control, healthy Warmblood horses, unaffected by the disease (Group 5, n = 83). Horses with clinical signs of CPL had significantly higher AEAb levels compared to clinically normal Belgian Draught horses and to healthy Warmblood horses. These levels correlated with severity of lesions. CPL in draught horses is associated with an increase of serum AEAbs. Evaluation of serum levels of AEAbs by ELISA might be a useful diagnostic aid for CPL. Pathological degradation of elastic fibres, resulting in deficient support of the distal lymphatics, is proposed as a contributing factor for CPL in Belgian Draught horses.

  9. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility.

    Science.gov (United States)

    Le, Duc H T; Tsutsui, Yoko; Sugawara-Narutaki, Ayae; Yukawa, Hiroshi; Baba, Yoshinobu; Ohtsuki, Chikara

    2017-09-01

    We have recently developed a novel double-hydrophobic elastin-like triblock polypeptide called GPG, designed after the uneven distribution of two different hydrophobic domains found in elastin, an extracellular matrix protein providing elasticity and resilience to tissues. Upon temperature trigger, GPG undergoes a sequential self-assembling process to form flexible beaded nanofibers with high homogeneity and excellent dispersibility in water. Given that GPG might be a potential elastin-mimetic material, we sought to explore the biological activities of this block polypeptide. Besides GPG, several functionalized derivatives were also constructed by fusing functional motifs such as KAAK or KAAKGRGDS at the C-terminal of GPG. Although the added motifs affected the kinetics of fiber formation and β-sheet contents, all three GPGs assembled into beaded nanofibers at the physiological temperature. The resulting GPG nanofibers preserved their beaded structures in cell culture medium; therefore, they were coated on polystyrene substrates to study their cytocompatibility toward mouse embryonic fibroblasts, NIH-3T3. Among the three polypeptides, GPG having the cell-binding motif GRGDS derived from fibronectin showed excellent cell adhesion and cell proliferation properties compared to other conventional materials, suggesting its promising applications as extracellular matrices for mammalian cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2475-2484, 2017. © 2017 Wiley Periodicals, Inc.

  10. Neutrophil elastase and elastin-derived peptides in BAL fluid and emphysematous changes on CT scans

    International Nuclear Information System (INIS)

    Betsuyaku, Tomoko; Nishimura, Masaharu; Yoshioka, Aya; Takeyabu, Kimihiro; Miyamoto, Kenji; Kawakami, Yoshikazu

    1996-01-01

    We examined the relationship between neutrophil elastase, elastin-derived peptides in bronchoalveolar lavage (BAL) fluid, and the development of pulmonary emphysema. The level of neutrophil elastase was higher in asymptomatic current smokers with emphysematous changes on computed tomographic scans than in current smokers without emphysematous changes, and was found to be correlated with the level of elastin-derived peptides in BAL fluid. Subjects with high levels of neutrophil elastase in BAL fluid had faster annual declines in FEV 1 . We conclude that the level of neutrophil elastase in BAL fluid can be used to differentiate asymptomatic cigarette smokers who are at risk for pulmonary emphysema from those who are not. (author)

  11. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    Science.gov (United States)

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  12. Cutis laxa: reduced elastin gene expression in skin fibroblast cultures as determined by hybridizations with a homologous cDNA and an exon 1-specific oligonucleotide

    International Nuclear Information System (INIS)

    Olsen, D.R.; Fazio, M.J.; Shamban, A.T.; Rosenbloom, J.; Uitto, J.

    1988-01-01

    Fibroblast cultures were established from six patients with cutis laxa, and elastin gene expression was analyzed by RNA hybridizations with a 2.5-kilobase human elastin cDNA or an exon 1-specific 35-base oligomer. Northern analyses using either probe detected mRNA transcripts of ∼ 3.5 kilobases, and no qualitative difference between the control and cutis laxa mRNAs was detected. However, quantitation of the elastin mRNA abundance by slot blot hybridizations revealed markedly reduced levels in all cutis laxa cell strains. Assuming equal translational activity of the control and cutix laxa mRNAs, the reduced mRNA levels could result in diminished elastin production, providing an explanation for the paucity of elastic fibers in the skin and other tissues in cutis laxa

  13. Modulated growth, stability and interactions of liquid-like coacervate assemblies of elastin

    NARCIS (Netherlands)

    Muiznieks, L.D.; Cirulis, J.T.; Reinhardt, D.P.; Wuite, G.J.L.; Pomes, R.; Keeley, F.W.

    2014-01-01

    Elastin self-assembles from monomers into polymer networks that display elasticity and resilience. The first major step in assembly is a liquid-liquid phase separation known as coacervation. This process represents a continuum of stages from initial phase separation to early growth of droplets by

  14. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    Science.gov (United States)

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  15. Dual stimuli-sensitive dendrimers: Photothermogenic gold nanoparticle-loaded thermo-responsive elastin-mimetic dendrimers.

    Science.gov (United States)

    Fukushima, Daichi; Sk, Ugir Hossain; Sakamoto, Yasuhiro; Nakase, Ikuhiko; Kojima, Chie

    2015-08-01

    Dendrimers are synthetic macromolecules with unique structures that can work as nanoplatforms for both photothermogenic gold nanoparticles (AuNPs) and thermosensitive elastin-like peptides (ELPs) with valine-proline-glycine-valine-glycine (VPGVG) repeats. In this study, photothermogenic AuNPs were loaded into thermo-responsive elastin-mimetic dendrimers (dendrimers conjugating ELPs at their periphery) to produce dual stimuli-sensitive nanoparticles. Polyamidoamine G4 dendrimers were modified with acetylated VPGVG and (VPGVG)2, and the resulting materials were named ELP1-den and ELP2-den, respectively. The AuNPs were prepared by the reduction of Au ions using a dendrimer-nanotemplated method. The AuNP-loaded elastin-mimetic dendrimers exhibited photothermal properties. ELP1-den and ELP2-den showed similar temperature-dependent changes in their conformations. Phase transitions were observed at around 55°C and 35°C for the AuNP-loaded ELP1-den and AuNP-loaded ELP2-den, respectively, but not for the corresponding PEGylated dendrimer. In contrast to the AuNP-loaded PEGylated dendrimer, AuNP-loaded ELP2-den readily associated with cells and induced efficient photocytotoxicity at 37°C. The cell association and the photocytotoxicity properties of AuNP-loaded ELP2-den could be controlled by temperature. These results therefore suggest that dual stimuli-sensitive dendrimer nanoparticles of this type could be used for photothermal therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Is cardiovascular disease in patients with diabetes associated with serum levels of MMP-2, LOX, and the elastin degradation products ELM and ELM-2?

    DEFF Research Database (Denmark)

    Rørdam Preil, Simone; Faarvang Thorsen, Anne-Sofie; Christiansen, Anne Lindegaard

    2017-01-01

    BACKGROUND: Diabetes mellitus type 2 (T2DM) is a significant risk factor for the development of cardiovascular diseases (CVDs). In a previous microarray study of internal mammary arteries from patients with and without T2DM, we observed several elastin-related genes with altered mRNA-expression i......BACKGROUND: Diabetes mellitus type 2 (T2DM) is a significant risk factor for the development of cardiovascular diseases (CVDs). In a previous microarray study of internal mammary arteries from patients with and without T2DM, we observed several elastin-related genes with altered m......RNA-expression in diabetic patients, namely matrix metalloproteinase 2 (MMP-2), lysyl oxidase (LOX) and elastin itself. In this study we investigate whether the serum concentrations of elastin-related proteins correlate to signs of CVD in patients with T2DM. METHODS: Blood samples from 302 type 2 diabetic patients were...... analysed for MMP-2, LOX, and the elastin degradation products ELM and ELM2. The results were investigated for correlations to signs of CVD in different vascular territories, as determined by myocardial perfusion scintigraphy, carotid artery thickness and ankle-brachial blood pressure index. RESULTS: T2DM...

  17. MicroRNA-181b Controls Atherosclerosis and Aneurysms Through Regulation of TIMP-3 and Elastin.

    Science.gov (United States)

    Di Gregoli, Karina; Mohamad Anuar, Nur Najmi; Bianco, Rosaria; White, Stephen J; Newby, Andrew C; George, Sarah J; Johnson, Jason L

    2017-01-06

    Atherosclerosis and aneurysms are leading causes of mortality worldwide. MicroRNAs (miRs) are key determinants of gene and protein expression, and atypical miR expression has been associated with many cardiovascular diseases; although their contributory role to atherosclerotic plaque and abdominal aortic aneurysm stability are poorly understood. To investigate whether miR-181b regulates tissue inhibitor of metalloproteinase-3 expression and affects atherosclerosis and aneurysms. Here, we demonstrate that miR-181b was overexpressed in symptomatic human atherosclerotic plaques and abdominal aortic aneurysms and correlated with decreased expression of predicted miR-181b targets, tissue inhibitor of metalloproteinase-3, and elastin. Using the well-characterized mouse atherosclerosis models of Apoe - /- and Ldlr -/- , we observed that in vivo administration of locked nucleic acid anti-miR-181b retarded both the development and the progression of atherosclerotic plaques. Systemic delivery of anti-miR-181b in angiotensin II-infused Apoe -/- and Ldlr -/- mice attenuated aneurysm formation and progression within the ascending, thoracic, and abdominal aorta. Moreover, miR-181b inhibition greatly increased elastin and collagen expression, promoting a fibrotic response and subsequent stabilization of existing plaques and aneurysms. We determined that miR-181b negatively regulates macrophage tissue inhibitor of metalloproteinase-3 expression and vascular smooth muscle cell elastin production, both important factors in maintaining atherosclerotic plaque and aneurysm stability. Validation studies in Timp3 -/- mice confirmed that the beneficial effects afforded by miR-181b inhibition are largely tissue inhibitor of metalloproteinase-3 dependent, while also revealing an additional protective effect through elevating elastin synthesis. Our findings suggest that the management of miR-181b and its target genes provides therapeutic potential for limiting the progression of

  18. Deposition of insoluble elastin by pulmonary fibroblasts from patients with COPD is increased by treatment with versican siRNA

    Directory of Open Access Journals (Sweden)

    Wu L

    2017-01-01

    Full Text Available Lian Wu,1,2 Jing Zhang,3 Jie Ming Qu,4 Chun-xue Bai,3 Mervyn J Merrilees5 1Department of Community and Health Services, Unitec, 2Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New Zealand; 3Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 4Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 5Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand Abstract: A reduced content of alveolar elastic fibers is a key feature of COPD lung. Despite continued elastogenic potential by alveolar fibroblasts in the lung affected by COPD, repair of elastic fibers does not take place, which is due to increased levels of the chondroitin sulfate proteoglycan versican that inhibits the assembly of tropoelastin into fibers. In this study, primary pulmonary fibroblast cell lines from COPD and non-COPD patients were treated with a small interfering RNA (siRNA against versican to determine if knockdown of versican could restore the deposition of insoluble elastin. Versican siRNA treatment reduced versican expression and secretion by pulmonary fibroblasts from both COPD and non-COPD patients (P<0.01 and significantly increased deposition of insoluble elastin in the COPD cell cultures (P<0.05. The treatment, however, did not significantly affect production of soluble elastin (tropoelastin in either the COPD or non-COPD cell cultures, supporting a role for versican in inhibiting assembly but not synthesis of tropoelastin. These results suggest that removal or knockdown of versican may be a possible therapeutic strategy for increasing deposition of insoluble elastin and stimulating repair of elastic fibers in COPD lung. Keywords: pulmonary fibroblasts, COPD, elastin, versican

  19. Compared With Elastin Stains, h-Caldesmon and Desmin Offer Superior Detection of Vessel Invasion in Gastric, Pancreatic, and Colorectal Adenocarcinomas.

    Science.gov (United States)

    Ekinci, Özgür; Öğüt, Betül; Çelik, Bülent; Dursun, Ayşe

    2018-06-01

    The presence of vessel invasion is considered indicative of a poor prognosis in many malignant tumors. We aimed to compare the sensitivity of elastin stains (van Gieson's and orcein methods) with 2 smooth muscle markers (h-caldesmon and desmin) in gastric, pancreatic, and colorectal adenocarcinoma specimens. We used 27 (29.3%) gastric, 35 (38.0%) pancreatic, and 30 (32.6%) colorectal resection specimens. We applied a provisional classification of vessel invasion patterns: type A, a focus with a nearby artery unaccompanied by a vein; type T, a focus at the invasive front without an unaccompanied artery; and type X, foci that only appeared by any of the 4 stains used. There were 369 foci. The smooth muscle markers were more sensitive than the elastin stains, and h-caldesmon more sensitive than desmin, in all types. Among the 139 type A foci, 33 (23.7%) were positive by desmin and h-caldesmon, whereas the elastin stains were not ( P = .001). h-Caldesmon was the only positive marker in 11 (7.9%; P = .011). Among the 78 type T foci, 21 (26.9%) were positive by desmin and h-caldesmon, when both elastin stains were negative ( P = .000). In 16 (20.5%) foci, h-caldesmon was the only positive marker ( P = .002). Among 152 type X foci, 91 (59.9%) were positive by all markers, 26 (17.1%) by both desmin and h-caldesmon, and 9 (5.9%) by only the 2 elastin stains ( P = .001). We recommend these stains for suspect foci in gastric, pancreatic, and colorectal adenocarcinoma specimens. They might highlight both predictable and unpredictable foci.

  20. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin.

    Science.gov (United States)

    Jin, Minfei; Wu, Yuelin; Wang, Jun; Ye, Weiping; Wang, Lei; Yin, Peipei; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-11-17

    Pelvic floor dysfunction (PFD) is a condition affecting many women worldwide, with symptoms including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). We have previously demonstrated stable elastin-expressing bone marrow-derived mesenchymal stem cells (BMSCs) attenuated PFD in rats, and aim to further study the effect of microRNA-29a-3p regulation on elastin expression and efficacy of BMSC transplantation therapy. We inhibited endogenous microRNA-29a-3p in BMSCs and investigated its effect on elastin expression by RT-PCR and Western blot. MicroRNA-29-inhibited BMSCs were then transplanted into PFD rats, accompanied by sustained release of bFGF using formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP), followed by evaluation of urodynamic tests. MicroRNA-29a-3p inhibition resulted in upregulated expression and secretion of elastin in in vitro culture of BMSCs. After co-injection with PLGA-loaded bFGF NP into the PFD rats in vivo, microRNA-29a-3p-inhibited BMSCs significantly improved the urodynamic test results. Our multidisciplinary study, combining microRNA biology, genetically engineered BMSCs, and nanoparticle technology, provides an excellent stem cell-based therapy for repairing connective tissues and treating PFD.

  1. First steps towards tissue engineering of small-diameter blood vessels: preparation of flat scaffolds of collagen and elastin by means of freeze drying

    NARCIS (Netherlands)

    Buttafoco, L.; Engbers-Buijtenhuijs, P.; Poot, Andreas A.; Dijkstra, Pieter J.; Daamen, W.F.; van Kuppevelt, T.H.; Vermes, I.; Feijen, Jan

    2006-01-01

    Porous scaffolds composed of collagen or collagen and elastin were prepared by freeze drying at temperatures between -18 and -196°C. All scaffolds had a porosity of 90-98% and a homogeneous distribution of pores. Freeze drying at -18°C afforded collagen and collagen/elastin matrices with average

  2. mTOR (Mechanistic Target of Rapamycin) Inhibition Decreases Mechanosignaling, Collagen Accumulation, and Stiffening of the Thoracic Aorta in Elastin-Deficient Mice.

    Science.gov (United States)

    Jiao, Yang; Li, Guangxin; Li, Qingle; Ali, Rahmat; Qin, Lingfeng; Li, Wei; Qyang, Yibing; Greif, Daniel M; Geirsson, Arnar; Humphrey, Jay D; Tellides, George

    2017-09-01

    Elastin deficiency because of heterozygous loss of an ELN allele in Williams syndrome causes obstructive aortopathy characterized by medial thickening and fibrosis and consequent aortic stiffening. Previous work in Eln -null mice with a severe arterial phenotype showed that inhibition of mTOR (mechanistic target of rapamycin), a key regulator of cell growth, lessened the aortic obstruction but did not prevent early postnatal death. We investigated the effects of mTOR inhibition in Eln -null mice partially rescued by human ELN that manifest a less severe arterial phenotype and survive long term. Thoracic aortas of neonatal and juvenile mice with graded elastin deficiency exhibited increased signaling through both mTOR complex 1 and 2. Despite lower predicted wall stress, there was increased phosphorylation of focal adhesion kinase, suggestive of greater integrin activation, and increased transforming growth factor-β-signaling mediators, associated with increased collagen expression. Pharmacological blockade of mTOR by rapalogs did not improve luminal stenosis but reduced mechanosignaling (in delayed fashion after mTOR complex 1 inhibition), medial collagen accumulation, and stiffening of the aorta. Rapalog administration also retarded somatic growth, however, and precipitated neonatal deaths. Complementary, less-toxic strategies to inhibit mTOR via altered growth factor and nutrient responses were not effective. In addition to previously demonstrated therapeutic benefits of rapalogs decreasing smooth muscle cell proliferation in the absence of elastin, we find that rapalogs also prevent aortic fibrosis and stiffening attributable to partial elastin deficiency. Our findings suggest that mTOR-sensitive perturbation of smooth muscle cell mechanosensing contributes to elastin aortopathy. © 2017 American Heart Association, Inc.

  3. Reaction and Aggregation Dynamics of Cell Surface Receptors

    Science.gov (United States)

    Wang, Michelle Dong

    This dissertation is composed of both theoretical and experimental studies of cell surface receptor reaction and aggregation. Project I studies the reaction rate enhancement due to surface diffusion of a bulk dissolved ligand with its membrane embedded target, using numerical calculations. The results show that the reaction rate enhancement is determined by ligand surface adsorption and desorption kinetic rates, surface and bulk diffusion coefficients, and geometry. In particular, we demonstrate that the ligand surface adsorption and desorption kinetic rates, rather than their ratio (the equilibrium constant), are important in rate enhancement. The second and third projects are studies of acetylcholine receptor clusters on cultured rat myotubes using fluorescence techniques after labeling the receptors with tetramethylrhodamine -alpha-bungarotoxin. The second project studies when and where the clusters form by making time-lapse movies. The movies are made from overlay of the pseudocolored total internal reflection fluorescence (TIRF) images of the cluster, and the schlieren images of the cell cultures. These movies are the first movies made using TIRF, and they clearly show the cluster formation from the myoblast fusion, the first appearance of clusters, and the eventual disappearance of clusters. The third project studies the fine structural features of individual clusters observed under TIRF. The features were characterized with six parameters by developing a novel fluorescence technique: spatial fluorescence autocorrelation. These parameters were then used to study the feature variations with age, and with treatments of drugs (oligomycin and carbachol). The results show little variation with age. However, drug treatment induced significant changes in some parameters. These changes were different for oligomycin and carbachol, which indicates that the two drugs may eliminate clusters through different mechanisms.

  4. Proliferative activity of elastin-like-peptides depends on charge and phase transition.

    Science.gov (United States)

    Yuan, Yuan; Koria, Piyush

    2016-03-01

    Elastin-like-peptides (ELPs) are stimulus-responsive protein-based polymers and are attractive biomaterials due to their biocompatibility and unique properties. This study shows that in addition to their physical properties, ELPs have biological activities that are conducive to tissue regeneration. Specifically, we found that ELPs induce fibroblast proliferation via cell surface heparan sulfate proteoglycans (HSPG). Furthermore, our data suggests that ELP based materials with differential proliferative potential can be designed by controlling the interaction of ELPs with HSPGs by incorporating either hydrophobic or positively charged residues within the ELP sequence. Fibroblast proliferation is important for granulation tissue formation which is important in chronic wounds as well as in healing of other tissues. The customizable biological activity of ELPs coupled with their unique physical properties will enable us to design novel, sustainable and cost effective therapies for different tissue regeneration applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 697-706, 2016. © 2015 Wiley Periodicals, Inc.

  5. Impaired elastin deposition in Fstl1-/- lung allograft under the renal capsule.

    Directory of Open Access Journals (Sweden)

    Yan Geng

    Full Text Available Lung alveolar development in late gestation is a process important to postnatal survival. Follistatin-like 1 (Fstl1 is a matricellular protein of the Bmp antagonist class, which is involved in the differentiation/maturation of alveolar epithelial cells during saccular stage of lung development. This study investigates the role of Fstl1 on elastin deposition in mesenchyme and subsequent secondary septation in the late gestation stage of terminal saccular formation. To this aim, we modified the renal capsule allograft model for lung organ culture by grafting diced E15.5 distal lung underneath the renal capsule of syngeneic host and cultured up to 7 days. The saccular development of the diced lung allografts, as indicated by the morphology, epithelial and vascular developments, occurred in a manner similar to that in utero. Fstl1 deficiency caused atelectatic phenotype companied by impaired epithelial differentiation in D3 Fstl1(-/- lung allografts, which is similar to that of E18.5 Fstl1(-/- lungs, supporting the role of Fstl1 during saccular stage. Inhibition of Bmp signaling by intraperitoneal injection of dorsomorphin in the host mice rescued the pulmonary atelectasis of D3 Fstl1(-/- allografts. Furthermore, a marked reduction in elastin expression and deposition was observed in walls of air sacs of E18.5 Fstl1(-/- lungs and at the tips of the developing alveolar septae of D7 Fstl1(-/- allografts. Thus, in addition to its role on alveolar epithelium, Fstl1 is crucial for elastin expression and deposition in mesenchyme during lung alveologenesis. Our data demonstrates that the modified renal capsule allograft model for lung organ culture is a robust and efficient technique to increase our understanding of saccular stage of lung development.

  6. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Indik, Z.; Yeh, H.; Ornstein-goldstein, N.; Sheppard, P.; Anderson, N.; Rosenbloom, J.C.; Peltonen, L.; Rosenbloom, J.

    1987-01-01

    Poly(A) + RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  7. Preliminary results in single-step wound closure procedure of full-thickness facial burns in children by using the collagen-elastin matrix and review of pediatric facial burns.

    Science.gov (United States)

    Demircan, Mehmet; Cicek, Tugrul; Yetis, Muhammed Ikbal

    2015-09-01

    Management of full-thickness facial burns remains one of the greatest challenges. Controversy exists among surgeons regarding the use of early excision for facial burns. Unfortunately, delayed excision of deeper burns often results in more scarring and subsequent reconstruction becomes more difficult. A collagen-elastin matrix is used to improve the quality of the reconstructed skin, to reduce scarring and to prevent wound contraction. It serves as a foundation for split thickness skin graft and enhances short and long-term results. We report the usage of a collagen-elastin matrix during single-step wound closure technique of severe full-thickness facial burns in 15 children with large burned body surface area, and also we review the literature about pediatric facial burns. There were 15 pediatric patients with severe facial burns, 8 girls and 7 boys ranging in age from 10 months to 12 years, mean age 7 years and 6 months old. The facial burn surface area (FBSA) among the patients includes seven patients with 100%, five with 75%, and three with 50%. The average total body surface area (TBSA) for the patients was 72%, ranging between 50 and 90%. 5 of the patients' admissions were late, more than four days after burns while the rest of the patients were admitted within the first four days (acute admission time). The burns were caused by flame in eight of the patients, bomb blast in four, and scalding in three. All patients were treated by the simultaneous application of the collagen-elastin matrix and an unmeshed split thickness skin graft at Turgut Özal Medical Center, Pediatric Burn Center, Malatya, Turkey. After the treatment only two patients needed a second operation for revision of the grafts. All grafts transplanted to the face survived. The average Vancouver scar scales (VSS) were 2.55±1.42, ranging between one and six, in the first 10 of 15 patients at the end of 6 months postoperatively. VSS measurements of the last 5 patients were not taken since the 6

  8. Elastin: a possible genetic biomarker for more severe ligament injuries in elite soccer. A pilot study

    Science.gov (United States)

    Artells, Rosa; Pruna, Ricard; Dellal, Alexandre; Maffulli, Nicola

    2016-01-01

    Summary Background The study of new genetic biomarkers in genes related to connective tissue repair and regeneration may help to identify individuals with greater predisposition to injury, who may benefit from targeted preventive measures, and those who require longer recovery time following a muscle, ligament or tendon injury. The present study investigated whether single nucleotide polymorphisms of the Elastin gene could be related to MCL injury. Methods 60 top class football players were studied to identify single nucleotide polymorphisms for the Elastin (ELN) gene using Allelic Discrimination analysis. Each player was followed for 7 seasons, and each MCL injury was noted. Results Ligament injury rate, severity and recovery time are related to specific genotypes observed in the elastin gene, especially the ELN-AA (16 MCL) and the ELN-AG (3 MCL). Players with the ELN-GG genotype sustained no MCL injury during the 7 seasons of the study. Conclusions The identification of polymorphisms in the ELN gene may be used as a novel tool to better define an athlete’s genotype, and help to plan training and rehabilitation programmes to prevent or minimize MCL ligament injuries, and optimize the therapeutic and rehabilitation process after soft tissue injuries, and manage the workloads during trainings and matches. PMID:27900291

  9. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@med.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan); Sekiguchi, Toshio [Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, 927-0553 (Japan); Nagata, Sayaka [Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 (Japan); Jiang, Danfeng; Hayashi, Hidetaka [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan); Murakami, Manabu [Department of Pharmacology, Hirosaki University, Graduate School of Medicine, Hirosaki, 036-8562 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 (Japan); Kitamura, Kazuo [Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan)

    2016-02-19

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM{sub 1} receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM{sub 1} receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM{sub 1} receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [{sup 125}I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β{sub 2}-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM{sub 1} receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.

  10. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Sekiguchi, Toshio; Nagata, Sayaka; Jiang, Danfeng; Hayashi, Hidetaka; Murakami, Manabu; Hattori, Yuichi; Kitamura, Kazuo; Kato, Johji

    2016-01-01

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM_1 receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM_1 receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM_1 receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific ["1"2"5I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β_2-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM_1 receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.

  11. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    Science.gov (United States)

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    Science.gov (United States)

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  13. The effect of a collagen-elastin matrix on adhesion formation after flexor tendon repair in a rabbit model.

    Science.gov (United States)

    Wichelhaus, Dagmar Alice; Beyersdoerfer, Sascha Tobias; Gierer, Philip; Vollmar, Brigitte; Mittlmeier, Th

    2016-07-01

    The outcome of flexor tendon surgery is negatively affected by the formation of adhesions which can occur during the healing of the tendon repair. In this experimental study, we sought to prevent adhesion formation by wrapping a collagen-elastin scaffold around the repaired tendon segment. In 28 rabbit hind legs, the flexor tendons of the third and fourth digits were cut and then repaired using a two-strand suture technique on the fourth digit and a four-strand technique on the third digit. Rabbits were randomly assigned to study and control groups. In the control group, the operation ended by closing the tendon sheath and the skin. In the study group, a collagen-elastin scaffold was wrapped around the repaired tendon segment in both digits. After 3 and 8 weeks, the tendons were harvested and processed histologically. The range of motion of the digits and the gap formation between the repaired tendon ends were measured. The formation of adhesions, infiltration of leucocytes and extracellular inflammatory response were quantified. At the time of tendon harvesting, all joints of the operated toes showed free range of motion. Four-strand core sutures lead to significantly less diastasis between the repaired tendon ends than two-strand core suture repairs. The collagen-elastin scaffold leads to greater gapping after 3 weeks compared to the controls treated without the matrix. Within the tendons treated with the collagen-elastin matrix, a significant boost of cellular and extracellular inflammation could be stated after 3 weeks which was reflected by a higher level of CAE positive cells and more formation of myofibroblasts in the αSMA stain in the study group. The inflammatory response subsided gradually and significantly until the late stage of the study. Both the cellular and extracellular inflammatory response was emphasized with the amount of material used for the repair. The use of a collagen-elastin matrix cannot be advised for the prevention of adhesion

  14. Identifying plant cell-surface receptors: combining 'classical' techniques with novel methods.

    Science.gov (United States)

    Uebler, Susanne; Dresselhaus, Thomas

    2014-04-01

    Cell-cell communication during development and reproduction in plants depends largely on a few phytohormones and many diverse classes of polymorphic secreted peptides. The peptide ligands are bound at the cell surface of target cells by their membranous interaction partners representing, in most cases, either receptor-like kinases or ion channels. Although knowledge of both the extracellular ligand and its corresponding receptor(s) is necessary to describe the downstream signalling pathway(s), to date only a few ligand-receptor pairs have been identified. Several methods, such as affinity purification and yeast two-hybrid screens, have been used very successfully to elucidate interactions between soluble proteins, but most of these methods cannot be applied to membranous proteins. Experimental obstacles such as low concentration and poor solubility of membrane receptors, as well as instable transient interactions, often hamper the use of these 'classical' approaches. However, over the last few years, a lot of progress has been made to overcome these problems by combining classical techniques with new methodologies. In the present article, we review the most promising recent methods in identifying cell-surface receptor interactions, with an emphasis on success stories outside the field of plant research.

  15. Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs.

    Science.gov (United States)

    Kobielarz, Magdalena; Szotek, Sylwia; Głowacki, Maciej; Dawidowicz, Joanna; Pezowicz, Celina

    2016-09-01

    The biophysical properties of the annulus fibrosus of the intervertebral disc are determined by collagen and elastin fibres. The progression of scoliosis is accompanied by a number of pathological changes concerning these structural proteins. This is a major cause of dysfunction of the intervertebral disc. The object of the study were annulus fibrosus samples excised from intervertebral discs of healthy subjects and patients treated surgically for scoliosis in the thoracolumbar or lumbar spine. The research material was subjected to structural analysis by light microscopy and quantitative analysis of the content of collagen types I, II, III and IV as well as elastin by immunoenzymatic test (ELISA). A statistical analysis was conducted to assess the impact of the sampling site (Mann-Whitney test, α=0.05) and scoliosis (Wilcoxon matched pairs test, α=0.05) on the obtained results. The microscopic studies conducted on scoliotic annulus fibrosus showed a significant architectural distortion of collagen and elastin fibres. Quantitative biochemical assays demonstrated region-dependent distribution of only collagen types I and II in the case of healthy intervertebral discs whereas in the case of scoliotic discs region-dependent distribution concerned all examined proteins of the extracellular matrix. Comparison of scoliotic and healthy annulus fibrosus revealed a significant decrease in the content of collagen type I and elastin as well as a slight increase in the proportion of collagen types III and IV. The content of collagen type II did not differ significantly between both groups. The observed anomalies are a manifestation of degenerative changes affecting annulus fibrosus of the intervertebral disc in patients suffering from scoliosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Circulating Elastin Fragments Are Not Affected by Hepatic, Renal and Hemodynamic Changes, But Reflect Survival in Cirrhosis with TIPS.

    Science.gov (United States)

    Nielsen, M J; Lehmann, J; Leeming, D J; Schierwagen, R; Klein, S; Jansen, C; Strassburg, C P; Bendtsen, F; Møller, S; Sauerbruch, T; Karsdal, M A; Krag, A; Trebicka, J

    2015-11-01

    Progressive fibrosis increases hepatic resistance and causes portal hypertension with complications. During progressive fibrosis remodeling and deposition of collagens and elastin occur. Elastin remodeling is crucially involved in fibrosis progression in animal models and human data. This study investigated the association of circulating elastin with the clinical outcome in cirrhotic patients with severe portal hypertension receiving transjugular intrahepatic porto-systemic shunt (TIPS). We analyzed portal and hepatic venous samples of 110 cirrhotic patients obtained at TIPS insertion and 2 weeks later. The circulating levels of elastin fragments (ELM) were determined using specific monoclonal ELISA. The relationship of ELM with clinical short-time follow-up and long-term outcome was investigated. Circulating levels of ELM showed a gradient across the liver before TIPS with higher levels in the hepatic vein. Interestingly, the circulating ELM levels remained unchanged after TIPS. The circulating levels of ELM in portal and hepatic veins correlated with platelet counts and inversely with serum sodium. Hepatic venous levels of ELM were higher in CHILD C compared to CHILD A and B and were associated with the presence of ascites. Patients with high levels of ELM in the hepatic veins before TIPS showed poorer survival. In multivariate analysis ELM levels in the hepatic veins and MELD were independent predictors of mortality in these patients. This study demonstrated that circulating levels of ELM are not associated with hemodynamic changes, but might reflect fibrosis remodeling and predict survival in patients with severe portal hypertension receiving TIPS independently of MELD.

  17. Development of a Tissue-Engineered Artificial Ligament: Reconstruction of Injured Rabbit Medial Collateral Ligament With Elastin-Collagen and Ligament Cell Composite Artificial Ligament.

    Science.gov (United States)

    Hirukawa, Masaki; Katayama, Shingo; Sato, Tatsuya; Inoue, Kota; Niwa, Kosuke; Ito, Naoya; Hattori, Tetsuya; Hosoi, Takashi; Unno, Hironori; Suzuki, Yoshiaki; Hasegawa, Masahiro; Miyamoto, Keiichi; Horiuchi, Takashi

    2018-04-16

    Ligament reconstruction using a tissue-engineered artificial ligament (TEAL) requires regeneration of the ligament-bone junction such that fixation devices such as screws and end buttons do not have to be used. The objective of this study was to develop a TEAL consisting of elastin-coated polydioxanone (PDS) sutures covered with elastin and collagen fibers preseeded with ligament cells. In a pilot study, a ring-type PDS suture with a 2.5 mm (width) bone insertion was constructed with/without elastin coating (Ela-coat and Non-coat) and implanted into two bone tunnels, diameter 2.4 mm, in the rabbit tibia (6 cases each) to access the effect of elastin on the bond strength. PDS specimens taken together with the tibia at 6 weeks after implantation indicated growth of bone-like hard tissues around bone tunnels accompanied with narrowing of the tunnels in the Ela-coat group and not in the Non-coat group. The drawout load of the Ela-coat group was significantly higher (28.0 ± 15.1 N, n = 4) than that of the Non-coat group (7.6 ± 4.6 N, n = 5). These data can improve the mechanical bulk property of TEAL through extracellular matrix formation. To achieve this TEAL model, 4.5 × 10 6 ligament cells were seeded on elastin and collagen fibers (2.5 cm × 2.5 cm × 80 µm) prior to coil formation around the elastin-coated PDS core sutures having ball-shape ends with a diameter of 2.5 mm. Cell-seeded and cell-free TEALs were implanted across the femur and the tibia through bone tunnels with a diameter of 2.4 mm (6 cases each). There was no incidence of TEAL being pulled in 6 weeks. Regardless of the remarkable degradation of PDS observed in the cell-seeded group, both the elastic modulus and breaking load of the cell-seeded group (n = 3) were comparable to those of the sham-operation group (n = 8) (elastic modulus: 15.4 ± 1.3 MPa and 18.5 ± 5.7 MPa; breaking load: 73.0 ± 23.4 N and 104.8 ± 21.8 N, respectively) and higher than those

  18. Elephantiasis, elastin, and chronic wound healing: 19th century and contemporary viewpoints relevant to hypotheses concerning lymphedema, leprosy, erysipelas, and psoriasis--review and reflections.

    Science.gov (United States)

    Ryan, T J

    2009-03-01

    Both wound healing and lymphedema have fibrosis of the skin in common. They also share destruction of elastin by elastases from neutrophils as a significant feature. These are not new observations, and the writings of Unna and Kaposi are recalled. The contemporary observations on elastin by Gerli and his team are discussed in the light of these much earlier opinions.

  19. Tracking Cell Surface GABAB Receptors Using an α-Bungarotoxin Tag*

    Science.gov (United States)

    Wilkins, Megan E.; Li, Xinyan; Smart, Trevor G.

    2008-01-01

    GABAB receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABAB receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABAB receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, α-bungarotoxin. By using the α-bungarotoxin binding site-tagged GABAB R1a subunit (R1aBBS), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, α-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABAB receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors. PMID:18812318

  20. Longevity of elastin in human intervertebral disc as probed by the racemization of aspartic acid

    DEFF Research Database (Denmark)

    Sivan, Sarit-Sara; Van El, Benno; Merkher, Yulia

    2012-01-01

    BACKGROUND: Aging and degeneration of human intervertebral disc (IVD) are associated with biochemical changes, including racemization and glycation. These changes can only be counteracted by protein turnover. Little is known about the longevity of IVD elastin in health or disease. Yet, such knowl...

  1. Is cardiovascular disease in patients with diabetes associated with serum levels of MMP-2, LOX, and the elastin degradation products ELM and ELM-2?

    Science.gov (United States)

    Preil, Simone Andrea Rørdam; Thorsen, Anne-Sofie Faarvang; Christiansen, Anne Lindegaard; Poulsen, Mikael Kjær; Karsdal, Morten Asser; Leeming, Diana Julie; Rasmussen, Lars Melholt

    2017-11-01

    Diabetes mellitus type 2 (T2DM) is a significant risk factor for the development of cardiovascular diseases (CVDs). In a previous microarray study of internal mammary arteries from patients with and without T2DM, we observed several elastin-related genes with altered mRNA-expression in diabetic patients, namely matrix metalloproteinase 2 (MMP-2), lysyl oxidase (LOX) and elastin itself. In this study we investigate whether the serum concentrations of elastin-related proteins correlate to signs of CVD in patients with T2DM. Blood samples from 302 type 2 diabetic patients were analysed for MMP-2, LOX, and the elastin degradation products ELM and ELM2. The results were investigated for correlations to signs of CVD in different vascular territories, as determined by myocardial perfusion scintigraphy, carotid artery thickness and ankle-brachial blood pressure index. T2DM patients with peripheral arterial disease (low ankle-brachial index) (PAD) display higher levels of MMP-2 and ELM compared to patients without PAD. However, none of the proteins or degradation products correlated with myocardial ischemia or a combined measure of CVD-signs, including myocardial ischemia, increased carotid thickness and decreased ankle-brachial blood pressure. Our results suggest that the diabetic environment affects the circulating amounts of MMP-2 and ELM in patients with PAD. However, the same connection could not be seen in diabetic patients with CVD broadly identified in three vascular territories. LOX and ELM-2 did not correlate to any type of CVD. Overall, serum levels of elastin-related molecules are only remotely related to CVD in type 2 diabetes.

  2. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  3. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    Science.gov (United States)

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  4. 8-methoxypsoralen and ultraviolet A radiation activate the human elastin promoter in transgenic mice: in vivo and in vitro evidence for gene induction

    International Nuclear Information System (INIS)

    Bernstein, E.F.; Brown, D.B.; Takeuchi, Tsunemichi; Kong, S.K.; Uitto, Jouni; Gasparro, F.P.

    1996-01-01

    Treatment of skin diseases with the combination of 8-methoxypsoralen and ultraviolet A radiation (PUVA) results in clinical alterations in treated skin that resemble those observed in chronically photodamaged skin. The PUVA-treated patients develop nonmelanoma skin cancers, pigmentary alterations and wrinkling characteristic of sun-induced changes. The major alteration in the dermis of sun-damaged skin is the deposition of abnormal elastic fibers, termed solar elastosis. Up-regulation of elastin promoter activity in dermal fibroblasts explains the excess elastic tissue but not the reason for the aberrant morphology of the elastotic material. In order to study photoaging in an experimental system we utilized a transgenic mouse line that expresses the human elastin promoter/chloramphenicol acetyltransferase construct in a tissue-specific and developmentally regulated manner. Although UVB radiation has been demonstrated to increase promoter activity in vitro, UVA fails to demonstrate a similar effect at the doses utilized. In this study, we demonstrate the ability of PUVA treatment to up regulate elastin promoter activity both in vitro and in vivo. These data help to explain the development of photoaging in sun-protected PUVA-treated skin. We attribute the up-regulation of elastin promoter activity in response to PUVA to the formation of DNA photoadducts, which do not occur in response to UVA radiation alone. (UK)

  5. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.

    Science.gov (United States)

    Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard

    2010-07-01

    Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  6. One-stage reconstruction of soft tissue defects with the sandwich technique: Collagen-elastin dermal template and skin grafts

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2011-01-01

    Full Text Available Background : A full-thickness soft tissue defect closure often needs complex procedures. The use of dermal templates can be helpful in improving the outcome. Objective : The objective was to evaluate a sandwich technique combining the dermal collagen-elastin matrix with skin grafts in a one-stage procedure. Materials and Methods : Twenty-three patients with 27 wounds were enrolled in this prospective single-centre observational study. The mean age was 74.8 ± 17.2 years. Included were full-thickness defects with exposed bone, cartilage and/ or tendons. The dermal collagen-elastin matrix was applied onto the wound bed accomplished by skin transplants, i.e. ′sandwich′ transplantation. In six wounds, the transplants were treated with intermittent negative pressure therapy. Results : The size of defects was ≤875 cm 2 . The use of the dermal template resulted in a complete and stable granulation in 100% of wounds. Seventeen defects showed a complete closure and 19 achieved a complete granulation with an incomplete closure. There was a marked pain relief. No adverse events were noted due to the dermal template usage. Conclusions : Sandwich transplantation with the collagen-elastin matrix is a useful tool when dealing with full-thickness soft tissue defects with exposed bone, cartilage or tendons.

  7. Tracking cell surface GABAB receptors using an alpha-bungarotoxin tag.

    Science.gov (United States)

    Wilkins, Megan E; Li, Xinyan; Smart, Trevor G

    2008-12-12

    GABA(B) receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABA(B) receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABA(B) receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, alpha-bungarotoxin. By using the alpha-bungarotoxin binding site-tagged GABA(B) R1a subunit (R1a(BBS)), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, alpha-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABA(B) receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors.

  8. Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM

    International Nuclear Information System (INIS)

    Kim, Hyonchol; Arakawa, Hideo; Hatae, Noriyuki; Sugimoto, Yukihiko; Matsumoto, Osamu; Osada, Toshiya; Ichikawa, Atsushi; Ikai, Atsushi

    2006-01-01

    The distribution of EP3 receptors on a living cell surface was quantitatively studied by atomic force microscopy (AFM). Green fluorescent protein (GFP) was introduced to the extracellular region of the EP3 receptor on a CHO cell. A microbead was used as a probe to ensure certain contact area, whose surface was coated with anti-GFP antibody. The interactions between the antibodies and GFP molecules on the cell surface were recorded to observe the distribution of the receptors. The result indicated that EP3 receptors were distributed on the CHO cell surface not uniformly but in small patches coincident with immunohistochemical observation. Repeated measurements on the same area of cell surface gave confirmation that it was unlikely that the receptors were extracted from the cell membrane during the experiments. The measurement of single molecular interaction between GFP and the anti-GFP antibody was succeeded on the cell surface using compression-free force spectroscopy. The value of separation work required to break a single molecular pair was estimated to be about 1.5x10 -18 J. The number of EP3 receptor on the CHO cell surface was estimated using this value to be about 1x10 4 under the assumption that the area of the cell surface was about 5000 μm 2 . These results indicated that the number of receptors on a living cell surface could be quantified through the force measurement by the AFM

  9. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF)

    International Nuclear Information System (INIS)

    Nakamura, M.; Ogawa, H.; Tsunematsu, T.

    1990-01-01

    Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with 125 I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24 degrees C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind 125 I-MNSF. 125 I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF

  10. Nucleation and growth of elastin-like peptide fibril multilayers: an in situ atomic force microscopy study

    International Nuclear Information System (INIS)

    Yang Guocheng; Yip, Christopher M; Wong, Michael K; Lin, Lauren E

    2011-01-01

    Controlling how molecules assemble into complex supramolecular architectures requires careful consideration of the subtle inter- and intra-molecular interactions that control their association. This is particularly crucial in the context of assembly at interfaces, where both surface chemistry and structure can play a role in directing structure formation. We report here the results of a study into the self-assembly of the elastin-like peptide EP I on structurally modified highly ordered pyrolytic graphite, including the role of spatial confinement on fibril nucleation and the growth of oriented fibril multilayers. In situ atomic force microscopy performed in fluid and at elevated temperature provided direct evidence of frustrated fibril nuclei and oriented growth of independent fibril domains. These results portend the application of this in situ strategy for studies of the nucleation and growth mechanisms of other fibril- and amyloid-forming proteins.

  11. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus.

    Science.gov (United States)

    Naylor, David E; Liu, Hantao; Niquet, Jerome; Wasterlain, Claude G

    2013-06-01

    After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    Science.gov (United States)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  13. Thermoresponsive self-assembly of short elastin-like polypentapeptides and their poly(ethylene glycol) derivatives

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Brus, Jiří; Kostka, Libor; Koňák, Čestmír; Urbanová, Martina; Šlouf, Miroslav

    2007-01-01

    Roč. 7, č. 1 (2007), s. 56-69 ISSN 1616-5187 R&D Projects: GA ČR GA204/05/2255; GA AV ČR IAA100500501 Institutional research plan: CEZ:AV0Z40500505 Keywords : elastin -like peptides * self-assembly * poly(ethylene glycol) Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.831, year: 2007

  14. Temperature induced conformational transitions of elastin-like polypentapeptides studied by Raman and NMR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Dybal, Jiří; Schmidt, Pavel; Kurková, Dana; Kříž, Jaroslav; Rodríguez-Cabello, J. C.; Alonso, M.

    2002-01-01

    Roč. 16, 3-4 (2002), s. 251-255 ISSN 0712-4813 R&D Projects: GA ČR GA203/00/1320; GA AV ČR IAA4050208 Institutional research plan: CEZ:AV0Z4050913 Keywords : quantum chemical calculations * elastin -like polypentapeptides * Raman spectra Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.567, year: 2002

  15. Electrospun silk-elastin-like fibre mats for tissue engineering applications

    International Nuclear Information System (INIS)

    Machado, Raul; Da Costa, André; Padrão, Jorge; Gomes, Andreia; Casal, Margarida; Sencadas, Vitor; Costa, Carlos M; Lanceros-Méndez, Senentxu; Garcia-Arévalo, Carmen; Rodríguez-Cabello, José Carlos

    2013-01-01

    Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing its dependence on the concentration and solvent used. Treatment with methanol-saturated air was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570–720%), water vapour transmission rate (1083 g/m 2 /day) and mechanical properties (modulus of elasticity ∼126 MPa). Furthermore, the methanol-treated SELP fibre mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fibre mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications. (paper)

  16. Measurement of the Exchange Rate of Waters of Hydration in Elastin by 2D T(2)-T(2) Correlation Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Sun, Cheng; Boutis, Gregory S

    2011-02-28

    We report on the direct measurement of the exchange rate of waters of hydration in elastin by T(2)-T(2) exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported. Using an Inverse Laplace Transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed allowing for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described elsewhere [1]) wherein the net entropy of bulk waters of hydration should increase upon increasing temperature in the inverse temperature transition.

  17. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata

    Science.gov (United States)

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata. Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation. PMID:27421895

  18. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    Science.gov (United States)

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Use of versican variant V3 and versican antisense expression to engineer cultured human skin containing increased content of insoluble elastin.

    Science.gov (United States)

    Merrilees, Mervyn J; Falk, Ben A; Zuo, Ning; Dickinson, Michelle E; May, Barnaby C H; Wight, Thomas N

    2017-01-01

    Skin substitutes for repair of dermal wounds are deficient in functional elastic fibres. We report that the content of insoluble elastin in the dermis of cultured human skin can be increased though the use of two approaches that enhance elastogenesis by dermal fibroblasts, forced expression of versican variant V3, which lacks glycosaminoglycan (GAG) chains, and forced expression of versican antisense to decrease levels of versican variant V1 with GAG chains. Human dermal fibroblasts transduced with V3 or anti-versican were cultured under standard conditions over a period of 4 weeks to produce dermal sheets, with growth enhanced though multiple seedings for the first 3 weeks. Human keratinocytes, cultured in supplemented media, were added to the 4-week dermal sheets and the skin layer cultured for a further week. At 5 weeks, keratinocytes were multilayered and differentiated, with desmosome junctions thoughout and keratin deposits in the upper squamous layers. The dermal layer was composed of layered fibroblasts surrounded by extracellular matrix of collagen bundles and, in control cultures, small scattered elastin deposits. Forced expression of V3 and versican antisense slowed growth, decreased versican V1 expression, increased tropoelastin expression and/or the deposition of large aggregates of insoluble elastin in the dermal layer, and increased tissue stiffness, as measured by nano-indentation. Skin sheets were also cultured on Endoform Dermal Template™, the biodegradable wound dressing made from the lamina propria of sheep foregut. Skin structure and the enhanced deposition of elastin by forced expression of V3 and anti-versican were preserved on this supportive substrate. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.

    Science.gov (United States)

    Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2018-04-30

    Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).

  1. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate

    International Nuclear Information System (INIS)

    Gardner, J.P.; Melnick, D.A.; Malech, H.L.

    1986-01-01

    The biochemistry and subcellular source of new formyl peptide chemotactic receptor appearing at the human neutrophil and differentiated HL-60 (d-HL-60) cell surface after stimulation with phorbol myristate acetate (PMA) were examined. Formyl peptide receptor was analyzed by affinity labeling with formyl-norleu-leu-phe-norleu- [ 125 I]iodotyr-lys and ethylene glycol bis(succinimidyl succinate) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric analysis of autoradiographs. PMA, a specific granule secretagogue, increases affinity labeling of formyl peptide receptors on the neutrophil surface by 100%, and on d-HL-60, which lack specific granule markers, by 20%. Papain treatment markedly reduces surface labeling of formyl peptide receptor in both neutrophils and d-HL-60, and results in the appearance of a lower m.w. membrane-bound receptor fragment. PMA stimulation of papain-treated cells increases uncleaved surface receptor on neutrophils by 400%, and on D-HL-60 by only 45%. This newly appearing receptor is the same apparent m.w. (55,000 to 75,000 for neutrophils; 62,000 to 80,000 for d-HL-60) and yields the same papain cleavage product as receptor on the surface of unstimulated cells. These observations suggest that specific granule membranes contain large amounts of formyl peptide receptor, which is biochemically identical to that found on the cell surface and can be mobilized to the cell surface with appropriate stimulation

  2. Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification

    NARCIS (Netherlands)

    Daamen, WF; Nillesen, STM; Hafmans, T; Veerkamp, JH; van Luyn, MJA; van Kuppevelt, TH

    Collagen-elastin scaffolds may be valuable biomaterials for tissue engineering because they combine tensile strength with elasticity. In this study, the tissue response to and the calcification of these scaffolds were evaluated. In particular, the hypothesis was tested that calcification, a common

  3. Generation of hydrogen peroxide in the developing rat heart: the role of elastin metabolism

    Czech Academy of Sciences Publication Activity Database

    Wilhelm, J.; Ošťádalová, Ivana; Vytášek, R.; Vajner, L.

    2011-01-01

    Roč. 358, 1-2 (2011), s. 215-220 ISSN 0300-8177 R&D Projects: GA MŠk(CZ) 1M0510 Grant - others:GA ČR(CZ) GAP303/11/0298 Program:GA Institutional research plan: CEZ:AV0Z50110509 Keywords : rat heart * ontogenetic development * hydrogen peroxide * elastin * fluorescence Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.057, year: 2011

  4. Measurement of the exchange rate of waters of hydration in elastin by 2D T2-T2 correlation nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Sun Cheng; Boutis, Gregory S

    2011-01-01

    We report on a direct measurement of the exchange rate of waters of hydration in elastin by T 2 -T 2 exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported here. Using an inverse Laplace transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed that allows for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described by Urry and Parker 2002 J. Muscle Res. Cell Motil. 23 543-59) wherein the net entropy of waters of hydration should increase with increasing temperature in the inverse temperature transition.

  5. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing

    NARCIS (Netherlands)

    Boekema, B.K.H.L.; Vlig, M.; Damink, L.O.; Middelkoop, E.; Eummelen, L.; Buhren, A.V.; Ulrich, M.M.W.

    2014-01-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were

  6. Model for capping of membrane receptors based on boundary surface effects

    Science.gov (United States)

    Gershon, N. D.

    1978-01-01

    Crosslinking of membrane surface receptors may lead to their segregation into patches and then into a single large aggregate at one pole of the cell. This process is called capping. Here, a novel explanation of such a process is presented in which the membrane is viewed as a supersaturated solution of receptors in the lipid bilayer and the adjacent two aqueous layers. Without a crosslinking agent, a patch of receptors that is less than a certain size cannot stay in equilibrium with the solution and thus should dissolve. Patches greater than a certain size are stable and can, in principle, grow by the precipitation of the remaining dissolved receptors from the supersaturated solution. The task of the crosslinking molecules is to form such stable patches. These considerations are based on a qualitative thermodynamic calculation that takes into account the existence of a boundary tension in a patch (in analogy to the surface tension of a droplet). Thermodynamically, these systems should cap spontaneously after the patches have reached a certain size. But, in practice, such a process can be very slow. A suspension of patches may stay practically stable. The ways in which a cell may abolish this metastable equilibrium and thus achieve capping are considered and possible effects of capping inhibitors are discussed. PMID:274724

  7. Using Force to Probe Single-Molecule Receptor-Cytoskeletal Anchoring Beneath the Surface of a Living Cell

    DEFF Research Database (Denmark)

    Evans, Evan; Kinoshita, Koji

    2007-01-01

    -cytoskeletal unbinding increased exponentially with the level of force, suggesting disruption at a site of single-molecule interaction. Since many important enzymes and signaling molecules are closely associated with a membrane receptor-cytoskeletal linkage, pulling on a receptor could alter interactions among its......The ligation of cell surface receptors often communicates a signal that initiates a cytoplasmic chemical cascade to implement an important cell function. Less well understood is how physical stress applied to a cell surface adhesive bond propagates throughout the cytostructure to catalyze...... or trigger important steps in these chemical processes. Probing the nanoscale impact of pulling on cell surface bonds, we discovered that receptors frequently detach prematurely from the interior cytostructure prior to failure of the exterior adhesive bond [Evans, E., Heinrich, V., Leung, A., and Kinoshita...

  8. Acute Myocardial Infarction and Pulmonary Diseases Result in Two Different Degradation Profiles of Elastin as Quantified by Two Novel ELISAs

    DEFF Research Database (Denmark)

    Skjøt-Arkil, Helene; Clausen, Rikke E; Rasmussen, Lars M

    2013-01-01

    and ELM-2 ELISAs was evaluated in patients with acute myocardial infarction (AMI), no AMI, high coronary calcium, or low coronary calcium. The serological release of ELM-2 in patients with chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF) was compared to controls. RESULTS......BACKGROUND: Elastin is a signature protein of the arteries and lungs, thus it was hypothesized that elastin is subject to enzymatic degradation during cardiovascular and pulmonary diseases. The aim was to investigate if different fragments of the same protein entail different information associated...... and no correlation was observed between ELM-2 and ELM. ELM-2 was not elevated in the COPD and IPF patients and was not correlated to ELM. ELM was shown to be correlated with smoking habits (ppulmonary diseases...

  9. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface

    Directory of Open Access Journals (Sweden)

    Sorina Claudia Popescu

    2012-04-01

    Full Text Available Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the plasma membrane.

  10. Ligand-independent Thrombopoietin Mutant Receptor Requires Cell Surface Localization for Endogenous Activity*

    Science.gov (United States)

    Marty, Caroline; Chaligné, Ronan; Lacout, Catherine; Constantinescu, Stefan N.; Vainchenker, William; Villeval, Jean-Luc

    2009-01-01

    The activating W515L mutation in the thrombopoietin receptor (MPL) has been identified in primary myelofibrosis and essential thrombocythemia. MPL belongs to a subset of the cytokine receptor superfamily that requires the JAK2 kinase for signaling. We examined whether the ligand-independent MPLW515L mutant could signal intracellularly. Addition of the endoplasmic reticulum (ER) retention KDEL sequence to the receptor C terminus efficiently locked MPLW515L within its natural ER/Golgi maturation pathway. In contrast to cells expressing the parental MPLW515L, MPLW515L-KDEL-expressing FDC-P1 cells were unable to grow autonomously and to produce tumors in nude mice. When observed, tumor nodules resulted from in vivo selection of cells leaking the receptor at their surface. JAK2 co-immunoprecipitated with MPLW515L-KDEL but was not phosphorylated. We generated disulfide-bonded MPLW515L homodimers by the S402C substitution, both in the normal and KDEL context. Unlike MPLW515L-KDEL, MPLW515L-S402C-KDEL signaled constitutively and exhibited cell surface localization. These data establish that MPLW515L with appended JAK2 matures through the ER/Golgi system in an inactive conformation and suggest that the MPLW515L/JAK2 complex requires membrane localization for JAK2 phosphorylation, resulting in autonomous receptor signaling. PMID:19261614

  11. Albumin receptor effect may be due to a surface-induced conformational change in albumin

    International Nuclear Information System (INIS)

    Reed, R.G.; Burrington, C.M.

    1989-01-01

    To determine whether equilibrium binding between albumin and hepatocytes involves a cell surface receptor for albumin, we incubated freshly isolated rat hepatocytes with 125 I-albumin and determined the amount of albumin associated with the cells as a function of the total albumin concentration. The resulting two-phase binding curve showed the rat albumin-hepatocyte interaction to consist of a saturable binding interaction with a dissociation constant of 1.1 microM and 2 X 10(6) sites/cell in addition to a weak, nonsaturable binding interaction. However, the saturable binding of albumin to hepatocytes did not appear to result from the presence of an albumin receptor on the cell surface; the interaction was the same for different species of albumin, for chemically modified albumins, and for fragments of albumin representing mutually exclusive domains of the molecule. The saturable binding was, instead, found to involve a subpopulation of albumin with an enhanced affinity for the cell surface. We show that this subpopulation of albumin is generated upon contact with either solid surfaces or cell surfaces and can be transferred from one surface to another. We propose that the two-phase Scatchard binding curve and the ''albumin receptor effect'' reflect two populations of albumin that bind to the cell surface with different affinities rather than one population of albumin that binds to two classes of binding sites

  12. The association of elastin gene variants with two angiographic subtypes of polypoidal choroidal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Suiho Yanagisawa

    Full Text Available To compare the association of elastin (ELN gene variants between two different angiographic phenotypes of polypoidal choroidal vasculopathy (PCV.We included 411 treatment-naïve PCV patients and 350 controls in the present study. PCV was classified into two phenotypes (152 Type 1 and 259 Type 2 according to the presence or absence of feeding vessels found in indocyanine-green angiography. Single nucleotide polymorphisms (SNPs in the ELN region including rs868005, rs884843, rs2301995, rs13239907 and rs2856728 were genotyped using TaqMan Genotyping Assays.In the allelic association analyses, rs868005 showed the strongest association with Type 2 PCV (allelic odds ratio 1.56; p = 7.4x10(-6, while no SNP was significantly associated with Type 1 PCV. Genotype association analyses revealed the significant association of rs868005 with Type 2 PCV in log additive model and predominant model (odds ratio 1.75; p = 1.5x10(-6 and odds ratio 1.60; p = 0.0044, respectively, but not with Type 1 PCV. These findings were further corroborated by another control group in the literature.There may be significantly different associations in genetic variants of elastin between two angiographic phenotypes of PCV.

  13. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers.

    Science.gov (United States)

    Cho, S; Dong, S; Parent, K N; Chen, M

    2016-01-01

    Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.

  14. Acute Myocardial Infarction and Pulmonary Diseases Result in Two Different Degradation Profiles of Elastin as Quantified by Two Novel ELISAs.

    Directory of Open Access Journals (Sweden)

    Helene Skjøt-Arkil

    Full Text Available Elastin is a signature protein of the arteries and lungs, thus it was hypothesized that elastin is subject to enzymatic degradation during cardiovascular and pulmonary diseases. The aim was to investigate if different fragments of the same protein entail different information associated to two different diseases and if these fragments have the potential of being diagnostic biomarkers.Monoclonal antibodies were raised against an identified fragment (the ELM-2 neoepitope generated at the amino acid position '552 in elastin by matrix metalloproteinase (MMP -9/-12. A newly identified ELM neoepitope was generated by the same proteases but at amino acid position '441. The distribution of ELM-2 and ELM, in human arterial plaques and fibrotic lung tissues were investigated by immunohistochemistry. A competitive ELISA for ELM-2 was developed. The clinical relevance of the ELM and ELM-2 ELISAs was evaluated in patients with acute myocardial infarction (AMI, no AMI, high coronary calcium, or low coronary calcium. The serological release of ELM-2 in patients with chronic obstructive pulmonary disease (COPD or idiopathic pulmonary fibrosis (IPF was compared to controls.ELM and ELM-2 neoepitopes were both localized in diseased carotid arteries and fibrotic lungs. In the cardiovascular cohort, ELM-2 levels were 66% higher in serum from AMI patients compared to patients with no AMI (p<0.01. Levels of ELM were not significantly increased in these patients and no correlation was observed between ELM-2 and ELM. ELM-2 was not elevated in the COPD and IPF patients and was not correlated to ELM. ELM was shown to be correlated with smoking habits (p<0.01.The ELM-2 neoepitope was related to AMI whereas the ELM neoepitope was related to pulmonary diseases. These results indicate that elastin neoepitopes generated by the same proteases but at different amino acid sites provide different tissue-related information depending on the disease in question.

  15. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  16. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O2-exposed newborn rat.

    Science.gov (United States)

    Hou, Chen; Peng, Danyi; Gao, Li; Tian, Daiyin; Dai, Jihong; Luo, Zhengxiu; Liu, Enmei; Chen, Hong; Zou, Lin; Fu, Zhou

    2018-01-08

    The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O 2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation. Copyright © 2017. Published by Elsevier Inc.

  17. Basigin-2 Is a Cell Surface Receptor for Soluble Basigin Ligand*S⃞

    Science.gov (United States)

    Belton, Robert J.; Chen, Li; Mesquita, Fernando S.; Nowak, Romana A.

    2008-01-01

    The metastatic spread of a tumor is dependent upon the ability of the tumor to stimulate surrounding stromal cells to express enzymes required for tissue remodeling. The immunoglobulin superfamily protein basigin (EMMPRIN/CD147) is a cell surface glycoprotein expressed by tumor cells that stimulates matrix metalloproteinase and vascular endothelial growth factor expression in stromal cells. The ability of basigin to stimulate expression of molecules involved in tissue remodeling and angiogenesis makes basigin a potential target for the development of strategies to block metastasis. However, the identity of the cell surface receptor for basigin remains controversial. The goal of this study was to determine the identity of the receptor for basigin. Using a novel recombinant basigin protein (rBSG) corresponding to the extracellular domain of basigin, it was demonstrated that the native, nonglycosylated rBSG protein forms dimers in solution. Furthermore, rBSG binds to the surface of uterine fibroblasts, activates the ERK1/2 signaling pathway, and induces expression of matrix metalloproteinases 1, 2, and 3. Proteins that interact with rBSG were isolated using a biotin label transfer technique and sequenced by matrix-assisted laser desorption ionization tandem mass spectrophotometry. The results demonstrate that rBSG interacts with basigin expressed on the surface of fibroblasts and is subsequently internalized. During internalization, rBSG associates with a novel form of human basigin (basigin-3). It was concluded that cell surface basigin functions as a membrane receptor for soluble basigin and this homophilic interaction is not dependent upon glycosylation of the basigin ligand. PMID:18434307

  18. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Polfliet, Machteld M J; Vloet, Rianka P M

    2007-01-01

    Erythropoiesis occurs in erythroblastic islands, where developing erythroblasts closely interact with macrophages. The adhesion molecules that govern macrophage-erythroblast contact have only been partially defined. Our previous work has implicated the rat ED2 antigen, which is highly expressed...... on the surface of macrophages in erythroblastic islands, in erythroblast binding. In particular, the monoclonal antibody ED2 was found to inhibit erythroblast binding to bone marrow macrophages. Here, we identify the ED2 antigen as the rat CD163 surface glycoprotein, a member of the group B scavenger receptor...... that it enhanced erythroid proliferation and/or survival, but did not affect differentiation. These findings identify CD163 on macrophages as an adhesion receptor for erythroblasts in erythroblastic islands, and suggest a regulatory role for CD163 during erythropoiesis....

  19. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  20. Measurement of the exchange rate of waters of hydration in elastin by 2D T{sub 2}-T{sub 2} correlation nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun Cheng; Boutis, Gregory S, E-mail: gboutis@brooklyn.cuny.edu [Brooklyn College, Department of Physics, 2900 Bedford Avenue, Brooklyn, NY 11210 (United States)

    2011-02-15

    We report on a direct measurement of the exchange rate of waters of hydration in elastin by T{sub 2}-T{sub 2} exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported here. Using an inverse Laplace transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed that allows for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described by Urry and Parker 2002 J. Muscle Res. Cell Motil. 23 543-59) wherein the net entropy of waters of hydration should increase with increasing temperature in the inverse temperature transition.

  1. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  2. Evaluation of Elastin/Collagen Content in Human Dermis in-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Pittet

    2014-08-01

    Full Text Available The aim of this study was to evaluate the influence of the depth of the dermis on the measured collagen and elastin levels and to establish the correlation between the amount of these two extracellular matrix (ECM components and age. Multiphoton Microscopy (MPM that measures the autofluorescence (AF and second harmonic generation (SHG was used to quantify the levels of elastin and collagen and to determine the SAAID (SHG-to-AF Aging Index of Dermis at two different skin depths. A 50 MHz ultrasound scanner was used for the calculation of the Sub Epidermal Non Echogenic Band (SENEB. The measurements of the skin mechanical properties were done with a cutometer. All measurements were performed on two groups of 30 healthy female volunteers. The MPM showed a decrease of the quantity of collagen and elastin as a function of depth of the dermis as well as age. The SAAID was lower for the older skin in the deeper dermis. Ultrasound imaging revealed a significant decrease of SENEB as a function of aging. The mechanical properties confirmed a loss of cutaneous elasticity and firmness. Although multiphoton microscopy is a powerful technique to study the characteristics of the dermis and its age-related damage, the location of the measurements (depth remains very important for the validation of these variations. These variations do not seem to be homogeneous according to the part of the dermis that is studied.

  3. GABAB receptor cell surface export is controlled by an endoplasmic reticulum gatekeeper

    Science.gov (United States)

    Doly, Stéphane; Shirvani, Hamasseh; Gäta, Gabriel; Meye, Frank; Emerit, Michel-Boris; Enslen, Hervé; Achour, Lamia; Pardo-Lopez, Liliana; Kwon, Yang Seung; Armand, Vincent; Gardette, Robert; Giros, Bruno; Gassmann, Martin; Bettler, Bernhard; Mameli, Manuel; Darmon, Michèle; Marullo, Stefano

    2016-01-01

    Summary Endoplasmic reticulum (ER) release and cell surface export of many G protein-coupled receptors (GPCRs), are tightly regulated. For GABAB receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gate-keepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function. PMID:26033241

  4. Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Leurgans, Thomas M; Spronck, Bart

    2017-01-01

    digestions were applied to evaluate the loadbearing roles of collagen and elastin, respectively. The incremental elastic modulus linearly related to the straightness of adventitial collagen fibers circumferentially and longitudinally (both R(2)≥0.99), while there was a nonlinear relationship to the internal...

  5. Differential effects of Nd-YAG laser on collagen and elastin production by chick embryo aortae in vitro. Relevance to laser angioplasty for removal of atherosclerotic plaques

    International Nuclear Information System (INIS)

    Abergel, R.P.; Zaragoza, E.J.; Dwyer, R.M.; Uitto, J.

    1985-01-01

    Aortae from 17-day old chick embryos were subjected to irradiation with a Nd:YAG laser at energy densities varying from 1.2 - 4.7 X 10(3) J/cm2. The aortae were pulse-labeled in vitro with [ 3 H]proline or [ 14 C]valine, and the synthesis of collagenous polypeptides and soluble elastin was examined by SDS-polyacrylamide gel electrophoresis, followed by fluorography and quantitative scanning densitometry. Irradiation of the aortae with Nd:YAG laser resulted in inhibition of the synthesis of the extracellular matrix proteins. The production of collagen was inhibited to a considerably larger degree than the production of elastin. Thus, the biosynthetic pathway for collagen production appears to be more susceptible to laser inhibition than the corresponding pathway for elastin production. These observations may have relevance to laser angioplasty which has been proposed to be applicable for removal of atherosclerotic plaques in human vessels. Specifically, the results suggest that inhibition of the extracellular matrix production may result in weakening of the vessel wall with subsequent aneurysm formation and rupture

  6. Circulating Elastin Fragments Are Not Affected by Hepatic, Renal and Hemodynamic Changes, But Reflect Survival in Cirrhosis with TIPS

    DEFF Research Database (Denmark)

    Nielsen, M J; Lehmann, J; Leeming, D J

    2015-01-01

    at TIPS insertion and 2 weeks later. The circulating levels of elastin fragments (ELM) were determined using specific monoclonal ELISA. The relationship of ELM with clinical short-time follow-up and long-term outcome was investigated. RESULTS: Circulating levels of ELM showed a gradient across the liver...

  7. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix.

    Science.gov (United States)

    Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo

    2014-09-19

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  8. Quantitative comparison of structure and dynamics of elastin following three isolation schemes by 13C solid state NMR and MALDI mass spectrometry.

    Science.gov (United States)

    Papaioannou, A; Louis, M; Dhital, B; Ho, H P; Chang, E J; Boutis, G S

    2015-05-01

    Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning (13)C NMR spectroscopy and relaxation methodologies, we have measured the modification in structure and dynamics following three known purification protocols. Our experimental data reveal that the (13)C spectra of the hydrated samples appear remarkably similar across the various purification methods. Subtle differences in the half maximum widths were observed in the backbone carbonyl suggesting possible structural heterogeneity across the different methods of purification. Additionally, small differences in the relative signal intensities were observed between purified samples. Lyophilizing the samples results in a reduction of backbone motion and reveals additional differences across the purification methods studied. These differences were most notable in the alanine motifs indicating possible changes in cross-linking or structural rigidity. The measured correlation times of glycine and proline moieties are observed to also vary considerably across the different purification methods, which may be related to peptide bond cleavage. Lastly, the relative concentration of desmosine cross-links in the samples quantified by MALDI mass spectrometry is reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Assessment of plasma anti-elastin antibodies for use as a diagnostic aid for chronic progressive lymphoedema in Belgian Draught Horses.

    Science.gov (United States)

    De Keyser, K; Berth, M; Christensen, N; Willaert, S; Janssens, S; Ducatelle, R; Goddeeris, B M; De Cock, H E V; Buys, N

    2015-01-15

    Diagnosis of chronic progressive lymphoedema (CPL) in draught horses, including the Belgian Draught Horse, is mainly based on clinical evaluation of typical lower limb lesions. A deficient perilymphatic elastic support, caused by a pathological elastin degradation in skin and subcutis, has been suggested as a contributing factor for CPL. Elastin degradation products induce the generation of anti-elastin Ab (AEAb), detectable in horse serum by ELISA. For a clinically healthy group of draught horses, a significantly lower average AEAb-level than 3 clinically affected groups (mild, moderate and severe symptoms) was demonstrated previously. To improve CPL-diagnosis, we evaluated the AEAb-ELISA as an in vitro diagnostic aid in individual horses. Test reproducibility was assessed, performing assays independently in 2 laboratories on a total of 345 horses. Possible factors associated with AEAb-levels (age, gender, pregnancy, test lab and date of blood collection) were analyzed using a mixed statistical model. Results were reproducible in both laboratories. AEAb-levels in moderately and severely affected horses were significantly higher than in healthy horses. Nevertheless, this was only demonstrated in barren mares, and, there was a very large overlap between the clinical groups. Consequently, even when a high AEAb cut-off was handled to obtain a reasonable specificity of 90%, a very low sensitivity (21%) of AEAb for CPL-diagnosis was obtained. Results on the present sample demonstrate that the described ELISA procedure is of no use as a diagnostic test for CPL in individual horses. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    International Nuclear Information System (INIS)

    Mascalchi, Patrice; Lamort, Anne Sophie; Salomé, Laurence; Dumas, Fabrice

    2012-01-01

    Highlights: ► We studied the diffusion of single CD4 receptors on living lymphocytes. ► This study reveals that CD4 receptors have either a random or confined diffusion. ► The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. ► The dynamics of confined CD4 receptors was unchanged by a temperature raise. ► Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 °C and 37 °C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  11. Fc-receptors and surface immunoglobulins in cells of the hairy cell leukemia

    International Nuclear Information System (INIS)

    Rieber, E.P.; Linke, R.P.; Riethmueller, G.; Heyden, H.W. von; Waller, H.D.

    1976-01-01

    Using 125 I-labelled aggregated IgG in a quantitative assay a strong expression of Fc-receptors was found on the leukemic cells of a patient with hairy cell leukemia. The Fc-receptor activity on these cells was much higher than that on monocytes and B-lymphocytes from normal blood. Surface immunoglobulins were detected by radioautography using radioactively labelled (Fab') 2 -fragments of monospecific antibodies directed against immunoglobulin heavy chains. Prior to radioautography the cells were stained for the tartrate resistant acid phosphatase. It is found that all cells containing this enzyme bore delta-chains on their surface. On more than 90% of these cells a simultaneous expression of μ-chains was detected. γ-chains could only be demonstrated on cells which were negative for the tartrate resistant acid phosphatase; part of these cells, however, were hairy cells by morphological criteria. (orig.) [de

  12. Fc-receptors and surface immunoglobulins in cells of the hairy cell leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Rieber, E P; Linke, R P; Riethmueller, G [Tuebingen Univ. (Germany, F.R.). Abt. fuer Experimentelle Chirurgie und Immunologie; Heyden, H.W. von; Waller, H D [Tuebingen Univ. (Germany, F.R.). Abt. Innere Medizin 2

    1976-01-01

    Using /sup 125/I-labelled aggregated IgG in a quantitative assay a strong expression of Fc-receptors was found on the leukemic cells of a patient with hairy cell leukemia. The Fc-receptor activity on these cells was much higher than that on monocytes and B-lymphocytes from normal blood. Surface immunoglobulins were detected by radioautography using radioactively labelled (Fab')/sub 2/-fragments of monospecific antibodies directed against immunoglobulin heavy chains. Prior to radioautography the cells were stained for the tartrate resistant acid phosphatase. It is found that all cells containing this enzyme bore delta-chains on their surface. On more than 90% of these cells a simultaneous expression of ..mu..-chains was detected. ..gamma..-chains could only be demonstrated on cells which were negative for the tartrate resistant acid phosphatase; part of these cells, however, were hairy cells by morphological criteria.

  13. Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag.

    Science.gov (United States)

    Bataille, Laure; Dieryck, Wilfrid; Hocquellet, Agnès; Cabanne, Charlotte; Bathany, Katell; Lecommandoux, Sébastien; Garbay, Bertrand; Garanger, Elisabeth

    2015-06-01

    Elastin-like polypeptides (ELPs) are biodegradable polymers with interesting physico-chemical properties for biomedical and biotechnological applications. The recombinant expression of hydrophobic elastin-like polypeptides is often difficult because they possess low transition temperatures, and therefore form aggregates at sub-ambient temperatures. To circumvent this difficulty, we expressed in Escherichia coli three hydrophobic ELPs (VPGIG)n with variable lengths (n=20, 40, and 60) in fusion with the maltose-binding protein (MBP). Fusion proteins were soluble and yields of purified MBP-ELP ranged between 66 and 127mg/L culture. After digestion of the fusion proteins by enterokinase, the ELP moiety was purified by using inverse transition cycling. The purified fraction containing ELP40 was slightly contaminated by traces of undigested fusion protein. Purification of ELP60 was impaired because of co-purification of the MBP tag during inverse transition cycling. ELP20 was successfully purified to homogeneity, as assessed by gel electrophoresis and mass spectrometry analyses. The transition temperature of ELP20 was measured at 15.4°C in low salt buffer. In conclusion, this method can be used to produce hydrophobic ELP of low molecular mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Characterizing Spatial Organization of Cell Surface Receptors in Human Breast Cancer with STORM

    Science.gov (United States)

    Lyall, Evan; Chapman, Matthew R.; Sohn, Lydia L.

    2012-02-01

    Regulation and control of complex biological functions are dependent upon spatial organization of biological structures at many different length scales. For instance Eph receptors and their ephrin ligands bind when opposing cells come into contact during development, resulting in spatial organizational changes on the nanometer scale that lead to changes on the macro scale, in a process known as organ morphogenesis. One technique able to probe this important spatial organization at both the nanometer and micrometer length scales, including at cell-cell junctions, is stochastic optical reconstruction microscopy (STORM). STORM is a technique that localizes individual fluorophores based on the centroids of their point spread functions and then reconstructs a composite image to produce super resolved structure. We have applied STORM to study spatial organization of the cell surface of human breast cancer cells, specifically the organization of tyrosine kinase receptors and chemokine receptors. A better characterization of spatial organization of breast cancer cell surface proteins is necessary to fully understand the tumorigenisis pathways in the most common malignancy in United States women.

  15. Exploring the Properties of Genetically Engineered Silk-Elastin-Like Protein Films.

    Science.gov (United States)

    Machado, Raul; da Costa, André; Sencadas, Vitor; Pereira, Ana Margarida; Collins, Tony; Rodríguez-Cabello, José Carlos; Lanceros-Méndez, Senentxu; Casal, Margarida

    2015-12-01

    Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated β-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180 °C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  17. Development of elastin-like recombinamer films with antimicrobial activity

    DEFF Research Database (Denmark)

    Costa, André; Machado, Raul; Ribeiro, Artur

    2015-01-01

    In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N......-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through...... the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against...

  18. Microscopic visualization of metabotropic glutamate receptors on the surface of living cells using bifunctional magnetic resonance imaging probes.

    Science.gov (United States)

    Mishra, Anurag; Mishra, Ritu; Gottschalk, Sven; Pal, Robert; Sim, Neil; Engelmann, Joern; Goldberg, Martin; Parker, David

    2014-02-19

    A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.

  19. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  20. Morphological Specifications of the Bird Schistosome Cercariae and Surface Carbohydrates as Receptors for Lectins

    Directory of Open Access Journals (Sweden)

    I Moebedi

    2007-04-01

    Full Text Available Background: To determine the morphological specifications of the bird schistosomes cercaria from Lymnaea gedrosiana and to detect the surface carbohydrates as receptors for host lectins in the host-parasite relationship systems such as avian schistosomiasis and human cercarial dermatitis. Methods: One hundred ninety two snails collected from Dezful areas in Khuzestan Province, in the south west of Iran, during 2005-2006 were examined for cercariae using shedding and crushing methods. In addition, surface carbohydrates on the cercariae were detected by lentil (Lens culinaris lectins. Results: From the total number of Lymnaea gedrosiana, which examined for bird schistosomes cercaria, 9(4% snails were found to be infected with furcocercus cercaria of the bird schistosomes (probably Gigantobilharzia sp.. Mannose monosaccharide CH2OH (CHOH4CHO as surface carbohydrate was also detected on the cercariae. Conclusion: Mannose carbohydrate on these cercariae may be used as receptor by lectins.

  1. Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6

    Directory of Open Access Journals (Sweden)

    Riki Kawaguchi

    2015-08-01

    Full Text Available Vitamin A has biological functions as diverse as sensing light for vision, regulating stem cell differentiation, maintaining epithelial integrity, promoting immune competency, regulating learning and memory, and acting as a key developmental morphogen. Vitamin A derivatives have also been used in treating human diseases. If vitamin A is considered a drug that everyone needs to take to survive, evolution has come up with a natural drug delivery system that combines sustained release with precise and controlled delivery to the cells or tissues that depend on it. This “drug delivery system” is mediated by plasma retinol binding protein (RBP, the principle and specific vitamin A carrier protein in the blood, and STRA6, the cell-surface receptor for RBP that mediates cellular vitamin A uptake. The mechanism by which the RBP receptor absorbs vitamin A from the blood is distinct from other known cellular uptake mechanisms. This review summarizes recent progress in elucidating the fundamental molecular mechanism mediated by the RBP receptor and multiple newly discovered catalytic activities of this receptor, and compares this transport system with retinoid transport independent of RBP/STRA6. How to target this new type of transmembrane receptor using small molecules in treating diseases is also discussed.

  2. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles

    International Nuclear Information System (INIS)

    Kamen, B.A.; Wang, M.T.; Streckfuss, A.J.; Peryea, X.; Anderson, R.G.

    1988-01-01

    MA104 cells, as well as several other rapidly dividing tissue culture cells, have a folate-binding protein associated with their cell surface. The protein has the properties of a membrane receptor: (a) 5-methyl[ 3 H]tetrahydrofolic acid binds with high affinity (Kd approximately equal to 3 nM); (b) the protein is an integral membrane protein; (c) it appears to deliver physiological concentrations of 5-methyl[ 3 H]tetrahydrofolic acid to the inside of the cell; (d) binding activity is regulated by the concentration of folate within the cell. To better understand the mechanism of action of this receptor, we have studied the pathway of folate internalization. We present evidence that during internalization: (a) folate binds to the membrane receptor; (b) the ligand-receptor complex moves into the cell; (c) the ligand is released from the receptor in an acidic intracellular compartment and moves into the cytoplasm; and (d) the unoccupied receptor returns to the cell surface

  3. Distinctive receptor binding properties of the surface glycoprotein of a natural Feline Leukemia Virus isolate with unusual disease spectrum

    Directory of Open Access Journals (Sweden)

    Albritton Lorraine M

    2011-05-01

    Full Text Available Abstract Background Feline leukemia virus (FeLV-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Results Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. Conclusions The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.

  4. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    Science.gov (United States)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  5. Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries.

    Science.gov (United States)

    Bloksgaard, Maria; Leurgans, Thomas M; Spronck, Bart; Heusinkveld, Maarten H G; Thorsted, Bjarne; Rosenstand, Kristoffer; Nissen, Inger; Hansen, Ulla M; Brewer, Jonathan R; Bagatolli, Luis A; Rasmussen, Lars M; Irmukhamedov, Akhmadjon; Reesink, Koen D; De Mey, Jo G R

    2017-07-01

    The impact of disease-related changes in the extracellular matrix (ECM) on the mechanical properties of human resistance arteries largely remains to be established. Resistance arteries from both pig and human parietal pericardium (PRA) display a different ECM microarchitecture compared with frequently used rodent mesenteric arteries. We hypothesized that the biaxial mechanics of PRA mirror pressure-induced changes in the ECM microarchitecture. This was tested using isolated pig PRA as a model system, integrating vital imaging, pressure myography, and mathematical modeling. Collagenase and elastase digestions were applied to evaluate the load-bearing roles of collagen and elastin, respectively. The incremental elastic modulus linearly related to the straightness of adventitial collagen fibers circumferentially and longitudinally (both R 2 ≥ 0.99), whereas there was a nonlinear relationship to the internal elastic lamina elastin fiber branching angles. Mathematical modeling suggested a collagen recruitment strain (means ± SE) of 1.1 ± 0.2 circumferentially and 0.20 ± 0.01 longitudinally, corresponding to a pressure of ~40 mmHg, a finding supported by the vital imaging. The integrated method was tested on human PRA to confirm its validity. These showed limited circumferential distensibility and elongation and a collagen recruitment strain of 0.8 ± 0.1 circumferentially and 0.06 ± 0.02 longitudinally, reached at a distending pressure below 20 mmHg. This was confirmed by vital imaging showing negligible microarchitectural changes of elastin and collagen upon pressurization. In conclusion, we show here, for the first time in resistance arteries, a quantitative relationship between pressure-induced changes in the extracellular matrix and the arterial wall mechanics. The strength of the integrated methods invites for future detailed studies of microvascular pathologies. NEW & NOTEWORTHY This is the first study to quantitatively relate pressure

  6. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains.

    Science.gov (United States)

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-05-17

    We report the synthesis of methionine-containing recombinant elastin-like polypeptides (ELPs) of different lengths that contain periodically spaced methionine residues. These ELPs were chemoselectively alkylated at all methionine residues to give polycationic derivatives. Some of these samples were found to possess solubility transitions in water, where the temperature of these transitions varied with ELP concentration, nature of the methionine alkylating group, and nature of the sulfonium counterions. These studies show that introduction and controlled spacing of methionine sulfonium residues into ELPs can be used as a means both to tune their solubility transition temperatures in water using a variety of different parameters and to introduce new side-chain functionality.

  7. Membrane-Based Inverse Transition Cycling: An Improved Means for Purifying Plant-Derived Recombinant Protein-Elastin-Like Polypeptide Fusions

    Directory of Open Access Journals (Sweden)

    Udo Conrad

    2011-04-01

    Full Text Available Elastin-like peptide (ELP was fused to two different avian flu H5N1 antigens and expressed in transgenic tobacco plants. The presence of the ELP tag enhanced the accumulation of the heterologous proteins in the tobacco leaves. An effective membrane-based Inverse Transition Cycling was developed to recover the ELPylated antigens and antibodies from plant material. The functionality of both the ELPylated neuraminidase and an ELPylated nanobody was demonstrated.

  8. Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor

    DEFF Research Database (Denmark)

    Hansen, Niels Ulrik Brandt; Karsdal, Morten Asser; Brockbank, Sarah

    2016-01-01

    .T., two days apart. The rats were euthanized fourteen days after the last dose. PCLS were made and cultured for 48 h in: medium, medium + 100 μM IBMX (PDE inhibitor), or medium + 10 μM GM6001 (MMP inhibitor). Turnover of type I collagen (P1NP, C1M), type III collagen (iP3NP, C3M) and elastin degradation...... to the culture medium (P ≤ 0.05 - P ≤ 0.0001). Sirius Red and Orcein staining confirmed the presence of collagen and elastin deposition in the lungs of the animals receiving BLM. Conclusions: The protein fingerprint technology allows the assessment of ECM remodeling markers in the BLM PCLS model. By combining...

  9. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    Science.gov (United States)

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  10. Expression and Immunogenicity of the Mycobacterial Ag85B/ESAT-6 Antigens Produced in Transgenic Plants by Elastin-Like Peptide Fusion Strategy

    Directory of Open Access Journals (Sweden)

    Doreen Manuela Floss

    2010-01-01

    Full Text Available This study explored a novel system combining plant-based production and the elastin-like peptide (ELP fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.

  11. Human pigmentation: A side effect adapted from a primitive organism′s survival, acting through cell attachment with an affinity for the keratinocyte and for elastin: Part I

    Directory of Open Access Journals (Sweden)

    Sanju Arianayagam

    2014-01-01

    Full Text Available Pigmentation featured millions of years ago and perhaps began with an amoeba frightening off a predator with some agent such as dopamine to prevent its attachment for phagocytosis by an enemy. This paper suggests that the environmental forces of grip and stick deserve greater emphasis and that mechanical forces involved in grip and stick or release from attachment, all point to control of proteases underlying pigmentation. There is an affinity for elastin as a pathway for melanin to exit its peripheral location in the epidermis into lymphatics and play a humeral role in defense mechanisms. The hair follicle follows the epidermal-dermal pattern of behavior with an affinity for elastin, a controlling function of melanin and through the bulge, an influence of mechanical forces and control by protease inhibitors.

  12. Blackcurrant Anthocyanins Increase the Levels of Collagen, Elastin, and Hyaluronic Acid in Human Skin Fibroblasts and Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Naoki Nanashima

    2018-04-01

    Full Text Available Blackcurrants (Ribes nigrum L. contain high levels of anthocyanin polyphenols, which have beneficial effects on health, owing to their antioxidant and anticarcinogenic properties. Phytoestrogens are plant-derived substances with estrogenic activity, which could have beneficial effects on the skin. Estradiol secretion decreases during menopause, reducing extracellular matrix (ECM component production by skin fibroblasts. Using a normal human female skin fibroblast cell line (TIG113 and ovariectomized rats, the present study investigated whether an anthocyanin-rich blackcurrant extract (BCE and four blackcurrant anthocyanins have novel phytoestrogenic activities that could benefit the skin in menopausal women. In TIG113 cells, a microarray and the Ingenuity® Pathway Analysis showed that 1.0 μg/mL of BCE upregulated the expression of many estrogen signaling-related genes. A quantitative RT-PCR analysis confirmed that BCE (1.0 or 10.0 μg/mL and four types of anthocyanins (10 μM altered the mRNA expression of ECM proteins and enzymes involved in ECM turnover. Immunofluorescence staining indicated that the anthocyanins stimulated the expression of ECM proteins, such as collagen (types I and III and elastin. Dietary administration of 3% BCE to ovariectomized rats for 3 months increased skin levels of collagen, elastin, and hyaluronic acid. This is the first study to show that blackcurrant phytoestrogens have beneficial effects on skin experimental models.

  13. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization1

    Science.gov (United States)

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D.; Meisinger, Trevor M.; Casale, George P.; Baxter, B. Timothy

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix (ECM) degradation. Damage to elastin in the ECM results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Pro-inflammatory M1 macrophages initially are recruited to sites of injury but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. AAA tissue reveals a high M1/M2 ratio where pro-inflammatory cells and their associated markers dominate. In the present study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57Bl/6 mice, antibody-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and pro-inflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2 polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a pro-inflammatory environment in aortic tissue by inducing M1 polarization and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  14. Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Koushik; Balog, Eva Rose M.; Sista, Prakash; Williams, Darrick J.; Martinez, Jennifer S., E-mail: jenm@lanl.gov, E-mail: rcrocha@lanl.gov; Rocha, Reginaldo C., E-mail: jenm@lanl.gov, E-mail: rcrocha@lanl.gov [Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kelly, Daniel [Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-01

    We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca{sup 2+} or Cu{sup 2+}, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.

  15. Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides

    Directory of Open Access Journals (Sweden)

    Koushik Ghosh

    2014-02-01

    Full Text Available We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca2+ or Cu2+, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.

  16. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines.

    Science.gov (United States)

    Despanie, Jordan; Dhandhukia, Jugal P; Hamm-Alvarez, Sarah F; MacKay, J Andrew

    2016-10-28

    Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (T t ) but form amorphous coacervates above T t . Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields. Copyright © 2015. Published by Elsevier B.V.

  17. Syndecans as cell surface receptors: Unique structure equates with functional diversity

    DEFF Research Database (Denmark)

    Choi, Youngsil; Chung, Heesung; Jung, Heyjung

    2011-01-01

    An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation....... As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external...... glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions....

  18. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P cells expressed NKG2D at 10% oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  19. Localization of Estrogen Receptors α and β in the Articular Surface of the Rat Femur

    International Nuclear Information System (INIS)

    Oshima, Yasushi; Matsuda, Ken-ichi; Yoshida, Atsuhiko; Watanabe, Nobuyoshi; Kawata, Mitsuhiro; Kubo, Toshikazu

    2007-01-01

    It has been suggested that the degradation of the articular cartilage and osteoarthritis (OA) are associated with gender and the estrogen hormone. Although many investigators have reported the presence of the estrogen receptors (ERs) α and β in the articular cartilage, the localization of these receptors and the difference in their in vivo expression have not yet been clearly demonstrated. We performed immunofluorescence staining of ERα and ERβ to elucidate the localization of the ERs and to note the effects of gender and the aging process on these receptors. The results revealed that ERα and ERβ were expressed in the articular cartilage and subchondral bone layers of adult rats of both sexes. We also observed the high expression of these receptors in immature rats. In contrast, their expression levels decreased in an ovariectomised model, as a simulation of postmenopause, and in aged female rats. Therefore, this study suggests the direct effects of estrogen and ER expression on articular surface metabolism

  20. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid

    Directory of Open Access Journals (Sweden)

    Sachiro eKakinoki

    2014-07-01

    Full Text Available We developed a microfibrous poly(L-lactic acid (PLLA nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG30 that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG30 composisting of an elastin-like repetitive sequence (VPGIG30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73 was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG30 inner layer.

  1. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    Science.gov (United States)

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-07-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 composisting of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.

  2. Quantitation of Fc receptors and surface immunoglobulin is affected by cell isolation procedures using plasmagel and ficoll-hypaque.

    Science.gov (United States)

    Alexander, E L; Titus, J A; Segal, D M

    1978-01-01

    When mononuclear leukocytes are isolated directly from whole human blood using Ficoll-Hypaque or Plasmagel, cytophilic immunoglobulin is detected on cell surfaces. Upon incubation at 37 degrees C, this cell-associated immunoglobulin is shed slowly into the medium. However, when cells are prewashed in phosphate-buffered saline prior to isolation, they appear to be free of cytophilic immunoglobulin. Compared to prewashed cells, populations retaining cytophilic immunoglobulin on their surfaces demonstrate a decreased binding of soluble immune complexes and radiolabelled trimeric rabbit IgG. The data suggest that Ficoll-Hypaque and Plasmagel cause serum IgG to bind with abnormally high affinity to human mononuclear leukocytes, probably via Fc receptors. This artifact of preparation can lead to erroneous estimates of the numbers of cells bearing Fc receptors or intrinsic membrane immunoglobulin within a given population of cells and to an inaccurate assessment of the average number of Fc receptors per cell.

  3. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    Science.gov (United States)

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  4. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Hsueh, Yu-Sheng; Savitha, S.; Sadhasivam, S.; Lin, Feng-Huei; Shieh, Ming-Jium

    2014-01-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration

  5. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Yu-Sheng [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai (India); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Sadhasivam, S. [Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Lin, Feng-Huei, E-mail: double@ntu.edu.tw [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Shieh, Ming-Jium [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); College of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China)

    2014-05-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration.

  6. Surgical therapy by sandwich transplantation using a dermal collagen-elastin matrix and full thickness split grafts and gait rehabilitation with individualized orthesis

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2012-01-01

    Full Text Available Painful callosities of the feet (PCOF are a rare complaint in children with severe impairment of mobility and quality of life. There is no medical treatment available.We investigated the usefulness of a recently developed combined transplant technique-the sandwich transplantation with dermal collagen-elastin template in this rare condition. A 14-year-old boy suffered from PCOF for several years without any improvement by topical therapy, dermabrasion, and oral retinoids. He was unable to walk normally and suffered from severe pain. We performed a complete deep excision of the hyperkeratotic plantar tissue in general anaesthesia in combination with sandwich transplantation in the same setting. Dry sheets of collagen-elastin matrix (1 mm thickness were placed on the soft tissue defects and covered by full-thickness mesh graft transplants from the upper leg. An individualized orthosis was produced for gait rehabilitation. Two weeks after surgery the gait-related pain was reduced remarkably. Using the orthosis, the boy was able to walk pain-free even on staircase. Surgery of PCOF with sandwich transplantation and gait rehabilitation appears to be a promising strategy for this rare condition.

  7. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    Science.gov (United States)

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: epidermal growth factor receptor as a model system.

    Science.gov (United States)

    Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L

    2008-08-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the

  9. Case Report: A case of hypertrophic lupus erythematosus with negative CD123 staining and absence of transepidermal elimination of elastin [v2; ref status: indexed, http://f1000r.es/3n7

    Directory of Open Access Journals (Sweden)

    Matthew Hughes

    2014-06-01

    Full Text Available We report the case of a 49-year-old male with clinical and histological findings consistent with hypertrophic lupus erythematosus (HLE. HLE must be clinically and histologically differentiated from keratoacanthoma, hypertrophic lichen planus, squamous cell carcinoma and plaque type psoriasis. CD123 positivity and transepidermal elimination of elastin have recently been reported as tools to distinguish HLE. Interestingly, in this case, biopsies of two separate lesions failed to reveal these two features. The etiology of this discrepancy is unknown and further studies are needed to clarify the utility of CD123 positivity and transepidermal elimination of elastin in the diagnosis of hypertrophic lupus erythematosus.

  10. Gonadal cell surface receptor for plasma retinol-binding protein

    International Nuclear Information System (INIS)

    Krishna Bhat, M.; Cama, H.R.

    1979-01-01

    A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps; direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme. The binding of retinol-binding protein to the receptor is saturable and reversible. The interaction shows a Ksub(d) value of 2.1x10 -10 . The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testosterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifcally induced by testosterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome. (Auth.)

  11. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Sanlioglu, Ahter D; Dirice, Ercument; Aydin, Cigdem; Erin, Nuray; Koksoy, Sadi; Sanlioglu, Salih

    2005-01-01

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  12. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor.

    Science.gov (United States)

    Hegenauer, Volker; Fürst, Ursula; Kaiser, Bettina; Smoker, Matthew; Zipfel, Cyril; Felix, Georg; Stahl, Mark; Albert, Markus

    2016-07-29

    Parasitic plants are a constraint on agriculture worldwide. Cuscuta reflexa is a stem holoparasite that infests most dicotyledonous plants. One exception is tomato, which is resistant to C. reflexa We discovered that tomato responds to a small peptide factor occurring in Cuscuta spp. with immune responses typically activated after perception of microbe-associated molecular patterns. We identified the cell surface receptor-like protein CUSCUTA RECEPTOR 1 (CuRe1) as essential for the perception of this parasite-associated molecular pattern. CuRe1 is sufficient to confer responsiveness to the Cuscuta factor and increased resistance to parasitic C. reflexa when heterologously expressed in otherwise susceptible host plants. Our findings reveal that plants recognize parasitic plants in a manner similar to perception of microbial pathogens. Copyright © 2016, American Association for the Advancement of Science.

  13. EMILIN2 (Elastin microfibril interface located protein, potential modifier of thrombosis

    Directory of Open Access Journals (Sweden)

    Hoover-Plow Jane L

    2011-05-01

    Full Text Available Abstract Background Elastin microfibril interface located protein 2 (EMILIN2 is an extracellular glycoprotein associated with cardiovascular development. While other EMILIN proteins are reported to play a role in elastogenesis and coagulation, little is known about EMILIN2 function in the cardiovascular system. The objective of this study was to determine whether EMILIN2 could play a role in thrombosis. Results EMILIN2 mRNA was expressed in 8 wk old C57BL/6J mice in lung, heart, aorta and bone marrow, with the highest expression in bone marrow. In mouse cells, EMILIN2 mRNA expression in macrophages was higher than expression in endothelial cells and fibroblasts. EMILIN2 was identified with cells and extracellular matrix by immunohistochemistry in the carotid and aorta. After carotid ferric chloride injury, EMILIN2 was abundantly expressed in the thrombus and inhibition of EMILIN2 increased platelet de-aggregation after ADP-stimulated platelet aggregation. Conclusions These results suggest EMILIN2 could play a role in thrombosis as a constituent of the vessel wall and/or a component of the thrombus.

  14. Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel

    Science.gov (United States)

    Balaceanu, Andreea; Singh, Smriti; Demco, Dan E.; Möller, Martin

    2014-09-01

    The structural and water interaction parameters for native, α-elastin biohybrid microgel crosslinked with hydrophilic and hydrophobic crosslinkers are obtained from the volume phase transition temperature behaviour, 1H high-resolution magic-angle sample spinning transverse magnetization relaxation NMR, and modified Flory-Rehner swelling theory. Firstly, considering a homogeneous morphology the number of subchains in the biohybrid microgel, the residual water in deswollen state as a function of crosslink density and the temperature dependence of the Flory biopolymer-water interaction parameters are reported for the biohybrid microgels prepared with hydrophilic (PEG-DGE) and hydrophobic (BS3) crosslinkers. The Flory-Rehner classical approach is subsequently modified taking into account the heterogeneities observed by NMR transverse relaxation measurements. Two differently mobile regions are determined, a hydrophobic domain and a crosslinking domain with relative reduced mobility. For the first time, the influence of chain mobility on the Flory interaction parameter is investigated through a modified Flory state equation. The contributions of amino-acids located in the hydrophobic and crosslinking domains in the polypeptide sequence are separated while analyzing the biopolymer-water interaction.

  15. Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages

    OpenAIRE

    Syed M. Faisal; Vivek P. Varma; M. Subathra; Sarwar Azam; Anil K. Sunkara; Mohd Akif; Mirza. S. Baig; Yung-Fu Chang

    2016-01-01

    Leptospirosis is zoonotic and emerging infectious disease of global importance. Little is understood about Leptospira pathogenesis and host immune response. In the present work we have investigated how Leptospira modulates the host innate immune response mediated by Toll-like receptors (TLRs) via surface exposed proteins. We screened Leptospira outer membrane/surface proteins for their ability to activate/inhibit TLR2/4 signaling in HEK293 cell lines. Of these the 21?kDa Leptospira surface ad...

  16. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review

    Science.gov (United States)

    Tsamis, Alkiviadis; Krawiec, Jeffrey T.; Vorp, David A.

    2013-01-01

    Aortic disease is a significant cause of death in developed countries. The most common forms of aortic disease are aneurysm, dissection, atherosclerotic occlusion and ageing-induced stiffening. The microstructure of the aortic tissue has been studied with great interest, because alteration of the quantity and/or architecture of the connective fibres (elastin and collagen) within the aortic wall, which directly imparts elasticity and strength, can lead to the mechanical and functional changes associated with these conditions. This review article summarizes the state of the art with respect to characterization of connective fibre microstructure in the wall of the human aorta in ageing and disease, with emphasis on the ascending thoracic aorta and abdominal aorta where the most common forms of aortic disease tend to occur. PMID:23536538

  17. Identification of vimentin- and elastin-like transcripts specifically expressed in developing notochord of Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Sagstad, Anita; Grotmol, Sindre; Kryvi, Harald; Krossøy, Christel; Totland, Geir K; Malde, Ketil; Wang, Shou; Hansen, Tom; Wargelius, Anna

    2011-11-01

    The notochord functions as the midline structural element of all vertebrate embryos, and allows movement and growth at early developmental stages. Moreover, during embryonic development, notochord cells produce secreted factors that provide positional and fate information to a broad variety of cells within adjacent tissues, for instance those of the vertebrae, central nervous system and somites. Due to the large size of the embryo, the salmon notochord is useful to study as a model for exploring notochord development. To investigate factors that might be involved in notochord development, a normalized cDNA library was constructed from a mix of notochords from ∼500 to ∼800 day°. From the 1968 Sanger-sequenced transcripts, 22 genes were identified to be predominantly expressed in the notochord compared to other organs of salmon. Twelve of these genes were found to show expressional regulation around mineralization of the notochord sheath; 11 genes were up-regulated and one gene was down-regulated. Two genes were found to be specifically expressed in the notochord; these genes showed similarity to vimentin (acc. no GT297094) and elastin (acc. no GT297478). In-situ results showed that the vimentin- like transcript was expressed in both chordocytes and chordoblasts, whereas the elastin- like transcript was uniquely expressed in the chordoblasts lining the notochordal sheath. In salmon aquaculture, vertebral deformities are a common problem, and some malformations have been linked to the notochord. The expression of identified transcripts provides further insight into processes taking place in the developing notochord, prior to and during the early mineralization period.

  18. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Bokoch, Michael P; Zou, Yaozhong; Rasmussen, Søren Gøgsig Faarup

    2010-01-01

    extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known...... conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive...... about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic...

  19. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  20. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model.

    Science.gov (United States)

    Minardi, Silvia; Taraballi, Francesca; Wang, Xin; Cabrera, Fernando J; Van Eps, Jeffrey L; Robbins, Andrew B; Sandri, Monica; Moreno, Michael R; Weiner, Bradley K; Tasciotti, Ennio

    2017-03-01

    Ventral hernia repair remains a major clinical need. Herein, we formulated a type I collagen/elastin crosslinked blend (CollE) for the fabrication of biomimetic meshes for ventral hernia repair. To evaluate the effect of architecture on the performance of the implants, CollE was formulated both as flat sheets (CollE Sheets) and porous scaffolds (CollE Scaffolds). The morphology, hydrophylicity and in vitro degradation were assessed by SEM, water contact angle and differential scanning calorimetry, respectively. The stiffness of the meshes was determined using a constant stretch rate uniaxial tensile test, and compared to that of native tissue. CollE Sheets and Scaffolds were tested in vitro with human bone marrow-derived mesenchymal stem cells (h-BM-MSC), and finally implanted in a rat ventral hernia model. Neovascularization and tissue regeneration within the implants was evaluated at 6weeks, by histology, immunofluorescence, and q-PCR. It was found that CollE Sheets and Scaffolds were not only biomechanically sturdy enough to provide immediate repair of the hernia defect, but also promoted tissue restoration in only 6weeks. In fact, the presence of elastin enhanced the neovascularization in both sheets and scaffolds. Overall, CollE Scaffolds displayed mechanical properties more closely resembling those of native tissue, and induced higher gene expression of the entire marker genes tested, associated with de novo matrix deposition, angiogenesis, adipogenesis and skeletal muscles, compared to CollE Sheets. Altogether, this data suggests that the improved mechanical properties and bioactivity of CollE Sheets and Scaffolds make them valuable candidates for applications of ventral hernia repair. Due to the elevated annual number of ventral hernia repair in the US, the lack of successful grafts, the design of innovative biomimetic meshes has become a prime focus in tissue engineering, to promote the repair of the abdominal wall, avoid recurrence. Our meshes (Coll

  1. A novel thromboxane A2 receptor N42S variant results in reduced surface expression and platelet dysfunction.

    Science.gov (United States)

    Nisar, Shaista P; Lordkipanidzé, Marie; Jones, Matthew L; Dawood, Ban; Murden, Sherina; Cunningham, Margaret R; Mumford, Andrew D; Wilde, Jonathan T; Watson, Steve P; Mundell, Stuart J; Lowe, Gillian C

    2014-05-05

    A small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S-expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S-expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function.

  2. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    International Nuclear Information System (INIS)

    Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.

    2002-01-01

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues

  3. Flavivirus Entry Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Manuel Perera-Lecoin

    2013-12-01

    Full Text Available Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM and TYRO3, AXL and MER (TAM. Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.

  4. Long-term failure of alveologenesis after an early short-term exposure to a PDGF-receptor antagonist.

    Science.gov (United States)

    Lau, Mandy; Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Tanswell, A Keith

    2011-04-01

    Survivors of moderate-to-severe bronchopulmonary dysplasia have impaired alveologenesis lasting at least into early adult life. The mechanisms underlying this long-term effect are unknown. We hypothesized that short-term inhibition of growth factor-mediated early alveolar formation would result in a long-term impairment of subsequent alveologenesis. Neonatal rats were injected daily with the platelet-derived growth factor (PDGF) receptor antagonist, imatinib mesylate, from day 1-7 of life, to inhibit the early alveolar formation occurring by in-growth of secondary crests into precursor saccules. The pups were then allowed to recover for 7, 14, 21, or 58 days. In imatinib-treated pups, DNA synthesis in total lung cells, and specifically in cells of secondary crests, was reduced at day 8 of life, had rebounded on day 14 of life but was then again reduced by day 28 of life. At day 8 of life, imatinib-treated pups had impaired alveologenesis as reflected by a decrease in secondary crests, an increase in alveolar size, and an overall decrease in both estimated alveolar number and generations compared with age-matched controls. No meaningful recovery was observed, even after a 21- or 58-day recovery period. The lungs of imatinib-treated pups had increased fibulin-5 content and an abnormal deposition of elastin. We conclude that reduced signaling through the PDGF pathways, at an early stage of alveologenesis, can result in long-lasting changes in lung architecture. A likely mechanism is through impaired formation of the elastin scaffold required for alveolarization.

  5. Assessing Collagen and Elastin Pressure-dependent Microarchitectures in Live, Human Resistance Arteries by Label-free Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Thorsted, Bjarne; Brewer, Jonathan R

    2018-01-01

    The pathogenic contribution of resistance artery remodeling is documented in essential hypertension, diabetes and the metabolic syndrome. Investigations and development of microstructurally motivated mathematical models for understanding the mechanical properties of human resistance arteries...... in health and disease have the potential to aid understanding how disease and medical treatments affect the human microcirculation. To develop these mathematical models, it is essential to decipher the relationship between the mechanical and microarchitectural properties of the microvascular wall...... of interest. Image analyses are described for quantifying i) pressure-induced changes in internal elastic lamina branching angles and adventitial collagen straightness using Fiji and ii) collagen and elastin volume densities determined using Ilastik software. Preferably all mechanical and imaging measurements...

  6. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles

    Science.gov (United States)

    Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.

    2015-07-01

    The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well

  7. Downregulation of transferrin receptor surface expression by intracellular antibody

    International Nuclear Information System (INIS)

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin

    2007-01-01

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 ± 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors

  8. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Li, Xuan; Milovanovic, Mike; Loweth, Jessica A; Maldonado, Rafael; Berrendero, Fernando; Wolf, Marina E

    2013-12-17

    Hypocretin peptides are critical for the effects of cocaine on excitatory synaptic strength in the ventral tegmental area (VTA). However, little is known about their role in cocaine-induced synaptic plasticity in the nucleus accumbens (NAc). First, we tested whether hypocretin-1 by itself could acutely modulate glutamate receptor surface expression in the NAc, given that hypocretin-1 in the VTA reproduces cocaine's effects on glutamate transmission. We found no effect of hypocretin-1 infusion on AMPA or NMDA receptor surface expression in the NAc, measured by biotinylation, either 30 min or 3h after the infusion. Second, we were interested in whether changes in hypocretin receptor-2 (Hcrtr-2) expression contribute to cocaine-induced plasticity in the NAc. As a first step towards addressing this question, Hcrtr-2 surface expression was compared in the NAc after withdrawal from extended-access self-administration of saline (control) versus cocaine. We found that surface Hcrtr-2 levels remain unchanged following 14, 25 or 48 days of withdrawal from cocaine, a time period in which high conductance GluA2-lacking AMPA receptors progressively emerge in the NAc. Overall, our results fail to support a role for hypocretins in acute modulation of glutamate receptor levels in the NAc or a role for altered Hcrtr-2 expression in withdrawal-dependent synaptic adaptations in the NAc following cocaine self-administration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    Science.gov (United States)

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  10. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  11. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)

    2002-02-15

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.

  12. Induction of macrophage chemotaxis by aortic extracts from patients with Marfan syndrome is related to elastin binding protein.

    Directory of Open Access Journals (Sweden)

    Gao Guo

    Full Text Available Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62.

  13. Induction of Macrophage Chemotaxis by Aortic Extracts from Patients with Marfan Syndrome Is Related to Elastin Binding Protein

    Science.gov (United States)

    Guo, Gao; Gehle, Petra; Doelken, Sandra; Martin-Ventura, José Luis; von Kodolitsch, Yskert; Hetzer, Roland; Robinson, Peter N.

    2011-01-01

    Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62). PMID:21647416

  14. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  15. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007 (China); Yan, Jie [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD 11 #04-01A, 117599 Singapore (Singapore); Kang, Yuzhan [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Xu, Shuoyu [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Peng, Qiwen [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Mechanobiology Institute, 5A Engineering Drive 1, T-Lab #05-01, 117411 Singapore (Singapore); and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  16. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus.

    Science.gov (United States)

    Price, Daniel L; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G; Yu, Yong A; Szalay, Aladar A; Cappello, Joseph; Fong, Yuman; Wong, Richard J

    2016-02-01

    Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  17. Assessing Collagen and Elastin Pressure-Dependent Microarchitectures in Live, Human Resistance Arteries by Label-Free Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Thorsted, Bjarne; Brewer, Jonathan R.

    2017-01-01

    The pathogenic contribution of resistance artery remodeling is documented in essential hypertension, diabetes and the metabolic syndrome. Investigations and development of microstructurally motivated mathematical models for understanding the mechanical properties of human resistance arteries...... in health and disease have the potential to aid understanding how disease and medical treatments affect the human microcirculation. To develop these mathematical models, it is essential to decipher the relationship between the mechanical and microarchitectural properties of the microvascular wall....... In this work, we describe an ex vivo method for passive mechanical testing and simultaneous label-free three-dimensional imaging of the microarchitecture of elastin and collagen in the arterial wall of isolated human resistance arteries. The imaging protocol can be applied to resistance arteries of any species...

  18. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor.

    Science.gov (United States)

    Masuda, Tetsuya; Kigo, Satomi; Mitsumoto, Mayuko; Ohta, Keisuke; Suzuki, Mamoru; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2018-01-01

    Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20-40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  19. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor

    Directory of Open Access Journals (Sweden)

    Tetsuya Masuda

    2018-02-01

    Full Text Available Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137, which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20–40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  20. Subarachnoid hemorrhage: tests of association with apolipoprotein E and elastin genes

    Directory of Open Access Journals (Sweden)

    Sauerbeck Laura

    2007-07-01

    Full Text Available Abstract Background Apolipoprotein E (APOE and elastin (ELN are plausible candidate genes involved in the pathogenesis of stroke. We tested for association of variants in APOE and ELN with subarachnoid hemorrhage (SAH in a population-based study. We genotyped 12 single nucleotide polymorphisms (SNPs on APOE and 10 SNPs on ELN in a sample of 309 Caucasian individuals, of whom 107 are SAH cases and 202 are age-, race-, and gender-matched controls from the Greater Cincinnati/Northern Kentucky region. Associations were tested at genotype, allele, and haplotype levels. A genomic control analysis was performed to check for spurious associations resulting from population substructure. Results At the APOE locus, no individual SNP was associated with SAH after correction for multiple comparisons. Haplotype analysis revealed significant association of the major haplotype (Hap1 in APOE with SAH (p = 0.001. The association stemmed from both the 5' promoter and the 3' region of the APOE gene. APOE ε2 and ε 4 were not significantly associated with SAH. No association was observed for ELN at genotype, allele, or haplotype level and our study failed to confirm previous reports of ELN association with aneurysmal SAH. Conclusion This study suggests a role of the APOE gene in the etiology of aneurysmal SAH.

  1. Similarities of cellular receptors for interferon and cortisol

    International Nuclear Information System (INIS)

    Filipic, B.; Schauer, P.; Likar, M.

    1977-01-01

    Cellular receptors are molecules located on the cell membrane. Their function is to bind different molecules to the cell surface. These molecules can penetrate into the cytoplasm and trigger cellular changes. One kind of such bound molecules are interferons and corticosteroids. Until very recently very little was known about interferon's receptors on the cell surface, mechanisms of interferon's binding to them or about kinetics of such binding. On the basis of results published elsewhere and on the basis of experimental results, the authors suggest: receptors for interferon and cortisol are glycoproteins located on the cell surface, in analogy with PHA receptors they are chemically sialoglycoproteins, binding kinetics of cortisol and interferon is similar, interferon and cortisol compete for cellular receptors, binding of cortisol or interferon is dependent on allosteric configuration of receptor molecules. (author)

  2. Interaction of lectins with membrane receptors on erythrocyte surfaces.

    Science.gov (United States)

    Sung, L A; Kabat, E A; Chien, S

    1985-08-01

    The interactions of human genotype AO erythrocytes (red blood cells) (RBCs) with N-acetylgalactosamine-reactive lectins isolated from Helix pomatia (HPA) and from Dolichos biflorus (DBA) were studied. Binding curves obtained with the use of tritium-labeled lectins showed that the maximal numbers of lectin molecules capable of binding to human genotype AO RBCs were 3.8 X 10(5) and 2.7 X 10(5) molecules/RBC for HPA and DBA, respectively. The binding of one type of lectin may influence the binding of another type. HPA was found to inhibit the binding of DBA, but not vice versa. The binding of HPA was weakly inhibited by a beta-D-galactose-reactive lectin isolated from Ricinus communis (designated RCA1). Limulus polyphemus lectin (LPA), with specificity for N-acetylneuraminic acid, did not influence the binding of HPA but enhanced the binding of DBA. About 80% of LPA receptors (N-acetylneuraminic acid) were removed from RBC surfaces by neuraminidase treatment. Neuraminidase treatment of RBCs resulted in increases of binding of both HPA and DBA, but through different mechanisms. An equal number (7.6 X 10(5) of new HPA sites were generated on genotypes AO and OO RBCs by neuraminidase treatment, and these new sites accounted for the enhancement (AO cells) and appearance (OO cells) of hemagglutinability by HPA. Neuraminidase treatment did not generate new DBA sites, but increased the DBA affinity for the existing receptors; as a result, genotype AO cells increased their hemagglutinability by DBA, while OO cells remained unagglutinable. The use of RBCs of different genotypes in binding assays with 3H-labeled lectins of known specificities provides an experimental system for studying cell-cell recognition and association.

  3. Genetic Variations in the Human G Protein-coupled Receptor Class C, Group 6, Member A (GPRC6A) Control Cell Surface Expression and Function

    DEFF Research Database (Denmark)

    Jorgensen, Stine; Have, Christian Theil; Underwood, Christina Rye

    2017-01-01

    -expressed murine and goldfish orthologs. The latter orthologs are Gq-coupled and lead to intracellular accumulation of inositol phosphates and calcium release. In the present study we cloned the bonobo chimpanzee GPRC6A receptor, which is 99% identical to the human receptor, and show that it is cell surface...

  4. Interaction of L-lysine and soluble elastin with the semicarbazide-sensitive amine oxidase in the context of its vascular-adhesion and tissue maturation functions.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2010-04-01

    The copper-containing quinoenzyme semicarbazide-sensitive amine oxidase (EC 1.4.3.21; SSAO) is a multifunctional protein. In some tissues, such as the endothelium, it also acts as vascular-adhesion protein 1 (VAP-1), which is involved in inflammatory responses and in the chemotaxis of leukocytes. Earlier work had suggested that lysine might function as a recognition molecule for SSAO\\/VAP-1. The present work reports the kinetics of the interaction of L-lysine and some of its derivatives with SSAO. Binding was shown to be saturable, time-dependent but reversible and to cause uncompetitive inhibition with respect to the amine substrate. It was also specific, since D-lysine, L-lysine ethyl ester and epsilon-acetyl-L-lysine, for example, did not bind to the enzyme. The lysine-rich protein soluble elastin bound to the enzyme relatively tightly, which may have relevance to the reported roles of SSAO in maintaining the extracellular matrix (ECM) and in the maturation of elastin. Our data show that lysyl residues are not oxidized by SSAO, but they bind tightly to the enzyme in the presence of hydrogen peroxide. This suggests that binding in vivo of SSAO to lysyl residues in physiological targets might be regulated in the presence of H(2)O(2), formed during the oxidation of a physiological SSAO substrate, yet to be identified.

  5. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration.

    Directory of Open Access Journals (Sweden)

    Cristiana Barbati

    Full Text Available In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP, a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2 was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a

  6. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  7. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor.

    Science.gov (United States)

    Canela, Laia; Luján, Rafael; Lluís, Carme; Burgueño, Javier; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Ciruela, Francisco

    2007-09-01

    Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.

  8. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  9. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  10. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    International Nuclear Information System (INIS)

    Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said

    2011-01-01

    Highlights: → A new FRET-based method detects AT1/B2 receptor heterodimerization. → First time application of AT1-Cerulean as a FRET donor. → Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. → A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. → AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization, confocal FRET imaging of

  11. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Quitterer, Ursula, E-mail: ursula.quitterer@pharma.ethz.ch [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland); Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland)

    2011-06-10

    Highlights: {yields} A new FRET-based method detects AT1/B2 receptor heterodimerization. {yields} First time application of AT1-Cerulean as a FRET donor. {yields} Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. {yields} A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. {yields} AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R

  12. Cathelicidin LL-37 Affects Surface and Intracellular Toll-Like Receptor Expression in Tissue Mast Cells

    Directory of Open Access Journals (Sweden)

    Justyna Agier

    2018-01-01

    Full Text Available Undoubtedly, mast cells take part in host defense against microorganisms as they are numerous at the portal of infection, they release many proinflammatory and antimicrobial mediators, and they express pattern recognition receptors, such as TLRs. These receptors play a key role in recognition and binding molecules associated with microorganisms and molecules associated with damage. Cathelicidins exhibit direct antimicrobial activities against a broad spectrum of microbes by perturbing their cell membranes. Accumulating evidence suggests a role for these molecules in supporting cell activation. We examined the impact of human cathelicidin LL-37 on tissue mast cell TLR expression and distribution. Depending on context, we show that LL-37 stimulation resulted in minor to major effects on TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9 expression. Confocal microscopy analysis showed that, upon stimulation, TLRs may translocate from the cell interior to the surface and conversely. FPR2 and EGFR inhibitors reduced the increase in expression of selected receptors. We also established that LL-37 acts as a powerful inducer of CCL3 and ROS generation. These results showed that in response to LL-37, mast cells enhance the capability to detect invading pathogens by modulation of TLR expression in what may be involved FPR2 or EGFR molecules.

  13. A Novel Mechanism of Androgen Receptor Action

    National Research Council Canada - National Science Library

    Roberts, Jr, Charles T

    2006-01-01

    .... Specifically, the authors had determined that the androgen receptor controls the expression of the cell-surface receptor for the hormone IGF-1 at the level of translation of the IGF-1 receptor mRNA...

  14. Inhibitors for Androgen Receptor Activation Surfaces

    Science.gov (United States)

    2007-09-01

    times and the electron-rich iodine groups of Triac representing particularly good markers. Control soaks with solvent ( DMSO ) reveal no similar...electron-rich iodine groups of Triac represent particu- larly good markers. Control soaks with solvent ( DMSO ) reveal no similar effects on coregulator...3-(dibutylamino)-1-(4-hexylphenyl)propan-1-one DMSO , dimethylsulfoxide DTT, dithiothreitol ER, estrogen receptor GST, glutathione S-transferase

  15. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase.

    Science.gov (United States)

    Whittaker, Jonathan; Whittaker, Linda J; Roberts, Charles T; Phillips, Nelson B; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2012-07-10

    The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.

  16. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection

    NARCIS (Netherlands)

    Liebrand, T.W.H.; Berg, van den G.C.M.; Zhang, Z.; Smit, P.; Cordewener, J.H.G.; America, A.H.P.; Sklenar, J.; Jones, A.M.E.; Tameling, W.I.L.; Robatzek, S.; Thomma, B.P.H.J.; Joosten, M.H.A.J.

    2013-01-01

    The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain

  17. Scratching the surface: Regulation of cell surface receptors in cholesterol metabolism

    NARCIS (Netherlands)

    Nelson, J.K.

    2016-01-01

    Elevated plasma levels of low density lipoprotein cholesterol (LDL) are an established risk factor for the development of atherosclerosis and cardiovascular diseases. The LDL-Receptor is a key determinant in regulating LDL levels in plasma, and current lipid-lowering strategies aim to increase its

  18. Characterization and molecular features of the cell surface receptor for human granulocyte-macrophage colony-stimulating factor

    International Nuclear Information System (INIS)

    Chiba, S.; Tojo, A.; Kitamura, T.; Urabe, A.; Miyazono, K.; Takaku, F.

    1990-01-01

    The receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF) on the surfaces of normal and leukemic myeloid cells were characterized using 125I-labeled bacterially synthesized GM-CSF. The binding was rapid, specific, time dependent, and saturable. Scatchard analysis of the 125I-GM-CSF binding to peripheral blood neutrophils indicated the presence of a single class of binding site (Kd = 99 +/- 21 pM; 2,304 +/- 953 sites/cell). However, for peripheral blood monocytes and two GM-CSF-responsive myeloid cell lines (U-937 and TF-1), the Scatchard plots were biphasic curvilinear, which were best fit by curves derived from two binding site model: one with high affinity (Kd1 = 10-40 pM) and the other with low affinity (Kd2 = 0.9-2.0 nM). For U-937 cells, the number of high-affinity receptors was 1,058 +/- 402 sites/cell and that of low-affinity receptors was estimated to be 10,834 +/- 2,396 sites/cell. Cross-linking studies yielded three major bands with molecular masses of 150 kDa, 115 kDa, and 95 kDa, which were displaced by an excess amount of unlabeled GM-CSF, suggesting 135-kDa, 100-kDa, and 80-kDa species for the individual components of the human GM-CSF receptor. These bands comigrated for different cell types including peripheral blood neutrophils, U-937 cells and TF-1 cells. In experiments using U-937 cells, only the latter two bands appeared to be labeled in a dose-dependent manner in a low-affinity state. These results suggest that the human GM-CSF receptor possibly forms a multichain complex

  19. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood

    Directory of Open Access Journals (Sweden)

    N.E. Gomes

    2010-09-01

    Full Text Available Lipopolysaccharide (LPS activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R and smooth (S forms signal through Toll-like receptor 4 (TLR4, but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS and nitric oxide (NO generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

  20. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    Science.gov (United States)

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  2. Cultivation of Keratinocytes and Fibroblasts in a Three-Dimensional Bovine Collagen-Elastin Matrix (Matriderm® and Application for Full Thickness Wound Coverage in Vivo

    Directory of Open Access Journals (Sweden)

    Jasper Killat

    2013-07-01

    Full Text Available New skin substitutes for burn medicine or reconstructive surgery pose an important issue in plastic surgery. Matriderm® is a clinically approved three-dimensional bovine collagen-elastin matrix which is already used as a dermal substitute of full thickness burn wounds. The drawback of an avital matrix is the limited integration in full thickness skin defects, depending on the defect size. To further optimize this process, Matriderm® has also been studied as a matrix for tissue engineering of skin albeit long-term cultivation of the matrix with cells has been difficult. Cells have generally been seeded onto the matrix with high cell loss and minimal time-consuming migration. Here we developed a cell seeded skin equivalent after microtransfer of cells directly into the matrix. First, cells were cultured, and microinjected into Matriderm®. Then, cell viability in the matrix was determined by histology in vitro. As a next step, the skin substitute was applied in vivo into a full thickness rodent wound model. The wound coverage and healing was observed over a period of two weeks followed by histological examination assessing cell viability, proliferation and integration into the host. Viable and proliferating cells could be found throughout the entire matrix. The presented skin substitute resembles healthy skin in morphology and integrity. Based on this study, future investigations are planned to examine behaviour of epidermal stem cells injected into a collagen-elastin matrix under the aspects of establishment of stem cell niches and differentiation.

  3. Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein.

    Directory of Open Access Journals (Sweden)

    Ming Zhong

    Full Text Available Vitamin A and its derivatives (retinoids play diverse and crucial functions from embryogenesis to adulthood and are used as therapeutic agents in human medicine for eye and skin diseases, infections and cancer. Plasma retinol binding protein (RBP is the principal and specific vitamin A carrier in the blood and binds vitamin A at 1:1 ratio. STRA6 is the high-affinity membrane receptor for RBP and mediates cellular vitamin A uptake. STRA6 null mice have severely depleted vitamin A reserves for vision and consequently have vision loss, even under vitamin A sufficient conditions. STRA6 null humans have a wide range of severe pathological phenotypes in many organs including the eye, brain, heart and lung. Known membrane transport mechanisms involve transmembrane pores that regulate the transport of the substrate (e.g., the gating of ion channels. STRA6 represents a new type of membrane receptor. How this receptor interacts with its transport substrate vitamin A and the functions of its nine transmembrane domains are still completely unknown. These questions are critical to understanding the molecular basis of STRA6's activities and its regulation. We employ acute chemical modification to introduce chemical side chains to STRA6 in a site-specific manner. We found that modifications with specific chemicals at specific positions in or near the transmembrane domains of this receptor can almost completely suppress its vitamin A transport activity. These experiments provide the first evidence for the existence of a transmembrane pore, analogous to the pore of ion channels, for this new type of cell-surface receptor.

  4. Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse.

    Science.gov (United States)

    Vázquez-Cuevas, F G; Cruz-Rico, A; Garay, E; García-Carrancá, A; Pérez-Montiel, D; Juárez, B; Arellano, R O

    2013-01-01

    Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.

  5. Tobacco toxins deposited on surfaces (third hand smoke) impair wound healing.

    Science.gov (United States)

    Dhall, Sandeep; Alamat, Raquelle; Castro, Anthony; Sarker, Altaf H; Mao, Jian-Hua; Chan, Alex; Hang, Bo; Martins-Green, Manuela

    2016-07-01

    Third hand smoke (THS) is the accumulation of second hand smoke (SHS) toxins on surfaces in homes, cars, clothing and hair of smokers. It is known that 88M US nonsmokers ≥3 years old living in homes of smokers are exposed to THS toxicants and show blood cotinine levels of ≥0.05 ng/ml, indicating that the toxins are circulating in their circulatory systems. The goal of the present study is to investigate the mechanisms by which THS causes impaired wound healing. We show that mice living under conditions that mimic THS exposure in humans display delayed wound closure, impaired collagen deposition, altered inflammatory response, decreased angiogenesis, microvessels with fibrin cuffs and a highly proteolytic wound environment. Moreover, THS-exposed mouse wounds have high levels of oxidative stress and significantly lower levels of antioxidant activity leading to molecular damage, including protein nitration, lipid peroxidation and DNA damage that contribute to tissue dysfunction. Furthermore, we show that elastase is elevated, suggesting that elastin is degraded and the plasticity of the wound tissue is decreased. Taken together, our results lead us to conclude that THS toxicants delay and impair wound healing by disrupting the sequential processes that lead to normal healing. In addition, the lack of elastin results in loss of wound plasticity, which may be responsible for reopening of wounds. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  6. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors.......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...

  7. Elastin-like polypeptides: A strategic fusion partner for biologics.

    Science.gov (United States)

    Yeboah, Agnes; Cohen, Rick I; Rabolli, Charles; Yarmush, Martin L; Berthiaume, Francois

    2016-08-01

    Elastin-like peptides (ELPs) are derivatives of tropoelastin with a unique property that allows them to stay soluble below a certain critical temperature but reversibly form aggregates above that temperature. Since they are derived from tropoelastin, ELPs are biocompatible, non-toxic, and non-immunogenic. The unique properties of ELPs have made them a desirable class of fusion tags used in several biomedical applications including targeted drug delivery and enhancing the half-life of protein drugs. The most significant property of an ELP is that when fused to other proteins, the phase transition property of the ELP is maintained, and the target protein can be purified using the thermally driven property of the ELP. The ELP tag purification process is simple and inexpensive, and involves cycling the protein above and below the transition temperature of the ELP fusion followed by centrifugation to obtain the desired protein, without any need for chromatography. Consequently, using ELPs as a purification tag should be potentially interesting to biopharmaceutical companies who spend a significant percentage of their manufacturing costs on expensive protein purification techniques such as chromatography and filtration. However, ELP tags have not yet been used for commercial protein purification due to some challenges of translating this technique, which has been demonstrated mostly in academic laboratories, to a biotechnology manufacturing environment. The article first reviews the state-of-the-art in protein "ELPylation," and discusses some applications which have benefitted from using ELP as a fusion tag. Then, the article discusses the main advantages of using ELP as a purification tag, and evaluates the remaining hurdles for its implementation in industrial protein production. Biotechnol. Bioeng. 2016;113: 1617-1627. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    Science.gov (United States)

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  9. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud

    2003-01-01

    for the surface immobilization of membrane proteins was developed using the prototypic seven transmembrane neurokinin-1 receptor. The receptor was expressed as a biotinylated protein in mammalian cells. Membranes from cell homogenates were selectively immobilized on glass surfaces covered with streptavidin. TIRF...... measurements showed that a fluorescent agonist binds to the receptor on the sensor surface with similar affinity as to the receptor in live cells. This approach offers the possibility to investigate minute amounts of membrane protein in an active form and in its native environment without purification....

  10. Double network physical gels from elastin-like polypeptide block copolymers: nanoscale control of thermoresponsive reinforcement

    Science.gov (United States)

    Glassman, Matthew; Olsen, Bradley

    2014-03-01

    Triblock copolymers with associative protein midblocks and thermoresponsive endblocks form shear thinning hydrogels with a low yield stress at low temperatures, but can be reinforced by a self-assembled network of the endblock aggregates. Here, we compare the use of bioengineered elastin-like polypeptides (ELPs) to synthetic poly(N-isopropylacrylamide) (PNIPAM) as endblocks to control the self-assembly of the reinforcing network. The temperature dependence of the mechanics of these hydrogels is a strong function of the domain size and morphology in the endblock network. Despite the architectural similarities, triblock ELP fusions and PNIPAM bioconjugates exhibit distinct reinforcement maxima at fixed block composition and polymer concentration, and these differences can be attributed to the nanostructural features of the two systems. Furthermore, in ELP fusions, the amino acid sequence can be readily modified to manipulate the solvation kinetics of the endblock domains. Finally, various endblocks have been combined to form triblock terpolymer hydrogels, demonstrating how the choice of thermoresponsive blocks can be used to tune the reinforcement of shear thinning hydrogels.

  11. Surface Expression of TGF-β Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer

    OpenAIRE

    Metelli, Alessandra; Wu, Bill X; Fugle, Caroline W; Rachidi, Saleh; Sun, Shaoli; Zhang, Yongliang; Wu, Jennifer; Tomlinson, Stephen; Howe, Philip; Yang, Yi; Garrett-Mayer, Elizabeth; Liu, Bei; Li, Zihai

    2016-01-01

    GARP encoded by the Lrrc32 gene is the cell surface docking receptor for latent TGF-β which is expressed naturally by platelets and regulatory T cells. Although Lrrc32 is amplified frequently in breast cancer, the expression and relevant functions of GARP in cancer have not been explored. Here we report that GARP exerts oncogenic effects, promoting immune tolerance by enriching and activating latent TGF-β in the tumor microenvironment. We found that human breast, lung and colon cancers expres...

  12. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors

    Science.gov (United States)

    Raviprakash, Nune; Manna, Sunil Kumar

    2014-01-01

    BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227

  13. Common structural basis for constitutive activity of the ghrelin receptor family

    DEFF Research Database (Denmark)

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders

    2004-01-01

    Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand......-independent signaling activity. The structurally homologous motilin receptor served as a constitutively silent control; upon agonist stimulation, however, it signaled with a similar efficacy to the three related receptors. The constitutive activity of the ghrelin receptor and of neurotensin receptor 2 through the G...... demonstrated that the epitope-tagged ghrelin receptor was constitutively internalized but could be trapped at the cell surface by an inverse agonist, whereas GPR39 remained at the cell surface. Mutational analysis showed that the constitutive activity of both the ghrelin receptor and GPR39 could systematically...

  14. Ephrinb1 and Ephrinb2 Are Associated with Interleukin-7 Receptor α and Retard Its Internalization from the Cell Surface*

    Science.gov (United States)

    Luo, Hongyu; Wu, Zenghui; Qi, Shijie; Jin, Wei; Han, Bing; Wu, Jiangping

    2011-01-01

    IL-7 plays vital roles in thymocyte development, T cell homeostasis, and the survival of these cells. IL-7 receptor α (IL-7Rα) on thymocytes and T cells is rapidly internalized upon IL-7 ligation. Ephrins (Efns) are cell surface molecules and ligands of the largest receptor kinase family, Eph kinases. We discovered that T cell-specific double gene knock-out (dKO) of Efnb1 and Efnb2 in mice led to reduced IL-7Rα expression in thymocytes and T cells, and that IL-7Rα down-regulation was accelerated in dKO CD4 cells upon IL-7 treatment. On the other hand, Efnb1 and Efnb2 overexpression on T cell lymphoma EL4 cells retarded IL-7Rα down-regulation. dKO T cells manifested compromised STAT5 activation and homeostatic proliferation, an IL-7-dependent process. Fluorescence resonance energy transfer and immunoprecipitation demonstrated that Efnb1 and Efnb2 interacted physically with IL-7Rα. Such interaction likely retarded IL-7Rα internalization, as Efnb1 and Efnb2 were not internalized. Therefore, we revealed a novel function of Efnb1 and Efnb2 in stabilizing IL-7Rα expression at the post-translational level, and a previously unknown modus operandi of Efnbs in the regulation of expression of other vital cell surface receptors. PMID:22069310

  15. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    International Nuclear Information System (INIS)

    Yoo, Haneul; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Cho, Young Tak; Chen, Xing; Hong, Seunghun; Lee, Dong Jun; Park, Jae Yeol

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species. (paper)

  16. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  17. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986......). These antisera were used to study the potential role of laminin receptor in laminin-mediated attachment and haptotactic migration of human A2058 melanoma cells. The anti-laminin receptor antisera reacted with the surface of suspended, nonpermeabilized melanoma and carcinoma cells. The anti-laminin receptor...... antisera blocked the surface interaction of A2058 cells with endogenous laminin, resulting in the inhibition of laminin-mediated cell attachment. The A2058 melanoma cells migrated toward a gradient of solid phase laminin or fibronectin (haptotaxis). Anti-laminin antiserum abolished haptotaxis on laminin...

  18. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    Science.gov (United States)

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. Copyright © 2016, American Association for the Advancement of Science.

  19. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  20. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Zong-Zhuang Li

    2012-01-01

    Full Text Available Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs, although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs. In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.

  1. Elastic fibers in human skin: quantitation of elastic fibers by computerized digital image analyses and determination of elastin by radioimmunoassay of desmosine.

    Science.gov (United States)

    Uitto, J; Paul, J L; Brockley, K; Pearce, R H; Clark, J G

    1983-10-01

    The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and

  2. A receptor-based biosensor for lipoprotein docking at the endothelial surface and vascular matrix.

    Science.gov (United States)

    Siegel, G; Malmsten, M; Klüssendorf, D; Michel, F

    2001-12-01

    Proteoheparan sulfate can be adsorbed to a methylated silica surface in a monomolecular layer via its transmembrane hydrophobic protein core domain. Due to electrostatic repulsion, its anionic glycosaminoglycan side chains are stretched out into the blood substitute solution, representing a receptor site for specific lipoprotein binding through basic amino acid-rich residues within their apolipoproteins. The binding process was studied by ellipsometric techniques showing that HDL has a high binding affinity to the receptor and a protective effect on interfacial heparan sulfate proteoglycan layers, with respect to LDL and Ca(2+) complexation. LDL was found to deposit strongly at the proteoheparan sulfate, particularly in the presence of Ca(2+), thus creating the complex formation "proteoglycan-low density lipoprotein-calcium". This ternary complex build-up may be interpreted as arteriosclerotic nanoplaque formation on the molecular level responsible for the arteriosclerotic primary lesion. On the other hand, HDL bound to heparan sulfate proteoglycan protected against LDL docking and completely suppressed calcification of the proteoglycan-lipoprotein complex. In addition, HDL and aqueous garlic extract were able to reduce the ternary complex deposition and to disintegrate HS-PG/LDL/Ca(2+) aggregates. Although much remains unclear regarding the mechanism of lipoprotein depositions at proteoglycan-coated surfaces, it seems clear that the use of such systems offers possibilities for investigating lipoprotein deposition at a "nanoscopic" level under close to physiological conditions. In particular, Ca(2+)-promoted LDL deposition and the protective effect of HDL, even at high Ca(2+) and LDL concentrations, agree well with previous clinical observations regarding risk and beneficial factors for early stages of atherosclerosis. Therefore, we believe that the system can be of some use in investigations, e.g. of the interplay between different lipoproteins in arteriosclerotic

  3. Effect of cardiopulmonary bypass on beta adrenergic receptor-adenylate cyclase system on surfaces of peripheral lymphocytes.

    Science.gov (United States)

    Luo, A; Tian, Y; Jin, S

    2000-01-01

    The experimental results showed that the level of CAMP, the ratio of cAPM to cGMP, IL-2R expression and IL-2 production in vitro in lymphocytes immediate and 2 weeks after cardiopulmonary bypass (CPB) were significantly lower than those before anesthetics in the patients undergoing cardiac surgery with CPB. These findings suggested that CPB could cause serious damage to adrenergic beta receptor-adenylate cyclase system on circulating lymphocytes surfaces, which might be one of the mechanisms resulting in immunosuppression after open heart surgery with CPB.

  4. Propranolol decreases retention of fear memory by modulating the stability of surface glutamate receptor GluA1 subunits in the lateral amygdala.

    Science.gov (United States)

    Zhou, Jun; Luo, Yi; Zhang, Jie-Ting; Li, Ming-Xing; Wang, Can-Ming; Guan, Xin-Lei; Wu, Peng-Fei; Hu, Zhuang-Li; Jin, You; Ni, Lan; Wang, Fang; Chen, Jian-Guo

    2015-11-01

    Posttraumatic stress disorder (PTSD) is a mental disorder with enhanced retention of fear memory and has profound impact on quality of life for millions of people worldwide. The β-adrenoceptor antagonist propranolol has been used in preclinical and clinical studies for the treatment of PTSD, but the mechanisms underlying its potential efficacy on fear memory retention remain to be elucidated. We investigated the action of propranolol on the retention of conditioned fear memory, the surface expression of glutamate receptor GluA1 subunits of AMPA receptors and synaptic adaptation in the lateral amygdala (LA) of rats. Propranolol attenuated reactivation-induced strengthening of fear retention while reducing enhanced surface expression of GluA1 subunits and restoring the impaired long-term depression in LA. These effects of propranolol were mediated by antagonizing reactivation-induced enhancement of adrenergic signalling, which activates PKA and calcium/calmodulin-dependent protein kinase II and then regulates the trafficking of AMPA receptors via phosphorylation of GluA1 subunits at the C-terminus. Both i.p. injection and intra-amygdala infusion of propranolol attenuated reactivation-induced enhancement of fear retention. Reactivation strengthens fear retention by increasing the level of noradrenaline and promotes the surface expression of GluA1 subunits and the excitatory synaptic transmission in LA. These findings uncover one mechanism underlying the efficiency of propranolol on retention of fear memories and suggest that β-adrenoceptor antagonists, which act centrally, may be more suitable for the treatment of PTSD. © 2015 The British Pharmacological Society.

  5. Functional dynamics of cell surface membrane proteins.

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Panel of monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and identification of sperm-zona pellucida receptors

    Czech Academy of Sciences Publication Activity Database

    Zigo, Michal; Dorosh, Andriy; Pohlová, Alžběta; Jonáková, Věra; Šulc, Miroslav; Maňásková-Postlerová, Pavla

    March, č. 359 (2015), s. 895-908 ISSN 0302-766X R&D Projects: GA ČR(CZ) GA14-05547S; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GAP503/12/1834 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:86652036 ; RVO:61388971 Keywords : zona pellucida-binding receptors * monoclonal antibodies against sperm surface proteins * sperm surface proteins * RAB-2A * lactahedrin P47 Subject RIV: CE - Biochemistry Impact factor: 2.948, year: 2015

  7. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    Science.gov (United States)

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  8. Identification of an estrogen receptor α non covalent ubiquitin-binding surface: role in 17β-estradiol-induced transcriptional activity.

    Science.gov (United States)

    Pesiri, Valeria; La Rosa, Piergiorgio; Stano, Pasquale; Acconcia, Filippo

    2013-06-15

    Ubiquitin (Ub)-binding domains (UBDs) located in Ub receptors decode the ubiquitination signal by non-covalently engaging the Ub modification on their binding partners and transduce the Ub signalling through Ub-based molecular interactions. In this way, inducible protein ubiquitination regulates diverse biological processes. The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that mediates the pleiotropic effects of the sex hormone 17β-estradiol (E2). Fine regulation of E2 pleiotropic actions depends on E2-dependent ERα association with a plethora of binding partners and/or on the E2 modulation of receptor ubiquitination. Indeed, E2-induced ERα polyubiquitination triggers receptor degradation and transcriptional activity, and E2-dependent reduction in ERα monoubiquitination is crucial for E2 signalling. Monoubiquitinated proteins often contain UBDs, but whether non-covalent Ub-ERα binding could occur and play a role in E2-ERα signalling is unknown. Here, we report an Ub-binding surface within the ERα ligand binding domain that directs in vitro the receptor interaction with both ubiquitinated proteins and recombinant Ub chains. Mutational analysis reveals that ERα residues leucine 429 and alanine 430 are involved in Ub binding. Moreover, impairment of ERα association to ubiquitinated species strongly affects E2-induced ERα transcriptional activity. Considering the importance of UBDs in the Ub-based signalling network and the central role of different ERα binding partners in the modulation of E2-dependent effects, our discoveries provide novel insights into ERα activity that could also be relevant for ERα-dependent diseases.

  9. Three cysteine residues of SLC52A1, a receptor for the porcine endogenous retrovirus-A (PERV-A), play a critical role in cell surface expression and infectivity.

    Science.gov (United States)

    Colon-Moran, Winston; Argaw, Takele; Wilson, Carolyn A

    2017-07-01

    Porcine endogenous retrovirus-A (PERV-A), a gammaretrovirus, infects human cells in vitro, thus raising the potential risk of cross-species transmission in xenotransplantation. Two members of the solute carrier family 52 (SLC52A1 and SLC52A2) are PERV-A receptors. Site-directed mutagenesis of the cDNA encoding SLC52A1 identified that only one of two putative glycosylation signals is occupied by glycans. In addition, we showed that glycosylation of SLC52A1 is not necessary for PERV-A receptor function. We also identified that at a minimum, three cysteine residues are sufficient for SLC52A1 cell surface expression. Mutation of cysteine at position 365 and either of the two cysteine residues in the C-terminal tail at positions 442 or 446 reduced SLC52A1 surface expression and PERV-A infection suggesting that these residues may contribute to overall structural stability and receptor function. Understanding interactions between PERV-A and its cellular receptor may provide novel strategies to prevent zoonotic infection in the setting of xenotransplantation. Published by Elsevier Inc.

  10. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor

    DEFF Research Database (Denmark)

    Borch, Jonas; Torta, Federico; Sligar, Stephen G

    2008-01-01

    nanodiscs and their incorporated membrane receptors can be attached to surface plasmon resonance sensorchips and used to measure the kinetics of the interaction between soluble molecules and membrane receptors inserted in the bilayer of nanodiscs. Cholera toxin and its glycolipid receptor G(M1) constitute...... a system that can be considered a paradigm for interactions of soluble proteins with membrane receptors. In this work, we have investigated different technologies for capturing nanodiscs containing the glycolipid receptor G(M1) in lipid bilayers, enabling measurements of binding of its soluble interaction...

  11. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    International Nuclear Information System (INIS)

    Guo, Guilue; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu; Yao, Xin

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O 2 batteries. It has been discovered that during discharge, Li 2 O 2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g −1 at a current density of 100 mA g −1 . When they were cycled at a limited capacity of 800 mAh g −1 at current densities of 200 or 400 mA g −1 , these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O 2 battery cathodes. (paper)

  12. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    Science.gov (United States)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  13. Ligand-independent Thrombopoietin Mutant Receptor Requires Cell Surface Localization for Endogenous Activity*

    OpenAIRE

    Marty, Caroline; Chaligné, Ronan; Lacout, Catherine; Constantinescu, Stefan N.; Vainchenker, William; Villeval, Jean-Luc

    2009-01-01

    The activating W515L mutation in the thrombopoietin receptor (MPL) has been identified in primary myelofibrosis and essential thrombocythemia. MPL belongs to a subset of the cytokine receptor superfamily that requires the JAK2 kinase for signaling. We examined whether the ligand-independent MPLW515L mutant could signal intracellularly. Addition of the endoplasmic reticulum (ER) retention KDEL sequence to the receptor C terminus efficiently locked MPLW515L within its na...

  14. Early Alterations in Ovarian Surface Epithelial Cells and Induction of Ovarian Epithelial Tumors Triggered by Loss of FSH Receptor

    Directory of Open Access Journals (Sweden)

    Xinlei Chen

    2007-06-01

    Full Text Available Little is known about the behavior of the ovarian surface epithelium (OSE, which plays a central role in ovarian cancer etiology. It has been suggested that incessant ovulation causes OSE changes leading to transformation and that high gonadotropin levels during postmenopause activate OSE receptors, inducing proliferation. We examined the chronology of OSE changes, including tumor appearance, in a mouse model where ovulation never occurs due to deletion of follitropin receptor. Changes in epithelial cells were marked by pan-cytokeratin (CK staining. Histologic changes and CK staining in the OSE increased from postnatal day 2. CK staining was observed inside the ovary by 24 days and increased thereafter in tumor-bearing animals. Ovaries from a third of aged (1 year mutant mice showed CK deep inside, indicating cell migration. These tumors resembled serous papillary adenoma of human ovaries. Weak expression of GATA-4 and elevation of PCNA, cyclooxygenase-1, cyclooxygenase-2, and plateletderived growth factor receptors α and β in mutants indicated differences in cell proliferation, differentiation, and inflammation. Thus, we report that OSE changes occur long before epithelial tumors appear in FORKO mice. Our results suggest that neither incessant ovulation nor follicle-stimulating hormone receptor presence in the OSE is required for inducing ovarian tumors; thus, other mechanisms must contribute to ovarian tumorigenesis.

  15. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Synthesis of an endothelial cell mimicking surface containing thrombomodulin and endothelial protein C receptor

    Science.gov (United States)

    Kador, Karl Erich

    Synthetic materials for use in blood contacting applications have been studied for many years with limited success. One of the main areas of need for these materials is the design of synthetic vascular grafts for use in the hundreds of thousands of patients who have coronary artery bypass grafting, many without suitable veins for autologous grafts. The design of these grafts is constrained by two common modes of failure, the formation of intimal hyperplasia (IH) and thrombosis. IH formation has been previously linked to a mismatching of the mechanical properties of the graft and has been overcome by creating grafts using materials whose compliance mimics that of the native artery. Several techniques and surface modification have been designed to limit thrombosis on the surface of synthetic materials. One which has shown the greatest promise is the immobilization of Thrombomodulin (TM), a protein found on the endothelial cell membrane lining native blood vessels involved in the activation of the anticoagulant Protein C (PC). While TM immobilization has been shown to arrest thrombin formation and limit fibrous formations in in-vitro and in-vivo experiments, it has shown to be transport limiting under arterial flow. On the endothelial cell surface, TM is co-localized with Endothelial Protein C Receptor (EPCR), which increases PC transport onto the cell surface and increases PC activation via TM between 20-100 fold. This dissertation will describe the chemical modification of medical grade polyurethane (PU), whose compliance has been shown to match that of native arteries. This modification will enable the immobilization of two proteins on an enzymatically relevant scale estimated at less than 10 nm. This dissertation will further describe the immobilization of the proteins TM and EPCR, and analyze the ability of a surface co-immobilized with these proteins to activate the anticoagulant PC. Finally, it will compare the ability of this co-immobilized surface to delay

  17. Regulation of AMPA receptor localization in lipid rafts

    Science.gov (United States)

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2009-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the plasma membrane. The association of AMPARs with rafts is under regulation; through the NOS–NO pathway, NMDA receptor activity increases AMPAR localization in rafts. During membrane targeting, AMPARs insert into or at close proximity of the surface raft domains. Perturbation of lipid rafts dramatically suppresses AMPA receptor exocytosis, resulting in significant reduction in AMPAR cell-surface expression. PMID:18411055

  18. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface.

    Science.gov (United States)

    Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-09-01

    It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Interaction of GABAA receptors with purinergic P2X2 receptors

    International Nuclear Information System (INIS)

    Shrivastava, A.

    2010-01-01

    GABA A Rs in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X 2 Rs are also expressed in spinal cord neurons and are known to cross-talk with GABA A Rs. Here we investigated a possible 'dynamic' interaction between GABA A Rs and P2X 2 Rs using co-immunoprecipitation and FRET studies in HEK cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X 2 Rs forms a transient complex with GABA A Rs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface. P2X 2 Rs and GABA A Rs are then co-inserted into the cell membrane and are primarily located extra-synaptically. Furthermore, agonist induced activation of P2X 2 Rs results in disassembly of the receptor complex and destabilization of GABA A Rs whereas P2X 2 Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2XRs with other receptors could be used for specific targeting to the neuronal membrane, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABA A Rs.(author) (author) [de

  20. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that uPAR(2+3), purified from U...

  1. The cellular receptors for infectious bursal disease virus | Zhu ...

    African Journals Online (AJOL)

    Virus receptors are simplistically defined as cell surface molecules that mediate binding (attachment, adsorption) and/or trigger membrane fusion or entry through other processes. Infectious bursal disease virus (IBDV) entry into host cells occurs by recognition of specific cellular receptor(s) with viral envelope glycoprotein, ...

  2. Intrapulmonary receptors in the Tegu lizard: II. Functional characteristics and localization;.

    Science.gov (United States)

    Scheid, P; Kuhlmann, W D; Fedde, M R

    1977-02-01

    Intrapulmonary receptors identified in the Tegu lizard by single-unit vagal recording (Fedde et al., 1977) were subjected to a number of stimuli and localized within the lung. Some carbon dioxide receptors could follow periodic changes in intrapulmonary CO2 concentrations as rapidly as 1.3 Hz; No oxygen sensitivity was observed with this receptor type, and halothane markedly depressed the discharge frequency. In response to intravenously injected acetazolamide they increased their discharge frequency and became almost totally insensitive to CO2, suggesting molecular per se is not the direct controller of receptor discharge; These receptors show many of the functional characteristics described for those in the avian lung. Afferent activity from both CO2 and mechanoreceptors could be elicited by electrically stimulating the lung surface. The CO2 receptors appeared to be organized in a receptive field covering more than 1 cm2 of lung surface, multiple receptors being innervated by a single afferent fiber. Activity in afferent fibers from mechanoreceptors could be evoked from only one distinct spot on the lung surface. Conduction velocities of afferent fibers from CO2 receptors ranged from 1 to 3 m-sec-1; from mechanoreceptors, from 1.9 to 5.2 m-sec-1.

  3. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2.

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Ding, Sai; Li, Jianbo; Ren, Jie; Feng, Bo; Li, Tong; Gu, Yuantong; Liu, Changsheng

    2015-11-01

    Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sinuses of rhBMP-2 in clinical applications and arouse broad interests among researchers in the fields of nano-biotechnology, biomaterials and bone tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Controlling the Size and Shape of the Elastin-Like Polypeptide based Micelles

    Science.gov (United States)

    Streletzky, Kiril; Shuman, Hannah; Maraschky, Adam; Holland, Nolan

    Elastin-like polypeptide (ELP) trimer constructs make reliable environmentally responsive micellar systems because they exhibit a controllable transition from being water-soluble at low temperatures to aggregating at high temperatures. It has been shown that depending on the specific details of the ELP design (length of the ELP chain, pH and salt concentration) micelles can vary in size and shape between spherical micelles with diameter 30-100 nm to elongated particles with an aspect ratio of about 10. This makes ELP trimers a convenient platform for developing potential drug delivery and bio-sensing applications as well as for understanding micelle formation in ELP systems. Since at a given salt concentration, the headgroup area for each foldon should be constant, the size of the micelles is expected to be proportional to the volume of the linear ELP available per foldon headgroup. Therefore, adding linear ELPs to a system of ELP-foldon should result in changes of the micelle volume allowing to control micelle size and possibly shape. The effects of addition of linear ELPs on size, shape, and molecular weight of micelles at different salt concentrations were studied by a combination of Dynamic Light Scattering and Static Light Scattering. The initial results on 50 µM ELP-foldon samples (at low salt) show that Rh of mixed micelles increases more than 5-fold as the amount of linear ELP raised from 0 to 50 µM. It was also found that a given mixture of linear and trimer constructs has two temperature-based transitions and therefore displays three predominant size regimes.

  5. Activation of protein kinase A and clustering of cell surface receptors by N-methyl-N'-nitro-N-nitrosoguanidine are independent of genomic DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zheng; Wang Guliang; Yang Jun; Guo Lei; Yu Yingnian

    2003-07-25

    Alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces cellular stress leading to chromosomal aberrations, mutations and cell death. Previous reports from our laboratory have shown that low concentration of MNNG induces untargeted mutation (UTM), which occurs on intact DNA in mammalian cells through changes in gene expression profile. It also causes the activation of cAMP-protein kinase A (PKA) and up-regulation of POL-{beta}, which is demonstrated to play a role in DNA repair system. In order to find out the possible initial signal involved in UTM, we try to investigate whether the activation of PKA-CREB signal pathway is closely related to DNA damage. Our data shows that the treatment of low concentration MNNG (0.2 {mu}M) activates PKA-CREB pathway in a comparable level both in a nuclear and enucleated cell system. And similar to the cell response caused by UV, the clustering of cell surface receptors of epidermal growth factor (EGF) and tumor necrosis factor {alpha} (TNF{alpha}) was also observed in cells exposed to MNNG. It was further demonstrated that the clustering of the surface receptors is independent of the genomic DNA damage, as this phenomenon was also observed in enucleated cells. These observations indicate that the initiation of signal cascades induced by low concentration of MNNG might be associated with its interaction with cell surface receptors and/or direct activation of related signal proteins but not its DNA damaging property.

  6. Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source–receptor relationships

    International Nuclear Information System (INIS)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-01-01

    We analyzed the source–receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40–60%) and central China (30–40°N, 10–40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40–80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O 3 on particulate surfaces may be an important component of the PAH oxidation processes. -- Highlights: •Source–receptor analysis was conducted for investigating PAHs in northeast Asia. •In winter, transboundary transport from China is large contribution in leeward. •Relative contribution from Korea, Japan, and eastern Russia is increased in summer. •This seasonal variation is strongly controlled by the meteorological conditions. •The transport distance is different among PAH species. -- Transboundary transport of PAHs in northeast Asia was investigated by source–receptor analysis

  7. Isolation and purification of Bacillus thuringiensis var. israelensis IМV В-7465 peptidase with specificity toward elastin and collagen

    Directory of Open Access Journals (Sweden)

    N. А. Nidialkova

    2016-06-01

    Full Text Available Peptidase of Bacillus thuringiensis var. israelensis IМV В-7465 was isolated from culture supernatant using consecutive fractionations by an ammonium sulphate (60% saturation, ion-exchange chromatography and gel-filtration on the TSK-gels Toyoperl HW-55 and DEAE 650(M. Specific elastase (442 U∙mg of protein-1 and collagenase (212.7 U∙mg of protein-1 activities of the purified enzyme preparation were 8.0- and 6.1-fold, respectively higher than ones of the culture supernatant. Peptidase yields were 33.5% for elastase activity and 30.1% for collagenase activity. It was established that the enzyme is serine metal-dependent alkaline peptidase with Mr about 37 kDa. Maximal hydrolysis of elastin and collagen occurs at the optimum pH 8.0 and t° – 40 and 50 °С, respectively. The purified preparation has high stability at pH in the range of 7.0 to 10.0 and 40-50 °С.

  8. [A study on toxic effects of sodium salicylate on rat cochlear spiral ganglion neurons: dopamine receptors mediate expressions of NMDA and GABAA receptors].

    Science.gov (United States)

    Wei, Ting-Jia; Chen, Hui-Ying; Huang, Xi; Weng, Jing-Jin; Qin, Jiang-Yuan; Su, Ji-Ping

    2017-06-25

    The aim of the present study was to observe whether dopamine receptor (DR) was involved in the effects of sodium salicylate (SS) on the expressions of N-methyl-D-aspartic acid (NMDA) and γ-aminobutyric acid (GABA) receptors in rat cochlear spiral ganglion neurons (SGNs). Forty-eight hours after primary culture of rat SGNs, immunofluorescence technique was applied to detect expressions of DR1 and DR2, the two subtypes of dopamine receptors. Western blot was performed to assess NMDA receptor NR1 subunit and GABA A receptor subunit α2 (GABRα2) protein expressions in the SGNs after the treatments of SS alone or in combination with DR antagonists. The results demonstrated that: (1) The DR1 and DR2 were expressed in the bodies and axons of the SGN; (2) After the treatment with SS, the surface protein expressions of GABRα2 and NR1 were decreased by 44.69% and 21.57%, respectively, while the total protein expressions showed no significant changes; (3) Neither SS + SCH23390 (DR1 antagonist) group nor SS + Eticlopride (DR2 antagonist) group showed significant differences in GABRα2 and NR1 surface protein expressions compared with the control group. These results suggest that SS regulates the surface GABA A and NMDA receptors trafficking on SGN, and the mechanism may involve DR mediation.

  9. Reconstruction of the Chemotaxis Receptor-Kinase Assembly

    International Nuclear Information System (INIS)

    Park, S.; Borbat, P.; Gonzalez-Bonet, G.; Bhatnagar, J.; Pollard, A.; Freed, J.; Bilwes, A.; Crane, B.

    2006-01-01

    In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion-coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA-CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes

  10. Effectoromics-based identification of cell surface receptors in potato

    NARCIS (Netherlands)

    Domazakis, Emmanouil; Lin, Xiao; Aguilera-Galvez, Carolina; Wouters, Doret; Bijsterbosch, Gerard; Wolters, Pieter J.; Vleeshouwers, Vivianne G.A.A.

    2017-01-01

    In modern resistance breeding, effectors have emerged as tools for accelerating and improving the identification of immune receptors. Effector-assisted breeding was pioneered for identifying resistance genes (R genes) against Phytophthora infestans in potato (Solanum tuberosum). Here we show that

  11. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    Science.gov (United States)

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  12. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-11-01

    Full Text Available Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR and G-protein coupled receptors (GPCR as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information

  13. Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.

    Science.gov (United States)

    Mumford, A D; Nisar, S; Darnige, L; Jones, M L; Bachelot-Loza, C; Gandrille, S; Zinzindohoue, F; Fischer, A-M; Mundell, S J; Gaussem, P

    2013-03-01

    Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding. © 2012 International Society on Thrombosis and Haemostasis.

  14. Crystal structure of the urokinase receptor in a ligand-free form

    DEFF Research Database (Denmark)

    Xu, Xiang; Gårdsvoll, Henrik; Yuan, Cai

    2012-01-01

    The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only focalizing urokinase-type plasminogen activator (uPA)-mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis. Consistent...

  15. Complementary effects of multi-protein components on biomineralization in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ba, X.; DiMasi, E.; Rafailovich, M.; Meng, Y.; Pernodet, N.; Wirick, S.; Furedi-Milhofer, H.; Qin, Y.X.

    2009-12-17

    The extracellular matrix (ECM) is composed of mixed protein fibers whose precise composition affects biomineralization. New methods are needed to probe the interactions of these proteins with calcium phosphate mineral and with each other. Here we follow calcium phosphate mineralization on protein fibers self-assembled in vitro from solutions of fibronectin, elastin and their mixture. We probe the surface morphology and mechanical properties of the protein fibers during the early stages. The development of mineral crystals on the protein matrices is also investigated. In physiological mineralization solution, the elastic modulus of the fibers in the fibronectin-elastin mixture increases to a greater extent than that of the fibers from either pure protein. In the presence of fibronectin, longer exposure in the mineral solution leads to the formation of amorphous calcium phosphate particles templated along the self-assembled fibers, while elastin fibers only collect calcium without any mineral observed during early stage. TEM images confirm that small needle-shape crystals are confined inside elastin fibers which suppress the release of mineral outside the fibers during late stage, while hydroxyapatite crystals form when fibronectin is present. These results demonstrate complementary actions of the two ECM proteins fibronectin and elastin to collect cations and template mineral, respectively.

  16. The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface.

    Directory of Open Access Journals (Sweden)

    Blaise Ndjamen

    2014-03-01

    Full Text Available The Herpes Simplex Virus 1 (HSV-1 glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG. gE-gI can also participate in antibody bipolar bridging (ABB, a process by which the antigen-binding fragments (Fabs of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI-bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI-dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.

  17. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-01-01

    Highlights: ► RAMP3 mediates CLR internalization much less effectively than does RAMP2. ► The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. ► A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [ 125 I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr 130 –Val 131 sequence in the RAMP3 TMD with the corresponding sequence (Ile 157 –Pro 158 ) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala 130 –Ala 131 did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile–Pro sequence into the RAMP3 TMD may be a strategy for promoting receptor internalization/resensitization.

  18. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process

    International Nuclear Information System (INIS)

    Oka, Y.; Rozek, L.M.; Czech, M.P.

    1985-01-01

    The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl- 125 I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl- 125 I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time; and 3) increases the rate of cellular 125 I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody

  19. Modelling the interdependence between the stoichiometry of receptor oligomerization and ligand binding for a coexisting dimer/tetramer receptor system.

    Science.gov (United States)

    Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J

    2009-01-01

    Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.

  20. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases.

    Science.gov (United States)

    Calebiro, Davide; Godbole, Amod

    2018-04-01

    G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and mediate the effects of numerous hormones and neurotransmitters. The nearly 1000 GPCRs encoded by the human genome regulate virtually all physiological functions and are implicated in the pathogenesis of prevalent human diseases such as thyroid disorders, hypertension or Parkinson's disease. As a result, 30-50% of all currently prescribed drugs are targeting these receptors. Once activated, GPCRs induce signals at the cell surface. This is often followed by internalization, a process that results in the transfer of receptors from the plasma membrane to membranes of the endosomal compartment. Internalization was initially thought to be mainly implicated in signal desensitization, a mechanism of adaptation to prolonged receptor stimulation. However, several unexpected functions have subsequently emerged. Most notably, accumulating evidence indicates that internalization can induce prolonged receptor signaling on intracellular membranes, which is apparently required for at least some biological effects of hormones like TSH, LH and adrenaline. These findings reveal an even stronger connection between receptor internalization and signaling than previously thought. Whereas new studies are just beginning to reveal an important physiological role for GPCR signaling after internalization and ways to exploit it for therapeutic purposes, future investigations will be required to explore its involvement in human disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis......The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix...

  2. Identification of Human P2X1 Receptor-interacting Proteins Reveals a Role of the Cytoskeleton in Receptor Regulation*

    Science.gov (United States)

    Lalo, Ulyana; Roberts, Jonathan A.; Evans, Richard J.

    2011-01-01

    P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation. PMID:21757694

  3. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    Science.gov (United States)

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  4. FcγRll: Characterisation of novel Fc receptor interactions and a new receptor form.

    OpenAIRE

    JESSICA CLAIRE ANANIA

    2018-01-01

    Leukocyte Fc receptors (FcR) bind to immunogloulins (Ig) to link the innate and humoral immune system to help balance the immune system and clear infections. We have characterised a novel FcR for IgG (FcγR) form, designated FcγRIIa3, which contains a 19 amino acid insert. This insert interacts with cytoskeletal structures allowing the receptor to be retained for longer periods of time at the cells surface upon activation, higher cell signalling which causes greater cellular activation. Theref...

  5. Molecular analysis of the nerve growth factor receptor

    International Nuclear Information System (INIS)

    Hempstead, B.; Patil, N.; Olson, K.; Chao, M.

    1988-01-01

    An essential molecule in the translocation of information by nerve growth factor (NGF) to responsive cells is the cell-surface receptor for NGF. This paper presents information on the genomic structure of the NGF receptor gene, NGF receptor models, and transfection of NGF receptors. Equilibrium binding of [ 125 I]NGF to cells reveals two distinct affinity states for the NGF receptor. The human NGF receptor gene is a single-copy gene, consisting of six exons that span 23 kb. The receptor gene is capable of being transferred to fibroblast cells from human genomic DNA and expressed at high levels. The constitutive nature of the receptor promoter sequence is a partial explanation of why this tissue-specific gene is expressed efficiently in a variety of nonneuronal cells after genomic gene transfer. The two kinetic forms of the NGF receptor appear to be encoded by the same protein, which is the product of a single gene

  6. Toughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds.

    Science.gov (United States)

    Glassman, Matthew J; Avery, Reginald K; Khademhosseini, Ali; Olsen, Bradley D

    2016-02-08

    Formulation of tissue engineering or regenerative scaffolds from simple bioactive polymers with tunable structure and mechanics is crucial for the regeneration of complex tissues, and hydrogels from recombinant proteins, such as elastin-like polypeptides (ELPs), are promising platforms to support these applications. The arrested phase separation of ELPs has been shown to yield remarkably stiff, biocontinuous, nanostructured networks, but these gels are limited in applications by their relatively brittle nature. Here, a gel-forming ELP is chain-extended by telechelic oxidative coupling, forming extensible, tough hydrogels. Small angle scattering indicates that the chain-extended polypeptides form a fractal network of nanoscale aggregates over a broad concentration range, accessing moduli ranging from 5 kPa to over 1 MPa over a concentration range of 5-30 wt %. These networks exhibited excellent erosion resistance and allowed for the diffusion and release of encapsulated particles consistent with a bicontinuous, porous structure with a broad distribution of pore sizes. Biofunctionalized, toughened networks were found to maintain the viability of human mesenchymal stem cells (hMSCs) in 2D, demonstrating signs of osteogenesis even in cell media without osteogenic molecules. Furthermore, chondrocytes could be readily mixed into these gels via thermoresponsive assembly and remained viable in extended culture. These studies demonstrate the ability to engineer ELP-based arrested physical networks on the molecular level to form reinforced, cytocompatible hydrogel matrices, supporting the promise of these new materials as candidates for the engineering and regeneration of stiff tissues.

  7. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    Science.gov (United States)

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  8. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  9. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... explain additional observations for which the mechanisms involved have not yet been clarified experimentally. uPAR is a highly glycosylated, 3-domain protein, anchored in the plasma membrane by a glycolipid moiety. The domain organization is important for efficient ligand-binding, and the NH2-terminal...

  10. Poliovirus Mutants Resistant to Neutralization with Soluble Cell Receptors

    Science.gov (United States)

    Kaplan, Gerardo; Peters, David; Racaniello, Vincent R.

    1990-12-01

    Poliovirus mutants resistant to neutralization with soluble cellular receptor were isolated. Replication of soluble receptor-resistant (srr) mutants was blocked by a monoclonal antibody directed against the HeLa cell receptor for poliovirus, indicating that the mutants use this receptor to enter cells. The srr mutants showed reduced binding to HeLa cells and cell membranes. However, the reduced binding phenotype did not have a major impact on viral replication, as judged by plaque size and one-step growth curves. These results suggest that the use of soluble receptors as antiviral agents could lead to the selection of neutralization-resistant mutants that are able to bind cell surface receptors, replicate, and cause disease.

  11. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism.

    Science.gov (United States)

    Wootten, Denise; Reynolds, Christopher A; Smith, Kevin J; Mobarec, Juan C; Koole, Cassandra; Savage, Emilia E; Pabreja, Kavita; Simms, John; Sridhar, Rohan; Furness, Sebastian G B; Liu, Mengjie; Thompson, Philip E; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2016-06-16

    Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Rapid and simple purification of elastin-like polypeptides directly from whole cells and cell lysates by organic solvent extraction.

    Science.gov (United States)

    VerHeul, Ross; Sweet, Craig; Thompson, David H

    2018-03-26

    Elastin-like polypeptides (ELP) are a well-known class of proteins that are being increasingly utilized in a variety of biomedical applications, due to their beneficial physicochemical properties. A unifying feature of ELP is their demonstration of a sequence tunable inverse transition temperature (Tt) that enables purification using a simple, straightforward process called inverse transition cycling (ITC). Despite the utility of ITC, the process is inherently limited to ELP with an experimentally accessible Tt. Since the underlying basis for the ELP Tt is related to its high overall hydrophobicity, we anticipated that ELP would be excellent candidates for purification by organic extraction. We report the first method for rapidly purifying ELP directly from whole E. coli cells or clarified lysates using pure organic solvents and solvent mixtures, followed by aqueous back extraction. Our results show that small ELP and a large ELP-fusion protein can be isolated in high yield from whole cells or cell lysates with greater than 95% purity in less than 30 min and with very low levels of LPS and DNA contamination.

  13. Characterisation of surface blebbing and membrane vesicles produced by Flavobacterium psychrophilum

    DEFF Research Database (Denmark)

    Møller, Jeannette Dan; Barnes, A.C.; Dalsgaard, Inger

    2005-01-01

    anti-whole-cell antisera. Two distinct bands of approximately 62 and 58 kDA were highly expressed in the MVs and not seen in the OMP. MVs contained proteolytic activity towards gelatine but not towards casein and elastin, which were only degraded by live cells. Low molecular weight lipopolysaccharides...

  14. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  15. Genetic engineering of chimeric antigen receptors using lamprey derived variable lymphocyte receptors

    Directory of Open Access Journals (Sweden)

    Robert Moot

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are used to redirect effector cell specificity to selected cell surface antigens. Using CARs, antitumor activity can be initiated in patients with no prior tumor specific immunity. Although CARs have shown promising clinical results, the technology remains limited by the availability of specific cognate cell target antigens. To increase the repertoire of targetable tumor cell antigens we utilized the immune system of the sea lamprey to generate directed variable lymphocyte receptors (VLRs. VLRs serve as membrane bound and soluble immune effectors analogous but not homologous to immunoglobulins. They have a fundamentally different structure than immunoglobulin (Ig-based antibodies while still demonstrating high degrees of specificity and affinity. To test the functionality of VLRs as the antigen recognition domain of CARs, two VLR-CARs were created. One contained a VLR specific for a murine B cell leukemia and the other contained a VLR specific for the human T cell surface antigen, CD5. The CAR design consisted of the VLR sequence, myc-epitope tag, CD28 transmembrane domain, and intracellular CD3ζ signaling domain. We demonstrate proof of concept, including gene transfer, biosynthesis, cell surface localization, and effector cell activation for multiple VLR-CAR designs. Therefore, VLRs provide an alternative means of CAR-based cancer recognition.

  16. Effect of spatial inhomogeneities on the membrane surface on receptor dimerization and signal initiation

    Directory of Open Access Journals (Sweden)

    Romica Kerketta

    2016-08-01

    Full Text Available Important signal transduction pathways originate on the plasma membrane, where microdomains may transiently entrap diffusing receptors. This results in a non-random distribution of receptors even in the resting state, which can be visualized as clusters by high resolution imaging methods. Here, we explore how spatial in-homogeneities in the plasma membrane might influence the dimerization and phosphorylation status of ErbB2 and ErbB3, two receptor tyrosine kinases that preferentially heterodimerize and are often co-expressed in cancer. This theoretical study is based upon spatial stochastic simulations of the two-dimensional membrane landscape, where variables include differential distributions and overlap of transient confinement zones (domains for the two receptor species. The in silico model is parameterized and validated using data from single particle tracking experiments. We report key differences in signaling output based on the degree of overlap between domains and the relative retention of receptors in such domains, expressed as escape probability. Results predict that a high overlap of domains, which favors transient co-confinement of both receptor species, will enhance the rate of hetero-interactions. Where domains do not overlap, simulations confirm expectations that homo-interactions are favored. Since ErbB3 is uniquely dependent on ErbB2 interactions for activation of its catalytic activity, variations in domain overlap or escape probability markedly alter the predicted patterns and time course of ErbB3 and ErbB2 phosphorylation. Taken together, these results implicate membrane domain organization as an important modulator of signal initiation, motivating the design of novel experimental approaches to measure these important parameters across a wider range of receptor systems.

  17. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  18. Toll-Like Receptor 4 Is Essential in the Development of Abdominal Aortic Aneurysm.

    Directory of Open Access Journals (Sweden)

    Chao-Han Lai

    Full Text Available Toll-like receptor (TLR family plays a key role in innate immunity and various inflammatory responses. TLR4, one of the well-characterized pattern-recognition receptors, can be activated by endogenous damage-associated molecular pattern molecules such as high mobility group box 1 (HMGB1 to sustain sterile inflammation. Evidence suggested that blockade of TLR4 signaling may confer protection against abdominal aortic aneurysm (AAA. Herein we aimed to obtain further insight into the mechanism by which TLR4 might promote aneurysm formation. Characterization of the CaCl2-induced AAA model in mice revealed that upregulation of TLR4 expression, localized predominantly to vascular smooth muscle cells (VSMCs, was followed by a late decline during a 28-day period of AAA development. In vitro, TLR4 expression was increased in VSMCs treated with HMGB1. Knockdown of TLR4 by siRNA attenuated HMGB1-enhanced production of proinflammatory cytokines, specifically interleukin-6 and monocyte chemoattractant protein-1 (MCP-1, and matrix-degrading matrix metalloproteinase (MMP-2 from VSMCs. In vivo, two different strains of TLR4-deficient (C57BL/10ScNJ and C3H/HeJ mice were resistant to CaCl2-induced AAA formation compared to their respective controls (C57BL/10ScSnJ and C3H/HeN. Knockout of TLR4 reduced interleukin-6 and MCP-1 levels and HMGB1 expression, attenuated macrophage accumulation, and eventually suppressed MMP production, elastin destruction and VSMC loss. Finally, human AAA exhibited higher TLR4 expression that was localized to VSMCs. These data suggest that TLR4 signaling contributes to AAA formation by promoting a proinflammatory status of VSMCs and by inducing proteinase release from VSMCs during aneurysm initiation and development.

  19. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone

    Science.gov (United States)

    Kolonin, Mikhail G.; Sergeeva, Anna; Staquicini, Daniela I.; Smith, Tracey L.; Tarleton, Christy A.; Molldrem, Jeffrey J.; Sidman, Richard L.; Marchiò, Serena; Pasqualini, Renata; Arap, Wadih

    2017-01-01

    Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a non-proteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short time frame. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. PMID:28428279

  20. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.

    Science.gov (United States)

    Pescador, David; Ibáñez-Fonseca, Arturo; Sánchez-Guijo, Fermín; Briñón, Jesús G; Arias, Francisco Javier; Muntión, Sandra; Hernández, Cristina; Girotti, Alessandra; Alonso, Matilde; Del Cañizo, María Consuelo; Rodríguez-Cabello, José Carlos; Blanco, Juan Francisco

    2017-08-01

    Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p hyaline cartilage in osteochondral lesions.

  1. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Yi, Ka Hee; Kim, Chang Min

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves' patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves' disease will be elucidated. (author). 25 refs

  2. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  3. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    Energy Technology Data Exchange (ETDEWEB)

    Daskalova, A., E-mail: a_daskalova@code.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Nathala, Chandra S.R. [Institute of General Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, A-1040 Wien (Austria); Spectra-Physics Vienna, Fernkorngasse 10, 1100 Wien (Austria); Kavatzikidou, P.; Ranella, A. [Institute for Electronic Structure and Lasers-FORTH, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Szoszkiewicz, R. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland (Poland); Husinsky, W. [Institute of General Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, A-1040 Wien (Austria); Fotakis, C. [Institute for Electronic Structure and Lasers-FORTH, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece)

    2016-09-30

    Highlights: • Systematic research in the field of fs laser interaction with biopolymers for application in tissue engineering. • Utilizing a new biopolymer blend of collagen/elastin material for studying the interaction process in the fs domain. • Obtaining of improved, circularly shaped, interconnected nanopores, with high reproducibility from collagen/elastin layer. • Observation of randomly arranged pattern outside modification zone due to formation of an impact wave over biofilm surface. • NIH/3T3 cell-interface interaction reveal a preferable cell migration on fs laser-modified surface array. - Abstract: The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell’s responses to substrate morphology. Mice fibroblasts migration was monitored

  4. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    International Nuclear Information System (INIS)

    Daskalova, A.; Nathala, Chandra S.R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.

    2016-01-01

    Highlights: • Systematic research in the field of fs laser interaction with biopolymers for application in tissue engineering. • Utilizing a new biopolymer blend of collagen/elastin material for studying the interaction process in the fs domain. • Obtaining of improved, circularly shaped, interconnected nanopores, with high reproducibility from collagen/elastin layer. • Observation of randomly arranged pattern outside modification zone due to formation of an impact wave over biofilm surface. • NIH/3T3 cell-interface interaction reveal a preferable cell migration on fs laser-modified surface array. - Abstract: The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell’s responses to substrate morphology. Mice fibroblasts migration was monitored

  5. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Science.gov (United States)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  6. Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 cell surface receptor

    Directory of Open Access Journals (Sweden)

    Kozak Christine A

    2009-10-01

    Full Text Available Abstract Background The evolutionary interactions between retroviruses and their receptors result in adaptive selection of restriction variants that can allow natural populations to evade retrovirus infection. The mouse xenotropic/polytropic (X/PMV gammaretroviruses rely on the XPR1 cell surface receptor for entry into host cells, and polymorphic variants of this receptor have been identified in different rodent species. Results We screened a panel of X/PMVs for infectivity on rodent cells carrying 6 different XPR1 receptor variants. The X/PMVs included 5 well-characterized laboratory and wild mouse virus isolates as well as a novel cytopathic XMV-related virus, termed Cz524, isolated from an Eastern European wild mouse-derived strain, and XMRV, a xenotropic-like virus isolated from human prostate cancer. The 7 viruses define 6 distinct tropisms. Cz524 and another wild mouse isolate, CasE#1, have unique species tropisms. Among the PMVs, one Friend isolate is restricted by rat cells. Among the XMVs, two isolates, XMRV and AKR6, differ from other XMVs in their PMV-like restriction in hamster cells. We generated a set of Xpr1 mutants and chimeras, and identified critical amino acids in two extracellular loops (ECLs that mediate entry of these different viruses, including 3 residues in ECL3 that are involved in PMV entry (E500, T507, and V508 and can also influence infectivity by AKR6 and Cz524. Conclusion We used a set of natural variants and mutants of Xpr1 to define 6 distinct host range variants among naturally occurring X/PMVs (2 XMV variants, 2 PMVs, 2 different wild mouse variants. We identified critical amino acids in XPR1 that mediate entry of these viruses. These gammaretroviruses and their XPR1 receptor are thus highly functionally polymorphic, a consequence of the evolutionary pressures that favor both host resistance and virus escape mutants. This variation accounts for multiple naturally occurring virus resistance phenotypes and

  7. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    Science.gov (United States)

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Science.gov (United States)

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  9. Ligand-Induced Cross-Linking of Z-Elastin-like Polypeptide-Functionalized E2 Protein Nanoparticles for Enhanced Affinity Precipitation of Antibodies.

    Science.gov (United States)

    Swartz, Andrew R; Sun, Qing; Chen, Wilfred

    2017-05-08

    Affinity precipitation is an ideal alternative to chromatography for antibody purification because it combines the high selectivity of an affinity ligand with the operational benefits of precipitation. However, the widespread use of elastin-like polypeptide (ELP) capture scaffolds for antibody purification has been hindered by the high salt concentrations and temperatures necessary for efficient ELP aggregation. In this paper, we employed a tandem approach to enhance ELP aggregation by enlarging the dimension of the capturing scaffold and by creating IgG-triggered scaffold cross-linking. This was accomplished by covalently conjugating the Z-domain-ELP (Z-ELP) capturing scaffold to a 25 nm diameter E2 protein nanocage using Sortase A ligation. We demonstrated the isothermal recovery of IgG in the virtual absence of salt due to the significantly increased scaffold dimension and cross-linking from multivalent IgG-E2 interactions. Because IgG cross-linking is reversible at low pH, it may be feasible to achieve a high yielding IgG purification by isothermal phase separation using a simple pH trigger.

  10. Chimeric opioid peptides: Tools for identifying opioid receptor types

    International Nuclear Information System (INIS)

    Xie, G.; Miyajima, A.; Yokota, T.; Arai, K.; Goldstein, A.

    1990-01-01

    The authors synthesized several chimeric [125J-labelled] peptides in which the N-terminal nine residues of dynorphin-32, a peptide selective for the κ opioid receptor, were replaced by opioid peptides selective for other opioid receptor types. Each chimeric peptide retained the high affinity and type selectivity characteristic of its N-terminal sequence. The common C-terminal two-thirds of the chimeric peptides served as an epitope recognized by the same monoclonal antibody. When bound to receptors on a cell surface or membrane preparation, these peptides could still bind specifically to the monoclonal antibody. These chimeric peptides should be useful for isolating μ, δ, and κ opioid receptors and for identifying opioid receptors on transfected cells in expression cloning procedures. The general approach using chimeric peptides should be applicable to other peptide receptors

  11. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs

    Directory of Open Access Journals (Sweden)

    Sanderson Thomas M

    2011-07-01

    Full Text Available Abstract The removal of AMPA receptors from synapses is a major component of long-term depression (LTD. How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2 expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses. In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  12. TLX: An elusive receptor.

    Science.gov (United States)

    Benod, Cindy; Villagomez, Rosa; Webb, Paul

    2016-03-01

    TLX (tailless receptor) is a member of the nuclear receptor superfamily and belongs to a class of nuclear receptors for which no endogenous or synthetic ligands have yet been identified. TLX is a promising therapeutic target in neurological disorders and brain tumors. Thus, regulatory ligands for TLX need to be identified to complete the validation of TLX as a useful target and would serve as chemical probes to pursue the study of this receptor in disease models. It has recently been proved that TLX is druggable. However, to identify potent and specific TLX ligands with desirable biological activity, a deeper understanding of where ligands bind, how they alter TLX conformation and of the mechanism by which TLX mediates the transcription of its target genes is needed. While TLX is in the process of escaping from orphanhood, future ligand design needs to progress in parallel with improved understanding of (i) the binding cavity or surfaces to target with small molecules on the TLX ligand binding domain and (ii) the nature of the TLX coregulators in particular cell and disease contexts. Both of these topics are discussed in this review. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins

    Science.gov (United States)

    Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.

    2008-01-01

    All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126

  14. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    International Nuclear Information System (INIS)

    Schvartz, I.; Hazum, E.

    1987-01-01

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, [azidobenzoyl-D-Lys6]GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors

  15. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    Directory of Open Access Journals (Sweden)

    Guangqing Xiao

    2013-01-01

    Full Text Available Transport of macromolecules across the blood-brain-barrier (BBB requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn in regulating the efflux of Immunoglobulin G (IgG from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed.

  16. Manipulation of Very Few Receptor Discriminator Residues Greatly Enhances Receptor Specificity of Non-visual Arrestins*

    Science.gov (United States)

    Gimenez, Luis E.; Vishnivetskiy, Sergey A.; Baameur, Faiza; Gurevich, Vsevolod V.

    2012-01-01

    Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of “receptor discriminator” residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β2-adrenergic receptors (β2AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β2AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β2AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β2AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β2AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes. PMID:22787152

  17. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins.

    Science.gov (United States)

    Gimenez, Luis E; Vishnivetskiy, Sergey A; Baameur, Faiza; Gurevich, Vsevolod V

    2012-08-24

    Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.

  18. Ligand receptor dynamics at streptavidin-coated particle surfaces: A flow cytometric and spectrofluorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Buranda, T. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)]|[Univ. of New Mexico, Albuquerque, NM (United States); Jones, G.M. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States); Nolan, J.P.; Keij, J. [Los Alamos National Labs., NM (United States); Lopez, G.P. [Univ. of New Mexico, Albuquerque, NM (United States); Sklar, L.A. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)]|[Los Alamos National Lab., NM (United States)

    1999-04-29

    The authors have studied the binding of 5-((N-(5-(N-(6-(biotinoyl)amino)hexanoyl)amino)pentyl)thioureidyl)fluorescein (fluorescein biotin) to 6.2 {micro}m diameter, streptavidin-coated polystyrene beads using a combination of fluorimetric and flow cytometric methods. They have determined the average number of binding sites per bead, the extent of fluorescein quenching upon binding to the bead, and the association and dissociation kinetics. The authors estimate the site number to be {approx}1 million per bead. The binding of the fluorescein biotin ligand occurs in steps where the insertion of the biotin moiety into one receptor pocket is followed immediately by the capture of the fluorescein moiety by a neighboring binding pocket; fluorescence quenching is a consequence of this secondary binding. At high surface coverage, the dominant mechanism of quenching appears to be via the formation of nonfluorescent nearest-neighbor aggregates. At early times, the binding process is characterized by biphasic association and dissociation kinetics which are remarkably dependent on the initial concentration of the ligand. The rate constant for binding to the first receptor pocket of a streptavidin molecule is {approx}(1.3 {+-} 0.3) {times} 10{sup 7} 1{sup {minus}1} S{sup {minus}1}. The rate of binding of a second biotin may be reduced due to steric interference. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The dissociation rate constant is as high as 0.05 s{sup {minus}1} shortly after binding, but decreases by 3 orders of magnitude after 3 h of binding. Potential sources for the time dependence of the dissociation rate constant are discussed.

  19. G protein-coupled receptors: the inside story.

    Science.gov (United States)

    Jalink, Kees; Moolenaar, Wouter H

    2010-01-01

    Recent findings necessitate revision of the traditional view of G protein-coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.

  20. A versatile optical tool for studying synaptic GABAA receptor trafficking.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Wilcox, Madeleine R; Zhang, Ming; Larsen, Mads B; Pilli, Jyotsna; Schmidt, Brigitte F; Bruchez, Marcel P; Johnson, Jon W; Waggoner, Alan S; Watkins, Simon C; Jacob, Tija C

    2017-11-15

    Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABA A R) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABA A R γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2 pH FAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2 pH FAP GABA A Rs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2 pH FAP GABA A Rs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2 pH FAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2 pH FAP-MG dye approach reveals enhanced GABA A R turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABA A R trafficking. © 2017. Published by The Company of Biologists Ltd.

  1. Dynamic complexity: plant receptor complexes at the plasma membrane.

    Science.gov (United States)

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor.

    Directory of Open Access Journals (Sweden)

    Lili Jiang

    Full Text Available Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2 receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.

  3. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  4. Placental expression of asialoglycoprotein receptor associated with Hepatitis B virus transmission from mother to child.

    Science.gov (United States)

    Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma

    2018-04-30

    Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with

  5. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment....... The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  6. Identification and characterization of the murine cell surface receptor for the urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Solberg, H; Løber, D; Eriksen, J

    1992-01-01

    -blotting analysis. Binding of mouse u-PA to its receptor showed species specificity in ligand-blotting analysis, since mouse u-PA did not bind to human u-PAR and human u-PA did not bind to mouse u-PAR. The apparent M(r) of mouse u-PAR varied between different mouse cell lines and ranged over M(r) 45......,000-60,000. In four of the cell lines, mouse u-PA bound to two mouse u-PAR variant proteins, whereas in the other two cell lines studied, there was only one mouse u-PA-binding protein. In the monocyte macrophage cell line P388D.1, trypsin-treatment of intact cells could remove only the large mouse u-PAR variant (M...... to the cell surface by glycosylphosphatidylinositol. Purification of the two mouse u-PAR variant proteins by diisopropylfluorophosphate-inactivated mouse u-PA-Sepharose affinity chromatography yielded two silver-stained bands when analysed by SDS/PAGE, corresponding in electrophoretic mobility to those seen...

  7. Key region of laminin receptor 1 for interaction with human period 1

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... acids) through yeast two-hybrid system in the present study. And we identified the ... the cell surface and functions as a membrane receptor for the adhesive ..... Circadian modulation of dopamine receptor responsiveness in ...

  8. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    Science.gov (United States)

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.

  9. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

    Science.gov (United States)

    Coursey, Terry G; Gandhi, Niral B; Volpe, Eugene A; Pflugfelder, Stephen C; de Paiva, Cintia S

    2013-01-01

    CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.

  10. Chemokine Receptors CCR6 and CXCR3 Are Necessary for CD4+ T Cell Mediated Ocular Surface Disease in Experimental Dry Eye Disease

    Science.gov (United States)

    Coursey, Terry G.; Gandhi, Niral B.; Volpe, Eugene A.; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2013-01-01

    CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease. PMID:24223818

  11. Bat wing biometrics: using collagen–elastin bundles in bat wings as a unique individual identifier

    Science.gov (United States)

    Hooper, Sarah E.; Womack, Kathryn M.

    2017-01-01

    Abstract The ability to recognize individuals within an animal population is fundamental to conservation and management. Identification of individual bats has relied on artificial marking techniques that may negatively affect the survival and alter the behavior of individuals. Biometric systems use biological characteristics to identify individuals. The field of animal biometrics has expanded to include recognition of individuals based upon various morphologies and phenotypic variations including pelage patterns, tail flukes, and whisker arrangement. Biometric systems use 4 biologic measurement criteria: universality, distinctiveness, permanence, and collectability. Additionally, the system should not violate assumptions of capture–recapture methods that include no increased mortality or alterations of behavior. We evaluated whether individual bats could be uniquely identified based upon the collagen–elastin bundles that are visible with gross examination of their wings. We examined little brown bats (Myotis lucifugus), northern long-eared bats (M. septentrionalis), big brown bats (Eptesicus fuscus), and tricolored bats (Perimyotis subflavus) to determine whether the “wing prints” from the bundle network would satisfy the biologic measurement criteria. We evaluated 1,212 photographs from 230 individual bats comparing week 0 photos with those taken at weeks 3 or 6 and were able to confirm identity of individuals over time. Two blinded evaluators were able to successfully match 170 individuals in hand to photographs taken at weeks 0, 3, and 6. This study suggests that bats can be successfully re-identified using photographs taken at previous times. We suggest further evaluation of this methodology for use in a standardized system that can be shared among bat conservationists. PMID:29674784

  12. Bat wing biometrics: using collagen-elastin bundles in bat wings as a unique individual identifier.

    Science.gov (United States)

    Amelon, Sybill K; Hooper, Sarah E; Womack, Kathryn M

    2017-05-29

    The ability to recognize individuals within an animal population is fundamental to conservation and management. Identification of individual bats has relied on artificial marking techniques that may negatively affect the survival and alter the behavior of individuals. Biometric systems use biological characteristics to identify individuals. The field of animal biometrics has expanded to include recognition of individuals based upon various morphologies and phenotypic variations including pelage patterns, tail flukes, and whisker arrangement. Biometric systems use 4 biologic measurement criteria: universality, distinctiveness, permanence, and collectability. Additionally, the system should not violate assumptions of capture-recapture methods that include no increased mortality or alterations of behavior. We evaluated whether individual bats could be uniquely identified based upon the collagen-elastin bundles that are visible with gross examination of their wings. We examined little brown bats ( Myotis lucifugus ), northern long-eared bats ( M. septentrionalis ), big brown bats ( Eptesicus fuscus ), and tricolored bats ( Perimyotis subflavus ) to determine whether the "wing prints" from the bundle network would satisfy the biologic measurement criteria. We evaluated 1,212 photographs from 230 individual bats comparing week 0 photos with those taken at weeks 3 or 6 and were able to confirm identity of individuals over time. Two blinded evaluators were able to successfully match 170 individuals in hand to photographs taken at weeks 0, 3, and 6. This study suggests that bats can be successfully re-identified using photographs taken at previous times. We suggest further evaluation of this methodology for use in a standardized system that can be shared among bat conservationists.

  13. Light Scattering Study of Mixed Micelles Made from Elastin-Like Polypeptide Linear Chains and Trimers

    Science.gov (United States)

    Terrano, Daniel; Tsuper, Ilona; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    Temperature sensitive nanoparticles were generated from a construct (H20F) of three chains of elastin-like polypeptides (ELP) linked to a negatively charged foldon domain. This ELP system was mixed at different ratios with linear chains of ELP (H40L) which lacks the foldon domain. The mixed system is soluble at room temperature and at a transition temperature (Tt) will form swollen micelles with the hydrophobic linear chains hidden inside. This system was studied using depolarized dynamic light scattering (DDLS) and static light scattering (SLS) to determine the size, shape, and internal structure of the mixed micelles. The mixed micelle in equal parts of H20F and H40L show a constant apparent hydrodynamic radius of 40-45 nm at the concentration window from 25:25 to 60:60 uM (1:1 ratio). At a fixed 50 uM concentration of the H20F, varying H40L concentration from 5 to 80 uM resulted in a linear growth in the hydrodynamic radius from about 11 to about 62 nm, along with a 1000-fold increase in VH signal. A possible simple model explaining the growth of the swollen micelles is considered. Lastly, the VH signal can indicate elongation in the geometry of the particle or could possibly be a result from anisotropic properties from the core of the micelle. SLS was used to study the molecular weight, and the radius of gyration of the micelle to help identify the structure and morphology of mixed micelles and the tangible cause of the VH signal.

  14. Reconstruction of full-thickness defects with bovine-derived collagen/elastin matrix: a series of challenging cases and the first reported post-burn facial reconstruction.

    Science.gov (United States)

    Haik, Josef; Weissman, Oren; Hundeshagen, Gabriel; Farber, Nimrod; Harats, Moti; Rozenblatt, Shira M; Kamolz, Lars Peter; Winkler, Eyal; Zilinsky, Isaac

    2012-07-01

    Reconstruction of full-thickness defects may benefit from integration of dermal substitutes, which serve as a foundation for split-thickness skin grafts, thus enhancing short and long-term results. We present a series of 7 patients who were treated between 2010 and 2012 for complicated full-thickness defects by the second-generation collagen/elastin matrix Matriderm® covered by a split-thickness skin graft. The defects resulted from malignancy resection, trauma, and post-burn scar reconstruction. Overall graft take was excellent and no complications were noted regarding the dermal substitute. Graft quality was close to normal skin in terms of elasticity, pliability, texture, and color. Good contour and cushioning of defects in weight bearing areas was also achieved. Matriderm was found to be a useful adjunct to full-thickness defect reconstruction, especially in difficult areas where the desired result is a scar of the highest quality possible.

  15. B cell antigen receptor signaling and internalization are mutually exclusive events.

    Directory of Open Access Journals (Sweden)

    Ping Hou

    2006-07-01

    Full Text Available Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands.

  16. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression

    Science.gov (United States)

    Matsuda, Shinji; Kakegawa, Wataru; Budisantoso, Timotheus; Nomura, Toshihiro; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-11-01

    Long-term depression (LTD) underlies learning and memory in various brain regions. Although postsynaptic AMPA receptor trafficking mediates LTD, its underlying molecular mechanisms remain largely unclear. Here we show that stargazin, a transmembrane AMPA receptor regulatory protein, forms a ternary complex with adaptor proteins AP-2 and AP-3A in hippocampal neurons, depending on its phosphorylation state. Inhibiting the stargazin-AP-2 interaction disrupts NMDA-induced AMPA receptor endocytosis, and inhibiting that of stargazin-AP-3A abrogates the late endosomal/lysosomal trafficking of AMPA receptors, thereby upregulating receptor recycling to the cell surface. Similarly, stargazin’s interaction with AP-2 or AP-3A is necessary for low-frequency stimulus-evoked LTD in CA1 hippocampal neurons. Thus, stargazin has a crucial role in NMDA-dependent LTD by regulating two trafficking pathways of AMPA receptors—transport from the cell surface to early endosomes and from early endosomes to late endosomes/lysosomes—through its sequential binding to AP-2 and AP-3A.

  17. Solvent effects on ion-receptor interactions in the presence of an external electric field.

    Science.gov (United States)

    Novák, Martin; Foroutan-Nejad, Cina; Marek, Radek

    2016-11-09

    In this work we investigated the influence of an external electric field on the arrangement of the solvent shells around ions interacting with a carbon-based receptor. Our survey reveals that the mechanism of interaction between a monoatomic ion and a π-type ion receptor varies by the variation in the solvent polarity, the nature of the ion, and the strength of the external field. The characteristics of the ion-surface interaction in nonpolar solvents are similar to those observed in a vacuum. However, in water, we identified two mechanisms. Soft and polarizable ions preferentially interact with the π-receptor. In contrast, two bonded states were found for hard ions. A fully solvated ion, weakly interacting with the receptor at weak field, and a strong π-complex at the strong-field regime were identified. An abrupt variation in the potential energy surface (PES) associated with the rearrangement of the solvation shell on the surface of the receptor induced by an external field was observed both in implicit and explicit solvent environments. The electric field at which the solvation shell breaks is proportional to the hardness of the ion as has been suggested recently based on experimental observations.

  18. Receptor-mediated endocytosis of low density lipoproteins in aortic endothelial cells

    International Nuclear Information System (INIS)

    Sanan, D.A.

    1986-04-01

    Lipoprotein binding and metabolism in actively-dividing (subconfluent) and quiescent (postconfluent) bovine aortic endothelial cells (ECs) were qualitatively investigated by fluorescence microscopy using dioctadecylindocarbocyanine-labelled lipoproteins and by indirect immunofluorescence microscopy. LDL and acetylated-LDL (AcLDL) were seen bound to the surfaces of subconfluent ECs (at 4 degrees C or at 37 degrees C), as a random distribution of punctate foci. ECs therefore closely resembled fibroblasts in the distribution of LDL receptors on their surfaces. No binding of LDL was seen on postconfluent EC surfaces by either direct or indirect fluorescence microscopy. The patterns of AcLDL binding on postconfluent ECs resembled those on subconfluent ECs. Intracellular LDL and AcLDL occurred as perinuclear accumulations of large fluorescent disc-shaped profiles in subconfluent ECs. These accumulations were shown to arise from surface-bound material by pulse-chase experiments. Intracellular LDL was absent in the majority of postconfluent ECs, while AcLDL accumulation was massive. 'Wounding' of cultures allowed simultaneous assessment of lipoprotein metabolism in quiescent and actively-dividing areas of the same culture. It is concluded that postconfluent quiescent bovine aortic ECs in vitro metabolise virtually no LDL via the LDL-receptor pathway due to a vanishingly low number of LDL receptors. This contrasts with the ability of postconfluent cells to metabolise relatively large amounts of AcLDL via a receptor-mediated mechanism. The significance of these conclusions is discussed with respect to the interaction of plasma lipoproteins with the endothelium in vivo. 301 refs

  19. T cell receptor zeta allows stable expression of receptors containing the CD3gamma leucine-based receptor-sorting motif

    DEFF Research Database (Denmark)

    Dietrich, J; Geisler, C

    1998-01-01

    The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently of phosph......The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently...... of phosphorylation and leads to rapid internalization and sorting of these chimeras to lysosomal degradation. Because the TCRzeta chain rescues incomplete TCR complexes from lysosomal degradation and allows stable surface expression of fully assembled TCR, we addressed the question whether TCRzeta has the potential...... to mask the CD3gamma leucine-based motif. By studying CD4/CD3gamma and CD16/CD3gamma chimeras, we found that CD16/CD3gamma chimeras associated with TCRzeta. The CD16/CD3gamma-TCRzeta complexes were stably expressed at the cell surface and had a low spontaneous internalization rate, indicating...

  20. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes

    Science.gov (United States)

    Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM

    2012-01-01

    BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524

  1. Tracking cell surface mobility of GPCRs using α-bungarotoxin-linked fluorophores.

    Science.gov (United States)

    Hannan, Saad; Wilkins, Megan E; Thomas, Philip; Smart, Trevor G

    2013-01-01

    GABA(B) receptors are G-protein-coupled receptors (GPCRs) that are activated by GABA, the principal inhibitory neurotransmitter in the central nervous system. Cell surface mobility of GABA(B) receptors is a key determinant of the efficacy of slow and prolonged synaptic inhibition initiated by GABA. Therefore, experimentally monitoring receptor mobility and how this can be regulated is of primary importance for understanding the roles of GABA(B) receptors in the brain, and how they may be therapeutically exploited. Unusually for a GPCR, heterodimerization between the R1 and R2 subunits is required for the cell surface expression and signaling by prototypical GABA(B) receptors. Here, we describe a minimal epitope-tagging method, based on the incorporation of an α-bungarotoxin binding site (BBS) into the GABA(B) receptor, to study receptor internalization in live cells using a range of imaging approaches. We demonstrate how this technique can be adapted by modifying the BBS to monitor the simultaneous movement of both R1 and R2 subunits, revealing that GABA(B) receptors are internalized as heteromers. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Palmitoylation as a Functional Regulator of Neurotransmitter Receptors

    Directory of Open Access Journals (Sweden)

    Vladimir S. Naumenko

    2018-01-01

    Full Text Available The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs and ligand-gated ion channels (LICs. From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.

  3. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit*

    Science.gov (United States)

    Hannan, Saad; Wilkins, Megan E.; Dehghani-Tafti, Ebrahim; Thomas, Philip; Baddeley, Stuart M.; Smart, Trevor G.

    2011-01-01

    γ-Aminobutyric acid type B (GABAB) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABAB receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABAB receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABAB receptor. PMID:21724853

  4. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism?

    Energy Technology Data Exchange (ETDEWEB)

    Kufareva, Irina; Gustavsson, Martin; Zheng, Yi; Stephens, Bryan S.; Handel, Tracy M. (UCSD)

    2017-05-22

    Chemokines and their cell surface G protein–coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novel epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.

  5. The GPRC6A Receptor displays Constitutive Internalization and Sorting to the Slow Recycling Pathway

    DEFF Research Database (Denmark)

    Jacobsen, Stine Engesgaard; Ammendrup-Johnsen, Ina; Jansen, Anna Mai

    2017-01-01

    The class C G protein-coupled receptor GPRC6A is a putative nutrient sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface...... availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements...... slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non...

  6. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    DEFF Research Database (Denmark)

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we...... in normal human intestinal epithelia and could play a role in cholera....

  7. Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells.

    Science.gov (United States)

    Avall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-04-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.

  8. Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells

    International Nuclear Information System (INIS)

    Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D'Avis, J.C.; Wartofsky, L.

    1991-01-01

    In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding [125I] ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound [125I]ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized [125I]ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity

  9. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  10. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  11. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    Science.gov (United States)

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  12. Elimination of a ligand gating site generates a supersensitive olfactory receptor.

    Science.gov (United States)

    Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I

    2016-06-21

    Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors.

  13. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    Science.gov (United States)

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably

  14. Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor.

    Science.gov (United States)

    Suzuki, Masakatsu; Takaishi, Sachiko; Nagasaki, Miyuki; Onozawa, Yoshiko; Iino, Ikue; Maeda, Hiroaki; Komai, Tomoaki; Oda, Tomiichiro

    2013-04-12

    G protein-coupled receptor 84 (GPR84) is a putative receptor for medium-chain fatty acids (MCFAs), whose pathophysiological roles have not yet been clarified. Here, we show that GPR84 was activated by MCFAs with the hydroxyl group at the 2- or 3-position more effectively than nonhydroxylated MCFAs. We also identified a surrogate agonist, 6-n-octylaminouracil (6-OAU), for GPR84. These potential ligands and the surrogate agonist, 6-OAU, stimulated [(35)S]GTP binding and accumulated phosphoinositides in a GPR84-dependent manner. The surrogate agonist, 6-OAU, internalized GPR84-EGFP from the cell surface. Both the potential ligands and 6-OAU elicited chemotaxis of human polymorphonuclear leukocytes (PMNs) and macrophages and amplified LPS-stimulated production of the proinflammatory cytokine IL-8 from PMNs and TNFα from macrophages. Furthermore, the intravenous injection of 6-OAU raised the blood CXCL1 level in rats, and the inoculation of 6-OAU into the rat air pouch accumulated PMNs and macrophages in the site. Our results indicate a proinflammatory role of GPR84, suggesting that the receptor may be a novel target to treat chronic low grade inflammation associated-disease.

  15. Immobilization of olfactory receptors onto gold electrodes for electrical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Casuso, Ignacio [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: icasuso@pcb.ub.es; Pla-Roca, Mateu [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Gomila, Gabriel [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: ggomila@pcb.ub.es; Samitier, Josep [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Minic, Jasmina; Persuy, Marie A.; Salesse, Roland; Pajot-Augy, Edith [INRA, Neurobiologie de l' Olfaction et de la Prise Alimentaire, Equipe Recepteurs et Communication Chimique, Domaine de Vilvert, Jouy en Josas Cedex (France)

    2008-07-01

    We investigate the immobilization of native nanovesicles containing functional olfactory receptors onto gold electrodes by means of atomic force microscopy in liquid. We show that nanovesicles can be adsorbed without disrupting them presenting sizes once immobilized ranging from 50 nm to 200 nm in diameter. The size of the nanovesicles shows no dependence on the electrode hydrophobicity being constant in a height/width ratio close to 1:3. Nevertheless, electrode hydrophobicity does affect the surface coverage, the surface coverage is five times higher in hydrophilic electrodes than on hydrophobic ones. Surface coverage is also affected by nanovesicles dimensions in suspension, the size homogenization to around 50 nm yields a further five fold increment in surface coverage achieving a coverage of about 50% close to the hard spheres jamming limit (54.7%). A single layer of nanovesicles is always formed with no particle overlap. Present results provide insights into the immobilization on electrodes of olfactory receptors for further olfactory electrical biosensor development.

  16. Expression and nutritional regulation of the (pro)renin receptor in rat visceral adipose tissue.

    Science.gov (United States)

    Achard, V; Tassistro, V; Boullu-Ciocca, S; Grino, M

    2011-12-01

    Early life nutritional environment plays an important role in the development of visceral adipose tissue and interacts with nutritional regulations in adulthood, leading to metabolic dysregulations. We hypothesized that the renin-angiotensin system may play a role in the programming-induced development of visceral adipose tissue. We studied, using a model of programming of overweight and glucose intolerance, obtained by post-natal overfeeding with consecutive highfat diet, the status of plasma renin activity and mesenteric adipose renin-angiotensin system, including the recently identified (pro)renin receptor, in adult rats. Post-natal overfeeding or high-fat feeding lead to overweight with increased visceral fat mass and adipocytes surface. When both paradigms were associated, adipocytes surface showed a disproportionate increase. A strong immunoreactivity for (pro)renin receptor was found in stromal cells. Plasma renin activity increased in programmed animals whereas (pro)renin receptor expressing cells density was stimulated by high-fat diet. There was a positive, linear relationship between plasma renin activity and (pro)renin receptor expressing cells density and adipocytes surface. Our experiments demonstrate that association of post-natal overfeeding and high-fat diet increased plasma renin activity and adipose (pro)renin receptor expression. Such phenomenon could explain, at least in part, the associated disproportionate adipocyte hypertrophy and its accompanying increased glucose intolerance.

  17. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  18. Internalisation of gonadotrophin-receptor complex in ovarian luteal cells

    International Nuclear Information System (INIS)

    Conn, P.M.; Conti, M.; Harwood, J.P.; Dufau, M.L.; Catt, K.J.

    1978-01-01

    Following evidence that certain protein hormones can enter target cells the present investigation was undertaken which shows that gonadotrophin-induced receptor loss may occur by a process of internalisation of the hormone-receptor complex following the initial interaction of gonadotrophin with the cell surface. Localisation studies were carried out in 33-d old female rats previously treated with pregnant mare serum gonadotrophin and human chorionic gonadotrophin (hCG) to induce ovarian luteinisation. Animals were injected with 125 I-hCG to label the ovarian receptors for luteinising hormone in vivo. Microscope autoradiographs demonstrating distribution of 125 I-hCG in ovaries at various times following injection are shown. The combined results from the autoradiographs and from solubilisation experiments were used to determine the location and nature of the hCG-receptor complex following occupancy and loss of receptors from the plasma membrane of luteinised ovarian cells. (U.K.)

  19. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity.

    Science.gov (United States)

    Postma, Jelle; Liebrand, Thomas W H; Bi, Guozhi; Evrard, Alexandre; Bye, Ruby R; Mbengue, Malick; Kuhn, Hannah; Joosten, Matthieu H A J; Robatzek, Silke

    2016-04-01

    The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the SUPPRESSOR OF BIR1 (SOBIR1) RLK contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. We employed live-cell imaging, gene silencing and coimmunoprecipitation to investigate the requirement of associated kinases for functioning and ligand-induced subcellular trafficking of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. Our research shows that after elicitation with matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) associates with Cf-4 and Cf-9. BAK1/SERK3 is required for the effector-triggered hypersensitive response and resistance of tomato against C. fulvum. Furthermore, Cf-4 interacts with SOBIR1 at the plasma membrane and is recruited to late endosomes upon Avr4 trigger, also depending on BAK1/SERK3. These observations indicate that RLP-mediated resistance and endocytosis require ligand-induced recruitment of BAK1/SERK3, reminiscent of BAK1/SERK3 interaction and subcellular fate of the FLAGELLIN SENSING 2 (FLS2) RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for initiation of resistance and endocytosis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein

    International Nuclear Information System (INIS)

    Gray, P.W.; Barrett, K.; Chantry, D.; Turner, M.; Feldmann, M.

    1990-01-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extracellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10 -9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ)